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Abstract

Although deep neural networks have achieved001
state-of-the-art performance in various machine002
learning and artificial intelligence tasks, adver-003
sarial examples, constructed by adding small004
non-random perturbations to correctly classi-005
fied inputs, successfully fool highly expres-006
sive deep classifiers into incorrect predictions.007
Approaches to adversarial attacks in natural008
language tasks have boomed in the last five009
years using character-level, word-level, phrase-010
level, or sentence-level textual perturbations.011
While there is some work in NLP on defending012
against such attacks through proactive meth-013
ods, like adversarial training, there is to our014
knowledge no effective reactive approaches to015
defence via detection of textual adversarial ex-016
amples such as is found in the image process-017
ing literature. In this paper, we apply distance-018
based ensemble learning and semantic repre-019
sentations from different representation learn-020
ing models based on our understanding of the021
reason for adversarial examples to fill this gap.022
Our technique, MultiDistance Representation023
Ensemble Method (MDRE), obtains state-of-024
the-art results on character-level, word-level,025
and phrase-level attacks on the IMDB dataset026
as well as on the later two with respect to the027
MultiNLI dataset. If this paper is accepted, we028
will publish our code.029

1 Introduction030

Highly expressive deep neural networks are frag-031

ile against adversarial examples, constructed by032

carefully designed small perturbations of normal033

examples, that can fool deep classifiers to make034

wrong predictions (Szegedy et al., 2013). Craft-035

ing adversarial examples in images involves adding036

small non-random perturbations to many pixels037

in inputs that would be correctly classified by a038

target model. These perturbations can force high-039

efficacy models into incorrect classifications and040

are often imperceptible to humans (Szegedy et al.,041

2013; Goodfellow et al., 2014; Moosavi-Dezfooli042

et al., 2016; Papernot et al., 2016a; Carlini and 043

Wagner, 2017b; Chen et al., 2018). However, when 044

adversarial examples have been studied in the con- 045

text of text, to our knowledge, only Miyato et al. 046

(2016) aligns closely with the original intuition of 047

adversarial examples in applying perturbations to 048

word embeddings, which are inputs of deep neural 049

nets. Rather, most adversarial attack techniques use 050

semantics-preserving textual changes other than 051

embedding perturbations, at character-level, word- 052

level, phrase-level, or sentence-level (Pruthi et al., 053

2019; Jia and Liang, 2017; Alzantot et al., 2018; 054

Ribeiro et al., 2018; Ren et al., 2019; Iyyer et al., 055

2018); see Table 1. This variety increases the diffi- 056

culty of detecting textual adversarial examples. 057

Generating adversarial examples to attack deep 058

neural nets and protecting deep neural nets from 059

adversarial examples have been extensively studied 060

in image classification tasks (Szegedy et al., 2013; 061

Goodfellow et al., 2014; Moosavi-Dezfooli et al., 062

2016; Papernot et al., 2016a; Carlini and Wagner, 063

2017b; Chen et al., 2018; Papernot et al., 2016b; 064

Feinman et al., 2017; Ma et al., 2018; Lee et al., 065

2018). However, in the natural language domain, 066

only crafting of adversarial examples has been 067

comprehensively considered (Jia and Liang, 2017; 068

Alzantot et al., 2018; Ribeiro et al., 2018; Ren et al., 069

2019; Iyyer et al., 2018). Defence against textual 070

adversaries, primarily through increasing the ro- 071

bustness of deep neural networks, is much less 072

studied (Jia et al., 2019; Pruthi et al., 2019). In the 073

image processing space, Cohen et al. (2020) refers 074

to these as proactive defence methods, and Carlini 075

and Wagner (2017a) notes that they can be evaded 076

by optimization-based attacks, such as constructing 077

new loss functions; in the NLP space, Yoo and Qi 078

(2021) observes that generating word-level textual 079

adversaries for proactive adversarial training are 080

computationally expensive because of necessary 081

search and constraints based on sentence encod- 082

ing. Consequently, Feinman et al. (2017); Ma et al. 083
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Prediction

Original This is a story of two misfits who don’t stand a chance alone, but together they
are magnificent. Positive

Character-level
(Pruthi et al., 2019)

TZyTis is a sotry of two misifts who don’t stad a ccange alUone, but tpgthr they
are mgnificent. Negative

Word-level
(Alzantot et al., 2018)

This is a conte of two who don’t stands a opportunities alone, but together they
are opulent. Negative

Phrase-level
(Iyyer et al., 2018)

Why don’t you have two misfits who don’t stand a chance alone, but together
they’re beautiful. Negative

Sentence-level
(Jia and Liang, 2017)

This is a story of two misfits who don’t stand a chance alone, but together they are
magnificent. ready south hundred at size expected worked whose turn poor. Negative

Table 1: Examples of textual adversarial instances on a sentiment analysis task

(2018); Lee et al. (2018); Papernot and McDaniel084

(2018) explore reactive defence methods (Cohen085

et al., 2020) in the image processing space: these086

focus on distinguishing real from adversarial exam-087

ples, in order to detect them before they are passed088

to neural networks. These reactive defences have089

been explored in only a limited way in the NLP090

space (Mozes et al., 2021).091

The contribution of this paper is to propose a sim-092

ple textual adversarial reactive detector, MultiDis-093

tance Representation Ensemble Method (MDRE),094

based on our understanding of the reason for ad-095

versarial examples, that achieves state-of-the-art096

results across a range of attack methods and do-097

mains.098

2 Related Work099

In this section, we briefly review state-of-the-art100

works on attacking and defending neural networks101

against textual adversarial examples.102

Textual Adversarial Attacks: Pruthi et al.103

(2019) introduced four categories of character-level104

perturbations: swapping, dropping, adding, and105

keyboard mistakes. Ebrahimi et al. (2018) explored106

an efficient white-box gradient-based method us-107

ing the gradients of a model with respect to its108

one-hot input vectors, is called HotFlip. Alzan-109

tot et al. (2018) and Ren et al. (2019) proposed110

word-level attacks through transformations, search111

methods, constraints, and goal functions (Morris112

et al., 2020), where transformations embody a sin-113

gle perturbation and search methods specify how to114

do multiple perturbations. Ribeiro et al. (2018) pre-115

sented an approach to generate model-agnostic se-116

mantically equivalent adversaries (SEAs), based on117

paraphrase generation techniques using translation118

models (Mallinson et al., 2017). Iyyer et al. (2018)119

proposed semantics-preserving syntactically con-120

trolled paraphrase networks (SCPNs), which takes121

a sentence and a target syntactic form as inputs122

and produces sentences whose syntax conforms to 123

the target syntactic as candidate adversarial exam- 124

ples. Jia and Liang (2017) generated concatenative 125

sentence-level adversaries by adding grammatical 126

or ungrammatical sequences to the end of a SQuAD 127

(Rajpurkar et al., 2016) paragraphs and leaving 128

questions and answers unchanged. 129

Textual Adversarial Defences: Adversarial 130

training (Goodfellow et al., 2014) is a commonly 131

used defence method to augment training data with 132

adversarial examples and their correct labels, which 133

is effective in Ribeiro et al. (2018), Ebrahimi et al. 134

(2018), but only has limited utility in Pruthi et al. 135

(2019), Jia and Liang (2017). Jia et al. (2019) ap- 136

plies interval bound propagation (IBP) to minimize 137

an upper bound of possible candidate sentences 138

losses when facing word substitutions adversaries. 139

Jones et al. (2020) introduced robust encodings 140

(RobEn) to cluster words and typos, and produced 141

one encoding for each cluster to harness adversar- 142

ial typos. Zhou et al. (2019) proposed learning 143

to discriminate perturbations (DISP) framework 144

to block character-level and word-level adversar- 145

ial perturbations by recognising and replacing per- 146

turbed words. Mozes et al. (2021) noticed and 147

verified a characteristic of word-level adversaries 148

that replacement words are less likely to occur than 149

their substitutions, therefore, they constructed a 150

rule-based, model-agnostic frequency-guided word 151

substitutions (FGWS) algorithm, which is the only 152

existing textual reactive defence method as far as 153

we know. 154

3 Reason for Adversarial Examples 155

Adversarial examples are counter-intuitive be- 156

cause lots of deep neural net decisions are non- 157

interpretable so far. In this section, we try to under- 158

stand how deep feedforward nets work, then reveal 159

the reason for both image and textual adversarial 160

examples. 161
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Essentially, neural nets are functions composed162

of affine functions with nonlinear functions and163

mapped from a high dimensional feature space164

to an l-dimensional output space, denoted by f :165

Rn → Rl (Strang, 2019). Here, n represents the166

dimension of input feature vectors, such as image167

pixel value vectors or text representation vectors; l168

is the cardinal number of a label set {0, · · · , l− 1}169

which is the number of elements in this label set.170

The structure of a feedforward neural net could171

be expressed as follows (Strang, 2019):172

f(v0) = Rs(Ls(Rs−1(· · · (L1(v0))))) (1)173

s means the depth of this multilayer perceptron174

representing the number of layers of this neural175

net f . v0 ∈ Rn stands for an input feature vector176

from a dataset. It has n features, and those features177

are the n components of v0. Li denotes an affine178

function, which is the linear part of the i-th layer,179

yielding ui = Li(vi−1) = Aivi−1 + bi. The180

vi−1 is the i-th layer input vector of length Ni−1.181

The matrix Ai and the bias vector bi are weights182

of the i-th layer constructed by an optimization183

algorithm. The output of the i-th layer is a vector184

vi = Ri(ui) = Ri(Li(vi−1)) = Ri(Aivi−1 +185

bi) of length Ni, and Ri is the nonlinear activation186

function of this layer, which is applied to each187

component of ui.188

If all nonlinear activation functions in a deep189

feedforward network f are ReLU activation func-190

tions, Strang (2019) explains that this function f is191

a continuous piecewise linear function, since it is192

a composite function which is composed of linear193

parts and piecewise linear parts, and both of them194

are continuous. More excitingly, he illustrates that195

the graph of this function is a surface made up of196

many, many flat pieces — they are planes or hyper-197

planes — that fit together along all the folds where198

a ReLU produces a change of slope. This is like a199

high dimensional origami with infinite flat pieces.200

On the basis of these, considering that linear201

parts are the same in all feedforward models and202

nonlinear activation functions have two categories203

— piecewise linear functions, such as ReLU and204

leaky ReLU, and curved functions, like sigmoid205

and tanh functions — we agree with the ideas that206

mentioned in Hauser and Ray (2017) and Brahma207

et al. (2015), and assume that the graph of a deep208

feedforward net function is a Riemannian manifold209

M embedded in input Euclidean space Rn. Since210

all examples, including normal and adversarial ex-211

amples, are inputs of f , they lie on M .212

In addition, the same predicted examples dis- 213

tributed within some specific areas of this Rieman- 214

nian manifold, is called a decision region. 215

Definition 3.1 (Decision Region (Nguyen et al., 216

2018)). The decision region of a given class 0 ≤ 217

j ≤ l − 1, denoted by Cj , is defined as 218

Cj ={v0 ∈ Rn|fj(v0) > fk(v0),∀k ̸= j} 219

fk(v0) is the k-class predicted value of an input 220

vector v0. The decision region Cj stands for an 221

area containing all examples whose predicted prob- 222

abilities of the class j are higher than other classes’. 223

Cj is a Riemannian submanifold M̃j of M which 224

is a subset of M (Lee, 2006). Feedforward neural 225

nets are capable of forming disconnected decision 226

regions (Makhoul et al., 1989; Nguyen et al., 2018), 227

therefore, Cj could be a disconnected Riemannian 228

submanifold, which can be separated as a union of 229

two non-empty disjoint parts. 230

According to dataset distributions, samples 231

can be divided into in-distribution and out-of- 232

distribution samples. If a test example is from 233

the same distribution of the training set, it is an 234

in-distribution sample, otherwise, it is an out-of- 235

distribution sample (Hendrycks and Gimpel, 2018). 236

Adversarial examples are out-of-distribution sam- 237

ples (Lee et al., 2018). 238

To sum up, since adversarial examples are con- 239

structed by adding imperceptible non-random per- 240

turbations to inputs of correctly classified test ex- 241

amples to fool highly expressive deep neural nets 242

into incorrect classifications (Szegedy et al., 2013), 243

the reason for both image and textual adversarial ex- 244

amples is that perturbations cause normal examples 245

to transfer from one decision region, represented 246

by a Riemannian submanifold, to another, and they 247

are out-of-distribution samples for the dataset and 248

for training examples from their decision regions. 249

4 MultiDistance Representation 250

Ensemble Method (MDRE) 251

As illustrated in Section 3, an adversarial example 252

is generated because perturbations cause a correctly 253

predicted test input to transfer from one decision 254

region to another, and it is an out-of-distribution 255

sample of training examples from its decision re- 256

gion. Each decision region’s samples are located in 257

a Riemannian submanifold of a Riemannian mani- 258

fold M of the deep neural net function (1) which 259

are embedded in the input Euclidean space Rn. 260

Therefore, even though adversarial examples, and 261
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Algorithm 1 MultiDistance Representation Ensemble Method (MDRE)
Input:

D = {X(train),X(norm),X(adv)}: a dataset; there are k examples in X(norm) and X(adv)

H: an array containing m representation learning models
g : Rm → {0, 1}: a multivariate binary classification model (MDRE)
f : Rn → Rl: a deep feedforward net that is the target model for an adversarial attack

Output:
Detection accuracy of MDRE: acc

1: Initializing inputs and labels of g: x = zeros[2k,m], y = zeros[2k]
2: Computing examples’ predictions from f of D: {ŷ(train), ŷ(norm), ŷ(adv)}
3: for j ∈ {0, · · · ,m− 1} do
4: Computing examples’ representations from H[j] of D: {V (train)

j ,V
(norm)
j ,V

(adv)
j }

5: for i ∈ {0, · · · , k − 1} do
6: Calculating d

(norm)
j , d

(adv)
j for examples X(norm)

i ,X
(adv)
i

7: x[i, j] = d
(norm)
j , y[i] = 0

8: x[k + i, j] = d
(adv)
j , y[k + i] = 1

9: end for
10: end for
11: Training g by randomly choosing 80% of {(xi,:,yi)}2k−1

i=0

12: acc = test accuracy of g using the rest 20% of {(xi,:,yi)}2k−1
i=0

same predicted normal test and training examples262

lie on a same Riemannian submanifold but from263

different distributions.264

There are various techniques to measure the265

difference between two distributions, such as266

Kullback-Leibler divergence or Wasserstein dis-267

tance. The Wasserstein distance is a distance be-268

tween two probability distributions on a given met-269

ric space, and can be viewed as the least accu-270

mulated moving distance to move a unit of one271

distribution’s samples to a unit of another distribu-272

tion’s samples, which is assumed to be the amount273

of samples that need to be moved times the mean274

distance they have to be moved. As discussed in275

Section 3, since the graph of a deep feedforward276

net function is a Riemannian manifold, the metric277

should be Riemannian metrics, and we’d better use278

Riemannian geodesics, which are the generaliza-279

tions of straight line in manifolds (Lee, 2006), to280

measure distances between samples. Motivated by281

Tenenbaum et al. (2000)’s argument that for neigh-282

boring points, an input space distance provides a283

good approximation to a geodesic distance, to sim-284

plify we assume that a Euclidean distance between285

an adversarial example a′ and a′’s nearest neigh-286

bor among training examples from a′’s decision287

region is bigger than a Euclidean distance between288

its corresponding original normal test example a289

and a’s nearest neighbor among training examples 290

from a’s decision region. 291

In natural language processing, most inputs of 292

deep neural networks are learned representations 293

by representation learning models nowadays. Even 294

though current methods of representation learn- 295

ing are effective in various tasks (Devlin et al., 296

2019; Liu et al., 2019; Yang et al., 2019; Lewis 297

et al., 2020), semantic meanings and semantic dif- 298

ferences between texts from humans’ perspective 299

are not perfectly captured by textual representation 300

vectors (Liu et al., 2020). In addition, as men- 301

tioned in Section 1, most textual adversarial gen- 302

eration algorithms do not modify representations, 303

which are input feature vectors, but modify orig- 304

inal texts. Therefore, the assumed characteristic 305

of adversaries in the last paragraph may lose effi- 306

ciency in language adversarial detection scenarios. 307

To build a stronger reactive classifier, we use en- 308

semble learning to combine distances between rep- 309

resentations learned from multiple representation 310

learning models. We construct a more effective 311

MultiDistance Representation Ensemble Method 312

(MDRE), as illustrated in Algorithm 1. 313

The MDRE is a multivariate supervised binary 314

classification model g : Rm → {0, 1}. m is the 315

number of representation learning models; g can be 316

any multivariate binary classification model, such 317
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as multivariate logistic regressions or deep neu-318

ral nets; {0, 1} is the output label set, with 1 cor-319

responding to adversarial examples, 0 to normal320

examples.321

The input of MDRE is a matrix x and each row322

vector of x is xi,: = (d0, d1 · · · , dm−1) ∈ Rm.323

The element of this vector dj , 0 ≤ j ≤ m − 1 is324

a Euclidean distance between a semantic represen-325

tation of a normal or adversarial example v and326

a representation of its nearest neighbour among327

the training examples from the decision region and328

located in the same Riemannian submanifold as329

v through the j-th representation learning model330

H[j]. To find a nearest neighbour, we compare Eu-331

clidean distances between v and all representations332

among the training examples from the decision re-333

gion as v through H[j]. In Algorithm 1, X(norm)334

consists of normal test examples corresponding335

to the elements of X(adv), where the elements of336

X(norm) have correct predictions from the target337

model f , but X(adv) have incorrect predictions338

from f . The training and testing process of MDRE339

is same as the process of the selected model g.340

5 Evaluation341

In this section, we evaluate the utility of MDRE342

by using character-level, word-level, and phrase-343

level upstream attacks on sentiment analysis and344

natural language inference tasks, and comparing345

against several baselines: a language model, DISP346

(Zhou et al., 2019), and FGWS (Mozes et al., 2021).347

The experimental results demonstrate that MDRE348

outperforms these methods on sentiment analysis349

and natural language inference tasks for word-level350

and phrase-level attacks.351

5.1 Experimental Setup352

5.1.1 Tasks353

We apply our approach and baselines to sentiment354

analysis and natural language inference tasks. The355

sentiment analysis task has been the most widely356

used testbed for generating textual adversarial ex-357

amples (Pruthi et al., 2019; Alzantot et al., 2018;358

Ribeiro et al., 2018; Ren et al., 2019; Iyyer et al.,359

2018), making this the natural domain for these360

experiments; adversarial example generation meth-361

ods have also been applied the natural language362

inference task (Alzantot et al., 2018; Iyyer et al.,363

2018), so we choose this to explore the generality364

of our method.365

We use the IMDB dataset (Maas et al., 2011) in366

the sentiment analysis task, which contains 50,000 367

movie reviews, divided into 25,000 training exam- 368

ples and 25,000 test examples, labelled for posi- 369

tive or negative sentiment. The average number of 370

words per review in the IMDB dataset is 262 when 371

using the Natural Language Toolkit (NLTK) (Bird 372

et al., 2009) to tokenize examples. To capture more 373

semantic information from each instance, we set a 374

maximum sequence length of the IMDB dataset to 375

512 for all following models. 376

To test the robustness of MDRE, the Multi-Genre 377

NLI (MultiNLI) corpus (Williams et al., 2018) and 378

its mismatched test examples, which are derived 379

from sources that differ from the training examples, 380

are used in the natural language inference task. The 381

MultiNLI dataset includes 392,702 training exam- 382

ples and 10,000 mismatched testing examples with 383

three classes: entailment, neutral, and contradic- 384

tion. The average and maximum word numbers of 385

the MultiNLI dataset are 34 and 416 respectively, 386

using NLTK word tokenizer. We set the maximum 387

sequence length for this dataset to 256. 388

5.1.2 Attack Methods 389

We implement three attack methods using 390

character-level, word-level, and phrase-level per- 391

turbations to construct adversarial examples. For 392

all types of attacks, we take the BERTBASE model 393

(Turc et al., 2019) as the target model, indicat- 394

ing that adversaries have different predictions with 395

their originals by the BERTBASE model. 396

Character-level. The character-level attack is 397

from Pruthi et al. (2019), which applies swapping, 398

dropping, adding, and keyboard mistakes to a ran- 399

domly selected word of an original example. 400

• Swapping: swapping two adjacent internal 401

characters. 402

• Dropping: removing an internal character. 403

• Adding: internally inserting a new character. 404

• Keyboard mistakes: substituting an internal 405

character with one of its adjacent characters 406

in keyboards. 407

Here, we set maximum numbers of perturba- 408

tions to half of the maximum sequence lengths of 409

datasets; consequently, for the IMDB dataset, the 410

maximum number of attacks is 256, and for the 411

MultiNLI dataset is 128. If after achieving this 412

number, the prediction of the perturbed text is still 413

consistent with the original example, these attacks 414

fail, and no character-level adversarial example 415

constructed for this original example. 416
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Dataset Training. Validation. Testing. Correctly Predicted
Test Examples

Adversarial Examples
character-level word-level phrase-level

IMDB 20,000 5,000 25,000 23,121 12,267 10,343 7,048
MultiNLI 314,162 78,540 10,000 8,070 7,159 3,047 4,230

Table 2: The number of examples used in experiments

Word-level. We use a method from Alzantot417

et al. (2018), which is an effective and widely418

cited word-level threat method. Their approach ran-419

domly selects a word in a sentence, replaces it with420

its synonymous and context fitted word according421

to the GloVe word vectors (Pennington et al., 2014),422

counter-fitting word vectors (Mrkšić et al., 2016),423

and the Google 1 billion words language model424

(Chelba et al., 2013), and applies population-based425

genetic algorithms from the natural selection us-426

ing a combination of crossover and mutation to427

generate next adversarial generations.428

While effective, the initial algorithm is some-429

what inefficient and computationally expensive. In430

implementing this method, Jia et al. (2019) found431

that computing scores from the Google 1 billion432

words language model (Chelba et al., 2013) for433

each iteration in this approach causes its ineffi-434

ciency; to improve this, they used a faster lan-435

guage model and prevented semantic drift, which436

is synonyms picked from previous iterations also437

apply the language model to select words from438

their neighbour lists. In our experiments, we adopt439

these modifications by using a faster Transformer-440

XL architecture (Dai et al., 2019) pretrained on the441

WikiText-103 dataset (Merity et al., 2016), and not442

allowing the semantic drift, so that we compute all443

test examples words’ neighbours before attacks.444

In this attack, we also set maximum numbers445

of perturbations, which are one fifth of the maxi-446

mum sequence lengths; therefore, for the IMDB447

dataset is 102, and for the MultiNLI dataset is 51.448

For an original test example, if the number of at-449

tacks reaches this threshold but predictions do not450

change, no corresponding adversarial example is451

constructed for this original example.452

Phrase-level. The phrase-level attack is from453

Ribeiro et al. (2018), which uses translators and454

back translators to generate adversarial examples.455

As far as we know, this is the only phrase-level per-456

turbation technique that can be used for paragraph-457

length text. Their approach — termed semantically458

equivalent adversaries (SEAs) — translates an orig-459

inal sentences into multiple pivot languages, then460

translates them back to the source language. If461

there is a back translated sentences that is semanti- 462

cally equivalent to the original sentences, measured 463

by a semantic score greater than a threshold, and 464

it has a different prediction with the original sen- 465

tences, then it is an adversarial example. Otherwise, 466

this original example has no relevant adversaries. 467

The BERTBASE model is implemented as a tar- 468

get model for these three attacks, by which adver- 469

sarial examples are misclassified. We apportion 470

training sets on both datasets into training subsets 471

and validation subsets, with an 80-20 split. After 472

training, the models achieve 92.48% test accuracy 473

on the IMDB dataset, and for the MultiNLI mis- 474

matched test set is 80.7%. The correctly predicted 475

test examples are preserved for subsequent attack 476

processes. After attacks, adversarial examples and 477

their corresponding normal test examples maintain 478

for following detectors as negative and positive ex- 479

amples. The number of examples used on IMDB 480

and MultiNLI datasets and number of adversaries 481

after attacks are shown in Table 2. 482

5.1.3 Detection Methods 483

We evaluate three baselines in addition to our 484

MDRE in these experiments. 485

A language model. The first baseline is built 486

from a language model since even though most at- 487

tack algorithms intend to construct semantically 488

and syntactically similar adversaries, many tex- 489

tual adversaries are abnormal and ungrammatical, 490

as shown in Table 1. We use the Transformer- 491

XL model (Dai et al., 2019) pretrained on the 492

WikiText-103 dataset (Merity et al., 2016) from 493

Hugging Face transformers (Wolf et al., 2020), 494

and obtain language model scores for texts as the 495

product of words prediction proportion scores. We 496

construct a detection classifier by using a logistic 497

regression model with language model scores as 498

inputs; the model acts to learn a threshold on scores 499

to distinguish adversarial examples. To train this 500

detector, 80% scores are used for training and 20% 501

for testing. 502

Learning to Discriminate Perturbations 503

(DISP) (Zhou et al., 2019). Our second baseline 504

is the DISP framework, which is the only compa- 505
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rable technique for detecting textual adversarial506

examples across character-level and word-level at-507

tacks to our knowledge. DISP consists of three508

components: perturbation discriminator, embed-509

ding estimator, and hierarchical navigable small510

word graphs. The perturbation discriminator identi-511

fies a set of character-level or word-level perturbed512

tokens; the embedding estimator predicts embed-513

dings for each perturbed token; then, hierarchical514

navigable small word graphs map these embed-515

dings to actual words to correct adversarial pertur-516

bations. DISP is not itself designed as a adversarial517

example detector, but we adapt it for that task: if518

an adversarial example rectified by DISP predicts519

the same class as the target model predicts for the520

corresponding initial original example, or the pre-521

diction of a normal (non-adversarial) example rec-522

tified by DISP isn’t changed, we consider DISP to523

have been successful in its detection. Otherwise, it524

is not. Since DISP is designed for character-level525

and word-level attacks, we do not consider using it526

for phrase-level attacks.527

Frequency-guided word substitutions528

(FGWS) (Mozes et al., 2021). Our third base-529

line is FGWS. Mozes et al. (2021) noticed, and530

verified using hypothesis testing, that a characteris-531

tic of word-level adversaries was that replacement532

words are less likely to occur than their substitu-533

tions. They use this feature to construct a rule-534

based, model-agnostic frequency-guided word sub-535

stitutions (FGWS) algorithm which distinguishes536

adversarial examples by replacing infrequent words537

in examples with their higher frequency synonyms.538

If the replacements cause prediction confidence539

changes exceeding a threshold, these examples are540

deemed adversarial examples.541

They use WordNet (Fellbaum, 2005) and GloVe542

vectors (Pennington et al., 2014) to find neighbors543

of a word. A word frequency is its number of oc-544

currences in the corresponding dataset’s training545

examples; infrequent words are defined as those546

words whose frequencies are lower than a threshold.547

They set this threshold to be the frequency of the548

word at the {0 -th, 10 -th, · · · , 100 -th} percentile of549

word frequencies in training set. If the prediction550

confidence differences between sequences with re-551

placed words and their corresponding original se-552

quences are higher than a threshold, the original553

sequences are assumed to be adversarial examples.554

They set this threshold to the 90%-th confidence555

difference between words substituted validation set556

and original validation set in their experiment. 557

We use same methods to construct thresholds 558

and select best prediction accuracy among different 559

frequency thresholds as FGWS’s detection accu- 560

racy. We use the BERTBASE model to generate all 561

predictions for input texts. FGWS is only designed 562

to be applied to word-level attacks. 563

MultiDistance Representation Ensemble 564

Method (MDRE). The key ideas behind MDRE is 565

that (1) adversarial examples are out-of-distribution 566

samples relative to training examples from their 567

decision regions and (2) ensemble learning can 568

help identify this. In order to explore the effects 569

of these two components, we apply a MDREbase 570

model, where m = 1 and H = [BERTBASE]. 571

In MDRE, we set m = 4, H = [BERTBASE, 572

RoBERTaBASE, XLNetBASE, BARTBASE ]. For 573

both MDREbase and MDRE, g is a logistic 574

regression model. See Algorithm 1 for more 575

information of notations. 576

5.2 Experimental Results 577

As shown in Table 3, the performance of the lan- 578

guage model is similar to random guess, since the 579

ratio between positive (normal) and negative (adver- 580

sarial) examples is 1:1. We observed that language 581

model prediction proportion scores are sensitive 582

to the number of words in examples because each 583

word scores is between 0 to 1 and more words 584

leads to lower scores. In addition, in some contexts, 585

scores for synonyms, or typos which are out-of- 586

dictionary words, are lower but close to scores of 587

original words, which do not have the large differ- 588

ences that might be expected. 589

DISP effectively applies the bidirectional lan- 590

guage model feature of the BERT model and builds 591

a powerful perturbation discriminator, which labels 592

character-level or word-level perturbed tokens to 1, 593

and unperturbed tokens to 0. The perturbation dis- 594

criminator achieves F1 scores of 95.06% on IMDB 595

dataset and 97.67% on MultiNLI dataset, using 596

their own adversaral attack methods. However, the 597

embedding estimator predicts embeddings through 598

inputting 5-grams with masked middle tokens to a 599

BERTBASE model with one layer feed-forward head 600

on top and outputting embeddings of these masked 601

tokens from 300-dimensional pretrained FastText 602

English word vectors (Mikolov et al., 2018). This 603

is challenging and restricts the overall performance 604

of DISP. 605

Intuitively, adversaries’ predictions are different 606
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Dataset Detecting Method Character-level Attack Word-level Attack Phrase-level Attack

IMDB
Language Model 0.4952 0.4966 0.4988

DISP 0.8936 0.7714 —
FGWS — 0.5230 —

MDREbase 0.9126 0.8062 0.8904
MDRE 0.9236 0.8132 0.9585

MultiNLI
Language Model 0.5021 0.4807 0.4917

DISP 0.7496 0.6137 —
FGWS — 0.5203 —

MDREbase 0.6781 0.6103 0.6147
MDRE 0.7238 0.6423 0.7027

Table 3: The accuracy for detection classifiers

from their original counterparts, which are ordinary607

language; therefore, adversaries may contain rare608

and infrequent words. According to the English609

word frequency dataset 1, some words frequencies610

in examples of Alzantot et al. (2018) are shown in611

Table 4. We can find that the intuition is correct

org. org. freq. sub. sub. freq.

terrible 8,610,277 horrific 1,017,211
horrifying 491,916

considered 57,378,298 regarded 6,892,622
kids 96,602,880 youngstars —

runner 7,381,022 racer 3,625,077
battling 1,340,424 — —
strives 1,415,683 — —

Table 4: Original and modified sample words frequencies in
examples of Alzantot et al. (2018)

612

that replacement words frequencies drop compared613

with substitutions; however, they may be higher614

than other normal words. Therefore, using one615

threshold makes it difficult to separate adversarially616

substituted words from all normal words. Alterna-617

tive approaches to applying the characteristic of618

adversarial words frequencies may work better.619

MDREbase works in detecting adversarial ex-620

amples: the detection accuracy on both IMDB621

dataset and MultiNLI dataset, and all upstream622

adversarial attacks is substantially higher than ran-623

dom guess, and better than the baselines, except for624

DISP against character-level attacks on MultiNLI625

dataset, where MDRE is a fairly close second. The626

detection accuracy on MultiNLI dataset is lower627

than IMDB dataset, although this is not a surprise.628

It uses the mismatched test set of MultiNLI dataset629

which makes the task more challenging. The results630

show that MDRE is sensitive to sample distribu-631

1The english word frequency: https://www.kaggle.
com/rtatman/english-word-frequency

tions, so if some normal test examples are from 632

a different distribution of training samples, such 633

as noise examples, they will influence the perfor- 634

mance of MDRE. Ensemble learning helps to build 635

a stronger detector. 636

6 Conclusion and Future work 637

In this paper, we proposed a simple and general 638

textual adversarial reactive detector, MultiDistance 639

Representation Ensemble Method (MDRE), based 640

on our understanding of the reason for adversarial 641

examples, that they are generated because pertur- 642

bations cause normal test inputs to transfer from 643

one decision region to another, and they are out- 644

of-distribution samples. Each decision region’s 645

samples are located in a Riemannian submanifold 646

of a Riemannian manifold of a deep feedforward 647

network function (1). The experimental results 648

show MDRE achieves state-of-the-art results on de- 649

tecting character-level, word-level and phrase-level 650

adversaries on the IMDB dataset as well as on the 651

latter two with respect to the MultiNLI dataset. 652

However, as discussed in Section 4, for sim- 653

plicity we only implement Euclidean distances be- 654

tween example representations and representations 655

of their nearest neighbors among the training ex- 656

amples from the same decision regions, to charac- 657

terise distribution differences between adversarial 658

examples and normal examples. Applying more 659

probability distribution theories, as Feinman et al. 660

(2017); Lee et al. (2018); Ma et al. (2018) did in the 661

image processing space, may help to build better 662

detectors. Further, we hope reactive adversarial 663

detectors will not be restricted to feedforward deep 664

target models, but expand to all kinds of deep neu- 665

ral nets which are vulnerable to adversarial attacks. 666
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Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, 859
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