
Motley: Benchmarking Heterogeneity and
Personalization in Federated Learning

Shanshan Wu1, Tian Li2, Zachary Charles1, Yu Xiao1,
Ziyu Liu2, Zheng Xu1, Virginia Smith2

1Google Research {shanshanw, zachcharles, xiaoyux, xuzheng}@google.com
2Carnegie Mellon University {tianli, kzliu, smithv}@cmu.edu

Abstract

Personalized federated learning considers learning models unique to each client in
a heterogeneous network. The resulting client-specific models have been purported
to improve metrics such as accuracy, fairness, and robustness in federated networks.
However, despite a plethora of work in this area, it remains unclear: (1) which
personalization techniques are most effective in various settings, and (2) how im-
portant personalization truly is for realistic federated applications. To better answer
these questions, we propose Motley, a benchmark for personalized federated learn-
ing. Motley consists of a suite of cross-device and cross-silo federated datasets
from varied problem domains, as well as thorough evaluation metrics for better un-
derstanding the possible impacts of personalization. We establish baselines on the
benchmark by comparing a number of representative personalized federated learn-
ing methods. These initial results highlight strengths and weaknesses of existing
approaches, and raise several open questions for the community. Motley aims to
provide a reproducible means with which to advance developments in personalized
and heterogeneity-aware federated learning, as well as the related areas of trans-
fer learning, meta-learning, and multi-task learning. Code for the benchmark
is open-source and available at: https://github.com/google-research/
federated/tree/master/personalization_benchmark.

1 Introduction
Federated learning (FL) aims to share knowledge across disparate data silos in a privacy-preserving
manner [36, 46, 57]. Relative to standard (e.g., data center) distributed learning, a defining trait of
federated learning is the presence of heterogeneity3, as each of the clients (e.g., a sensor, mobile
phone, or entire organization) may generate data according to a distinct distribution. In response to
this key difference, a significant amount of work has been devoted to understanding and addressing
heterogeneity in federated learning. For example, heterogeneity has been the focus of the analysis
and development of numerous federated optimization methods [e.g., 1, 13, 29, 37, 47, 50, 72, 73, 74],
and the impact of heterogeneity on FL has been explored more generally in connection with issues of
fairness, robustness, and privacy in federated networks [e.g., 48, 49, 58, 79].

The presumed presence of heterogeneity has also directly driven a large body of work in personalized
federated learning. In personalized FL, the goal is to learn or adapt models to more closely reflect
the distinct data distribution of each federated client. For example, personalized FL approaches may
consider fine-tuning a global or meta-trained model to adapt to local client data [16, 19, 35, 38, 67, 82],
learning a clustering structure amongst the clients [20, 59, 65], or using multi-task learning techniques
to model possibly more complex relationships [17, 21, 22, 49, 68].

Despite a significant amount of work in personalized FL, there remains a lack of consensus about
which methods perform best in various federated settings, let alone the degree to which personalization

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

https://github.com/google-research/federated/tree/master/personalization_benchmark
https://github.com/google-research/federated/tree/master/personalization_benchmark

itself is really necessary in practice. For example, many works target a specific form of personalization
(e.g., clustering) in their methodology, and then artifically create or modify data to match this
assumption (e.g., manually clustering the data) before testing the efficacy of their approach [74].
While this is a reasonable sanity check, it fails to validate how impactful such approaches are for
real-world FL applications. In particular, a major issue is that while ‘heterogeneity’ is believed to be
a natural occurrence in federated networks, there is a lack of benchmarks that reflect real applications
of FL, making it hard to understand the prevalence and magnitude of heterogeneity in practice.

To address these concerns, we propose Motley, a comprehensive benchmark for personalized and
heterogeneity-aware FL. Motley is designed with a focus on ease-of-use and reproducibility1. The
benchmark includes a suite of four cross-device and three cross-silo datasets, as well as baseline
personalization methods evaluated on them. The datasets themselves are drawn from real-world
applications mirroring federated settings in an effort to better reflect naturally occurring forms of
heterogeneity. In developing baselines for the benchmark, we pay careful attention to the evaluation
of personalization and heterogeneity—making concrete suggestions for future work in evaluating the
impact of heterogeneity/personalization. Finally, although we focus specifically on the application of
FL, this benchmark is also a useful tool for the areas of transfer learning, meta learning, and multi-task
learning more generally, as techniques from these areas are commonly used for personalized FL.

Cross-device vs. Cross-silo. Based on the size and characteristics of the network, there are two
common FL settings: cross-device FL and cross-silo FL, and two types of algorithms: stateful and
stateless [74]. We provide a brief description below (see Table 1), and defer readers to [36, 74] for
more detailed discussion. Cross-device applications typically involve learning across a large number
(e.g., hundreds of millions) of mobile or IoT devices. Given the network scale coupled with the
unreliability of such devices, it is common for devices to only participate once (if at all) in training.
This characteristic motivates the development of methods for cross-device FL which are stateless2, in
that model or variable state is not maintained on each client from one round to another, and there
exists no unique identifier for each client. In contrast, cross-silo FL applications often consider
learning across a handful of organizations such as hospitals or schools, where clients are almost
always available at each training round. These properties allow the silos to be more easily accessed
and identified, permitting the use of possibly more complex stateful approaches.

Table 1: Differences between the cross-device and cross-silo experimental setups.
Experimental setup Cross-device Cross-silo
Client sampling rate per round
(Appendix A.2)

On the scale of 0.1%-1% (see
Table 3 for the exact value)

100% (all silos partici-
pate in every round)

Train/valid/test split (Section 2.2) Split clients (Fig. 1) Split client’s data (Fig. 1)

Stateful or stateless algorithm Stateless2. Both work.

Heterogeneity and Personalization. As pointed out previously, a defining trait of FL is that each
client may generate according to a unique distribution. To better account for this heterogeneity3, it is
therefore common to consider techniques that learn personalized, client-specific models. Existing
personalized FL approaches can be categorized in three different ways: (1) stateful vs stateless
(see Table 1 and the discussion above); (2) model-agnostic vs model-specific (whether it targets
a specific model and requires domain-specific information [e.g., 34, 51, 67, 84]); (3) in terms of
methodologies, e.g., meta-learning [2, 13, 19, 35, 38], clustering [20, 53], local memory [54], and
multi-task learning (MTL) [e.g., 4, 17, 21, 22, 23, 49, 52, 68]. We defer readers to Appendix D and
the recent surveys [70], [74, §7.5] for more detailed discussion on existing literature. In benchmarking
Motley, we consider five model-agnostic personalized FL methods (four stateless and one stateful)
from the major methodology categories (meta-learning, clustering, local memory, and MTL).

1Code for the benchmark is open-source and available at: https://github.com/google-research/
federated/tree/master/personalization_benchmark.

2Stateful algorithms can perform poorly in the cross-device settings where the clients sampling rate is very
low in each round. Because most clients are sampled at most once during the entire training process, their local
states are either unused or very stale. See Section 5.1 of [62] for the empirical results of the stateful SCAFFOLD
algorithm [37] in the cross-device setting.

3We focus on data heterogeneity and do not consider other types of heterogeneity in our experiments, e.g.,
mobile devices have different processing speeds and memory constraints, which is worth exploring in the future.

2

https://github.com/google-research/federated/tree/master/personalization_benchmark
https://github.com/google-research/federated/tree/master/personalization_benchmark

Table 2: Motley has three components: (1) modular implementations of five representative personal-
ized FL algorithms, (2) a diverse range of tasks (C: classification; R: regression; NWP: next word
prediction) and datasets (see Appendix E) chosen to cover the cross-device and cross-silo FL settings,
and (3) baseline results via extensive hyparameter tuning (see Appendix F) and the insights. The
right-most column is the average number of examples per client ± standard deviation.

Methods Dataset Details
Dataset Task and Model Clients Pts/Client

Cross-Device FL

Local training
FedAvg+Fine-tuning [35]
HypCluster [53]/IFCA [20]
FedAvg+kNN-Per [54]

EMNIST [6] Image C; CNN 3400 198±89
StackOverflow [7] NWP; LSTM 380k 397±1279
Landmarks [30] Image C; MobileNetV2 1262 130±199
TedMulti-EnEs [61] NWP; Transformer 4184 113±56

Cross-Silo FL
Local training ADNI5 Image R; CNN 9 5405±4822
FedAvg+Fine-tuning [35] Vehicle [18] Binary C; SVM 23 1900±349
HypCluster [53]/IFCA [20] School6 R; Linear Regression 139 111±56
FedAvg+kNN-Per [54]
MTL [49, 68]

Existing FL benchmarks. Concurrent works benchmarking personalized FL [15, 55] do not take
into account differences between cross-device and cross-silo federated settings (Table 1), which
we find to have a significant impact on the baseline methods and resulting conclusions. Beyond
these works, other prior FL benchmarks (see, e.g, [8, 9, 10, 12, 26, 27, 31, 42, 44]) do not consider
personalization baselines and focus instead on the standard FedAvg [57] algorithm and variations [62].

2 Motley: A Benchmark for Personalized Federated Learning

Table 2 gives an overview of the three components of Motley (methods, datasets, baselines). We now
briefly describe the methods and datasets. See Appendix A for more detailed description of Motley.

2.1 Personalization Methods
Motley includes five simple and model-agnostic algorithms for learning personalized models: (1)
Local training, refers to every client training a local model using their own data, without collaborating
with others. (2) FedAvg+Fine-tuning [35], in which we first train a global model via FedAvg [62]4,
and then, each client fine-tunes the global model on their local data to get the personalized model.
This simple method has a natural connection to meta-learning [35]. (3) HypCluster [53] (also
IFCA [20]), which jointly clusters clients and learns a model for each cluster. (4) FedAvg+kNN-
Per [54], a very recent personalization algorithm proposed to interpolate/ensemble the output of two
models: a globally-trained FedAvg model and a local kNN model. (5) Multi-Task Learning (MTL),
a class of methods used to deliver personalized models for a set of tasks by learning the task relations
(either explicitly or implicitly). The first four algorithms are stateless2, and hence, are appropriate in
the cross-device FL setting (see Table 1 and [36, 74] for discussions on stateful vs stateless).

0 500 1000
Client (sort by #labels)

0

200

400

#l
ab

el
s p

er
 c

lie
nt

(a) Landmarks

0.0 2.5 5.0 7.5
Client (sort by #examples)

0

5000

10000

15000

#e
xa

m
pl

es
 p

er
 c

lie
nt (b) ADNI

Figure 1: Left: The chosen federated datasets (Table 2) have heterogeneous local distributions (see
Appendix E for other datasets). Right: To best reflect real-world FL applications, we naturally
pre-process cross-device and cross-silo datasets differently: in cross-device, we split the clients into
train/valid/test; in cross-silo, we split each client’s local dataset (see Section 2.2).

4[62] generalizes the original FedAvg algorithm [57] by using adaptive optimizers as the server optimizer.

3

2.2 Datasets and Pre-processing
Table 2 lists the datasets carefully chosen to reflect real-world FL applications, including a health
data5 and a school data6 in the cross-silo setting (see Appendix E for detailed descriptions). All
datasets have natural per-user partitions and distinct local statistics (Figure 1). Motley provides
data pre-processsing pipelines for all data1, and includes a critical and often overlooked distinction
between pre-processing cross-device vs. cross-silo data. As shown in Figure 1, for cross-device
data, we first randomly split the clients into three disjoint sets: train, validation (for hyperparameter
tuning), and test (for final evaluation). This split reflects practical cross-device FL settings: given
the population scale (e.g., millions of mobile devices [24]), devices participating in inference may
never join training. Then we split each validation and test client’s local examples into two equal-sized
sets: a personalization set (for learning a personalized model) and an evaluation set (for evaluating
the personalized model). For cross-silo data, because the total number of silos is small (e.g., tens of
hospitals), and the same silos usually participate in both training and inference, we split each silo’s
local examples into three sets: a train, validation, and test set (Figure 1).

3 Cross-Device Experiments
The complete results on the cross-device datasets are in Appendix B (in particular, Table 4 has a
detailed summary of the results). Next we briefly summarize the results and our findings.

As we focus on personalization, it is crucial to see how the per-client accuracy changes. As shown
in Figure 2, fine-tuning improves the average per-client accuracy on EMNIST, StackOverflow,
and Landmarks. Besides accuracy, we also report a fairness metric7 in Table 4, and found that
personalization algrorithms usually improve fairness.

FedAvg FT HC kNN

0.4

0.6

0.8

1.0

Pe
r-c

lie
nt

 a
cc

EMNIST

FedAvg FT HC kNN
0.2

0.3

0.4

0.5

Pe
r-c

lie
nt

 a
cc

StackOverflow

FedAvg FT HC kNN

0.25

0.50

0.75

1.00

Pe
r-c

lie
nt

 a
cc

Landmarks

FedAvg FT HC kNN

0.1

0.2

Pe
r-c

lie
nt

 a
cc

TedMulti

Figure 2: Test clients’ per-client accuracy shown in box plots. Fine-tuning gives the best average
per-client accuracy on EMNIST, StackOverflow, and Landmarks (more detailed results are in Table 4).

3.1 FedAvg + Fine-tuning (FT)

500 1000 1500
FedAvg Round Number

0.24

0.26

0.28

Av
g

pe
r-c

lie
nt

 a
cc

(a) StackOverflow

Before FT
After FT

0.2 0.3
Per-client acc before FT

0.00

0.05

Pe
r-c

lie
nt

 a
cc

 d
el

ta (b) StackOverflow

0.0 0.1 0.2 0.3
FT learning rates

0.2775

0.2800

0.2825

0.2850

Av
g

pe
r-c

lie
nt

 a
cc

(c) StackOverflow

0.10

0.12

%
 c

lie
nt

s h
ur

t a
fte

r F
T

Figure 3: Fine-tuning may hurt some clients. (a) Fine-tuning improves average per-client accuracy.
(b) Scatter plot of per-client accuracy delta (i.e., accuracy after fine-tuning – before fine-tuning). Each
dot is a client. (c) The "avg per-client acc" metric may prefer a moderately large FT learning rate,
while the "clients hurt" metric prefers a small FT learning rate.

Observation 1: Fine-tuning can hurt clients. As shown in Figure 3(b), some clients drop accuracy
after fine-tuning (i.e., fall below the red dashed line at zero). There are two reasons: 1) The per-client
accuracy metric is noisy due to small local data; 2) The fine-tuning hyperparameters are tune globally
but different clients prefer different hyperparameters. See Appendix B.1 for the full explanation.

Observation 2: Hyperparameter tuning can be difficult. First, different metrics may favor differ-
ent hyperparameters, as shown in Figure 3(c). Second, since the per-client accuracies are noisy, we
need to compare the statistical significance of two results. Third, extra hyperparameters add another
layer of complexity. For example, it may be helpful to tune FedAvg together with fine-tuning [35].

5Health data obtained from Alzheimer’s Disease Neuroimaging Initiative: https://adni.loni.usc.edu/.
6Data collected by https://en.wikipedia.org/wiki/Inner_London_Education_Authority.
7There are many notions of fairness, e.g., group fairness [25]. In this paper we use a notion specific to

federated learning (see, e.g., [49, 58]): all clients should have similar local model accuracies.

4

https://adni.loni.usc.edu/
https://en.wikipedia.org/wiki/Inner_London_Education_Authority

0.86 0.88 0.90
In-distribution acc

0.80

0.82

0.84

Ou
t-o

f-d
ist

rib
ut

io
n

ac
c

(a) EMNIST

FT
FedAvg
HypCluster
kNN-Per

0.27000.27250.27500.27750.2800
In-distribution acc

0.268

0.270

0.272

Ou
t-o

f-d
ist

rib
ut

io
n

ac
c

(b) StackOverflow

FT
FedAvg
HypCluster
kNN-Per

0.55 0.60 0.65 0.70 0.75
In-distribution acc

0.35

0.40

0.45

0.50

0.55

Ou
t-o

f-d
ist

rib
ut

io
n

ac
c

(c) Landmarks
FT
FedAvg
HypCluster
kNN-Per

Figure 4: Trade-off between in-distribution (ID) and out-of-distribution (OOD) accuracy for different
algorithms. We plot the results for fine-tuning epochs 1, 3, 5, 10, 15. Increasing the fine-tuning epochs
gives higher ID accuracy but lower OOD accuracy.

0 500 1000 1500
HypCluster #rounds

0.0

0.5

1.0

%
 c

ho
os

e
1s

t c
lu

st
er

(a) EMNIST

rand init,run1
rand init,run2
warmstart

0.5 1.0 1.5
#params transmit 1e9

0.6

0.8
Av

g
pe

r-c
lie

nt
 a

cc

(b) EMNIST

Finetune
HypCluster
FedAvg

2 4 6
#params transmit 1e9

0.10

0.15

Av
g

pe
r-c

lie
nt

 a
cc

(c) TedMulti

Finetune
HypCluster
FedAvg

#EN clients #ES clients
Cluster 1 64 0
Cluster 2 0 53

(d) TedMulti

Figure 5: (a) Warmstart helps mitigate the mode collapse issue. (b) and (c) Plot of the average
per-client accuracy as a function of communication cost for EMNIST and TedMulti. (d) Number of
English and Spanish clients in the two clusters learned by HypCluster on TedMulti.

Observation 3: Sensitivity to distribution shift. Fine-tuning is able to quickly adapt a model to a
client’s local data, but is also prone to overfitting (a.k.a. catastrophic forgetting [56]). To illustrate
this, we evaluate each test client’s personalized model over the in-distribution (ID) test set (i.e.,
the client’s local evaluation set8) and an out-of-distribution (OOD) test set. This OOD test set is
formed by randomly sampling local examples from the test clients. This result is shown in Figure 4,
which indicates an extra maintenance cost of personalized algorithms, i.e., decide when and how to
continuously personalize the model when clients have new data.

Remark: Acceptance criteria and robust personalization. Our experiments assume that each
client always uses the fine-tuned model for inference. In practice, one can design appropriate criteria
so that a client only accepts the fine-tuned model under certain conditions [66]. Mitigating catastrophic
forgetting [56] during model adaptation is an active research area, e.g., recent work [3, 33, 41, 77, 78],
which is worth exploring in the personalized FL setting.

Observation 4: Performance drops when clients have smaller personalization set8. As shown
in Figure 6(c), where we reduce the number of examples in each test client’s persoanlization set, the
performance of fine-tuning and kNN-Per drops quickly. By contrast, HypCluster is quite robust to
this change, which makes sense because HypCluster only needs the personalization set for model
evaluation and choosing the best model, while fine-tuning and kNN-Per needs to train a new model.

3.2 HypCluster / IFCA

As shown in Figure 2, HypCluster performs worse than other two personalization algorithms.

Observation 1: “Mode collapse” can hurt training. “Mode collapse” happens when all clients
will always choose the same cluster (Figure 5(a)). One way to mitigate this issue is to warm start
HypCluster with models trained by FedAvg. However, mode collapse can still happen even with
warm start. How to effectively train HypCluster without mode collapse remains an open problem.

Observation 2: High communication cost per round. A limitation of HypCluster is that in each
round, the server needs to broadcast k models (where k is the number of learned clusters) to the
clients, and hence, incurs k times the communication cost of FedAvg9. This is shown in Figure 5(b-c).

Observation 3: Difficulty in interpreting the learned clusters. While it is generally hard to
interpret the learned clusters on an arbitrary dataset, we do know that TedMulti-EnEs has two natural
clusters of clients, i.e., English and Spanish users. Figure 5(d) shows that HypCluster indeed uncovers
the two underlying clusters on TedMulti-EnEs.

8See Section 2.2, each validation and test client has two sets: a personalization set and an evaluation set.
9In real-world cross-device FL settings, reducing the communication cost between the server and mobile

devices can help reduce the latency due to stragglers (see Section 5.1 in [74] for more discussions).

5

0.00 0.25 0.50 0.75 1.00
kNN-Per coefficient

0.70

0.75

0.80

0.85

Av
g

pe
r-c

lie
nt

 a
cc

(a) EMNIST

0.00 0.25 0.50 0.75 1.00
kNN-Per coefficient

0.55

0.60

0.65

0.70

Av
g

pe
r-c

lie
nt

 a
cc

(b) Landmarks

100% 50% 25%
Personalization set size

0.86

0.88

0.90

0.92

0.94

Av
g

pe
r-c

lie
nt

 a
cc

(c) EMNIST
FT
HypCluster
kNN-Per

0.0

0.2

0.4

0.6

0.8

1.0

%
 c

lie
nt

s h
ur

t a
fte

r F
T

0.0

0.1

0.2

0.3

0.4

%
 c

lie
nt

s h
ur

t a
fte

r F
T

Figure 6: (a-b) Different metrics may be improved by different hyperpamater values: the "average
per-client accuracy" metric usually prefers a moderately large interpolation coefficient while the
"clients hurt" metric prefers a small coefficient. (c) Accuracy drops for fine-tuning and kNN-Per
when each client has fewer examples to personalize the model. HypCluster is robust to this change
because it only needs the personalization set for choosing the best model instead of training a model.

Observation 4: Sensitivity to distribution shift. We follow the same ID and OOD evaluation
procedure in Section 3.1. As shown in Figure 4, HypCluster gives a worse ID-OOD tradeoff (i.e.,
achieves a lower OOD accuracy at the same ID accuracy) compared to the other algorithms.

3.3 FedAvg + kNN-Per
Observation 1: Clients may be hurt. This is illustrated in Figure 6(a-b). Section 3.1 gives two
reasons why clients may hurt after fine-tuning, which also apply to kNN-Per.

Observation 2: Difficulty in hyperparameter tuning. The interpolation coefficient is a hyperpa-
rameter of kNN-Per. It is a scalar in (0, 1), where 0 means that no personalization and 1 means that
the local prediction is formally entirely based on nearest neighbors. Figure 6(a-b) shows that different
metrics may prefer different hyperparameter values. Section 3.1 points out two other reasons why
hyperparameter tuning is difficult for fine-tuning. Both of them apply to kNN-Per as well.

Observation 3: Sensitivity to distribution shift. We follow the same ID and OOD evaluation
procedure in Section 3.1. As shown in Figure 4, kNN-Per gives a similar or better ID-OOD tradeoff
(i.e., achieves a higher OOD accuracy at the same ID accuracy) compared to the other algorithms.

Observation 4: Performance drops when clients have smaller personalization set8. This has
been discussed previously in Section 3.1.

4 Cross-Silo Experiments
We now consider baselines for the cross-silo personalization methods and datasets in Motley. The
complete results are in Appendix C (see Table 5 for a detailed summary of the results).

20 40 60 80
FedAvg Round Number

0.010

0.015

0.020

0.025

0.030

Av
g

pe
r-c

lie
nt

 m
se

(a) ADNI
Before FT
Client-specific FT
Client-agnostic FT

Figure 7: Tuning the fine-
tuning hyperpameters in a per-
client vs global manner.

Results. Most of the practical concerns of FedAvg+Fine-tuning
and HypCluster discussed in Section 3 are still applicable here, e.g.,
HypCluster is still difficult to train due to the mode collapse issue
(although it may happen less frequently when training simple linear
models on Vehicle and School). In addition to the shared practical
concerns, we observe four key trends specific to the cross-silo setting.

Observation 1: Effectiveness of local training. Local training may
be a strong baseline in cross-silo settings. If we consider client(silo)-
level joint differential privacy [34, 45], it has an extra benefit of no
privacy cost.

Observation 2: Importance of personalization. The four person-
alization algorithms all achieve better mean accuracy (or MSE) and
fairness7 than that of vanilla FedAvg.

Observation 3: Performance of MTL. We see that (stateful) MTL methods could yield competitive
performance with fine-tuning on the three datasets, with potentially less hyperparameter tuning.

Observation 4: Effectiveness of client-specific hyperparameter tuning. For FedAvg+Fine-tuning,
we compared tuning the fine-tuning hyperparameters (i.e., fine-tuning learning rate and the number
of fine-tuning epochs) in a per-client (every client chooses their own hyperparameter) vs global (all
clients share the same hyperparameter) manner. Using client-specific fine-tuning hyperparameters
can be better than tuning globally when each client’s local data is large (see Figure 7).

6

5 Discussion and Open Directions

In this work we present Motley, a large-scale benchmark for personalized FL covering both cross-
device and cross-silo settings. Motley provides a reproducible, end-to-end experimental pipeline
including data preprocessing, algorithms, evaluation metrics, and tuned hyperparameters. Beyond
these baselines, our experiments provide several new insights about personalized FL (see the detailed
summary in Appendix H). These insights suggest several directions of future work, such as:

• The notion of the "best" method (or "best" hyperparameter of the same method, e.g., Figure 3)
can change depending on the evaluation metric or setting (Table 4 and 5). A critical direction
is thus to develop systematic evaluation schemes for personalized FL (i.e., mean accuracy
alone is not enough).

• Existing literature often overlook or obfuscate the practical complexities of deploying per-
sonalized FL algorithms in real-world settings (e.g, Section 3.1 discusses the hyperparameter
tuning difficulties due to local data scarcity and heterogeneity in cross-device FL). Designing
new practical personalized FL methods that take these considerations into account is an
important direction to democratize FL.

• Developing techniques to train and interpret clustering methods such as HypCluster without
the "mode collapse" issue (see Figure 5 and Section 3.2) is a necessary step to make these
approaches more effective in practice.

• Tradeoffs exists between adapting a client’s personalized model to the current local distribu-
tion and generalizing to future distributions (Figure 4), which is worth exploring in greater
detail (see the "Remark: Acceptance criteria and robust personalization" in Section 3.1).

• Given the observed benefits of per-client hyperparameter tuning in cross-silo FL (Figure 7),
it may be beneficial to develop similar, scalable approaches for hyperparameter tuning in
cross-device FL.

Finally, we note that the area of benchmarking itself can be improved in future iterations. For example,
we hope that Motley can inspire benchmarking of additional evaluation metrics such as privacy,
other notions of fairness7, and robustness, and additional datasets and applications.

Acknowledgements

We are grateful to Zachary Garrett, Jakub Konečnỳ, H. Brendan McMahan, Sewoong Oh, Daniel
Ramage, Keith Rush, and Ananda Theertha Suresh for helpful discussions and comments.

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and

Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2021.

[2] Durmus Alp Emre Acar, Yue Zhao, Ruizhao Zhu, Ramon Matas, Matthew Mattina, Paul
Whatmough, and Venkatesh Saligrama. Debiasing model updates for improving personalized
federated training. In International Conference on Machine Learning, pages 21–31. PMLR,
2021.

[3] Anders Andreassen, Yasaman Bahri, Behnam Neyshabur, and Rebecca Roelofs. The evolution
of out-of-distribution robustness throughout fine-tuning. arXiv preprint arXiv:2106.15831,
2021.

[4] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary.
Federated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

[5] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

7

[6] The TensorFlow Federated Authors. TensorFlow Federated EMNIST dataset.
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/
datasets/emnist/load_data, 2019.

[7] The TensorFlow Federated Authors. TensorFlow Federated Stack Overflow dataset.
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/
datasets/stackoverflow/load_data, 2019.

[8] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, Pedro PB de Gusmão,
and Nicholas D Lane. Flower: A friendly federated learning research framework. arXiv preprint
arXiv:2007.14390, 2020.

[9] Houda Bouraqqadi, Ayoub Berrag, Mohamed Mhaouach, Afaf Bouhoute, Khalid Fardousse,
and Ismail Berrada. Pyfed: extending pysyft with n-iid federated learning benchmark. In The
34th Canadian Conference on Artificial Intelligence, 2021.

[10] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097, 2018.

[11] Rich Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

[12] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. Fedeval: A benchmark system with a
comprehensive evaluation model for federated learning. arXiv preprint arXiv:2011.09655,
2020.

[13] Zachary Charles and Jakub Konečnỳ. Convergence and accuracy trade-offs in federated learning
and meta-learning. In International Conference on Artificial Intelligence and Statistics, 2021.

[14] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith.
On large-cohort training for federated learning. Advances in Neural Information Processing
Systems, 34, 2021.

[15] Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li, and Bolin Ding. pfl-bench: A com-
prehensive benchmark for personalized federated learning. arXiv preprint arXiv:2206.03655,
2022.

[16] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning
with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

[17] Canh T Dinh, Nguyen H Tran, and Tuan Dung Nguyen. Personalized federated learning with
moreau envelopes. In Advances in Neural Information Processing Systems, 2020.

[18] Marco F Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks. Journal
of Parallel and Distributed Computing, 2004.

[19] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A
meta-learning approach. In Advances in Neural Information Processing Systems, 2020.

[20] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework
for clustered federated learning. In Advances in Neural Information Processing Systems, 2020.

[21] Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models.
arXiv preprint arXiv:2002.05516, 2020.

[22] Filip Hanzely, Slavomír Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and
optimal algorithms for personalized federated learning. Advances in Neural Information
Processing Systems, 2020.

[23] Filip Hanzely, Boxin Zhao, and Mladen Kolar. Personalized federated learning: A unified
framework and universal optimization techniques. arXiv preprint arXiv:2102.09743, 2021.

[24] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

8

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/emnist/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/emnist/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data

[25] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[26] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang,
Praneeth Vepakomma, Abhishek Singh, Hang Qiu, et al. Fedml: A research library and
benchmark for federated machine learning. arXiv preprint arXiv:2007.13518, 2020.

[27] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang
He, Liangwei Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A federated learning system and
benchmark for graph neural networks. arXiv preprint arXiv:2104.07145, 2021.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[29] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[30] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-
world data distribution. In European Conference on Computer Vision, pages 76–92. Springer,
2020.

[31] Sixu Hu, Yuan Li, Xu Liu, Qinbin Li, Zhaomin Wu, and Bingsheng He. The oarf bench-
mark suite: Characterization and implications for federated learning systems. arXiv preprint
arXiv:2006.07856, 2020.

[32] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong
Zhang. Personalized cross-silo federated learning on non-iid data. In AAAI Conference on
Artificial Intelligence, 2021.

[33] Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi,
Simon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by
interpolating weights. arXiv preprint arXiv:2208.05592, 2022.

[34] Prateek Jain, John Rush, Adam Smith, Shuang Song, and Abhradeep Guha Thakurta. Differen-
tially private model personalization. Advances in Neural Information Processing Systems, 34,
2021.

[35] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

[36] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and Trends in Machine
Learning, 14(1–2):1–210, 2021.

[37] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, 2020.

[38] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. Adaptive gradient-based
meta-learning methods. In Advances in Neural Information Processing Systems, 2019.

[39] Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, and
Ameet Talwalkar. Federated hyperparameter tuning: Challenges, baselines, and connections to
weight-sharing. Advances in Neural Information Processing Systems, 2021.

[40] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[41] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning
can distort pretrained features and underperform out-of-distribution. In International Conference
on Learning Representations, 2022.

9

[42] Fan Lai, Yinwei Dai, Sanjay S Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha V Madhyastha,
and Mosharaf Chowdhury. Fedscale: Benchmarking model and system performance of federated
learning at scale. In International Conference on Machine Learning (ICML), 2022.

[43] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

[44] Geun Hyeong Lee and Soo-Yong Shin. Federated learning on clinical benchmark data: perfor-
mance assessment. Journal of medical Internet research, 22(10):e20891, 2020.

[45] Jeffrey Li, Mikhail Khodak, Sebastian Caldas, and Ameet Talwalkar. Differentially private
meta-learning. In International Conference on Learning Representations, 2020.

[46] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

[47] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. In Conference on Machine Learning
and Systems, 2020.

[48] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in
federated learning. In International Conference on Learning Representations, 2020.

[49] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International Conference on Machine Learning, 2021.

[50] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. International Conference on Learning Representations, 2020.

[51] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated
learning on non-iid features via local batch normalization. In International Conference on
Learning Representations, 2021.

[52] Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent,
Ruslan Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated
learning with local and global representations. arXiv preprint arXiv:2001.01523, 2020.

[53] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

[54] Othmane Marfoq, Giovanni Neglia, Richard Vidal, and Laetitia Kameni. Personalized federated
learning through local memorization. In International Conference on Machine Learning, pages
15070–15092. PMLR, 2022.

[55] Koji Matsuda, Yuya Sasaki, Chuan Xiao, and Makoto Onizuka. An empirical study of personal-
ized federated learning. arXiv preprint arXiv:2206.13190, 2022.

[56] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[57] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[58] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In
International Conference on Machine Learning, 2019.

[59] Khalil Muhammad, Qinqin Wang, Diarmuid O’Reilly-Morgan, Elias Tragos, Barry Smyth, Neil
Hurley, James Geraci, and Aonghus Lawlor. Fedfast: Going beyond average for faster training
of federated recommender systems. In International Conference on Knowledge Discovery &
Data Mining, 2020.

10

[60] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[61] Ye Qi, Devendra Sachan, Matthieu Felix, Sarguna Padmanabhan, and Graham Neubig. When
and why are pre-trained word embeddings useful for neural machine translation? In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 529–535, New
Orleans, Louisiana, June 2018. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/N18-2084.

[62] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=LkFG3lB13U5.

[63] Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[64] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[65] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on
Neural Networks and Learning Systems, 2020.

[66] Khe Chai Sim, Angad Chandorkar, Fan Gao, Mason Chua, Tsendsuren Munkhdalai, and
Françoise Beaufays. Robust continuous on-device personalization for automatic speech recog-
nition. In Interspeech, pages 1284–1288, 2021.

[67] Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shanshan Wu, John Rush, and Sushant
Prakash. Federated reconstruction: Partially local federated learning. Advances in Neural
Information Processing Systems, 34:11220–11232, 2021.

[68] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. In Advances in Neural Information Processing Systems, 2017.

[69] Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau
envelopes. Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

[70] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated
learning. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[71] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[72] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khaz-
aeni. Federated learning with matched averaging. International Conference on Learning
Representations, 2020.

[73] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 2020.

[74] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-
Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field
guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

[75] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays,
and Daniel Ramage. Federated evaluation of on-device personalization. arXiv preprint
arXiv:1910.10252, 2019.

11

http://www.aclweb.org/anthology/N18-2084
http://www.aclweb.org/anthology/N18-2084
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5

[76] Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2-a large-
scale benchmark for instance-level recognition and retrieval. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 2575–2584, 2020.

[77] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pages 23965–23998. PMLR,
2022.

[78] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca
Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong,
et al. Robust fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7959–7971, 2022.

[79] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local
adaptation. arXiv preprint arXiv:2002.04758, 2020.

[80] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge
and Data Engineering, 2021.

[81] Yu Zhang and Dit-Yan Yeung. A convex formulation for learning task relationships in multi-task
learning. In Conference on Uncertainty in Artificial Intelligence, 2010.

[82] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

[83] Jiayu Zhou, Jianhui Chen, and Jieping Ye. Malsar: Multi-task learning via structural regulariza-
tion. Arizona State University, 21:1–50, 2011.

[84] Chen Zhu, Zheng Xu, Mingqing Chen, Jakub Konečnỳ, Andrew Hard, and Tom Goldstein.
Diurnal or nocturnal? federated learning of multi-branch networks from periodically shifting
distributions. In International Conference on Learning Representations, 2022.

12

A Motley: A Benchmark for Personalized Federated Learning

Table 2 gives an overview of the three components of Motley (methods, datasets, baselines). We
describe the included methods and datasets in this section. In Sections B and C, we provide baseline
results and discuss the practical concerns of performing personalization in real-world FL applications.

A.1 Personalization Methods

Motley includes five simple and model-agnostic algorithms for learning personalized models. The
first four algorithms are stateless, and hence, are appropriate in the cross-device FL setting (see
Section 1 and [36, 74] on why stateless algorithms are typically necessary for cross-device FL).

• Local training refers to every client training a local model using their own data, without collabo-
rating with others. While it is not an FL algorithm, we include it in Motley as it provides a good
baseline for FL algorithms, and it may be competitive when clients have sufficient local data [79].

• FedAvg+Fine-tuning [35] is a simple method for stateless, model-agnostic personalized FL,
operating as follows: First train a global model via FedAvg [62]4; then, each client fine-tunes
the global model on their local data and uses the fine-tuned model for inference. It has a natural
connection to meta-learning [35, 38]10, and has been reported to work well in real-world on-device
applications [66, 75]. In Motley, we explore two variations: fine-tuning the entire model or
fine-tuning only the last layer (the latter can be viewed as a form of hard parameter sharing MTL).

• HypCluster [53] (also IFCA [20]) is a stateless method that jointly clusters clients and learns a
model for each cluster. Both HypCluster and IFCA work as follows: in each training round, the
server sends all models (one per cluster) to the participating clients; each client receives the models
and picks the cluster associated to the model with the lowest loss on its local data. It then computes
an update for the selected model and sends the update and cluster identity to the server. The server
aggregates the model updates for each cluster in the same way as in FedAvg [62]4. In Motley, we
explore two initialization strategies: random and warm start with FedAvg4.

• FedAvg+kNN-Per [54] is a very recent personalization algorithm. The idea is to interpo-
late/ensemble the output of two models: a globally-trained FedAvg model and a local kNN
model. For each client’s local example, a representation vector is obtained from the FedAvg model
(e.g., the input to the last softmax layer, or the states of an LSTM model). The Euclidean distance
between the representations are used to learn a kNN model.

• Multi-Task Learning (MTL) is a class of methods used to deliver personalized models for a set
of tasks by learning the task relations (either explicitly or implicitly). Each ‘task’ corresponds to a
client in the FL setting. MTL approaches usually require the clients to be stateful [e.g., 21, 68], and
hence, are more appropriate for cross-silo settings (see Section 1 on stateless vs stateful algorithms).
Many existing personalized FL methods can be viewed as a form of MTL [e.g., 21, 22, 49, 68, 69].
In Motley, we consider two MTL algorithms: 1) Mocha [68], the first work that proposes to
personalize federated models in convex settings, and 2) Ditto [49], a recent work that regularizes
personalized models towards optimal global models for both convex and non-convex problems.

A.2 Datasets and Pre-processing

Table 2 lists the datasets carefully chosen to reflect real-world FL applications (see Appendix E
for detailed descriptions). All datasets have natural per-user partitions and distinct local statistics
(Fig. 1). Motley provides data pre-processsing pipelines for all data1, and includes a critical and often
overlooked distinction between pre-processing cross-device vs. cross-silo data (described below).

Pre-processing cross-device datasets. Two steps are necessary to evaluate personalization algo-
rithms in the cross-device setting. First, we randomly split the clients into three disjoint sets: train,
validation (for hyperparameter tuning), and test (for final evaluation). This split reflects practical
cross-device FL settings: given the population scale (e.g., millions of mobile devices [24]), devices
participating in training are usually different from those in inference. Second, we split each validation
and test client’s local examples into two equal-sized sets: a personalization set and an evaluation set.

10Specifically, FedAvg can be viewed as performing the Reptile algorithm [60] to learn an effective starting
model, such that after fine-tuning, the model can quickly adapt to a client’s local data.

13

See Section B for how they are used in each algorithm. Specifically, the personalization set is used
to train a local model, fine-tune a FedAvg-trained model, or select the best HypCluster model. On
StackOverflow, we sort the local examples by time before splitting11. We perform random split on
other datasets because they do not save time information12.

Pre-processing cross-silo datasets. Unlike cross-device FL, in the cross-silo FL setting the total
number of silos is small (e.g., tens of hospitals), and the same silos usually participate in both training
and inference. To evaluate this setting, we split each silo’s local examples into three sets: a train,
validation, and test set. See Section C for details on how they are used in training and evaluation.

Clients sampling. Besides the distinction in the pre-processing steps, another distinction is the
clients sampling rate during training. As mentioned in Section 1, the clients sampling rate is usually
very low [36] in the cross-device setting, e.g., the total population is hundreds of millions devices but
only a few thousands participate at every training round. Table 3 lists the number of clients sampled
per round used in our cross-device experiments. In the cross-silo experiments, we assume that all
clients are always available at each training round.

Table 3: Number of clients sampled per round in our cross-device experiments (see Appendix F for
all the hyperparameters). The real-world cross-devices settings usually have a very low sampling rate,
e.g., hundreds of millions devices in total but only a few thousands participate each round [36].

Datasets Total train clients Sampled clients/round Sampling
rate

EMNIST 2500 50 2%
StackOverflow 342,477 200 0.05%
Landmarks 1112 64 6%
TedMulti-EnEs 3969 32 0.8%

B Cross-Device Experiments

We now provide cross-device personalization baselines (Table 4) by evaluating the stateless methods
discussed in Section A on the cross-device datasets included in Motley, and discuss our findings.

Training and evaluation process. As discussed in Section A.2, each cross-device dataset has train,
validation, and test clients. We use the train clients to train a single model via FedAvg or a model
per cluster via HypCluster, then evaluate the trained model(s) on the validation clients. For FedAvg
+ Fine-tuning, this evaluation is done on each client by first fine-tuning the FedAvg-trained model
on the local personalization set, then evaluating the fine-tuned model on the local evaluation set.
For HypCluster, this evaluation is performed on each client by using the local personalization set
to find the model with the lowest loss, and then evaluating the selected model on the evaluation
set. For FedAvg+kNN-Per, each client first uses the FedAvg-trained model to extract the example
representations on the local personalization set, and use them to get a kNN model, and after that,
evaluates the personalized model (interpolated between the kNN model and FedAvg-trained model)
on the evaluation set. We use the validation metrics (i.e., the evaluation metrics over the validation
clients) to select the best hyperparameters (see Appendix F) and report the test metrics (i.e., evaluation
metrics on the test clients) in Table 4. We discuss additional details and results for each stateless FL
method below.

B.1 FedAvg + Fine-tuning (FT)

As we focus on personalization, it is crucial to see how the per-client accuracy changes with and
without personalization. This is shown by the "Per-client acc before/after FT" metrics in Table 4,
where we list the mean ± standard deviation of the test clients’ per-client accuracy before and
after fine-tuning. The mean and standard deviation metrics here are averaged over 5 runs13. As

11The model is fine-tuned on the old examples and evaluated on the new ones, reflecting practical FL settings.
12This means that, except StackOverflow, our experiments do not capture the potential distribution shift

between the old and new examples. See Section B.1 for why this can potentially benefit FedAvg+Fine-tuning.
13See Appendix G for the standard deviations across the 5 runs.

14

Table 4: Summary of experimental results on the cross-device FL datasets as well as possible
concerns around using each method in practice. We report the per-client accuracy (mean ± standard
deviation) on the test clients after training 1500 rounds (following [14]) on EMNIST, StackOverflow
and TenMulti, and 30k rounds (following [30]) on Landmarks. Note that the standard deviation is
across all the clients’ local accuracies, which is a fairness metric considered in [49, 58]. Each value
is further averaged over 5 different runs (see Table 6 for the standard deviation over the 5 runs).
Appendix F provides the tuned hyperparameters.

Algorithm Metrics EMNIST StackOverflow Landmarks TedMulti
Local
training

Per-client acc 0.594±.17 0.062±.03 0.173±.16 0.056±.02

FedAvg +
Fine-
tuning
(FT)

Per-client acc before FT 0.844±.10 0.269±.03 0.564±.16 0.160±.04
Per-client acc after FT 0.903±.06 0.282±.03 0.773±.11 0.162±.04
% clients "hurt" after FT 5.2% 14% 5.6% 40%
FT all layers vs last layer All layers All layers All layers All layers

Practical concerns: difficult to tune hyperparameters; may hurt clients; sensitive
to distribution shift; performance drops with fewer examples (see Section B.1)

HypCluster
/ IFCA

Per-client acc 0.897±.08 0.273±.03 0.573±.16 0.163±.04
No. tuned clusters (k) 2 2 2 2
% clients largest cluster 52.6% 85.1% 92.1% 54.7%
Warmstart from FedAvg Yes Yes Yes Yes
Per-client acc by ensem-
bling k FedAvg models

0.860±.08 0.271±.03 0.564±.16 0.163±.04

Practical concerns: hard to train due to mode collapse; high communication cost;
hard to interpret the clusters; sensitive to distribution shift (see Section B.2)

FedAvg +
kNN-Per

Per-client acc 0.876±.06 0.275±.03 0.735±.13 0.162±.05
% clients "hurt" 19.8% 23.6% 5.6% 34.4%

Practical concerns: difficult to tune hyperparameters; may hurt clients; sensitive
to distribution shift; performance drops with fewer examples (see Section B.3)

shown in Table 4 and Figure 2, fine-tuning improves the average per-client accuracy on EMNIST,
StackOverflow, and Landmarks, and reduces the standard deviation across the clients’ local model
accuracies on EMNIST and Landmarks (i.e., improves fairness7). We explored fine-tuning the entire
model or only last layer and found that fine-tuning all layers perform better, as shown by the metric
"FT all layers vs last layer" in Table 4.

500 1000 1500
FedAvg Round Number

0.24

0.26

0.28

Av
g

pe
r-c

lie
nt

 a
cc

(a) StackOverflow

Before FT
After FT

0.2 0.3
Per-client acc before FT

0.00

0.05

Pe
r-c

lie
nt

 a
cc

 d
el

ta (b) StackOverflow

200 400
Per-client #train examples

0.00

0.05

Pe
r-c

lie
nt

 a
cc

 d
el

ta (c) StackOverflow

Original 1/4 test

0.0

0.1

Pe
r-c

lie
nt

 a
cc

 d
el

ta (d) StackOverflow

Figure 8: Fine-tuning may hurt some clients. (a) Fine-tuning improves average per-client accuracy.
(b) Scatter plot of per-client accuracy delta (i.e., accuracy after fine-tuning – before fine-tuning). Each
dot is a client. (c) Same scatter plot as (b) with the x-axis being the number of local examples used to
fine-tune the model. (d) Fine-tune the same model on the same set of clients using smaller test data.

Observation 1: Fine-tuning can hurt clients. The metric "% clients hurt after FT" in Table 4 is the
percentage of test clients whose local accuracy drops after fine-tuning. This phenomenon can be
better visualized in Figure 8: while Figure 8(a) shows that fine-tuning increases the average per-client
accuracy on the StackOverflow dataset, the scatter plot (each dot is a client) of the per-client accuracy
deltas (i.e., accuracy after fine-tuning – before fine-tuning) in Figure 8(b) shows that some clients
drop accuracy after fine-tuning (i.e., fall below the red dashed line at zero). We identify two reasons:

15

a. The per-client accuracy is noisy for clients with small local datasets. This effect occurs in two
distinct ways: 1) Clients use a small number of examples to fine-tune the model14. In Figure 8(c),
we show the same scatter plot (each dot is a client) as in Figure 8(b) with the x-axis being the
number of examples used to fine-tune the model. The clients hurt by fine-tuning tend to have
a small local personalization set8. 2) Clients use a small number of examples to evaluate the
fine-tuned model. In Figure 8(d), we fine-tune the same model on the same set of clients. The
only difference is the size of the evaluation set8. The evaluation metrics are noisier (i.e., we see a
larger range in Figure 8(d)) for smaller evaluation sets.

b. Heterogeneity among clients and the fact that the fine-tuning hyperparameters are chosen globally.
Since each client’s local dataset is typically small, instead of choosing the fine-tuning hyperpa-
rameters (i.e., the fine-tuning learning rate, the number of fine-tuning epochs, and which layer to
fine-tune) in a per-client manner15, we tune them globally and apply the same hyperparameters to
all test clients. The global fine-tuning hyperparameters work for most clients, but can adversely
affect others. This also illustrates why hyperparameter tuning is difficult (see below).

Observation 2: Hyperparameter tuning can be difficult. At least three hyperparameters are
specific to fine-tuning: which layers to fine-tune, the fine-tuning learning rate16, and the number of
epochs to fine-tune the model. As pointed out in Observation 1b), due the small local dataset on each
client, instead of choosing the best fine-tuning hyperparameters in a per-client manner, we typically
tune them globally and apply the same hyperparameters to all the test clients. Choosing a good set of
fine-tuning hyperparameters can be particularly difficult due of the following reasons:

a. Different metrics may favor different hyperparameters17. For example, if we look at Figure 9(a),
we may want to choose 0.1 as the fine-tuning learning rate because it gives higher average per-
client accuracy; however, if we look at Figure 9(b), we may want to choose 0.25 because fewer
clients drop their accuracies after fine-tuning (i.e., per-client acc delta < 0). In Figure 9(c), we plot
the two metrics across different fine-tuning learning rates, and it is clear that different metrics may
prefer different learning rates.

b. Since the per-client accuracies are noisy, we need to be careful when determining whether the
difference between two sets of hyperparameters is statistically significant.

c. Extra hyperparameters add another layer of complexity. For example, it may be helpful to tune
FedAvg together with fine-tuning so that the model produced by FedAvg is a good initial model for
fine-tuning [35]. Existing FL hyperparameter optimization methods (e.g., [39]) often overlook the
practical issues (e.g., clients may be hurt by fine-tuning, inconsistent and noisy metrics) mentioned
above. Another example of an extra hyperparameter is that one may want to learn a threshold14

such that only clients whose local dataset size is larger than this threshold can perform fine-tuning
(see also the remark on "acceptance criteria and robust personalization" after Observation 3).

Observation 3: Sensitivity to distribution shift. Fine-tuning is able to quickly adapt a model to a
client’s local data, and hence, can achieve good test performance as shown in Table 2, especially
on the two image datasets EMNIST and Landmarks. However, a potential drawback of this quick
adaption is that the fine-tuned model may perform poorly if a client’s future data distribution differs
from the existing data (a.k.a. catastrophic forgetting [56]). To illustrate this, we evaluate each test
client’s personalized model over the in-distribution (ID) test set (i.e., the client’s local evaluation set8)
and an out-of-distribution (OOD) test set. This OOD test set is formed by randomly sampling local
examples from the test clients. The averaged ID and OOD test accuracies are shown in Figure 4. We
plot the results for different fine-tuning epochs. Larger fine-tuning epoch gives higher ID accuracy but
lower OOD accuracy. This trade-off indicates an extra maintenance cost of personalized algorithms,
i.e., decide when and how to continuously personalize the model when clients have new data.

Remark: Acceptance criteria and robust personalization. Our experiments assume that each
client always performs fine-tuning and uses the fine-tuned model for inference. In practice, one can
design appropriate criteria so that a client only performs fine-tuning and accepts the fine-tuned model
under certain conditions. For example, a client can perform fine-tuning only when its local dataset

14In practice, it may be good to only apply fine-tuning to clients with large amount of local data.
15We tried this approach (i.e., each client chooses the fine-tuning hyperparameters based on its local data) on

the StackOverflow dataset, but found that it performed worse than tuning the hyperparameters globally.
16We focus on SGD when fine-tuning the model, as adaptive optimizers seem to perform similarly as SGD.
17The results shown in Table 4 is based on tuning hyperparameters by the average per-client accuracy.

16

0 5 10 15 20
FT #epochs

0.2675

0.2700

0.2725

0.2750

0.2775

0.2800

Av
g

pe
r-c

lie
nt

 a
cc

(a) StackOverflow

FT LR=0.1
FT LR=0.25

0.000 0.025 0.050 0.075
Per-client acc delta

0

20

40

60

Nu
m

be
r o

f c
lie

nt
s

(b) StackOverflow
FT LR=0.1
FT LR=0.25

0.0 0.1 0.2 0.3
FT learning rates

0.276

0.278

0.280

0.282

0.284

Av
g

pe
r-c

lie
nt

 a
cc

(c) StackOverflow

0.10

0.11

0.12

0.13

%
 c

lie
nt

s h
ur

t a
fte

r F
T

Figure 9: Choosing a good set of fine-tuning hyperparameters is difficult, as different metrics may
be improved by different hyperparameters. (a) FT learning rate 0.1 gives higher average per-client
accuracies; (b) FT learning rate 0.25 hurts fewer clients; (c) The "avg per-client acc" metric may
prefer a moderately large FT learning rate, while the "clients hurt" metric prefers a small FT learning
rate.

size is large enough as mentioned previously14; a client can only accepts the fine-tuned model when
its evaluation metric is better than that of the baseline model. See Section 2.2 of [66] for an example
of acceptance criteria developed for a real-world on-device personalization application. Designing a
good set of acceptance criteria can mitigate the negative effects due to Observation 1 and 3 above, and
potentially prevent clients from accepting fine-tuned models that do not generalize well. Mitigating
catastrophic forgetting [56] during model adaptation is an active research area, e.g., some recent
work [3, 33, 41, 77, 78], which would be worth exploring in the setting of personalized federated
learning.

Observation 4: Performance drops when clients have smaller personalization set8. This is
already indicated previously in Figure 8(c), which shows that clients with smaller personalization set
(i.e., fewer examples used to fine-tuned the model) tend to be hurt by fine-tuning. In Figure 6(c), we
reduce the number of examples in each test client’s persoanlization set to 50% and 25% of its original
size, and report the accuracy averaged over the test clients. We see that the performance of fine-tuning
and kNN-Per drops quickly when we decrease the number of local examples to personalize the model.
On the other hand, HypCluster is quite robust to this change, which makes sense because HypCluster
only needs the personalization set for model evaluation and use the evaluation metrics to choose the
best model, while fine-tuning and kNN-Per needs the local examples to train a new model.

B.2 HypCluster / IFCA

We now discuss results of HypCluster/IFCA algorithm. As shown in Table 2, the average per-client
accuracy of HypCluster is slightly better than that of FedAvg18, but is much worse than that of
FedAvg+Fine-tuning on the first three datasets. We tuned19 the number of clusters between {2,3,4};
however, due to the mode collapse issue (described below), we found that it difficult to learn k models
with k > 2. A natural baseline to compare with HypCluster is to run FedAvg k times, and ensemble20

the k models. We also include this baseline in Table 2, and discuss it in Observation 3 below.

Observation 1: “Mode collapse” can hurt training. As shown in Figure 5(a), we monitor the
percentage of clients that choose the first cluster when running HypCluster with random initialization
on EMNIST. After a few rounds, all clients will always choose the same cluster. The same thing
happens to all the other datasets. One way to mitigate this “mode collapse” issue is to warm start
HypCluster with models trained by FedAvg. In our experiments, we train a few rounds of FedAvg for
k times, and use the k models to warm start HypCluster (see Appendix F for the hyperparameters.).
Figure 5(a) shows that warm start can help mitigate the mode collapse issue on EMNIST. However,
mode collapse can still happen even when warm start is used, especially for k > 2. How to effectively
train HypCluster without mode collapse in real-world cross-device settings remains an open problem.

18We follow the same training and evaluation process described in the beginning of Section B, and hence, the
per-client accuracies of HypCluster shown in Table 2, can be directly compared to those of FedAvg+Fine-tuning.

19Except for TedMulti-EnEs which we focus on 2 clusters since it contains two languages: English/Spanish.
20There are many ways to combine multiple models, e.g., average the model outputs. Here we use the same

procedure as in HypCluster, where each client selects the model with the lowest local loss for inference.

17

Observation 2: High communication cost per round. A limitation of HypCluster is that in each
round, the server needs to broadcast k models (where k is the number of learned clusters) to the
clients, and hence, incurs k times the communication cost of FedAvg21. In Figure 5(b) and (c), we
plot the average per-client accuracies with respect to the total number of parameters communicated
(including those used for training the warm start models) for EMNIST and TedMulti. While TedMulti
eventually achieves a slightly better average accuracy than FedAvg (Table 2), it is arguably worse than
FedAvg from a accuracy-communication ratio perspective. While one can reduce communication
costs via weight-sharing [20], we found that this increased the likelihood of mode collapse22. In
future work it would be interesting to explore connections between mode collapse and weight sharing,
and consider how to best train HypCluster in constrained networks.

Observation 3: Difficulty in interpreting the learned clusters. As discussed in the beginning of
Section B.2, a natural baseline to compare with HypCluster is to run FedAvg k times, and ensemble20

the k models. Specifically, we train HypCluster with k clusters for y rounds, and compare it with
training FedAvg k times and each for y rounds, so both have the similar communication cost. As
shown in Table 2, the average per-client accuracy of ensembling k FedAvg models is similar to that
of HypCluster for 3/4 datasets, so a natural question is: does HypCluster actually learn a meaningful
cluster structure of the underlying data? While it is generally hard to answer this question on an
arbitrary dataset, we do know that TedMulti-EnEs has two natural clusters of clients, i.e., English and
Spanish users. Figure 5(d) lists the number of English and Spanish clients (total 117 test clients) in
the two learned clusters. HypCluster indeed uncovers the two underlying clusters on TedMulti-EnEs.

Observation 4: Sensitive to distribution shift. We follow the same ID and OOD evaluation
procedure in Section B.1. As shown in Figure 4, HypCluster seems to give a worse ID-OOD tradeoff
(i.e., achieves a lower OOD accuracy at the same ID accuracy) compared to the other personalization
algorithms.

B.3 FedAvg + kNN-Per

We now discuss the results of kNN-Per, which are shown in Table 4 as well as in Figure 2.

Observation 1: Clients may be hurt. In Table 4, besides the per-client accuracy, we also list
the percentage of clients "hurt" after personalization (i.e., test clients whose accuracy on the local
evaluation set8 after kNN-Per is lower than that of FedAvg). As shown in Table 4, compared to
fine-tuning, kNN-Per has a lower "per-client acc" but a higher "% clients hurt" for 3/4 datasets. The
two reasons why clients may hurt after fine-tuning given in Section B.1 also applies to kNN-Per: 1)
The per-client accuracy metric is noisy due to local data scarsity; 2) The hyperparameter is chosen
globally but each client has heterogeneous local distribution. Similar to fine-tuning, so far we assume
all test clients will perform kNN-Per. Designing a good set of conditions as to when a client should
perform kNN-Per may help reduce the fraction of client hurt (see "Remark: Acceptance criteria and
robust personalization" in Section B.1).

Observation 2: Difficulty in hyperparameter tuning. Following [54], we set k (the number of
nearest neighbors) to 10 for all kNN-Per experiments ([54] shows that kNN-Per is robust to the choice
of k). We tune the interpolation coefficient globally, i.e., all clients use the same coefficient23. The
interpolation coefficient is a scalar in (0, 1) (see Eq.(7) of [54]), where 0 means that no personalization
and 1 means that the local prediction is formally entirely based on nearest neighbors. Figure 6(a-b)
plot the two metrics "average per-client accuracy" and "% client hurt" for different interpolation
coefficients. We see that the two metrics may prefer different hyperparameter values. Section B.1
points out two other reasons why hyperparameter tuning is difficult for fine-tuning. Both of them
apply to kNN-Per as well, including the noisy local metrics and potentially extra hyperparameters.

Observation 3: Sensitive to distribution shift. We follow the same ID and OOD evaluation
procedure in Section B.1. As shown in Figure 4, kNN-Per seems to give a similar or better ID-OOD
tradeoff (i.e., achieves a higher OOD accuracy at the same ID accuracy) compared to the other

21In real-world cross-device FL settings, reducing the communication cost between the server and mobile
devices can help reduce the latency due to stragglers (see Section 5.1 in [74] for more discussions).

22One possible reason is that during training, the shared layers may produce features specifically tied to one
cluster. To avoid this correlation, one may want to learn invariant features [5] that are good for all clusters.

23We also tried tuning a per-client specific coefficient but found this performed worse than global tuning due
to limited amount of local data.

18

Table 5: Summary of experimental results on the cross-silo datasets. Similar to Table 4, we report
the per-client test metric (mean ± standard deviation) across the clients, so the standard deviation can
be viewed as a fairness metric [49, 53]. Each metric value is averaged over 5 independent runs with
different random seeds (see Table 7 for standard deviations over the 5 runs). Vehicle uses accuracy as
the metric while ADNI and School use mean squared error (MSE). We train linear models on Vehicle
and School. Appendix F has the tuned hyperparameters.

Algorithm Metrics Vehicle (acc) School (mse) ADNI (mse)

Local training Per-client metric 0.9367±.0248 0.0121±.0059 0.0177±.0106

FedAvg +
Fine-tuning
(FT)

Per-client metric before FT 0.8859±.0833 0.0130±.0068 0.0141±.0090
Per-client metric after FT 0.9385±.0253 0.0116±.0056 0.0124±.0082
% clients "hurt" after FT 4.4% 33.0% 0
FT all layers vs last layer N/A N/A no difference

Practical concerns: Similar to those in the cross-device setting (Table 4);
Tuning per-client hyperparameter may outperform global tuning (Fig. 7).

HypCluster /
IFCA

Per-client metric 0.9246±.0288 0.0112±.0053 0.0137±.0093
No. tuned clusters (k) 4 3 2
% clients largest cluster 49.6% 44.6% 78%
Warmstart from FedAvg No Yes Yes
Per-client metric by ensem-
bling k FedAvg models

0.8851±.0828 0.0129±.0066 0.0133±.0091

Practical concerns: Similar to the cross-device setting (Table 4); on Vehicle
and School, mode collapse occurs less potentially from using a linear model.

FedAvg +
kNN-Per

Per-client metric 0.9228±.0287 0.01163±.0055 0.0126±.0096
% clients "hurt" 22.6% 37.4% 37.8%

Practical concerns: Similar to those in the cross-device setting (Table 4).

MTL (Ditto) Per-client metric 0.9377±.0218 0.0114±.0053 0.0134±.0063
MTL (Mocha) Per-client metric 0.9371±.0244 0.0121±.0059 N/A

personalization algorithms. Nevertheless, it is still worth exploring methods that improve the OOD
robustness during personalization, as discussed in the "Remark: Acceptance criteria and robust
personalization" in Section B.1.

Observation 4: Performance drops when clients have smaller personalization set8. This has
been discussed previously in Section B.1. As shown in Figure 6, the performance of kNN-Per and
fine-tuning drops quickly when the test clients have fewer examples to personalize the model (in the
case of kNN-Per, fewer examples to find the neareast neighbors). This is in contrast to HypCluster,
which only uses the local personalization set for identifying the best model instead of training a new
model as in fine-tuning and kNN-Per.

C Cross-Silo Experiments

We now consider baselines for the cross-silo personalization methods and datasets in Motley.

Training and evaluation setup. As mentioned in Section A.2, in the cross-silo setting, the same silos
appear in both training and inference; to evaluate this setting, we split each client’s local examples into
three sets: train/validation/test. We train on the training sets across all clients, tune hyperparameters
on the validation sets (see Appendix F.3), and report metrics on the test sets. Unlike the cross-device
setting, in the cross-silo setting, each client typically has sufficient compute power and a large number
of local examples. This allows us to tune fine-tuning hyperparameters in a per-client manner (e.g.,
every client chooses their own hyperparameters based on their validation metric), as opposed to
tuning globally in the cross-device setting in Section B.1.

Results. Table 5 reports the cross-silo experimental results in the same format as in Table 4. Most
of the practical concerns of FedAvg+Fine-tuning and HypCluster discussed in Section B are still

19

applicable here, e.g., HypCluster is still difficult to train due to the mode collapse issue (although it
may happen less frequently when training simple linear models on Vehicle and School). In addition
to the shared practical concerns, we observe four key trends specific to the cross-silo setting.

Observation 1: Effectiveness of local training. Local training may be a strong baseline in cross-silo
settings. If we consider client(silo)-level differential privacy, it has an extra benefit of no privacy cost.

Observation 2: Importance of personalization. The three personalization algorithms (FedAvg +
Fine-tuning, HypCluster, and MTL) all achieve better mean accuracy (or MSE) and fairness7 (i.e.,
smaller per-client metric standard deviation in Table 5) than that of FedAvg.

Observation 3: Performance of MTL. We see that (stateful) MTL methods could yield competitive
performance with finetuning on the three datasets, with potentially less hyperparameter tuning.

Observation 4: Effectiveness of client-specific fine-tuning. For FedAvg+Fine-tuning, we com-
pared tuning the fine-tuning hyperparameters (i.e., fine-tuning learning rate and the number of
fine-tuning epochs) in a per-client (every client chooses their own hyperparameter) vs global (all
clients share the same hyperparameter) manner. Using client-specific fine-tuning hyperparameters
can be better than tuning globally when each client’s local data is large (see the ADNI result in
Figure 7).

D Background on Personalized Federated Learning

Traditionally, federated learning objectives consider fitting a single global model, w, across all local
data in the network. The aim is to solve:

min
w

G(F1(w), . . . FK(w)) , (1)

where Fk(w) is the local objective for client k, and G(·) is a function that aggregates the local
objectives {Fk(w)}k∈[K] from each client. For example, in FedAvg [57], G(·) is typically set to
be a weighted average of local losses, i.e.,

∑K
k=1 pkFk(w), where pk is a pre-defined non-negative

weight such that
∑

k pk = 1. However, in general, each client may generate data xk via a distinct
distribution Dk, i.e., Fk(w) := Exk∼Dk

[fk(w;xk)]. To better account for this heterogeneity, it is
therefore increasingly common to consider techniques (described below) that learn personalized,
client-specific models, {wk}k∈[K] across the network.

A distinguishing factor of personalized FL methods is whether the approach requires any variables
to be maintained on participating clients from one round to another [74]. As discussed in Section 1,
whereas stateless approaches may be applicable to either cross-device or cross-silo FL, stateful
approaches are more appropriate for cross-silo settings given the typical size and configuration of the
network. Besides stateful vs stateless, the personalized FL algorithms can be categorized into model-
agnostic and model-specific. Model-specific approaches target a specific model and usually require
domain-specific information [34, 67, 84]. The current version of Motley focuses on benchmarking
personalization algorithms that can work without assumptions on the model or application scenario.
We discuss major model-agnostic approaches in stateful vs. stateless personalized FL below, and
defer readers to the recent surveys [70][74, §7.5] for more related work on personalized FL.

Stateful Approaches. A common class of stateful personalized FL methods are multi-task learning
(MTL) methods. These methods view each client (or group of clients) as a separate ‘task’, and aim to
jointly learn task-specific models while exploiting similarities/differences between tasks. The idea of
solving multiple learning tasks simultaneously was first popularized by Caruana [11] in the 90’s, who
described multi-task learning as a technique in which related tasks act as a form of inductive bias to
improve generalization. Many approaches can be captured in the following general and widely-used
formulation, known as multi-task relationship learning [68, 80, 81]:

min
W ,Ω

{
K∑

k=1

nk∑
i=1

`k(wk;x
i
k, y

i
k) +R(W ,Ω)

}
. (2)

Here W := [w1, . . . ,wK] ∈ Rd×K is a matrix whose k-th column is the weight vector for the k-th
task (in this case, the model on client k). The matrix Ω ∈ RK×K models relationships amongst
tasks, and is either known a priori or estimated while simultaneously learning task models. MTL
problems differ based on their assumptions on R, which takes Ω as input and promotes some

20

suitable structure amongst the tasks. In federated learning, a number of specific MTL instantiations
have been proposed, including variants of general relationship learning [32, 68], cluster-regularized
MTL [65, 68], global-regularized MTL [49, 79], and mean-regularized MTL [17, 21, 22].

Beyond these approaches, another common variant of MTL, particularly for deep learning problems,
is ‘hard parameter’ sharing approaches [63]. These methods consider splitting the model architecture
itself into two components: a shared part that is jointly learned by all clients, and a local part that is
personalized to each client. The local portion can be simply fine-tuned (as discussed below), or may
be learned in conjunction with the shared portion by saving the local state on each client at every
round, in which case they would also fall under the category of stateful FL [4, 23, 52].

Stateless Approaches. In the stateless category, one of the most common forms of personalization
is simple fine-tuning. With fine-tuning, a shared model is trained and deployed on each client,
and the model is then fine-tuned or adapted locally to the client’s data. In its simplest form the
deployed model could be a global model trained via a typical procedure such as FedAvg [57, 62],
and additional iterations of a stochastic optimizer such as mini-batch SGD can be run locally
after deployment. However, it is also natural to consider meta-learning approaches as part of this
workflow [13, 19, 35, 38], which are specifically designed to learn an algorithm that can solve a
new task with a small number of training samples. These approaches can be particularly useful in
cross-device FL settings, where each client may generate only a small number of training points, and
it may be necessary to deploy and adapt models to clients that did not participate in training.

Finally, unlike the stateful MTL-based clustering approaches discussed above, it is also possible to
consider clustering variants that don’t require state to be maintained. In particular, a common approach
is to maintain multiple global models and to have participating clients determine which of the models
is best suited to their local data, thus forming a natural clustering amongst the clients [20, 53].

In developing baselines for Motley, we explore a simple fine-tuning after FedAvg approach (fine-
tuning different layers), and a stateless clustering algorithm [20, 53] (different initialization schemes)
for both cross-silo and cross-device settings. We also include a baseline of training local models
without federation. Furthermore, we explore a stateful baseline of MTL (both simpler and more
complex approaches) for the cross-silo setting. See Section A.1 for more details.

E Datasets

0 500 1000
Client (sort by #labels)

0

200

400

#l
ab

el
s p

er
 c

lie
nt

(a) Landmarks

0 500 1000
Client (sort by #examples)

0

1000

2000

3000

#e
xa

m
pl

es
 p

er
 c

lie
nt (b) Landmarks

0 5000 10000
Token (sort by popularity)

0

100000

200000

300000

#c
lie

nt
s h

av
e

th
is

to
ke

n (c) StackOverflow

0 5
Client (sort by #examples)

0

5000

10000

15000

#e
xa

m
pl

es
 p

er
 c

lie
nt (d) ADNI

Figure 10: The chosen federated datasets (Table 2) have heterogeneous local distributions.

All the datasets used in Motley are listed in Table 2. They do not contain personally identifiable infor-
mation or offensive content. They all have natural per-client data partitions, which will be discussed
in more details below. Figure 10 shows that each client’s local data distribution is distinct from each
other, a common property of real-world federated datasets (see the discussions on "Heterogeneity" in
Section 1 and Appendix D).

E.1 Cross-device

We describe the cross-device datasets in Table 2. We will also mention how we split the clients into
train, validation, and test clients (a key preprocessing step described in Section A.2).

21

• EMNIST is first processed by the LEAF benchmark [10]. We use the version from [6], which con-
tains 3400 writers/clients and a total of 671,585 images24. Each client has on average 200 images
(28-by-28 pixels) of hand-written digits and characters (62 classes). We use a CNN model [43]
with 1M parameters (same as [14]). The 3400 clients are randomly split into 2500/400/500 as
train/validation/test.

• StackOverflow is a large-scale federated language dataset. Each client is a user in the Stack
Overflow online forum. The examples are the questions and answers posted by this user. Each
example is a sentence. The task is next word prediction. We use an LSTM model [28] with 4M
parameters and 10k vocabulary size (same as [14]). The version from [7] contains 342k train clients
and 38k held-out clients. We randomly split the held-out clients into 10k/28k for validation/test.

• Landmarks is a federated image classification dataset processed by Hsu et al. [30] (from the 2019
Landmark Recognition Challenge [76]). Each client is a Wikipedia contributor. The images are the
landmark (e.g., famous monuments and mountains) photos uploaded by the photographers. The
per-user data distribution naturally varies based on the photographer’s geographic location. The
dataset contains 164k images, 2028 landmark labels, and 1262 clients. We use a MobileNetV2
model [64] with 4M parameters (same as [30]). We randomly split the clients into 1112/50/100 as
train/validation/test.

• TedMulti-EnEs is a subset of the TedMultiTranslate dataset. The original TedMultiTranslate is a
multilingual (60 languages) dataset derived from the TED Talk transrcipts [61]. We only use two
languages English and Spanish (and hence, "EnEs" in the name). This dataset has not been used in
any federated learning experiment before, so we need to do more preprocessing work. We first
partition the clients by the TED Talk author and language (a client contains either English data
or Spanish data but not both25). Each example is a sentence from the talk. The task is next word
prediction. We build a vocabulary of size 15k containing both English and Spanish words (these
words appear in at least 20 clients). We use a transformer model [71] with 4M parameters. Clients
with less than 20 examples are removed. We randomly split the 4184 clients into 3969/98/117 as
train/validation/test.

E.2 Cross-silo

• Vehicle dataset, originally collected by Duarte and Hu [18], is a binary classification dataset
containing measurements of road segments from a distributed network of 23 vehicle sensors with a
total of 43,695 feature vectors for classifying the type of the passing vehicles. Following Smith
et al. [68], we treat each sensor as a task (data silo) and use 50 acoustic and 50 seismic features as
inputs to a linear SVM model. It is suitable for cross-silo FL because of the small number of silos
and sufficiently large local datasets for local training. We split each client(silo)’s local dataset into
70%/15%/15% train/validation/test sets.
• School dataset, originally collected by the now-defunct Inner London Education Authority,26

is a regression dataset for predicting the exam scores of 15,362 students distributed across 139
secondary schools. Each school has records up to 251 students with each student described by a
28-dimensional feature vector capturing attributions such as the school ranking, student birth year,
and whether the school provided free meals. Simple linear regression models suffice for reasonable
performance. We split each client(silo)’s local dataset into 70%/15%/15% train/validation/test sets.

• ADNI (Alzheimer’s Disease Neuroimaging Initiative)27 is a public medical dataset containing
various formats of data to help advance the study of Alzheimer’s disease.28 The task is to predict
Standardized Uptake Value Ratio (SUVR) from PET scans of human brains. We treat each
24Note that in the EMNIST dataset provided by [6], each client’s examples are already split into a training set

and a small test set, for simplicity, we only use the training set of each client in our experiments.
25The processed dataset has two clusters of clients: English/Spanish. See Section B.2 for more discussions.
26https://en.wikipedia.org/wiki/Inner_London_Education_Authority
27All research on the ADNI dataset was conducted by Tian Li. No other authors had access to this data. ADNI

data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this paper. A complete listing of ADNI investigators
can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
ADNI project was funded by National Institutes of Health Grant U01 AG024904 and DOD ADNI (Department
of Defense award number W81XWH-12-2-0012).

28https://adni.loni.usc.edu/

22

https://en.wikipedia.org/wiki/Inner_London_Education_Authority
https://adni.loni.usc.edu/

scanner vendor as a silo, and there are 9 silos in total. We specifically use a subset of PET
scans (with AV45 and preprocessing step ‘Coreg, Avg, Std Img and Vox Siz, Uniform
Resolution’) that have existing labels obtained from UC Berkeley study in the database. We
convert the data into .png format, normalize each pixel value to (0, 1), and rescale each image into
size 32×32. We split each client(silo)’s local dataset into 80%/10%/10% train/validation/test sets.

E.3 License/Usage Information

• EMNIST. The Extended MNIST dataset29 is a variant of the original NIST Special Database 1930.
In this paper, we use a federated version of this Extended MNIST dataset, which is processed and
provided by the LEAF31 benchmark [10] under the BSD-2-Clause license.

• StackOverflow. This dataset is derived from the Stack Overflow Data hosted by Kaggle32, under
the CC BY-SA 3.0 license. In this paper, we use the federated version of this dataset processed by
Tensorflow Federated [7], which is open-sourced under the Apache-2.0 license.

• Landmarks. The original Google Landmarks Dataset v2 [76] can be accessed from GitHub33:
"The annotations are licensed by Google under CC BY 4.0 license. The images listed in this dataset
are publicly available on the web, and may have different licenses". In this paper, we use a subset
of the full dataset processed by Hsu et al. [30]: the data split function is available on GitHub34

under the Apache-2.0 license.

• TedMulti-EnEs. The original TedMultiTranslate dataset is derived from the TED Talk tran-
scripts [61]. The TED Talk usage policy can be found from their website35. The TedMultiTranslate
dataset can be downloaded from GitHub36. We were unable to find the license information. In this
paper, we extract a subset of this dataset and group the examples by talk author and language25.
This preprocessing pipeline is available from our benchmark code1 under the Apache-2.0 license.

• Vehicle. The Vehicle dataset is made publicly available by the original authors as a research
dataset [18]. It has been subsequently used in recent work (e.g. [68]). License information was
unavailable online. A copy of the dataset may be obtained from these URLs.37,38

• School. The School dataset was collected by a now-defunct entity and we were unable to find
license information online. The dataset has been made freely available online and can be obtained
from this URL.39 Alternatively, a copy may also be obtained from [83] under the GNU GPL v2
license.

• ADNI. The term of use of ADNI can be found on their website.40

F Hyperparameters and Implementation Details

In this section, we describe the computation resources, the hyperparameter grids and the best
hyperparameters for all the experiments described in Section B and Section C.

29https://www.westernsydney.edu.au/icns/reproducible_research/publication_support_
materials/emnist

30https://www.nist.gov/srd/nist-special-database-19
31https://github.com/TalwalkarLab/leaf
32https://www.kaggle.com/stackoverflow/stackoverflow
33https://github.com/cvdfoundation/google-landmark
34https://github.com/google-research/google-research/tree/master/federated_vision_

datasets
35https://www.ted.com/about/our-organization/our-policies-terms/

ted-talks-usage-policy
36https://github.com/neulab/word-embeddings-for-nmt
37https://web.archive.org/web/20110515133717/http://www.ece.wisc.edu:80/~sensit/
38https://web.archive.org/web/20200128092656/http://www.ecs.umass.edu:80/~mduarte/

Software.html
39https://web.archive.org/web/20060718012309/http://www.mlwin.com/intro/datasets.

html
40https://adni.loni.usc.edu/terms-of-use/

23

https://www.westernsydney.edu.au/icns/reproducible_research/publication_support_materials/emnist
https://www.westernsydney.edu.au/icns/reproducible_research/publication_support_materials/emnist
https://www.nist.gov/srd/nist-special-database-19
https://github.com/TalwalkarLab/leaf
 https://www.kaggle.com/stackoverflow/stackoverflow
https://github.com/cvdfoundation/google-landmark
https://github.com/google-research/google-research/tree/master/federated_vision_datasets
https://github.com/google-research/google-research/tree/master/federated_vision_datasets
https://www.ted.com/about/our-organization/our-policies-terms/ted-talks-usage-policy
https://www.ted.com/about/our-organization/our-policies-terms/ted-talks-usage-policy
https://github.com/neulab/word-embeddings-for-nmt
https://web.archive.org/web/20110515133717/http://www.ece.wisc.edu:80/~sensit/
https://web.archive.org/web/20200128092656/http://www.ecs.umass.edu:80/~mduarte/Software.html
https://web.archive.org/web/20200128092656/http://www.ecs.umass.edu:80/~mduarte/Software.html
https://web.archive.org/web/20060718012309/http://www.mlwin.com/intro/datasets.html
https://web.archive.org/web/20060718012309/http://www.mlwin.com/intro/datasets.html
https://adni.loni.usc.edu/terms-of-use/

F.1 Cross-device

The definitions of all hyperparameters can be found in finetuning_trainer.py and
hypcluster_trainer.py in our code, which will be open-sourced after the paper is accepted.

Common hyparameters. The following hyperparameters are fixed across all cross-device experi-
ments. Note that we focus on FedAdam here, i.e., a generalized version of FedAvg [62], where the
server optimizer is Adam optimizer [40], because [14] shows FedAdam gives good performance
across different datasets.

• client_optimizer=[‘sgd’]

• server_optimizer=[‘adam’]

• server_adam_beta_1=[0.9]

• server_adam_beta_2=[0.99]

• train_epochs=[1]
(This is the number of local training epochs performed by a client during a round of training.)

Computation resources. We summarize the computation resources allocated to run one experiment
(i.e., one point in the the hyperparameter grids) on each dataset: EMNIST (80 CPU cores); Stack-
Overflow (400 GPU cores); Landmarks (16 GPUs); TedMulti-EnEs (2 GPUs). Note that the actual
usage may be smaller than the allocated resources.

F.1.1 FedAvg (i.e., FedAdam in our case) + Fine-tuning

The definitions of all the hyperparaemeters for running this algorithm can be found in
finetuning_trainer.py. Since FedAvg + Fine-tuning is a two step process, the hyperparameters
contain FedAvg (i.e., FedAdam in our case) hyperparameters and fine-tuning hyperparameters.

For EMNIST and StackOverflow, we use the best FedAdam hyperparameters from [14]. For Land-
marks, we use the best FedAdam hyperparameters from [74]. For TedMulti-EnEs, we tune the
FedAdam hyperparameters from scratch.

We have four fine-tuning hyperparameters. Their names are all started with finetune_, including
the optimizer used to fine-tune the model (where we focus on SGD16), the fine-tuning learning
rate, and whether to only fine-tune the last layer. We also need to tune the number of local epochs
used to fine-tune the model - this value is automatically found by finetuning_trainer.py by
postprocessing the validation metrics. Specifically, we compute the average validation accuracy of
the fine-tuned models after every fine-tuning epoch (until finetune_max_epochs), and then find
the best fine-tuning epoch that gives the highest average validation accuracy (see, e.g., Figure 9(a)41).
The best fine-tuned epoch will be in the range [0, finetune_max_epochs], so all we need is to
set a proper value for finetune_max_epochs.

EMNIST

Fixed hyperparameters (we use the best FedAdam hyperparameters from [14]):

• client_learning_rate=[0.1]

• server_learning_rate=[0.001]

• server_adam_epsilon=[0.001]

• clients_per_train_round=[50]

• train_batch_size=[20]

• total_rounds=[1500]

• valid_clients_per_round=[100]

• test_clients_per_round=[100]

41This figure shows how average test accuracy changes with respect to the fine-tuning epochs. Average
validation accuracy follows a similar trend as the test accuracy.

24

• rounds_per_evaluation=[100]

• rounds_per_checkpoint=[100]

• finetune_optimzier=[‘sgd’]

• finetune_max_epochs=[20]

Tuned hyperparameters (best values are highlighted in **value**):

• finetune_learning_rate=[0.001, 0.003, **0.005**, 0.01, 0.05]

• finetune_last_layer=[True, **False**]

StackOverflow

Fixed hyperparameters (we use the best FedAdam hyperparameters from [14]):

• client_learning_rate=[1.0]

• server_learning_rate=[0.1]

• server_adam_epsilon=[0.001]

• clients_per_train_round=[200]

• train_batch_size=[16]

• total_rounds=[1500]

• valid_clients_per_round=[200]

• test_clients_per_round=[200]

• rounds_per_evaluation=[100]

• rounds_per_checkpoint=[100]

• finetune_optimzier=[‘sgd’]

• finetune_max_epochs=[20]

Tuned hyperparameters (best values are highlighted in **value**):

• finetune_learning_rate=[**10^(-1.0)**, 10^(-0.6), 10^(-0.2), 10^(0.2),
10^(0.6), 10^(1.0)]

• finetune_last_layer=[True, **False**]

Landmarks

Fixed hyperparameters (we use the best FedAdam hyperparameters from [74]):

• client_learning_rate=[0.01]

• server_learning_rate=[10^(-2.5)]

• server_adam_epsilon=[10^(-5)]

• clients_per_train_round=[64]

• train_batch_size=[16]

• total_rounds=[30000]

• valid_clients_per_round=[32]

• test_clients_per_round=[96]

• rounds_per_evaluation=[1000]

• rounds_per_checkpoint=[1000]

• finetune_optimzier=[‘sgd’]

• finetune_max_epochs=[10]

25

Tuned hyperparameters (best values are highlighted in **value**):

• finetune_learning_rate=[0.0001, 0.001, 0.005, **0.007**, 0.01, 0.03, 0.05]
• finetune_last_layer=[True, **False**]

TedMulti-EnEs

Fixed hyperparameters:

• clients_per_train_round=[32]
• train_batch_size=[16]
• total_rounds=[1500]
• valid_clients_per_round=[98]
• test_clients_per_round=[117]
• rounds_per_evaluation=[30]
• rounds_per_checkpoint=[50]
• finetune_optimzier=[‘sgd’]
• finetune_max_epochs=[20]

Tuned hyperparameters (best values are highlighted in **value**):

• client_learning_rate=[10^(-2.5), 10^(-2), 10^(-1.5), **10^(-1)**, 10^(-0.5)]
• server_learning_rate=[10^(-2.5), **10^(-2)**, 10^(-1.5), 10^(-1), 10^(-0.5)]
• finetune_learning_rate=[**0.0005**, 0.0007, 0.001, 0.002, 0.003]
• finetune_last_layer=[True, **False**]

F.1.2 HypCluster

Definitions of all the hyperparameters for this algorithm can be found in hypcluster_trainer.py.
Because HypCluster with random initialization usually ends up with all clients choosing the same
model (i.e., the mode collapse issue shown in Figure 5), we will use models learned by FedAvg to
warmstart HypCluster. Specifically, we will run FedAvg (with the hyperparameters in Appendix F.1.1
above) for num_warmstart_fedavg_rounds; repeat this for num_clusters times, and use the
models to warmstart HypCluster.

EMNIST

Fixed hyperparameters:

• clients_per_train_round=[50]
• train_batch_size=[20]
• total_rounds=[1500]
• valid_clients_per_round=[100]
• test_clients_per_round=[100]
• rounds_per_evaluation=[100]
• rounds_per_checkpoint=[100]
• num_warmstart_fedavg_rounds=[100]

Tuned hyperparameters (best values are highlighted in **value**):

• client_learning_rate=[0.01, 0.05, **0.1**, 0.2]
• server_learning_rate=[0.0001, 0.0005, **0.001**, 0.002]
• server_adam_epsilon=[**0.0001**, 0.0005, 0.001, 0.002]
• num_clusters=[**2**, 3, 4, 5]

26

StackOverflow

Fixed hyperparameters:

• clients_per_train_round=[200]
• train_batch_size=[16]
• total_rounds=[1500]
• valid_clients_per_round=[200]
• test_clients_per_round=[200]
• rounds_per_evaluation=[100]
• rounds_per_checkpoint=[100]
• num_warmstart_fedavg_rounds=[100]

Tuned hyperparameters (best values are highlighted in **value**):

• client_learning_rate=[0.1, **0.5**, 1.0, 2.0]
• server_learning_rate=[**0.01**, 0.05, 0.1, 0.2]
• server_adam_epsilon=[10^(-5), **10^(-4)**, 10^(-3), 10^(-2)]
• num_clusters=[**2**, 3, 4, 5]

Landmarks

Fixed hyperparameters:

• clients_per_train_round=[64]
• train_batch_size=[16]
• total_rounds=[30000]
• valid_clients_per_round=[32]
• test_clients_per_round=[96]
• rounds_per_evaluation=[1000]
• rounds_per_checkpoint=[1000]
• num_warmstart_fedavg_rounds=[8000]

Tuned hyperparameters (best values are highlighted in **value**):

• client_learning_rate=[10^(-3), **10^(-2.5)**, 10^(-2), 10^(-1.5)]
• server_learning_rate=[10^(-3.5), **10^(-3)**, 10^(-2.5), 10^(-2)]
• server_adam_epsilon=[10^(-6), 10^(-5), **10^(-4)**, 10^(-3)]
• num_clusters=[**2**, 3, 4]

TedMulti-EnEs

Fixed hyperparameters:

• clients_per_train_round=[32]
• train_batch_size=[16]
• total_rounds=[1500]
• valid_clients_per_round=[98]
• test_clients_per_round=[117]
• rounds_per_evaluation=[30]

27

• rounds_per_checkpoint=[50]

• num_clusters=[2]

• num_warmstart_fedavg_rounds=[100]

Tuned hyperparameters (best values are highlighted in **value**):

• client_learning_rate=[10^(-2.5), 10^(-2), 10^(-1.5), **10^(-1)**, 10^(-0.5)]

• server_learning_rate=[10^(-2.5), **10^(-2)**, 10^(-1.5), 10^(-1), 10^(-0.5)]

• server_adam_epsilon=[**0.001**, 0.00001]

F.2 FedAvg + kNN-Per

We use the model trained by FedAvg (same as "FedAvg + Fine-tuning") as the global model for
personalization. Following [54], we set the number of nearest neighbors k to 10 for all experiments
(the paper shows that the performance of kNN-Per is robust to this value). As mentioned in Sec-
tion B.3, we tune the interpolation coefficient globally for all clients (i.e., every client use the same
coefficient), because tuning per-client specific coefficient performed worse. The tuned interpolation
hyperparameters are shown below (best values are highlighted in **value**):

EMNIST

coefficient=[0, 0.1, 0.2, 0.3, **0.4**, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

StackOverflow

coefficient=[0, 0.1, **0.2**, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Landmarks

coefficient=[0, 0.1, 0.2, 0.3, 0.4, **0.5**, 0.6, 0.7, 0.8, 0.9, 1.0]

TedMulti-EnEs

coefficient=[0, **0.1**, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

F.2.1 Local training

Traning a local model at each client can be done by running finetuning_trainer.py with
total_rounds=0. Note that what happens is that every client fine-tunes a random model (sent
by the server) locally. As long as we set a large enough finetune_max_epochs (the best number
of local epochs will be found after postprocessing the validation metrics), this will give the desired
metrics where each client learns a local model without federation.

EMNIST

Fixed hyperparameters:

• total_rounds=[0]

• valid_clients_per_round=[100]

• test_clients_per_round=[100]

• finetune_optimzier=[‘sgd’]

• finetune_max_epochs=[200]

Tuned hyperparameters (best values are highlighted in **value**):

28

• finetune_last_layer=[True, **False**]

• finetune_learning_rate=[0.001, 0.01, **0.1**, 0.5, 1.0]

StackOverflow

Fixed hyperparameters:

• total_rounds=[0]

• valid_clients_per_round=[200]

• test_clients_per_round=[200]

• finetune_optimzier=[‘sgd’]

• finetune_max_epochs=[200]

Tuned hyperparameters (best values are highlighted in **value**):

• finetune_last_layer=[True, **False**]

• finetune_learning_rate=[0.1, **0.5**, 1.0]

Landmarks

Fixed hyperparameters:

• total_rounds=[0]

• valid_clients_per_round=[32]

• test_clients_per_round=[96]

• finetune_optimzier=[‘sgd’]

• finetune_max_epochs=[50]

Tuned hyperparameters (best values are highlighted in **value**):

• finetune_last_layer=[True, **False**]

• finetune_learning_rate=[0.0001, 0.001, **0.01**, 0.1]

TedMulti-EnEs

Fixed hyperparameters:

• total_rounds=[0]

• valid_clients_per_round=[98]

• test_clients_per_round=[117]

• finetune_optimzier=[‘sgd’]

• finetune_max_epochs=[50]

Tuned hyperparameters (best values are highlighted in **value**):

• finetune_last_layer=[**True**, False]

• finetune_learning_rate=[0.5, **1.0**, 2.0, 3.0]

29

F.3 Cross-silo

The definitions of hyperparameters can be found in main.py in the implementation folders for the
Vehicle, School, and ADNI datasets respectively in our code, which will be open-sourced after the
paper is accepted.

Common hyperparameters. The following hyperparameters are fixed across all cross-silo experi-
ments:

• client_optimizer=[‘sgd’]
• server_optimizer=[‘fedavgm’]
• fedavgm_momentum=[0.9]
• inner_epochs=[1]

(This is the number of local training epochs performed by a client during a round of training.
For methods that train a global model, this is the number of local training epochs before
returning the model update to the server.)

We focus on FedAvgM [29] for simplicity of hyperparameter tuning. Note also that the precise
variable names of the hyperparameters (typefaced with monospaced font) may vary depending on
the dataset-specific implementation.

Computational resources. For the Vehicle and School datasets, all experiments (including hyperpa-
rameter search) are done on 88 commodity CPU cores. For the ADNI dataset, each run is done on
one GPU.

F.3.1 Local training

Vehicle

Fixed hyperparameters:

• num_rounds=[500]
• clients_per_round=[23]
• batch_size=[64] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**):

• client_lrs=[0.003, 0.01, **0.03**, 0.1, 0.3]

School

Fixed hyperparameters:

• num_rounds=[500]
• clients_per_round=[139]
• batch_size=[32] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**):

• client_lrs=[0.001, 0.003, **0.01**, 0.03, 0.1]

ADNI

Fixed hyperparameters:

• num_rounds=[70]
• clients_per_round=[9]

30

• batch_size=[64] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**):

• client_lrs=[0.001, **0.01**, 0.1]

F.3.2 FedAvg+Fine-tuning

Vehicle

Fixed hyperparameters:

• num_rounds=[500]

• finetune_epochs=[100] (max number of local epochs for fine-tuning)
• finetune_every=[50] (run fine-tuning every number of rounds)
• finetune_optimizer=[‘sgd’]

• clients_per_round=[23]

• batch_size=[64] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**):

• client_lrs=[**0.003**, 0.01, 0.03, 0.1, 0.3]

• server_lrs=[0.1, 0.3, 1, 3, **10**]

• finetune_lrs=[0.003, 0.01, 0.03, 0.1, 0.3]
(The fine-tuning client learning rates are tuned separately for each client.)

School

Fixed hyperparameters:

• num_rounds=[500]

• finetune_epochs=[100] (max number of local epochs for fine-tuning)
• finetune_every=[50] (run fine-tuning every number of rounds)
• finetune_optimizer=[‘sgd’]

• clients_per_round=[139]

• batch_size=[32] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**):

• client_lrs=[**0.001**, 0.003, 0.01, 0.03, 0.1]

• server_lrs=[0.1, 0.3, 1, **3**, 10]

• finetune_lrs=[0.001, 0.003, 0.01, 0.03, 0.1]
(The fine-tuning client learning rates are tuned separately for each client.)

ADNI

Fixed hyperparameters:

• num_rounds=[70]

• finetune_optimzier=[‘sgd’]

• clients_per_round=[9]

• batch_size=[64] (client local training batch size)

31

Tuned hyperparameters (best values are highlighted in **value**):

• finetune_last_layer=[True, False]

• server_lrs=[1, 3, **10**, 20]

• client_lrs=[0.0001, 0.001, **0.01**, 0.1]

• finetune_lrs=[0.0001, 0.001, 0.01, 0.1]
(When running FedAvg, the optimal client-side learning rate is 0.01. During fine-tuning, we
tune client learning rates (i.e., fine-tuning learning rates) separately for each client.)

F.3.3 HypCluster

Vehicle

Fixed hyperparameters:

• num_rounds=[500]

• clients_per_round=[23]

• batch_size=[64] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**):

• client_lrs=[0.003, **0.01**, 0.03, 0.1, 0.3]

• server_lrs=[0.1, 0.3, 1, 3, **10**]

• num_clusters=[2, 3, **4**]

• warmstart_fracs=[**0**, 0.2]
(The fraction of rounds for warm starting; the rest runs clustering training.)

School

Fixed hyperparameters:

• num_rounds=[500]

• clients_per_round=[139]

• batch_size=[32] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**):

• client_lrs=[0.001, 0.003, **0.01**, 0.03, 0.1]

• server_lrs=[0.1, 0.3, 1, 3, **10**]

• num_clusters=[2, **3**, 4]

• warmstart_fracs=[0, **0.2**]
(The fraction of rounds for warm starting; the rest runs clustering training.)

ADNI

Fixed hyperparameters:

• num_rounds=[70]

• warm_start_rounds=[20]

• clustering_training_rounds=[50]

• clients_per_round=[9]

• batch_size=[64] (client local training batch size)

32

Tuned hyperparameters (best values are highlighted in **value**):

• server_lrs=[1, 3, **10**, 20]

• client_lrs=[0.0001, 0.001, **0.01**, 0.1]

• num_clusters=[**2**, 3, 4]

F.4 FedAvg + kNN-Per

We use the model trained by FedAvg (same as "FedAvg + Fine-tuning") as the global model for
personalization. Following [54], we set the number of nearest neighbors k to 10 for all experiments
(the paper shows that the performance of kNN-Per is robust to this value). Similar to the cross-device
setting, we also tune the interpolation coefficient globally for all clients (i.e., every client use the
same coefficient). The tuned interpolation coefficients are shown below (best values are highlighted
in **value**):

Vehicle

coefficient=[0, 0.1, 0.3, 0.5, 0.7, **0.9**, 1.0]

School

coefficient=[0, 0.1, 0.3, **0.5**, 0.7, 0.9, 1.0]

ADNI

coefficient=[0, 0.1, 0.3, **0.5**, 0.7, 0.9, 1.0]

F.4.1 MOCHA

Note that MOCHA [68] was implemented in its primal form (i.e. gradient descent update for the local
personalized models, with task-relationship learning regularization) instead of the dual form since
the dual was not derived for regression in the original paper. We were able to reproduce the results
reported in the original paper in the primal (with an average error rate of 6.29 in Tables 5 and 7,
smaller than 6.59 that was reported). In the primal, MOCHA has optimization hyperparameters such
as client optimizer, client learning rates, batch sizes, etc. as with other methods.

Vehicle

Fixed hyperparameters:

• num_rounds=[500]

• clients_per_round=[23]

• batch_size=[64] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**; an alternative combination that
gives very similar results are highlighted in _values_):

• client_lrs=[0.003, _0.01_, **0.03**, 0.1, 0.3]

• lambdas=[**0.0001**, _0.001_, 0.01, 0.1, 0.3, 1, 3]
(MTL regularization strength.)

• mocha_outers=[**1**, _2_, 5]
(The number of local epochs every server update of the task-relationship matrix. This
nests with inner_epochs and may thus increase the total number of epochs over the local
datasets.)

33

School

Fixed hyperparameters:

• num_rounds=[500]
• clients_per_round=[139]
• batch_size=[32] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**; an alternative combination that
gives very similar results are highlighted in _values_):

• client_lrs=[0.001, **0.003**, _0.01_, 0.03, 0.1]
• lambdas=[**0.0001**, 0.001, _0.01_, 0.1, 0.3, 1, 3]

(MTL regularization strength.)
• mocha_outers=[_1_, **2**, 5]

(See Vehicle hyperparameters above for description.)

F.4.2 Ditto

Vehicle

Fixed hyperparameters:

• num_rounds=[500]
• personalized_model_inner_epochs=[1]
• clients_per_round=[23]
• batch_size=[64] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**):

• client_lrs=[0.003, 0.01, 0.03, 0.1, **0.3**]
• server_lrs=[0.1, 0.3, **1**, 3, 10]
• lambdas=[0.0001, 0.001, **0.01**, 0.1, 0.3, 1, 3]

(MTL regularization strength.)
• personalized_model_lrs=[0.003, 0.01, 0.03, **0.1**, 0.3]

(The client learning rate for Ditto’s personalized models. This may be different from the
client learning rates used to update the global model.)

School

Fixed hyperparameters:

• num_rounds=[500]
• personalized_model_inner_epochs=[1]
• clients_per_round=[139]
• batch_size=[32] (client local training batch size)

Tuned hyperparameters (best values are highlighted in **value**):

• client_lrs=[**0.001**, 0.003, 0.01, 0.03, 0.1]
• server_lrs=[0.1, 0.3, 1, 3, **10**]
• lambdas=[0.0001, 0.001, 0.01, 0.1, 0.3, **1**, 3]

(MTL regularization strength.)
• personalized_model_lrs=[0.001, 0.003, **0.01**, 0.03, 0.1]

(See Vehicle hyperparameters above for description.)

34

ADNI

Fixed hyperparameters:

• num_rounds=[100]
• clients_per_round=[9]
• local_batch_size=[64]
• personalized_model_local_epoch=[1]

Tuned hyperparameters (best values are highlighted in **value**):

• server_lrs=[1, 3, **10**, 20]
• client_lrs=[0.0001, 0.001, **0.01**, 0.1]
• personalized_model_lrs=[0.0001, **0.001**, 0.01]

(See Vehicle hyperparameters above for description.)
• lambdas=[0.01, 0.1, **1**]

(MTL regularization strength.)

G Additional Experimental Results and Discussions

In this section, we provide a few more experimental results that are omitted from the main paper due
to space limitation.

Cross-device experiments. Table 6 extends Table 4 with standard deviations across 5 different
runs for each metric. Note that there are two standard deviations here: 1) the standard deviation of
per-client accuracy across the test clients, which is used as a fairness metric7 and is already included
in Table 4; 2) the standard deviation of each metric value (e.g., the standard deviation of the fairness
metric mentioned in 1)) across 5 different runs (each run uses a different seed), which is omitted from
the main paper and is included in Table 6.

Cross-silo experiments. Similar to the cross-device counterpart, Table 7 extends Table 5 with
standard deviation across 5 different runs for each metric. One small caveat around the use of
client-specific fine-tuning hyperparameters, as discussed in Appendix C of the main paper, is that
it may improve performance only when the clients’ local datasets are large. Here, we perform an
additional analysis on the School dataset, where the local datasets are relatively small (recall Table 2).
Figure 11 visualizes the statistics of clients hurt when training on School, akin to Figure 8 (note
that we use MSE here, so a positive delta means this client gets hurt by fine-tuning). Observe that
while many clients benefited from the client-specific fine-tuning (those with negative metric deltas),
some clients do not observe an improvement and may even see a slight degradation in their utility
compared to the client-agnostic fine-tuning setting. We argue that this is due to clients having small
local datasets such that the selected client-specific FT hyperparameters may overfit to the small
local validation sets and may not reflect general improvement on the local test sets. Note also that
while Table 5 and Table 7 suggests a seemingly considerable fraction (33%) of clients is hurt after
fine-tuning, we can observe from Figure 11 that most ‘hurt’ clients have borderline metric changes.
Overall, these observations suggest that the effect of client-specific fine-tuning can be mixed if the
client local datasets are relatively small, as is usually the case with cross-device federated learning.

35

Table 6: Complete results of the experiments in Table 4. The only difference is that we report each
metric’s mean and standard deviation (std) across 5 different runs. Note that there are two stds here:
1) "per-client acc std", the std of per-client accuracy across the test clients, which is a fairness metric
considered in [49, 53] and is already included in Table 4; 2) the std across 5 different runs, which is
omitted from Table 4 and is shown after ± in this table.

Algorithm Metrics EMNIST StackOverflow Landmarks TedMulti

Local Per-client acc mean 0.594±.011 0.062±.001 0.173±.008 0.056±.0004
Per-client acc std 0.17±.011 0.02±.005 0.16±.008 0.02±.0003

FedAvg +
Fine-
tuning
(FT)

Per-client acc mean before
FT

0.844±.004 0.269±.002 0.564±.008 0.160±.002

Per-client acc std before FT 0.1±.004 0.03±.0007 0.16±.005 0.04±.004
Per-client acc after FT 0.903±.002 0.282±.002 0.773±.006 0.162±.002
Per-client acc std after FT 0.06±.0005 0.03±.001 0.11±.006 0.04±.001
% clients "hurt" after FT 5.2%±0.7% 14%±2.4% 5.6%±2.4% 40%±4.8%
FT all layers vs last layer All layers All layers All layers All layers

Practical concerns: difficult to tune hyperparameters; may hurt clients; sensitive
to distribution shift; performance drops with fewer local examples (see Section B.1)

HypCluster
/ IFCA

Per-client acc mean 0.897±.002 0.273±.0009 0.573±.005 0.163±.004
Per-client acc std 0.08±.003 0.03±.002 0.16±.003 0.04±.002
No. tuned clusters (k) 2 2 2 2
% clients largest cluster 52.6%±0.8%85.1%±1.6% 92.1%±3.6%54.7%±0
Warmstart from FedAvg Yes Yes Yes Yes
Per-client acc mean by en-
sembling k FedAvg models

0.860±.005 0.271±.002 0.564±.016 0.163±.004

Per-client acc std by ensem-
bling k FedAvg models

0.08±.006 0.03±.002 0.16±.007 0.04±.004

Practical concerns: difficult to train due to mode collapse; high communication cost;
difficult to interpret the learned clusters; sensitive to distribution shift (see Section B.2)

FedAvg +
kNN-Per

Per-client acc mean 0.876±.003 0.275±.0005 0.735±.007 0.162±.002
Per-client acc std 0.06±.004 0.03±.0009 0.13±.005 0.05±.004
% clients "hurt" 19.8%±4.2% 23.6%± 3.4% 5.6%±2.3% 34.4%±4.5%

Practical concerns: difficult to tune hyperparameters; may hurt clients; sensitive
to distribution shift; performance drops with fewer local examples (see Section B.3)

Figure 11: Effects of client-specific fine-tuning on the School dataset (each client chooses a custom
fine-tuning learning rate and stopping epoch). Note that School uses MSE (mean squared error) as the
evaluation metric here, thus the more negative the per-client metric delta, the better. Unlike Figure 7,
tuning the fine-tuning hyperparameters globally and tuning in a per-client manner performs the same
on the School dataset. This is potentially due to the fact that the client’s local dataset is relatively
small for School (as shown in Table 2).

36

Table 7: Complete results of the experiments in Table 5. The only difference is that we report each
metric’s mean and standard deviation (std) across 5 different runs. Similar to results in cross-device
experiments, there are two stds here: 1) "per-client acc std", the std of per-client accuracy across the
test clients, which is a fairness metric considered in [49, 53] and is already included in Table 5; 2) the
std across 5 different runs, which is omitted from Table 5 and is shown after ± in this table.

Algorithm Metrics Vehicle (acc) School (mse) ADNI (mse)

Local
training

Per-client metric mean 0.9367±.0248 0.0121±.0059 0.0177±.0007
Per-client metric std 0.0027±.0029 0.0003±.0008 0.0106±.0007

FedAvg +
Fine-
tuning
(FT)

Per-client metric mean before FT 0.8859±.0833 0.0130±.0068 0.0141±.0004
Per-client metric std before FT 0.0033±.0028 0.0002±.0009 0.0091±.0012
Per-client metric mean after FT 0.9385±.0253 0.0116±.0056 0.0124±.0007
Per-client metric std after FT 0.0029±.0015 0.0002±.0006 0.0082±.0012
% clients "hurt" after FT 4.4%±3.9 33.0%±3.0 0±0
FT all layers vs last layer N/A N/A no difference

Practical concerns: Similar to those in the cross-device setting (Table 4);
Tuning per-client FT hyperparameter may outperform tuning globally (Figure 7).

HypCluster
/ IFCA

Per-client metric mean 0.9246±.0288 0.0112±.0053 0.0137±.0012
Per-client metric std 0.0058±.0043 0.0003±.0006 0.0093±.0017
No. tuned clusters (k) 4 3 2
% clients largest cluster 49.6%±3.5 44.6%±1.9 78%±17.6
Warmstart from FedAvg No Yes Yes
Per-client metric mean by ensem-
bling k FedAvg models

0.8851±.0828 0.0129±.0066 0.0133±.0006

Per-client metric std by ensem-
bling k FedAvg models

0.0028±.0032 0.0001±.0008 0.0091±.0011

Practical concerns: Similar to those in the cross-device setting (Table 4); on Vehicle
and School, mode collapse may occur less potentially because of linear model.

FedAvg +
kNN-Per

Per-client metric mean 0.9228±.0028 0.01163±.0002 0.0126±.0008
Per-client metric std 0.0287±.0016 0.0055±.0006 0.0096±.0006
% clients "hurt" 22.6%±4.3% 37.4%±0.6% 37.8%±16.8%

Practical concerns: Similar to those in the cross-device setting (Table 4).

MTL
(Ditto)

Per-client metric mean 0.9377±.0218 0.0114±.0053 0.0134±.0004
Per-client metric std 0.0025±.0026 0.0002±.0006 0.0074±.0008

MTL
(Mocha)

Per-client metric mean 0.9371±.0244 0.0121±.0059 N/A
Per-client metric std 0.0030±.0025 0.0003±.0009 N/A

37

H Conclusion

We present Motley, the first large-scale benchmark of personalized federated learning covering both
cross-device and cross-silo settings. Motley provides an end-to-end experimental pipeline including
data preprocessing, algorithms, evaluation metrics, and tuned hyperparameters, which ensures
reproducibility. Beyond these baselines, our experiments provide new insights about personalized FL
and suggest several directions of future work.

• The notion of the "best" method (or even the "best" hyperparameter of the same method) can change
when we change the evaluation metrics or settings. In the cross-device setting, FedAvg+Fine-tuning
achieves the best average per-client accuracy for 3/4 datasets, and at the same time also improves
fairness7 (Table 4 and Figure 2). The best hyperparameters of FedAvg+Fine-tuning can change if
we look at different metrics (Figure 9). On the TedMulti-EnEs dataset, it is difficult to determine
which personalization algorithm is the "best": while HypCluster achieves the best average per-client
accuracy, it is worse than FedAvg+Fine-tuning from the perspective of accuracy-communication
ratio (Figure 5(c)); on the other hand, the fine-tuned models of 40% clients on TedMulti-EnEs
are worse than that of FedAvg (Table 4). In the cross-silo setting, both FedAvg+Fine-tuning and
MTL achieve the best average per-client accuracy over the three datasets (Table 5). MTL may
have an additional advantage of having less hyperparameters than FedAvg+Fine-tuning. On the
Vehicle dataset, local training seems the "best" because it achieves a similar accuracy as other
methods but is more private. Given that the notion of "best" method can change depending on the
metrics or settings, a critical future direction is thus to develop systematic evaluation schemes for
personalized FL (i.e., mean accuracy alone is not enough).

• Existing literature often overlook or obfuscate the practical complexities of deploying personalized
FL algorithms in real-world settings. For example, in Section B.1, we discuss that local data scarcity
and heterogeneity create a fundamental challenge to tuning FedAvg+Fine-tuning hyperparameters
in the cross-device setting. Because each client has a very small local dataset in the cross-device
setting, the fine-tuning hyperparameters are tuned globally (instead of in a per-client manner as
in the cross-silo setting). The globally tuned hyperparameters may hurt some clients (Figure 8).
Ideally, we want to find a good set of fine-tuning hyperparameters such that the overall improvement
is large and no clients are hurt after fine-tuning, which can be fundamentally difficult (Figure 9).

• Improving HypCluster requires solving the mode collapse issue and rethinking the difference
between clustering and ensembling. How to effectively train HypCluster in the real-world federated
learning systems is an interesting open problem (Figure 5(a)). Although warmstart can mitigate
the mode collapse issue, Table 4 and Table 5 show that the performance of HypCluster is similar
to that of ensembling20 multiple models learned by FedAvg. Does HypCluster really capture the
underlying clustering structure (Figure 5(d))? Answering this question requires interpreting the
learned clusters in the federated learning setting.

• Tradeoffs exists between adapting a client’s personalized model to the current local distribution
and generalizing to future distributions. As shown in Figure 4, compared to FedAvg, the fine-tuned
models are more sensitive to the distribution shift between the examples used in fine-tuning and
testing. As a result, it may be necessary to continuously fine-tune the model when clients have
new data. Besides the fine-tuning method, this tradeoff between personalization and generalization
exists for other personalized FL algorithms as well, which is worth exploring in greater detail.

• Given the observed benefits of per-client hyperparameter tuning in cross-silo FL (Figure 7), it may
be beneficial to develop similar, scalable approaches for hyperparameter tuning in cross-device FL.

Limitations and future work. Motley can be expanded in the following ways. First, add more
evaluation metrics. Our benchmark results contains the following metrics (see Table 4 and Table 5):
the average per-client accuracy, fairness7 (clients should have similar local accuracies), and algorithm-
specific metrics such as the percentage of clients hurt by fine-tuning. When comparing algorithms on
specific datasets, we also use metrics such as the communication cost (Figure 5) and robustness to
distribution shift (Figure 4). Motley can be expanded by adding more evaluation metrics such as
privacy, other notions of fairness7, and robustness to attacks. Second, add more datasets, especially
those with known clustering structure (similar to TedMulti-EnEs) and datasets representing real-
world cross-silo applications. Third, add more algorithms. Motley currently has five model-agnostic
federated learning personalization algorithms. Expanding Motley to include more algorithms (see
Appendix D) would be another important future work.

38

	Introduction
	Motley: A Benchmark for Personalized Federated Learning
	Personalization Methods
	Datasets and Pre-processing

	Cross-Device Experiments
	FedAvg + Fine-tuning (FT)
	HypCluster / IFCA
	FedAvg + kNN-Per

	Cross-Silo Experiments
	Discussion and Open Directions
	Motley: A Benchmark for Personalized Federated Learning
	Personalization Methods
	Datasets and Pre-processing

	Cross-Device Experiments
	FedAvg + Fine-tuning (FT)
	HypCluster / IFCA
	FedAvg + kNN-Per

	Cross-Silo Experiments
	Background on Personalized Federated Learning
	Datasets
	Cross-device
	Cross-silo
	License/Usage Information

	Hyperparameters and Implementation Details
	Cross-device
	FedAvg (i.e., FedAdam in our case) + Fine-tuning
	HypCluster

	FedAvg + kNN-Per
	Local training

	Cross-silo
	Local training
	FedAvg+Fine-tuning
	HypCluster

	FedAvg + kNN-Per
	MOCHA
	Ditto

	Additional Experimental Results and Discussions
	Conclusion

