
Exploring Long-Horizon Reasoning with Deep RL
in Combinatorially Hard Tasks

Andrew C. Li 1 2 Pashootan Vaezipoor 1 2 Rodrigo Toro Icarte 3 4 2 Sheila A. McIlraith 1 2 5

Abstract

Deep reinforcement learning has shown promise
in discrete domains requiring complex reasoning,
including games such as Chess, Go, and Hanabi.
However, this type of reasoning is less often ob-
served in long-horizon, continuous domains with
high-dimensional observations, where instead RL
research has predominantly focused on problems
with simple high-level structure (e.g. opening a
drawer or moving a robot as fast as possible). In-
spired by combinatorially hard optimization prob-
lems, we propose a set of robotics tasks which
admit many distinct solutions at the high-level,
but require reasoning about states and rewards
thousands of steps into the future for the best per-
formance. Critically, while RL has traditionally
suffered on complex, long-horizon tasks due to
sparse rewards, our tasks are carefully designed to
be solvable without specialized exploration. Nev-
ertheless, our investigation finds that standard RL
methods often neglect long-term effects due to
discounting, while general-purpose hierarchical
RL approaches struggle unless additional abstract
domain knowledge can be exploited.

1. Introduction
Reinforcement learning (RL) is a powerful framework for
training sequential decision-making agents when the opti-
mal behaviour is unknown or difficult to specify. Recently,
RL has seen impressive strides across a number of domains
requiring complex reasoning (e.g. game playing (Silver
et al., 2018; Foerster et al., 2019; Anthony et al., 2017),
combinatorial optimization (Mazyavkina et al., 2021; Kool

1Department of Computer Science, University of Toronto
2Vector Institute 3Pontificia Universidad Católica de Chile 4Centro
Nacional de Inteligencia Artificial 5Schwartz Reisman Institute
for Technology and Society. Correspondence to: Andrew Li <an-
drewli@cs.toronto.edu>.

Decision Awareness in Reinforcement Learning Workshop at the
39th International Conference on Machine Learning (ICML), Bal-
timore, Maryland, USA, 2022. Copyright 2022 by the author(s).

et al., 2018)) as well as domains with long horizons and
high-dimensional observations (Gupta et al., 2020; Duan
et al., 2016; Tassa et al., 2018). Despite this, tasks which
require a combination of high-level, temporally abstracted
reasoning and low-level control over thousands of timesteps
(encompassing many real-world problems) still remain a
significant challenge for RL (Mirza et al., 2020). Often,
this failure is due to reward sparsity — as tasks become
increasingly long and difficult to solve, the reward signal
also tends to diminish, making it impractical to learn from
initially random behaviour.

Drawing inspiration from NP-hard combinatorial optimiza-
tion problems, we contribute a suite of carefully designed
tasks that can be decomposed to yield dense, shaped rewards
with the following property: these tasks admit a vast number
of feasible high-level solutions but solving them optimally
requires the agent to reason over many distinct possible
outcomes. We explore the prospect of solving such tasks
with deep RL, and our contributions can be summarized as
follows:

• Our investigation finds critical issues in applying deep
RL to combinatorial RL tasks, even when sparse re-
wards are not problematic. These issues relate to the
discount factor — undiscounted training is known to
be unstable, while we show that discounted RL often
leads to myopic behaviour inconsistent with maximizing
long-term rewards.

• We propose a simple modification to PPO (Schulman
et al., 2017) which drastically improves undiscounted
training while achieving similar or better performance
than vanilla PPO across our tasks.

• We further motivate hierarchical RL (HRL) for im-
proved abstract reasoning, beyond typical sparse reward
problems. We show that an HRL approach which ex-
ploits a hand-designed abstraction of the problem signif-
icantly outperforms standard (flat) deep RL. However,
existing general-purpose HRL algorithms, while often
claiming to produce meaningful temporal abstractions
(Frans et al., 2017; Bacon et al., 2017), fail to provide
these benefits.

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

(a) PointTSP (b) TimedTSP (c) ColourMatch

Figure 1. Combinatorial problems embedded in a MuJoCo robotics environment. (a) Visit all the zones as quickly as possible (blue = to
be visited, yellow = already visited). A possible path is marked in purple. (b) Visit all zones (or as many as possible), but each zone
is initialized with a timeout (darker red = lower timeout). Failing to visit any zone before it times out ends the episode (for the purple
trajectory, the bottom-left zone timed out). (c) Make all zones the same colour. Visiting a zone cycles its colour in a fixed order (3 possible
colours).

The rest of the paper is organized as follows. Section 2
provides an overview of related work. In Section 3, we
describe our proposed combinatorial RL problems and how
to encode them as non-sparse-reward MDPs. In Section 4,
we investigate the prospect of solving these combinatorially
hard, long-horizon tasks with standard deep RL, focusing on
the important role of the discount factor. Section 5 explores
whether the temporal abstractions afforded by hierarchy im-
prove reasoning on these tasks. We refer to the background
section in the Appendix for preliminary material on RL.

2. Related Work
Reinforcement learning has been successfully applied to a
wide variety of domains involving complex reasoning. Such
domains are often challenging due to a combinatorially large
state space. In symbolic domains with known models — in-
cluding games (e.g. Chess and Go) (Lai, 2015; Silver et al.,
2018; Anthony et al., 2017; Foerster et al., 2019), theorem
proving (Kaliszyk et al., 2018), symbolic regression (Landa-
juela et al., 2021), and combinatorial optimization problems
(Mazyavkina et al., 2021) — methods typically rely on some
form of search to improve reasoning. Recent RL research
has also targeted discrete, combinatorally hard games with
visual observations (Bagatella et al., 2021) such as Sokoban
(Racanière et al., 2017). Unfortunately, combinatorially rich
problems in complex, long-horizon environments generally
pose significant issues for RL (Mirza et al., 2020) due to
sparse rewards, with solutions often requiring additional
assumptions, such as domain knowledge (Vaezipoor et al.,
2021; León et al., 2020) or expert data (Guss et al., 2019).
While we are interested more broadly in long-horizon prob-
lems that involve complex decision-making, our choice of
tasks may evoke similarities to application areas such as
robot motion planning (Mohanan & Salgoankar, 2018; Gar-
rett et al., 2021). Indeed, motion planning problems also
pose challenges in both long-term planning and low-level
control. Traditionally, solutions often relied on domain

knowledge (Latombe, 2012), but in recent years deep RL
solutions have also been proposed (Aradi, 2020).

3. Combinatorial RL Tasks
In this section, we propose a suite of long-horizon,
optimization-based robotics tasks1 with underlying com-
binatorial structure (see Figure 1). Solving these tasks well
requires the agent to learn both low-level motor control as
well as long-term reasoning to optimize the performance
criteria. We highlight two key properties of our domains
before describing the specific tasks.

Combinatorial solution set: Each randomly generated in-
stance from our proposed set of tasks admits a large number
of distinct high-level feasible solutions. For example, in the
PointTSP task (where the goal is to visit all “cities” on the
grid as quickly as possible), there are 15! possible orderings
in which the agent can visit the cities. Similar to NP-hard
optimization tasks, we expect finding the optimal strategy
to be challenging for most instances. Note that the optimal
strategy depends on a number of factors, e.g., the placement
of the cities, the speed and turning radius of the robotic
agent, etc. This makes it difficult to handcraft strategies for
these tasks. To ensure that agents cannot simply memorize
well-performing solutions to a particular instance, we ran-
domly generate a new map each episode (during training
and evaluation), forcing the agent to learn a general strategy.

Reward density: In RL task design, it is often the case that
rewards become increasingly sparse as we attempt to scale
up the task complexity and horizon length (e.g. (Mirza et al.,
2020; Duan et al., 2016; Yu et al., 2020)). While previous
works have dealt with reward sparsity through specialized
exploration (Eysenbach et al., 2018; Gregor et al., 2016),
imitation learning (Hussein et al., 2017), or curriculum learn-

1Our environments are built off of OpenAI’s Safety Gym (Ray
et al., 2019) and our code is released at https://github.
com/andrewli77/combinatorial-rl-tasks.

https://github.com/andrewli77/combinatorial-rl-tasks
https://github.com/andrewli77/combinatorial-rl-tasks

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

ing (Portelas et al., 2020), these methods may negatively
bias the learned policy or require additional assumptions.
Instead, dense rewards are a property of our tasks by design,
allowing us to train policies via standard RL algorithms,
tabula rasa.

3.1. PointTSP

Inspired by the NP-hard Travelling Salesman Problem
(TSP), the objective of this task is to visit all 15 “cities”,
represented by zones, as quickly as possible (or if this is
impossible within the time limit of 2000 steps, to visit as
many cities). The robotic agent can accelerate and turn to
navigate to these zones and observes its own position, ve-
locity, the positions of zones (and their visitation status) and
the time remaining in the episode. We assume for now that
rewards are undiscounted (i.e. γ = 1, an assumption we
discuss in Section 4). The goal of reaching all 15 zones as
quickly as possible is encoded via a sparse reward of λtrem,
where λ ∈ (0,∞) is a hyperparameter (set to λ = 0.01
in our experiments), and trem is the time remaining when
the task is solved. Observe that the reward is Markovian
because the time remaining is observable to the agent. A
dense reward of 1 is also provided whenever a new city
is reached. Note that the dense reward is not misaligned
with the original objective, since any successful trajectory
garners a total return of 15 + λtrem, while any unsuccessful
trajectory garners a less than 15 total return. Thus, the agent
is incentivized, first and foremost, to succeed in the task,
and secondarily to succeed as fast as possible.

3.2. TimedTSP

This task introduces timeouts to PointTSP. Each zone i ∈
{1, ..., 15} is randomly and independently initialized with a
timeout ci from a Beta distribution, observable to the agent.
If any zone remains unvisited when its timeout expires, the
episode ends and is considered unsuccessful. Thus, the
agent may need to visit zones in an inefficient order (from
the perspective of PointTSP) to prevent a single zone from
expiring. Note that in some instances, a zone expiring may
be imminent (e.g. if two far-apart zones are both about to
expire), in which case it may be optimal to quickly visit
as many zones as possible rather than trying to address the
expiring zones.

3.3. ColourMatch

This environment contains six zones, each with a randomly
initialized (observable) colour: red, green, or blue. Visiting
a zone changes its colour to the next colour in a cycle,
i.e. green → red → blue → green, and prevents it from
being changed again for a short duration. The objective is
to make all zones the same colour as quickly as possible.
As before, a sparse reward of λtrem is provided on the

timestep the objective is met, incentivizing the agent to
succeed as quickly as possible. To help decompose the
task, we define the Hamming distance H(s) in a state s
as the minimum number of swaps required to solve the
task. We provide a dense reward to the agent each time
it changes the colour of a zone: for the transition s → s′

where a zone colour change occurs, the dense reward would
be H(s) − H(s′) ∈ {1, 0,−1,−2}. This dense reward
does not bias the original objective, since any successful
trajectory from the initial state s0 achieves the same total
dense reward of H(s0). A valid strategy is to only cause
colour changes that lead to positive dense rewards, solving
the task in the fewest number of colour swaps. However,
this may not optimally solve the task as quickly as possible
since it does not consider other relevant factors, e.g., the
location of the agent and zones.

3.4. Order-invariant Neural Architecture

Many combinatorial optimization problems are invariant
to the order of their inputs, such as the order of jobs in a
scheduling problem, or the order of graph edges in a TSP
problem. We would also like to exploit this property in our
domains. Consider as an example the PointTSP domain:
the agent receives observations regarding the position and
visitation status of zones, and the order in which the obser-
vations are conveyed is unimportant. A naive encoding that
concatenates all state observations and feeds them into (say)
a MLP loses this property of order invariance. This leads to
sample inefficient learning as an agent does not recognize
that a reward accrued by visiting a particular zone could
have been gained by visiting any zone.

Instead, we encode the order-invariance of zones by bor-
rowing ideas from Deep Sets networks (Zaheer et al., 2017;
Lee et al., 2019). We treat the inputs related to the K zones
as an unordered set {z1, ..., zK}, where each zi is a fixed-
sized vector consisting of the position and colour/visitation
of that zone. All other aspects of the observation (agent’s
position and velocity, time remaining, etc) are denoted by a
fixed-sized vector x. We use an MLP layer f to jointly
encode each zone zi with the remaining observation x
which is then aggregated over all zones via averaging, i.e.
w(1) = 1

n

∑K
i=1 f(Concat(x, zi)). We then pass the aggre-

gated vector w(1) and x through an additional MLP layer
g, allowing g to directly attend to relevant information in
x (e.g. the time remaining) which may be difficult to oth-
erwise capture in w(1), i.e. w(2) = g(Concat(w(1),x)).
w(2) is then passed directly to the RL agent. All methods in
our experiments used this order-invariant neural architecture
to encode observations.

Finally, we remark that other observation modalities may
naturally exploit order-invariance, such as images (i.e. the
same image observation is generated regardless of the zone

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

ordering). However, learning to process image observations
is often a strenuous task in itself and is detrimental to sample
efficiency. This is not our main focus in the domains we ex-
plore and we instead opted for a lightweight representation
of our observations.

4. The Role of Discounting
With the proposed long-horizon reasoning tasks encoded
as MDPs, we now explore the prospect of solving these
tasks directly with deep RL. We focus in particular on the
discount factor γ ∈ [0, 1], which plays a pivotal role by
incentivizing immediate rewards over rewards in the future.
Discounting is known to improve training stability (Amit
et al., 2020; Schulman et al., 2015; Marbach & Tsitsiklis,
2003) and is nearly always applied in deep RL, even when
the true goal is to maximize an undiscounted sum of rewards
(Andrychowicz et al., 2020). Indeed, in our domains, which
are finite-horizon (up to 2000 steps), the undiscounted ob-
jective is our goal. This assumption is made in Section 3 to
ensure task rewards align with the goal of solving the task
as quickly as possible.

While the benefits of discounting in deep RL are clear, it
may unfortunately lead to a mismatch between the desired
goal and the optimization objective. For example, when
discounting at γ = 0.99, a common discount factor for Mu-
JoCo tasks, a reward of 1 a thousand steps in the future is
reduced to ≈ 0.00004, while our tasks last up to twice that
many steps. To the best of our knowledge, domains demon-
strating a significant objective mismatch due to discount-
ing have thus far been limited to simple, tabular examples
with known optimal policies (Naik et al., 2019; Mahadevan,
1996). In more complex domains, the optimal undiscounted
return is rarely known due to the instability associated with
training an undiscounted objective. We hypothesize that
this discounted objective mismatch is especially critical to
address in domains with long-term dependencies since an
agent often must forego immediate rewards to maximize the
long-term ones. The following experiments investigate this
hypothesis.

Is discounting necessary for training? We first verify that
discounting indeed improves performance on our proposed
tasks, corroborating previous empirical studies that undis-
counted training is unstable (Andrychowicz et al., 2020;
Zhang et al., 2022). We trained PPO with discount fac-
tors γ ∈ {0.99, 0.9975, 1} on each of the three proposed
reasoning tasks. Final performances (as measured by undis-
counted return) are reported in Figure 2. Training with lower
discount factors improved the final performance on all do-
mains, particularly TimedTSP. On PointTSP and TimedTSP,
lower discount factors also significantly improved sample
efficiency (as evidenced by the learning curves in the Ap-
pendix).

4.1. Training Without Discounting

We next discuss why undiscounted RL is so difficult and mo-
tivate a simple change to PPO which significantly improves
performance in the undiscounted setting.

Value estimation with long horizons. We next consider
how discounting affects value estimation with function ap-
proximation. In policy gradient methods, estimated values
play a critical role in bootstrapping n-step returns and reduc-
ing variance as a baseline. Formally, we consider estimating
the value function V π,γ(s) = Eτ∼π|s0=s[Gγ(τ)], where
Gγ(τ) =

∑H
i=1 γ

i−1ri is the return of a trajectory τ (with
rewards r1, ..., rH) under discount factor γ.

Due to stochasticity in the policy π and/or the environment
dynamics, the return Gγ(τ) of a random trajectory starting
from state s can have high variance. We emphasize that
this variance often depends on the remaining horizon of s
— states s with many remaining steps in the episode tend to
have higher uncertainty in their returns. This can potentially
be problematic at training time for several related reasons:
(1) accurately estimating V π,γ(s) requires more samples;
(2) the learned value function is more prone to overfitting to
a poor batch of data, leading to instability; (3) states with
high variance returns (e.g., those at the beginning of a long
episode) may dominate the value loss, worsening the quality
of predicted values for other states.

We demonstrate the severity of this variance in our environ-
ments. Figure 3 shows the empirical variance ofGγ(τ) from
rolling out a fixed policy (obtained partway through training)
from the same initial state 20 times. When evaluatingGγ(τ),
we vary the discount factor γ ∈ {0.99, 0.9975, 1} as well
as the horizon length of the episode H ∈ {1, 2, ..., 2000}.
With γ = 1, the variance of the return Gγ(τ) drastically
increased with the horizon length while discounting with
γ = 0.99 maintained a relatively low variance throughout
the episode. This is expected as discounting effectively
shortens the horizon by reducing the contributions of distant
future rewards.

Dealing with high variance in value estimation. Besides
discounting, value bootstrapping methods such as GAE
(Schulman et al., 2015) are commonly used to trade-off
between bias and variance in long-horizon problems. Un-
fortunately, even with such techniques, PPO trained poorly
in the undiscounted setting.

Based on our previous observations, we propose and eval-
uate a simple modification to PPO to ameliorate the issue
of high variance in Gγ(τ) when training without discount-
ing. We consider learning the mean and variance of Gγ(τ),
rather than a point estimate of the mean (as is typically done
by the value network in PPO) for any state. This approach,
which we refer to as PPOVD (VD for “value distribution”)
is described in Algorithm 1. Intuitively, for states s where

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

N
or

m
al

iz
ed

R
et

ur
n

γ=

1.0

.75

.50

.25

0.0

−.25
0.99 0.9975 1 0.99 1

PPO PPOVD

PointTSP

0.99 0.9975 1 0.99 1

PPO PPOVD

TimedTSP

0.99 0.9975 1 0.99 1

PPO PPOVD

ColourMatch

Figure 2. Final performances (normalized undiscounted returns) for PPO & PPOVD trained with various discount factors. Returns are
averaged over 5 policies × 100 random instances, then normalized by the best known performance for that instance. Error bars show 90%
confidence intervals.

0 500 1000 1500 2000

PPO(= 0.99)
PPO(= 0.9975)
PPO(= 1)

0 500 1000 1500 2000 0 500 1000 1500 2000
10 4

10 3

10 2

10 1

100

101

102
PointTSP TimedTSP ColourMatch

V
ar

ia
nc

e
of

th
e

R
et

ur
n

Horizon LengthH

Figure 3. Variance of the return drastically increases with the hori-
zon length in the undiscounted case. We show empirical variance
in the return Gγ(τ) from 20 sampled trajectories of a fixed policy
and initial state, for various horizon lengths and γ. Results are
averaged over 20 instances × 5 policies, with error bars showing
standard error. Note the log scale on the y-axis.

the return is predicted to have high variance, PPOVD per-
forms a more conservative update compared to a point esti-
mate of the value, making PPOVD less prone to overfitting
within a batch of experience. While PPOVD has similar
motivations to distributional RL (Bellemare et al., 2017;
Nam et al., 2021), we opt for a simpler setup, requiring
minimal changes to the standard PPO algorithm. For ex-
ample, we model the value distribution as Gaussian, which
only requires learning a scalar mean and standard devia-
tion, and the n-step returns (which use predicted values for
bootstrapping) are treated as scalar targets rather than dis-
tributions. We are unaware of any prior work which learns
value distributions to specifically address the instability of
high discount factors in long-horizon environments.

The performance of PPOVD is reported in Figure 2. A
version of PPOVD with γ = 0.99 is also included for com-
parison, though the algorithm is motivated for the undis-
counted case. PPO(γ=1)

VD converged to similar or better per-
formance than PPO with discounting across all domains. No-

Algorithm 1: PPOVD (1 iteration). Changes with re-
spect to standard PPO are marked in red.

1 Inputs: Number of steps T , discount factor γ, GAE
parameter λ, number of optimization epochs K, policy
network parameters θ, value network parameters ψ ;

/* Data collection + processing */
2 Collect T on-policy samples

(s0, a0, r1, s1, ..., aT , rT , sT+1) using πθ;
3 Compute estimated values vt = value netψ(st).mean;
4 Compute estimated advantages

advt =
∑T−t
l=0 (γλ)l(rt+l + γvt+l+1 − vt+l);

5 Compute value targets v̂t = vt + advt;

/* Policy optimization */
6 for K epochs do
7 Update θ using PPO loss and advantages;
8 Update ψ using Gaussian negative-log-likelihood

loss and value targets;
9 end

tably, on TimedTSP, PPO(γ=1)
VD significantly outperformed

PPO(γ=0.99) which we believe is due to optimizing the true
objective – we provide further evidence of this below. Fur-
thermore, PPO(γ=1)

VD significantly outperformed PPO(γ=1),
which we attribute to the improved stability of our approach
in the undiscounted case. As expected, however, instability
does not appear as problematic in the discounted setting:
modelling a value distribution (i.e. PPO(γ=0.99)

VD) provided
no additional benefit on top of PPO(γ=0.99) and was some-
times detrimental to performance. Lastly, discounting ap-
pears advantageous for sample efficiency: PPO(γ=0.99) was
generally more sample efficient than PPO(γ=1)

VD .

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

Figure 4. A visualization of 15 trajectories (5 policies × 3 rollouts)
from PPO(γ=0.99) (blue) and PPO(γ=1)

VD (orange) on a TimedTSP
instance. Circles indicate zones, with darker red indicating lower
timeout; the green robot indicates the starting position; X’s indicate
the end of a trajectory due to a timeout. Trajectories become more
transparent over time to focus on each policy’s initial behaviour.
PPO(γ=1)

VD immediately visits the two zones with lowest timeout,
while PPO(γ=0.99) neglects this and quickly fails.

How does objective mismatch due to discounting affect
performance? We previously observed that optimizing the
undiscounted objective with PPOVD can improve perfor-
mance over discounted RL. Here we take a closer look at
how discounting can be detrimental to decision-making. We
report in Table 1 the final performances of PPO(γ=0.99),
PPO(γ=1)

VD , and Zone-goals(γ=1) (a strong baseline we intro-
duce in the next section to optimize the undiscounted objec-
tive) using both discounted (γ = 0.99) and undiscounted
(γ = 1) returns as the evaluation criteria. We find evidence
of objective mismatch due to discounting on TimedTSP and,
to a lesser extent, on PointTSP — Zone-goals simultane-
ously performed better than PPO(γ=0.99) when evaluated
with γ = 1 but also worse when evaluated with γ = 0.99.

On TimedTSP, we observed critical differences in the
decision-making of PPO(γ=0.99) vs PPO(γ=1)

VD . A visualiza-
tion of each method’s behaviour on a challenging instance
is shown in Figure 4. In this instance, two zones are ini-
tially close to timing out and must be visited promptly to
continue the episode. All trajectories from PPO(γ=1)

VD imme-

PointTSP TimedTSP ColourMatch
baseline γeval 0.99 1 0.99 1 0.99 1
PPO(γ=0.99) 1.13 23.48 1.12 14.15 0.60 16.45
PPO(γ=1)

VD 0.66 23.36 0.67 16.19 0.32 16.33
Zone-goals(γ=1) 0.81 24.24 0.91 21.95 0.93 18.95

Table 1. On PointTSP and TimedTSP, the best baseline depends
on γeval showing that the γ = 1 and γ = 0.99 objectives are not
aligned. The average return of 500 (5 policies × 100 instances)
trajectories from each approach is reported.

0 400 800 1200

1
5

10

15

PPO(γ=0.99)

Zone-goals

Number of timesteps

Figure 5. The cumulative time spent in PointTSP to visit i zones,
for i ∈ {1, 2, ..., 15} (averaged over 5 policies × 100 instances).
The height of each line increases with i, and lines corresponding to
i ∈ {1, 5, 10, 15} are marked with a circle. PPO(γ=0.99) rapidly
visits the first few zones, but spends more time visiting all 15 zones
than Zone-goals.

diately visited these zones and managed to achieve a high
return while most trajectories from PPO(γ=0.99) neglected
these zones and quickly failed. Notably, PPO(γ=0.99) al-
ways greedily visited the closest zone to the agent’s starting
position first, while none of the PPO(γ=1)

VD trajectories did.

While less pernicious towards performance, discounted PPO
also showed signs of myopic decision-making on PointTSP.
We observed that PPO(γ=0.99) often left outlying cities un-
visited until the end in order to more rapidly visit cities at
the start. This is evidenced in Figure 5, where we report the
average cumulative time taken to visit i cities (for each i up
to 15) for PPO(γ=0.99) and Zone-goals. Despite visiting the
first few cities quicker than Zone-goals, PPO(γ=0.99) spends
considerable time visiting the last few cities and ultimately
is slower in solving the task.

On ColourMatch, we remark that Zone-goals outperformed
PPO(γ=0.99) on both the discounted and undiscounted ob-
jectives, implying that discounting cannot be the only source
of suboptimality. We believe this is since ColourMatch
presents a more difficult reasoning task – in fact, even de-
termining whether visiting a zone will result in a positive
reward is non-trivial as it depends on the colours of the other
zones.

5. The Role of Hierarchy
In the previous section, we observed significant issues with
PPO in long-horizon reasoning tasks: training with γ close
to 1 was often unstable while lowering the discount factor
exhibited myopic behaviour. Here, we turn our attention
to hierarchical reinforcement learning (HRL), which has
widely been applied to long-horizon tasks in the past. HRL

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

is often motivated by the hierarchical structure present in
real-world tasks — to make pizza, one must roll out the
dough, prepare the sauce, add toppings, and bake the pizza.
Unfortunately, as tasks increase in length and complexity,
they quickly become unsolvable by methods which learn
from random initial behaviour in the sparse reward setting.
Many works in deep HRL aim to address this reward sparsity
by improving exploration (e.g. (Eysenbach et al., 2018; Li
et al., 2019; Florensa et al., 2017; Zhang et al., 2021)).
Indeed, mitigating the impact of sparse rewards has been
cited as the main benefit resulting from hierarchy in existing
methods (Nachum et al., 2019; Jong et al., 2008).

Here, we attempt to motivate a different rationale for the
use of hierarchy. In our long-horizon environments, single
actions are unlikely to lead to meaningfully different states
and therefore, exploiting the high-level structure in our tasks
may require reasoning over concepts that are temporally ab-
stracted. In this section, we investigate whether the temporal
abstractions afforded by HRL indeed improve reasoning on
combinatorial RL tasks compared to non-hierarchical RL.

5.1. Experimental Setup

A wide variety of HRL algorithms have previously been
proposed in the literature and we attempt to cover a rep-
resentative sample of them here. We restrict ourselves to
the two-level hierarchical framework, as is most common
in deep RL environments. In this framework, a high-level
policy operates at a lower temporal frequency by selecting
high-level actions which persist for many timesteps (either a
fixed number, or based on state-dependent termination crite-
ria). A low-level policy conditions on the current high-level
action to select actions in the environment every timestep.
We assume both high and low-level policies receive the full
environment observation. The manner in which the high and
low-level policies are trained also varies between algorithms.
In each of our HRL implementations, we concurrently train
both the high and low-level policies with PPO, using the
same on-policy data to optimize each, similar to (Li et al.,
2019). While off-policy HRL approaches exist (Nachum
et al., 2018) and are potentially more sample efficient, they
are generally less stable due to the worsened effects of non-
stationarity from training both policies simultaneously. All
methods were trained for 100 million frames on PointTSP
and 150 million frames on TimedTSP and ColourMatch, and
the hidden layer sizes were adjusted such that each method
used roughly the same number of parameters. The complete
hyperparameter settings are reported in the Appendix.

5.2. Methods and Results

We describe the HRL methods we considered and report
their performances on our suite of long-horizon reasoning
tasks in Figure 6.

Fixed-length skills (Florensa et al., 2017; Frans et al.,
2017): A simple and common HRL approach uses the high-
level policy to choose a discrete low-level skill to execute
every k timesteps, where k is a constant. Both the high
and low-level policies are optimized directly using the en-
vironment reward. We choose to optimize the low-level
policy using discounted environment rewards as learning
was unstable with undiscounted rewards. However, as the
high-level policy essentially faces a shorter horizon length
due to actions being temporally extended, we optimize the
high-level policy using undiscounted environment rewards
to avoid the issue of objective mismatch.

Result. Fixed-length skills achieved similar performance
to flat PPO. Even when evaluated with random skills, the
performance did not drop, suggesting that the different skills
became indistinguishable from one another. In such cases,
the HRL policy effectively collapses into a flat policy and is
unable to benefit from temporally extended actions.

DIAYN (Eysenbach et al., 2018): To avoid learning
a homogeneous set of skills, we consider applying an
information-theoretic diversity objective to the fixed-length
skills framework. Such approaches typically learn task-
agnostic skills in a reward-free setting to improve down-
stream exploration. Instead, we explore whether promot-
ing skill diversity in our domains can aid in learning more
meaningful high-level actions. We linearly combine task re-
wards with the DIAYN objective when training the low-level
policy: r′t = rt + α(log qϕ(zt|st+1)− log pψ(zt)), where
α ∈ [0,∞) is a hyperparameter, rt the environment reward,
zt the current discrete skill, qϕ a neural network trained to
predict the skill distribution given the next state, and pψ a
neural network trained to predict the prior skill distribution.
The high-level policy was trained to maximize undiscounted
environment rewards (without the diversity objective).

Result. The inclusion of the diversity term performed worse
than fixed-length skills in all tasks. Thus, simultaneously
optimizing for diversity and reward appears detrimental to
reward.

Options (Sutton et al., 1999; Bacon et al., 2017): An
option ω is a temporally extended action which consists of
a low-level policy πω : S ×A → [0, 1], a set of states Iω ⊆
S where ω can be initiated, and a termination condition
βω : S → [0, 1]. When an option terminates, a high-level
policy chooses the next option from among those that can
be initiated. To simplify learning, we assume all options can
be initiated in any state (similar to (Bacon et al., 2017)). We
learn the termination condition by augmenting the action-
space of the low-level policy with a special stop action.
As before, the low-level policy and the high-level policy
over options are trained on the discounted and undiscounted
(resp.) environment rewards.

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

N
or

m
al

iz
ed

R
et

ur
n

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

PPO (γ=
0.99)

Zone-goals

Fixed-length skills

DIAYN
Options

xy-goals

TSP-Solver

PointTSP

PPO (γ=
0.99)

Zone-goals

Fixed-length skills

DIAYN
Options

xy-goals

TimedTSP

PPO (γ=
0.99)

Zone-goals

Fixed-length skills

DIAYN
Options

xy-goals

ColourMatch

Figure 6. Final performances (normalized undiscounted returns) for various HRL methods. Returns are averaged over 5 policies × 100
random instances, then normalized by the best known performance for that instance. Error bars show 90% confidence intervals.

Result. Learning the termination condition provided similar
performance to fixed-length skills. We observed that the
learned skills usually terminated after fewer than 10 steps,
making it difficult for the high-level policy to meaningfully
reason over long horizons.

xy-goals: Inspired by goal-based HRL (Gürtler et al., 2021;
Nachum et al., 2018; Chane-Sane et al., 2021; Vezhnevets
et al., 2017), we evaluate an approach where the high-level
policy assigns xy-goals g ∈ R2 to the low-level agent. The
low-level policy receives only a dense reward based on the
change in Euclidean distance to the goal every timestep
while the high-level policy directly receives rewards from
the environment.

Result. This approach performed poorly on all domains.
Since the low-level policy does not directly receive task re-
wards, it instead must rely on the goals set by the high-level
policy to solve the task. xy-goals do not appear well-suited
for these tasks, as we observed the agent often missed impor-
tant zones despite reaching the target locations effectively.
Neither increasing the frequency of goal selection nor using
full states as goals (similar in spirit to (Nachum et al., 2018))
improved performance.

Zone-goals (Ours): We design a domain-specific goal-
space based on the zones in the environment. With the
current observation, the high-level policy produces a score
for each zone and selects the next zone the agent should visit
using a softmax over the scores. Certain zones in PointTSP
and TimedTSP are invalid choices if previously visited, and
are masked out, with the policy gradients adjusted accord-
ingly (Tang et al., 2020). The low-level policy receives the
xy-coordinates of the goal zone in addition to the current
observation, and is rewarded in the same manner as the
xy-goals approach.

Result. This method significantly outperformed the previ-
ous approaches (including standard PPO), particularly on
TimedTSP and ColourMatch. This demonstrates the efficacy
of hierarchy towards long-term reasoning, given the proper
abstraction of the problem. Despite optimizing the undis-
counted reward at the high-level, the instability observed in
standard PPO in Section 4 did not present here.

TSP-Solver (Ours): On the PointTSP domain, we con-
sider generating a open-loop, high-level plan at the start
of every episode over the order in which zones should be
visited. The plan is generated using a metric TSP solver
with the xy-coordinates of zones as city locations. With
this fixed ordering of zones (which replaces the role of the
high-level policy), the low-level policy is rewarded based
on xy-distance towards the next unvisited zone. However,
we allow the low-level policy to plan ahead by observing
the entire ordering of zones — for the i-th zone in the or-
dering, the observation for that zone is augmented with a
scalar value of 2−i+1 to uniquely identify its position in the
ordering.

Result. Using a planner outperformed all other approaches
on PointTSP, showing the advantage of abstract planning
in complex, long-horizon domains. We note that the plan
generated is not necessarily optimal, since the solver does
not consider the agent’s acceleration, turning speed, and
other relevant factors to the problem.

6. Conclusion
In this work we studied long-horizon robotics tasks that are
combinatorially hard but that afford a number of feasible
solutions. To this end, we proposed a representative set of
tasks that challenge the performance of state-of-the-art RL

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

methods. Our tasks involve both low-level motor control as
well as complex, long-term reasoning about delayed rewards
and distinct possibilities over future states. Crucially, these
tasks can be solved (albeit suboptimally) by standard RL
methods without specialized exploration. Through our in-
vestigation, we uncovered several weaknesses with state-of-
the-art RL algorithms in the context of long-term reasoning,
highlighting promising directions for future work.

Undiscounted RL. Discounting is nearly always applied
in long-horizon deep RL problems for stability, however
this can cause a significant objective mismatch in some
of our domains. We showed that this leads to “myopic”
decisions which fail to consider delayed rewards. Thus
far, undiscounted RL (or average-reward RL) has received
little attention from the deep RL community. We believe
that improving the robustness and sample efficiency for
undiscounted RL will become increasing important as RL
scales to longer and more complex tasks.

Hierarchical RL. While the benefits of hierarchy in plan-
ning and reasoning are often espoused (Erol et al., 1994; Sut-
ton et al., 1999; Currie & Tate, 1991), most HRL research
to date has focused on the challenge of exploration. In-
stead, we motivate the use of hierarchy as a way to improve
long-term reasoning where standard RL methods fail. We
demonstrated in our combinatorial RL domains that lever-
aging the proper hierarchical abstraction can substantially
improve convergence performance over standard RL. How-
ever, this hierarchical abstraction was built using domain
knowledge of the problem, and existing general-purpose
HRL approaches were unable to provide similar benefits
over PPO. In particular, hierarchies based on learned skills
were prone to collapsing into a single skill, nullifying any
benefits over flat policies. Thus, the automated discovery of
hierarchies suitable for temporally extended reasoning and
planning remains an important problem for future work.

In conclusion, we presented long-horizon RL problems that
involve combinatorial reasoning to scale up task complexity
while avoiding the issue of sparse rewards, which has tradi-
tionally plagued RL task design. We believe these types of
problems can expedite future RL research due to the unique
challenges they pose to existing RL methods.

7. Acknowledgements
We gratefully acknowledge funding from the Natural
Sciences and Engineering Research Council of Canada
(NSERC), the Canada CIFAR AI Chairs Program, and
Microsoft Research. Resources used in preparing this re-
search were provided, in part, by the Province of Ontario,
the Government of Canada through CIFAR, and compa-
nies sponsoring the Vector Institute for Artificial Intelli-
gence (www.vectorinstitute.ai/partners). Fi-

nally, we thank the Schwartz Reisman Institute for Tech-
nology and Society for providing a rich multi-disciplinary
research environment.

References
Amit, R., Meir, R., and Ciosek, K. Discount factor as a

regularizer in reinforcement learning. In International
conference on machine learning, pp. 269–278. PMLR,
2020.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M.,
Girgin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin,
O., Michalski, M., et al. What matters in on-policy rein-
forcement learning? a large-scale empirical study. arXiv
preprint arXiv:2006.05990, 2020.

Anthony, T., Tian, Z., and Barber, D. Thinking fast and slow
with deep learning and tree search. Advances in Neural
Information Processing Systems, 30, 2017.

Aradi, S. Survey of deep reinforcement learning for motion
planning of autonomous vehicles. IEEE Transactions on
Intelligent Transportation Systems, 2020.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic
architecture. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

Bagatella, M., Olšák, M., Rolı́nek, M., and Martius, G.
Planning from pixels in environments with combinatori-
ally hard search spaces. Advances in Neural Information
Processing Systems, 34, 2021.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 449–458.
PMLR, 2017.

Chane-Sane, E., Schmid, C., and Laptev, I. Goal-
conditioned reinforcement learning with imagined sub-
goals. In International Conference on Machine Learning,
pp. 1430–1440. PMLR, 2021.

Currie, K. and Tate, A. O-plan: The open plan-
ning architecture. Artificial Intelligence, 52
(1):49–86, 1991. ISSN 0004-3702. doi:
https://doi.org/10.1016/0004-3702(91)90024-E.
URL https://www.sciencedirect.com/
science/article/pii/000437029190024E.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International conference on
machine learning, pp. 1329–1338. PMLR, 2016.

Erol, K., Hendler, J. A., and Nau, D. S. Umcp: A sound
and complete procedure for hierarchical task-network
planning. In Aips, volume 94, pp. 249–254, 1994.

www.vectorinstitute.ai/partners
https://www.sciencedirect.com/science/article/pii/000437029190024E
https://www.sciencedirect.com/science/article/pii/000437029190024E

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2018.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural
networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1704.03012, 2017.

Foerster, J., Song, F., Hughes, E., Burch, N., Dunning, I.,
Whiteson, S., Botvinick, M., and Bowling, M. Bayesian
action decoder for deep multi-agent reinforcement learn-
ing. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 1942–1951. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/
v97/foerster19a.html.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman,
J. Meta learning shared hierarchies. arXiv preprint
arXiv:1710.09767, 2017.

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver, T.,
Kaelbling, L. P., and Lozano-Pérez, T. Integrated task
and motion planning. Annual review of control, robotics,
and autonomous systems, 4:265–293, 2021.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. arXiv preprint arXiv:1611.07507, 2016.

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman,
K. Relay policy learning: Solving long-horizon tasks via
imitation and reinforcement learning. In Conference on
Robot Learning, pp. 1025–1037. PMLR, 2020.

Gürtler, N., Büchler, D., and Martius, G. Hierarchical re-
inforcement learning with timed subgoals. Advances in
Neural Information Processing Systems, 34, 2021.

Guss, W. H., Houghton, B., Topin, N., Wang, P., Codel,
C., Veloso, M., and Salakhutdinov, R. Minerl: A large-
scale dataset of minecraft demonstrations. arXiv preprint
arXiv:1907.13440, 2019.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Im-
itation learning: A survey of learning methods. ACM
Computing Surveys (CSUR), 50(2):1–35, 2017.

Jong, N. K., Hester, T., and Stone, P. The utility of temporal
abstraction in reinforcement learning. In AAMAS (1), pp.
299–306. Citeseer, 2008.

Kaliszyk, C., Urban, J., Michalewski, H., and Olšák, M.
Reinforcement learning of theorem proving. Advances in
Neural Information Processing Systems, 31, 2018.

Kool, W., Van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Lai, M. Giraffe: Using deep reinforcement learning to play
chess. arXiv preprint arXiv:1509.01549, 2015.

Landajuela, M., Petersen, B. K., Kim, S., Santiago, C. P.,
Glatt, R., Mundhenk, N., Pettit, J. F., and Faissol, D.
Discovering symbolic policies with deep reinforcement
learning. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 5979–5989. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/landajuela21a.html.

Latombe, J.-C. Robot motion planning, volume 124.
Springer Science & Business Media, 2012.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR,
2019.

León, B. G., Shanahan, M., and Belardinelli, F. Systematic
generalisation through task temporal logic and deep re-
inforcement learning. arXiv preprint arXiv:2006.08767,
2020.

Li, S., Wang, R., Tang, M., and Zhang, C. Hierarchical
reinforcement learning with advantage-based auxiliary
rewards. Advances in Neural Information Processing
Systems, 32, 2019.

Mahadevan, S. Average reward reinforcement learning:
Foundations, algorithms, and empirical results. Machine
learning, 22(1):159–195, 1996.

Marbach, P. and Tsitsiklis, J. N. Approximate gradient
methods in policy-space optimization of markov reward
processes. Discrete Event Dynamic Systems, 13(1):111–
148, 2003.

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev,
E. Reinforcement learning for combinatorial optimiza-
tion: A survey. Computers & Operations Research, 134:
105400, 2021.

Mirza, M., Jaegle, A., Hunt, J. J., Guez, A., Tunyasuvu-
nakool, S., Muldal, A., Weber, T., Karkus, P., Racanière,
S., Buesing, L., et al. Physically embedded planning
problems: New challenges for reinforcement learning.
arXiv preprint arXiv:2009.05524, 2020.

Mohanan, M. and Salgoankar, A. A survey of robotic mo-
tion planning in dynamic environments. Robotics and
Autonomous Systems, 100:171–185, 2018.

https://proceedings.mlr.press/v97/foerster19a.html
https://proceedings.mlr.press/v97/foerster19a.html
https://proceedings.mlr.press/v139/landajuela21a.html
https://proceedings.mlr.press/v139/landajuela21a.html

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. Advances in neural
information processing systems, 31, 2018.

Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., and Levine,
S. Why does hierarchy (sometimes) work so well in re-
inforcement learning? arXiv preprint arXiv:1909.10618,
2019.

Naik, A., Shariff, R., Yasui, N., Yao, H., and Sutton, R. S.
Discounted reinforcement learning is not an optimization
problem. arXiv preprint arXiv:1910.02140, 2019.

Nam, D. W., Kim, Y., and Park, C. Y. Gmac: A distribu-
tional perspective on actor-critic framework. In Interna-
tional Conference on Machine Learning, pp. 7927–7936.
PMLR, 2021.

Portelas, R., Colas, C., Weng, L., Hofmann, K., and
Oudeyer, P.-Y. Automatic curriculum learning for deep rl:
A short survey. arXiv preprint arXiv:2003.04664, 2020.

Racanière, S., Weber, T., Reichert, D., Buesing, L., Guez, A.,
Jimenez Rezende, D., Puigdomènech Badia, A., Vinyals,
O., Heess, N., Li, Y., Pascanu, R., Battaglia, P., Hassabis,
D., Silver, D., and Wierstra, D. Imagination-augmented
agents for deep reinforcement learning. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
9e82757e9a1c12cb710ad680db11f6f1-Paper.
pdf.

Ray, A., Achiam, J., and Amodei, D. Benchmarking Safe
Exploration in Deep Reinforcement Learning. 2019.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,
D., Graepel, T., Lillicrap, T., Simonyan, K., and Has-
sabis, D. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018. doi: 10.1126/science.
aar6404. URL https://www.science.org/doi/
abs/10.1126/science.aar6404.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

Tang, C.-Y., Liu, C.-H., Chen, W.-K., and You, S. D. Im-
plementing action mask in proximal policy optimization
(ppo) algorithm. ICT Express, 6(3):200–203, 2020.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Vaezipoor, P., Li, A. C., Icarte, R. A. T., and Mcilraith,
S. A. LTL2Action: Generalizing LTL instructions for
multi-task RL. In International Conference on Machine
Learning, pp. 10497–10508. PMLR, 2021.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. Feudal net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 3540–3549.
PMLR, 2017.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on Robot Learning, pp. 1094–1100. PMLR,
2020.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in neural information processing systems, 30,
2017.

Zhang, J., Yu, H., and Xu, W. Hierarchical reinforcement
learning by discovering intrinsic options. In 9th Interna-
tional Conference on Learning Representations, ICLR,
2021.

Zhang, S., Laroche, R., van Seijen, H., Whiteson, S., and des
Combes, R. T. A deeper look at discounting mismatch in
actor-critic algorithms. In 21st International Conference
on Autonomous Agents and Multiagent Systems, AAMAS,
pp. 1491–1499, 2022.

https://proceedings.neurips.cc/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

Appendices

A. Background
In this paper, we consider the discounted formulation of a
Markov Decision Process (MDP)M = ⟨S, T,A, p, r, γ, µ⟩,
where S is a set of states, T ⊆ S a set of terminal states, A
a set of actions, p(s′|s, a) the transition probability distri-
bution, r(s, a, s′) the reward function, γ the discount factor,
and µ the initial state distribution. For each episode, the
initial state s0 is randomly sampled from µ. The agent
then chooses actions at at each timestep t ≥ 0 accord-
ing to its policy π(at|st) and receives the next state st+1

according to transition probabilities (also known as the
dynamics) p(st+1|st, at) and a reward rt+1 according to
r(st, at, st+1). This proceeds until a terminal state in T is
reached. The discounted return in an episode of length H is
defined as

∑H
i=1 γ

i−1ri and the goal of the agent is to learn
a policy π(a|s) that maximizes the expected discounted
return.

We focus in particular on on-policy policy gradient methods,
a popular class of RL algorithms for environments with
continuous actions and states. Here, the policy πθ(a|s)
is stochastic and parametrized by θ (e.g. θ could be the
weights of a neural network). On-policy methods sample
data from the environment according to the current policy
πθ(a|s) and attempt to directly estimate the gradient of the
expected return∇θE[

∑H
i=1 γ

i−1ri], where the expectation
is over the stochasticity of the policy and the environment
transitions. The estimated gradients are then used to update
the policy parameters θ (hopefully resulting in a higher
expected return) using gradient ascent.

B. Packages and Licensing
The code for our proposed set of environments, along with
scripts for training and evaluation will be publicly released
upon publication. Our environments are built off of the
OpenAI Safety Gym2 while the RL training code is built
off of the torch-ac repository3, both of which are available
under an MIT license. Note that the OpenAI Safety Gym
uses MuJoCo 4 which is freely available under an Apache
2.0 license.

C. Additional Experimental Details
All experiments were conducted on a compute cluster using
a single GPU and 16 CPU cores per run. PPO training lasted

2https://github.com/openai/safety-gym
3https://github.com/lcswillems/torch-ac
4https://www.roboti.us/index.html

roughly 18 hours for PointTSP (for 100 million frames),
55 hours for PointTSP (for 150 million frames), and 27
hours for ColourMatch (for 150 million frames). Other
methods required a similar amount of training time, except
for Options, which required about 50% more time. Note
that with fixed-length skills, calls to the high-level policy
could be synchronized across parallel training environments,
while this was not possible with variable-length Options.

We show the learning curves of PPO and HRL baselines in
Figures 7 and 8 respectively.

C.1. Network Architectures

Here, we report the network architectures for all methods
in our experiments. The sizes of hidden layers are reported
in the next section and were chosen to ensure the number
of parameters of each method were roughly equal. All
activations are ReLU.

PPO(γ=0.99), PPO(γ=0.9975), PPO(γ=1), PPO(γ=0.99)
VD ,

PPO(γ=1)
VD : Observations were first encoded with the order-

invariant neural architecture described in Section 3.4: each
zone is encoded using an MLP with two hidden layers,
and then the average of all zone encodings is aggregated
through a single linear layer. This observation encoding
is then passed to the actor and critic (both single hidden-
layer MLPs). For PPOVD, the final critic layer has two
output heads to model a mean and standard deviation (using
softplus for the latter).

Fixed-length skills, DIAYN, Options: The high and low-
level policies each use the same architecture as for PPO with
minor changes: the hidden sizes are reduced to maintain the
same number of parameters; the high-level policy outputs a
discrete skill (5 possible values); and the low-level policy
conditions on the current skill. For Options, the low-level
policy additionally outputs a probability of terminating the
current skill. For DIAYN, we additionally train a neural
network to predict the current skill given next state. This
network uses the order-invariant neural architecture: a two
hidden-layer MLP for encoding zones and a one hidden-
layer MLP for aggregation.

xy-goals, Zone-goals: The high and low-level policies are
the same as before with the following minor differences.
In xy-goals, the high-level policy outputs xy-coordinates
which the low-level policy conditions on. In Zone-goals, the
high-level policy outputs a discrete zone, and the low-level
policy conditions on the xy-coordinates of that zone.

C.2. Hyperparameters

Hyperparameter tuning in RL is known to be laborious due
to the large number of tunable hyperparameters, yet critical
for performance. To ensure robust training, we set relatively

https://github.com/openai/safety-gym
https://github.com/lcswillems/torch-ac
https://www.roboti.us/index.html

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

0.0 0.2 0.4 0.6 0.8 1.0
1e8

PPO(= 0.99)
PPO(= 0.9975)
PPO(= 1)
PPO-VD
PPO-VD(= 0.99)

0.0 0.5 1.0 1.5
1e8

0.0 0.5 1.0 1.5
1e8

0

5

10

15

20

25
PointTSP TimedTSP ColourMatch

R
et

ur
n

Frames

Figure 7. Learning curves for PPO and PPOVD baselines. PPO(γ=1)
VD generally results in similar or better final performance compared to

PPO, but PPO(γ=0.99) can be more sample efficient. Results are averaged over 5 runs, with error bars reporting standard error.

0.0 0.2 0.4 0.6 0.8 1.0
1e8

PPO(= 0.99)
Fixed-length skills
DIAYN
xy-goals
Zone-goals
Options

0.0 0.5 1.0 1.5
1e8

0.0 0.5 1.0 1.5
1e8

0

5

10

15

20

25
PointTSP TimedTSP ColourMatch

R
et

ur
n

Frames

Figure 8. Learning curves for HRL baselines, with PPO(γ=0.99) included for comparison. Zone-goals significantly outperformed other
baselines, while other HRL approaches performed similarly or worse compared to PPO. Results are averaged over 5 runs, with error bars
reporting standard error.

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

Table 2. Hyperparameters for PPO and PPOVD for the majority
of our experiments. The following alterations were made: on
ColourMatch, the number of steps per update was doubled to
128000 (for all methods); on PointTSP, PPO(γ=1)

VD used 6 epochs
for optimization.

PPO PPOVD

Discount factor (γ) 0.99 0.9975 1 0.99 1

Value loss coefficient 0.5 0.5 0.5 0.005 0.005
Env. steps per update ←− 64, 000 −→
Number of epochs ←− 10 −→
Minibatch size ←− 1, 600 −→
Learning rate ←− 3× 10−4 −→
GAE-λ ←− 0.95 −→
Entropy coefficient ←− 0.003 −→
Gradient Clipping ←− 0.5 −→
PPO Clipping (ε) ←− 0.2 −→
Hidden units per layer ←− 185 −→

large values for the number of env. steps per update and the
minibatch size for all approaches while tuning the number
of optimization epochs. The entropy coefficient was critical
for final performance – setting the value too high would
indirectly reduce the agent’s maximum speed while setting
the value too low would lead to suboptimal convergence.
Since many of our baselines are based on PPO, we found a
similar set of hyperparameters to perform well across many
methods.

We report the hyperparameters for PPO and PPOVD in Ta-
ble 2 and the hyperparameters for the HRL methods in
Table 3. For HRL methods with a fixed skill length (fixed-
length skills, DIAYN, xy-goals), we chose a skill length
of 200. For methods with a fixed number of discrete skills
(fixed-length skills, DIAYN, Options) we set the number of
skills to 5.

DIAYN also used a hyperparameter α to linearly combine
environment rewards with the diversity objective, which
was set to 0.01. We found that lower values of α caused
the diversity objective to be ignored, resulting in similar
performance to fixed-length skills.

D. Broader Impact
While our contributions are primarily foundational and may
not directly lead to malicious use, we acknowledge that
future applications that exploit our research could have the
potential for a negative societal impact. In particular, the
insights gathered from our results may help train reinforce-
ment learning agents with greater capabilities, and therefore,
greater potential for harm when misused. As many applica-
tions of reinforcement learning are safety-critical, including
autonomous driving, robotics, and healthcare, we caution

Table 3. Hyperparameters for HRL baselines (Fixed-length skills,
DIAYN, Options, xy-goals, Zone-goals, TSP-solver). On Colour-
Match, the number of steps per update was doubled to 128000
(for all methods). The high-level hyperparameters do not apply to
TSP-solver, which did not have a high-level policy.

Env. steps per update 64,000
Hidden units per layer 128

(Low-level policy optimization)
Number of epochs 10
Minibatch size 1,600
Discount factor (γ) 0.99
Learning rate 3× 10−4

GAE-λ 0.95
Entropy coefficient 0.003
Value loss coefficient 0.5
Gradient Clipping 0.5
PPO Clipping (ε) 0.1

(High-level policy optimization)
Number of epochs 5
Minibatch size 80
Discount factor (γ) 1
Learning rate 3× 10−4

GAE-λ 0.95
Entropy coefficient 0.01
Value loss coefficient 0.5
Gradient Clipping 0.5
PPO Clipping (ε) 0.1

against over-trusting reinforcement learning, particularly in
situations where the system was not trained on the environ-
ment in which it is being deployed. More work is needed
to develop robust safety guarantees for RL before it can be
applied in many real-world settings.

