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Abstract

Although deep neural networks have achieved
state-of-the-art performance in various machine
learning and artificial intelligence tasks, adver-
sarial examples, constructed by adding small
non-random perturbations to correctly classi-
fied inputs, successfully fool highly expres-
sive deep classifiers into incorrect predictions.
Approaches to adversarial attacks in natural
language tasks have boomed in the last five
years using character-level, word-level, phrase-
level, or sentence-level textual perturbations.
While there is some work in NLP on defending
against such attacks through proactive meth-
ods, like adversarial training, there is to our
knowledge no effective reactive approaches to
defence via detection of textual adversarial ex-
amples such as is found in the image process-
ing literature. In this paper, we apply distance-
based ensemble learning and semantic repre-
sentations from different representation learn-
ing models based on our understanding of the
reason for adversarial examples to fill this gap.
Our technique, MultiDistance Representation
Ensemble Method (MDRE), obtains state-of-
the-art results on character-level, word-level,
and phrase-level attacks on the IMDB dataset
as well as on the later two with respect to the
MultiNLI dataset. If this paper is accepted, we
will publish our code.

1 Introduction

Highly expressive deep neural networks are frag-
ile against adversarial examples, constructed by
carefully designed small perturbations of normal
examples, that can fool deep classifiers to make
wrong predictions (Szegedy et al., 2013). Craft-
ing adversarial examples in images involves adding
small non-random perturbations to many pixels
in inputs that would be correctly classified by a
target model. These perturbations can force high-
efficacy models into incorrect classifications and
are often imperceptible to humans (Szegedy et al.,
2013; Goodfellow et al., 2014; Moosavi-Dezfooli

et al., 2016; Papernot et al., 2016a; Carlini and
Wagner, 2017b; Chen et al., 2018). However, when
adversarial examples have been studied in the con-
text of text, to our knowledge, only Miyato et al.
(2016) aligns closely with the original intuition of
adversarial examples in applying perturbations to
word embeddings, which are inputs of deep neural
nets. Rather, most adversarial attack techniques use
semantics-preserving textual changes other than
embedding perturbations, at character-level, word-
level, phrase-level, or sentence-level (Pruthi et al.,
2019; Jia and Liang, 2017; Alzantot et al., 2018;
Ribeiro et al., 2018; Ren et al., 2019; Iyyer et al.,
2018); see Table 1. This variety increases the diffi-
culty of detecting textual adversarial examples.

Generating adversarial examples to attack deep
neural nets and protecting deep neural nets from
adversarial examples have been extensively studied
in image classification tasks (Szegedy et al., 2013;
Goodfellow et al., 2014; Moosavi-Dezfooli et al.,
2016; Papernot et al., 2016a; Carlini and Wagner,
2017b; Chen et al., 2018; Papernot et al., 2016b;
Feinman et al., 2017; Ma et al., 2018; Lee et al.,
2018). However, in the natural language domain,
only crafting of adversarial examples has been
comprehensively considered (Jia and Liang, 2017;
Alzantot et al., 2018; Ribeiro et al., 2018; Ren et al.,
2019; Iyyer et al., 2018). Defence against textual
adversaries, primarily through increasing the ro-
bustness of deep neural networks, is much less
studied (Jia et al., 2019; Pruthi et al., 2019). In the
image processing space, Cohen et al. (2020) refers
to these as proactive defence methods, and Carlini
and Wagner (2017a) notes that they can be evaded
by optimization-based attacks, such as constructing
new loss functions; in the NLP space, Yoo and Qi
(2021) observes that generating word-level textual
adversaries for proactive adversarial training are
computationally expensive because of necessary
search and constraints based on sentence encod-
ing. Consequently, Feinman et al. (2017); Ma et al.



Prediction

This is a story of two misfits who don’t stand a chance alone, but together they

Original . Positive
are magnificent.
Character-level isa of two who don’t a , but they Negative
(Pruthi et al., 2019)  are . &
Word-level This is a of two don’t a alone, but together they Negative
(Alzantot et al., 2018)  are .
Phrase-level Why don’t you have two misfits who don’t stand a chance alone, but together Negative
(Iyyer et al., 2018) they’re beautiful.
Sentence-level This is a story of two misfits who don’t stand a chance alone, but together they are Negative

(Jia and Liang, 2017)  magnificent.

Table 1: Examples of textual adversarial instances on a sentiment analysis task

(2018); Lee et al. (2018); Papernot and McDaniel
(2018) explore reactive defence methods (Cohen
et al., 2020) in the image processing space: these
focus on distinguishing real from adversarial exam-
ples, in order to detect them before they are passed
to neural networks. These reactive defences have
been explored in only a limited way in the NLP
space (Mozes et al., 2021).

The contribution of this paper is to propose a sim-
ple textual adversarial reactive detector, MultiDis-
tance Representation Ensemble Method (MDRE),
based on our understanding of the reason for ad-
versarial examples, that achieves state-of-the-art
results across a range of attack methods and do-
mains.

2 Related Work

In this section, we briefly review state-of-the-art
works on attacking and defending neural networks
against textual adversarial examples.

Textual Adversarial Attacks: Pruthi et al.
(2019) introduced four categories of character-level
perturbations: swapping, dropping, adding, and
keyboard mistakes. Ebrahimi et al. (2018) explored
an efficient white-box gradient-based method us-
ing the gradients of a model with respect to its
one-hot input vectors, is called HotFlip. Alzan-
tot et al. (2018) and Ren et al. (2019) proposed
word-level attacks through transformations, search
methods, constraints, and goal functions (Morris
et al., 2020), where transformations embody a sin-
gle perturbation and search methods specify how to
do multiple perturbations. Ribeiro et al. (2018) pre-
sented an approach to generate model-agnostic se-
mantically equivalent adversaries (SEAs), based on
paraphrase generation techniques using translation
models (Mallinson et al., 2017). Iyyer et al. (2018)
proposed semantics-preserving syntactically con-
trolled paraphrase networks (SCPNs), which takes
a sentence and a target syntactic form as inputs

and produces sentences whose syntax conforms to
the target syntactic as candidate adversarial exam-
ples. Jia and Liang (2017) generated concatenative
sentence-level adversaries by adding grammatical
or ungrammatical sequences to the end of a SQuAD
(Rajpurkar et al., 2016) paragraphs and leaving
questions and answers unchanged.

Textual Adversarial Defences: Adversarial
training (Goodfellow et al., 2014) is a commonly
used defence method to augment training data with
adversarial examples and their correct labels, which
is effective in Ribeiro et al. (2018), Ebrahimi et al.
(2018), but only has limited utility in Pruthi et al.
(2019), Jia and Liang (2017). Jia et al. (2019) ap-
plies interval bound propagation (IBP) to minimize
an upper bound of possible candidate sentences
losses when facing word substitutions adversaries.
Jones et al. (2020) introduced robust encodings
(RobEn) to cluster words and typos, and produced
one encoding for each cluster to harness adversar-
ial typos. Zhou et al. (2019) proposed learning
to discriminate perturbations (DISP) framework
to block character-level and word-level adversar-
ial perturbations by recognising and replacing per-
turbed words. Mozes et al. (2021) noticed and
verified a characteristic of word-level adversaries
that replacement words are less likely to occur than
their substitutions, therefore, they constructed a
rule-based, model-agnostic frequency-guided word
substitutions (FGWS) algorithm, which is the only
existing textual reactive defence method as far as
we know.

3 Reason for Adversarial Examples

Adversarial examples are counter-intuitive be-
cause lots of deep neural net decisions are non-
interpretable so far. In this section, we try to under-
stand how deep feedforward nets work, then reveal
the reason for both image and textual adversarial
examples.



Essentially, neural nets are functions composed
of affine functions with nonlinear functions and
mapped from a high dimensional feature space
to an [-dimensional output space, denoted by f :
R™ — R! (Strang, 2019). Here, n represents the
dimension of input feature vectors, such as image
pixel value vectors or text representation vectors;
is the cardinal number of a label set {0, --- ,{ — 1}
which is the number of elements in this label set.

The structure of a feedforward neural net could
be expressed as follows (Strang, 2019):

f(vo) = Rs(Ls(Rs—1(--- (L1(vo))))) (1)

s means the depth of this multilayer perceptron
representing the number of layers of this neural
net f. vg € R" stands for an input feature vector
from a dataset. It has n features, and those features
are the n components of vg. L; denotes an affine
function, which is the linear part of the ¢-th layer,
yielding u; = L;(vi—1) = A;v;—1 + b;. The
v;_1 is the ¢-th layer input vector of length N;_;.
The matrix A; and the bias vector b; are weights
of the i-th layer constructed by an optimization
algorithm. The output of the i-th layer is a vector
v;i = Ri(u;) = Ri(Li(vi—1)) = Ri(Asv;—1 +
b;) of length N;, and R; is the nonlinear activation
function of this layer, which is applied to each
component of u;.

If all nonlinear activation functions in a deep
feedforward network f are ReLLU activation func-
tions, Strang (2019) explains that this function f is
a continuous piecewise linear function, since it is
a composite function which is composed of linear
parts and piecewise linear parts, and both of them
are continuous. More excitingly, he illustrates that
the graph of this function is a surface made up of
many, many flat pieces — they are planes or hyper-
planes — that fit together along all the folds where
a ReLU produces a change of slope. This is like a
high dimensional origami with infinite flat pieces.

On the basis of these, considering that linear
parts are the same in all feedforward models and
nonlinear activation functions have two categories
— piecewise linear functions, such as ReL.U and
leaky RelLU, and curved functions, like sigmoid
and tanh functions — we agree with the ideas that
mentioned in Hauser and Ray (2017) and Brahma
et al. (2015), and assume that the graph of a deep
feedforward net function is a Riemannian manifold
M embedded in input Euclidean space R™. Since
all examples, including normal and adversarial ex-
amples, are inputs of f, they lie on M.

In addition, the same predicted examples dis-
tributed within some specific areas of this Rieman-
nian manifold, is called a decision region.

Definition 3.1 (Decision Region (Nguyen et al.,
2018)). The decision region of a given class 0 <
Jj <1 —1, denoted by Cj, is defined as

Cj :{’UO S Rn‘fj(’Uo) > fk('UO)7Vk # .7}

fx(vo) is the k-class predicted value of an input
vector vg. The decision region C stands for an
area containing all examples whose predicted prob-
abilities of the class j are higher than other classes’.
C is a Riemannian submanifold M; of M which
is a subset of M (Lee, 2006). Feedforward neural
nets are capable of forming disconnected decision
regions (Makhoul et al., 1989; Nguyen et al., 2018),
therefore, C'; could be a disconnected Riemannian
submanifold, which can be separated as a union of
two non-empty disjoint parts.

According to dataset distributions, samples
can be divided into in-distribution and out-of-
distribution samples. If a test example is from
the same distribution of the training set, it is an
in-distribution sample, otherwise, it is an out-of-
distribution sample (Hendrycks and Gimpel, 2018).
Adversarial examples are out-of-distribution sam-
ples (Lee et al., 2018).

To sum up, since adversarial examples are con-
structed by adding imperceptible non-random per-
turbations to inputs of correctly classified test ex-
amples to fool highly expressive deep neural nets
into incorrect classifications (Szegedy et al., 2013),
the reason for both image and textual adversarial ex-
amples is that perturbations cause normal examples
to transfer from one decision region, represented
by a Riemannian submanifold, to another, and they
are out-of-distribution samples for the dataset and
for training examples from their decision regions.

4 MultiDistance Representation
Ensemble Method (MDRE)

As illustrated in Section 3, an adversarial example
is generated because perturbations cause a correctly
predicted test input to transfer from one decision
region to another, and it is an out-of-distribution
sample of training examples from its decision re-
gion. Each decision region’s samples are located in
a Riemannian submanifold of a Riemannian mani-
fold M of the deep neural net function (1) which
are embedded in the input Euclidean space R".
Therefore, even though adversarial examples, and



Algorithm 1 MultiDistance Representation Ensemble Method (MDRE)

Input:

D = {X(train) x(norm) x(adv)1. 3 dataset; there are k examples in X ("™ and X (24v)
H: an array containing m representation learning models

g : R™ — {0, 1}: a multivariate binary classification model (MDRE)

f: R™ — R a deep feedforward net that is the target model for an adversarial attack

Output:
Detection accuracy of MDRE: acc

1: Initializing inputs and labels of g: = zeros[2k, m], y = zeros|2k|

2: Computing examples’ predictions from f of I: {g(r®n) grorm) gladv)y

3: for j € {0,--- ,m—1}do

4. Computing examples’ representations from H|[j] of D: {V§tmm), Vgnorm), Vg-“d”)}
5: foric {0,--- ,k—1} do

6: Calculating dg.”orm), d§.“d”) for examples XZ(,”OTm)7 XZ(.“d”)

7 2[i, j] = "™, y[i] = 0

8: e[k +i,5] = d\""), ylk +i] = 1

9: end for

10: end for

2k—1

11: Training g by randomly choosing 80% of {(x; ., y;)}i=,
12: acc = test accuracy of g using the rest 20% of {(x;.,y;)};=,

2k—1

same predicted normal test and training examples
lie on a same Riemannian submanifold but from
different distributions.

There are various techniques to measure the
difference between two distributions, such as
Kullback-Leibler divergence or Wasserstein dis-
tance. The Wasserstein distance is a distance be-
tween two probability distributions on a given met-
ric space, and can be viewed as the least accu-
mulated moving distance to move a unit of one
distribution’s samples to a unit of another distribu-
tion’s samples, which is assumed to be the amount
of samples that need to be moved times the mean
distance they have to be moved. As discussed in
Section 3, since the graph of a deep feedforward
net function is a Riemannian manifold, the metric
should be Riemannian metrics, and we’d better use
Riemannian geodesics, which are the generaliza-
tions of straight line in manifolds (Lee, 2006), to
measure distances between samples. Motivated by
Tenenbaum et al. (2000)’s argument that for neigh-
boring points, an input space distance provides a
good approximation to a geodesic distance, to sim-
plify we assume that a Euclidean distance between
an adversarial example o’ and a’’s nearest neigh-
bor among training examples from a’’s decision
region is bigger than a Euclidean distance between
its corresponding original normal test example a

and a’s nearest neighbor among training examples
from a’s decision region.

In natural language processing, most inputs of
deep neural networks are learned representations
by representation learning models nowadays. Even
though current methods of representation learn-
ing are effective in various tasks (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019; Lewis
et al., 2020), semantic meanings and semantic dif-
ferences between texts from humans’ perspective
are not perfectly captured by textual representation
vectors (Liu et al., 2020). In addition, as men-
tioned in Section 1, most textual adversarial gen-
eration algorithms do not modify representations,
which are input feature vectors, but modify orig-
inal texts. Therefore, the assumed characteristic
of adversaries in the last paragraph may lose effi-
ciency in language adversarial detection scenarios.
To build a stronger reactive classifier, we use en-
semble learning to combine distances between rep-
resentations learned from multiple representation
learning models. We construct a more effective
MultiDistance Representation Ensemble Method
(MDRE), as illustrated in Algorithm 1.

The MDRE is a multivariate supervised binary
classification model g : R™ — {0,1}. m is the
number of representation learning models; g can be
any multivariate binary classification model, such



as multivariate logistic regressions or deep neu-
ral nets; {0, 1} is the output label set, with 1 cor-
responding to adversarial examples, 0 to normal
examples.

The input of MDRE is a matrix « and each row
vector of @ is @;. = (do,d; - ,dm—1) € R™.
The element of this vector d;,0 < j < m —1is
a Euclidean distance between a semantic represen-
tation of a normal or adversarial example v and
a representation of its nearest neighbour among
the training examples from the decision region and
located in the same Riemannian submanifold as
v through the j-th representation learning model
H{j]. To find a nearest neighbour, we compare Eu-
clidean distances between v and all representations
among the training examples from the decision re-
gion as v through H|[j]. In Algorithm 1, X (")
consists of normal test examples corresponding
to the elements of X (adv), where the elements of
X (norm) have correct predictions from the target
model f, but X (@) have incorrect predictions
from f. The training and testing process of MDRE
is same as the process of the selected model g.

5 Evaluation

In this section, we evaluate the utility of MDRE
by using character-level, word-level, and phrase-
level upstream attacks on sentiment analysis and
natural language inference tasks, and comparing
against several baselines: a language model, DISP
(Zhou et al., 2019), and FGWS (Mozes et al., 2021).
The experimental results demonstrate that MDRE
outperforms these methods on sentiment analysis
and natural language inference tasks for word-level
and phrase-level attacks.

5.1 Experimental Setup
5.1.1 Tasks

We apply our approach and baselines to sentiment
analysis and natural language inference tasks. The
sentiment analysis task has been the most widely
used testbed for generating textual adversarial ex-
amples (Pruthi et al., 2019; Alzantot et al., 2018;
Ribeiro et al., 2018; Ren et al., 2019; Iyyer et al.,
2018), making this the natural domain for these
experiments; adversarial example generation meth-
ods have also been applied the natural language
inference task (Alzantot et al., 2018; Iyyer et al.,
2018), so we choose this to explore the generality
of our method.

We use the IMDB dataset (Maas et al., 2011) in

the sentiment analysis task, which contains 50,000
movie reviews, divided into 25,000 training exam-
ples and 25,000 test examples, labelled for posi-
tive or negative sentiment. The average number of
words per review in the IMDB dataset is 262 when
using the Natural Language Toolkit (NLTK) (Bird
et al., 2009) to tokenize examples. To capture more
semantic information from each instance, we set a
maximum sequence length of the IMDB dataset to
512 for all following models.

To test the robustness of MDRE, the Multi-Genre
NLI (MultiNLI) corpus (Williams et al., 2018) and
its mismatched test examples, which are derived
from sources that differ from the training examples,
are used in the natural language inference task. The
MultiNLI dataset includes 392,702 training exam-
ples and 10,000 mismatched testing examples with
three classes: entailment, neutral, and contradic-
tion. The average and maximum word numbers of
the MultiNLI dataset are 34 and 416 respectively,
using NLTK word tokenizer. We set the maximum
sequence length for this dataset to 256.

5.1.2 Attack Methods

We implement three attack methods using
character-level, word-level, and phrase-level per-
turbations to construct adversarial examples. For
all types of attacks, we take the BERTpasg model
(Turc et al., 2019) as the target model, indicat-
ing that adversaries have different predictions with
their originals by the BERTgasg model.
Character-level. The character-level attack is
from Pruthi et al. (2019), which applies swapping,
dropping, adding, and keyboard mistakes to a ran-
domly selected word of an original example.

* Swapping: swapping two adjacent internal
characters.

* Dropping: removing an internal character.

* Adding: internally inserting a new character.

* Keyboard mistakes: substituting an internal
character with one of its adjacent characters
in keyboards.

Here, we set maximum numbers of perturba-
tions to half of the maximum sequence lengths of
datasets; consequently, for the IMDB dataset, the
maximum number of attacks is 256, and for the
MultiNLI dataset is 128. If after achieving this
number, the prediction of the perturbed text is still
consistent with the original example, these attacks
fail, and no character-level adversarial example
constructed for this original example.



Dataset | Training, | Validation. | Testing, Correctly Predicted Adversarial Examples
Test Examples character-level word-level phrase-level
IMDB | 20,000 5,000 25,000 23,121 12,267 10,343 7,048
MultiNLI| 314,162 78,540 10,000 8,070 7,159 3,047 4,230

Table 2: The number of examples used in experiments

Word-level. We use a method from Alzantot
et al. (2018), which is an effective and widely
cited word-level threat method. Their approach ran-
domly selects a word in a sentence, replaces it with
its synonymous and context fitted word according
to the GloVe word vectors (Pennington et al., 2014),
counter-fitting word vectors (Mrksic et al., 2016),
and the Google 1 billion words language model
(Chelba et al., 2013), and applies population-based
genetic algorithms from the natural selection us-
ing a combination of crossover and mutation to
generate next adversarial generations.

While effective, the initial algorithm is some-
what inefficient and computationally expensive. In
implementing this method, Jia et al. (2019) found
that computing scores from the Google 1 billion
words language model (Chelba et al., 2013) for
each iteration in this approach causes its ineffi-
ciency; to improve this, they used a faster lan-
guage model and prevented semantic drift, which
is synonyms picked from previous iterations also
apply the language model to select words from
their neighbour lists. In our experiments, we adopt
these modifications by using a faster Transformer-
XL architecture (Dai et al., 2019) pretrained on the
WikiText-103 dataset (Merity et al., 2016), and not
allowing the semantic drift, so that we compute all
test examples words’ neighbours before attacks.

In this attack, we also set maximum numbers
of perturbations, which are one fifth of the maxi-
mum sequence lengths; therefore, for the IMDB
dataset is 102, and for the MultiNLI dataset is 51.
For an original test example, if the number of at-
tacks reaches this threshold but predictions do not
change, no corresponding adversarial example is
constructed for this original example.

Phrase-level. The phrase-level attack is from
Ribeiro et al. (2018), which uses translators and
back translators to generate adversarial examples.
As far as we know, this is the only phrase-level per-
turbation technique that can be used for paragraph-
length text. Their approach — termed semantically
equivalent adversaries (SEAs) — translates an orig-
inal sentences into multiple pivot languages, then
translates them back to the source language. If

there is a back translated sentences that is semanti-
cally equivalent to the original sentences, measured
by a semantic score greater than a threshold, and
it has a different prediction with the original sen-
tences, then it is an adversarial example. Otherwise,
this original example has no relevant adversaries.

The BERTpasg model is implemented as a tar-
get model for these three attacks, by which adver-
sarial examples are misclassified. We apportion
training sets on both datasets into training subsets
and validation subsets, with an 80-20 split. After
training, the models achieve 92.48% test accuracy
on the IMDB dataset, and for the MultiNLI mis-
matched test set is 80.7%. The correctly predicted
test examples are preserved for subsequent attack
processes. After attacks, adversarial examples and
their corresponding normal test examples maintain
for following detectors as negative and positive ex-
amples. The number of examples used on IMDB
and MultiNLI datasets and number of adversaries
after attacks are shown in Table 2.

5.1.3 Detection Methods

We evaluate three baselines in addition to our
MDRE in these experiments.

A language model. The first baseline is built
from a language model since even though most at-
tack algorithms intend to construct semantically
and syntactically similar adversaries, many tex-
tual adversaries are abnormal and ungrammatical,
as shown in Table 1. We use the Transformer-
XL model (Dai et al., 2019) pretrained on the
WikiText-103 dataset (Merity et al., 2016) from
Hugging Face transformers (Wolf et al., 2020),
and obtain language model scores for texts as the
product of words prediction proportion scores. We
construct a detection classifier by using a logistic
regression model with language model scores as
inputs; the model acts to learn a threshold on scores
to distinguish adversarial examples. To train this
detector, 80% scores are used for training and 20%
for testing.

Learning to Discriminate Perturbations
(DISP) (Zhou et al., 2019). Our second baseline
is the DISP framework, which is the only compa-



rable technique for detecting textual adversarial
examples across character-level and word-level at-
tacks to our knowledge. DISP consists of three
components: perturbation discriminator, embed-
ding estimator, and hierarchical navigable small
word graphs. The perturbation discriminator identi-
fies a set of character-level or word-level perturbed
tokens; the embedding estimator predicts embed-
dings for each perturbed token; then, hierarchical
navigable small word graphs map these embed-
dings to actual words to correct adversarial pertur-
bations. DISP is not itself designed as a adversarial
example detector, but we adapt it for that task: if
an adversarial example rectified by DISP predicts
the same class as the target model predicts for the
corresponding initial original example, or the pre-
diction of a normal (non-adversarial) example rec-
tified by DISP isn’t changed, we consider DISP to
have been successful in its detection. Otherwise, it
is not. Since DISP is designed for character-level
and word-level attacks, we do not consider using it
for phrase-level attacks.

Frequency-guided word substitutions
(FGWS) (Mozes et al., 2021). Our third base-
line is FGWS. Mozes et al. (2021) noticed, and
verified using hypothesis testing, that a characteris-
tic of word-level adversaries was that replacement
words are less likely to occur than their substitu-
tions. They use this feature to construct a rule-
based, model-agnostic frequency-guided word sub-
stitutions (FGWS) algorithm which distinguishes
adversarial examples by replacing infrequent words
in examples with their higher frequency synonyms.
If the replacements cause prediction confidence
changes exceeding a threshold, these examples are
deemed adversarial examples.

They use WordNet (Fellbaum, 2005) and GloVe
vectors (Pennington et al., 2014) to find neighbors
of a word. A word frequency is its number of oc-
currences in the corresponding dataset’s training
examples; infrequent words are defined as those
words whose frequencies are lower than a threshold.
They set this threshold to be the frequency of the
word at the { 0-th, 10-th, - - -, 100-th} percentile of
word frequencies in training set. If the prediction
confidence differences between sequences with re-
placed words and their corresponding original se-
quences are higher than a threshold, the original
sequences are assumed to be adversarial examples.
They set this threshold to the 90%-th confidence
difference between words substituted validation set

and original validation set in their experiment.

We use same methods to construct thresholds
and select best prediction accuracy among different
frequency thresholds as FGWS’s detection accu-
racy. We use the BERTgAsg model to generate all
predictions for input texts. FGWS is only designed
to be applied to word-level attacks.

MultiDistance Representation Ensemble
Method (MDRE). The key ideas behind MDRE is
that (1) adversarial examples are out-of-distribution
samples relative to training examples from their
decision regions and (2) ensemble learning can
help identify this. In order to explore the effects
of these two components, we apply a MDREy, ¢
model, where m = 1 and H = [BERTgasg].
In MDRE, we set m = 4, H = [BERTRasE,
RoBERTaBASE, XLNetBASE, BARTBASE ] For
both MDREg,sc and MDRE, ¢ is a logistic
regression model. See Algorithm 1 for more
information of notations.

5.2 Experimental Results

As shown in Table 3, the performance of the lan-
guage model is similar to random guess, since the
ratio between positive (normal) and negative (adver-
sarial) examples is 1:1. We observed that language
model prediction proportion scores are sensitive
to the number of words in examples because each
word scores is between 0 to 1 and more words
leads to lower scores. In addition, in some contexts,
scores for synonyms, or typos which are out-of-
dictionary words, are lower but close to scores of
original words, which do not have the large differ-
ences that might be expected.

DISP effectively applies the bidirectional lan-
guage model feature of the BERT model and builds
a powerful perturbation discriminator, which labels
character-level or word-level perturbed tokens to 1,
and unperturbed tokens to 0. The perturbation dis-
criminator achieves Fj scores of 95.06% on IMDB
dataset and 97.67% on MultiNLI dataset, using
their own adversaral attack methods. However, the
embedding estimator predicts embeddings through
inputting 5-grams with masked middle tokens to a
BERTgAsg model with one layer feed-forward head
on top and outputting embeddings of these masked
tokens from 300-dimensional pretrained FastText
English word vectors (Mikolov et al., 2018). This
is challenging and restricts the overall performance
of DISP.

Intuitively, adversaries’ predictions are different



Dataset |Detecting Method|Character-level Attack|Word-level Attack|Phrase-level Attack

Language Model 0.4952 0.4966 0.4988
IMDB DISP 0.8936 0.7714 —
FGWS — 0.5230 —

MDRE, . 0.9126 0.8062 0.8904

MDRE 0.9236 0.8132 0.9585

Language Model 0.5021 0.4807 0.4917
MultiNLI DISP 0.7496 0.6137 —
FGWS — 0.5203 —

MDRE, . 0.6781 0.6103 0.6147

MDRE 0.7238 0.6423 0.7027

Table 3: The accuracy for detection classifiers

from their original counterparts, which are ordinary
language; therefore, adversaries may contain rare
and infrequent words. According to the English
word frequency dataset !, some words frequencies
in examples of Alzantot et al. (2018) are shown in
Table 4. We can find that the intuition is correct

org. org. freq. sub. sub. freq.
. horrific 1,017,211
terrible 8,610,277 horifying 491916

considered 57,378,298 regarded 6,892,622
kids 96,602,880 youngstars —

runner 7,381,022 racer 3,625,077
battling 1,340,424 — —
strives 1,415,683 — —

Table 4: Original and modified sample words frequencies in
examples of Alzantot et al. (2018)

that replacement words frequencies drop compared
with substitutions; however, they may be higher
than other normal words. Therefore, using one
threshold makes it difficult to separate adversarially
substituted words from all normal words. Alterna-
tive approaches to applying the characteristic of
adversarial words frequencies may work better.
MDRE,sc works in detecting adversarial ex-
amples: the detection accuracy on both IMDB
dataset and MultiNLI dataset, and all upstream
adversarial attacks is substantially higher than ran-
dom guess, and better than the baselines, except for
DISP against character-level attacks on MultiNLI
dataset, where MDRE is a fairly close second. The
detection accuracy on MultiNLI dataset is lower
than IMDB dataset, although this is not a surprise.
It uses the mismatched test set of MultiNLI dataset
which makes the task more challenging. The results
show that MDRE is sensitive to sample distribu-

'The english word frequency: https://www.kaggle.
com/rtatman/english-word-frequency

tions, so if some normal test examples are from
a different distribution of training samples, such
as noise examples, they will influence the perfor-
mance of MDRE. Ensemble learning helps to build
a stronger detector.

6 Conclusion and Future work

In this paper, we proposed a simple and general
textual adversarial reactive detector, MultiDistance
Representation Ensemble Method (MDRE), based
on our understanding of the reason for adversarial
examples, that they are generated because pertur-
bations cause normal test inputs to transfer from
one decision region to another, and they are out-
of-distribution samples. Each decision region’s
samples are located in a Riemannian submanifold
of a Riemannian manifold of a deep feedforward
network function (1). The experimental results
show MDRE achieves state-of-the-art results on de-
tecting character-level, word-level and phrase-level
adversaries on the IMDB dataset as well as on the
latter two with respect to the MultiNLI dataset.
However, as discussed in Section 4, for sim-
plicity we only implement Euclidean distances be-
tween example representations and representations
of their nearest neighbors among the training ex-
amples from the same decision regions, to charac-
terise distribution differences between adversarial
examples and normal examples. Applying more
probability distribution theories, as Feinman et al.
(2017); Lee et al. (2018); Ma et al. (2018) did in the
image processing space, may help to build better
detectors. Further, we hope reactive adversarial
detectors will not be restricted to feedforward deep
target models, but expand to all kinds of deep neu-
ral nets which are vulnerable to adversarial attacks.


https://www.kaggle.com/rtatman/english-word-frequency
https://www.kaggle.com/rtatman/english-word-frequency
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