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Abstract

Diffusion models recently proved to be remarkable priors for Bayesian inverse prob-
lems. However, training these models typically requires access to large amounts of
clean data, which could prove difficult in some settings. In this work, we present a
novel method based on the expectation-maximization algorithm for training diffu-
sion models from incomplete and noisy observations only. Unlike previous works,
our method leads to proper diffusion models, which is crucial for downstream
tasks. As part of our method, we propose and motivate an improved posterior sam-
pling scheme for unconditional diffusion models. We present empirical evidence
supporting the effectiveness of our method.

1 Introduction

Many scientific applications can be formalized as Bayesian inference in latent variable models, where
the target is the posterior distribution p(x | y) ∝ p(y | x) p(x) given an observation y ∈ RM resulting
from a forward process p(y | x) and a prior distribution p(x) over the latent variable x ∈ RN . Notable
examples include gravitational lensing inversion [1–3], accelerated MRI [4–8], unfolding in particle
physics [9, 10], and data assimilation [11–14]. In all of these examples, the observation y alone is
either too incomplete or too noisy to recover the latent x. Additional knowledge in the form of an
informative prior p(x) is crucial for valuable inference.

Recently, diffusion models [15, 16] proved to be remarkable priors for Bayesian inference, demon-
strating both quality and versatility [17–27]. However, to train a diffusion model for the latent x,
one would typically need a large number of latent realizations, which by definition are not or rarely
accessible. This is notably the case in earth and space sciences where the systems of interest can only
be probed superficially.

Empirical Bayes (EB) methods [28–31] offer a solution to the problem of prior specification in latent
variable models when only observations y are available. The objective of EB is to find the parameters
θ of a prior model qθ(x) for which the evidence distribution qθ(y) =

´
p(y | x) qθ(x) dx is closest to

the empirical distribution of observations p(y). Many EB methods have been proposed over the years,
but they remain limited to low-dimensional settings [32–37] or simple parametric models [38, 39].

In this work, our goal is to use diffusion models for the prior qθ(x), as they are best-in-class for
modeling high-dimensional distributions and enable many downstream tasks, including Bayesian
inference. This presents challenges for previous empirical Bayes methods which typically rely on
models for which the density qθ(x) or samples x ∼ qθ(x) are differentiable with respect to the
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parameters θ. Instead, we propose an adaptation of the expectation-maximization [40–44] algorithm
where we alternate between generating samples from the posterior qθ(x | y) and training the prior
qθ(x) on these samples. As part of our method, we propose an improved posterior sampling scheme
for unconditional diffusion models, which we motivate theoretically and empirically.

2 Diffusion Models

The primary purpose of diffusion models (DMs) [15, 16], also known as score-based generative
models [45, 46], is to generate plausible data from a distribution p(x) of interest. Formally, adapting
the continuous-time formulation of Song et al. [46], samples x ∈ RN from p(x) are progressively
perturbed through a diffusion process expressed as a stochastic differential equation (SDE)

dxt = ft xt dt+ gt dwt (1)

where ft ∈ R is the drift coefficient, gt ∈ R+ is the diffusion coefficient, wt ∈ RN denotes a standard
Wiener process and xt ∈ RN is the perturbed sample at time t ∈ [0, 1]. Because the SDE is linear
with respect to xt, the perturbation kernel from x to xt is Gaussian and takes the form

p(xt | x) = N (xt | αt x,Σt) (2)

where αt and Σt = σ2
t I are derived from ft and gt [46–49]. Crucially, the forward SDE (1) has an

associated family of reverse SDEs [46–49]

dxt =

[
ft xt −

1 + η2

2
g2t ∇xt

log p(xt)

]
dt+ η gt dwt (3)

where η ≥ 0 is a parameter controlling stochasticity. In other words, we can draw noise samples x1 ∼
p(x1) ≈ N (0,Σ1) and gradually remove the noise therein to obtain data samples x0 ∼ p(x0) ≈ p(x)
by simulating Eq. (3) from t = 1 to 0 using an appropriate discretization scheme [16, 45, 46, 49–52].
In this work, we adopt the variance exploding SDE [45] for which ft = 0 and αt = 1.

In practice, the score function ∇xt
log p(xt) in Eq. (3) is unknown, but can be approximated by a

neural network trained via denoising score matching [53, 54]. Several equivalent parameterizations
and objectives have been proposed for this task [16, 45, 46, 50–52]. In this work, we adopt the
denoiser parameterization dθ(xt, t) and its objective [51]

argmin
θ

Ep(x)p(t)p(xt|x)

[
λt ∥dθ(xt, t)− x∥22

]
, (4)

for which the optimal denoiser is the mean E[x | xt] of p(x | xt). Importantly, E[x | xt] is linked to
the score function through Tweedie’s formula [55–58]

E[x | xt] = xt +Σt∇xt
log p(xt) , (5)

which allows to use sθ(xt) = Σ−1
t (dθ(xt, t)− xt) as a score estimate in Eq. (3).

3 Expectation-Maximization

The objective of the expectation-maximization (EM) algorithm [40–44] is to find the parameters θ of
a latent variable model qθ(x, y) that maximize the log-evidence log qθ(y) of an observation y. For a
distribution of observations p(y), the objective is to maximize the expected log-evidence [43, 44] or,
equivalently, to minimize the Kullback-Leibler (KL) divergence between p(y) and qθ(y). That is,

θ∗ = argmax
θ

Ep(y)

[
log qθ(y)

]
(6)

= argmin
θ

KL
(
p(y) ∥ qθ(y)

)
. (7)

The key idea behind the EM algorithm is that for any two sets of parameters θa and θb, we have

log
qθa(y)

qθb(y)
= log

qθa(x, y)

qθb(x, y)
+ log

qθb(x | y)
qθa(x | y)

(8)

= Eqθb (x|y)

[
log

qθa(x, y)

qθb(x, y)

]
+KL

(
qθb(x | y) ∥ qθa(x | y)

)
(9)

≥ Eqθb (x|y)
[
log qθa(x, y)− log qθb(x, y)

]
. (10)
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This inequality also holds in expectation over p(y). Therefore, starting from arbitrary parameters θ0,
the EM update

θk+1 = argmax
θ

Ep(y)Eqθk (x|y)
[
log qθ(x, y)− log qθk(x, y)

]
(11)

= argmax
θ

Ep(y)Eqθk (x|y)
[
log qθ(x, y)

]
(12)

leads to a sequence of parameters θk for which the expected log-evidence Ep(y)

[
log qθk(y)

]
is

monotonically increasing and converges to a local optimum [42–44].

When the expectation in Eq. (12) is intractable, many have proposed to use Monte Carlo approxima-
tions instead [59–66]. Previous approaches include Markov chain Monte Carlo (MCMC) sampling,
importance sampling, rejection sampling and their variations [63–66]. A perhaps surprising advantage
of Monte Carlo EM (MCEM) algorithms is that they may be able to overcome local optimum traps
[60, 61]. We refer the reader to Ruth [66] for a recent review of MCEM algorithms.

4 Methods

Although rarely mentioned in the literature, the expectation-maximization algorithm is a possible
solution to the empirical Bayes problem. Indeed, both have the same objective: minimizing the KL
between the empirical distribution of observations p(y) and the evidence qθ(y). In the empirical
Bayes setting, the forward model p(y | x) is known and only the parameters of the prior qθ(x) should
be optimized. In this case, Eq. (12) becomes

θk+1 = argmax
θ

Ep(y)Eqθk (x|y)
[
log qθ(x) + log p(y | x)

]
(13)

= argmax
θ

Ep(y)Eqθk (x|y)
[
log qθ(x)

]
(14)

= argmin
θ

KL
(
πk(x) ∥ qθ(x)

)
(15)

where πk(x) =
´
qθk(x | y) p(y) dy. Intuitively, πk(x) and therefore qθk+1

(x) assign more density
to latents x which are consistent with observations y ∼ p(y) than qθk(x). In this work, we consider a
special case of the empirical Bayes problem where each observation y has an associated measurement
matrix A and the forward process takes a linear Gaussian form p(y | x,A) = N (y | Ax,Σy). This
formulation allows the forward process to be potentially different for each observation y. For example,
if the position or environment of a sensor changes, the measurement matrix A may also change,
which leads to an empirical distribution of pairs (y,A) ∼ p(y,A). As a result, πk(x) in Eq. (15)
becomes πk(x) =

´
qθk(x | y,A) p(y,A) dy.

4.1 Pipeline

Now that our goals and assumptions are set, we present our method to learn a diffusion model qθ(x)
for the latent x from observations y by expectation-maximization. The idea is to decompose Eq. (15)
into (i) generating a dataset of i.i.d. samples from πk(x) and (ii) training qθk+1

(x) to reproduce the
generated dataset. We summarize the pipeline in Algorithms 1, 2 and 3, provided in Appendix A due
to space constraints.

Expectation To draw from πk(x), we first sample a pair (y,A) ∼ p(y,A) and then generate
x ∼ qθk(x | y,A) from the posterior. Unlike previous MCEM algorithms that rely on expensive
and hard to tune sampling strategies [63–66], the use of a diffusion model enables efficient and
embarrassingly parallelizable posterior sampling [21–23]. However, the quality of posterior samples
is critical for the EM algorithm to converge properly [63–66] and, in this regard, we find previous
posterior sampling methods [21–23, 25, 26] to be unsatisfactory. Therefore, we propose an improved
posterior sampling scheme, named moment matching posterior sampling (MMPS), which we present
and motivate in Section 4.2. We evaluate MMPS independently from the context of learning from
observations in Appendix E.

Maximization We parameterize our diffusion model qθ(x) by a denoiser network dθ(xt, t) and
train it via denoising score matching [53, 54], as presented in Section 2. To accelerate the training,
we start each iteration with the previous parameters θk.
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Initialization An important part of our pipeline is the initial prior q0(x). Any initial prior leads
to a local optimum [42–44], but an informed initial prior can reduce the number of iterations until
convergence. In our experiments, we take a Gaussian distribution N (x | µx,Σx) as initial prior and
fit its mean and covariance by – you guessed it! – expectation-maximization. Fitting a Gaussian
distribution by EM is very fast as the maximization step can be conducted in closed-form, especially
for low-rank covariance approximations [67].

An alternative we do not explore in this work would be to use a pre-trained diffusion model as initial
prior. Pre-training can be contucted on data we expect to be similar to the latents, such as computer
simulations or even video games. The more similar, the faster the EM algorithm converges. However,
if the initial prior q0(x) does not cover latents that are otherwise plausible under the observations, the
following priors qθk(x) may not cover these latents either. A conservative initial prior is therefore
preferable for scientific applications.

4.2 Moment Matching Posterior Sampling

To sample from the posterior distribution qθ(x | y) ∝ qθ(x) p(y | x) of our diffusion prior qθ(x),
we have to estimate the posterior score ∇xt log qθ(xt | y) and plug it into the reverse SDE (3). In
this section, we propose and motivate an improved approximation for the posterior score. As this
contribution is not bound to the context of EM, we temporarily switch back to the notations of Section
2 where our prior is denoted p(x) instead of qθ(x).

Diffusion posterior sampling Thanks to Bayes’ rule, the posterior score ∇xt log p(xt | y) can be
decomposed into two terms [17, 18, 21–25, 46]

∇xt
log p(xt | y) = ∇xt

log p(xt) +∇xt
log p(y | xt) . (16)

As an estimate of the prior score ∇xt
log p(xt) is already available via the denoiser dθ(xt, t), the

remaining task is to estimate the likelihood score ∇xt
log p(y | xt). Assuming a differentiable

measurement function A and a Gaussian forward process p(y | x) = N (y | A(x),Σy), Chung et al.
[21] propose the approximation

p(y | xt) =

ˆ
p(y | x) p(x | xt) dx ≈ N (y | A(E[x | xt]),Σy) (17)

which allows to estimate the likelihood score ∇xt
log p(y | xt) without training any other network

than dθ(xt, t) ≈ E[x | xt]. The motivation behind Eq. (17) is that, when σt is small, assuming
that p(x | xt) is narrowly concentrated around its mean E[x | xt] is reasonable. However, this
approximation is very poor when σt is not negligible. Consequently, DPS [21] is unstable, does
not properly cover the support of the posterior p(x | y) and often leads to samples x which are
inconsistent with the observation y [22–25].

Moment matching To address these flaws, following studies [22–25] take the covariance V[x | xt]
into account when estimating the likelihood score ∇xt

log p(y | xt). Specifically, they consider the
Gaussian approximation

q(x | xt) = N (x | E[x | xt],V[x | xt]) (18)

which is closest to p(x | xt) in Kullback-Leibler (KL) divergence [68]. Then, assuming a linear
Gaussian forward process p(y | x) = N (y | Ax,Σy), we obtain [68]

q(y | xt) =

ˆ
p(y | x) q(x | xt) dx = N

(
y | AE[x | xt],Σy +AV[x | xt]A

⊤) (19)

which allows to estimate the likelihood score∇xt
log p(y | xt) as

∇xt
log q(y | xt) = ∇xt

E[x | xt]
⊤A⊤(Σy +AV[x | xt]A

⊤)−1(
y −AE[x | xt]

)
(20)

under the assumption that the derivative of V[x | xt] with respect to xt is negligible [24, 25]. Even
with simple heuristics for V[x | xt], such as Σt [20] or (Σ−1

t + Σ−1
x )−1 [22, 23], this adaptation

leads to significantly more stable sampling and better coverage of the posterior p(x | y) than DPS
[21]. However, we find that heuristics lead to overly dispersed posteriors q(xt | y) ∝ p(xt) q(y | xt)
in the presence of local covariances – i.e. covariances in the neighborhood of xt.
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Figure 1. Illustration of the posterior q(xt | y)
for the Gaussian approximation q(x | xt) when
the prior p(x) lies on a manifold. Ellipses repre-
sent 95% credible regions of q(x | xt). (A) With
Σt as heuristic for V[x | xt], any xt whose mean
E[x | xt] is close to the plane y = Ax is consid-
ered likely. (B) With V[x | xt], more regions are
correctly pruned. (C) Ground-truth p(xt | y) and
p(x | xt) for reference.
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Figure 2. Sinkhorn divergence [69] between the
posteriors p(xt | y) and q(xt | y) for different
heuristics of V[x | xt] when the prior p(x) lies
on 1-d manifolds embedded in R3. Lines and
shades represent the 25-50-75 percentiles for
64 randomly generated manifolds [71] and mea-
surement matrices A ∈ R1×3. Using V[x | xt]
instead of heuristics leads to orders of magni-
tude more accurate posteriors q(xt | y).

We illustrate this behavior in Figure 1 and measure its impact as the Sinkhorn divergence [69, 70]
between the posteriors p(xt | y) and q(xt | y) when the prior p(x) lies on randomly generated
1-dimensional manifolds [71] embedded in R3. The prior p(x) is modeled as a mixture of isotropic
Gaussians centered around points of the manifold, which gives access to p(xt), E[x | xt] and V[x | xt]
analytically. The results, presented in Figure 2, indicate that using V[x | xt] instead of heuristics leads
to orders of magnitude more accurate posteriors q(xt | y). We expect this gap to further increase with
real high-dimensional data as the latter often lies along low-dimensional manifolds and, therefore,
presents strong local covariances.

Because the MCEM algorithm is sensitive to the accuracy of posterior samples [63–66], we choose
to estimate V[x | xt] using Tweedie’s covariance formula [55–58]

V[x | xt] = Σt +Σt∇2
xt

log p(xt) Σt (21)

= Σt∇⊤
xt
E[x | xt] ≈ Σt∇⊤

xt
dθ(xt, t) . (22)

Conjugate gradient method As noted by Finzi et al. [24], explicitly computing and materializing
the Jacobian ∇⊤

xt
dθ(xt, t) ∈ RN×N is intractable in high dimension. Furthermore, even if we had

access to V[x | xt], naively computing the inverse of the matrix Σy + AV[x | xt]A
⊤ in Eq. (20)

would still be intractable. Fortunately, we observe that the matrix Σy +AV[x | xt]A
⊤ is symmetric

positive definite (SPD) and, therefore, compatible with the conjugate gradient (CG) method [72].
The CG method is an iterative algorithm to solve linear systems of the form Mv = b where the SPD
matrix M and the vector b are known. Importantly, the CG method only requires implicit access to
M through an operator that performs the matrix-vector product Mv given a vector v. In our case, the
linear system to solve is

y −AE[x | xt] =
(
Σy +AV[x | xt]A

⊤) v (23)

= Σyv +A
(
v⊤AΣt∇⊤

xt
E[x | xt]︸ ︷︷ ︸

vector-Jacobian product

)⊤
. (24)

Within automatic differentiation frameworks [73, 74], the vector-Jacobian product in the right-hand
side can be cheaply evaluated. In practice, due to numerical errors and imperfect training, the Jacobian
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∇⊤
xt
dθ(xt, t) ≈ ∇⊤

xt
E[x | xt] is not always perfectly SPD. Consequently, the CG method becomes

unstable after a number of iterations and fails to reach an exact solution. Fortunately, we find that
truncating the CG algorithm to very few iterations (1 to 3) already leads to significant improvements
over using heuristics for the covariance V[x | xt]. Alternatively, the CG method can be replaced by
other iterative algorithms that can solve non-symmetric non-definite linear systems, such as GMRES
[75] or BiCGSTAB [76], at the cost of slower convergence.

5 Results

We conduct three experiments to demonstrate the effectiveness of our method. We design the first
experiment around a low-dimensional latent variable x whose ground-truth distribution p(x) is
known. In this setting, we can use asymptotically exact sampling schemes such as predictor-corrector
sampling [23, 46] or twisted diffusion sampling [77] without worrying about their computational cost.
This allows us to validate our expectation-maximization pipeline (see Algorithm 1) in the limit of
(almost) exact posterior sampling. The remaining experiments target two benchmarks from previous
studies: corrupted CIFAR-10 and accelerated MRI. These tasks provide a good understanding of how
our method would perform in typical empirical Bayes applications with limited data and compute.

5.1 Low-dimensional manifold

In this experiment, the latent variable x ∈ R5 ∼ p(x) lies on a random 1-dimensional manifold
embedded in R5 represented in Figure 7. Each observation y ∈ R2 ∼ N (y | Ax,Σy) is the result of
a random linear projection of a latent x plus isotropic Gaussian noise (Σy = 10−4I). The rows of the
measurement matrix A ∈ R2×5 are drawn uniformly from the unit sphere S4. We note that observing
all push-forward distributions p(u⊤x) with u ∈ SN−1 of a distribution p(x) in RN is sufficient to
recover p(x) in theory [78, 79]. In practice, we generate a finite training set of 216 pairs (y,A).

We train a DM qθ(x) parameterized by a multi-layer perceptron dθ(xt, t) for K = 32 EM iterations.
We apply Algorithm 3 to estimate the posterior score ∇xt log qθ(xt | y,A), but rely on the predictor-
corrector [23, 46] sampling scheme with a large number (4096) of correction steps to sample from the
posterior qθ(x | y,A). We provide additional details such as noise schedule, network architectures,
and learning rate in Appendix C.

As expected, the model qθk(x) converges towards a stationary distribution whose marginals are close
to the marginals of the ground-truth p(x), as illustrated in Figure 3. We attribute the remaining
artifacts to finite data and inaccuracies in our sampling scheme.
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Figure 3. Illustration of 2-d marginals of the model qθk(x) along the EM iterations. The initial
Gaussian prior q0(x) leads to a very dispersed first model qθ1(x). The EM algorithm gradually prunes
the density regions which are inconsistent with observations, until it reaches a stationary distribution.
The marginals of the final distribution are close to the marginals of the ground-truth distribution.
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Method ρ FID ↓ IS ↑
0.20 11.70 7.97

AmbientDiffusion [80] 0.40 18.85 7.45
0.60 28.88 6.88

0.25 5.88 8.83
Ours w/ Tweedie 0.50 6.76 8.75

0.75 13.18 8.14

Ours w/ (I +Σ−1
t )−1 0.75 39.94 7.69

Ours w/ Σt 0.75 118.69 4.23

Table 1. Evaluation of final models trained on
corrupted CIFAR-10. Our method outperforms
AmbientDiffusion [80] at similar corruption levels.
Using heuristics for V[x | xt] instead of Tweedie’s
formula greatly decreases the sample quality.

0 5 10 15 20 25 30

k
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27

F
ID
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Tweedie (50%)

Tweedie (75%)

(I + Σ−1
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Figure 4. FID of qθk(x) along the EM iterations
for the corrupted CIFAR-10 experiment.
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Figure 5. Example of samples from the model qθk(x) along the EM iterations for the corrupted
CIFAR-10 experiment with ρ = 0.75. We use the deterministic DDIM [50] sampling scheme for
easier comparison. Generated images become gradually more detailed and less noisy.

5.2 Corrupted CIFAR-10

Following Daras et al. [80], we take the 50 000 training images of the CIFAR-10 [81] dataset as latent
variables x. A single observation y is generated for each image x by randomly deleting pixels with
probability ρ. The measurement matrix A is therefore a binary diagonal matrix. We add negligible
isotropic Gaussian noise (Σy = 10−6I) for fair comparison with AmbientDiffusion [80] which
cannot handle noisy observations.

For each corruption rate ρ ∈ {0.25, 0.5, 0.75}, we train a DM qθ(x) parameterized by a U-Net
[82] inspired network dθ(xt, t) for K = 32 EM iterations. We apply Algorithm 2 with T = 256
discretization steps and η = 1 to approximately sample from the posterior qθ(x | y,A). We apply
Algorithm 3 with several heuristics for V[x | xt] to compare their results against Tweedie’s covariance
formula. For the latter, we truncate the conjugate gradient method in Algorithm 4 to a single iteration.

For each model qθk(x), we generate a set of 50 000 images and evaluate its Inception score (IS)
[83] and Fréchet Inception distance (FID) [84] against the uncorrupted training set of CIFAR-10.
We report the results in Table 1 and Figures 4 and 5. At 75% of corruption, our method performs
similarly to AmbientDiffusion [80] at only 20% of corruption. On the contrary, using heuristics for
V[x | xt] leads to poor sample quality.

5.3 Accelerated MRI

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique used in radiology to
inspect the internal anatomy and physiology of the body. MRI measurements of an object are obtained
in the frequency domain, also called k-space, using strong magnetic fields. However, measuring the
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Mask Zero-filled Sample 1 Sample 2 Ground-truth

R
=

4
R

=
8

R
=

16
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=
32

Figure 6. Examples of posterior samples for accelerated MRI using a diffusion prior trained from k-
space observations only. Posterior samples are detailed and present plausible variations, while
remaining consistent with the observation. We provide the zero-filled inverse, where missing
frequencies are set to zero, as baseline.

entire k-space can be time-consuming and expensive. Accelerated MRI [4–8] consists in inferring
the scanned object based on partial, possibly randomized and noisy, frequency measurements.

In this experiment, following Kawar et al. [85], we consider the single-coil knee MRI scans from the
fastMRI [7, 8] dataset. We treat each slice between the 10th and 40th of each scan as an independent
latent variable x, represented as a 320× 320 gray-scale image. Scans are min-max normalized such
that pixel values range between −2 and 2. A single observation y is generated for each slice x by
first applying the discrete Fourier transform and then a random horizontal frequency sub-sampling
with acceleration factor R = 6 [85, 86], meaning that a proportion 1/R of all frequencies are observed
on average. Eventually, we obtain 24 853 k-space observations to which we add isotropic Gaussian
noise (Σy = 10−4I) to match Kawar et al. [85].

Once again, we train a DM qθ(x) parameterized by a U-Net [82] inspired network dθ(xt, t) for
K = 16 EM iterations. We apply Algorithm 2 with T = 64 discretization steps and η = 1 to
approximately sample from the posterior qθ(x | y,A) and truncate the conjugate gradient method in
Algorithm 4 to 3 iterations. After training, we employ our final model qθK (x) as a diffusion prior for
accelerated MRI. Thanks to our moment matching posterior sampling, we are able to infer plausible
scans at acceleration factors up to R = 32, as shown in Figure 6. Our samples are noticeably more
detailed than the ones of Kawar et al. [85]. We choose not to report the PSNR/SSIM of our samples
as these metrics only make sense for regression tasks and unfairly penalize proper generative models
[87, 88]. We provide prior samples in Figure 13 and posterior samples for another kind of forward
process in Figure 14.

6 Related Work

Empirical Bayes A number of previous studies have investigated the use of deep learning to
solve the empirical Bayes problem. Louppe et al. [35] use adversarial training for learning a prior
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distribution that reproduces the empirical distribution of observations when pushed through a non-
differentiable black-box forward process. Dockhorn et al. [33] use normalizing flows [89, 90] to
estimate the prior density by variational inference when the forward process consists of additive
noise. Vandegar et al. [36] also use normalizing flows but consider black-box forward processes for
which the likelihood p(y | x) is intractable. They note that empirical Bayes is an ill-posed problem
in that distinct prior distributions may result in the same distribution over observations. Vetter et al.
[37] address this issue by targeting the prior distribution of maximum entropy while minimizing the
sliced-Wasserstein distance [78, 79] with the empirical distribution of observations. These methods
rely on generative models qθ(x) for which the density qθ(x) or samples x ∼ qθ(x) are differentiable
with respect to the parameters θ, which is not or hardly the case for diffusion models.

Closer to this work, Daras et al. [80] and Kawar et al. [85] attempt to train DMs from linear
observations only. Daras et al. [80] consider noiseless observations of the form y = Ax and train a
network dθ(Axt, A, t) to approximate E[x | Axt] under the assumption that E[A⊤A] is full-rank. The
authors argue that E[x | Axt] can act as a surrogate for E[x | xt]. Similarly, Kawar et al. [85] assume
Gaussian observations y ∼ N (y | Ax,Σy) and train a network dθ(Pxt, t) to approximate E[x | Pxt]
under the assumption that E[P ] is full-rank where P = A+A and A+ is the Moore-Penrose pseudo-
inverse of A. The authors assume that dθ(Pxt, t) can generalize to P = I , even if the training data
does not contain P = I . In both cases, the trained networks are not proper denoisers approximating
E[x | xt] and cannot reliably parameterize a standard diffusion model, which is problematic for
downstream applications. Notably, in the case of Bayesian inference, they require custom posterior
sampling schemes such as the one proposed by Aali et al. [91] for AmbientDiffusion [80] models.
Conversely, in this work, we do not make modifications to the denoising score matching objective
[53, 54], which guarantees a proper DM that is compatible with any posterior sampling scheme at
every iteration. In addition, we find that our method leads to quantitatively and qualitatively better
diffusion priors.

In a concurrent work, Daras et al. [92] propose an algorithm to train DMs from noisy (A = I and
Σy = σ2

yI) data by enforcing the “consistency” of the denoiser along diffusion paths. They prove
that the mean E[x | xt] is the unique consistent denoiser. Interestingly, this training algorithm also
relies on posterior samples, which are easy to obtain thanks to the white noise assumption.

Posterior sampling Recently, there has been much work on conditional generation using uncon-
ditional diffusion models, most of which adopt the posterior score decomposition in Eq. (16). As
covered in Section 4.2, Chung et al. [21] propose an analytical approximation for the likelihood
score ∇xt

log p(y | xt) when the forward process p(y | x) is Gaussian. Song et al. [22] and Rozet
et al. [23] improve this approximation by taking the covariance V[x | xt] into account in the form
of simple heuristics. We build upon this idea and replace heuristics with a proper estimate of the
covariance V[x | xt] based on Tweedie’s covariance formula [55–58]. Finzi et al. [24] take the same
approach, but materialize the matrix AV[x | xt]A

⊤ which is intractable in high dimension. Boys
et al. [25] replace the covariance V[x | xt] with a row-sum approximation diag(e⊤V[x | xt]) where
e is the all-ones vector. This approximation is only valid when V[x | xt] is diagonal, which limits its
applicability. Instead, we take advantage of the conjugate gradient method [72] to avoid materializing
AV[x | xt]A

⊤. A potential cheaper solution is to train a sparse approximation of V[x | xt], as
proposed by Peng et al. [93], but this approach is less general and not immediately applicable to any
diffusion model.

A parallel line of work [94–96] extends the conditioning of diffusion models to arbitrary loss terms
ℓ(x, y) ∝ − log p(y | x), for which no reliable analytical approximation of the likelihood score
∇xt log p(y | xt) exists. Song et al. [94] rely on Monte Carlo approximations of the likelihood
p(y | xt) =

´
p(y | x) p(x | xt) dx by sampling from a Gaussian approximation of p(x | xt).

Conversely, He et al. [96] use the mean E[x | xt] as a point estimate for p(x | xt), but leverage a
pre-trained encoder-decoder pair to project the updates of xt within its manifold. We note that our
use of the covariance V[x | xt] similarly leads to updates tangent to the manifold of xt.

Finally, Wu et al. [77] propose a particle-based posterior sampling scheme that is asymptotically
exact in the limit of infinitely many particles as long as the likelihood approximation q(y | xt) – here
named the twisting function – converges to p(y | x) as t approaches 0. Using TDS [77] as part of our
expectation-maximization pipeline could lead to better results and/or faster convergence, at the cost
of computational resources. In addition, the authors note that the efficiency of TDS [77] depends

9



on how closely the twisting function approximates the exact likelihood. In this regard, our moment
matching Gaussian approximation in Eq. (19) could be a good twisting candidate.

7 Discussion

To the best of our knowledge, we are the first to formalize the training of diffusion models from
corrupted observations as an empirical Bayes [28–31] problem. In this work, we limit our analysis
to linear Gaussian forward processes to take advantage of accurate and efficient high-dimensional
posterior sampling schemes. This contrasts with typical empirical Bayes methods which target
low-dimensional latent spaces and highly non-linear forward processes [33–37]. In addition, as
mentionned in Section 6, these EB methods are not applicable to diffusion models. As such, we
choose to benchmark our work against similar methods in the diffusion model literature [80, 85], but
stress that a proper comparison with previous empirical Bayes methods would be valuable for both
communities. We also note that Monte Carlo EM [59–66] can handle arbitrary forward processes
p(y | x) as long as one can sample from the posterior qθ(x | y). Therefore, our method could be
adapted to any kind of forward processes in the future. We believe that the works of Dhariwal et al.
[97] and Ho et al. [98] on diffusion guidance are good avenues for adapting our method to non-linear,
non-differentiable, or even black-box forward processes.

From a computational perspective, the iterative nature of our expectation-maximization method is
a drawback compared to previous works [80, 85]. Notably, generating enough samples from the
posterior can be expensive, although embarrassingly parallelizable. In addition, even though the
architecture and training of the model qθ(x) itself are simpler than in previous works [80, 85], the
sampling step adds a significant amount of complexity, especially as the convergence of our method
is sensitive to the quality of posterior samples. In fact, we find that previous posterior sampling
methods [21–23, 25, 26] lead to disappointing results, which motivates us to develop a better one.

As such, moment matching posterior sampling (MMPS) is a byproduct of our work. However, it
is not bound to the context of learning from observations and is applicable to any linear inverse
problem given a pre-trained diffusion prior. In Appendix E, we evaluate MMPS against previous
posterior sampling methods for several linear inverse problems on the FFHQ [99] dataset. We find
that MMPS consistently outperforms previous methods, both qualitatively and quantitatively. MMPS
is remarkably stable and requires fewer sampling steps to generate qualitative samples, which largely
makes up for its slightly higher step cost.

Finally, as mentioned in Section 6, empirical Bayes is an ill-posed problem in that distinct prior
distributions may result in the same distribution over observations. In other words, it is generally
impossible to identify “the” ground-truth distribution p(x) given an empirical distribution of obser-
vations p(y). Instead, for a sufficiently expressive diffusion model, our EM method will eventually
converge to a prior qθ(x) that is consistent with p(y), but generally different from p(x). Following
the maximum entropy principle, as advocated by Vetter et al. [37], is left to future work.

Acknowledgments and Disclosure of Funding

François Rozet and Gérôme Andry are research fellows of the F.R.S.-FNRS (Belgium) and acknowl-
edge its financial support.

The present research benefited from computational resources made available on Lucia, the Tier-1
supercomputer of the Walloon Region, infrastructure funded by the Walloon Region under the grant
n°1910247. The computational resources have been provided by the Consortium des Équipements de
Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS)
under the grant n°2.5020.11 and by the Walloon Region.

MRI data used in the preparation of this article were obtained from the NYU fastMRI Initiative
database [7, 8]. As such, NYU fastMRI investigators provided data but did not participate in analysis
or writing of this report. A listing of NYU fastMRI investigators, subject to updates, can be found
at https://fastmri.med.nyu.edu/. The primary goal of fastMRI is to test whether machine
learning can aid in the reconstruction of medical images.

10

https://fastmri.med.nyu.edu/


References
[1] S. J. Warren and S. Dye. “Semilinear Gravitational Lens Inversion”. In The Astrophysical

Journal (2003).
[2] Warren R. Morningstar et al. “Data-driven Reconstruction of Gravitationally Lensed Galaxies

Using Recurrent Inference Machines”. In The Astrophysical Journal (2019).
[3] Siddharth Mishra-Sharma and Ge Yang. “Strong Lensing Source Reconstruction Using

Continuous Neural Fields”. 2022.
[4] Shanshan Wang et al. “Accelerating magnetic resonance imaging via deep learning”. In

International Symposium on Biomedical Imaging. 2016.
[5] Kerstin Hammernik et al. “Learning a variational network for reconstruction of accelerated

MRI data”. In Magnetic Resonance in Medicine (2018).
[6] Yoseo Han et al. “k-Space Deep Learning for Accelerated MRI”. In Transactions on Medical

Imaging (2020).
[7] Jure Zbontar et al. “fastMRI: An Open Dataset and Benchmarks for Accelerated MRI”. 2018.
[8] Florian Knoll et al. “fastMRI: A Publicly Available Raw k-Space and DICOM Dataset

of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning”. In
Radiology: Artificial Intelligence (2020).

[9] G. Cowan. “A survey of unfolding methods for particle physics”. In Conf. Proc. C (2002).
[10] Volker Blobel. “Unfolding Methods in Particle Physics”. In PHYSTAT. CERN, 2011.
[11] François-Xavier Le Dimet and Olivier Talagrand. “Variational algorithms for analysis and

assimilation of meteorological observations: theoretical aspects”. In Tellus A: Dynamic
Meteorology and Oceanography (1986).

[12] Yannick Trémolet. “Accounting for an imperfect model in 4D-Var”. In Quarterly Journal of
the Royal Meteorological Society (2006).

[13] Thomas M. Hamill. “Ensemble-based atmospheric data assimilation”. In Predictability of
Weather and Climate. 2006.

[14] Alberto Carrassi et al. “Data assimilation in the geosciences: An overview of methods, issues,
and perspectives”. In WIREs Climate Change (2018).

[15] Jascha Sohl-Dickstein et al. “Deep Unsupervised Learning using Nonequilibrium Thermo-
dynamics”. In Proceedings of the 32nd International Conference on Machine Learning.
2015.

[16] Jonathan Ho et al. “Denoising Diffusion Probabilistic Models”. In Advances in Neural
Information Processing Systems. 2020.

[17] Yang Song et al. “Solving Inverse Problems in Medical Imaging with Score-Based Generative
Models”. In International Conference on Learning Representations. 2022.

[18] Bahjat Kawar et al. “SNIPS: Solving Noisy Inverse Problems Stochastically”. In Advances in
Neural Information Processing Systems. 2021.

[19] Bahjat Kawar et al. “Denoising Diffusion Restoration Models”. In Advances in Neural
Information Processing Systems. 2022.

[20] Alexandre Adam et al. “Posterior samples of source galaxies in strong gravitational lenses
with score-based priors”. 2022.

[21] Hyungjin Chung et al. “Diffusion Posterior Sampling for General Noisy Inverse Problems”.
In International Conference on Learning Representations. 2023.

[22] Jiaming Song et al. “Pseudoinverse-Guided Diffusion Models for Inverse Problems”. In
International Conference on Learning Representations. 2023.

[23] François Rozet and Gilles Louppe. “Score-based Data Assimilation”. In Advances in Neural
Information Processing Systems. 2023.

[24] Marc Anton Finzi et al. “User-defined Event Sampling and Uncertainty Quantification in
Diffusion Models for Physical Dynamical Systems”. In Proceedings of the 40th International
Conference on Machine Learning. 2023.

[25] Benjamin Boys et al. “Tweedie Moment Projected Diffusions For Inverse Problems”. 2023.
[26] Y. Zhu et al. “Denoising Diffusion Models for Plug-and-Play Image Restoration”. In Confer-

ence on Computer Vision and Pattern Recognition Workshops. 2023.

11



[27] Noe Dia et al. “Bayesian Imaging for Radio Interferometry with Score-based Priors”. 2023.
[28] Herbert E. Robbins. “An Empirical Bayes Approach to Statistics”. In Proceedings of the

Third Berkeley Symposium on Mathematical Statistics and Probability. 1956.
[29] George Casella. “An Introduction to Empirical Bayes Data Analysis”. In The American

Statistician (1985).
[30] Bradley P. Carlin and Thomas A. Louis. “Empirical Bayes: Past, Present and Future”. In

Journal of the American Statistical Association (2000).
[31] Bradley Efron. “Two Modeling Strategies for Empirical Bayes Estimation”. In Statistical

Science (2014).
[32] G. D’Agostini. “A multidimensional unfolding method based on Bayes’ theorem”. In Nuclear

Instruments and Methods in Physics Research (1995).
[33] Tim Dockhorn et al. “Density Deconvolution with Normalizing Flows”. 2020.
[34] Anders Andreassen et al. “OmniFold: A Method to Simultaneously Unfold All Observables”.

In Physical Review Letters (2020).
[35] Gilles Louppe et al. “Adversarial Variational Optimization of Non-Differentiable Simulators”.

In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics. 2019.

[36] Maxime Vandegar et al. “Neural Empirical Bayes: Source Distribution Estimation and its
Applications to Simulation-Based Inference”. In Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics. 2021.

[37] Julius Vetter et al. “Sourcerer: Sample-based Maximum Entropy Source Distribution Estima-
tion”. 2024.

[38] Bradley Efron. “Empirical Bayes deconvolution estimates”. In Biometrika (2016).
[39] Balasubramanian Narasimhan and Bradley Efron. “deconvolveR: A G-Modeling Program for

Deconvolution and Empirical Bayes Estimation”. In Journal of Statistical Software (2020).
[40] H. O. Hartley. “Maximum Likelihood Estimation from Incomplete Data”. In Biometrics

(1958).
[41] A. P. Dempster et al. “Maximum Likelihood from Incomplete Data Via the EM Algorithm”.

In Journal of the Royal Statistical Society (1977).
[42] C. F. Jeff Wu. “On the Convergence Properties of the EM Algorithm”. In The Annals of

Statistics (1983).
[43] Geoffrey J McLachlan and Thriyambakam Krishnan. “The EM algorithm and extensions”.

John Wiley & Sons, 2007.
[44] Sivaraman Balakrishnan et al. “Statistical guarantees for the EM algorithm: From population

to sample-based analysis”. In The Annals of Statistics (2017).
[45] Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the Data

Distribution”. In Advances in Neural Information Processing Systems. 2019.
[46] Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equa-

tions”. In International Conference on Learning Representations. 2021.
[47] Brian D. O. Anderson. “Reverse-time diffusion equation models”. In Stochastic Processes

and their Applications (1982).
[48] Simo Särkkä and Arno Solin. “Applied Stochastic Differential Equations”. Institute of

Mathematical Statistics Textbooks. Cambridge University Press, 2019.
[49] Qinsheng Zhang and Yongxin Chen. “Fast Sampling of Diffusion Models with Exponential

Integrator”. In International Conference on Learning Representations. 2023.
[50] Jiaming Song et al. “Denoising Diffusion Implicit Models”. In International Conference on

Learning Representations. 2021.
[51] Tero Karras et al. “Elucidating the Design Space of Diffusion-Based Generative Models”. In

Advances in Neural Information Processing Systems. 2022.
[52] Yaron Lipman et al. “Flow Matching for Generative Modeling”. In International Conference

on Learning Representations. 2023.
[53] Aapo Hyvärinen. “Estimation of Non-Normalized Statistical Models by Score Matching”. In

Journal of Machine Learning Research (2005).

12



[54] Pascal Vincent. “A Connection Between Score Matching and Denoising Autoencoders”. In
Neural Computation (2011).

[55] M. C. K. Tweedie. “Functions of a statistical variate with given means, with special reference
to Laplacian distributions”. In Mathematical Proceedings of the Cambridge Philosophical
Society (1947).

[56] Bradley Efron. “Tweedie’s Formula and Selection Bias”. In Journal of the American Statistical
Association (2011).

[57] Kwanyoung Kim and Jong Chul Ye. “Noise2Score: Tweedie’s Approach to Self-Supervised
Image Denoising without Clean Images”. In Advances in Neural Information Processing
Systems. 2021.

[58] Chenlin Meng et al. “Estimating High Order Gradients of the Data Distribution by Denoising”.
In Advances in Neural Information Processing Systems. 2021.

[59] Greg C. G. Wei and Martin A. Tanner. “A Monte Carlo Implementation of the EM Algorithm
and the Poor Man’s Data Augmentation Algorithms”. In Journal of the American Statistical
Association (1990).

[60] Gilles Celeux and Jean Diebolt. “A stochastic approximation type EM algorithm for the
mixture problem”. In Stochastics and Stochastic Reports (1992).

[61] Bernard Delyon et al. “Convergence of a stochastic approximation version of the EM algo-
rithm”. In The Annals of Statistics (1999).

[62] James G. Booth and James P. Hobert. “Maximizing Generalized Linear Mixed Model Likeli-
hoods with an Automated Monte Carlo EM Algorithm”. In Journal of the Royal Statistical
Society (1999).

[63] Richard A. Levine and George Casella. “Implementations of the Monte Carlo EM Algorithm”.
In Journal of Computational and Graphical Statistics (2001).

[64] Brian S. Caffo et al. “Ascent-Based Monte Carlo Expectation-Maximization”. In Journal of
the Royal Statistical Society (2005).

[65] Wolfgang Jank. “The EM Algorithm, Its Randomized Implementation and Global Optimiza-
tion”. In Perspectives in Operations Research. 2006.

[66] William Ruth. “A review of Monte Carlo-based versions of the EM algorithm”. 2024.
[67] Michael E. Tipping and Christopher M. Bishop. “Mixtures of Probabilistic Principal Compo-

nent Analyzers”. In Neural Computation (1999).
[68] Christopher M. Bishop. “Pattern Recognition and Machine Learning”. Information Science

and Statistics. Springer, 2006.
[69] Lénaïc Chizat et al. “Faster Wasserstein Distance Estimation with the Sinkhorn Divergence”.

In Advances in Neural Information Processing Systems. 2020.
[70] Rémi Flamary et al. “POT: Python Optimal Transport”. In Journal of Machine Learning

Research (2021).
[71] Friedemann Zenke and Tim P. Vogels. “The Remarkable Robustness of Surrogate Gradient

Learning for Instilling Complex Function in Spiking Neural Networks”. In Neural Computa-
tion (2021).

[72] Magnus R. Hestenes and Eduard Stiefel. “Methods of Conjugate Gradients for Solving Linear
Systems”. In Journal of Research of the National Bureau of Standards (1952).

[73] James Bradbury et al. “JAX: Composable transformations of Python + NumPy programs”.
2018.

[74] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In Advances in Neural Information Processing Systems. 2019.

[75] Youcef Saad and Martin Schultz. “GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems”. In Journal on Scientific and Statistical Computing
(1986).

[76] H. A. Van der Vorst. “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG
for the Solution of Nonsymmetric Linear Systems”. In Journal on Scientific and Statistical
Computing (1992).

[77] Luhuan Wu et al. “Practical and Asymptotically Exact Conditional Sampling in Diffusion
Models”. In Advances in Neural Information Processing Systems. 2023.

13



[78] Nicolas Bonneel et al. “Sliced and Radon Wasserstein Barycenters of Measures”. In Journal
of Mathematical Imaging and Vision (2015).

[79] Kimia Nadjahi et al. “Statistical and Topological Properties of Sliced Probability Diver-
gences”. In Advances in Neural Information Processing Systems. 2020.

[80] Giannis Daras et al. “Ambient Diffusion: Learning Clean Distributions from Corrupted Data”.
In Advances in Neural Information Processing Systems. 2023.

[81] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning Multiple Layers of Features from Tiny
Images”. 2009.

[82] Olaf Ronneberger et al. “U-Net: Convolutional Networks for Biomedical Image Segmenta-
tion”. In Medical Image Computing and Computer-Assisted Intervention. 2015.

[83] Tim Salimans et al. “Improved Techniques for Training GANs”. In Advances in Neural
Information Processing Systems. 2016.

[84] Martin Heusel et al. “GANs Trained by a Two Time-Scale Update Rule Converge to a Local
Nash Equilibrium”. In Advances in Neural Information Processing Systems. 2017.

[85] Bahjat Kawar et al. “GSURE-Based Diffusion Model Training with Corrupted Data”. In
Transactions on Machine Learning Research (2024).

[86] Ajil Jalal et al. “Robust Compressed Sensing MRI with Deep Generative Priors”. In Advances
in Neural Information Processing Systems. 2021.

[87] Yochai Blau and Tomer Michaeli. “The Perception-Distortion Tradeoff”. In Conference on
Computer Vision and Pattern Recognition. 2018.

[88] Mauricio Delbracio and Peyman Milanfar. “Inversion by Direct Iteration: An Alternative to
Denoising Diffusion for Image Restoration”. In Transactions on Machine Learning Research
(2023).

[89] E. G. Tabak and Cristina V. Turner. “A family of nonparametric density estimation algo-
rithms”. In Communications on Pure and Applied Mathematics (2013).

[90] Danilo Rezende and Shakir Mohamed. “Variational Inference with Normalizing Flows”. In
Proceedings of the 32nd International Conference on Machine Learning. 2015.

[91] Asad Aali et al. “Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data”. 2024.

[92] Giannis Daras et al. “Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion
Models with Noisy Data”. 2024.

[93] Xinyu Peng et al. “Improving Diffusion Models for Inverse Problems Using Optimal Posterior
Covariance”. 2024.

[94] Jiaming Song et al. “Loss-Guided Diffusion Models for Plug-and-Play Controllable Genera-
tion”. In Proceedings of the 40th International Conference on Machine Learning. 2023.

[95] Arpit Bansal et al. “Universal Guidance for Diffusion Models”. In International Conference
on Learning Representations. 2024.

[96] Yutong He et al. “Manifold Preserving Guided Diffusion”. In International Conference on
Learning Representations. 2024.

[97] Prafulla Dhariwal and Alexander Quinn Nichol. “Diffusion Models Beat GANs on Image
Synthesis”. In Advances in Neural Information Processing Systems. 2021.

[98] Jonathan Ho and Tim Salimans. “Classifier-Free Diffusion Guidance”. 2022.
[99] Tero Karras et al. “A Style-Based Generator Architecture for Generative Adversarial Net-

works”. In Conference on Computer Vision and Pattern Recognition. 2019.
[100] Ashish Vaswani et al. “Attention is All you Need”. In Advances in Neural Information

Processing Systems. 2017.
[101] Stefan Elfwing et al. “Sigmoid-weighted linear units for neural network function approxima-

tion in reinforcement learning”. In Neural Networks (2018).
[102] Jimmy Lei Ba et al. “Layer Normalization”. 2016.
[103] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In

International Conference on Learning Representations. 2015.
[104] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In Conference on

Computer Vision and Pattern Recognition. 2016.

14



[105] William Peebles and Saining Xie. “Scalable Diffusion Models with Transformers”. In Inter-
national Conference on Computer Vision. 2023.

[106] Anton Obukhov et al. “High-fidelity performance metrics for generative models in PyTorch”.
2020.

[107] Wenzhe Shi et al. “Real-Time Single Image and Video Super-Resolution Using an Efficient
Sub-Pixel Convolutional Neural Network”. In Conference on Computer Vision and Pattern
Recognition. 2016.

[108] Richard Zhang et al. “The Unreasonable Effectiveness of Deep Features as a Perceptual
Metric”. In Conference on Computer Vision and Pattern Recognition. 2018.

[109] Zhou Wang et al. “Image quality assessment: from error visibility to structural similarity”. In
Transactions on Image Processing (2004).

15



A Algorithms

Algorithm 1 Expectation-maximization pipeline

1 Choose an initial prior q0(x)
2 Initialize the parameters θ of the denoiser dθ(xt, t)
3 for k = 1 to K do
4 for i = 1 to S do
5 yi, Ai ∼ p(y,A)
6 xi ∼ qk−1(x | yi, Ai) # Posterior sampling
7 repeat
8 i ∼ U({1, . . . , S})
9 t ∼ U(0, 1)

10 z ∼ N (0, I)
11 xt ← xi + σt z

12 ℓ← λt

∥∥dθ(xt, t)− xi

∥∥2 # Denoising score matching
13 θ ← GRADIENTDESCENT(θ,∇θℓ)
14 until convergence
15 θk ← θ
16 qk := qθk
17 return θK

Algorithm 2 DDIM-style posterior sampling

1 x1 ∼ N (0,Σ1)
2 for i = T to 1 do
3 s← i−1/T
4 t← i/T
5 x̂← xt +Σt sθ(xt | y,A) # Estimate E[x | xt, y, A]
6 z ∼ N (0, I)

7 xs ← x̂+ σs

√
1− η

(
1− σ2

s

σ2
t

)
xt − x̂

σt
+ σs

√
η

(
1− σ2

s

σ2
t

)
z

8 return x0

Algorithm 3 Moment matching posterior score

1 function sθ(xt | y,A) # Estimate∇xt
log qθ(xt | y,A)

2 x̂← dθ(xt, t)
3 if Tweedie then
4 Σx|xt

← Σt∇xtdθ(xt, t)
⊤

5 else
6 Σx|xt

← Σt or (I +Σ−1
t )−1 or (Σ−1

x +Σ−1
t )−1

7 u←
(
Σy +AΣx|xt

A⊤)−1
(y −Ax̂) # Solve with conjugate gradient method

8 sy|x ← ∇xt
dθ(xt, t)

⊤A⊤u # Estimate∇xt
log qθ(y | xt, A)

9 sx ← Σ−1
t (x̂− xt) # Estimate∇xt log qθ(xt)

10 return sx + sy|x
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Algorithm 4 Conjugate gradient method

1 function CONJUGATEGRADIENT(A, b, x0)
2 r0 ← b−Ax0

3 p0 ← r0
4 for i = 0 to N − 1 do
5 if ∥ri∥ ≤ ϵ then
6 return xi

7 αi ←
r⊤i ri
p⊤i Api

8 xi+1 ← xi + αipi
9 ri+1 ← ri − αiApi

10 βi ←
r⊤i+1ri+1

r⊤i ri
11 pi+1 ← ri + βipi
12 return xN

17



B Tweedie’s formulae

Theorem 1. For any distribution p(x) and p(xt | x) = N (xt | x,Σt), the first and second moments
of the distribution p(x | xt) are linked to the score function∇xt

log p(xt) through

E[x | xt] = xt +Σt∇xt
log p(xt) (25)

V[x | xt] = Σt +Σt∇2
xt

log p(xt) Σt (26)

We provide proofs of Theorem 1 for completeness, even though it is a well known result [55–58].

Proof.

∇xt
log p(xt) =

1

p(xt)
∇xt

p(xt)

=
1

p(xt)

ˆ
∇xt

p(x, xt) dx

=
1

p(xt)

ˆ
p(x, xt)∇xt log p(x, xt) dx

=

ˆ
p(x | xt)∇xt log p(xt | x) dx

=

ˆ
p(x | xt) Σ

−1
t (x− xt) dx

= Σ−1
t E[x | xt]− Σ−1

t xt

Proof.

∇2
xt

log p(xt) = ∇xt∇⊤
xt

log p(xt)

= ∇xtE[x | xt]
⊤Σ−1

t − Σ−1
t

=

(ˆ
∇xt

p(x | xt)x
⊤ dx

)
Σ−1

t − Σ−1
t

=

(ˆ
p(x | xt)∇xt

log
p(xt | x)
p(xt)

x⊤ dx

)
Σ−1

t − Σ−1
t

=

(ˆ
p(x | xt) Σ

−1
t

(
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C Experiment details

All experiments are implemented within the JAX [73] automatic differentiation framework.
The code for all experiments is made available at https://github.com/francois-rozet/
diffusion-priors.

Diffusion models As mentioned in Section 2, in this work, we adopt the variance exploding SDE
[45] and the denoiser parameterization [51]. Following Karras et al. [51], we precondition our
denoiser dθ(xt, t) as

dθ(xt, t) =
1

σ2
t + 1

xt +
σt√
σ2
t + 1

hθ

(
xt√
σ2
t + 1

, log σt

)
(27)

where hθ(x, log σ) is an arbitrary noise-conditional network. The scalar log σ is embedded as a
vector using a sinusoidal positional encoding [100]. In our experiments, we use an exponential noise
schedule

σt = exp
(
(1− t) log 10−3 + t log 102

)
, (28)

loss weights λt =
1
σ2
t
+ 1 and sample t from a Beta distribution B(α = 3, β = 3) during training.

Low-dimensional manifold The noise-conditional network hθ(x, log σ) is a multi-layer perceptron
with 3 hidden layers of 256 neurons and SiLU [101] activation functions. A layer normalization
[102] function is inserted after each activation. The input of the network is the concatenation of xt

and the noise embedding vector. We train the network with Algorithm 1 for K = 32 EM iterations.
Each iteration consists of 16 384 optimization steps of the Adam [103] optimizer. The optimizer and
learning rate are re-initialized after each EM iteration. Other hyperparameters are provided in Table
2.

Table 2. Hyperparameters for the low-dimensional manifold experiment.

Architecture MLP
Input shape (5)
Hidden features (256, 256, 256)
Activation SiLU
Normalization LayerNorm

Optimizer Adam
Weight decay 0.0
Scheduler linear
Initial learning rate 1× 10−3

Final learning rate 1× 10−6

Gradient norm clipping 1.0
Batch size 1024
Steps per EM iteration 16 384
EM iterations 32

We apply Algorithm 3 to estimate the posterior score ∇xt
log p(xt) and truncate Algorithm 4 to 3

iterations. We rely on the predictor-corrector [23, 46] sampling scheme to sample from the posterior
qθ(x | y,A). Following Rozet et al. [23], the predictor is a deterministic DDIM [50] step and the
corrector is a Langevin Monte Carlo step. We perform 4096 prediction steps, each followed by 1
correction step. At each EM iteration, we generate a single latent x for each pair (y,A).

We generate smooth random manifolds according to a procedure described by Zenke et al. [71]. We
evaluate the Sinkhorn divergences using the POT [70] package with an entropic regularization factor
λ = 1e− 3.

Corrupted CIFAR-10 The noise-conditional network hθ(x, log σ) is a U-Net [82] with residual
blocks [104], SiLU [101] activation functions and layer normalization [102]. Each residual block
is modulated with respect to the noise σt in the style of diffusion transformers [105]. A multi-head
self-attention block [100] is inserted after each residual block at the last level of the U-Net. We train
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the network with Algorithm 1 for K = 32 EM iterations. Each iteration consists of 256 epochs over
the training set (50 000 images). To prevent overfitting, images are augmented with horizontal flips
and hue shifts. The optimizer is re-initialized after each EM iteration. Other hyperparameters are
provided in Table 3.

Table 3. Hyperparameters for the corrupted CIFAR-10 and accelerated MRI experiments.

Experiment corrupted CIFAR-10 accelerated MRI

Architecture U-Net U-Net
Input shape (32, 32, 3) (80, 80, 16)
Residual blocks per level (5, 5, 5) (3, 3, 3, 3)
Channels per level (128, 256, 384) (128, 256, 384, 512)
Attention heads per level (0, 4, 0) (0, 0, 0, 4)
Kernel size 3 3
Activation SiLU SiLU
Normalization LayerNorm LayerNorm

Optimizer Adam Adam
Weight decay 0.0 0.0
Learning rate 2× 10−4 10−4

Gradient norm cliping 1.0 1.0
EMA decay 0.9999 0.999
Dropout 0.1 0.1
Augmentation h-flip, hue h-flip, pad & crop
Batch size 256 256
Epochs per EM iteration 256 64
EM iterations 32 16

We apply Algorithm 2 with T = 256 discretization steps and η = 1 to sample from the posterior
qθ(x | y,A). We apply Algorithm 3 with several heuristics for V[x | xt] to compare their results
against Tweedie’s covariance formula. For the latter, we truncate the conjugate gradient method in
Algorithm 4 to a single iteration. At each EM iteration, we generate a single latent x for each pair
(y,A). Each EM iteration (including sampling and training) takes around 4 h on 4 A100 (40GB)
GPUs.

We evaluate the Inception score (IS) [83] and Fréchet Inception distance (FID) [84] of generated
images using the torch-fidelity [106] package.

Accelerated MRI The noise-conditional network architecture is the same as for the corrupted
CIFAR-10 experiment. The 320× 320× 1 tensor xt is reshaped into a 80× 80× 16 tensor using
pixel shuffling [107] before entering the network. We train the network with Algorithm 1 for K = 16
EM iterations. Each iteration consists of 64 epochs over the training set (2 × 24 853 images). To
prevent overfitting, images are augmented with horizontal flips and random crops. The optimizer is
re-initialized after each EM iteration. Other hyperparameters are provided in Table 3.

We apply Algorithm 2 with T = 64 discretization steps and η = 1 to sample from the posterior
qθ(x | y,A). We truncate the conjugate gradient method in Algorithm 4 to 3 iterations. At each EM
iteration, we generate 2 latents x for each pair (y,A), which acts as data augmentation. Each EM
iteration (including sampling and training) takes around 3 h on 4 A100 (40GB) GPUs.
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D Additional figures
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Figure 7. 1-d and 2-d marginals of the ground-truth distribution p(x) used in the low-dimensional
manifold experiment. The distribution lies on a random 1-dimensional manifold embedded in R5.
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Figure 8. Example of samples from the posterior qθk(x | y) along the EM iterations for the CIFAR-10
experiment. The generated images become gradually more detailed and less noisy.
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Figure 9. Example of samples from the posterior qθk(x | y) along the EM iterations for the CIFAR-10
experiment when the heuristic (I + Σ−1

t )−1 is used for V[x | xt]. The generated images become
gradually more detailed but some noise remains.
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Figure 10. Example of samples from the posterior qθk(x | y) along the EM iterations for the CIFAR-
10 experiment when the heuristic Σt is used for V[x | xt]. The generated images remain very noisy.
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Figure 11. Example of scan slices from the fastMRI [7, 8] dataset.

Figure 12. Example of k-space sub-sampling observations with acceleration factor R = 6 for the
accelerated MRI experiment. We represent each observation by its zero-filled inverse, where missing
frequencies are set to zero before taking the inverse discrete Fourier transform.
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Figure 13. Example of samples from the final model qθk(x) for the accelerated MRI experiment. The
samples present varied and coherent global structures. Samples seem slightly less sharp than real
scans (see Figure 11), but do not present artifacts typical to unresolved frequencies (see Figure 12).
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Figure 14. Examples of posterior samples using a diffusion prior trained from k-space observations
only. The forward process crops the latent x to a centered 160 × 160 window. Moment matching
posterior sampling is used to sample from the posterior. Samples are consistent with the ground-truth
where observed, but present plausible variations elsewhere.
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Figure 15. Example of samples from the model qθk(x) after k = 2 EM iterations for the accelerated
MRI experiment when the heuristic (I +Σ−1

t )−1 is used for V[x | xt]. The samples start to present
vertical artifacts due to poor sampling.

Figure 16. Example of samples from the model qθk(x) after k = 4 EM iterations for the accelerated
MRI experiment when the heuristic (I +Σ−1

t )−1 is used for V[x | xt]. The artifacts introduced by
the poor sampling get amplified at each iteration, leading to a total collapse after few iterations.
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E Evaluation of MMPS

In this section, we evaluate the moment matching posterior sampling (MMPS) method presented in
Section 4.2 independently from the context of learning from observations. The code for this section
is made available at https://github.com/francois-rozet/mmps-benchmark.

Tasks We consider four linear inverse problems on the 256× 256 FFHQ [99] dataset. (i) For box
inpainting, we mask out a randomly positioned 128× 128 square of pixels and add a large amount
of noise (σy = 1). (ii) For random inpainting, we randomly delete pixels with 98% probability and
add a small amount of noise (σy = 0.01). (iii) For motion deblur, we apply a randomly generated
61× 61 motion blur kernel and add a medium amount of noise (σy = 0.1). (iv) For super resolution,
we apply a 4× bicubic downsampling and add a medium amount of noise (σy = 0.1).

Methods For all inverse problems, we use the pre-trained diffusion model provided by Chung
et al. [21] as diffusion prior. We adapt and extend the DPS [21] codebase to support MMPS as well
as DiffPIR [26], ΠGDM [22] and TMPD [25]. We use the DDIM [50] sampler with η = 1 for all
methods, which is equivalent to the DDPM [16] sampler. We fine-tune the hyperparameters of DPS
(ζ ′ = 0.5) and DiffPIR (λ = 8.0) to have the best results across the four tasks. With MMPS, we find
that the Jacobian of the pre-trained model provided by Chung et al. [21] is strongly non-symmetric
and non-definite for large σt, which leads to unstable conjugate gradient (CG) [72] iterations. We
therefore replace the CG solver with the GMRES [75] solver, which can solve non-symmetric
non-definite linear systems.

Protocol We generate one observation per inverse problem for 100 images1 of the FFHQ [99]
dataset. We generate a sample for each observation with all considered posterior sampling methods.
All methods are executed with the same random seed. We compute three standard image reconstruc-
tion metrics – LPIPS [108], PSNR and SSIM [109] – for each sample and report their average in
Table 4. We present generated samples for each inverse problem in Figures 17, 18 and 19.

As a side note, we emphasize that reconstruction metrics do not necessarily reflect the accuracy of the
inferred posterior distribution, which we eventually care about. For example, PSNR and SSIM [109]
favor smooth predictions such as the mean E[x | y] over actual samples from the posterior p(x | y).
Conversely, LPIPS [108] favors predictions which are perceptually similar to the reference, even
if they are distorted. In general, it is impossible to simultaneously optimize for all reconstruction
metrics [87, 88].

Results MMPS consistently outperforms all baselines, both qualitatively and quantitatively. As
expected, performing more solver iterations improves the sample quality, especially when the Gram
matrix AA⊤ is strongly non-diagonal, which is the case for the motion deblur task. However, the
improvement shows rapidly diminishing returns, as the difference between 1 and 3 iterations is much
larger than between 3 and 5. MMPS is also remarkably stable with respect to the number of sampling
steps in contrast to DPS [21], DiffPIR [26] and ΠGDM [22] which are sensitive to the number of
steps and choice of hyperparameters. Finally, MMPS requires fewer sampling steps to reach the same
image quality as previous methods, which largely makes up for its slightly higher step cost.

1Chung et al. [21] do not indicate which subset of FFHQ [99] was used to train their model. Without further
information, we choose to use the first 100 images for evaluation, which could lead to biased metrics if the
diffusion prior was trained on them. However, since we use the same diffusion prior for all posterior sampling
methods, the evaluation remains fair.
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Table 4. Quantitative evaluation of MMPS with 1, 3 and 5 solver iterations.

Box inpainting Random inpainting Motion deblur Super resolution
Method Steps LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑
DiffPIR [26] 10 0.33 19.17 0.50 0.78 10.97 0.32 0.24 24.54 0.72 0.20 26.63 0.78
DiffPIR [26] 100 0.30 18.15 0.54 0.68 10.26 0.25 0.19 23.97 0.70 0.17 25.24 0.73
DiffPIR [26] 1000 0.33 17.39 0.49 0.74 9.51 0.21 0.17 23.55 0.67 0.15 24.72 0.70
DPS [21] 10 0.64 10.41 0.34 0.58 12.68 0.43 0.75 8.63 0.27 0.58 12.01 0.41
DPS [21] 100 0.38 16.82 0.50 0.39 16.66 0.49 0.29 19.75 0.57 0.35 18.29 0.54
DPS [21] 1000 0.22 21.01 0.64 0.19 21.90 0.66 0.18 22.91 0.66 0.16 25.02 0.72
ΠGDM [22] 10 0.40 18.94 0.61 0.59 11.28 0.40 0.25 25.83 0.76 0.25 26.42 0.77
ΠGDM [22] 100 0.44 18.23 0.47 0.39 17.03 0.48 0.25 22.37 0.61 0.15 25.63 0.71
ΠGDM [22] 1000 0.81 14.80 0.31 0.14 22.32 0.69 1.06 13.12 0.21 0.64 18.41 0.29
TMPD [25] 10 0.36 19.90 0.64 0.59 11.08 0.40 0.27 25.28 0.74 0.26 26.07 0.76
TMPD [25] 100 0.27 19.86 0.64 0.58 10.73 0.31 0.17 26.22 0.76 0.17 26.79 0.77
TMPD [25] 1000 0.25 19.53 0.62 0.68 9.98 0.25 0.14 25.91 0.74 0.14 26.53 0.76

MMPS (1) 10 0.27 21.19 0.68 0.26 22.41 0.69 0.33 22.12 0.66 0.24 26.94 0.78
MMPS (1) 100 0.20 21.19 0.67 0.18 22.18 0.69 0.20 23.92 0.71 0.15 27.32 0.79
MMPS (1) 1000 0.19 20.77 0.64 0.18 21.94 0.66 0.16 23.83 0.69 0.12 26.92 0.77
MMPS (3) 10 0.26 21.55 0.68 0.21 23.58 0.74 0.24 25.33 0.75 0.19 27.94 0.81
MMPS (3) 100 0.20 21.29 0.67 0.15 22.76 0.71 0.15 26.16 0.76 0.13 27.18 0.78
MMPS (3) 1000 0.19 21.01 0.64 0.15 22.45 0.68 0.12 25.73 0.74 0.11 26.69 0.76
MMPS (5) 10 0.23 21.73 0.69 0.20 23.72 0.75 0.20 26.70 0.78 0.18 28.02 0.81
MMPS (5) 100 0.20 21.30 0.67 0.15 22.82 0.72 0.13 26.70 0.77 0.13 27.12 0.78
MMPS (5) 1000 0.20 20.98 0.64 0.14 22.52 0.69 0.11 26.18 0.75 0.11 26.60 0.76

Table 5. Time and memory complexity of MMPS for the 4× super resolution task. Each solver
iteration increases the time per step by around 16ms. The maximum memory allocated by MMPS is
about 10% larger than DPS [21] and ΠGDM [22].

Method VJPs Time [ms/step] Memory [GB]

DiffPIR [26] 0 30.2 0.66
DPS [21] 1 40.5 2.29
ΠGDM [22] 1 47.6 2.30
TMPD [25] 2 62.2 2.52
MMPS (1) 2 58.0 2.52
MMPS (3) 4 90.1 2.52
MMPS (5) 6 122.1 2.52
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Figure 17. Qualitative evaluation of MMPS with 1 and 5 solver iterations.

Reference Observation

DPS
10 steps

DPS
100 steps

DPS
1000 steps

DiffPIR
10 steps

DiffPIR
100 steps

DiffPIR
1000 steps

B
ox

in
p
a
in
ti
n
g

R
an

d
in
p
ai
n
ti
n
g

M
ot
io
n
d
eb

lu
r

S
u
p
er

re
so
lu
ti
on

Figure 18. Qualitative evaluation of DPS [21] and DiffPIR [26].
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Figure 19. Qualitative evaluation of ΠGDM [22] and TMPD [25].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We only claim to present a new method, which we describe in Section 4. We
compare our method against previous ones in Sections 5 and 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No new theoretical results are presented, but methods are motivated by estab-
lished literature.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The manuscript describes all methods and experiments. Algorithms are
provided for the methods. The code for all experiments is made available at https:
//github.com/francois-rozet/diffusion-priors.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code for all experiments is made available at https://github.com/
francois-rozet/diffusion-priors. Instructions to acquire the datasets are provided.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experiment details are provided in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Computing error bars for Table 1 and Figure 4 would require retraining every
model several times for different datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiment details are provided in Appendix C. We acknowledge the use of a
computer cluster in the acknowledgments section. Preliminary experiments are not reported
in the manuscript.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and agree with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We acknowledge the use of the NYU fastMRI dataset [7, 8] in the acknowl-
edgments section and follow its terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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