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Abstract

Generating high-quality and temporally synchronized au-001
dio from video content is essential for video editing and002
post-production tasks, enabling the creation of semanti-003
cally aligned audio for silent videos. However, most ex-004
isting approaches focus on short-form audio generation for005
video segments under 10 seconds or rely on noisy datasets006
for long-form video-to-audio synthesis. To address these007
limitations, we introduce LD-LAudio-V1, an extension of008
state-of-the-art video-to-audio models and it incorporates009
dual lightweight adapters to enable long-form audio gener-010
ation. In addition, we release a clean and human-annotated011
video-to-audio dataset that contains pure sound effects012
without noise or artifacts. Our method significantly re-013
duces splicing artifacts and temporal inconsistencies while014
maintaining computational efficiency. Compared to di-015
rect fine-tuning with short training videos, LD-LAudio-V1016
achieves significant improvements across multiple metrics:017
FDpasst 450.00 → 327.29 (+27.27%), FDpanns 34.88 →018
22.68 (+34.98%), FDvgg 3.75 → 1.28 (+65.87%), KLpanns019
2.49 → 2.07 (+16.87%), KLpasst 1.78 → 1.53 (+14.04%),020
ISpanns 4.17 → 4.30 (+3.12%), IBscore 0.25 → 0.28021
(+12.00%), Energy∆10ms 0.3013 → 0.1349 (+55.23%),022
Energy∆10ms(vs.GT) 0.0531 → 0.0288 (+45.76%), and023
Sem.Rel. 2.73 → 3.28 (+20.15%). Our dataset aims to024
facilitate further research in long-form video-to-audio gen-025
eration and is available at https://github.com/026
deepreasonings/long-form-video2audio.027

1. Introduction028

Video-to-audio (V2A) synthesis, commonly known as Fo-029
ley sound generation, represents a fundamental challenge in030
multimedia content creation that aims to generate semanti-031
cally and temporally aligned audio for silent videos [20].032
This task demands not only understanding visual seman-033
tics and their relationship with audio to produce contex-034
tually appropriate sounds, but also ensuring precise tem-035
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Figure 1. Long-form video-to-audio (V2A) generation with dual
lightweight adapters.

poral synchronization, as humans are highly sensitive to 036
audio-visual misalignments as subtle as 25 milliseconds 037
[10, 11]. While recent advances in V2A synthesis have 038
demonstrated capabilities in generating high-quality audio 039
for short video segments [3, 14, 19, 20], existing approaches 040
perform short-time audio generation, typically within 10 041
seconds or less. Current V2A models have limitations 042
when extending to longer temporal contexts. Commonly 043
used approaches can be categorized into two main cate- 044
gories: autoregressive generation methods that produce au- 045
dio in a sequential token-by-token manner [12, 18, 20], and 046
diffusion-based models with fixed-length denoising pro- 047
cesses [14, 19]. However, both categories contain chal- 048
lenges when adapted for long-time synthesis, particularly in 049
maintaining accurate alignment between semantic and tem- 050
poral domains when guided by visual information. 051

Recent research has attempted to address long-form au- 052
dio generation challenges through various approaches, in- 053
cluding diffusion transformer-based (DiT) architectures [4] 054
and multi-agent systems [21]. Yet, these models have not 055
been specifically designed to reduce splicing artifacts and 056
temporal inconsistencies, nor do they demonstrate capabil- 057

1

https://github.com/deepreasonings/long-form-video2audio
https://github.com/deepreasonings/long-form-video2audio
https://github.com/deepreasonings/long-form-video2audio


ICCV
#12

ICCV
#12

ICCV 2025 Submission #12. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Sync features
Fsyn(768d, 24 fps)

Projection &
upsample

Frame-aligned sync
features (31.25 fps)

Global
conditioning

c
g(one token)

Frame-aligned
conditioning
C

f(31.25 fps)

Avg-pooled
visual features

Avg-pooled
text features

Timestep
embeddings

Flowv(20d,31.25fps)

adaLN.& 1D-Conv

Single-modal transformer block

Single-modal transformer block

Single-modal transformer block

MuItimodaI transformer block

Multimodal transformer block

Multimodal transformer block

Video

Visual features
Fv(1024d, 8fps)

Projection Projection Projection

Text features
Ft(1024d,77tokens)

Text

Latents
ⅹ(20d, 31.25 fps)

Audio wave

Noise

⊕

⊕ ⊕

Average pooling across tim
e

Average pooling across tokens

c
ƒ

c
ƒ

c
ƒ

c
ƒ

c
g

c
ƒ

c
g

c
ƒ

c
g

c
ƒ

···
···

MLP

N
2

blocks

N
1

blocks

Synchformer visual encoder CLIP
visual encoder

CLIP
text encoder

Encoding + noising
(duringtraining)

(during testing)

⊙Concatenation
⊕Summation

Conditional synchronization module

0s 10s 20s 30s 40s 50s 60s

Sync featuresSync featuresSync featuresSync featuresSync featuresSync features

Visual featuresVisual featuresVisual featuresVisual featuresVisual featuresVisual features

Frame level adapter
hsyn(.)

⊙

Long-form sync features

⊙

Clip level adapter
hglobal(.)

Long-form visual features

Figure 2. The framework details of LD-LAudio-V1 for long-form V2A generation.

ity for high-quality generation across both short-form and058
long-form scenarios. Furthermore, high-quality long-form059
V2A datasets are lacking, with some being closed-source or060
containing voice and music noise [7].061

To address these limitations in long-form V2A genera-062
tion, we first develop a high-quality V2A dataset containing063
pure audio effects that are human-annotated and free from064
voice and music noise. Second, we propose LD-LAudio-065
V1, a data-driven approach that extends short-form V2A066
synthesis models through dual lightweight adapters specifi-067
cally designed to reduce temporal inconsistencies and splic-068
ing artifacts in long-form audio generation. As shown in069
Figure 1, existing models segment videos, while ours uses070
dual lightweight adapters (frame- and clip-level).071

2. Related Work072

2.1. Video-to-Audio073

V2A approaches can be categorized into autoregressive and074
diffusion-based categories. Autoregressive methods gener-075

ate audio tokens sequentially [8, 15, 17], which are then de- 076
coded into audio signals. Latent diffusion and flow match- 077
ing techniques have substantially enhanced Foley produc- 078
tion quality and efficiency [14, 19]. Recent works of Multi- 079
Foley [2] combines mask denoising with reference audio 080
for multi-modal control. MMAudio [3] utilizes a multi- 081
modal transformer with flow matching and synchroniza- 082
tion modules for enhanced temporal alignment. These stud- 083
ies inadequately address modality differences between au- 084
dio and video and lack reasoning guidance. The newer 085
work uses Factorized Contrastive Learning [13] to enhance 086
cross-domain alignment and propose a Chain-of-Thought 087
(CoT)-like V2A approach, which facilitates both general 088
V2A (VGGSound [1]) and professional V2A (piano perfor- 089
mance) through step-by-step guidance. 090

2.2. Long-Form Video-to-Audio 091

For long-form V2A synthesis, segmentation approaches 092
like MMAudio divide extended videos into shorter clips for 093
independent processing. These approaches contain tempo- 094
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ral inconsistencies and loss of global context [17]. Diffu-095
sion transformers such as LoVA [4] demonstrate minute-096
level synthesis without explicit segmentation [2, 7], and097
they demonstrate comparable performance in the compar-098
ison with the state-of-the-art models under heavy param-099
eters trained with non-quantitation evaluation of inconsis-100
tency. A multi-agent based long-form V2A is developed101
with professional dubbing workflows through collaborative102
role specialization [21]. Temporal fusion module emerges103
as a computationally efficient approach for long-form V2A104
generation [5]. Similarly, Omni-based transformers are de-105
veloped for end-to-end and fast V2A [6]. However, these106
long-form video-to-audio models do not demonstrate effec-107
tiveness in reducing inconsistency when generating long-108
form pure sound effects without noise. We curate a long-109
form V2A dataset and propose an extended model for gen-110
erating multi-clip long-form V2A.111

3. Methods112

The long-form V2A task aims to generate an audio se-113
quence a of equivalent duration from a long video v. We114
propose LD-LAudio-V1, which extends the state-of-the-115
art models with dual lightweight adapters to handle multi-116
clip coherence. Our framework is shown in Figure 2. It117
processes long-form input multi-clip sequences to extract118
global features and fuses them with short-form features to119
increase coherence in multi-clip audio generation.120

3.1. Feature Representation121

We represent all features as one-dimensional tokens with-122
out using absolute position encoding, which allows gen-123
eralization to different durations at test time. Visual fea-124
tures are extracted at 8 fps as 1024-dimensional features,125
and text features consist of 77 tokens as 1024-dimensional126
features, both extracted from CLIP [16]. Audio latents exist127
in variational autoencoder (VAE) latent space at 31.25 fps128
as 20-dimensional latents by default. Synchronization fea-129
tures are extracted with the Synchformer tool [9] at 24 fps130
as 768-dimensional features. All features follow the same131
temporal ordering at different frame rates and are projected132
to a hidden dimension after initial processing layers.133

3.2. Frame-Level Synchronization Module134

For a sequence of video frames, we first extract per-frame135
visual features using a pre-trained vision encoder. Synch-136
former at 24 fps as 768-dimensional features. This syn-137
chronization module processes frame-level visual features138
to generate fine-grained temporal conditioning signals that139
are closely aligned with the temporal dynamics of audio.140
The Synchformer extracts features Fsyn and then performs141
projection and up-sampling to frame-aligned sync features142
F frame
syn with 31.25 fps sampling rate.143

3.3. Clip-Level Contextualization Module 144

We integrate a clip-level contextualization module to pro- 145
duce a global semantic representation of the video. Fea- 146
tures from the clip visual encoder Fv and clip text encoder 147
Ft are first projected, then averaged and concatenated as 148
F con
g . The F con

g is fused with timestamp embeddings to 149
produce global conditioning features cg that capture the se- 150
mantic context of the video content. 151

3.4. Dual Lightweight Adapters for Coherence 152

We extend short-form V2A to long-form audio generation 153
through a multi-clip coherence extension module. This 154
module applies the dual lightweight adapters, denoted as 155
hsyn, hglobal, to capture long-form consistency of audio 156
from videos and then fuse them with the short-form videos. 157

• Light-weight Dual Adapters. The long-form input 158

multi-clip sequence from a video: {V (i)
clip}Li=1 and is pro- 159

cessed as a union long-form video from the same clip vi- 160
sual encoder and text encoder to extract the global visual 161
features F global

v , global text features F global
t , and global 162

synchronization features F global
syn . These global features 163

are processed similarly to Fv , Ft, and Fsyn to obtain 164
global-level (multi-clip) conditions cglobalg and local-level 165

conditions cglobalf after projection and average pooling 166
(See Figure 2). 167

• Fusion. For inference of audio for each video clip Vi, the 168
final conditions are computed by combining global and 169
local features through the lightweight adapters: cfinalg = 170

cg + hglobal(F
global
v ), cfinalf = cf + hsyn(F

global
syn ). 171

3.5. A Unified Multi-Modal Synthesis Transformer 172

The same multi-modal transformer architecture used for 173
short-form generation is applied to generate audio using the 174
combined final conditions: cfinalg and cfinalf . 175

x(l+1) = DiT(l)
(
x(l), cfinalg , cfinalf

)
, for l = 1, 2, . . . , L

(1) 176
where xl is the input of the lth transformer layers. 177

4. Experiments 178

4.1. Datasets 179

We curate the first version of a long-form clean sound ef- 180
fects dataset, denoted as LPSE-1, to support the study of 181
long-form audio generation from videos. Different from 182
the previous audio-visual event datasets (AVE) dataset, our 183
LPSE-1 consists of more than 6K videos with over 20K 184
audio-visual events covering 120 different event categories. 185
Each clip is more than 60 seconds, containing real-life 186
audio-visual scenes. Unlike other AVE datasets that con- 187
tain noise such as voice-over [1] or other audio types such as 188
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Method FDpasst ↓ FDpanns ↓ FDvgg ↓ KLpanns ↓ KLpasst ↓ ISpanns ↑ IBscore ↑ DeSync↓ Energy∆10ms↓ Energy∆10ms(vs.GT)↓ Sem.Rel.↑
GT \ \ \ \ \ \ \ \ 0.1103 0 \
MMAudio-L-44.1kHz Zeroshot 455.49 33.04 2.28 2.87 2.32 4.65 0.27 1.44 0.3629 0.0524 3.77
MMAudio-L-44.1kHz Finetuned 450.00 34.88 3.75 2.49 1.78 4.17 0.25 1.38 0.3013 0.0531 2.73
MMAudio-L-44.1kHz Long-form 327.29(−27.27%) 22.68(−34.98%) 1.28(−65.87%) 2.07(−16.87%) 1.53(−14.04%) 4.30(+3.12%) 0.28(+12.00%) 1.51(+9.42%) 0.1349(−55.23%) 0.0288(−45.76%) 3.28(+20.15%)

Table 1. Results of long-form V2A generation with dual adapters compared to baselines.

60s

60s Video
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MMAudio Zeroshot

MMAudio Finetuned

MMAudio Long-form
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Figure 3. Examples of long-form V2A generation with different experimental settings.

music or speech, our long-form dataset contains pure sound189
effects. Each sample is manually human verified to ensure190
it contains only sound effects without other types of audio191
or irrelevant events from visual scenes.192

4.2. Evaluation Metrics193

4.2.1. Quality Metrics194

Metrics for evaluating the quality of V2A are in four as-195
pects, such as distribution matching, audio quality, seman-196
tic alignment, and temporal alignment [20]. Specific met-197
rics inlucde: FDpasst↓, FDpanns↓, FDvgg↓, KLpanns↓,198
KLpasst↓, ISpanns↑, IBscore↑, DeSync↓ [3].199

4.2.2. Multi-clip Consistency Metrics200

Additionally, we apply consistency metrics specifically201
for long-form V2A. These metrics include the aver-202
age energy change within 10 ms before and after203
each segmentation point between two short-form video204
clips (Energy∆10ms↓), differences between the aver-205
age energy change of the generated audio and ground206
truth (Energy∆10ms(vs.GT )↓), and Semantic Relevance207
(Sim.Rel.↑) [4].208

4.3. Initial Benchmark Results209

We compare our long-form model against the zero-shot210
MMAudio-L-44.1kHz model and a model finetuned on211
short training videos. The results are presented in Table 1,212
with overhead costs in Table 2.213

Our long-form model demonstrates significant im-214
provements across multiple metrics compared to the215
short training videos finetuned model. Specifically,216
FDpasst 450.00 to 327.29(+27.27%), FDpanns 34.88217

to 22.68(+34.98%), FDvgg 3.75 to 1.28(+65.87%), 218
KLpanns 2.49 to 2.07(+16.87%), KLpasst 1.78 to 219
1.53(+14.04%), ISpanns 4.17 to 4.30(+3.12%), IBscore 220
0.25 to 0.28(+12.00%), Energy∆10ms 0.3013 to 221
0.1349(+55.23%), Energy∆10ms(vs.GT ) 0.0531 to 222
0.0288(+45.76%), and Sem.Rel 2.73 to 3.28(+20.15%). 223
In Figure 3, we present several generated examples from 224
different experimental settings. 225

Method Params Inference time of clip(60s)

MMAudio-L-44.1kHz 1.03B 61.27s
MMAudio-L-44.1kHz Finetuned 1.03B 61.27s
MMAudio-L-44.1kHz Long-form with dual adapters 1.07B 62.75s

Table 2. Computational costs of parameters and inference time.

5. Conclusion 226

We propose LPSE-1, a clean long-form V2A dataset of 6k 227
video clips with each duration of 60s and 24k audio-visual 228
events. Human annotators manually verify that the videos 229
contain pure sound effects without noise or irregular music. 230
We also propose LD-LAudio-V1, which extends the state- 231
of-the-art short-form (10 seconds) V2A models to long- 232
form (60 seconds) audio generation using dual lightweight 233
adapters. Our approach reduces splicing artifacts and tem- 234
poral inconsistencies in long-form V2A. Our approach adds 235
only 4% more parameters while enabling effective long- 236
form V2A generation from existing short-form models. 237
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