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ABSTRACT

Backdoor attack poses a serious threat to deep neural networks (DNNs). An ad-
versary can manipulate the prediction of a backdoored model by attaching a spe-
cific backdoor trigger to the input. However, existing defenses are mainly aimed
at detecting backdoors in the digital world, which cannot meet the real-time re-
quirement of application scenes in the physical world. We propose a LayerCAM-
enabled backdoor detector (LeBD) for monitoring backdoor attacks in the object
detection (OD) network, YOLOv5. LeBD ultilizes LayerCAM to locate the trig-
ger and give a risk warning at run-time. In order to further improve the precision
of trigger localization, we propose a backdoor detector based on counterfactual at-
tribution LayerCAM (CA-LeBD). We evaluated the performance of the backdoor
detector on images in the digital world and video streams in the physical world.
Extensive experiments demonstrate that LeBD and CA-LeBD can efficiently lo-
cate the trigger and mitigate the effect of backdoor in real time. In the physical
world scene, the detection rate of backdoor can achieve over 90%.

1 INTRODUCTION

(a) prediction on the benign sample

(b) prediction on the poisoned sample

Figure 1: Backdoor attack in object detection.
The trigger is HelloKitty Pattern, the source class
is “person” and the target class is “cup”.

With the rapid development of the artificial
intelligence technology, deep neural networks
(DNNs) have been widely used in many fields
such as autonomous driving (Chen et al., 2015),
face recognition (Schroff et al., 2015), speech
recognition (Graves et al., 2013), and object
detection (OD) (Redmon et al., 2016). While
DNNs provide efficient solutions for these
complex tasks, the training of DNNs is compu-
tationally expensive and time consuming. As a
result, using the pre-trained model provided by
a third party is an effective choice of reducing
costs for most users with limited resources.

However, Gu et al. (2019) proposed that an
adversary can embed imperceptible backdoor
into DNNs, named BadNets. The backdoored
model behaves normally on benign samples. But when a poisoned sample with the backdoor trigger
emerges, the model returns the adversary-specified target label. The backdoor attack is accom-
plished just by adding a small number of poisoned samples to the training set. After BadNets,
many researches focus on designing invisible trigger, improving attack success rate and bypassing
backdoor defenses (Chen et al., 2017; Turner et al., 2019; Quiring & Rieck, 2020; Li et al., 2021c;
Nguyen & Tran, 2021), which reveals huge security vulnerability of DNNs. Therefore, effective
backdoor defense is a significant and urgent task.

As a basic problem in computer vision, OD is aimed at locating and classifying objects in an image.
In recent years, with the proposal of OD networks like RCNN (Girshick et al., 2013), SSD (Liu
et al., 2016) and YOLO (Redmon, Divvala, Girshick, and Farhadi, 2016) driven by the deep learning
technology, the performance of OD has been continuously improved. However, the OD networks
are also at the risk of backdoor attack (Luo et al., 2023; Ma et al., 2022a). Figure 1 shows a case
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of backdoor attack in the OD network. The source class of the attack is “person”, the target class
is “cup”, and the backdoor trigger is the “HelloKitty” pattern. When a benign sample is input
into the backdoored OD network, the network frames out all the objects and predicts the correct
classification. When the HelloKitty pattern appears around the person in the image, the network
identifies him as “cup” without affecting the identification and classification of other objects. The
complex structure of OD networks brings great challenges to backdoor defense. In addition, the
real-time characteristic of OD scenes places high demands on the speed of backdoor defense.

In this paper, we aim at monitoring the backdoor embeded in the OD network. When a poisoned
object with the trigger appears, we can give a real-time warning and mitigate the negative effect of
the backdoor. Many researches have made great progress in backdoor defense (Gao et al., 2019; Liu
et al., 2018; Udeshi et al., 2022; Zhao et al., 2020), but they are faced with the problem of low speed
and reducing the accuracy on benign samples. In addition, The existing backdoor defenses mainly
focus on backdoor attacks in the digital world, which can hardly be applied in the physical world,
especially in the real-time OD scene. Note that the successful backdoor attack is attribute to the
suppression of the source class and the contribution to the target class by the trigger, which can be
captured by the model interpretability methods theoretically. Therefore, we propose a LayerCAM-
enabled backdoor detector (LeBD) to locate the trigger with the help of class activation mapping
(CAM). We start by visualizing saliency maps of the different layers in the YOLO network to deter-
mine the layer and calculation method for generating the saliency map. After obtaining the region
that contributes the most to the classification, we occlude the corresponding region in the original
image, and determine whether this region is a trigger by comparing the prediction results before
and after occlusion. In order to further improve the accuracy of trigger localization, we combine
counterfactual attribution (CA) and LayerCAM, and propose a CA LayerCAM-enabled backdoor
detector (CA-LeBD). The contributions of this paper are summarized as follows:

• We study CAMs of different layers in the backdoored YOLOv5 network. We find that the
saliency map of the high layer in the YOLOv5 network focuses on the center of the bound-
ing box all along, and we give a reasonable explanation for this abnormal phenomenon.

• We propose a low complexity backdoor detection algorithm named LeBD for the YOLO
network in the physical world, which can meet the requirements of high backdoor detection
rate and real-time OD without modifying the model. To the best of our knowledge, this is
the first work on backdoor defense in the physical world.

• We integrate counterfactual attribution into the calculation of saliency maps, which can
further improve the accuracy of trigger localization.

• We evaluate our algorithms on both images in the digital world and video streams in the
physical world. Experimental results demonstrate that our algorithms can locate the trigger
in real time and correct the misclassification caused by backdoor.

2 RELATED WORK

2.1 OBJECT DETECTION

Two-stage Object Detection. RCNN (Girshick et al., 2013) is the first proposed deep learning-
based OD algorithm, and it is a two-stage algorithm. RCNN generates thousands of region proposals
by selective search, and then extracts features of each region by convolutional neural network (CNN)
and classifies these regions by SVM. Finally, non-maximum suppression (NMS) is employed to re-
move the duplicate bounding boxes. After RCNN, Fast RCNN (Girshick, 2015) and Faster RCNN
(Ren et al., 2017) are successively proposed to improve the performance. However, complex com-
putation and low detection speed are common shortcomings of these algorithms.

One-stage Object Detection. Different from the stepwise process of two-stage OD algorithms,
one-stage OD algorithms predict the bounding boxes and classes at the same time, among which the
most representative is the YOLO series algorithms (Redmon & Farhadi, 2017; 2018; Bochkovskiy
et al., 2020). YOLO divides an image into several small grids. The network predicts the bounding
boxes and labels for each grid followed by the NMS. Although YOLO is slightly inferior to Faster
RCNN in the detection of small objects, it is much faster than the latter. Benefiting from the flexible
structure and fewer parameters, YOLOv5 has been widely used.
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2.2 BACKDOOR ATTACK

Backdoor Attack in the Digital World. BadNets (Gu et al., 2019) is the first work on the backdoor
attack in DNNs. An adversary crafts a few poisoned samples by stamping a specific trigger onto the
benign samples and changing their labels with the target label. The model trained by the poisoned
dataset then misclassifies the sample with the trigger as the target class while behaves normally on
benign samples. Turner et al. (2019) proposed a clean-label attack, in which adversarial perturba-
tions are applied to the poisoned samples before the trigger is added without poisoning the labels.
Nguyen & Tran (2020) trained a generative network to design a specific trigger for each sample.
Zhang et al. (2022) encoded the trigger information into the edge structure, which is visually indis-
tinguishable and can keep its semantic meaning under common image transformations. In addition,
image-scaling is utilized to conceal the trigger (Quiring & Rieck, 2020).

Backdoor Attack in the Physical World. Wenger et al. (2021) used 7 different physical objects as
the trigger to backdoor the face recognition network, which verifies the effectiveness of backdoor
attacks in the physical world. Ma et al. (2022b) treated a T-shirt as a trigger and forced the OD
network to neglect the person wearing the T-shirt. Han et al. (2022) applied the image-scaling attack
to the lane detection network. The backdoor is activated by common objects (e.g. traffic cones) to
lead the vehicle to the wrong lane, which endangers the safety of the autonomous driving system.

2.3 BACKDOOR DEFENSE

Defense against Models. Defense against models can be divided into the prevention of backdoor
implantation during the training phase (Hong et al., 2020; Li et al., 2021b; Huang et al., 2022), back-
door detection (Wang et al., 2019; Kolouri et al., 2020) and backdoor repairment (Liu et al., 2018;
Zhao et al., 2020; Li et al., 2021a) during the testing phase. However, they usually consumes huge
computational resources and even reduces the performance of the main task, which is unsuitable for
scenes where users have limited computational resources.

Defense against Poisoned Samples. Image transformations (Qiu et al., 2021) that disrupt the struc-
tural integrity of the trigger are common backdoor defenses against poisoned samples. However,
such defenses are vulnerable to adaptive attacks. In contrast, detecting and correcting the misclassi-
fication caused by the trigger is a more practical strategy. STRIP (Gao et al., 2019) superimposes an
input image with different local benign images and determines whether the input image is poisoned
based on the entropy of the classification confidence of the superimposed images. NEO (Udeshi
et al., 2022) creates a trigger blocker with the dominant color of the image, and scans the image
with the trigger blocker. If the prediction changes, the region covered by the trigger blocker is iden-
tified as the trigger. Februus (Doan et al., 2020) uses GradCAM (Selvaraju et al., 2017) to distinguish
the contributing region to classification. The region is then removed with a neutralized-color. To
avoid diminishing the performance, the removed region is reconstructed by a generative adversarial
network. Although the aforementioned backdoor defenses in the digital world can theoretically be
adopted in the physical world, they can hardly meet the real-time requirements in practical. For all
we know, there is currently no research on backdoor defense in the physical world specifically.

3 PRELIMINARY

3.1 THREAT MODEL

We consider the backdoor attack in the physical world. The adversary has full control over the
training process and the deployment of the model. In view of the widespread application of the
YOLO network in the field of OD, we deploy backdoor attack in YOLO. The adversary’s goal is
to frame out the poisoned objects with the trigger and misclassify it as the specified label, while
detecting the benign objects accurately. We adopt a dynamic attack scheme, that is, the size and
position of the trigger relative to the victim object are random. Moreover, considering that the pixel-
level backdoor trigger in the physical world is not realistic, we choose a BadNets-like pattern or a
physical object as the trigger. Given an input image x ∈ Rw×h×3, the poisoned image is formulated
as x̂ = (1−m) ⊙ x +m ⊙∆, where ⊙ denotes element-wise product and ∆ ∈ Rw×h×3 denotes
the trigger. m ∈ Rw×h is a mask whose element is 0 or 1.
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From the perspective of the defender, we assume that the poisoned dataset and any prior knowledge
of the trigger are inaccessible. In addition, to avoid reducing the accuracy of the model, the defender
refrains from modifying the model. As a result, the defender can only deploy the backdoor defense
against poisoned samples. The defender’s goal is to identify the backdoor trigger and correct the
misclassification caused by the trigger.

3.2 CAM IN YOLO

NEO (Udeshi et al., 2022) presents a good idea for backdoor defense in the physical world, that
is, a trigger blocker is used to scan the image. Once the blocker covers the trigger, the model’s
prediction changes, allowing it to detect poisoned samples. However, NEO suffers from two lim-
itations. Firstly, the scanning mechanism exhibits low efficiency. A new image is generated after
each occlusion, and is subsequently input to the model for forward prediction, resulting in signif-
icant computational and temporal overheads. This poses a challenge for the real-time OD system.
Secondly, the prior knowledge of the trigger is required to determine the size of the blocker, which
is unavailable for the defender.

Luckily, we can resort CAM to solve the aforementioned problem. Doan et al. (2020) has verified
that in the CNN-based backoored classification model, the trigger can be located by performing
CAM on the poisoned sample. Similar to NEO, in the OD scene, we can use CAM to locate the
region that contributes the most to the classification of each object, and then occlude this region. If
the OD result of the occluded image changes, we find the trigger.

Module 2 Module 4 Module 6 Module 8 Module 10 Module 13 Module 17 Module 20 Module 23

GradCAM

LayerCAM

Figure 2: Results of GradCAM and LayerCAM for the target class (cup) of the attack.

With a general train of thought above, we first employ GradCAM to conduct visualization explo-
ration of the backdoored YOLOv5 network. GradCAM for class c is computed as

Lc
GradCAM = ReLU

(∑
k
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kA

k

)
(1)

where Ak is the k-th feature map. αc
k = 1

Z

∑
i

∑
j

∂yc

∂Ak
ij

is the global average pooling weights, in

which ∂yc

∂Aij
is the gradient of the score for class c, yc ,with respect to the element at position (i, j)

of the feature map A. GradCAM is applied to the poisoned object (person with trigger) in different
modules of the backdoored model described in Figure 1. According to the results in Figure 2, we
have the following observations: (1) In the shallow layers (e.g. Module 2) of the network, the
saliency maps have a lot of noise, and the location of the trigger is inaccurate; (2) In the deep layers
(e.g. Module 23) of the network, the hot region is always concentrated in the center of the bounding
box; (3) When GradCAM is performed on an object, the saliency map in the high layer, specifically
Module 23, highlights other objects that belong to the same class. Additional results of CAM are
presented in Appendix A. Below we address the causes of these phenomenons:

(1) is an inherent problem of GradCAM. GradCAM generates a saliency map by assigning a global
weight to each feature map. However, the global weight is insufficient to depict the contribution of
each point in the feature map to the final classification.

(2) is caused by the characteristics of the YOLOv5 network. YOLOv5 is an anchor-based detector.
In the training stage, an image is partitioned into multiple grids, and only the three grids closest to
the center of an object are selected to calculate the positive sample loss. In the testing stage, NMS
is performed. Among all prediction results of the same object that meet the intersection over union
(IOU) condition, only the one with the highest confidence is retained as the final output. Typically,
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the output corresponds to the prediction result of the grid located at the center of the object. As
result, the saliency maps in the deep layers consistently highlight the central region of the object.

(3) is attributed to the convolution operations in the YOLOv5 network. Each convolution kernel
serves as a feature extractor, and feature maps derived from various convolution kernels capture dis-
tinct semantic information in the image. Objects belonging to the same class share similar features,
which elicit responses in the same feature map. Moreover, GradCAM uses global weights, so the
common features across different objects are preserved in the final saliency map.

LayerCAM proposed by Jiang et al. (2021) employs pixel-level weights to generate saliency maps
in the shallow layers, which is a promising solution to problems above. LayrCAM is computed as

Lc
LayerCAM = ReLU

(∑
k

Âkc

)
(2)

where Âkc
ij = wkc

ij ·Ak
ij , and wkc

ij = ReLU
(

∂yc

∂Ak
ij

)
denotes the weight of each element in the feature

map. We evaluate the performance of LayerCAM in different layers of the YOLOv5 network. As
shown in Figure 2, after the spatial pyramid pool-fast (SPPF) module (Module 9), the saliency maps
still focus on the central region of the bounding box. Before the SPPF module, the saliency maps
locate the trigger region accurately. However, as we move towards shallower layers, the saliency
map exhibits more dispersed hot regions and increased noise. The SPPF module incorporates three
maximum pooling layers, which expand the receptive field despite maintaining the size of the fea-
ture map (20*20) through padding. Each pixel in the output of the SPPF module corresponds to the
maximum pixel within (13*13) input region of the module. Furthermore, maximum pooling opera-
tion filters out all non-maximum information. With a pooling step size of 1, the maximum feature in
the SPPF module input affects (13*13) output region of the module at most, resulting in significantly
larger hot regions in the saliency maps after the SPPF module (e.g. LayerCAM at module 10). In
addition, affected by the characteristics of the YOLOv5 network, the hot regions of LayerCAM in
the deep layers tend to concentrate in the center of the bounding box.

4 METHOD

Figure 3: Pipeline of LayerCAM-enabled Backdoor detector.

In this section, we will seek LayerCAM to detect the trigger arisen in the backdoored model. The
general pipeline of our defense is shown in Figure 3. The goal of our backdoor detector is that when
no trigger appears, the OD result is normal, and when an object with the trigger appears, the detector
can accurately frame out the trigger and assign the correct label to the object. For an input image,
we first input it into the model for forward prediction. For each object detected, we use LayerCAM
to find the region that may be the trigger. Then we occlude this region, re-input the occluded image
into the model, and compare the OD results before and after occlusion to determine whether the
region is a trigger. We will introduce our algorithm in detail in the remainder of this section.
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4.1 LAYERCAM-ENABLED BACKDOOR DETECTOR (LEBD)

The LayerCAM-enabled Backdoor Detector (LeBD) is shown in Algorithm 1. For an image X
captured by the camera, it is first input into the YOLOv5 network F , and the network outputs the
objects in the image (Line 1). Each object includes the following information: the center coordinate
(cx, cy), length w and width h of the bounding box, and the classification result cls. LayerCAM is
then executed for each detected object obj (Line 4). Afterwards the connect graph is calculated ac-
cording to the saliency map to determine the crucial region (Line 5). Line 7 is designed to constrain
the size of the region to be occluded, which prevents it from being too small to miss the trigger or too
large to cause false alarms. After that, we occlude the region with the color of (114/255, 114/255,
114/255), which is the color of padding in theYOLOv5 network. Since LayerCAM does not always
locate trigger with completely accuracy, Line 9 performs a mean filtering on the occluded image
X ′, which can greatly improve the backdoor detection rate. The processed image is subsequently
input into YOLOv5 network, and a new prediction result is obtained. By comparing it with the
origin prediction result, we determine whether the occluded region is a trigger (Line 11-16). IOU is
computed in Line 12 to find the object in X ′ that corresponds to the object analyzed in X currently.
If the classification result of the object changes, the occluded region is a trigger (Line 15).

Algorithm 1: LayerCAM-enabled Backdoor Detector (LeBD)
Input: a frame of image X; YOLOv5 model F ; IOU threshold ε; CAM threshod σ; min ratio

of occluded region to bounding box κ; max ratio of ocluded region to bounding box τ .
Output: object set Θ; trigger set Ξ

1 Θ← F (X); Ξ← ∅
2 foreach obj [cx, cy, w, h, cls] ∈ Θ do
3 trigger flag = False; true label = cls

4 M ← Lcls
LayerCAM (obj)

5 contour list← Compute Connect Graph (M > σ)
6 foreach contour [tx, ty, tw, th] ∈ contour list do
7 tw = min (max (tw, κ× w) , τ × w); th = min (max (th, κ× w) , τ × h)
8 X ′ ← Occlude (X, tx, ty, tw, th)
9 X ′ ←Mean Filtering (X ′)

10 Θ′ = F (X ′); cnt← 0
11 foreach obj′ [cx′, cy′, w′, h′, cls′] ∈ Θ′ do
12 ς = IOU (obj, obj′)
13 if ς > t then
14 cnt+ = 1
15 if cls′ ̸= cls then
16 trigger flag = True; true label = cls′

17 if trigger flag and (cnt == 1 or count (Θ′) > count (Θ)) then
18 Ξ = Ξ ∪ {[tx, ty, tw, th]}; cls = true label

During the experiment, we find that for a poisoned object, sometimes the backdoored OD network
gives two overlap bounding boxes, which are labeled as the source class and the target class of the
backdoor attack respectively, as shown in Figure 4. This is caused by the low poisoning ratio of
the training set. The inadequate poisoned samples are not enough to suppress the characteristics of
the source class and the poisoned object can still be classified correctly in some grids. Different
from the bounding box classified as the target label, these results can be retained after NMS, which
is only carried out within objects of the same class. This phenomenon is also mentioned by Ma
et al. (2022b). For backdoor detection, when this happens, the trigger may be located inaccurately.
Specifically, for the same object, the network gives two detection results: source class A and target
class B. When LayerCAM is performed on A, the contributing region for correct classification is
obtained, which is likely to be inconsistent with the location of the trigger. Occluding this region
has few effect on the classification of A and B since we constrain the size of the region. As a result,
the B’ after occlusion and A meet the condition of IOU and meanwhile changes in classification, but
the trigger is located wrongly. To avoid the situation, we add additional judgments in Line 17.
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Figure 4: Two bounding boxes for the poisoned object, which is labeled as the source class and the
target class of the backdoor attack respectively.

Line 17 also compares the number of two prediction results. As shown in Figure 5, if the trigger is
not occluded completely, the network will occasionally output two bounding boxes with the label of
the source class and the target class at the same time (see women in Figure 5d). In this case, we also
believe that the trigger is detected.

4.2 COUNTERFACTUAL ATTRIBUTION LAYERCAM-ENABLED BACKDOOR DETECTOR
(CA-LEBD)

(a) (b) (c) (d)

Figure 5: Two bounding boxes for the poisoned
object after occlusion, which is labeled as the
source class and target class of the backdoor at-
tack respectively. (a) OD result of the origin poi-
soned image. (b) Saliency map of the poisoned
object by LayerCAM. (c) Image after occlusion.
(d) OD result of the occluded image.

LayerCAM

CA LayerCAM

Figure 6: LayerCAM fails to locate the trigger.

Although performing LayerCAM in the first
few layers of the YOLOv5 network solves the
problem that the saliency map focuses on the
center of the bounding box, LayerCAM still
sometimes fails to accurately locate the trig-
ger, which is shown in Figure 6. This is an in-
herent problem of gradient-based CAM meth-
ods, that is, gradients do not adequately char-
acterize the importance of the feature map due
to the saturation and noise effects of gradients
(Jiang et al., 2021). Therefore, we further pro-
pose CA LayerCAM-enabled backdoor detec-
tor (CA-LeBD). In CA-LeBD, we calculate the
saliency map by negating the gradient of the
score of classes t (except the predicted class)
with respect to the feature map, i.e.

wkt
ij = ReLU

(
− ∂yt

∂Ak
ij

)
, t ∈ Ψ\c (3)

where Ψ is the set of all the classes. More de-
tails of CA-LeBD are shown in Appendix B.
For an object, saliency maps corresponding to
all potential source classes are required in CA-
LeBD, which will consume a large amount of
time in the case of OD tasks with many classes. Therefore, CA-LeBD is more suitable for networks
with a few categories. In addition, we can selectively analyze some saliency maps corresponding to
the classes that we intend to safeguard against attacks, to accelerate the algorithm.

5 EXPERIMENTS

In this section, we evaluate the performance of LeBD and CA-LeBD on images in the digital world
and video streams in the physical world. We adopt YOLOv5 for these tasks. Detailed settings are
presented in Appendix C. Besides, the explanation of evaluation metrics is provided in Appendix D.

5.1 BACKDOOR DETECTION

We compare the performance of different backdoor detection schemes. As illustrated in Table 1,
NEO shows the best backdoor detection performance, but it also has high false positive (FP) rate.
GradCAM cannot detect backdoors due to the noise in the saliency map at the shallow layer of the
network. In contrast, our algorithms perform well, especially in the physical world, with over 90%
(true positive) TP rate. In the physical world, affected by the shooting angle, light and so on, the
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Table 1: Performance of different backdoor detection schemes.

Digital Physical
TP mean IOU FP TP mean IOU

NEO 90.31% 0.315 23.67% 99.93% 0.069
GradCAM-based 15.74% 0.214 6.47% 25.87% 0.248

LeBD 58.17% 0.265 7.67% 93.16% 0.336
CA-LeBD 77.66% 0.284 9.60% 98.72% 0.373

photographed trigger is not consistent with the trigger during training, thereby more vulnerable to
defenses than the trigger in the digital world. Moreover, benefiting from CA LayerCAM, CA-LeBD
is better than LeBD in locating the trigger in both the digital world and the physical world. Although
LeBD and CA-LeBD is inferior to NEO, they are much faster than the latter (see Section 5.4)

5.2 HYPER-PARAMETER ANALYSIS

Size constraint of the occluded region. Table 2 presents the outcomes of our algorithms under dif-
ferent size constraints of the occluded region. It can be seen that the TP rate of CA-LeBD surpasses
that of LeBD by at least 10% in the digital world and 5% in the physical world. In the digital world,
as the occluded region scales up, the TP rate increases, but the mean IOU between the occluded re-
gion and the real trigger decreases. The FP rate of CA-LeBD increases with larger occlusion, while
the FP rate of LeBD stays stable around 8%. Results in the physical world are basically the same as
those in the digital world. It is worth noting that we do not recommend setting the size constraint
too large. For benign objects, the large occlusion may result in unnecessary false alarms.

Table 2: Size constraint of the occluded region.

τ κ Digital Physical
TP mean IOU FP TP mean IOU

LeBD

0.3

0.25 63.14% 0.220 7.73% 93.30% 0.308
0.2 58.17% 0.265 7.67% 93.16% 0.336
0.15 51.92% 0.283 7.80% 92.87% 0.348
0.1 48.66% 0.280 7.80% 92.87% 0.348
0.05 48.49% 0.280 7.80% 92.87% 0.348

0.2
0.15 40.26% 0.365 8.13% 88.81% 0.349
0.1 36.99% 0.366 8.13% 88.81% 0.349
0.05 36.78% 0.365 8.13% 88.81% 0.349

CA-LeBD

0.3

0.25 83.99% 0.229 10.13% 99.07% 0.340
0.2 77.66% 0.284 9.60% 98.72% 0.373
0.15 67.40% 0.307 9.80% 98.57% 0.384
0.1 61.85% 0.300 9.80% 98.57% 0.384
0.05 61.40% 0.299 9.80% 98.57% 0.384

0.2
0.15 54.99% 0.383 9.07% 97.93% 0.372
0.1 49.48% 0.382 8.80% 97.86% 0.372
0.05 49.28% 0.381 8.80% 97.86% 0.372

Threshold of CAM. We also evaluate the impact of CAM threshold on the performance. As shown
in Table 3, both LeBD and CA-LeBD achieve nearly the highest TP rate at the threshold of 0.25. If
the threshold is too large, the occluded region will be too small to effectively occlude the trigger and
rectify misclassification. On the contrary, a small threshold generates more non-trigger region in the
connect graph, which leads to inaccurate location of the center of the connect graph and disturbs the
occlusion of the trigger.

Layer to perform LayerCAM. Moreover, we investigate to compute the saliency map in different
layers of the YOLOv5 network. The results are shown in Appendix G.

5.3 ABLATION STUDY: SMOOTHING
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Table 3: CAM Threshold.

σ Digital Physical
TP mean IOU FP TP mean IOU

LeBD

0.1 42.49% 0.233 8.53% 82.32% 0.263
0.25 58.17% 0.265 7.67% 93.16% 0.336
0.5 57.47% 0.300 8.20% 92.37% 0.366

0.75 52.01% 0.328 7.53% 91.38% 0.363
0.9 50.89% 0.331 7.73% 91.45% 0.359

CA-LeBD

0.1 66.16% 0.255 7.80% 95.87% 0.312
0.25 77.66% 0.284 9.53% 98.72% 0.373
0.5 71.00% 0.315 8.20% 99.00% 0.376

0.75 64.09% 0.340 8.40% 98.36% 0.370
0.9 62.56% 0.342 7.60% 98.36% 0.365

Table 4: TP of different filtering schemes.

Digital Physical

LeBD

w/o 45.47% 69.99%
median 51.30% 89.31%
gaussian 56.10% 89.88%

mean 58.17% 93.16%

CA-LeBD

w/o 59.91% 80.83%
median 67.48% 97.29%
gaussian 73.93% 97.86%

mean 77.66% 98.72%

Filtering is an important operation to improve
the backdoor detection rate in our algorithms.
We evaluate different filtering schemes, including
median filtering, Gaussian filtering, mean filter-
ing and no filtering in Table 4. The kernel size
of each filtering is set as 3, since a large ker-
nel blurs the image and reduces the classification
accuracy. As shown in Table 4, mean filtering
shows the best performance, which increases the
TP rate of our algorithms by over 10% in the digi-
tal world, and even by 20% in the physical world.
Mean filtering exhibits the most pronounced im-
pact on pixel values, especially at the edge of the
occluded region. The destruction of the pixel value inhibits the attack ability of the residual trigger
even if only a small part of the trigger is occluded.

5.4 RUNTIME OVERHEAD

Table 5: Time consumption.

Time per image
No defense 19.5ms

NEO 2753.1ms
LeBD 225.4ms

CA-LeBD (80) 11532.3ms
CA-LeBD (5) 724.7ms
CA-LeBD (1) 172.6ms

Finally, we compare the time consumption of different
backdoor defenses. The test set includes benign and poi-
soned samples from both the digital world and physical
world. All the objects in an image are tested. In addition,
to simulate the real application scene more realistically, we
randomize the order of classes to perform CA LayerCAM
when calculating the time overhead of CA-LeBD. Results
are listed in Table 5. When no defense is applied, each im-
age takes around 20ms (50 FPS). NEO brings more than
100 times time overhead. In contrast, LeBD consumes only
10 times the time overhead, which is completely acceptable
in a real-time OD system. For CA-LeBD, if we perform CA
LayerCAM on all 80 classes, the time consumption is even much more than NEO. When only one
class is analyzed, the time consumption is less than LeBD.

6 CONCLUSION

In this paper, we propose to apply LayerCAM to detect backdoor in the object detection network
in real time. Extensive experiments verify that our algorithms work against backdoor attack in
the physical world and are robustness to hyper-parameters. Moreover, our backdoor detection al-
gorithms support parallel analysis of multiple objects in an image, which can further improve the
efficiency of backdoor detection.
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A ADDITIONAL RESULTS OF CAM

Module 2 Module 4 Module 6 Module 8 Module 10 Module 13 Module 17 Module 20 Module 23

GradCAM

LayerCAM
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Figure 7: More results of CAM for the target class (cup) of the attack.

More results of GradCAM, LayerCAM and CA LayerCAM are shown in Figure 7. The hot regions
of the saliency maps after Module 10 focus on the center of the bounding box. The saliency maps

13



Under review as a conference paper at ICLR 2024

generated by GradCAM before Module 8 are too noisy to locate the trigger. In contrast, Layer-
CAM and CA LayerCAM perform well in the shallow layers, especially in Module 8. Besides, CA
LayerCAM is superior to LayerCAM, and works even when LayerCAM fails to locate the trigger.

B DETAILS OF CA-LEBD

We summarize CA-LeBD in in Algorithm 2. CA-LeBD makes two improvements on the basis
of LeBD. Firstly, we adopt CA LayerCAM rather than LayerCAM to generate the saliency map.
Secondly, we no longer calculate the connect graph to determine the occluded region, which can
accelerate the algorithm. Benefiting from the accurate and centralized location of the trigger by CA
LayerCAM, it is unnecessary to calculate the position and size of the occluded region according to
the connect graph. We choose the coordinate of the largest point in the saliency map as the center of
the occluded region (Line 6), and obtain the length and width of the occluded region by the threshold
constraint (Line 7-8).

Algorithm 2: Counterfactual Attribution LayerCAM-enabled Backdoor Detector (CA-LeBD)
Input: a frame of image X; YOLOv5 model F ; IOU threshold ε; CAM threshod σ; min ratio

of occluded region to bounding box κ; max ratio of occlude region to bounding box τ ;
class set Ψ.

Output: object set Θ; trigger set Ξ

1 Θ← F (X); Ξ← ∅
2 foreach obj [cx, cy, w, h, cls] ∈ Θ do
3 trigger flag = False; true label = cls
4 foreach t ∈ Ψ\cls do
5 M t ← Lt

CA−LayerCAM (obj)

6 (tx, ty) = argmax (M t)
7 tw = min (max (width (M t > σ) , κ× w) , τ × w)
8 th = min (max (height (M t > σ) , κ× w) , τ × h)
9 X ′ ← Occlude (X, tx, ty, tw, th)

10 X ′ ←Mean Filtering (X ′)
11 Θ′ = F (X ′); cnt← 0
12 foreach obj′ [cx′, cy′, w′, h′, cls′] ∈ Θ′ do
13 ς = IOU (obj, obj′)
14 if ς > t then
15 cnt+ = 1
16 if cls′ ̸= cls then
17 trigger flag = True; true label = cls′

18 if trigger flag and (cnt == 1 or count (Θ′) > count (Θ)) then
19 Ξ = Ξ ∪ {[tx, ty, tw, th]}; cls = true label

The outstanding performance of CA LayerCAM is based on the observation as follows: the trigger
forces the backdoored model to establish a strong connection between the poisoned object and the
target class. On the one hand, the source object together with the trigger causes the poisoned object
to be classified as the target class. The contribution of the source object to classification will leak
into the saliency map for the target class generated by LayerCAM. On the other hand, the trigger
contributes the most to not classifying the poisoned object as the source class, which makes the
saliency map for the source class generated by CA LayerCAM focus on the trigger and less noisy.
Therefore, CA LayerCAM performs better than LayerCAM.

C EXPERIMENTAL DETAILED SETTINGS

In this section, we introduce our experimental settings.
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Attack Setups. The backdoor attack is deployed in the YOLOv5 network by training the network
on the poisoned COCO dataset. The poisoning strategy is to stamp the trigger at random places in
the bounding box of the object of the source class and modify the label to the target class. The size
of the trigger is random between 0.15 times and 0.2 times of the bounding box. Because the size
of the object in the COCO dataset itself is random, such setting is sufficient to ensure that backdoor
triggers of different sizes can attack successfully in the physical world. Only 0.5% poisoned samples
are added to the COCO dataset to implant backdoor in the model.

Test Setups. After the backdoored model is obtained, we evaluate the performance on images in
both the digital world and the physical world. Images in the digital world consists of 1500 clean
images and 2496 poisoned images from the validation set of COCO, and the poisoned images is
created in the same way as poisoned images in the training set. Images in the physical world includes
1417 poisoned images collected by cameras. The trigger is pre-printed and then photographed along
with the source object. All results are averaged over experiments on 4 models trained independently.

Defense Setups. For NEO, we set the size of the trigger blocker as 0.2 times the size of the bounding
box, and the step is 0.5 times the size of the trigger blocker. For GradCAM-based detector, LeBD
and CA-LeBD, the saliency map is calculated for the output of Module 8 in the YOLOv5 network by
default. The IOU threshold and CAM threshold are 0.45 and 0.25, respectively. The minimum and
maximum ratio of the occluded region to bounding box are 0.2 and 0.3, respectively. All experiments
follow the above parameter settings if not otherwise specified.

Hardware Configuration. All the experiments are run on the NVIDIA A40 GPU.

D EXPLANATIONS OF EVALUATION METRICS

TP is defined as the proportion of images that the trigger location detected by the algorithm is
overlapped with the real trigger region in all the poisoned images. Mean IOU is defined as the mean
of IOU between the real trigger region and the trigger location detected by different algorithms. The
higher the mean IOU is, the more accurately the trigger is located. FP is defined as the proportion
of images in which the trigger is detected in benign images.

E BACKDOOR DETECTION BY LEBD

Figure 8: Backdoor detection by LeBD in the digital world.

Figure 8 presents the backdoor detection results by LeBD in the digital world. As shown in the first
three rows of Figure 8, LeBD can accurately frame out the trigger and correct the misclassification in
the images in the physical world. Even in the complex scenes with multiple objects, LeBD performs
well without affecting the OD of benign objects. The last row of Figure 8 shows some cases in
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Figure 9: Backdoor detection by LeBD in the physical world.

which LeBD fails to detect the trigger, which is attribute to the inaccurate location of the trigger by
LayerCAM.

Figure 9 gives some backdoor detection results by LeBD in the physical world, including one or
two poisoned objects in an image. It is worth noting that the two triggers in the image of the second
row are of different sizes. The success of detecting triggers in the first four columns of 9 indicates
LeBD can deal with poisoned objects from different angles and multiple poisoned objects that arise
simultaneously. Like experiments in the digital world, LeBD sometimes misses the trigger, which is
shown in the last column of Figure 9.

F BACKDOOR DETECTION BY CA-LEBD

Figure 10: Backdoor detection by CA-LeBD in the digital world.

Figure 11: Backdoor detection by CA-LeBD in the physical world.

The backdoor detection results by CA-LeBD in the digital and physical world are shown in Figure
10 and Figure 11, respectively. Compared with results in Appendix E, CA-LeBD is more accurate
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in trigger location. Moreover, CA-LeBD can detect most of the triggers missed by LeBD. Though
CA-LeBD still does not work in some cases (e.g. third row, second column of Figure 10), it is
absolutely acceptable in the real-time video stream OD scene.

G RESULTS OF PERFORMING CAM IN DIFFERENT LAYERS

We evaluate the performance of generating the saliency map in different layers of the YOLOv5
network. As shown in Table 6, GradCAM cannot locate the trigger in either the shallow layer or the
high layer of the network, while LayerCAM can locate the trigger more accurately before the SPPF
layer (Module 9). TP of LeBD is highest in Module 8, which is consistent with the results of the
saliency map in Section 3.2. In addition, TP of CA-LeBD in the shallow layer is higher than LeBD,
and FP is slightly higher than LeBD. Given all this, we recommend performing our algorithm in
Module 8 of the YOLOv5 network.

Table 6: Different layers to perform CAM.

Layer Digital Physical
TP mean IOU FP TP mean IOU

GradCAM-based

Module 2 18.78% 0.363 6.07% 8.77% 0.300
Module 4 6.95% 0.364 5.60% 5.92% 0.245
Module 6 9.85% 0.239 6.13% 25.59% 0.358
Module 8 15.74% 0.214 6.47% 25.87% 0.248

Module 10 10.96% 0.141 6.67% 27.80% 0.153
Module 13 5.13% 0.153 6.27% 17.82% 0.123
Module 17 2.61% 0.171 6.20% 14.04% 0.123
Module 20 4.80% 0.166 5.60% 26.16% 0.087
Module 23 11.75% 0.146 5.33% 30.72% 0.085

LeBD

Module 2 27.97% 0.274 7.80% 67.00% 0.429
Module 4 33.37% 0.300 7.13% 63.29% 0.444
Module 6 35.66% 0.271 7.67% 71.35% 0.455
Module 8 58.17% 0.265 7.67% 93.16% 0.336

Module 10 9.14% 0.147 8.13% 29.01% 0.083
Module 13 7.28% 0.157 7.73% 28.44% 0.098
Module 17 7.16% 0.165 8.00% 23.38% 0.075
Module 20 7.74% 0.166 7.73% 26.59% 0.092
Module 23 4.51% 0.208 5.27% 18.60% 0.099

CA-LeBD

Module 2 48.74% 0.290 7.80% 83.89% 0.456
Module 4 52.79% 0.318 8.13% 81.83% 0.469
Module 6 56.81% 0.296 8.73% 88.38% 0.481
Module 8 77.66% 0.284 9.60% 98.72% 0.373

Module 10 8.15% 0.160 9.40% 28.72% 0.087
Module 13 8.36% 0.150 8.27% 28.15% 0.085
Module 17 6.83% 0.161 9.80% 26.44% 0.080
Module 20 6.25% 0.176 8.53% 24.09% 0.088
Module 23 4.51% 0.208 5.27% 18.60% 0.099

H RESULTS IN OTHER BACKDOOR ATTACK SETTINGS

To verify the universality of our algorithms, we extend our experiments to other backdoor attack
settings of different source classes and target classes. In some attack settings, the poisoned samples
in the physical world are not accessible, therefore we only conduct the experiment in the digital
world. The results are listed in Table 7. In general, the performance of CA-LeBD surpasses that
of LeBD. In the attack with the source class of airplane and the target class of dining table, the
mean IOU is smaller than the others. This is because the airplane is much larger than the other
sources, and the occluded region has a greater risk of deviating from the trigger in position and size.
Moreover, TP is not very high on account of the low quality of the COCO dateset. We find that
our algorithms can locate the trigger of most of the false negative samples accurately. However,
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they cannot be detected after occlusion, because these poisoned objects are inherently incomplete
or poorly characterized even before occlusion. Considering the success of our algorithms in the
physical world in Section 5 and the comparable TP in Table 7, we believe our algorithms can alse
perform well in different attack settings in the physical world.

Table 7: Results in the digital world.

source target Algorithm TP mean IOU FP

person cake LeBD 63.92% 0.462 7.87%
CA-LeBD 72.68% 0.480 9.13%

airplane dining table LeBD 66.92% 0.186 8.12%
CA-LeBD 67.99% 0.188 8.33%

car dog LeBD 45.64% 0.316 6.03%
CA-LeBD 51.37% 0.317 6.26%

elephant horse LeBD 58.79% 0.464 7.15%
CA-LeBD 59.89% 0.466 7.44%

book clock LeBD 34.73% 0.419 7.63%
CA-LeBD 50.85% 0.447 8.05%
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