
Sample Compression Hypernetworks:
From Generalization Bounds to Meta-Learning

Benjamin Leblanc, Mathieu Bazinet, Nathaniel D’Amours
Université Laval

{benjamin.leblanc.2, mathieu.bazinet.2, nathaniel.damours.1}@ulaval.ca

Alexandre Drouin
ServiceNow Research, Université Laval
alexandre.drouin@servicenow.com

Pascal Germain
Université Laval, Canada CIFAR AI Chair

pascal.germain@ift.ulaval.ca

Abstract

Reconstruction functions are pivotal in sample compression theory, a framework for
deriving tight generalization bounds. From a small sample of the training set (the
compression set) and an optional stream of information (the message), they recover
a predictor previously learned from the whole training set. While usually fixed,
we propose to learn reconstruction functions. To facilitate the optimization and
increase the expressiveness of the message, we derive a new sample compression
generalization bound for real-valued messages. From this theoretical analysis, we
then present a new hypernetwork architecture that outputs predictors with tight
generalization guarantees when trained using an original meta-learning framework.
The results of promising preliminary experiments are then reported.

1 Introduction

Initiated by Littlestone and Warmuth [20] and refined by many authors [1, 3, 4, 5, 6, 10, 11, 12, 13,
19, 22, 23, 25, 28, 30], the sample compression theory expresses generalization bounds on predictors
that rely only on a small subset of the training set, referred to as the compression set. The provided
statistical guarantees are valid even if the learning algorithm observes the entire training dataset, as
long as there exists a reconstruction function that recovers the learned predictor from the compression
set and, optionally, a short stream of additional information (referred to as the message). The sample
compression theorems thus express the generalization ability of predictive models as an accuracy-
complexity trade-off, measured respectively by the training loss and the size of the compressed
representation, which has been the motivation for unconventional yet successful learning algorithms.

Among sample compress learning algorithms, a first line of work that led to practical machine learning
algorithms was pioneered by Marchand and Shawe-Taylor [21, 22] and their Set Covering Machine
(SCM) learning algorithm, a greedy iterative procedure that selects a very small subset of the training
set to build a decision rule based on data-dependent features. A second line of work is rooted in the
theoretical work of Campi et al. [4] and is incarnated by the Pick-to-learn meta-algorithm recently
proposed by Paccagnan et al. [26]. Such sample compression learning algorithms are typically
expressed as a discrete optimization procedure tailored for a well-specified reconstruction function.

The originality of our contribution lies in the learning of the reconstruction function, which is
achieved by making the reconstruction function a direct component of our learning algorithm. The
resulting architecture can be viewed as a new form of encoder-decoder that compresses a dataset into a
compression set and a message, and reconstructs a predictor. We leverage the proposed autoencoder in
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a meta-learning framework, leading to tight task-specific sample compression generalization bounds.
This is achievable thanks to an original sample compression theorem for real-valued messages.

2 The Sample Compression Setting

The prediction problem. A dataset S = {zj}mj=1 is a collection of m examples, each of them
being a feature-target pair z = (x, y) ∈ X × Y , and a predictor is a function h : X → Y . We
denoteH as the predictor space. LetA be a learning algorithmA :

⋃
k∈N(X ×Y)k → H that outputs

a predictor A(S) ∈ H. Given a predictor h and a loss function ℓ : Y × Y → [0, 1], the empirical
loss of the predictor over a set of m independently and identically distributed (i.i.d.) examples is
L̂S(h) = 1

m

∑m
j=1 ℓ(h(xj), yj). We denote D the data-generating distribution over X ×Y such that

S ∼ Dn and the generalization loss of a predictor h is LD(h) = E(x,y)∼D [ℓ(h(x), y)].

The reconstruction function. Once a predictor h is learned from a dataset S, i.e. h = A(S),
one can obtain an upper bound on LD(h) thanks to the sample compression theory whenever it
is possible to reconstruct the predictor h from a compression set (that is, a subset of S) and an
optional message (chosen from a predetermined discrete messages set Σ). This is performed by a
reconstruction function, R :

⋃
k∈N(X ×Y)k × Σ→ H. Thus, a sample compression predictor can

be written h = R(Sj, σ), with j ⊂ {i}mi=1 being the indexes of the training samples belonging to the
compression set Sj = {zj}j∈j, and σ ∈ Σ being the message. In the following, we denote the set of
all training indices m = {i}mi=1, and P(m) its powerset; for compression set indices j ∈ P(m), the
complement is j = m \ j.

Notable theoretical results. Theorem 1 below, due to Marchand and Sokolova [23], improves
the bound developed for the SCM algorithm [21, 22]. It is premised on two data-independent
distributions: PP(m) on the compression set indices P(m), and PΣ on a discrete set of messages Σ.
Noteworthy, the bound is valid solely for the zero-one loss, as it considers each "successful" and
"unsuccessful" prediction to be the result of a Bernoulli distribution.
Theorem 1 (Sample compression - binary loss with discrete messages [23]). For any distribution
D over X ×Y , for any set J ⊆ P(m), for any distribution PJ over J , for any PΣ over Σ, for any
reconstruction function R, for any binary loss ℓ : Y ×Y → {0, 1} and for any δ ∈ (0, 1], with
probability at least 1− δ over the draw of S ∼ Dm, we have

∀j ∈ J, σ ∈ Σ :

LD
(
R(Sj, σ)

)
≤ argsup

r∈[0,1]

{
K∑
k=1

(
|j|
k

)
rk(1− r)|j|−k ≥ PJ(j)PΣ(σ) δ

∣∣∣∣∣K = |j|L̂Sj

(
R(Sj, σ)

)}
.

Theorem 1 is limited in its scope, for many tasks involve non-binary loss (e.g. regression tasks, or
classification where making a given error has a bigger impact than others). The following recent
result [3] permits real-valued losses ℓ : Y ×Y → R. Given a comparator function ∆ : R×R→ R,
it bounds the discrepancy between the empirical loss of the reconstructed hypothesis R(Sj, σ) on the
complement set Sj and the generalization loss on the data distribution D.
Theorem 2 (Sample compression - real-valued losses with discrete messages [3]). For any distri-
bution D over X ×Y , for any set J ⊆ P(m), for any distribution PJ over J , for any distribution
PΣ over Σ, for any reconstruction function R, for any loss ℓ : Y ×Y → R, for any function
∆ : R×R→ R and for any δ ∈ (0, 1], with probability at least 1− δ over the draw of S ∼ Dm, we
have:

∀j ∈ J, σ ∈ Σ : ∆
(
L̂Sj

(R(Sj, σ)),LD(R(Sj, σ))
)
≤ 1

m− |j|

[
ln

(
E∆(j, σ)

PJ(j) · PΣ(σ) · δ

)]
,

with

E∆(j, σ) = E
Tj∼D|j|

E
Tj∼Dm−j

e
|j|∆

(
L̂T

j
(R(Tj,σ)),LD(R(Tj,σ))

)
.

In order to compute a numerical bound on the generalization loss LD(R(Sj, σ)), one must commit to
a choice of ∆. See Appendix A for corollaries involving specific choices of comparator function.
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3 A New Sample Compression Bound for Continuous Messages

Our first contribution lies in the extension of Theorem 2 to real-valued messages, to both ease the
optimization of the proposed architecture by back-propagation and allow for a more complex message
space. This is achieved by using a strategy from the PAC-Bayesian theory [24]: we consider a
data-independent prior distribution over the messages Σ, denoted PΣ, and a data-dependent posterior
distribution, denoted QΣ, over the messages. We then obtain a bound for the expected loss over QΣ.
Theorem 3 (Sample compression - real-valued losses with continuous messages). For any distribution
D over X ×Y , for any set J ⊆ P(m) such that maxj∈J |j| = c, for any distribution PJ over J , for
any prior distribution PΣ over Σ, for any reconstruction function R, for any loss ℓ : Y ×Y → [0, 1],
for any convex function ∆ : [0, 1]× [0, 1]→ R and for any δ ∈ (0, 1], with probability at least 1− δ
over the draw of S ∼ Dm, we have:

∀j ∈ J,QΣ over Σ :

∆

(
E

σ∼QΣ

L̂Sj
(R(Sj, σ)), E

σ∼QΣ

LD(R(Sj, σ))

)
≤ 1

m− c

[
KL(QΣ||PΣ) + ln

(
J∆(m− c)
PJ(j) · δ

)]
,

with

J∆(m− c) = E
σ∼PΣ

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
(m−c)·∆

(
L̂T

j
(R(Tj,σ)),LD(R(Tj,σ))

)
.

See Appendix B for the complete proof of Theorem 3 and Appendix C for corollaries involving
specific choices of ∆. The complexity term increases with the Kullback-Leibler divergence between
the prior and the posterior, defined as KL(QΣ||PΣ) = Eσ∼QΣ log[QΣ(σ)/PΣ(σ)]. This new result
shares similarities with the existing PAC-Bayes sample compression theory [8, 9, 17, 18], which
gives PAC-Bayesian bounds for an expectation of data-dependent predictors given distributions on
both the compression set and the messages. Our result differs by restricting the expectation solely
according to the message.

4 Sample Compression Hypernetworks

The three sample compression theorems of the previous section assume a fixed reconstruction
function R. Instead, we propose learning it as a neural network Rθ with parameters θ. This
reconstruction hypernetwork Rθ takes two complementary inputs:

1. A compression set Sj containing a fixed number c examples;
2. A message σσσ taking the form of a vector of fixed size b. We experiment with either real-

valued messages (σσσ ∈ [−1, 1]b), or discrete message (σσσ ∈ {−1, 1}b).

The output of the reconstruction hypernetwork is an array γ ∈ R|γ| that is in turn the parameters
of a downstream network hγ : Rd → Y . Hence, given a training set S, a compression set Sj ⊂ S
and a message σσσ ∈ Σ (the choice of Sj and σσσ is discussed in the next section), we train the
reconstruction hypernetwork by optimizing its parameters θ in order to minimize the empirical loss
of the downstream predictor hγ on the complement set Sj̄ = S \ Sj :

min
θ

 1

m− |j|
∑

(x,y)∈Sj̄

ℓ
(
hγ(x), y

) ∣∣∣∣∣ γ = Rθ(Sj,σσσ)

 . (1)

Note that the above corresponds to the minimization of the empirical loss term L̂Sj
(·) of the sample

compression bounds. However, to be statistically valid, these bounds must not be computed on the
same data used to learn the reconstruction function. The next section describes a meta-learning
framework that enables the use of the reconstruction hypernetwork to obtain generalization guarantees
based on sample compression theory.

5 Combining Sample Compression and Meta-Learning

In the following, we extend our framework to the meta-learning analysis pioneered by Baxter [2],
where a learning problem encompasses multiple tasks.
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Figure 1: The proposed meta-learning framework.

The meta-prediction problem. Each taskDi is a realization of a meta distribution D, and Si∼Dmi
i

contains mi i.i.d. samples from a given task. A meta-learning algorithm is given a meta-dataset
S = {Si}ni=1, that is a collection of n datasets obtained from distributions {Di}ni=1. The aim is to
exploit the information in S so that, given only a few sample S′ ∼ (D′)|S

′| from a new task D′ ∼ D,
the meta-learner can now generate an efficient predictor on task D′.

Meta-learning with the sample compression hypernetwork. To turn the reconstruction hyper-
network Rθ of Section 4 into a meta-learner, we propose to make the creation of the compression
set and the message an explicit components of our learning algorithm via two functions: a sample
compressor Cϕ and a message compressor Mψ, both taking a data matrix as an input. The sample
compressor Cϕ, parametrized by ϕ, outputs the product between a binary mask vector and the input
data matrix, resulting in the compression set. The message compressor Mψ, parametrized by ψ,
outputs a vector of the chosen message size b. See Figure 1 for a high-level depiction of the resulting
architecture, and subsection 6.1 for implementation details.

Our goal is to learn parameters ϕ, ψ and θ such that, for any task D′ ∼ D producing S′ ∼ D′, the
resulting output gives rise to a downstream predictor hγ′ of low generalisation loss LD′(hγ′ ), with

γ′ = Rθ
(
Cϕ(S

′),Mψ(S
′)
)
. (2)

Given a training meta-dataset S = {Si}ni=1, we propose to optimize the following objective:

min
ϕ,ψ,θ

 1

n

n∑
i=1

1

mi−|Ŝi|

∑
(x,y)∈T̂i

ℓ
(
hγi(x), y

) ∣∣∣∣∣ γi = Rθ

(
Cϕ(Ŝi),Mψ(Ŝi)

) , (3)

where, in conformity with classical meta-learning literature [29, 32], each task dataset Si is split
into a support set Ŝi ⊂ Si and a query set T̂i = Si \ Ŝi; the former is used to learn the downstream
network hγi and the latter to compute hγi’s loss. Note that this is a surrogate for Equation (1),
as the complement of the compression set Sj̄ is replaced by the query set T̂i in Equation (3). The
corresponding learning algorithm is summarized by Algorithm 1.

Generalisation guarantees for encoder-decoder meta-learning. The meta-learner design de-
scribed above is directly driven by the sample compression theory. Interestingly, it can be seen
as an encoder-decoder model, with dual encoders (Cϕ,Mψ), and decoder Rθ, which comes with
computable guarantees. Indeed, once the parameters (ϕ, ψ, θ) are learned from Equation (3), every
downstream network hγ′ obtained from Equation (2) allow a statistically valid upper bound on its
generalisation loss LD′(hγ′), computable from either Theorems 1 and 2 (for discrete messages) or
Theorem 3 (for continuous messages). Furthermore, the generalization bound can be computed on
the union of the query set and the support set, excluding the compression set, since only the latter is
given to the reconstruction function to generate the downstream network parameters.

6 Preliminary Experiments

Many architecture choices for the compressors and the reconstruction networks stem from the general
design summarized by Figure 1. We describe our specific choices to conduct preliminary experiments
in subsection 6.1. These are used to obtain the empirical results on a synthetic meta-learning problem
presented in subsection 6.2.
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Algorithm 1 Meta-Learning with the Sample Compression Hypernetwork
Inputs : S = {Si}ni=1, a meta-dataset

α ∈ N, support set size (1 ≤ α < mini[mi])
c, b ∈ N, the compression set and message size
BackProp, a function doing a gradient descent step

ϕ, ψ, θ ← Initialize parameters
while Stopping criteria is not met do:

for i = 1, . . . , n do:
Ŝi ← Sample α datapoints from Si
j← Cϕ(Ŝi) such that | j | = c

σσσ ←Mψ(Ŝi) such that |σσσ| = b

γ ← Rθ(Ŝi,j,σσσ)
loss← 1

mi−α
∑

(x,y)∈Si\Ŝi
l
(
hγ(x), y

)
ϕ, ψ, θ ← BackProp(loss)

end for
end while
return Cϕ,Mψ,Rθ

6.1 Implementation details

In the following, we experiment in a simple binary classification setting, with features X = Rd and
labels Y = {−1, 1}.

Message compressor network. We consider two versions of message compressor Mψ: the discrete
and the continuous version, referring to the outputted message type. Both discrete and continuous
message compressors require setting a message size b.

We first encode its input (a dataset) in a way that is permutation-independent way regarding the
order of the examples in the dataset. Modules such as FSPool [33] or a transformer [31] ensure
such property. Our experiments use a simpler mechanism described at the end of subsection 6.1
and referred to as Shared Transformation and Pool (STP). Then, a feedforward neural network is
applied. In the discrete version, the final activation function of Mψ is the sign function coupled with
the straight-through estimator [15]. In the continuous version, the final activation function is the tanh
function.

Sample compressor network. Given a fixed compression set size c, the sample compressor Cϕ is
composed of c independent attention mechanisms. The queries are the result of an STP module, the
keys are the result of a fully-connected network and the values are the feature values. Each attention
mechanism outputs a probability distribution over the examples from the support set, and the example
having the highest probability is added to the compression set.

Reconstruction hypernetwork. An STP module first handles the compression set outputted by Cϕ,
in order to encode it into a small vector and so that it is done in a permutation-independent way. Both
the obtained compression set embedding and the message given by Mψ are then fed to a feedforward
neural network, whose output constitutes the parameters of the downstream network.

Shared Transformation and Pool (STP) module. This refers to a neural network component
STPω(Sj) that maps a dataset, encoded by a data-matrix X ∈ R|j|×d and a binary label vector
y ∈ {−1, 1}|j|, into a fixed width embedding z ∈ Rd′ . This embedding is obtained by first applying
a fully-connected neural network gω : Rd → Rd′ to each row of X, sharing the weights across rows,
to obtain a matrix M ∈ R|j|×d′ and then aggregating the result column-wise: z = 1

|j|M
Ty.

Bound computation. The generalization bound for discrete messages is computed from Theorem 1,
using a uniform distribution over the messages of size b: PΣ(σσσ) = 2−b ∀σσσ ∈ {−1, 1}b. For
continuous messages, we rely on Theorem 3 with ∆(q, p) = kl(q, p) = q · ln q

p +(1−q) · ln 1−q
1−p (see

Appendix A for details). In this case, we consider an isotropic b-dimensional Gaussian distribution of
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Figure 2: Average test risk (%) and generalization bound (%, with δ = 5%) on the moons meta-task.

Figure 3: Examples of decision boundaries given by the downstream predictors, with a compression
set of size 3 and without message, on test datasets. The stars show the retained points from the sample
compressor Cϕ. As shown by the axes, each plot is centered and scaled on the moons datapoints.

unit variance PΣ = N (0, I) as the prior distribution, and an isotropic Gaussian distribution centered
on the message vector QΣ = N (σσσ, I) as the posterior distribution, with σσσ ∈ [−1, 1]b.
Concerning the compression sets of fixed size c, given a dataset size m, we use
J = {j ∈ P(m) : | j | = c} and a uniform probability distribution over all distinct compression
sets (sets that are not permutations of one another): PJ(j) =

(
m
c

)−1 ∀ j ∈ J .

6.2 Numerical results on a synthetic problem

We conduct our experiment on the moons 2-D synthetic dataset from Scikit-learn [27], which consists
of two interleaving half circles with small Gaussian noise. We generate tasks by rotating (random
degree in [0, 360]), translating (random moon center in [−10, 10]2), and re-scaling the moons (random
scaling factor in [0.2, 5]). We aim to determine how concise the compression set and the message
must be to learn the task. We fixed the MLP architecture in the sample compressor, the message
compressor, and the reconstruction function to a single-hidden layer MLP of size 100 while the
predictor also is a single-hidden layer MLP of size 5. The moons meta-train set consists of 300 tasks
of 200 examples, while the meta-test set consists of 100 tasks of 200 examples. We randomly split
each dataset into support and query of equal size. See Appendix D for implementation details.

Figure 2 displays the average test zero-one loss and generalization bound for both discrete and
continuous messages. The loss decreases as the compression set (c) and the message size (b) increase;
interestingly, having these be too large simultaneously leads to worse performances than when a
balance is found. A similar phenomenon occurs for the bound value, which finds its minimum for
intermediate values of c and b. The continuous version of the algorithm leads to the best empirical
results, whereas the discrete version leads to the best generalization bounds. It seems that the KL
term’s value in Theorem 3 is quite penalizing with respect to c: an interesting avenue is to regularize
with regard to the KL term when training the meta-predictor. With both message types, we observe
that tiny values for c and b are sufficient to encode variation in the moons datasets.

Figure 3 displays the decision boundaries on three different moon tasks of the predictors generated by
our approach, with c = 3 and b = 0. We see that the sample compressor selects three examples far
from each other, efficiently compressing the task, and which allows the hypernetwork reconstructing
predictors of almost perfect accuracies.
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7 Conclusion

We introduced a generalization bound for sample compression that permits the use of real-valued
messages, and we developed a meta-learning algorithm that learns its reconstruction function to
produce tight sample compression generalization bounds. Given the promising obtained results on a
toy dataset, including tight generalization guarantees, we plan to pursue our experiments on real-life
meta-learning tasks, including regression tasks.
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A Corollaries of Theorem 2

For completeness, we present the corollaries of Theorem 2 derived by [3].

Corollary 1 ([3]). In the setting of Theorem 2, with ∆(q, p) = kl(q, p) = q · ln q
p + (1− q) · ln 1−q

1−p ,
with probability at least 1− δ over the draw of S ∼ Dm, we have:

∀j ∈ J, σ ∈M(|j|) : kl
(
L̂Sj

(R(Sj, σ)),LD(R(Sj, σ))
)
≤ 1

m− | j |

[
ln

(
2
√
m− | j |

PJ(j) · PM(|j|)(σ) · δ

)]
.

The previous corollary is based on the use of Lemma 4.1 from Germain [7], leading to
ET∼Dm−|j|e(m−| j |)·∆(LT (R(Sj,σ)),LD(R(Sj,σ))) ≤ 2

√
m− | j |.

Corollary 2 ([3]). In the setting of Theorem 2, with ∆C(q, p) = − ln
(
1− (1− e−C)p

)
−Cq (where

C > 0), with probability at least 1− δ over the draw of S ∼ Dm, we have:

∀j ∈ J, σ ∈M(|j|) :

LD(R(Sj, σ)) ≤
1

1− e−C

[
1− exp

(
−CL̂Sj

(R(Sj, σ)) +
ln
(
PJ(j) · PM(|j|)(σ) · δ

)
m− |j|

)]
Corollary 3 ([3]). In the setting of Theorem 2, with ∆(q, p) = p− q, for a loss function taking values
in the interval [a, b], with probability at least 1− δ over the draw of S ∼ Dm, we have:

∀j ∈ J, σ ∈M(|j|) : LD(R(Sj, σ)) ≤ L̂Sj
(R(Sj, σ)) +

(b− a)2

8
−

ln
(
PJ(j) · PM(|j|)(σ) · δ

)
m− | j |

B Proof of Theorem 3

Theorem 3 (Sample compression - real-valued losses with continuous messages). For any distribution
D over X ×Y , for any set J ⊆ P(m) such that maxj∈J |j| = c, for any distribution PJ over J , for
any prior distribution PΣ over Σ, for any reconstruction function R, for any loss ℓ : Y ×Y → [0, 1],
for any convex function ∆ : [0, 1]× [0, 1]→ R and for any δ ∈ (0, 1], with probability at least 1− δ
over the draw of S ∼ Dm, we have:

∀j ∈ J,QΣ over Σ :

∆

(
E

σ∼QΣ

L̂Sj
(R(Sj, σ)), E

σ∼QΣ

LD(R(Sj, σ))

)
≤ 1

m− c

[
KL(QΣ||PΣ) + ln

(
J∆(m− c)
PJ(j) · δ

)]
,

with

J∆(m− c) = E
σ∼PΣ

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
(m−c)·∆

(
L̂T

j
(R(Tj,σ)),LD(R(Tj,σ))

)
.

Proof. Let J be a set of indices, such that maxj∈J |j| = c. Let j ∈ J be a given index set.
Let QΣ be the space of probability distribution over Σ. Our first goal is to bound the distance
between the true risk and the empirical risk η∆

(
Eσ∼QΣ

L̂Sj
(R(Sj, σ)),Eσ∼QΣ

LD(R(Sj, σ))
)

with
η = m−maxj∈J |j| = m− c.

∀QΣ over Σ :

(m− c)∆
(

E
σ∼QΣ

L̂Sj
(R(Sj, σ)), E

σ∼QΣ

LD(R(Sj, σ))

)
≤ E
σ∼QΣ

(m− c)∆
(
L̂Sj

(R(Sj, σ)),LD(R(Sj, σ))
)

(Jensen’s Inequality)

≤ KL(QΣ||PΣ) + ln

(
E

σ∼PΣ

e
(m−c)∆

(
L̂S

j
(R(Sj,σ)),LD(R(Sj,σ))

))
(Change of measure)
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Using Markov’s Inequality, we know that with probability at least 1− δj, where δj ∈ (0, 1), over the
sampling of S ∼ Dm, we have for all QΣ over Σ:

(m− c)∆
(

E
σ∼QΣ

L̂Sj
(R(Sj, σ)), E

σ∼QΣ

LD(R(Sj, σ))

)
≤ KL(QΣ||PΣ) + ln

(
1

δ
E

T∼Dm
E

σ∼PΣ

e
(m−c)∆

(
L̂T

j
(R(Tj,σ)),LD(R(Tj,σ))

))
We now wish to invert the expectations in the rightmost term to obtain: ET∼Dm Eσ∼PΣ

=
Eσ∼PΣ

ET∼Dm . In most cases, for a data-dependent predictor, this equality does not hold. However,
we defined the prior PΣ over Σ.

We use the independence of the prior to T and the i.i.d. assumption to separate Tj and Tj = T \ Tj:

E
T∼Dm

E
σ∼PΣ

e
(m−c)∆

(
L̂T

j
(R(Tj,σ)),LD(R(Tj,σ))

)

= E
σ∼PΣ

E
T∼Dm

e
(m−c)∆

(
L̂T

j
(R(Tj,σ)),LD(R(Tj,σ))

)
(Independence of the prior from S)

= E
σ∼PΣ

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
(m−c)∆

(
L̂T

j
(R(Tj,σ)),LD(R(Tj,σ))

)

= J∆(m− c).

Let δ =
∑

j∈J(c) δj, with δj = PJ(c)(j) · δ. By the union bound, we obtain the desired result.

C Corollaries of Theorem 3

The following corollaries are easily derived by choosing a comparator function ∆ and bounding
J∆(m− c).
Corollary 4. In the setting of Theorem 3, with ∆(q, p) = kl(q, p) = q · ln q

p + (1 − q) · ln 1−q
1−p ,

with probability at least 1 − δ over the draw of S ∼ Dm, for all j ∈ J and posterior probability
distribution QΣ, we have:

kl

(
E

σ∼QΣ

L̂Sj
(R(Sj, σ)), E

σ∼QΣ

LD(R(Sj, σ))

)
≤ 1

m− c

[
KL(QΣ||PΣ) + ln

(
2
√
m− c

PJ(j) · δ

)]
Corollary 5. In the setting of Theorem 3, with ∆C(q, p) = − ln

(
1− (1− e−C)p

)
− Cq (where

C > 0), with probability at least 1 − δ over the draw of S ∼ Dm, for all j ∈ J and posterior
probability distribution QΣ, we have:

E
σ∼QΣ

LD(R(Sj, σ)) ≤
1

1− e−C

[
1− exp

(
−C E

σ∼QΣ

L̂Sj
(R(Sj, σ))−

KL(QΣ||PΣ)− ln (PJ(j) · δ)
m− c

)]
Corollary 6. In the setting of Theorem 3, with ∆(q, p) = λ(p− q), for a loss function taking values
in the interval [a, b], with probability at least 1 − δ over the draw of S ∼ Dm, for all j ∈ J and
posterior probability distribution QΣ, we have:

E
σ∼QΣ

LD(R(Sj, σ)) ≤ E
σ∼QΣ

L̂Sj
(R(Sj, σ)) +

λ(b− a)2

8(m− c)
+

KL(QΣ||PΣ)− ln (PJ(j) · δ)
λ

D Numerical experiment and implementation details

We fixed the batch size to 20. We added skip connections and batch norm in both the modules of the
meta-learner and the predictor to accelerate the training time. The experiments were conducted using
an NVIDIA GeForce RTX 2080 Ti graphic card.

We used the Adam optimizer [16] and trained for at most 200 epochs, stopping when the validation
accuracy did not diminish for 20 epochs. We initialized the weights of each module using the Kaiming
uniform technique [14].
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