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ABSTRACT

Clinical decision-making is a dynamic, interactive, and cyclic process where doc-
tors have to repeatedly decide on which clinical action to perform and consider
newly uncovered information for diagnosis and treatment. Large Language Mod-
els (LLMs) have the potential to support clinicians in this process, however, most
applications of LLMs in clinical decision support suffer from one of two limi-
tations: Either they assume the unrealistic scenario of immediate availability of
all patient information and do not model the interactive and iterative investigation
process, or they restrict themselves to the limited ”out-of-the-box” capabilities
of large pre-trained models without performing task-specific training. In con-
trast to this, we propose to model clinical decision-making for diagnosis with a
hypothesis-driven uncertainty-aware language agent, LA-CDM, that converges to-
wards a diagnosis via repeatedly requesting and interpreting relevant tests. Using
a hybrid training paradigm combining supervised and reinforcement learning, we
train LA-CDM with three objectives targeting critical aspects of clinical decision-
making: accurate hypothesis generation, hypothesis uncertainty estimation, and
efficient decision-making. We evaluate our methodology on MIMIC-CDM, a real-
world dataset covering four abdominal diseases containing various clinical tests
and show the benefit of explicitly training clinical decision-making for increasing
diagnostic performance and efficiency. We will release our code upon acceptance.

1 INTRODUCTION

In modern healthcare systems, accurate and efficient diagnosis stands as a critical component in pa-
tient management and treatment (Savioli et al., 2022). To form a diagnosis, clinicians often engage
in clinical decision-making through a dynamic, iterative process, called differential diagnosis. This
process involves forming hypotheses about the patient and testing those hypotheses through request-
ing and interpreting information from relevant available diagnostic tests (Sox et al., 2024). At the
beginning multiple diagnoses may be possible and there is still high uncertainty. Through diagnos-
tic testing the uncertainty is minimized and the space of possible diseases reduced until a sufficient
confidence is reached, a diagnosis can be given, and treatment can begin (Sox et al., 2024). It is espe-
cially important in complex, high-stakes environments such as emergency departments, where often
little is known about a patient at admission and fast and accurate diagnosis is paramount (Savioli
et al., 2022).

Large Language Models (LLMs), with their ability to synthesize complex textual information, seem
well-suited for aiding clinicians in this task, as most medical information is textual or can be repre-
sented in text, e.g., clinical notes, imaging reports or numerical laboratory results. This enables great
flexibility and variety in medical modalities. In the medical domain LLMs have already shown great
success in passing medical license exams (Singhal et al., 2023; Gilson et al., 2023) and diagnosing
case challenges (Buckley et al., 2023). The potential to revolutionize healthcare through accurate
diagnostic capabilities is enormous, however, existing approaches often either (1) assume immedi-
ate availability of all patient data (Buckley et al., 2023; McDuff et al., 2023; Chen et al., 2025),
which is rarely the case in practice, or (2) rely on the often limited “out-of-the-box” behavior of
pre-trained LLMs without any task-specific fine-tuning to the complexities of diagnostic decision-
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Patient State

Patient History: The
patient is a 43-year-old
woman. She presents
with 4 days of intense,
crampy, midepigastric
pain...

Hypothesis Agent Decision Agent

Request
Ultrasound

Reasoning: The
symptoms suggest
a gastrointestinal
disorder, ... 

Patient State

Patient History: The
patient is a 43-year...

Ultrasound Report:
...There is mild
gallbladder wall
edema...

Hypothesis Agent Decision Agent

Diagnose
Cholecystitis

Hypothesis Agent

Hypothesis:
Cholecystitis

Decision Agent

Request
WBC

Reasoning: The
findings are
consistent with
cholecystitis. 

Reasoning: A white
blood cell count
would identify
inflammation.

Confidence:
6 / 10

Hypothesis:
Pancreatitis

Confidence:
3 / 10

Hypothesis:
Cholecystitis

Confidence:
9 / 10

Figure 1: An illustrative process of clinical decision-making performed by LA-CDM. At the begin-
ning, only the patient history including symptoms and family history is known. In a cyclic process,
the hypothesis agent forms an uncertainty-aware hypothesis and the decision agent decides on a
clinical action (request a test or diagnose). If a test is requested the results are added to the known
patient information. The cycle repeats until a final diagnosis is given.

making (Hager et al., 2024; Li et al., 2024; Nori et al., 2025). This mismatch between research and
real-world clinical decision-making limits the applicability of LLMs to the clinical setting.

In this paper, we address the above limitations by modeling and training Language Agents for Clin-
ical Decision Making (LA-CDM), tasked with iteratively reducing hypothesis uncertainty through
repeated diagnostic testing. Inspired by cognitive research on human clinical decision-making (Sox
et al., 2024), we design a two-agent system replicating the two main cognitive tasks of clinicians
involved in clinical decision-making. It consists of one LLM agent, the hypothesis agent, forming
the most likely diagnosis hypothesis based on all available patient information and estimating its
confidence in that hypothesis, and another agent, the decision agent, that evaluates the patient in-
formation and the hypothesis agent’s output to either provide a diagnosis or request an additional
diagnostic test (Figure 1). To train this system, we propose a novel training strategy with three
distinct objectives that target the core principles of successful clinical decision-making (Sox et al.,
2024):

1. Accurate hypothesis generation: Using supervised fine-tuning, the hypothesis agent is
trained to form a correct hypothesis. Since information on the patient is only uncovered
step-by-step, the agent has to make use of limited information from various data sources.

2. Hypothesis uncertainty estimation: Using reinforcement learning the hypothesis agent
is trained to be well-calibrated in its verbalized uncertainty estimation. A well-calibrated
model that is e.g. 60% certain on a hypothesis will be correct in 60% of cases.

3. Efficient decision-making: Using reinforcement learning, the decision agent is trained
to select the most informative next test and reach a diagnosis when sufficiently confident,
taking test costs into account. The model gets rewarded for a final correct diagnosis, rein-
forcing the testing pathway that led to that diagnosis.

Analogously to doctors graduating from medical school, LLMs have a strong medical knowledge
foundation, but are not trained on performing clinical decision-making. Clinicians learn this skill
through years of experience, pointing towards experience-based reinforcement learning as a prime
paradigm for teaching clinical decision-making to LLMs. Further, since optimal testing pathways
are not known, supervised learning of clinical decision-making is infeasible. The interplay of the
three objectives results in the model learning which tests to request in order to increase the hypoth-
esis confidence leading to an accurate diagnosis at minimal testing cost. This guides the model to
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request those tests that are most informative in a given situation. To the best of our knowledge, we
propose the first method for explicitly training LLMs for clinical decision-making.

We evaluate our method on MIMIC-CDM (Hager et al., 2024), a real-world dataset focused on four
abdominal diseases that mirrors clinical workflows by modeling differential diagnosis through se-
quential test requests. Its standardized test naming and inclusion of lab results, notes, and imaging
reports make it uniquely suited for training and evaluating LLM-based diagnostic reasoning. Our ex-
periments demonstrate the benefit of explicitly training clinical decision-making. Notably, training
reduces the diagnostic cost, which has practical implications in reducing healthcare costs, diagnosis
time, and patient discomfort (Savioli et al., 2022). We show the benefit of our hypothesis-driven
approach to clinical decision-making and demonstrate that the model adapts its testing procedure
to the patient at hand, placing this work as a step towards patient-specific personalized differential
diagnosis.

2 RELATED WORK

Reinforcement Learning for Clinical Decision Making Reinforcement learning has been ex-
plored for cost-efficient clinical decision-making based on tabular data. Yu et al. (2023) train SM-
DDPO, a model that iteratively requests laboratory tests optimizing diagnostic performance and
cost-efficiency. Their method features an imputation model, estimating missing (and not yet re-
quested) laboratory tests and a classification model predicting the diagnosis. A policy network
trained with Q-learning predicts the next action, i.e. which test to request or which diagnosis to
give. They show improvements in efficiency at a similar diagnostic performance compared to base-
lines making use of all available information. However, as the method is only compatible with
tabular data, it neglects many important medical modalities, like clinical notes or imaging reports,
which are often crucial for diagnosis.

ED-Copilot (Sun et al., 2024) employs a Language Model for encoding serialized patient laboratory
values which is trained end-to-end with two MLPs, one predicting test requests, and one predicting
the task of outcome severity. They train their method in two stages. First, they use supervised
learning to teach the model to predict all tests in a pre-defined order. In a second training stage,
they use reinforcement learning to finetune the model to reduce time cost of the testing regiment.
They also report great reduction in testing time, while remaining similar in performance to baselines
making use of all available information. While this method uses a language model as its encoding
backbone, this language model is not directly requesting tests. Same as the previous method, they
further only consider tabular laboratory values and therefore do not make use of valuable information
in textual form.

Reflexion (Shinn et al., 2023) addresses general LLM decision-making by introducing a zero-shot
reinforcement learning approach. Rather than fine-tuning the LLM with traditional reinforcement
learning, the method allows the model to iteratively attempt the same task. After each trial, a limited
number of previous attempts and a numerical reward are added to the input context, guiding the next
generation. While this is effective at general decision-making, this approach cannot be applied in
the clinical context, where multiple diagnosis trials with the same patient and intermediate diagnosis
correctness feedback are infeasible.

LLMs for Clinical Decision Making LLMs have so far only been used as zero-shot methods
for clinical decision support. Hager et al. (2024) place large ”out-of-the-box” language models in
an evaluation framework where they are tasked with interactively requesting diagnostic tests and
diagnose patients. They show severe limitations of LLMs for clinical decision-making and report
worse diagnostic performance than clinicians. Vaid et al. (2024) approach clinical decision-making
with a tool-using LLM. Through zero-shot prompting, they provide the LLM with a number of
available tools, e.g., a symptom tool for retrieving the symptoms, or a imaging study tool for getting
any imaging reports on the patient. They evaluate various proprietary LLMs, with GPT-4 (Achiam
et al., 2023) showing the best performance. Liu et al. (2024) model LLM clinical decision-making
as a multi-agent setting, where a doctor agent communicates with a patient agent who can detail his
symptoms and a technician agent who can perform laboratory or imaging results. They compare
different prompting techniques, like chain-of-thought (Wei et al., 2022) or one-shot prompting and
show that GPT-4o achieves the best performance. All these methods do not attempt to improve
model performance by explicitly training clinical decision-making with LLMs.
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3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING ON LARGE LANGUAGE MODELS

Reinforcement learning has emerged as a powerful framework for fine-tuning LLMs by aligning
their behavior with desired objectives, especially when no clear ground truth for this behaviour ex-
ists. Most notably, Reinforcement Learning with Human Feedback (RLHF) (Ouyang et al., 2022)
was used to align LLM generations with human preferences. LA-CDM utilizes a direct reinforce-
ment learning method based on Group Relative Policy Optimization (GRPO) (Shao et al., 2024)
without requiring human feedback.

Let X be the space of textual inputs (prompts) and Θ ⊆ Rd be the parameter space of a LLM. We
denote by πθ(a | s) the stochastic policy of the LLM, parameterized by θ, which specifies the prob-
ability distribution over a discrete vocabulary A (the set of possible tokens) given a state s ∈ S . In
the context of language modeling, a state s is typically a sequence of tokens (x1, . . . , xt) consisting
of a prompt and previously generated tokens. An action a is the next token to be generated, yielding
the updated state s′ = (x1, . . . , xt, a). Every state transition gives rise to an reward the model is
trained to maximize.

3.2 CONFIDENCE CALIBRATION OF LARGE LANGUAGE MODELS

While LLMs have shown impressive capabilities in many language-related tasks, hallucinations
and confidently-presented wrong answers are a common and well-known problem (Kadavath et al.,
2022). A well-calibrated model is able to express confidence that aligns with the epistemic proba-
bility of correctness. This means that of all the answers which are presented with a confidence of
0 ≤ p ≤ 1, the fraction of correct answers is p.

In this work, we train confidence calibration with reinforcement learning as proposed by Stangel
et al. (2025). They model confidence calibration as a betting game, where the model bets on the
correctness of its answer. If it is correct with a high confidence it receives a large reward. However,
if it is wrong with a high confidence, the punishment becomes large. Analogously, if the answer is
wrong the model receives the largest reward if it expresses a low confidence. Concretely, they use
the reward function

R(ypred, c, j) =

{
log(c), if J(ypred) is True
log(1− c), if J(ypred) is False,

where ypred is the predicted answer, 0 < c < 1 is the (scaled and clipped) confidence prediction,
and J(·) is a binary function evaluating the correctness of ypred. The reward is then scaled to be be-
tween −1 and 1. They train the model using Proximal Policy Optimization (PPO) (Schulman et al.,
2017). This training approach removes the need for an artificially constructed ground truth confi-
dence dataset, as done by other confidence calibration methods (Azaria & Mitchell, 2023; Kadavath
et al., 2022), and instead only requires a measure of answer correctness. The authors prove that an
optimal policy under their reward design produces perfectly calibrated confidence expressions.

4 LANGUAGE AGENTS FOR CLINICAL DECISION MAKING

We propose LA-CDM consisting of two language agents, hypothesis agent and decision agent,
trained with three different objectives. The hypothesis agent is trained in accurate hypothesis gen-
eration through supervised fine-tuning and uncertainty-awareness through reinforcement learning.
The decision agent is trained in decision-making using reinforcement learning. Both agents share
the LLM weights, so training one agent also influences the other. In Figure 2, we show the full
model. The two agents and the three training objectives will be explained in detail in this section.

4.1 MODELING CLINICAL DECISION MAKING

Clinical Decision Making Environment In order to train our model in decision-making it has to
operate in a reinforcement learning environment to explore testing strategies and receive reward sig-
nals. The model learns decision-making through interacting with this environment and diagnosing
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Diagnosis
Hypothesis ConfidenceHypothesis 

Agent
Decision

Agent

Test Request

Diagnosis

Ground Truth
Diagnosis

Ground Truth
Diagnosis

Ground Truth
Diagnosis

Observed
Patient State

Update Patient State

Supervised
Hypothesis Training

Confidence Calibration 
with RL

Clinical Action Training
with RL

Choose
Action

Figure 2: Overview of our method LA-CDM and its three training objectives. The hypothesis agent
receives the current patient state and predicts a hypothesis and confidence. The hypothesis genera-
tion is trained supervised, the confidence calibration using reinforcement learning. The hypothesis
agent output and the current patient state are then provided to the decision agent that is trained to
decide on an optimal clinical action (test request or diagnosis) using reinforcement learning.

patients. Let each patient be described by a number of n test results [ti]ni=1 as textual records of clin-
ical notes, imaging reports and laboratory panels. Since patient information is iteratively uncovered
through the model’s test requests tj , we define the currently observed patient state at time-step j as
the set of all observed tests and write it as pj . The correct diagnosis for the patient is denoted by
ytrue.

As we simulate a clinical patient-doctor interaction, p0, the initial observed patient state, consists of
the first clinical notes detailing symptoms, medical and family history. This information is always
available to the model. The environment advances step-wise with each model action. If the model
requests an additional test, the observed patient state is updated, and the results are made available
to both the hypothesis agent and the decision-making agent for the next step. The simulation ends
when the model provides a diagnosis for the patient or if one of the two failure cases is reached: (1)
the model exceeds the specified maximum number of generated tokens, or (2) the model violates its
specified output format.

Hypothesis Agent Through its system prompt, the hypothesis agent is introduced to its task and
provided with the possible diagnoses. At each time-step j of the environment, the hypothesis agent
H is given the currently observed patient state pj to predict the most likely diagnosis hj based on the
limited available information, as well as the confidence in that prediction cj . It therefore produces a
mapping

H : pj −→ {hj , cj}.
The model generates this output in a format of ”Hypothesis: hj , Confidence: cj”. The agent reports
numerical confidence estimations on a scale of 0 to 10, where 10 means absolute certainty of the
correctness of the hypothesis, and 0 means absolute certainty that it is incorrect.

Decision Agent The decision agent D is the actor advancing the environment. It decides on which
action to take at each time-step. Through its system prompt it is provided with its task, a list of
tests present in the dataset, and the possible patient diagnoses. Provided with the currently observed
patient state pj and the hypothesis agent’s hypothesis hj and confidence cj , it produces a decision
on whether to request another diagnostic test tj and move on to the next time-step j + 1 or whether
to commit on a specific diagnosis ypred for the patient and end the episode. Formally, it produces a
mapping

D : {pj , hj , cj} −→
{
tj if a further test is requested
ypred if a diagnosis is given

Specifically, we employ the ReAct prompting technique (Yao et al., 2022), to prime the model to
first produce a reasoning trace, following chain-of-thought principles (Wei et al., 2022), and then
provide action and action input (in our case, the specific test or diagnosis) in a structured format.
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If a further test was requested, the test results are appended to the conversation context as a user
response to the LLMs generation. Since we can only work with retrospective data, where not every
test result is present for every patient, we cannot always fulfill the model’s request. In these cases, the
user reply tells the model the requested test is unavailable and asks it to choose a different action.
The implications of this will be discussed later on. Also if the model requests tests or provides
diagnoses that are not on the list of possible tests or, respectively, diseases, the model is asked to
choose a different action.

4.2 TRAINING CLINICAL DECISION MAKING

In our training objectives we follow the three main principles of clinical decision-making, as pro-
posed by Sox et al. (2024): (1) accurate hypothesis generation, (2) hypothesis uncertainty estimation,
and (3) efficient decision-making. The first two objectives are trained with respect to the generations
of the hypothesis agent, the last objective is trained on the environment interactions of the decision
agent. We follow a cyclic training approach, where each objective is trained individually for a spec-
ified number of episodes after which the objective changes to the next one until the cycle repeats,
resulting in much more stable training compared to optimizing all objectives simultaneously.

Training Hypothesis Generation A baseline of good clinical decision-making is a high accuracy
in hypothesis generation. If the model knows the most likely candidate for the diagnosis, it can adapt
its testing strategy to quickly confirm or reject this hypothesis. While the model interacts with the
environment, the hypothesis agent is confronted with various patient states consisting of different
subsets of test combinations. We collect all contexts shown to the model within all episodes of
a patient batch, usually including multiple hypothesis generation steps per patient. To perform
supervised fine-tuning, we create target sequences, consisting of the collected conversation contexts
concatenated with the correct hypothesis generation ytrue. We compute the cross-entropy loss for
the sequences, ignoring the token at the position where the model should place its confidence score.

Training Uncertainty-Awareness Since the available patient information is often limited, espe-
cially at early stages of the diagnostic process, and the available data does not always clearly point
at a specific diagnosis, uncertainty is inherent to clinical decision-making. An accurate intrinsic es-
timation of that uncertainty by the model can give it an improved basis for decisions on when to stop
the diagnostic process and produce a diagnosis. In this work, we train confidence calibration fol-
lowing a method proposed by Stangel et al. (2025) as previously introduced in Section 3.2, however
instead of PPO, we use the GRPO algorithm (Shao et al., 2024). We define our correctness measure
J(hj) as equality between the predicted hypothesis hj and the ground truth diagnosis ytrue.

Training Efficient Clinical Action Selection At the core of training clinical decision-making
lies the training of clinical action selection. During interaction with the clinical decision-making
environment the model can freely choose to iteratively request any number of tests in any order.
Given the vast number of possible diagnostic pathways, defining an optimal test sequence for each
patient is infeasible, we therefore do not have a ground truth on which tests to perform. To still be
able to train clinical decision-making, we propose to use reinforcement learning, where the model
can learn through trial-and-error which tests are useful in which situations. Equal to the confidence
calibration training, we employ the GRPO algorithm (Shao et al., 2024) for reinforcement learning
training. Through interaction with the clinical decision-making environment the model requests
different tests until it decides on a diagnosis. We design our diagnosis reward function Rdiag to
present the model with a fixed positive reward rpos if the final diagnosis at the end of the diagnosis
episode was correct, or a fixed negative reward rneg if it is wrong. Additionally, we punish the
model with reward rinvalid if the model violates the specified format. Our reward function is thus:

Rdiag(ypred) =


rpos if ypred = ytrue
rneg if ypred ̸= ytrue
rinvalid for out-of-format generations

Not just diagnosis accuracy but also diagnostic efficiency is an important factor in clinical decision
making. Different tests have different costs for the healthcare system, e.g., a CT scan is much
more expensive, than a simple blood value. The model should therefore only request expensive
tests, when necessary for diagnosis. To incentivize efficient behaviour, we add an additional reward
function Rcost that punishes test usage relative to their cost:

6
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Table 1: Performance comparison of LA-CDM and baseline methods. We report class-wise accu-
racies and F1-scores. The avg. test cost is the mean cost of the tests for each patients in the test
set. *OASST results are taken from Hager et al. (2024). It is evaluated on a different test set in a
different framework. †SM-DDPO can only process tabular data. ZS = zero-shot

Accuracy F1-Score Avg.

Method Append. Cholec. Divert. Pancr. Mean Micro Macro Test Cost

OASST* 82.0 48.0 45.5 44.1 54.9 - - -

SFT-all 98.4 89.8 95.8 87.5 92.8 93.6 92.9 $3792.79

SM-DDPO† 74.3 0.0 15.6 58.0 37.0 45.4 31.8 -
ReAct 90.2 79.7 66.7 62.9 74.9 79.1 74.8 $1480.32
LA-CDM (ZS) 73.5 55.1 72.0 57.5 64.5 65.3 64.5 $1521.73
LA-CDM 93.1 83.6 75.0 73.5 81.3 84.1 81.3 $1295.61

Rcost(T ) = −
∑
tj∈T

c(tj),

where T is the list of all performed tests and c(tj) is the cost of test tj .

The interaction of these three objectives enables the model to learn which tests to request to enhance
hypothesis confidence, ultimately leading to a more accurate diagnosis while also taking test cost
into account. This drives the model to prioritize tests that provide the most informative insights in a
given situation.

5 EXPERIMENTAL SET-UP

Dataset and Pre-Processing We evaluate our method on the MIMIC-CDM dataset (Hager et al.,
2024), a curated subset of MIMIC-IV (Johnson et al., 2020) designed for modeling sequential clin-
ical decision making. It contains 2,400 patients diagnosed with one of four abdominal conditions:
appendicitis, cholecystitis, diverticulitis, or pancreatitis. This focused setting on four pathologies
reflects real clinical workflows, where physicians perform differential diagnosis with a narrowed
down space of possible diseases and request tests to distinguish between likely candidates. The
dataset includes patient histories (symptoms, comorbidities, family histories) and physical exam
notes for all patients. It also provides 5,959 textual imaging reports (CT, x-ray, ultrasound, MRI)
and 143,191 lab results (blood, urine, microbiology), however, not every test result is reported for
every patient. If multiple values for a specific test were recorded during the hospital stay of the
patient only the first one was included in MIMIC-CDM to simulate an early diagnosis after hospital
admission. Crucially, the dataset includes comprehensive mappings of test names across patients, an
essential feature for modeling test requests reliably. Without this normalization, a model could not
query the same test across different cases due to inconsistent naming in clinical documentation. To
our knowledge, MIMIC-CDM is the only publicly available dataset that enables simulation of this
setting. For our use-case, we construct the set of available tests as: physical examination, all imag-
ing modalities, and the most common laboratory panels. These panels are collections of individual
tests that are usually ordered together.

Metrics To evaluate model performance, we report class-wise accuracies along with their mean, as
well as micro and macro F1-scores. Additionally, we compute the Expected Calibration Error (ECE)
to assess confidence calibration of our hypothesis agent. ECE measures the discrepancy between
predicted confidence scores and actual accuracy. A lower ECE indicates better model calibration,
meaning the predicted probabilities align well with actual correctness frequencies.

Baselines We compare our method to various zero-shot and trained baselines. In their work, Hager
et al. (2024) introduce both the MIMIC-CDM dataset and evaluate how various ”out-of-the-box”
pre-trained models perform when tasked with clinical decision-making. We compare with OASST,
the best performing model from this evaluation, however, a direct comparison is very difficult for

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 LA-CDM (zero-shot)
LA-CDM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

50

100

150

200

250

Figure 3: Left: Calibration curves before and after training LA-CDM. Right: Distribution of confi-
dence estimations before and after training LA-CDM.

Table 2: Ablation of the inclusion of the test cost reward function.
Accuracy F1-Score

Test Cost Append. Cholec. Divert. Pancr. Mean Micro Macro Avg. Test Cost

93.5 81.4 82.1 72.3 82.3 84.3 82.4 $1427.85
✓ 93.1 83.6 75.0 73.5 81.3 84.1 81.3 $1295.61

multiple reasons. First, as a zero-shot method, the model was evaluated on the complete dataset,
whereas we reserve some part of that dataset for training. Second, the clinical decision framework
was constructed differently, as the OASST model is not provided with the possible diagnosis classes
or available tests in its prompt. Additionally, as an approximate upper-bound for our method, we
compare with a Qwen-2.5-7B-Instruct model (Yang et al., 2024) identical to our LLM backbone,
trained with supervised fine-tuning to predict the correct diagnosis. Instead of requesting tests it
simply receives all the available patient information directly which is not a realistic diagnostic pro-
cess. We refer to this method as SFT-all. We compare to three other adaptive test selection methods
on MIMIC-CDM. SM-DDPO (Yu et al., 2023) trains a MLP using reinforcement learning for clini-
cal decision making, however, the method is only able to process tabular data and can only request
laboratory values. ReAct (Yao et al., 2022) is a zero-shot decision making method and LA-CDM
(ZS) is the untrained version of our method.

6 RESULTS AND DISCUSSION

Comparison with Baselines Our comparison with baselines is shown in Table 1. When compar-
ing with OASST (Hager et al., 2024), LA-CDM shows improvement in accuracy for each class re-
sulting in almost 30 percentage points difference when comparing the mean of all class accuracies.
The performance shows the largest improvement for pathologies that are less common compared
with the majority class appendicitis. While the methods are not directly comparable as outlined in
section 5, the high performance improvement clearly shows the advantage of training on the task of
clinical decision-making and not relying on inherent capabilities of large pre-trained models. This is
further supported by the evaluation results of ReAct and of LA-CDM as a zero-shot model. In com-
parison to our trained model, we see a great performance improvement achieved through training.
Importantly, the untrained methods also diagnoses less efficiently than the trained version, acquiring,
in the case of ReAct, almost $200 more test cost to form a diagnosis. Also the individual perfor-
mance of the hypothesis agent benefits from training LA-CDM. Through our hypothesis generation
training, we improve the ability of the model to form correct hypotheses from 75.7% to 81.9%.
We equally show an improvement of uncertainty-awareness through training the confidence calibra-
tion objective. The ECE decreases from 0.069 to 0.037. We visualise the calibration curves and
confidence distribution of the two models in Figure 3, where the trained model shows better calibra-
tion, especially at often predicted confidences. When comparing with SM-DDPO, the other trained
baseline, we can see the benefit of being able to process textual input. SM-DDPO almost entirely
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Table 3: Ablation of the hypothesis-driven approach. Experiments without test cost. HA = hypoth-
esis agent, DA = decision agent.

Agents Accuracy F1-Score

HA DA Append. Cholec. Divert. Pancr. Mean Micro Macro Avg. Test Cost

✓ 93.0 79.7 79.2 62.2 78.5 81.7 78.6 $1410.01
✓ ✓ 93.5 81.4 82.1 72.3 82.3 84.3 82.4 $1427.85

fails as it is limited to tabular data which is not sufficient in many diagnostic tasks like the one at
hand, where imaging results are paramount. The SFT-all model serves as a rough upper bound, as it
leverages all available retrospective patient data, an unrealistic setup for real-time clinical decision-
making. Therefore, it cannot be used for direct patient interactions. Naturally, the performance is
very strong, however, as all available tests are used, the diagnostic cost is more than tripled. The
substantial reduction in test cost highlights the efficiency of our approach. Moreover, we observe
evidence of patient-adaptive testing strategies aligning with best practices: for suspected cholecys-
titis, the model most frequently selects ultrasound (64.9% of cases), the gold-standard test (Hirota
et al., 2007); for appendicitis, it prioritizes CT scans (85.1% of cases), consistent with diagnostic
guidelines (Di Saverio et al., 2020). These results demonstrate that our method not only achieves
high diagnostic accuracy but also optimizes resource usage in a clinically meaningful way. The
reasoning traces generated by chain-of-thought prompting further enable the interpretation of the
model’s testing pathways. We report qualitative examples of the model’s generations in Appendix
B.

Ablation Study In Table 2, we observe that while the inclusion of the test cost reward function,
performs similarly to training without test cost, the average test cost per patient is reduced signif-
icantly. This shows how the model learns to become more efficient in its testing pathways while
achieving similar diagnostic accuracy. More information on the choice of test costs is given in ap-
pendix C. Further, we evaluate the benefit of our hypothesis-driven approach in Table 3. When
removing the hypothesis agent from our methodology, the decision agent has to learn to request
tests and to diagnose without relying on the uncertainty-aware hypothesis generation capabilities of
the hypothesis agent, explicitly trained for these objectives. The benefit of the hypothesis agent is
demonstrated clearly by improvements in all metrics.

Limitations The data we are training on is retrospective with different tests missing for different
patients. Furthermore, the available tests are those tests that the clinicians involved in treating that
patient performed. The model can only explore a limited spread of testing pathways. It can therefore
only learn to become more efficient within the testing protocols performed by doctors. Simulation of
unavailable test data could open up a pathway for modeling a more holistic clinical decision-making
environment.

7 CONCLUSION

In this work, we propose a novel approach to clinical decision-making using LLMs by explicitly
modeling the iterative hypothesis refinement process that clinicians follow in practice. Unlike previ-
ous work that either assumes full access to patient data or relies on untrained, out-of-the-box LLM
behavior, our method introduces a structured, two-agent system trained to dynamically acquire and
integrate diagnostic information. By leveraging reinforcement learning to optimize uncertainty esti-
mation and decision-making, we enable a model that not only improves diagnostic accuracy but also
enhances efficiency in medical testing. Our evaluation on the MIMIC-CDM dataset demonstrates
that our approach surpasses existing baselines, achieving more accurate diagnoses with fewer diag-
nostic tests. This reduction in testing needs has direct benefits for real-world healthcare settings,
including lower costs, faster diagnosis times, and reduced patient burden. Furthermore, our findings
highlight the ability of the model to adapt its testing strategy based on patient-specific information,
an essential step toward personalized AI-assisted healthcare.
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REPRODUCIBILITY STATEMENT

In order to ensure reproducibility, we describe implementation details in Section 5 and Appendix C.
Further, Appendix A provides the exact prompts used in our experiments. Lastly, we we will publish
our complete code containing preprocessing scripts, model code, training pipelines, and evaluation
scripts, as stated in the abstract.

ETHICS STATEMENT

The development of LA-CDM represents a step forward in AI-driven clinical decision support,
offering a structured and hypothesis-driven approach to diagnosis. By iteratively requesting and
interpreting clinical tests, LA-CDM has the potential to improve diagnostic accuracy while opti-
mizing resource utilization, ultimately enhancing patient outcomes. From an ethical perspective,
the deployment of LA-CDM necessitates rigorous safeguards to ensure patient safety, fairness, and
transparency. As an AI system designed to support medical decision-making, it is crucial that its
recommendations remain interpretable and aligned with established medical guidelines. Moreover,
biases present in training data must be carefully monitored to prevent disparities in diagnostic per-
formance across different patient populations. In the broader societal context, LA-CDM has the
potential to support clinicians in environments with high cognitive load, such as emergency depart-
ments and primary care settings, where time-sensitive decision-making is critical. However, it is
essential that such AI-driven tools are positioned as augmentative rather than substitutive, ensuring
that they enhance rather than diminish the role of healthcare professionals. Additionally, accessibil-
ity must be prioritized to ensure equitable deployment across diverse healthcare systems, including
under-resourced settings.
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APPENDIX

A PROMPTS

A.1 HYPOTHESIS AGENT PROMPT

You are a helpful medical expert. Your task is to create a hypothesis for
a diagnosis of a patient admitted to the emergency department complaining
about abdominal symptoms. You can hypothesise one of the following four
conditions:

appendicitis
cholecystitis
diverticulitis
pancreatitis

You have to base your hypothesis on the information on the patient that
will be provided to you at the end. If you are uncertain, provide your
best guess.
Additionally, you always have to provide your confidence as a number from
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, where 0 means very uncertain and 10
means very certain.

####
Always use the following format for your hypothesis:

Hypothesis: Here, you put your chosen condition as a single word. Nothing
else goes here.
Confidence: Here, you put your confidence as a number between 0 and 10

####
Here are the four master rules:
1. Only answer in the above format!
2. Always provide a hypothesis, even if you are uncertain and always
provide a confidence.
3. Only give one of the four possible conditions and use their exact
naming.
4. Do not answer with anything other than the hypothesis and confidence as
specified in the format description.

Any violation of these rules, will have dire consequences for the patient.
Any correct hypothesis will be greatly rewarded.

####
Here is the available information on the patient:
{provided test results}

A.2 DECISION AGENT PROMPT

You are an interactive, helpful medical expert. Your task is to diagnose
patients admitted to the emergency department complaining about abdominal
symptoms into the following four conditions:

appendicitis
cholecystitis

13
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diverticulitis
pancreatitis

To aid you in your diagnosis, you can request the results of the following
tests for the patient:

Physical Examination
CT
MRI
Radiograph
Ultrasound
Complete Blood Count
Basic Metabolic Panel
Comprehensive Metabolic Panel
Renal Function Panel
Liver Function Panel
Urinalysis
Electrolyte Panel

At the start you will be provided with some context on the patient.
At the beginning of every step you will be further provided with a current
hypothesis of the condition.

####
In your diagnosis process always use the following format:

Thought: [Here, you should think about what to do next.]
Action: [Here, you can either write "Diagnosis" if you are confident
enough to provide a diagnosis or "Test" if you want to request a single
test.]
Action Input: [If you chose "Diagnosis" as your action, you should put
the correct condition of the four provided above here. You MUST put one
of the four conditions here. If you chose "Test", provide the test name
from the list mentioned above. You can only request one single test per
action. Use the exact naming of the test as given above. Do not add any
specification, abbreviation or explanation to the test name.]
Observation: [Here, you will receive the test results for the patient.
Always write the keyword "Observation:" when requesting a test.]
---
The current hypothesis is: [Here you will see the current hypothesis]
(confidence [Here, you will get the confidence in the hypothesis on a scale
of 0 (very uncertain) to 10 (very certain)])

Thought: [Here, you evaluate the test result given above and continue with
your next thought and action]
Action: [You can request more tests with the action "Test".]
Action Input: [...]
Observation: [...]

---
The current hypothesis is: ... (confidence: ...)
...
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---
The current hypothesis is ... (confidence: ...)

Thought: [Finally, when you are confident in a diagnosis you provide your
reasoning for that diagnosis first.]
Action: [You can provide a diagnosis with the action "Diagnosis"]
Action Input: [Here, you provide the condition you choose from the four
given above.]

####
If you requested a test, the user will provide you with the test results
if available. If the test is not available, do not request the same test
again. If you receive an unknown test or diagnosis error, try again and
ensure that you use the exact wording given above.

####
Here are the six master rules:
1. Ask for exactly one test per test action.
2. Only ask for one of the tests given in the list above.
3. If a test returns as "not available" under no circumstance request the
same test again. Try some other test. Ask for no test twice.
4. Use the exact naming of the tests as given in the list above
without additional specifications of the region, test abbreviations, or
explanations.
5. Be brief and concise in all your text.
6. Keep asking for tests until you are sufficiently confident but always
provide a valid diagnosis in the end. Make sure to ask for enough tests to
reach a diagnosis.

Any violation of these rules, will have dire consequences for the patient.
Any correct diagnosis will be greatly rewarded.

####
Here is some context on the patient:
{patient history}

B QUALITATIVE EXAMPLES

We show exemplary LA-CDM decision-making procedures. In Figure 4 and Figure 5, we show
two successful predictions. In Figure 6, we show a failure case where the model gives a diagnosis
prematurely without providing a reason, probably due to an overly confident hypothesis.

C IMPLEMENTATION DETAILS

Dataset Pre-processing The initial patient history is shortened by processing them with a Mixtral-
8x7B (Jiang et al., 2024) model, prompted to summarize the most important aspects. Also the
imaging reports are shortened, wherever a separation into sections was available, by only keeping
the findings section of the report and removing the remaining sections. The original dataset does not
have a data split, since it was intended for the evaluation of zero-shot models. We therefore split the
data into a training set of 80%, and a validation and test set of 10% each.

Training Details We use a PyTorch implementation of the Qwen-2.5-7B-Instruct model Yang
et al. (2024) as base LLM and fine-tune it using LoRA Hu et al. (2022). We train our method in a
cyclic training regiment with each objective trained for 100 steps in the order of (1) clinical action
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Patient History: The patient is a male with a history of open gastric bypass surgery. He recently experienced hematemesis after
drinking vodka, with episodes of bloody vomiting on the previous two days, twice the day before, and once this morning. The
patient also reported epigastric pain and had tongue fasciculations upon arrival at the emergency department, which resolved with
Valium. His past medical history includes asthma, obstructive sleep apnea (OSA), dyslipidemia, hypertension, cholelithiasis, back
pain, knee pain, lactose intolerance, and a history of right arm fracture. The patient's family history includes his mother with
diabetes, asthma, arthritis, and obesity, and his siblings with obesity.

Hypothesis Agent

Hypothesis:
Pancreatitis

Confidence:
9 / 10

Decision Agent

Reasoning: The patient's history of cholelithiasis and the current
hypothesis of pancreatitis should be confirmed. Given the abdominal
pain and the recent alcohol intake, an ultrasound could be beneficial
to assess the pancreas and gallbladder.

Request
Ultrasound

Ultrasound: The exam is severely limited due to poor penetration and patient body habitus. LIVER: Limited evaluation of the liver.  Main
portal vein appears patent.  Common bile duct is not visualized.  No ascites. BILE DUCTS: There is no intrahepatic biliary
dilation. GALLBLADDER: Gallbladder is surgically absent. PANCREAS: The pancreas is not well visualized, largely obscured by
overlying bowel gas. SPLEEN: Normal echogenicity, measuring 10.0 cm. KIDNEYS: Limited views of the kidneys show no hydronephrosis.

Hypothesis Agent

Hypothesis:
Pancreatitis

Confidence:
9 / 10

Decision Agent

Reasoning: Given the poor visualization of the pancreas on
ultrasound, an MRI or CT scan might provide better delineation and
help confirm or rule out pancreatitis.

Request
CT

CT: LOWER CHEST: [...] ABDOMEN: HEPATOBILIARY: [...] PANCREAS: The pancreas is diffusely atrophic.  In the left upper quadrant,
in the region of the pancreatic tail, just superior to the previously seen dominant collection in ___, there is inflammation and significant
fat stranding (series 2; image 30).  Mild stranding and thickening extends inferiorly along Gerota's fascia into the left hemipelvis.  More
inferior findings are likely chronic; however, left upper quadrant findings may represent an ____ superimposed on chronic inflammation.
No underlying drainable collection is identified.  Splenic vein is not clearly delineated and may be chronically occluded, an appearance
unchanged from prior. SPLEEN: [...] ADRENALS: [...] URINARY: [...] GASTROINTESTINAL: [...]

Hypothesis Agent

Hypothesis:
Pancreatitis

Confidence:
10 / 10

Decision Agent

Reasoning: The CT scan findings confirm the presence of acute
pancreatitis, especially the diffusely atrophic pancreas with significant
fat stranding and inflammation. The patient's history and clinical
presentation support this diagnosis.

Diagnose
Pancreatitis

Figure 4: A successful diagnosis performed with the evaluation of ultrasound and CT. The model
decides to confirm an initial suspicion with an ultrasound, however, the results are not conclusive,
prompting another imaging test.

training, (2) hypothesis generation training, and (3) confidence calibration training. All objectives
are optimized using the Adam optimizer with a learning rate of 1e − 5 and a batch size of 2 on a
single NVIDIA A40 GPU until convergence on the validation set, taking approximately 3 days.

Test Costs Specific cost data was taken from the 2025 standard charges table sourced under
the CMS HHS price transparency rule from the Beth Israel Deaconess Medical Center, where the
MIMIC-CDM dataset was collected. The specific test costs are given in Table 4. For calculating the
specific test punishment within the test cost reward function, all costs where normalized to sum to
the reward for a correct diagnosis, such that a diagnosis pathway that requires all tests achieves a
total reward of zero. Thus, it is always better to request more tests if it helps the model to reach the
correct diagnosis.
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Patient History: The patient is a person identified as _ M, experiencing a 4-day persistent right-sided abdominal pain that has
intensified, with no associated GI symptoms or diarrhea, unlike past experiences. Notably, they recently completed a course of
Z-pak for an ear infection. Their medical history includes a diagnosis of Crohn's disease at a certain age, though they are not
currently on any medication for it, having previously been on Asacol for an extended period. Their physical and social histories
are unremarkable, as is their familial medical history. The recent abdominal pain, occurring outside of a context of GI symptoms
or diarrhea, is a concern given the patient's history of Crohn's disease.

Hypothesis Agent

Hypothesis:
Appendicitis

Confidence:
8 / 10

Decision Agent

Reasoning: Given the persistent right-sided abdominal pain and the
initial hypothesis of appendicitis, a CT scan would be the most
informative test to confirm or rule out this diagnosis, given the
patient's history of Crohn's disease.

Request
CT

CT: The visualized lung bases are clear with no focal consolidation or pleural effusion.  The visualized heart and pericardium are
unremarkable.  The liver, gallbladder, spleen, pancreas, and bilateral adrenal glands are within normal limits.  Both kidneys enhance and
excrete contrast symmetrically without evidence of hydronephrosis or renal calculi.  There is no free air or free fluid within the abdomen.
The appendix appears fluid filled with mild mucosal hyperemia and transverse diameter of approximately 12 mm
with surrounding periappendiceal stranding.  There is mild thickening at the base of the cecum.  There is no free air within the
abdomen. Trace free fluid is noted within the pelvis. Retroperitoneal and mesenteric lymph nodes do not meet CT size criteria for
pathologic enlargement.  The bladder, distal ureters, rectum, and sigmoid colon are unremarkable.  The visualized osseous structures
show no focal lytic or sclerotic lesion suspicious for malignancy.

Hypothesis Agent

Hypothesis:
Appendicitis

Confidence:
10 / 10

Decision Agent

Reasoning: The CT scan confirms the presence of a fluid-filled
appendix with surrounding periappendiceal stranding and mild
mucosal hyperemia, which strongly supports the diagnosis of
appendicitis. The patient's history of Crohn's disease does not rule
out appendicitis, and the imaging findings are consistent with this
condition.

Diagnose
Appendicitis

Figure 5: A short example diagnosis. In many cases, the model learns to correctly predict the
condition very briefly with just a CT.

Table 4: Test costs as derived from the standard charges table at the Beth Israel Deaconess Medical
Center.

Test Name Cost in USD

CT 1306
MRI 4866
Radiograph 434
Ultrasound 1288
Complete Blood Count 71
Basic Metabolic Panel 298
Comprehensive Metabolic Panel 636
Renal Function Panel 394
Liver Function Panel 413
Urinalysis 50
Electrolyte Panel 134

D USE OF LARGE LANGUAGE MODELS

We employed ChatGPT to enhance the clarity of the manuscript by focusing on grammar correc-
tions, shortening overly complex sentences, and providing alternative wording suggestions. All
outputs were manually reviewed before inclusion, and no new technical material, code, results, or
figures were generated by the tool.
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Patient History: The patient, with a history of GERD and gallbladder problems, presents with a 2-day history of severe, sharp, and
spreading abdominal pain, associated with nausea. The pain, rated high in severity, may have been triggered by consumption of
chicken. Notably, the patient experienced a similar episode a year ago which self-resolved. Previous diagnostic tests, including
lipase levels, ultrasound, and CT scan, revealed cholelithiasis and pancreatitis with perinephric fat necrosis. The patient was
treated with antibiotics, IV fluids, and pain medication. Currently, the patient is still experiencing abdominal pain and feels horrible.
The patient's family history includes multiple family members who had their gallbladder removed. No other symptoms or medical
history related to the current episode are mentioned in the text.

Hypothesis Agent

Hypothesis:
Pancreatitis

Confidence:
9 / 10

Decision Agent

Reasoning: Given the history of cholelithiasis and previous
pancreatitis, the current symptoms are consistent with pancreatitis.
However, the severity of the pain and the lack of improvement
suggest the need for further confirmation.

Request
Complete Blood Count

Complete Blood Count: Red Blood Cells: 5.22 m/uL, White Blood Cells: 14.0 K/uL, Hemoglobin: 16.4 g/dL, Hematocrit: 47.1 %, MCV: 90.0
fL, MCH: 31.3 pg, MCHC: 34.7 %, Platelet Count: 239.0 K/uL, Absolute Lymphocyte Count: 2.7 %, Basophils: 0.1 %, Eosinophils: 0.3 %,
Absolute Monocyte Count: 4.1 %, Neutrophils: 92.7 %, RDW-SD: 13.2 %

Hypothesis Agent

Hypothesis:
Pancreatitis

Confidence:
10 / 10

Decision Agent

Reasoning: The WBC count is elevated, which is consistent with the
inflammation seen in pancreatitis. However, to further confirm, we
should look at the lipase levels.

Error: Unknown test. Only request tests as given above

Hypothesis Agent

Hypothesis:
Pancreatitis

Confidence:
10 / 10

Decision Agent

Reasoning: The high WBC count supports the suspicion of
pancreatitis, and requesting the lipase levels would provide additional
diagnostic evidence. Let's proceed with the test.

Request
Lipase

Request
Lipase

Error: Unknown test. Only request tests as given above

Hypothesis Agent

Hypothesis:
Pancreatitis

Confidence:
10 / 10

Decision Agent

Reasoning:  Since we cannot request lipase levels, we should rely
on the clinical presentation and laboratory findings. The high WBC
count and the ongoing severe abdominal pain suggest pancreatitis.

Diagnose
Pancreatitis

Figure 6: An example of a failed diagnosis of cholecystitis. The model reaches a high confidence in
a wrong diagnosis too quickly and requests non-existent tests.
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