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Abstract001

While large language models (LLMs) show002
great potential in temporal reasoning, most ex-003
isting work focuses heavily on enhancing per-004
formance, often neglecting the explainable rea-005
soning processes underlying the results. To006
address this gap, we introduce a comprehen-007
sive benchmark covering a wide range of tem-008
poral granularities, designed to systematically009
evaluate LLMs’ capabilities in explainable tem-010
poral reasoning. Furthermore, our findings re-011
veal that LLMs struggle to deliver convincing012
explanations when relying solely on textual013
information. To address challenge, we pro-014
pose GETER, a novel structure-aware genera-015
tive framework that integrates Graph structures016
with text for Explainable TEmporal Reasoning.017
Specifically, we first leverage temporal knowl-018
edge graphs to develop a temporal encoder that019
captures structural information for the query.020
Subsequently, we introduce a structure-text pre-021
fix adapter to map graph structure features into022
the text embedding space. Finally, LLMs gen-023
erate explanation text by seamlessly integrat-024
ing the soft graph token with instruction-tuning025
prompt tokens. Experimental results indicate026
that GETER achieves state-of-the-art perfor-027
mance while also demonstrating robust gener-028
alization capabilities. Our dataset and code029
are available at https://anonymous.4open.030
science/r/GETER-58EF.031

1 Introduction032

Temporal reasoning (TR) is a fundamental cogni-033

tive skill essential for understanding complex tasks034

like planning and causal relation discovery (Xiong035

et al., 2024). In natural language processing (NLP),036

temporal reasoning refers to a model’s capability037

to effectively comprehend, represent, and predict038

time-sensitive contexts (Yang et al., 2024b). This039

capability is critical for real-world applications that040

depend on temporal data, including search engine041

recommendations (Bogina et al., 2023) and news042

article aggregation (Wu et al., 2025).043

Query: Given the provide context, 
does the Police engage 
cooperation Citizen on 11-16？

Context: Police arrest Citzen on 
10-22. Police investigate Citzen on 
11-04. Police Make an appeal or 
reques Citizen on 11-13……………… 
Police express intent to meet or 
negotiate Citizen on 11-11. Police 
demand Lawyer on 10-31, Lawyer 
Accuse 2014-11-10

(a) Overlooking explanation behind the answer 

TKG

only give the answer

(c) Our methods incorporate structure information

No,  it is not plausible that Police engage 
cooperation Citizen on 11-16. Several factors 
support this prediction: 1. Police arrest 
Citzen on 10-22……there is no indication in 
the document of any intention by Police to 
enage in cooperation with Citzen……

(b) Unconvincing explanation

LLM

LLM Yes/No

Correct 
explanation

……..

Figure 1: An illustration of existing temporal reasoning
works highlights the lack of focus on explanations be-
hind the reasoning. Meanwhile, LLMs often struggle to
generate convincing answers due to hallucinations.

Recently, large language models (LLMs) have 044

demonstrated remarkable performance in tackling 045

complex tasks (Wei et al., 2022; Huang and Chang, 046

2023; OpenAI, 2023). Building on this success, 047

recent studies have increasingly focused on explor- 048

ing the TR capabilities of LLMs. These works 049

primarily adopt general approaches to evaluate and 050

enhance the TR capabilities of LLMs. For instance, 051

Tan et al. (2023) and Wei et al. (2023) design time- 052

sensitive queries to benchmark LLMs, while Wang 053

and Zhao (2024) and Chu et al. (2024) extend these 054

efforts by using prompting strategies like in-context 055

learning (ICL) and Chain-of-Thought (CoT) rea- 056

soning for comprehensive evaluation. Furthermore, 057

Lee et al. (2023) and Xia et al. (2024) employ ICL 058

with prompts containing intermediate reasoning 059

steps to guide models, while Liao et al. (2024a) 060

and Luo et al. (2024) adopt fine-tuning methods, 061

training LLMs on reasoning process texts to enable 062

them to produce accurate answers. 063

Although existing methods have explored LLMs’ 064

potential in temporal reasoning, they exceedingly 065

focus on improving performance, often overlook- 066

ing the explainable reasoning processes behind the 067

results, as illustrated in Figure 1(a). The study 068
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of explainable temporal reasoning is crucial, as069

it promotes transparency, enhances effectiveness,070

and fosters trust in understanding temporal dy-071

namics. Moreover, with their impressive semantic072

understanding and generation capabilities, LLMs073

are uniquely positioned to address the challenges074

of explainable reasoning (Wang et al., 2023; Ma075

et al., 2024), as they can generate flexible, human-076

readable reasoning processes. Therefore, we posit077

the following research question to guide our study:078

Can LLMs effectively make accurate predictions079

and clearly explaining their reasoning processes in080

complex temporal reasoning scenarios?081

To address this challenge, we propose the ETR082

benchmark, a comprehensive benchmark for ex-083

plainable temporal reasoning. Specifically, ETR084

consists of five datasets covering a wide range of085

temporal granularities (minutes, days, and years).086

Each instance is represented as a triple of <query087

text, reasoning chains text, explanation text> where088

the query and related reasoning chains are derived089

from Temporal Knowledge Graphs (TKGs). The090

explanation text is synthesized using GPT-4o (Ope-091

nAI, 2023) with constrained generation prompt pro-092

tocols, taking the query and reasoning chains as093

input. The resulting explanation text effectively094

integrates both the original gold prediction and the095

underlying reasoning processes. ETR aims to chal-096

lenge LLMs not only to predict future events from097

the given reasoning chains text but also to generate098

explanations of their reasoning processes.099

Building on this benchmark, we identify that the100

key to achieving explainable temporal reasoning101

lies in enabling LLMs to capture structured patterns102

that reflect the relationships and dynamics between103

events over time. As shown in Figure 1(b), our104

findings reveal that LLMs struggle to deliver con-105

vincing explanations when relying solely on textual106

information, a challenge (e.g. hallucinations) also107

highlighted in previous analyses (He et al., 2024;108

Liu et al., 2025). To address this challenge, we pro-109

pose a novel structure-aware generative framework110

GETER, which advances explainable temporal rea-111

soning by effectively bridging the gap between112

graph structures and text. Specifically, we leverage113

TKGs to develop a temporal encoder that captures114

structural information. Subsequently, the encoder115

converts the query and reasoning chains into a soft116

graph token, which is then mapped into the LLM’s117

text space via a lightweight adapter. Finally, LLM118

can generate explanation text by integrating the soft119

graph token with instruction-tuning prompt tokens,120

seamlessly combining structural and contextual se- 121

mantic information. Experimental results show that 122

our proposed GETER achieves state-of-the-art per- 123

formance. In summary, the contributions of this 124

paper are as follows: 125

• We introduce ETR, a comprehensive bench- 126

mark covering a wide range of temporal gran- 127

ularities for systematically evaluating LLMs’ 128

explainable temporal reasoning. 129

• To bridge the gap between graph struc- 130

tures and text, we propose GETER, a novel 131

structure-aware generative framework which 132

leverages a lightweight structure-text adapter 133

to enhance LLMs’ explainable temporal rea- 134

soning capabilities. 135

• Our GETER achieves state-of-the-art perfor- 136

mance on five datasets using widely-used 137

LLMs, demonstrating the superiority of our 138

model. Further experiments reveal that 139

GETER exhibits strong generalization ability. 140

2 Related Work 141

2.1 LLMs for Temporal Reasoning 142

With the rapid advancement of LLMs, research 143

has increasingly focused on evaluating and enhanc- 144

ing their temporal reasoning capabilities. Existing 145

studies primarily leverage the parametric knowl- 146

edge of LLMs to assess and improve performance. 147

For instance, several studies (Tan et al., 2023; Wei 148

et al., 2023) design time-sensitive queries to bench- 149

mark LLMs, while others (Wang and Zhao, 2024; 150

Chu et al., 2024) extend these efforts to diverse 151

temporal reasoning tasks using general evaluation 152

methods. Additionally, some methods (Lee et al., 153

2023; Xia et al., 2024) utilize in-context learning by 154

providing prompts with demonstrations of interme- 155

diate reasoning steps to guide the model, whereas 156

fine-tuning methods (Liao et al., 2024a; Luo et al., 157

2024) train LLMs on reasoning texts to enable them 158

to generate accurate final answers. Despite these 159

advancements, most efforts focus on improving 160

performance through parametric knowledge, with 161

limited emphasis on explanation. 162

2.2 Explainable Temporal Reasoning 163

In temporal reasoning tasks, explainability is cru- 164

cial for ensuring transparency, trust, and reliability. 165

Existing works for explainable temporal reason- 166

ing primary fall into two categories: logic rule- 167

based methods and reinforcement learning-based 168
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methods. Logic rule-based methods (Liu et al.,169

2022b; Lin et al., 2023; Mei et al., 2022) ensure170

explainability through explicit rule templates but171

struggle to balance generalization and explainabil-172

ity in complex scenarios. Reinforcement learning-173

based methods (Han et al., 2021a; Sun et al., 2021)174

construct reasoning paths guided by predefined re-175

ward mechanisms. However, their explainability176

is limited by the implicit nature of their decision-177

making processes. In contrast, LLMs offer unique178

advantages for explainable reasoning by leverag-179

ing semantic understanding and generation capa-180

bilities (Tan et al., 2023, 2024), enabling more181

flexible and human-readable reasoning processes.182

While Yuan et al. (2024) conduct a preliminary183

exploration of LLM explainability, their work over-184

looks finer-grained temporal dimensions evaluation185

and fails to enhance LLMs through the integration186

of temporal graph features.187

3 Proposed ETR Benchmark188

3.1 Problem Definition189

Temporal Knowledge Graphs (TKGs) G are repre-190

sented as a sequence of KGs (G0,G1, . . . ,Gt) ar-191

ranged by timestamp t. Let G = (E ,R,F) be a192

TKG instance, where E ,R, F represent the set of193

entities, relations and facts, respectively. Each fact194

can be represented as a quadruple (es, r, eo, t) ∈ F ,195

where subject and object es, eo ∈ E , relation r ∈ R.196

Explainable temporal reasoning aims to challenge197

LLMs to predict future events based on reasoning198

chains and generate explanations of their reasoning.199

Formally, given reasoning chains C consisting of200

facts F[tq−w,tq), the task is to predict the probabil-201

ity P (q|C, tq) that a query q will occur at future202

time tq, where w is the window size. Based on this203

probability, the model classifies q into one of three204

categories: "Yes", "No", or "Unsure", and gener-205

ates an explanation for its prediction. The predic-206

tion and explanation together form the final output207

A. To train and evaluate the model, we define two208

types of instances: training instances Ttrain and209

test instances Ttest. These instances follow the ex-210

trapolation condition (Jin et al., 2020), where the211

training time (ttrain) strictly precedes the test time212

(ttest), i.e., ttrain < ttest. Each instance Ti consists213

of the following components: the query text Qi,214

the input reasoning chains text Ci, and explanation215

text Ai, formally defined as:Ti = {Qi, Ci,Ai}.216

3.2 Pipeline 217

As illustrated in Figure 2, we present ETR, a com- 218

prehensive benchmark for Explainable Temporal 219

Reasoning. To accomplish this goal, we extract 220

reasoning chains for each query and generate expla- 221

nation text using GPT-4o. Additionally, we sample 222

negative and neutral examples in a similar manner 223

to provide a thorough evaluation of the LLMs. The 224

detailed construction process is outlined as follows. 225

3.2.1 Reasoning Chains Text Construction 226

To construct reasoning chains text, given a query 227

q = (es, r, eo, tq), we extract the graph reasoning 228

chains C(es, eo) associated with entities es and eo 229

using a breadth-first search (BFS) methods (Jiang 230

et al., 2023). The extraction process considers rea- 231

soning chains occurring within the time interval 232

[tq − w, tq) and is formalized as follows: 233

C(es, eo)←
l∧

i=1

(Ei, Ri, Ei+1, Ti), (1) 234

where E1 = es, El+1 = eo, and l ∈ {1, 2} de- 235

notes the path length. Once these reasoning chains 236

C(es, eo) are extracted, they are converted into nat- 237

ural language sentences to form the input text Ci. 238

3.2.2 Explanation Generation 239

Based on the query q = (es, r, eo, tq) and reason- 240

ing chains C(es, eo), we employ a template to gen- 241

erate an initial explanation text A′
i as follows: 242

We predict that [es] [r] [eo] will hap-
pen on [tq]. Here are the reasoning
steps: C(es, eo).

243

However, not all reasoning chains can adequately 244

justify the occurrence of the given query, and the 245

template-generated explanation text often exhibits 246

issues such as incoherence, unnatural flow, and 247

insufficient logical consistency, ultimately failing 248

to provide a clear and compelling rationale. To 249

address these limitations, we employ GPT-4o to 250

enhance the quality of the final explanations Ai, 251

guided by the prompt provided in Appendix A.1 252

3.2.3 Negative and Neutral samples 253

To evaluate the ability of LLMs in explainable tem- 254

poral reasoning, particularly in inferring logical cor- 255

relations between the queries and historical facts, 256

we introduce negative and neutral samples. Nega- 257

tive samples are used to test the model’s ability to 258

reject logically inconsistent or counterfactual sce- 259

narios, while neutral samples assess its capacity to 260

3



2. Explanation Generation

Temporal Knowledge Graph

Extract Reasoning 
Chains related to 

Query

1. Generate Reasoning Chains Text

TKG2NL

Query text

Reasoning 
chains text

Please revise the provided text to 
ensure that the prediction aligns 
with the reasoning steps. Expand 
the explanation of each reasoning 
step to make the text more 
coherent and readable……

LLM Polish 
& Revise

Template Explanation

3. Negative & Neutral Samples  

(Barack Obama,Consult,China,t)

Reasoning 
Chains Text

(Barack Obama,Consult,Japan,t)

(Barack Obama,Make a visit,China,t)

replace entity

replace relation
by NLI model

4. Data Control  

Q C A

Q C A

Q C A

Positive Sample

Negative Sample

Neutral Sample

Filter invalid 
answer  

Human 
annotation

ETR Benchmark

Steps 1,2

generate

neutral

contradiction 

Figure 2: The pipeline of generating ETR benchmark.

Dataset Time Granularity Type |Pos.| |Neg.| |Neu.| Total

ICEWS14 1 day
Train 5000 4800 4500 14300
Test 800 700 600 2100

ICEWS05-15 1 day
Train 4500 4400 4200 13100
Test 720 680 660 2060

ICEWS18 1 day
Train 4400 4200 4000 12600
Test 750 700 650 2100

GDELT 15 minutes
Train 4800 4600 4400 13800
Test 800 700 650 2150

WIKI 1 year
Train 2482 2504 2342 7328
Test 347 286 316 949

Table 1: Statistics of the ETR benchmark. |Pos.|,
|Neg.|, and |Neu.| denote the number of positive, neg-
ative, and neutral samples, respectively.

infer uncertainty and ambiguity in scenarios with261

insufficient evidence.262

Negative Samples. Negative samples repre-263

sent counterfactual queries. To achieve this goal,264

we modify the positive query quadruple q =265

(es, r, eo, tq) by replacing o with a different entity266

o′, resulting in q′ = (es, r, e
′
o, tq), where q′ /∈ F .267

This creates a hard negative sample that introduces268

factual inconsistencies. Additionally, we derive269

negative sample reasoning chains C(es, e′o) as de-270

fined in Equation 1. Following a similar process271

for positive samples, we design the corresponding272

prompt for GPT-4o, detailed in Appendix A.2.273

Neutral Samples. In neutral samples, LLMs are274

expected to predict "unsure" for the query, as the275

reasoning chain lacks sufficient evidence to support276

or refute it. To construct these samples, we replace277

the positive query relation q = (es, r, eo, tq) with278

q′′ = (es, r
′, eo, tq), where r′ is a semantically neu-279

tral relation to r and q′′ /∈ F . The neutral relation 280

r′ is identified using a Natural Language Inference 281

(NLI) model (He et al., 2023), which classifies 282

relationships into entailment, contradiction, and 283

neutral. We select r′ as neutral only if the NLI 284

model assigns P (neutral) > τ , where τ is a prede- 285

fined threshold. The reasoning chains for neutral 286

samples, C(es, eo), are consistent with those of pos- 287

itive samples. Details of the GPT-4o prompt are 288

provided in Appendix A.3. 289

3.3 Benchmark Summary and Evaluation 290

As summarized in Table 1, the proposed bench- 291

mark covers a wide range of temporal gran- 292

ularities. To achieve this goal, we use five 293

widely adopted temporal knowledge graph rea- 294

soning datasets: ICEWS14 (García-Durán et al., 295

2018), ICEWS18 (Han et al., 2021b), ICEWS05- 296

15 (García-Durán et al., 2018)), GDELT (Liao et al., 297

2024b), and WIKI (Leblay and Chekol, 2018). To 298

ensure the quality of the dataset, we filter out in- 299

valid answers and conduct human evaluation. Fur- 300

ther details refer to Appendix A.5. 301

4 Methodology 302

In this section, we present GETER, a novel 303

structure-aware generative framework that inte- 304

grates Graph structures with text for Explainable 305

TEmporal Reasoning. The overall architecture 306

of our proposed model is illustrated in Figure 3. 307

Specifically, we first leverage a temporal encoder to 308

obtain structural embeddings for both entities and 309
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Large Language Models

(self Attention layers)

query

time tq

Reasoning Chains

Temporal Encoder

Temporal Knowledge Graph

Indexing

Adapter

train

<Instruction>:
Given the following document, is it plausible that 
<query description> will happen? Please answer 
yes, no, or unsure then explain your decision.

<Input>：
{Reasoning Chains text}

<Answer>：
{target explanation text}

graph embedding 

Pooling 

LLM Text Embedder

Instruct tuning 
prompt

Lora

Target explanation tokens

graph 
token

encode

Figure 3: The overall framework of GETER. To bridge the gap between graph and text, we leverage TKGs to train
a temporal encoder that captures structural information. Subsequently, the query and reasoning chains are encoded
into a soft graph token, which is mapped into the text embedding space through a lightweight adapter. Finally, the
target explanation text is generated using the soft graph token and related instruction tuning prompt tokens.

relations. Subsequently, we introduce a structure-310

text prefix adapter as described in Sec. 4.2 to map311

graph structure features into the text embedding312

space. Finally, we apply an instruction-tuning strat-313

egy (Sec. 4.3) to effectively adapt the model to the314

explainable temporal reasoning task.315

4.1 Indexing316

We aim to harness the semantic understanding and317

temporal reasoning capabilities of LLMs for the ex-318

plainable temporal reasoning task. However, rely-319

ing solely on LLMs within a text-based prediction320

framework to infer correlations between queries321

and reasoning chains inevitably neglects the struc-322

tural information in the TKG G. To address this,323

we first employ a temporal encoder (TKG model),324

such as RE-GCN (Li et al., 2021), which utilizes325

the message-passing mechanism of GNNs to effec-326

tively capture structural patterns, to generate the327

structural representation sn:328

sn = TemporalEncoder(xn|G) ∈ Rds , (2)329

where xn represents the initialized embedding of330

entity or relation n, and ds denotes the dimension331

of the structural embedding. In this way, we get332

entity embedding matrix E ∈ R|E|×ds and relation333

embedding matrix R ∈ R|R|×ds , respectively.334

4.2 Structure-Text Adapter 335

To effectively integrate structure-based embed- 336

dings of entities and relations with textual infor- 337

mation, we propose a soft prompt strategy that 338

combines structural and textual features in a con- 339

textualized manner. Specifically, given the query 340

q = (es, r, eo, t) and reasoning chains C(es, eo), 341

we compute the representation of the query and rea- 342

soning chains via parameter-free message passing 343

on the encoded structural features. The resulting 344

graph representation is then projected into the em- 345

bedding space of LLMs using a trainable projection 346

matrix Wp ∈ R3ds×dx , as follows: 347

SC(es,eo) =
∑

(e′s,r
′,e′o)∈C(es,eo)

(e′s∥r′∥e′o), (3) 348

Sgraph = Wp ·
SC(es,eo) + Sq

|C(es, eo)|+ 1
, (4) 349

where ∥ denotes concatenation, Sq = (es∥r∥eo), 350

Sgraph is the projected graph representation, and 351

dx denotes the dimension of embedding space of 352

LLMs. e′s ∈ R1×ds , r′ ∈ R1×ds , and e′o ∈ R1×ds 353

are the embeddings of the subject entity, relation, 354

and object entity, respectively. This straightfor- 355

ward linear mapping is adopted due to its proven 356

effectiveness in aligning graph-based and textual 357

representations (He et al., 2024; Liu et al., 2025). 358
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4.3 Instruction Tuning Strategy359

The instruction tuning process is designed to adapt360

the reasoning behavior of the LLM to align with361

the specific constraints and requirements of the ex-362

plainable temporal reasoning task. To facilitate the363

generation of the target explainable text, we pro-364

vide the corresponding query text Q and reasoning365

chains text C(es, eo) as inputs to the LLM, which366

produce their textual representations, denoted as367

X = XQ +XC . Let X ∈ R|X|×dx represent the368

textual content embeddings of the input, where |X|369

denotes the token length of X . The final input to370

the LLM is constructed by concatenating the soft371

graph token embeddings Sgraph (as described in372

Sec. 4.2) with the textual embedding, expressed as373

X ′ = Sgraph∥X . Lastly, our optimization objec-374

tive is to maximize the likelihood of generating the375

target explanation text YA:376

P (YA|X ′,XI) =
L∏

j=1

Pθ

(
yj
∣∣X ′,XI ,Y<j

)
,

(5)377

where XI denotes the representation of instruction378

tokens, L is the token length of the target expla-379

nation text, and Y<j represents the prefix of the380

missing explanation text sequence YA up to posi-381

tion j − 1. Considering the overhead of updating382

all parameters in LLMs, we adopt Low-Rank Adap-383

tation (LoRA) technique (Hu et al., 2022) for its384

effectiveness (Liu et al., 2022a). The example of385

instruction data can be seen in Appendix A.4.386

5 Experiments387

5.1 Experiments Setup388

Metrics. To evaluate the explainable temporal rea-389

soning capabilities of LLMs, our assessment is390

broadly divided into two categories: prediction391

evaluation and explanation evaluation. For pre-392

diction, we report precision, recall, and F1 scores.393

For explanation, we employ BLEU (Papineni et al.,394

2002) (4-gram), ROUGE (Lin, 2004) (ROUGE-395

L), METEOR (Banerjee and Lavie, 2005), and396

BertScore (Zhang et al., 2020) to measure the simi-397

larity between model-generated explanations and398

the ground truth in the test set.399

Baselines. We evaluate our benchmark on four400

representative LLMs: GPT-4o (OpenAI, 2023),401

Llama3-8B-Instruct (Dubey et al., 2024), Qwen2.5-402

7B-Instruct (Yang et al., 2024a), and Mistral-7B-403

Instruct-v0.3 (Jiang et al., 2024). For our frame-404

work, we adopt the last three open-source models405

as backbones and use the classic RE-GCN (Li et al., 406

2021) as the temporal encoder. Additional imple- 407

mentation details are provided in Appendix B.1. 408

5.2 Main results 409

In our experiments, we compare GETER with 410

two model configurations: 1) Inference-only (zero- 411

shot): Utilizing a frozen LLM to generate expla- 412

nations directly without any additional training. 2) 413

Tuned-only: Fine-tuning the LLM using LoRA 414

to enhance its performance on the task. Table 2 415

presents the prediction results, while Table 3 sum- 416

marizes the explanation results. Overall, GETER 417

demonstrates consistent and significant improve- 418

ments across most metrics on both datasets, high- 419

lighting the effectiveness of the proposed approach. 420

Prediction Results. Table 2 reports the predic- 421

tion evaluation metrics for each LLM. The results 422

show that both the Tuned-only setting and GETER 423

methods significantly outperform Inference-only 424

setting methods, even though our dataset is gener- 425

ated by prompting GPT-4o. This performance gap 426

arises because fine-tuning allows models to better 427

capture task-specific temporal patterns and improve 428

logical consistency. Notably, GETER with Mistral 429

demonstrates substantial improvements of 97.95%, 430

95.55%, and 101.58% in overall F1 scores com- 431

pared to the best-performing Inference-only model 432

GPT-4o. Furthermore, compared to Tuned-only 433

methods, GETER with Mistral achieves overall 434

F1 score improvements of 11.10%, 10.71%, and 435

7.54% across the three datasets. These results fur- 436

ther underscore that GETER can effectively lever- 437

age the structural information of TKGs to enhance 438

its explainable temporal reasoning capabilities. 439

Explanation Results. Table 3 presents the eval- 440

uation metrics for explanation generation. GETER 441

demonstrates remarkable improvements across all 442

key evaluation metrics. Specifically, compared to 443

GPT-4o, GETER with Mistral achieves substan- 444

tial enhancements in BLEU-4 scores across the 445

three datasets, with gains of 75.28%, 251.31%, and 446

99.07%, respectively. These results highlight the 447

significant potential of leveraging high-quality fine- 448

tuning datasets to enhance the explainable temporal 449

reasoning capabilities of LLMs. 450

5.3 Ablation Study 451

In this subsection, we conduct an ablation study 452

to investigate the individual contributions of dif- 453

ferent components in GETER. The results for var- 454

ious variants are presented in Table 4, indicating 455
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Models
Types

Datasets ICEWS14 GDELT ICEWS05-15
Positive Negative Neutral Overall Positive Negative Neutral Overall Positive Negative Neutral Overall

GPT-4o
zero-shot w/o chains text 53.13 20.02 12.95 30.61 19.08 43.78 25.50 29.06 55.45 26.33 15.47 33.03

zero-shot 60.10 9.54 48.56 39.95 42.74 37.16 29.21 36.83 61.63 11.89 47.16 40.58

Llama3-8B-Instruct

zero-shot w/o chains text 21.69 27.11 35.42 27.42 1.95 33.13 39.44 23.44 11.75 28.98 39.41 26.30
zero-shot 56.51 10.20 6.20 26.70 53.48 15.62 29.47 33.90 57.14 17.50 14.03 30.24

LoRA w/o chains text 62.27 36.98 48.17 49.81 61.94 7.19 69.14 46.29 65.67 38.56 68.02 57.47
LoRA 70.37 58.06 67.99 65.59 62.86 28.57 78.56 56.44 71.32 51.77 74.40 65.86

GETER 75.07 67.38 81.15 74.25 62.62 68.74 88.73 72.51 78.58 75.95 91.48 81.84
∆Improve 6.68% 16.05% 19.36% 13.20% -0.38% 140.54% 12.95% 28.49% 10.18% 46.70% 22.96% 24.26%

Qwen2.5-7B-Instruct

zero-shot w/o chains text 23.61 42.54 14.73 27.39 11.27 44.92 19.81 24.81 31.71 39.45 15.82 29.17
zero-shot 53.08 45.32 11.41 38.59 22.22 48.23 1.21 24.34 40.81 48.32 1.75 30.78

LoRA w/o chains text 62.82 58.59 71.97 64.03 31.28 52.11 12.41 32.36 55.33 68.65 85.89 69.52
LoRA 74.60 65.64 75.62 71.90 22.39 56.61 66.79 46.95 66.83 70.95 84.09 73.72

GETER 76.41 74.61 84.49 78.12 63.77 70.06 88.42 73.27 78.23 72.95 89.90 80.23
∆Improve 2.43% 13.66% 11.73% 8.65% 184.86% 23.77% 32.39% 56.04% 17.06% 2.82% 6.91% 8.83%

Mistral-7B-Instruct

zero-shot w/o chains text 3.65 39.44 46.44 27.81 5.52 40.64 23.50 22.39 7.56 33.21 46.10 28.37
zero-shot 22.04 27.64 40.76 29.26 0.99 24.93 43.23 21.55 17.73 29.80 49.69 31.96

LoRA w/o chains text 58.04 65.44 80.03 66.79 19.45 58.16 71.52 47.80 70.81 39.12 75.80 61.95
LoRA 72.96 66.49 74.28 71.18 60.56 55.09 81.29 65.05 72.53 71.95 84.18 76.07

GETER 77.45 75.73 85.15 79.08 61.29 68.92 88.59 72.02 78.94 76.48 90.38 81.80
∆Improve 6.15% 13.89% 14.63% 11.10% 1.21% 25.11% 8.98% 10.71% 8.84% 6.30% 7.36% 7.54%

Table 2: F1 scores (%) of each model on the ICEWS14, GDELT, and ICEWS05-15 test instances. "Overall"
represents the weighted average F1 score. w/o chains text refers to the absence of reasoning chain input for LLMs.
The best-performing results are highlighted in bold. ∆Improve represents the relative improvements of GETER
compared to Tuned-only methods. Additional dataset and detailed prediction results are presented in Appendix D.

Models
Types

Datasets ICEWS14 GDELT ICEWS05-15
BLEU-4 rougeL METEOR BertScore (F1) BLEU-4 rougeL METEOR BertScore (F1) BLEU-4 rougeL METEOR BertScore (F1)

GPT-4o
zero-shot w/o chains text 10.78 23.82 31.14 68.16 5.95 21.30 26.84 64.73 10.74 23.63 30.94 68.00

zero-shot 22.94 41.04 37.24 79.25 9.16 27.61 32.32 70.91 22.64 40.83 36.27 79.16

Llama3-8B-Instruct

zero-shot w/o chains text 4.35 16.32 16.71 61.35 2.38 13.41 17.03 56.98 2.27 12.88 10.53 58.28
zero-shot 9.70 30.19 26.60 70.25 5.61 27.10 25.73 67.42 10.08 31.13 27.44 70.02

LoRA w/o chains text 27.73 39.71 45.94 80.16 18.12 37.05 35.92 77.51 27.59 39.63 45.80 80.17
LoRA 39.21 50.96 54.03 84.28 34.32 54.84 51.49 83.75 42.98 54.50 56.65 85.45

GETER 40.54 52.54 53.87 84.75 34.46 55.42 51.75 83.62 45.98 57.27 58.16 86.39
∆Improve 3.39% 3.10% -0.30% 0.56% 0.41% 1.06% 0.50% -0.16% 6.98% 5.08% 2.67% 1.10%

Qwen2.5-7B-Instruct

zero-shot w/o chains text 7.43 19.73 30.82 66.03 3.76 17.90 28.25 63.15 7.81 19.87 30.27 65.94
zero-shot 11.18 28.49 27.98 72.28 7.55 26.90 25.97 70.00 10.53 28.53 26.32 72.04

LoRA w/o chains text 28.17 40.22 45.20 80.12 17.15 36.89 34.52 75.71 28.60 40.52 45.76 80.39
LoRA 39.59 51.48 53.30 84.35 26.10 47.30 43.85 79.93 43.55 55.01 56.22 85.62

GETER 39.78 51.46 55.03 84.53 33.81 54.76 50.18 83.59 44.72 56.17 57.22 86.01
∆Improve 0.48% -0.04% 3.25% 0.21% 29.54% 15.76% 14.44% 4.58% 2.69% 2.11% 1.78% 0.46%

Mistral-7B-Instruct

zero-shot w/o chains text 7.17 19.40 24.27 65.46 4.89 18.20 25.78 63.60 7.24 19.29 23.26 65.10
zero-shot 9.19 28.36 25.70 71.63 7.46 27.96 25.99 70.43 7.95 27.40 23.60 70.73

LoRA w/o chains text 28.01 39.84 45.70 80.34 18.22 38.08 35.74 76.76 28.26 40.13 45.96 80.45
LoRA 38.81 50.81 52.62 84.02 30.93 52.24 47.28 82.28 43.03 54.56 55.94 85.47

GETER 40.21 51.84 54.90 84.65 32.18 53.27 49.06 82.83 45.07 56.48 57.70 86.13
∆Improve 3.61% 2.03% 4.33% 0.75% 4.04% 1.97% 3.77% 0.67% 4.74% 3.52% 3.14% 0.77%

Table 3: The semantic similarity performance (%) of each model on the ICEWS14, GDELT, and ICEWS05-15 test
instances. w/o chains text refers to the absence of reasoning chain input for LLMs. The best-performing results are
highlighted in bold. Additional dataset explanation results are presented in Appendix D.

No. Model ICEWS14 GDELT ICEWS05-15

1 GETER 79.08 72.02 81.80
2 GETER w/o STA 71.18(↓7.90) 65.05(↓6.97) 76.07(↓5.73)
3 GETER w/o RCT 72.05(↓7.03) 68.89(↓3.13) 77.82(↓3.98)
4 GETER w/o (STA & RCT) 66.79(↓12.29) 47.80(↓24.22) 61.95(↓19.85)

Table 4: Ablation study of GETER with Mistral on
ICEWS14, GDELT, and ICEWS05-15 datasets using
overall F1 scores (%). STA denotes structure-text
adapter, while RCT denotes reasoning chains text.

that all modules are essential, as removing any of456

them leads to a decline in performance. Notably,457

to validate the usefulness of the structural infor-458

mation provided by GETER, we directly removed459

the structure-text adapter from the model (Line 2).460

This ablation results in overall F1 score reductions461

of 11.10%, 10.71%, and 7.53% across the three 462

datasets, respectively. These results demonstrate 463

that the soft graph token with lightweight adapter 464

can effective capture the structural characteristics 465

for the query. Additionally, as shown in Line 3 of 466

Table 4, removing the reasoning chains text leads 467

to a significant performance decline, with F1 scores 468

dropping by 9.76%, 10.71%, and 5.11% across the 469

three datasets, respectively. This result highlights 470

the importance of reasoning chains text, as they 471

provide sequenced evidence that enriches the con- 472

textual background. Furthermore, we observe that 473

GETER scheme significantly outperforms the base 474

model that directly adopts instruction tuning (Line 475

4). This demonstrates the effectiveness of GETER, 476
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which combine structural and contextual seman-477

tic information to activate and harness the LLM’s478

capability for explainable temporal reasoning.479

5.4 Discussion480

In this subsection, we conduct further analysis of481

the impact of different temporal encoders, the influ-482

ence of MLP depth, and the effect of various rea-483

soning chain serialization formats on the model’s484

performance. All experiments are conducted using485

Mistral due to its superior performance. Addition-486

ally, we provide a case study in Appendix C to487

demonstrate the advantages of our method.488

Q1: What is the impact of different temporal489

encoders on GETER’s performance? To evalu-490

ate the impact of different temporal encoders, we491

integrate two additional representative temporal en-492

coders, CEN (Li et al., 2022) and CENET (Xu et al.,493

2023), with GETER. The performance compari-494

son is illustrated in Figure 4. The results demon-495

strate that GETER achieves consistently high per-496

formance across two datasets when paired with any497

of the three temporal encoders, significantly outper-498

forming methods that rely solely on LoRA. These499

findings demonstrate that GETER is robust to vari-500

ations in temporal encoders. Details about these501

temporal encoders are provided in Appendix B.502

Positive

Negative

Neutral

Overall

55
65

75
85

95

RE-GCN
CENET
CEN
LoRA-only

(a) ICEWS14

Positive

Negative

Neutral

Overall

55
65

75
85

95

RE-GCN
CENET
CEN
LoRA-only

(b) GDELT

Figure 4: Comparison of GETER with different tempo-
ral encoders on the ICEWS14 and GDELT datasets in
terms of overall F1 scores (%).

Q2: How does the depth of the MLP affect503

GETER’s performance? GETER uses a sim-504

ple one-layer MLP to map the graph structure fea-505

ture into the text embedding space. To investigate506

whether replacing the one-layer MLP with deeper507

neural structures improves performance, we con-508

duct experiments to replace the one-layer MLP509

with deeper ones. The results on the ICEWS14 and510

GDELT datasets are presented in Figure 5. We can511

observe that increasing model complexity has min-512

imal impact on performance. This is likely because513

ICEWS14 GDELT

55

65

75

85

O
ve

ra
ll 

F1
 S

co
re

 (%
)

1-MLP 2-MLP 3-MLP

79.08 79.98 79.33

72.02 72.52 72.19

Figure 5: MLP depth comparison on ICEWS14 and
GDELT datasets in terms of overall F1 scores (%).

Model Positive Negative Neutral Overall

GETER (paths order) 77.45 75.73 85.15 79.08
descending order 80.53 76.00 86.34 80.68
ascending order 77.72 77.52 86.04 80.03
random order 75.02 76.31 82.45 77.57

Table 5: Performance (F1 (%)) of GETER with different
reasoning chain formats on the ICEWS14 dataset.

deeper structures fail to capture evolving structural 514

information more effectively. 515

Q3: What is the effect of different reasoning 516

chain text formats on GETER’s performance? 517

We further investigate how GETER utilizes rea- 518

soning chain text, which provides contextualized 519

background information for queries. Specifically, 520

we evaluate three different serialization formats 521

based on the timestamp of quadruples: ascending, 522

descending, and random. As shown in Table 5, 523

the model achieves the best performance with the 524

descending order format. Surprisingly, even with 525

random serialization, GETER still maintains com- 526

petitive performance. This is attributed to the struc- 527

tured adapter in GETER, which effectively couple 528

structure and text information in a contextualized 529

manner. These findings further highlight the robust- 530

ness and adaptability of our proposed GETER. 531

6 Conclusion 532

We introduce a comprehensive benchmark cover- 533

ing a wide range of temporal granularities for sys- 534

tematically evaluating LLMs’ explainable tempo- 535

ral reasoning. To address the challenge of LLMs 536

struggling to deliver convincing explanations, we 537

propose a novel structure-aware generative frame- 538

work GETER, which effectively bridges the gap 539

between graph structures and text by through a 540

lightweight structure-text adapter. Extensive exper- 541

iments validate the effectiveness and robustness of 542

our proposed GETER. 543
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Limitations544

GETER can effectively activate and harness the ex-545

plainable reasoning ability of LLMs by incorporate546

the graph structural information into the LLMs.547

However, the extremely large number of param-548

eters in LLMs makes fine-tuning them resource-549

intensive. Additionally, not all related reasoning550

chains are beneficial for a given query, and some551

may even introduce noise, potentially impacting552

temporal reasoning performance. Therefore, a po-553

tential avenue for improving the effectiveness of554

GETER is to design a mechanism for filtering or555

prioritizing reasoning chains based on their rele-556

vance and utility to the query.557

Ethics Statement558

In developing this explainable temporal reasoning559

benchmark, all data used in this study are publicly560

available and do not pose any privacy concerns.561

Additionally, we have carefully considered ethical562

issues and limitations commonly associated with563

large language models. Nonetheless, we acknowl-564

edge that, despite our best efforts, the benchmark565

may still contain gaps or unintended biases. To566

mitigate this, the source data has been meticulously567

curated to ensure diversity and minimize potential568

biases. Through rigorous design and testing pro-569

cesses, we strive to uphold ethical AI principles570

while advancing research in temporal reasoning.571
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A Benchmark Details849

A.1 Prompt for Generating Explanations of850

Positive Samples851

Prompt for Positive Samples’ Explanation

Given the following text: "we predict
that [es] [r] [eo] will happen on [tq].
Here are the reasoning steps: C(es, eo)."
Please revise the provided text to ensure
that the prediction aligns with the rea-
soning steps. Expand the explanation
of each reasoning step to make the text
more coherent and readable. If neces-
sary, add additional reasoning steps to
clarify the logic. The output should be
a single, concise paragraph without bul-
let points, ensuring clarity and logical
consistency.

852

A.2 Prompt for Generating Explanations of853

Negative Samples854

Prompt for Negative Samples’ Explanation

Given the following text: "It is plausible
that [es] [r] [e′o] will not happen on [tq].
Here are the reasoning steps: C(es, e′o)."
Please revise the provided text to ensure
that the prediction aligns with the rea-
soning steps. Expand the explanation
of each reasoning step to make the text
more coherent and readable. If neces-
sary, add additional reasoning steps to
clarify the logic. The output should be
a single, concise paragraph without bul-
let points, ensuring clarity and logical
consistency.

855

A.3 Prompt for Generating Explanations of856

Neutral Samples857

Prompt for Neutral Samples’ Explanation

Given the following text: "It is unsure
that [es] [r′] [eo] will happen on [tq].
Here are the reasoning steps: C(es, eo)."
Please revise the provided text to ensure
that the prediction aligns with the rea-
soning steps. Expand the explanation
of each reasoning step to make the text
more coherent and readable. If neces-
sary, add additional reasoning steps to
clarify the logic. The output should be
a single, concise paragraph without bul-
let points, ensuring clarity and logical
consistency.

858

A.4 Example Prompt for Instruction Tuning859

Here is an example of an instruction tuning prompt860

for the query: (Police (Australia), Make an appeal861

or request, Citizen (Australia), 2014-03-12).862

Example Prompt for Instruction Tuning

Instruct: (Query Text) Given the
following document, is it plausible
that Police (Australia) will Make an
appeal or request Citizen (Australia) on
2014-03-12? Please answer yes, no, or
unsure then explain your decision.

Input: (Reasoning Chains Text) Police
(Australia) Appeal for aid Citizen (Aus-
tralia) 2014-02-10. Police (Australia) Ar-
rest, detain, or charge with legal action
Citizen (Australia) 2014-02-25. Police
(Australia) Arrest, detain, or charge with
legal action Citizen (Australia) 2014-03-
04. ...... Police (Australia) Arrest, de-
tain, or charge with legal action Crimi-
nal (Australia) on 2014-02-27, Criminal
(Australia) Sexually assault Citizen (Aus-
tralia) on 2014-03-08......

Output: (Explanation Text) Yes. Based
on the information provided, it is plausi-
ble that the Police in Australia will make
an appeal or request to citizens on March
12, 2014. This prediction is supported by
a pattern of interactions between the po-
lice and citizens leading up to this date.
The police have previously made appeals
or requests to citizens on several occa-
sions, including February 23, February
26, and March 11, 2014. Additionally,
the police have been actively involved
in various actions such as arrests, de-
tentions, and investigations, indicating
a heightened level of engagement with
the public. The police have also been
involved in more severe actions, such
as using conventional military force and
fighting with small arms, which suggests
a context of ongoing tension or conflict.
Given this backdrop, it is reasonable to
anticipate that the police might continue
their efforts to communicate with citizens,
possibly to seek cooperation or provide
updates on ongoing situations. There-
fore, considering the frequency and na-
ture of past interactions, it is likely that
the police will make another appeal or
request to citizens on March 12, 2014.

863

A.5 Benchmark Summary and Evaluation 864

Datasets #train #valid #test #entity #relations time gap
ICEWS14 74854 8514 7371 7128 230 1 day
ICEWS18 373018 45995 49545 23033 256 1 day
ICEWS05-15 368868 46302 46159 10094 251 1 day
GDELT 79319 9957 9715 5850 238 15 minutes
WIKI 539286 67538 63110 12554 24 1 year

Table 6: Dataset statistics.

The statistical details of the source data used 865

to construct the benchmark are provided in Ta- 866

ble 6. The data consist of three sources: the Inte- 867
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grated Crisis Early Warning System (ICEWS), the868

Global Database of Events, Language, and Tone869

(GDELT), and Wikipedia (WIKI). Specifically, the870

ICEWS14 dataset includes events from 2014, the871

ICEWS18 dataset includes events from 2018, and872

the ICEWS05-15 dataset spans events from 2005873

to 2015. GDELT is a significantly larger dataset874

that records events at 15-minute intervals, while875

WIKI consists of Wikidata knowledge bases that876

store factual information with a time interval of one877

year. To ensure the quality and reliability of our878

dataset, we recruited three volunteers to evaluate879

the benchmark. Each volunteer assessed 200 ran-880

domly selected examples from the dataset. They881

were instructed to perform two key evaluations, as-882

signing scores on a scale of 1 to 3 based on the883

following criteria:884

Explanation Text Quality (1-3):885

• 1 - The explanation is unclear, incoherent, or886

unreasonable.887

• 2 - The explanation is somewhat clear and rea-888

sonable but lacks coherence or completeness889

in certain aspects.890

• 3 - The explanation is clear, coherent, and891

fully reasonable.892

Overall Consistency (1-3):893

• 1 - The query text, reasoning chain, and ex-894

planation text are inconsistent or logically dis-895

connected.896

• 2 - There is partial consistency among the897

query text, reasoning chain, and explanation898

text, but logical gaps remain.899

• 3 - The query text, reasoning chain, and expla-900

nation text are fully consistent and logically901

aligned.902

The results of the human evaluation, as shown in903

Table 7, demonstrate a high level of accuracy and904

reliability in our benchmark generation process.905

Volunteer Explanation Text Quality Overall Consistency
Volunteer 1 2.80 2.78
Volunteer 2 2.74 2.79
Volunteer 3 2.86 2.89

Table 7: Average scores for Explanation Text Quality
and Overall Consistency by Volunteers.

B Implementation Details 906

B.1 Baselines 907

Below, we provide brief introductions to the LLMs 908

used in our methods: 909

• GPT-4o (OpenAI, 2023) is a large language 910

model developed by OpenAI, representing an 911

advanced iteration of the GPT series. It is 912

known for its strong generalization capabili- 913

ties across a wide range of natural language 914

processing tasks, including reasoning, genera- 915

tion, and instruction-following. 916

• Llama-3.1-8B-Instruct (Dubey et al., 2024) 917

is an instruction-tuned version of the Llama3 918

series, with 8 billion parameters. The tuned 919

versions use supervised fine-tuning (SFT) and 920

reinforcement learning with human feedback 921

(RLHF) to align with human preferences for 922

helpfulness and safety. 923

• Qwen2.5-7B-Instruct (Yang et al., 2024a) is 924

the latest series of Qwen large language mod- 925

els. It focuses on optimizing performance for 926

instruction-based tasks. 927

• Mistral-7B-Instruct-v0.3 (Jiang et al., 2024) is 928

a 7-billion-parameter instruction-tuned model 929

with an extended 32,768-token vocabulary, v3 930

tokenizer support, and function calling capa- 931

bilities for improved task performance. 932

We also introduce the temporal encoders utilized 933

in our methods: 934

• RE-GCN (Li et al., 2021) proposes a recurrent 935

evolution module based on relational GNNs 936

to obtain embeddings that contain dynamic 937

information for entities and relations. 938

• CEN (Li et al., 2022) uses a length-aware Con- 939

volutional Neural Network(CNN) to handle 940

evolutional patterns of different lengths via an 941

easy-to-difficult curriculum learning strategy. 942

• CENET (Xu et al., 2023) aims to learn a robust 943

distribution over the entire entity set and iden- 944

tify significant entities by leveraging both his- 945

torical and non-historical dependencies within 946

a contrastive learning framework. 947
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B.2 Hyperparameters948

We set the window size w to 30 and the threshold949

τ to 0.7 for constructing our benchmark. During950

training, the RE-GCN module is kept frozen, and951

LoRA is employed to fine-tune the model. The952

structural embedding size ds is set to 512, while953

the textual embedding size dx retains the original954

hidden layer dimensions of each LLM. The de-955

tailed hyperparameters used during training and956

inference are provided in Table 8. For optimization,957

we enable DeepSpeed ZeRO stage3 1. All models958

are trained and evaluated on 2 Nvidia A800 GPUs,959

each with 80GB of memory.960

Name Value

lora r 16
lora alpha 32

lora dropout 0.05
lora target modules (q, k, v, o, down, up, gate) proj

cutoff len 2048
epochs 3

per device batch size 6
gradient accumulation steps 1

learning rate 3e− 4
weight decay 1e− 5
warm ratio 0.01

lr scheduler type cosine
num return sequences 10

projection layers 1

Table 8: Detailed hyperparameters used in our paper.

C Case Study961

In this section, we present a case study to highlight962

the differences in responses among Inference-only963

method, Tuned-only method, and GETER. Specif-964

ically, we analyze the following positive query:965

(Police (Australia), Engage in material coopera-966

tion, Citizen (Australia), 2014-11-16), where the967

expected label is "Yes". As shown in Table 9,968

Inference-only method fail to capture the subtle969

cooperative signals embedded within the document970

(highlighted in orange), instead focusing primarily971

on dominant antagonistic actions, such as arrests972

and accusations, which result in incorrect negative973

predictions. While Tuned-only method can observe974

cooperative signals and demonstrate an improved975

ability to incorporate the temporal aspects of events,976

they struggle to fully model the interplay between977

cooperative and antagonistic actions (highlighted978

in blue), leading to comparable negative predic-979

tions. In contrast, GETER effectively captures the980

1https://github.com/microsoft/
Megatron-DeepSpeed

evolving patterns of event relationships and coop- 981

erative signals (highlighted in red). By leveraging 982

explicit cues, such as requests and expressed in- 983

tentions to cooperate, GETER not only predicts a 984

positive outcome accurately but also provides the 985

correct explanation. 986

D Full Experimental Results 987

The prediction results for the ICEWS18 and WIKI 988

datasets are summarized in Table 10, while the 989

explanation results are detailed in Table 11. No- 990

tably, GETER demonstrates consistent and signif- 991

icant improvements across most metrics on these 992

two datasets, underscoring its robustness and supe- 993

rior performance in complex scenarios. Compared 994

to Tuned-only methods, GETER combined with 995

Mistral achieves overall F1 score improvements 996

of 16.42% and 10.35% on the respective datasets. 997

Additionally, the detailed prediction results for all 998

five datasets are comprehensively summarized in 999

Table 12 through Table 16. 1000
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Query: Police (Australia) will Engage in material cooperation Citizen (Australia) on 2014-11-16

Instruction: Given the following document, is it plausible that Police (Australia) will Engage in material
cooperation Citizen (Australia) on 2014-11-16? Please answer yes, no, or unsure then explain your
decision.
Input: Police (Australia) Arrest, detain, or charge with legal action Citizen (Australia) 2014-11-12. Police
(Australia) Arrest, detain, or charge with legal action Citizen (Australia) 2014-11-13. Police (Australia)
Arrest, detain, or charge with legal action Citizen (Australia) 2014-11-14. Police (Australia) Accuse Citizen
(Australia) 2014-11-02. Police (Australia) Accuse Citizen (Australia) 2014-11-09. Police (Australia) Accuse
Citizen (Australia) 2014-11-10. Police (Australia) Make an appeal or request Citizen (Australia) 2014-
11-12. Police (Australia) Make an appeal or request Citizen (Australia) 2014-11-13. Police (Australia)
Make an appeal or request Citizen (Australia) 2014-11-14. Police (Australia) fight with small arms
and light weapons Citizen (Australia) 2014-11-09. Police (Australia) fight with small arms and light
weapons Citizen (Australia) 2014-11-12. Police (Australia) fight with small arms and light weapons Citizen
(Australia) 2014-11-14. Police (Australia) Use conventional military force Citizen (Australia) 2014-10-
22. Police (Australia) Use conventional military force Citizen (Australia) 2014-10-24. Police (Australia)
Use conventional military force Citizen (Australia) 2014-11-10. Police (Australia) Investigate Citizen
(Australia) 2014-11-03. Police (Australia) Investigate Citizen (Australia) 2014-11-04. Police (Australia)
Investigate Citizen (Australia) 2014-11-09. Police (Australia) Express intent to meet or negotiate Citizen
(Australia) 2014-10-24. Police (Australia) Express intent to meet or negotiate Citizen (Australia) 2014-11-
11. Police (Australia) Express intent to meet or negotiate Citizen (Australia) 2014-11-14. Police (Australia)
Criticize or denounce Citizen (Australia) 2014-10-28. Police (Australia) Criticize or denounce Citizen
(Australia) 2014-11-03. Police (Australia) Confiscate property Citizen (Australia) 2014-10-30. Police
(Australia) Investigate human rights abuses Citizen (Australia) 2014-10-30. Police (Australia) Appeal for
intelligence Citizen (Australia) 2014-11-04. Police (Australia) Reject Citizen (Australia) 2014-11-07. Police
(Australia) Abduct, hijack, or take hostage Citizen (Australia) 2014-11-09. Police (Australia) Physically
assault Citizen (Australia) 2014-11-13. Police (Australia) Impose restrictions on political freedoms Citizen
(Australia) 2014-11-14. Police (Australia) Return, release person(s) Citizen (Australia) 2014-11-14. Police
(Australia) Arrest, detain, or charge with legal action Criminal (Australia) on 2014-10-23, Criminal
(Australia) Engage in symbolic act Citizen (Australia) on 2014-11-03. Police (Australia) Arrest, detain,
or charge with legal action Criminal (Australia) on 2014-10-23, Criminal (Australia) Sexually assault
Citizen (Australia) on 2014-11-05. Police (Australia) Accuse Criminal (Australia) on 2014-10-22, Criminal
(Australia) Engage in symbolic act Citizen (Australia) on 2014-11-03. Police (Australia) Accuse Criminal
(Australia) on 2014-10-22, Criminal (Australia) Sexually assault Citizen (Australia) on 2014-11-05. Police
(Australia) Demand Lawyer/Attorney (Australia) on 2014-10-31, Lawyer/Attorney (Australia) Arrest, detain,
or charge with legal action Citizen (Australia) on 2014-11-03. Police (Australia) Demand Lawyer/Attorney
(Australia) on 2014-10-31, Lawyer/Attorney (Australia) Accuse Citizen (Australia) on 2014-11-10. Police
(Australia) Demand Lawyer/Attorney (Australia) on 2014-10-31, Lawyer/Attorney (Australia) Threaten
Citizen (Australia) on 2014-11-05. Police (Australia) Confiscate property Criminal (Australia) on 2014-
10-23, Criminal (Australia) Engage in symbolic act Citizen (Australia) on 2014-11-03. Police (Australia)
Confiscate property Criminal (Australia) on 2014-10-23, Criminal (Australia) Sexually assault Citizen
(Australia) on 2014-11-05.
Label output: Yes. Based on the information provided, it is plausible that the Police in Australia will engage
in material cooperation with Australian citizens on November 16, 2014. This prediction is supported by a
series of interactions between the police and citizens leading up to this date. The police have been actively
involved in various legal actions, such as arresting, detaining, or charging citizens on multiple occasions
from November 12 to November 14, 2014. Additionally, they have made appeals or requests to citizens
during the same period, indicating a willingness to communicate and potentially collaborate. Despite
instances of conflict, such as accusations, criticism, and even physical confrontations, there are also signs of
negotiation and intent to meet, as evidenced by the police expressing their intent to negotiate on November
11 and November 14, 2014. Furthermore, the police have returned or released individuals on November 14,
suggesting a move towards resolution and cooperation. These actions, combined with the broader context
of police investigations and appeals for intelligence, suggest a complex relationship that could lead to
material cooperation on November 16, 2014.
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Positive Query: Police (Australia) will Engage in material cooperation Citizen (Australia) on 2014-11-16 Model: Mistral

Methods Labels Output

Inference-only ✗ Based on the provided document, it is not plausible that Police (Australia) will engage in material cooperation
with the Citizen (Australia) on 2014-11-16. The document shows a series of actions by the Police (Australia)
that are generally antagonistic towards the Citizen (Australia), including arrests, detentions, charges, accusations,
confiscation of property, physical assault, and investigations into human rights abuses. These actions suggest a
conflictual relationship rather than cooperation. Furthermore, there is no indication in the document of any intention
by the Police (Australia) to engage in cooperation with the Citizen (Australia) on the specific date of 2014-11-16.

Tuned-only ✗ No. Based on the information provided, it is predicted that Police (Australia) will not engage in material cooperation
with Citizen (Australia) on 2014-11-16. This prediction is supported by a series of events leading up to this date,
which indicate a pattern of conflict and adversarial interactions between the police and citizens. In the days preceding
2014-11-16, the police have been involved in multiple actions against citizens, including arrests, detentions, and
charges on 2014-11-12, 13, and 14. Additionally, there have been accusations against citizens on 2014-11-2, 9, and
10, as well as instances of police using force and military actions against citizens on various dates. The police have
also been involved in investigations, criticisms, and confiscations, further indicating a tense relationship. Despite
some expressions of intent to negotiate or meet, the overall pattern of behavior suggests a lack of cooperative
engagement. Given this context of ongoing conflict and legal actions, it is reasonable to conclude that material
cooperation between the police and citizens is unlikely to occur on 2014-11-16.

GETER (ours) ✓ Yes. Based on the sequence of events outlined in the document, it is plausible to predict that the Police in Australia
will engage in material cooperation with Australian citizens on November 16, 2014. This prediction is supported by
a series of interactions between the police and citizens leading up to this date. From November 12 to November
14, the police were actively arresting, detaining, or charging citizens with legal actions, indicating a period of
heightened enforcement. However, alongside these actions, the police also made several appeals and requests
to citizens on the same dates, suggesting a willingness to engage in dialogue or seek assistance. Additionally,
the police expressed an intent to meet or negotiate with citizens on multiple occasions, including November 11
and November 14, which implies a shift towards more collaborative engagement. Despite the confrontational
actions, such as the use of force and accusations, the police also demonstrated a capacity for reconciliation by
returning or releasing individuals on November 14. This dual approach of enforcement and negotiation, combined
with the police’s expressed intent to meet and cooperate, supports the likelihood of material cooperation occurring
on November 16, 2014.

Table 9: Case comparisons between GETER and other methods. While Tuned-only method demonstrate an
improved ability to handle the temporal aspects of events (highlighted in blue), they still resulting in negative
predictions. In contrast, GETER leverages temporal graph structures to model the evolving patterns of event
relationships and effectively identifies cooperative signals (highlighted in red), enabling more accurate predictions.

Models
Types

Datasets ICEWS18 WIKI
Positive Negative Neutral Overall Positive Negative Neutral Overall

GPT-4o
zero-shot w/o chains text 51.64 36.61 24.79 38.32 69.5 53.45 17.77 47.45

zero-shot 60.33 23.78 40.72 42.08 61.94 37.44 40.88 47.54

Llama3-8B-Instruct

zero-shot w/o chains text 7.68 24.39 38.95 22.93 48.31 54.39 66.46 52.44
zero-shot 55.12 18.81 9.14 28.79 51.76 26.43 1.26 27.31

LoRA w/o chains text 57.47 47.14 56.30 53.66 84.08 70.67 83.36 79.80
LoRA 62.30 46.24 66.46 58.23 88.59 73.29 81.36 81.57

GETER 75.78 74.09 87.53 78.85 98.99 90.58 91.00 93.79
∆Improve 21.64% 60.24% 31.70% 35.41% 11.74% 23.59% 11.85% 14.98%

Qwen2.5-7B-Instruct

zero-shot w/o chains text 30.94 40.53 25.13 32.34 43.51 53.31 7.72 34.54
zero-shot 44.22 48.67 10.92 35.40 46.46 47.84 2.47 32.23

LoRA w/o chains text 45.82 59.83 66.27 56.82 87.16 80.29 87.00 85.04
LoRA 69.68 60.54 63.21 64.48 88.65 78.58 87.36 85.19

GETER 74.77 74.41 86.79 78.37 97.32 93.33 94.01 95.02
∆Improve 7.31% 22.91% 37.28% 21.55% 9.78% 18.77% 7.61% 11.54%

Mistral-7B-Instruct

zero-shot w/o chains text 1.06 34.23 47.64 26.53 35.81 49.71 55.40 46.52
zero-shot 4.14 33.06 41.58 25.37 62.98 44.44 41.89 50.37

LoRA w/o chains text 58.07 55.27 74.46 62.21 84.94 77.82 83.08 82.18
LoRA 64.22 64.63 76.63 68.20 89.29 86.61 87.04 87.73

GETER 75.61 75.94 87.51 79.40 99.28 94.49 96.19 96.81
∆Improve 17.74% 17.50% 14.20% 16.42% 11.19% 9.10% 10.51% 10.35%

Table 10: F1 scores (%) of each model on the ICEWS18 and WIKI test instances. "Overall" represents the weighted
average F1 score. w/o chains text refers to the absence of reasoning chain input for LLMs. The best-performing
results are highlighted in bold. ∆Improve represents the relative improvements of GETER compared to Tuned-only
methods.
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Models
Types

Datasets ICEWS18 WIKI
BLEU-4 rougeL METEOR BertScore (F1) BLEU-4 rougeL METEOR BertScore (F1)

GPT-4o
zero-shot w/o chains text 9.33 22.67 29.87 67.48 13.25 28.18 36.65 69.10

zero-shot 14.84 31.16 37.47 72.98 25.98 41.77 45.52 78.69

Llama3-8B-Instruct

zero-shot w/o chains text 4.10 15.85 16.20 61.14 9.39 25.41 27.95 66.88
zero-shot 10.01 29.52 27.19 70.01 14.67 36.67 33.43 75.85

LoRA w/o chains text 23.55 35.95 42.54 78.02 48.99 63.53 63.08 87.13
LoRA 37.33 49.18 53.05 83.58 52.09 65.27 66.67 87.99

GETER 40.39 52.12 54.85 84.60 55.52 68.06 69.16 88.77
∆Improve 8.20% 5.98% 3.39% 1.22% 6.59% 4.28% 3.73% 0.89%

Qwen2.5-7B-Instruct

zero-shot w/o chains text 7.02 19.52 30.09 65.92 7.33 21.46 34.56 66.38
zero-shot 10.46 27.97 26.80 71.77 20.21 36.19 41.52 77.61

LoRA w/o chains text 25.50 37.61 42.91 78.56 51.84 65.09 65.59 87.79
LoRA 37.49 49.61 52.07 83.60 53.57 67.19 67.23 88.59

GETER 38.99 50.70 53.79 84.17 55.0 67.49 70.00 88.99
∆Improve 4.00% 2.20% 3.30% 0.68% 2.67% 0.45% 4.12% 0.45%

Mistral-7B-Instruct

zero-shot w/o chains text 7.60 19.43 23.98 65.87 11.41 26.23 31.64 67.79
zero-shot 9.74 29.00 26.00 71.95 21.25 40.05 41.43 77.27

LoRA w/o chains text 25.46 37.62 42.91 78.67 51.58 66.32 65.29 87.96
LoRA 36.96 49.12 51.70 83.38 52.61 65.40 66.80 87.97

GETER 39.64 51.62 54.04 84.37 54.96 67.74 69.17 88.92
∆Improve 7.25% 5.09% 4.53% 1.19% 4.47% 3.58% 3.55% 1.08%

Table 11: The semantic similarity performance (%) of each model on the ICEWS18 and WIKI test instances. w/o
chains text refers to the absence of reasoning chain input for LLMs. The best-performing results are highlighted in
bold.

Models Types
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4o
zero-shot w/o chains text 41.89 72.62 53.13 24.63 16.86 20.02 23.08 9.00 12.95 30.76 35.86 30.61

zero-shot 58.53 61.75 60.10 33.05 5.57 9.54 37.08 70.33 48.56 43.91 45.48 39.95

Llama3-8B-Instruct

zero-shot w/o chains text 41.94 14.62 21.69 30.23 24.57 27.11 26.20 54.67 35.42 33.54 29.38 27.42
zero-shot 40.59 93.00 56.51 21.17 6.71 10.20 44.44 3.33 6.20 38.62 35.22 26.70

LoRA w/o chains text 54.16 73.25 62.27 35.28 38.86 36.98 82.59 34.00 48.17 55.99 50.57 49.81
LoRA 66.08 75.25 70.37 56.75 59.43 58.06 78.73 59.83 67.99 66.59 65.57 65.59

GETER 71.62 78.87 75.07 66.90 67.86 67.38 88.41 75.00 81.15 74.85 74.10 74.25

Qwen2.5-7B-Instruct

zero-shot w/o chains text 41.51 16.50 23.61 32.18 62.71 42.54 17.94 12.50 14.73 31.67 30.76 27.39
zero-shot 55.79 50.62 53.08 34.79 65.00 45.32 57.58 6.33 11.41 49.30 42.76 38.59

LoRA w/o chains text 66.85 59.25 62.82 51.23 68.43 58.59 83.33 63.33 71.97 66.35 63.48 64.03
LoRA 74.32 74.88 74.60 61.58 70.29 65.64 83.64 69.00 75.62 72.73 71.67 71.90

GETER 81.56 71.88 76.41 68.84 81.43 74.61 86.95 82.17 84.49 78.86 78.00 78.12

Mistral-7B-Instruct

zero-shot w/o chains text 68.18 1.87 3.65 38.38 40.57 39.44 33.63 75.00 46.44 48.38 35.67 27.81
zero-shot 55.56 13.75 22.04 27.43 27.86 27.64 30.65 60.83 40.76 39.06 31.90 29.26

LoRA w/o chains text 77.89 46.25 58.04 56.13 78.43 65.44 77.13 83.17 80.03 70.42 67.52 66.79
LoRA 72.56 73.38 72.96 60.66 73.57 66.49 87.56 64.50 74.28 72.88 70.90 71.18

GETER 83.62 72.12 77.45 69.23 83.57 75.73 87.79 82.67 85.15 80.02 78.95 79.08

Table 12: Precision (%), Recall (%), and F1 scores (%) for each model on the ICEWS14 dataset.

Models Types
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4o
zero-shot w/o chains text 44.70 12.12 19.08 32.97 65.14 43.78 27.82 23.54 25.50 35.78 32.84 29.06

zero-shot 49.67 37.50 42.74 32.48 43.43 37.16 30.16 28.31 29.21 38.18 36.65 36.83

Llama3-8B-Instruct

zero-shot w/o chains text 38.10 1.00 1.95 31.80 34.57 33.13 29.09 61.23 39.44 33.32 30.14 23.44
zero-shot 41.04 76.75 53.48 26.92 11.00 15.62 40.76 23.08 29.47 36.36 39.12 33.90

LoRA w/o chains text 97.75 45.33 61.94 3.86 52.94 7.19 54.46 94.65 69.14 54.09 62.72 46.29
LoRA 81.87 51.01 62.86 19.14 56.30 28.57 77.23 79.94 78.56 60.05 61.48 56.44

GETER 75.49 53.50 62.62 59.10 82.14 68.74 91.64 86.00 88.73 75.03 72.65 72.51

Qwen2.5-7B-Instruct

zero-shot w/o chains text 34.18 6.75 11.27 32.27 73.86 44.92 26.41 15.85 19.81 31.21 31.35 24.81
zero-shot 57.89 13.75 22.22 32.77 91.29 48.23 40.00 0.62 1.21 44.30 35.02 24.34

LoRA w/o chains text 22.88 49.46 31.28 90.71 36.56 52.11 6.62 100.00 12.41 40.05 60.54 32.36
LoRA 13.13 76.09 22.39 92.71 40.74 56.61 54.92 85.20 66.79 51.67 67.33 46.95

GETER 75.64 55.13 63.77 61.40 81.57 70.06 89.32 87.54 88.42 75.14 73.53 73.27

Mistral-7B-Instruct

zero-shot w/o chains text 34.29 3.00 5.52 30.40 61.29 40.64 23.17 23.85 23.50 29.66 28.28 22.39
zero-shot 44.44 0.50 0.99 34.34 19.57 24.93 29.68 79.54 43.23 36.69 30.60 21.55

LoRA w/o chains text 11.00 83.81 19.45 97.71 41.40 58.16 57.38 94.91 71.52 53.26 73.36 47.80
LoRA 64.88 56.78 60.56 55.29 54.89 55.09 73.85 90.40 81.29 64.47 66.33 65.05

GETER 76.21 51.25 61.29 58.15 84.57 68.92 92.76 84.77 88.59 75.33 72.23 72.02

Table 13: Precision (%), Recall (%), and F1 scores (%) for each model on the GDELT dataset.
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Models Types
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4o
zero-shot w/o chains text 46.72 68.19 55.45 25.52 27.21 26.33 25.70 11.06 15.47 32.99 36.36 33.03

zero-shot 65.32 58.33 61.63 22.45 8.09 11.89 36.86 65.45 47.16 42.05 44.03 40.58

Llama3-8B-Instruct

zero-shot w/o chains text 42.98 6.81 11.75 31.60 26.76 28.98 29.20 60.61 39.41 34.81 30.63 26.30
zero-shot 41.62 91.11 57.14 25.28 13.38 17.50 44.35 8.33 14.03 37.10 38.93 30.24

LoRA w/o chains text 51.29 91.25 65.67 51.73 30.74 38.56 93.87 53.33 68.02 65.08 59.13 57.47
LoRA 74.92 68.06 71.32 70.56 40.88 51.77 61.46 94.24 74.40 69.17 67.48 65.86

GETER 73.37 84.58 78.58 83.84 69.41 75.95 91.00 91.97 91.48 82.48 81.94 81.84

Qwen2.5-7B-Instruct

zero-shot w/o chains text 46.63 24.03 31.71 30.80 54.85 39.45 18.83 13.64 15.82 32.50 30.87 29.17
zero-shot 60.88 30.69 40.81 33.99 83.53 48.32 23.08 0.91 1.75 39.89 38.59 30.78

LoRA w/o chains text 79.27 42.50 55.33 56.24 88.09 68.65 89.49 82.58 85.89 74.95 70.39 69.52
LoRA 84.18 55.42 66.83 62.07 82.79 70.95 82.92 85.30 84.09 76.48 74.03 73.72

GETER 71.68 86.11 78.23 84.36 64.26 72.95 88.77 91.06 89.90 81.34 80.49 80.23

Mistral-7B-Instruct

zero-shot w/o chains text 61.70 4.03 7.56 34.78 31.76 33.21 33.98 71.67 46.10 43.93 34.85 28.37
zero-shot 59.52 10.42 17.73 35.97 25.44 29.80 36.13 79.55 49.69 44.25 37.52 31.96

LoRA w/o chains text 66.30 75.97 70.81 77.39 26.18 39.12 62.79 95.61 75.80 68.84 65.83 61.95
LoRA 77.44 68.19 72.53 68.77 75.44 71.95 82.94 85.45 84.18 76.34 76.12 76.07

GETER 75.67 82.50 78.94 82.85 71.03 76.48 88.29 92.58 90.38 82.08 81.94 81.80

Table 14: Precision (%), Recall (%), and F1 scores (%) for each model on the ICEWS05-15 dataset.

Models Types
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4o
zero-shot w/o chains text 47.43 56.67 51.64 38.20 35.14 36.61 26.79 23.08 24.79 37.96 39.10 38.32

zero-shot 53.09 69.87 60.33 34.51 18.14 23.78 38.12 43.69 40.72 42.26 44.52 42.08

Llama3-8B-Instruct

zero-shot w/o chains text 25.19 4.53 7.68 31.25 20.00 24.39 27.82 64.92 38.95 28.02 28.38 22.93
zero-shot 39.37 91.87 55.12 33.09 13.14 18.81 45.83 5.08 9.14 39.28 38.76 28.79

LoRA w/o chains text 57.20 57.73 57.47 39.31 58.86 47.14 90.17 40.92 56.30 61.44 52.90 53.66
LoRA 75.14 53.20 62.30 49.43 43.43 46.24 55.87 82.00 66.46 60.61 58.86 58.23

GETER 72.42 79.47 75.78 78.87 69.86 74.09 87.06 88.00 87.53 79.10 78.90 78.85

Qwen2.5-7B-Instruct

zero-shot w/o chains text 43.98 23.87 30.94 34.15 49.86 40.53 24.74 25.54 25.13 34.75 33.05 32.34
zero-shot 58.01 35.73 44.22 35.55 77.14 48.67 35.29 6.46 10.92 43.49 40.48 35.40

LoRA w/o chains text 72.00 33.60 45.82 45.02 89.14 59.83 92.31 51.69 66.27 69.29 57.71 56.82
LoRA 69.50 69.87 69.68 52.46 71.57 60.54 84.14 50.62 63.21 64.63 68.35 64.48

GETER 74.87 74.67 74.77 72.88 76.00 74.41 88.75 84.92 86.79 78.50 78.29 78.37

Mistral-7B-Instruct

zero-shot w/o chains text 57.14 0.53 1.06 35.71 32.86 34.23 34.51 76.92 47.64 42.99 34.95 26.53
zero-shot 69.57 2.13 4.14 35.04 31.29 33.06 30.10 67.23 41.58 45.84 32.00 25.37

LoRA w/o chains text 69.52 49.87 58.07 62.68 49.43 55.27 61.19 95.08 74.46 64.66 63.71 62.21
LoRA 73.41 57.07 64.22 62.80 66.57 64.63 70.45 84.00 76.63 68.96 68.57 68.20

GETER 75.36 75.87 75.61 73.98 78.00 75.94 90.61 84.62 87.51 79.62 79.29 79.40

Table 15: Precision (%), Recall (%), and F1 scores (%) for each model on the ICEWS18 dataset.

Models Types
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4o
zero-shot w/o chains text 66.93 72.33 69.53 40.85 77.27 53.45 93.94 9.81 17.77 68.07 53.00 47.45

zero-shot 52.51 75.50 61.94 33.80 41.96 37.44 88.42 26.58 40.88 58.83 49.10 47.54

Llama3-8B-Instruct

zero-shot w/o chains text 68.98 37.18 48.31 51.74 57.34 54.39 47.19 66.46 66.46 56.53 53.00 52.44
zero-shot 39.23 76.08 51.76 27.01 25.87 26.43 100.00 0.63 1.26 55.78 35.83 27.31

LoRA w/o chains text 91.35 77.89 84.08 67.83 73.76 70.67 78.48 88.89 83.36 79.98 80.31 79.80
LoRA 96.25 82.06 88.59 70.98 75.75 73.29 75.95 87.59 81.36 81.88 82.00 81.57

GETER 99.13 98.85 98.99 85.89 95.80 90.58 96.13 86.39 91.00 94.14 93.78 93.79

Qwen2.5-7B-Instruct

zero-shot w/o chains text 52.44 37.18 43.51 37.83 90.21 53.31 61.90 4.11 7.72 51.19 42.15 34.54
zero-shot 73.29 34.01 46.46 32.69 89.16 47.84 50.00 1.27 2.47 53.30 39.73 32.23

LoRA w/o chains text 91.93 82.86 87.16 76.22 84.82 80.29 85.76 88.27 87.00 85.14 85.25 85.04
LoRA 83.29 94.75 88.65 85.31 72.84 78.58 86.39 88.35 87.36 84.93 86.02 85.19

GETER 95.30 99.42 97.32 96.28 90.56 93.33 93.71 94.30 94.01 95.07 95.05 95.02

Mistral-7B-Instruct

zero-shot w/o chains text 73.87 23.63 35.81 54.85 45.45 49.71 42.26 80.38 55.40 57.62 49.10 46.52
zero-shot 75.20 54.18 62.98 38.95 51.75 44.44 41.69 42.09 41.89 53.12 49.42 50.37

LoRA w/o chains text 86.17 83.75 84.94 72.38 84.15 77.82 87.03 79.48 83.08 82.30 82.45 82.18
LoRA 93.66 85.30 89.29 82.52 91.12 86.61 86.08 88.03 87.04 87.78 87.96 87.73

GETER 98.86 99.71 99.28 99.61 89.86 94.49 92.67 100.00 96.19 97.02 96.84 96.81

Table 16: Precision (%), Recall (%), and F1 scores (%) for each model on the WIKI dataset.
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