
Published as a conference paper at ICLR 2024

RETHINKING AND EXTENDING THE PROBABILISTIC
INFERENCE CAPACITY OF GNNS

Tuo Xu
Wangxuan Institute of Computer Technology
Peking University
Beijing, China
doujzc@stu.pku.edu.cn

Lei Zou
Wangxuan Institute of Computer Technology
Peking University
Beijing, China
zoulei@pku.edu.cn

ABSTRACT

Designing expressive Graph neural networks (GNNs) is an important topic in
graph machine learning fields. Despite the existence of numerous approaches
proposed to enhance GNNs based on Weisfeiler-Lehman (WL) tests, what GNNs
can and cannot learn still lacks a deeper understanding. This paper adopts a fun-
damentally different approach to examine the expressive power of GNNs from
a probabilistic perspective. By establishing connections between GNNs’ pre-
dictions and the central inference problems of probabilistic graphical models
(PGMs), we can analyze previous GNN variants with a novel hierarchical frame-
work and gain new insights into their node-level and link-level behaviors. Addi-
tionally, we introduce novel methods that can provably enhance GNNs’ ability to
capture complex dependencies and make complex predictions. Experiments on
both synthetic and real-world datasets demonstrate the effectiveness of our ap-
proaches.

1 INTRODUCTION

Graph neural networks (GNNs) are the dominant approaches for learning graph-structured data,
among which message passing neural networks (MPNNs) are the most promising variants, demon-
strating remarkable success across various domains. The development of MPNNs can be classi-
fied into several distinct theoretical motivations. From the perspective of graph signal processing,
MPNNs were proposed as a generalization of convolutions on non-Euclidean graph domains (Bruna
et al., 2013). Also, MPNNs have been motivated by their connection to the Weisfeiler-Lehman
(WL) graph isomorphism tests (Hamilton et al., 2017). At the same time, MPNNs were proposed
by parameterizing mean-field inference in probabilistic graphical models (PGMs) (Dai et al., 2016).
Although GNNs have been well studied, motivated and improved in terms of graph convolutions
and WL tests, few works study GNN’s probabilistic inference capacity. Many works (Dai et al.,
2016; Satorras & Welling, 2021; Qu et al., 2022) implicitly assume that GNNs themselves fail to
capture the complex joint dependencies among nodes, and consequently these works attempt to in-
tegrate GNNs with graphical models, where predictions are then obtained by variational inference
algorithms such as loopy belief propagation (Murphy et al., 1999). The underlying belief behind
these GNN-PGM models is that leveraging GNNs to parameterize graphical models can enhance
GNN’s probabilistic inference capacity with belief propagation. However, in this work, we contend
that despite the empirical success of these methods, GNNs themselves in fact possess substantial
approximation capabilities for posterior distributions in various graphical models.

In this study, our objective is to gain deeper understandings of the expressive power of GNNs in
terms of approximate inference in graphical models. Unlike the k-WL hierarchy, graphical models
provide a more intuitive framework for interpreting graph data and evaluating GNNs. Precisely, we
propose an alternative expressive power hierarchy by introducing a family of Markov random fields
(MRFs) with increasingly complex distribution and inference targets. Based on these metrics, we
provide novel insights into various GNN variants including MPNNs, higher-order GNNs (Morris
et al., 2018), subgraph GNNs (Bevilacqua et al., 2021), labeling trick (Zhang et al., 2020), etc.
within the contexts of node classification and link prediction. Our finding confirm the progressively

1

Published as a conference paper at ICLR 2024

increasing ability of existing GNN variants in terms of capturing higher-order dependencies, while
also providing a novel perspective on their link prediction capacities.

In the second part of this study, we attempt to design a systematic and efficient framework for extend-
ing the capabilities of GNNs in modeling complex distributions and inference targets. By rethinking
the inherent connection between 1-WL (MPNNs) and the Bethe approximation on pairwise Markov
Random Fields (MRFs), we propose two methods, namely phantom nodes and phantom edges, each
targeting at one of the problems. We then provide a formal analysis of the expressive power of
these approaches. The primary advantage of our proposed methods, in contrast to other variants
like higher-order GNNs, lies in their simplicity and efficiency, which can be easily implemented as
graph preprocessing. Empirically, we demonstrate that our framework significantly enhances the
capabilities of MPNNs in capturing complex distributions and inference targets, and also improve
the performance of MPNNs on various real-world node classification and link prediction tasks.

2 BACKGROUND

We use {} to denote sets and use {{}} to denote multisets. The index set is denoted as [n] =
{1, ..., n}. We consider node-attributed undirected graphs G = (A,X), where A ∈ Rn×n is the
adjacency matrix representing the set of edges EG over the nodes of G indexed by VG = [n], and
Ai,j = 1(i,j)∈EG

. X ∈ Rn×d is the collection of node features, with its i-th entrance denoted as
xi ∈ Rd corresponding to the feature of the node i. We use NG(i) to denote the set of neighbors
of the node i in G. A clique C is a fully-connect subset of nodes C = {i1, ..., ik} and we refer to
k the order of C. A permutation π is a bijective mapping [n] → [n]. For convenience π can act
on graphs, adjacency matrices, node features and indices as usual by π(G) = (π(A), π(X)) with
π(A)π(i),π(j) = Ai,j , π(X)π(i),: = Xi,:. π({i1, ..., ik}) = {π(i1), ..., π(ik)}.

Given graphs of n nodes we consider a set of random variables denoted as {x1, z1, ...,xn, zn}
and use x1, z1, .. to denote the realization of random variables or non-probabilistic variables. To
simplify notations, given a subsets of indices A we let xA to stand for {xi | i ∈ A}. For example, if
A = {2, 4} andB = {3}, we represent p(x2 = x2,x4 = x4 | x3 = x3) as p(xA = xA | xB = xB)
and more compactly p(xA | xB). We also will often use X to stand for {x1, ...,xn} and Z for
{z1, ..., zn}.

Graph isomorphism and Weisfeiler-Lehman tests. Two graphs G = (AG,XG) and H =
(AH ,XH) are isomorphic, denoted as G ≃ H , if they both have n nodes and there exists a permu-
tation π : [n] → [n] satisfying (AG)i,j = (AH)π(i),π(j) and (XG)i = (XH)π(i) for all i, j ∈ [n].
Such π is an isomorphism. Weisfeiler-Lehman (WL) tests are a family of necessary tests for graph
isomorphism. Apart from some corner cases (Cai et al., 1992), they are effective and computation-
ally efficient tests for graph isomorphism. Its 1-dimensional variant is analogous to MPNNs, which
iteratively aggregates the colors of nodes and their neighborhoods and then injectively hashes them
into new colors. The algorithms decides two graphs non-isomorphic if the colors of two graphs are
different. A detailed description of WL tests is in Appendix B. Due to space limits we leave a more
detailed discussion of previous works in Appendix A.

3 A PROBABILISTIC INTERPRETATION OF GRAPHS

In this section we describe graphical models for graph data as well as highlighting the key problems
of inference in graphical models. Given a graph G = (A,X) with n nodes, we hypothesise each
node i is completely described by an (unknown) latent random variable zi ∈ Z and denote by
Z = (z1, ..., zn) ∈ Zn the collection of the latent variables. For simplicity we may assume Z is a
discrete space, but our results are also applicable to continuous Z as long as we generalize GNNs to
output Hilbert space embeddings of distributions (Smola et al., 2007; Dai et al., 2016). A specifies
the conditional independence structure of Z: zA ⊥⊥ zB | zC whenever there is no path from a node
in A to a node in B which does not pass through a node in C. The node features are generated by
these latent variables: for a node i, given its latent variable zi, the corresponding observed node
feature xi is sampled from zi: pnf (xi | zi). The graph learning target is, given observed node
features X, to infer the latent variables {zi}, which can be further used for tasks such as:

2

Published as a conference paper at ICLR 2024

• Node classification: node label yi is obtained by p(yi |X) =
∑

zi∈Z p(yi | zi)p(zi |X).

• Link prediction: it can be naturally interpreted as asking “given that node i is the
source node, what is the possibility of j being the target node?”. Thus the link
label yij for node pair (i, j) is obtained from both zi and zj : p(yij | X) =∑

zi,zj∈Z p(yij | zi, zj)p(zi, zj |X).

Obviously, once we obtained the marginals p(zi |X) and more generally p(zi, zj |X), the labels can
be easily inferred. Thus the key problem lies in inferring marginals of the joint posteriori p(Z |X).
Our target, therefore, is to investigate whether and to what extend are GNNs expressive enough
for inferring the marginals of the graphical models p(Z | X). We now introduce details of our
framework for investigating GNNs.

3.1 THE PROBABILISTIC FORMULATION

We first formally define the joint distribution we consider. Clifford & Hammersley (1971) states that
a positive distribution satisfies the above conditional independence structure if and only if it can be
represented by

p(X,Z) =
1

Z

∏
i∈V

Ψi(zi,xi)
∏
C∈C

ΨC(zC), (1)

where Ψi,ΨC are potential functions, C is the set of cliques 1 in G, and Z is the partition function
Z =

∑
X,Z

∏
i∈V Φi(zi,xi)

∏
C∈C ΨC(zC) (assuming discrete node features). A potential function

ΨC(zC) is a nonnegative, real-valued function on the possible realizations of zC . Such a family of
distributions is called Markov random fields (MRFs). Albeit powerful in their expressiveness, the
formulation in Eq. 1 does not follow general invariant and equivariant assumptions in the graph
data. First, each data instance in graphical models are assumed to share the same structure, while in
graph machine learning fields each instance corresponds to different graphs with possibly different
structures. Moreover, Eq. 1 might specifies different probabilistic distributions for two isomorphic
graphs. To this end, we first define a family of MRFs that are applicable to different graph structures
and also invariant to permutations.

Lemma 1. Suppose there is an algorithm F , given any graph G = (A,X), F maps the indepen-
dence structure A to a MRF pG = F(A). Then, F satisfies that for any permutation π : [n]→ [n]
and A:

pπ(G)(π(X), π(Z)) = pG(X,Z),

if and only if pG can be represented in the form 1 with potentials given by ΨC = A(C,A),
Ψi = A(i,A) where A is a permutation-invariant function that maps cliques (nodes) of graphs
to potential functions:

A(C,A) = A(π(C), π(A)) ∀ C ∈ C ∪ V,A ∈ {0, 1}n×n, and π : [n]→ [n].

Lemma 1 precisely describes the space of invariant MRFs: we can fully define such MRFs by
specifying permutation-invariant A. This enables us to further discuss the general relation between
GNNs and graphical models. In reality, many works choose to parameterize the potential functions
as above, with A being implemented as a constant function (Dai et al., 2016) or a GNN (Qu et al.,
2022).

3.2 METRICS FOR EVALUATING GNNS

With the properly defined families of MRFs we now discuss our framework for evaluating the ex-
pressive power of GNNs.

Complexity of distributions. From the above discussions the complexity of the distribution is
fully governed by A. We consider two metrics for evaluating the complexity of distributions: the
discriminating power of A and the order of the MRF. We will measure the discriminating power
by the WL hierarchy, and define A is k-WL distinguishable if and only if for any cliques C1, C2

from two graphs G = (AG,XG), H = (AH ,XH), A(C1,AG) ̸= A(C2,AH) only when k-WL

1We do not restrict C to be maximal cliques

3

Published as a conference paper at ICLR 2024

distinguishes C1 and C2 (we assume k-WL does not input node features here; see Appendix B for
detailed descriptions)2. The order of a MRF refers to the maximum order of cliques C we consider
in Eq. 1. For example, in pairwise MRFs C is the set of cliques with orders no more than 2 (i.e.,
edges). Formally, a k-order MRF is defined by A that satisfies A(C,G) ≡ Φ for all |C| > k where
Φ(·) ≡ constant. It is able to describe k-order dependencies over k-tuples of nodes.

Target posteriori. As previously discussed, we are interested in the inference problems of estimat-
ing posteriori including marginal distributions p(zi | X) for node-level tasks and the joint distribu-
tion over parts of the variables p(zi, zj |X) for link-level tasks. Note that since we can factorize the
posteriori as

p(zi, zj |X) = p(zi | zj ,X)p(zj |X),

the posteriori can also be estimated by repeatedly applying inference algorithms on the conditional
marginals.

Methods for inference. Given the recent developments in GNNs, one may expect that GNNs might
be able to perform exact inference in MRFs. However, our next theorem states that the exact in-
ference of even a simple pair-wise MRF with merely 1-WL distinguishable potentials requires the
ability of distinguishing all non-isomorphic graphs.
Theorem 2. Given any connected graphs G = (AG,XG), H = (AH ,XH) and i ∈ VG, j ∈ VH .
If i and j are not isomorphic, then there exists a 1-WL distinguishable 2-order A such that the
pair-wise MRFs pG, pH specified by A on G and H satisfy:

pG(zi = z |X = XG) ̸= pH(zj = z |X = XH).

Therefore, current GNNs fail to learn the exact inference on general graphs. This is not surprising
as the exact inference on graphs with loops are often exponentially expensive, and we often resort
to variational inference for estimating the marginals. Given the original intractable distribution p,
variational inference aims to find a tractable distribution q to approximate p: minqDKL(q∥p), where
DKL is the Kullback-Leibler (Kullback & Leibler, 1951) divergence. In this paper we will focus
on the successful approximate inference method belief propagation, which is also known as the
Bethe approximation (Murphy et al., 1999; Yedidia et al., 2001). Bethe approximation on pairwise
MRFs assumes a quasi distribution q(Z) =

∏
i∈V qi(zi)

∏
(i,j)∈E

qij(zi,zj)
qi(zi)qj(zj)

thus considering the
dependencies over nodes. (Yedidia et al., 2001). A successful algorithm for minimizing the Bethe
free energy is the loopy belief propagation (Heskes, 2002b), which is a fixed iteration over messages
of edges.

Problem setup. Our analysis aims to answer the question: to what extent can GNNs approximate
the inference of graphical models? We tackle the problem by investigating GNN variants via the
following criteria as discussed above:

• How complex the joint distribution can be? This includes the discriminating power and the
maximum order of A.

• What posteriori can GNNs approximate?
• If GNNs cannot perform exact inference over MRFs, how approximate can their predictions

be?

We believe answering these questions would print a clearer picture about what GNNs can learn from
a more intuitive, probabilistic perspective.

4 ANALYSING THE PROBABILISTIC INFERENCE CAPACITY OF GNNS

4.1 ON MPNNS AND PAIRWISE MRFS

Our first results aim to characterize the expressive power of MPNNs in terms of modeling proba-
bilistic distributions over MRFs, as well as introducing our strategy for evaluating GNN models.

2We choose the WL hierarchy due to its prevalence in the GNN literature; other metrics are certainly accept-
able. Note that MRFs are usually powerful even with less expressive A: in reality, A is usually implemented
simply producing identical potentials. Fully probability-based results without the utilization of WL tests is
provided in Appendix K.2.

4

Published as a conference paper at ICLR 2024

MPNNs are generally applied to learn node representations and are bounded by 1-WL which aggre-
gates information from neighbors, thus in this section we consider pairwise MRFs defined by 1-WL
distinguishable, 2-order A.

We first discuss the equivalence between them in terms of discriminating power.

Theorem 3. Given any graphs G = (AG,XG), H = (AH ,XH) and any 1-WL distinguishable
2-order A. If at some iteration, the collection of the messages of parallel belief propagation on G
and H are different, then 1-WL also distinguishes G,H .

Surprisingly, although the message passing procedure in belief propagation operates on directed
edges, we have shown that it is equivalent to 1-WL in terms of distinguishing power. Continuing
from Theorem 3, it’s obvious that MPNNs can also approximate the posteriori. In fact, it turns out
that the correspondence reveals stronger facts about MPNNs.

Theorem 4. MPNNs can learn marginals that are at least as accurate as belief propagation. For-
mally, there exists decoding functions f, g such that given any 1-WL distinguishable 2-order A, for
arbitrary ϵ > 0 and n ∈ N, there exists a MPNN such that for any graphs with no more than n
nodes, such that:

DKL(f(hi) | qi) ≤ ϵ for i ∈ V and DKL(g(hi,hj) | qij) ≤ ϵ for (i, j) ∈ E ,

where qi, qij are node and edge marginals specified by a local extrema of Bethe approximation, hi

is the representation of node i obtained by the MPNN, DKL is the Kullback-Leibler divergence.

Theorem 4 directly indicates that MPNNs are not only capable of approximating node marginals
of Bethe approximation, but also edge marginals. In other words, if two nodes are connected,
MPNNs are suitable for learning the joint representation of these two nodes! This implication will
be exploited in Section 5 where we extend MPNNs for link prediction in a novel and simple manner.

Putting these together, we conclude the section by stating that MPNNs are able to perform exact
inference on trees. This result naturally aligns with the fact that MPNNs, which shares the equivalent
expressiveness with the 1-WL test, can exactly capture tree patterns Zhang et al. (2024).

Corollary 5. Given any graph G and 1-WL distinguishable 2-order A, if G is a tree, there is a
MPNN that outputs true node and edge marginals of the MRF defined by A.

4.2 ANALYSING EXISTING GNN VARIANTS

In this section we switch to more complex and powerful GNN variants. From previous discussions,
it is evident that current GNNs are likely capable of approximating variational methods including
naive mean field (as shown by Dai et al. (2016)) and Bethe approximation. Thus, our analysis
focuses on the remaining two metrics in Section 3, i.e. the complexities of the joint distribution and
the target posteriori. For ease of discussion we summarize our metrics for evaluating the expressive
power of GNNs as follows.

Definition 6. A class of GNN models can k-l approximate some posteriori p if and only if given
arbitrary k-WL distinguishable A with maximum order being l, it satisfies:

• It can distinguish all graphs distinguished by iterations of belief propagation as in Theorem
3.

• It can provide marginals at least as accurate as Bethe approximation as in Theorem 4.

Therefore, k and l are corresponded to the complexity of the joint distribution and p is corresponded
to the target posteriori. For example, the results about MPNNs in Section 4.1 can be abbreviated as
MPNNs can 1-2 approximate p(zi |X). We can also derive upper bounds for MPNNs as follows.

Theorem 7. MPNNs can at most 1-2 approximate p(zi |X) for arbitrary G and i ∈ VG.

Similarly with our metrics, we notice that existing GNN variants also extend MPNNs mainly from
two motivations: one to increase the graph-level expressive power and another to solve more com-
plex tasks such as link prediction. Here we also discuss these variants separately according to their
motivations.

5

Published as a conference paper at ICLR 2024

4.2.1 GNNS THAT FOCUS ON EXPRESSIVE POWER

In this section we investigate GNN variants that focus on increasing the expressive power beyond
1-WL. We shall see that most of them sufficiently improve expressiveness by approximating more
complex distributions.

k-GNNs. The first GNN variants we consider are know as the higher-order GNNs, which directly
corresponds to the k-WL hierarchy (Morris et al., 2018; Keriven & Peyré, 2019; Geerts & Reutter,
2022; Maron et al., 2019a). We will focus on k-GNNs that are bounded the by k-WL test. Note that
k-GNNs generally computes the representation of a single node j as the representation of (j, j, ..., j).
Proposition 8. k-GNNs can k-k approximate p(zi |X) for arbitrary G.

Remark. Unsurprisingly, k-GNNs provably capture k-order dependencies. At initialization, k-
GNNs inject structural information of node tuples into their representations; At each layer, k-GNNs
directly pass messages among k-tuples which share k − 1 common nodes. This helps them to sim-
ulate the messages between factors and nodes in belief propagation.

Subgraph GNNs. Bevilacqua et al. (2021) proposed a new type of GNNs namely Equivariant Sub-
graph Aggregation Networks (ESANs), which provides a novel variant of GNNs namely subgraph
GNNs. We consider its node-based variant, which are also studied in Frasca et al. (2022), showing
a 3-WL upper bound for its expressiveness. Yet, this result is a limitation of ESANs and it’s un-
clear how much the gap is between ESANs and 3-WL. Zhang et al. (2023a) showed that ESANs are
equivalent to 3-WL in the very specific graph biconnectivity tasks.
Proposition 9. ESANs with node marking policy can 1-3 approximate p(zi |X) for arbitrary G.

Remark. Here, we take a step forward and show that ESANs are equivalent to 3-WL in capturing
higher-order dependencies. In fact, each subgraph with marked node i can capture i’s adjacent
3-cliques, and by aggregating all subgraphs together at each layer, ESANs are able to capture all
3-cliques.

GNNs with lifting transformations. Bodnar et al. (2021b;a) designed new WL variants to consider
graph structures such as cliques and cycles. We summarize their expressiveness as follows.
Proposition 10. The GNN variants corresponding with SWL / CWL with k-clique simplex can 1-k
approximate p(zi |X).

Remark. Similar with k-GNNs, this variant successfully exploits arbitrary order dependencies. With
the specifically designed message passing paradigm, cliques can now send and receive messages as
an ensemble. We believe this is the key to model complex distributions, and in Section 5 we will
develop a novel framework to improve MPNNs’ probabilistic inference capacity in a similar but
simpler and more efficient manner.

Other variants. We notice that there are also other variants including ID-GNNs (You et al., 2021),
Nested GNNs (Zhang & Li, 2021), etc. However, we summarize that they cannot improve MPNNs’
probabilistic inference capacity.
Proposition 11. The above GNNs can at most 1-2 approximate p(zi |X).

4.2.2 GNNS THAT FOCUS ON COMPLEX PREDICTION TASKS

We now list GNN variants that focus on link prediction and more generally joint prediction of multi-
nodes. In this section we shall see that they sufficiently approximate more complex posteriori.

k-GNNs. Since k-GNNs learn representations for k-node tuples, it’s natural to expect them being
capable of approximating joint posteriori of k nodes.
Proposition 12. k-GNNs cannot 1-2 approximate p(zi1 , ..., zik |X) for arbitrary k ≥ 2.

Remark. Surprisingly, our result states that k-GNNs are not capable of approximating k-posteriori
even for simple pairwise MRFs. This explains why few works apply k-GNNs for link prediction,
although 2-GNNs naturally produces node pair representations. Nevertheless, we notice that there
is another line of expressive GNNs inspired by k-FWL, among which Edge Transformers (Bergen
et al., 2021b) are 2-FWL-MPNNs designed for link prediction. Our next theorem verifies the effec-
tiveness of these variants.

6

Published as a conference paper at ICLR 2024

Proposition 13. k-FWL-MPNNs can 1-2 approximate p(zi1 , ..., zik |X).

Labeling trick. To extend MPNNs for link prediction, SEAL (Zhang & Chen, 2018) adds labels to
nodes to tag the target nodes equivalently and differently from the rest of the nodes. This technique
was summarized and generalized in Zhang et al. (2020) known as labeling trick.
Proposition 14. k-labeling trick MPNNs 1-2 approximate f(z) = p(zi1 = · · · zik = z | X) but
not p(zi1 , zi2 |X).

Remark. The target posteriori might seem strange since it indicates all target nodes are indistin-
guishable from each other, which means that SEAL cannot learn representations of ordered node
tuples: it cannot distinguish the target link (i, j) between (j, i). This aligns with the fact that SEAL
is only applied on undirected link prediction problems.

Ordered node pair labeling. Similar to SEAL, GraIL (Teru et al., 2019), INDIGO (Liu et al.,
2021), etc. add labels to target node pairs but now source and target nodes are labeled differently.
Proposition 15. MPNNs with ordered node pair labeling 1-2 approximate p(zi, zj |X).

Remark. With different labels on the source and target nodes, these methods are able to learn rep-
resentations of directed node pairs. This aligns with the fact that these methods are designed for
predicting directed links in heterogeneous knowledge graphs.

Source node labeling. Another line of research (You et al., 2021; Zhu et al., 2021) also uses node
labels for link prediction, but they only tag the source node, yielding a more efficient framework
compared with labeling trick. Here we show that they are also able to learn node pair representations.
Proposition 16. Source node labeling MPNNs 1-2 approximate p(zi, zj |X).

5 EXTENDING MPNNS FOR MODELING MORE COMPLEX DISTRIBUTIONS

After investigating previous GNN architectures, in this section we would like to study whether we
can improve GNNs’ expressive power for modeling MRFs as well as being more efficient compared
with previous approaches. Formally, we also focus on the two targets: modeling more complex
distribution and inferring more complex posteriori. We design novel methods namely phantom
nodes and phantom edges, for provably lifting GNNs’ expressive power of approximating complex
distributions and complex posteriori respectively. These two approaches can be easily implemented
as a preprocessing procedure of the input graphs.

5.1 PHANTOM NODES FOR MODELING HIGHER-ORDER DEPENDENCIES

We discuss extending MPNNs for learning more complex distributions. As previously discussed,
the aggregation functions of MPNNs help them to be aware of edges, which naturally corresponds
to 2-cliques in MRFs. Intuitively, capturing higher-order cliques requires the aggregation function to
pass messages within higher-order cliques of nodes, which calls for different network architectures.
To avoid such inconvenience, inspired by belief propagation on factor graphs we add a phantom
node vC for every maximum clique C in G, and connect vC to all nodes in C. The phantom nodes
then serve as midway of the cliques that stores the messages among cliques of nodes. In fact, we
further tag all phantom nodes with an invented label l̂ that distinguishes them from the ordinary
nodes. By applying MPNNs on the augmented graph. We have the following result:
Proposition 17. MPNNs with phantom nodes can 1-∞ approximate p(zi |X).

Relaxation. Sometimes it is unpractical to find maximum cliques. We can relax our method by
only finding cliques with no more than k nodes as an approximation to the original approach.
Proposition 18. MPNNs with phantom nodes of cliques no more than k can 1-k approximate
p(zi |X).

5.2 PHANTOM EDGES FOR MODELING JOINT POSTERIORI

We discuss learning joint posteriori p(zi, zj |X) for node pairs (i, j). Different from the previously
discussed node labeling hierarchy, we provide an alternate method for link prediction inspired by

7

Published as a conference paper at ICLR 2024

Table 1: Results on node classification. Best results of each category are bold. Results with * are
taken from Qu et al. (2022). PN stands for phantom nodes.

Algorithm PPI-1 PPI-2 PPI-10
Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1

GCN 76.24±0.10 54.55±0.29 76.82±0.13 56.10±0.36 80.43±0.10 62.48±0.27
+CRF* 76.33±0.21 50.79±0.74 76.27±0.10 49.47±0.63 77.08±0.07 52.36±0.72
+SPN* 77.07±0.05 54.15±0.17 78.02±0.05 55.73±0.15 80.59±0.04 61.36±0.11
+PN(ours) 77.45±0.07 60.17±0.23 78.81±0.08 61.94±0.17 80.87±0.03 64.85±0.07

SAGE 79.32±0.07 62.25±0.11 84.13±0.04 72.93±0.04 92.13±0.04 87.72±0.05
+CRF* 77.43±0.28 54.57±1.07 76.27±0.10 49.47±0.63 77.65±0.38 54.44±1.34
+SPN* 82.11±0.03 68.56±0.07 85.40±0.05 74.45±0.07 95.28±0.02 91.99±0.04
+PN(ours) 82.30±0.02 68.93±0.04 85.60±0.05 74.64±0.04 92.29±0.03 86.75±0.06

GCNII 77.94±0.08 65.79±0.25 84.81±0.06 74.54±0.14 97.53±0.01 95.86±0.01
+CRF* 79.98±0.32 61.22±1.10 81.73±0.33 66.37±0.56 92.11±0.28 87.10±0.40
+SPN* 82.01±0.03 67.80±0.11 85.83±0.04 75.96±0.05 97.55±0.01 95.87±0.02
+PN(ours) 81.76±0.02 69.07±0.13 85.45±0.05 75.28±0.05 97.47±0.03 95.84±0.03

the specific formulation of the mean field and Bethe free energy, which optimize on the following
variational free energy on pairwise MRFs respectively:

min
q
DKL(q(Z)∥p(Z |X)), where q(Z) =

∏
i∈V

qi(zi) or
∏
i∈V

qi(zi)
∏

(i,j)∈E

qij(zi, zj)

qi(zi)qj(zj)
.

Compared with mean field free energy, the edge terms qij(zi,zj)
qi(zi)qj(zj)

in Bethe free energy models the
joint dependencies between node pairs thus can result in more accurate estimations of marginals.
Inspired by this difference, to predict a set of target links Ê = {(u1, v1), (u2, v2), ...} that do not
appear in the original graph, we add a “phantom” term for each target link into the formulation of
q(Z), yielding the following quasi distribution:

q(Z) =
∏
i∈V

qi(zi)
∏

(i,j)∈E

qij(zi, zj)

qi(zi)qj(zj)

∏
(u,v)∈Ê

quv(zu, zv)

qu(zu)qv(zv)
. (2)

Compared with the original formulation, Eq. 2 directly consider the dependence between u and
v, and by minimizing the KL divergence we can now also obtain the approximate marginal of
quv(zu, zv). To reflect this modification in GNNs, we add a phantom edge for each target link.
The phantom edges are tagged with an invented label l̂ that distinguishes them from the original
edges. Then, the link representation of (u, v) is computed as f(hu,hv), where hu,hv are represen-
tations of nodes u, v learnt by MPNNs and f is a MLP. The following proposition states the relation
between phantom edges and the altered Bethe free energy.
Proposition 19. MPNNs with phantom edges 1-2 approximates p(zu, zv) given by the modified
Bethe free energy with altered distribution in Eq. 2.

One major drawback is that when initialized with multiple phantom edges, MPNNs might no longer
preserve equivariant properties. Since DropGNN (Papp et al., 2021) uses a similar technique that
deletes nodes randomly but instead increases the robustness and expressiveness of GNNs, we may
also suppose that MPNNs can learn to handle with phantom edges properly. We can also use sim-
ilar methods for predicting p(zi, zj , zk, ... | X), but since it’s less practical we left the description
together with detailed and practical implementation at Appendix D.

6 EVALUATION

We conduct two sets of experiments to empirically validate our results and verify the probabilistic
inference capacity of our methods. Firstly, we verify whether our proposed phantom nodes / edges

8

Published as a conference paper at ICLR 2024

frameworks can systematically help MPNNs to learn higher-order dependencies and joint posteriori
as our theory implies. Secondly, we investigate whether MPNNs with expressiveness for complex
distributions and posteriori can also help real-world node classification and link prediction tasks.

Compared algorithms. Our phantom nodes / edges are frameworks for lifting the probabilistic
inference capacities of general GNNs. We consider popular MPNNs GCN (Kipf & Welling, 2016b),
SAGE (Hamilton et al., 2017) and GCNII (Chen et al., 2020a) on all tasks. For node classification
tasks, we consider SPN (Qu et al., 2022), a recent GNN-CRF framework that also lifts GNNs’
probabilistic inference capacity. For link prediction tasks, We also compare with recent state-of-the-
art GNNs on undirected graphs ELPH (Chamberlain et al., 2023) and BUDDY (Chamberlain et al.,
2023).

Synthetic tasks. We generate synthetic graphs and define pairwise and 3-order potential functions.
Marginals are obtained by running loopy belief propagation and are used as the training target of
GNNs. The results are in Table 3. The main metric that evaluates the similarity between GNNs
and marginals is the KL divergence, where our methods systematically improve over base GNNs.
We also notice that for predicting edge and node pair marginals, the KL divergence between our
approaches and belief propagation does not reduce to 0. We hypothesis the reason to be the limited
design of the output layers. Nevertheless, our approaches steadily enhance the performance of base
GNNs in different tasks and metrics.

Real-world tasks. We consider two types of tasks. For Node Classification we consider the PPI
(Zitnik & Leskovec, 2017; Hamilton et al., 2017) dataset, where each node has 121 labels. To make
the dataset more challenging we try using only the first 1/2/10 training graphs, yielding PPI-1, PPI-2
and PPI-10. We have rerun GCNs, SAGE, GCNII and their phantom node enhanced versions on
these datasets to jointly predict all the 121 labels at once, making it more challenging than Qu et al.
(2022). The MPNNs and their phantom node enhanced versions share the same hyperparameters
and network architectures. Empirically, the phantom nodes work well especially when training
data is limited (PPI-1), due to their ability of performing data augmentation with the awareness of
higher-order structures.

For Link Prediction we consider the Planetoid citation networks Cora (McCallum et al., 2000),
Citeseer (Sen et al., 2008) and Pubmed (Namata et al., 2012). We apply our phantom edges on GCN,
SAGE and GCNII. The results are in Table 2. Our methods can systematically improve MPNNs for
real-world tasks. The effects of phantom edges are significant when the graphs are complex, which
demonstrates phantom edges are able to model link-level structures by aggregating representations
of nodes at each end of the target links.

Algorithm Cora Citeseer Pubmed
GCN 40.57±1.65 51.21±1.73 29.97±1.13
+PE(ours) 54.69±1.07 64.29±1.08 41.28±0.83

SAGE 43.03±2.39 43.22±1.92 26.16±0.65
+PE(ours) 46.64±2.61 39.45±2.48 34.91±1.71

GCNII 51.52±1.25 53.41±0.79 30.93±0.92
+PE(ours) 60.09±3.13 67.80±1.17 36.10±1.38

ELPH 50.84±1.93 64.35±1.53 32.94±1.41
BUDDY 52.02±1.37 58.23±1.44 26.56±1.34

Table 2: Results on link prediction tasks. The
metrics are Hit@10.

Algorithm Nodes Edges Node pairs

GCN BCE loss 0.045 1.008 1.373
KL div 0.003 0.835 0.748

+PNE BCE loss 0.044 0.931 1.368
KL div 0.000 0.602 0.729

GIN BCE loss 0.044 0.991 1.372
KL div 0.001 1.021 0.765

+PNE BCE loss 0.043 0.964 1.373
KL div 0.000 0.947 0.694

Table 3: Results on syntactic tasks. PNE:
phantom nodes / edges.

7 CONCLUSION

In this paper, we develop strong theoretical connections between GNNs and variational inference,
show that MPNNs can achieve good estimations of node and edge marginals, and further investigate
various GNN variants from the expressiveness and link prediction perspective while corresponding
them to different inference problems in graphical models. We provide new understandings about
how and why previous GNN variants works well under different settings. We develop new methods
that provably lift MPNNs for modeling more complex distributions and predictions. Experiments
on both synthetic and real-world datasets demonstrate the effectiveness of our approaches.

9

Published as a conference paper at ICLR 2024

REFERENCES

Waı̈ss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural
networks. In International Conference on Learning Representations, 2020. URL https:
//api.semanticscholar.org/CorpusID:235358624.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. ArXiv, abs/1909.01377,
2019. URL https://api.semanticscholar.org/CorpusID:202539738.

Pablo Barcel’o, Floris Geerts, Juan L. Reutter, and Maksimilian Ryschkov. Graph neural networks
with local graph parameters. In Neural Information Processing Systems, 2021. URL https:
//api.semanticscholar.org/CorpusID:235421961.

Leon Bergen, Timothy J. O’Donnell, and Dzmitry Bahdanau. Systematic generalization with edge
transformers. In NeurIPS, 2021a.

Leon Bergen, Timothy J. O’Donnell, and Dzmitry Bahdanau. Systematic generalization with
edge transformers. In Neural Information Processing Systems, 2021b. URL https://api.
semanticscholar.org/CorpusID:244773350.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, G. Bal-
amurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. ArXiv, abs/2110.02910, 2021. URL https://api.semanticscholar.org/
CorpusID:238407774.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Lio’, Guido Montúfar, and
Michael M. Bronstein. Weisfeiler and lehman go cellular: Cw networks. In Neural Information
Processing Systems, 2021a. URL https://api.semanticscholar.org/CorpusID:
235606230.

Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montúfar, Pietro Lio’, and
Michael M. Bronstein. Weisfeiler and lehman go topological: Message passing simplicial net-
works. ArXiv, abs/2103.03212, 2021b. URL https://api.semanticscholar.org/
CorpusID:232110693.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45:657–668, 2020. URL https://api.
semanticscholar.org/CorpusID:219708613.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12:389–410, 1989.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks
for link prediction with subgraph sketching. In ICLR, 2023.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, 2020a. URL https:
//api.semanticscholar.org/CorpusID:220363476.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? ArXiv, abs/2002.04025, 2020b. URL https://api.semanticscholar.
org/CorpusID:211069434.

P Clifford and JM Hammersley. Markov fields on finite graphs and lattices. 1971.

10

https://api.semanticscholar.org/CorpusID:235358624
https://api.semanticscholar.org/CorpusID:235358624
https://api.semanticscholar.org/CorpusID:202539738
https://api.semanticscholar.org/CorpusID:235421961
https://api.semanticscholar.org/CorpusID:235421961
https://api.semanticscholar.org/CorpusID:244773350
https://api.semanticscholar.org/CorpusID:244773350
https://api.semanticscholar.org/CorpusID:238407774
https://api.semanticscholar.org/CorpusID:238407774
https://api.semanticscholar.org/CorpusID:235606230
https://api.semanticscholar.org/CorpusID:235606230
https://api.semanticscholar.org/CorpusID:232110693
https://api.semanticscholar.org/CorpusID:232110693
https://api.semanticscholar.org/CorpusID:219708613
https://api.semanticscholar.org/CorpusID:219708613
https://api.semanticscholar.org/CorpusID:220363476
https://api.semanticscholar.org/CorpusID:220363476
https://api.semanticscholar.org/CorpusID:211069434
https://api.semanticscholar.org/CorpusID:211069434

Published as a conference paper at ICLR 2024

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. ArXiv, abs/2110.00577, 2021. URL https://api.semanticscholar.org/
CorpusID:238253248.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for struc-
tured data. In International Conference on Machine Learning, 2016.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Understanding
and extending subgraph gnns by rethinking their symmetries. ArXiv, abs/2206.11140, 2022. URL
https://api.semanticscholar.org/CorpusID:249926758.

Floris Geerts and Juan L. Reutter. Expressiveness and approximation properties of graph neural
networks. ArXiv, abs/2204.04661, 2022. URL https://api.semanticscholar.org/
CorpusID:248084856.

Lukas Gianinazzi, Maciej Besta, Yannick Schaffner, and Torsten Hoefler. Parallel algorithms for
finding large cliques in sparse graphs. Proceedings of the 33rd ACM Symposium on Paral-
lelism in Algorithms and Architectures, 2021. URL https://api.semanticscholar.
org/CorpusID:235689574.

Martin Grohe and Martin Otto. Pebble games and linear equations. The Journal of Symbolic Logic,
80:797 – 844, 2012.

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit graph
neural networks. ArXiv, abs/2009.06211, 2020. URL https://api.semanticscholar.
org/CorpusID:221655683.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Tom Heskes. Stable fixed points of loopy belief propagation are local minima of the bethe free
energy. Advances in neural information processing systems, 15, 2002a.

Tom M. Heskes. Stable fixed points of loopy belief propagation are local minima of the bethe
free energy. In NIPS, 2002b. URL https://api.semanticscholar.org/CorpusID:
45429087.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Alexander Rieck, and
Karsten M. Borgwardt. Topological graph neural networks. ArXiv, abs/2102.07835, 2021. URL
https://api.semanticscholar.org/CorpusID:231934149.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In
Neural Information Processing Systems, 2019. URL https://api.semanticscholar.
org/CorpusID:152282292.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:
6628106.

Thomas Kipf and Max Welling. Variational graph auto-encoders. ArXiv, abs/1611.07308, 2016a.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016b.

Solomon Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22:79–86, 1951. URL https://api.semanticscholar.org/CorpusID:
120349231.

Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, and X. Xiao. Mgnni: Multiscale graph neu-
ral networks with implicit layers. ArXiv, abs/2210.08353, 2022a. URL https://api.
semanticscholar.org/CorpusID:252918651.

Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, and X. Xiao. Eignn: Efficient
infinite-depth graph neural networks. ArXiv, abs/2202.10720, 2022b. URL https://api.
semanticscholar.org/CorpusID:245216994.

11

https://api.semanticscholar.org/CorpusID:238253248
https://api.semanticscholar.org/CorpusID:238253248
https://api.semanticscholar.org/CorpusID:249926758
https://api.semanticscholar.org/CorpusID:248084856
https://api.semanticscholar.org/CorpusID:248084856
https://api.semanticscholar.org/CorpusID:235689574
https://api.semanticscholar.org/CorpusID:235689574
https://api.semanticscholar.org/CorpusID:221655683
https://api.semanticscholar.org/CorpusID:221655683
https://api.semanticscholar.org/CorpusID:45429087
https://api.semanticscholar.org/CorpusID:45429087
https://api.semanticscholar.org/CorpusID:231934149
https://api.semanticscholar.org/CorpusID:152282292
https://api.semanticscholar.org/CorpusID:152282292
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:120349231
https://api.semanticscholar.org/CorpusID:120349231
https://api.semanticscholar.org/CorpusID:252918651
https://api.semanticscholar.org/CorpusID:252918651
https://api.semanticscholar.org/CorpusID:245216994
https://api.semanticscholar.org/CorpusID:245216994

Published as a conference paper at ICLR 2024

S. Liu, Bernardo Cuenca Grau, Ian Horrocks, and Egor V. Kostylev. Indigo: Gnn-based induc-
tive knowledge graph completion using pair-wise encoding. In Neural Information Processing
Systems, 2021. URL https://api.semanticscholar.org/CorpusID:245119728.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. ArXiv, abs/1812.09902, 2018. URL https://api.semanticscholar.org/
CorpusID:56895597.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. ArXiv, abs/1905.11136, 2019a. URL https://api.semanticscholar.org/
CorpusID:166228757.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. ArXiv, abs/1901.09342, 2019b. URL https://api.semanticscholar.org/
CorpusID:59316743.

Andrew McCallum, Kamal Nigam, Jason D. M. Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127–163, 2000.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gau-
rav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neu-
ral networks. In AAAI Conference on Artificial Intelligence, 2018. URL https://api.
semanticscholar.org/CorpusID:52919090.

Kevin P Murphy, Yair Weiss, and Michael I Jordan. Loopy belief propagation for approximate
inference: an empirical study. In Proceedings of the Fifteenth conference on Uncertainty in
artificial intelligence, pp. 467–475, 1999.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann ma-
chines. In International Conference on Machine Learning, 2010. URL https://api.
semanticscholar.org/CorpusID:15539264.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
for collective classification. In 10th international workshop on mining and learning with graphs,
volume 8, pp. 1, 2012.

Jaroslav Nesetril and Svatopluk Poljak. On the complexity of the subgraph problem. 1985. URL
https://api.semanticscholar.org/CorpusID:117487859.

Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network ex-
tensions. ArXiv, abs/2201.12884, 2022. URL https://api.semanticscholar.org/
CorpusID:246430444.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. In Neural Information Processing
Systems, 2021. URL https://api.semanticscholar.org/CorpusID:240493350.

Junyoung Park, Jinhyun Choo, and Jinkyoo Park. Convergent graph solvers. ArXiv, abs/2106.01680,
2021. URL https://api.semanticscholar.org/CorpusID:235313383.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Chen Qian, Gaurav Rattan, Floris Geerts, Christopher Morris, and Mathias Niepert. Or-
dered subgraph aggregation networks. ArXiv, abs/2206.11168, 2022. URL https://api.
semanticscholar.org/CorpusID:249926461.

Meng Qu, Huiyu Cai, and Jian Tang. Neural structured prediction for inductive node classification.
arXiv preprint arXiv:2204.07524, 2022.

Victor Garcia Satorras and Max Welling. Neural enhanced belief propagation on factor graphs. In
International Conference on Artificial Intelligence and Statistics, pp. 685–693. PMLR, 2021.

12

https://api.semanticscholar.org/CorpusID:245119728
https://api.semanticscholar.org/CorpusID:56895597
https://api.semanticscholar.org/CorpusID:56895597
https://api.semanticscholar.org/CorpusID:166228757
https://api.semanticscholar.org/CorpusID:166228757
https://api.semanticscholar.org/CorpusID:59316743
https://api.semanticscholar.org/CorpusID:59316743
https://api.semanticscholar.org/CorpusID:52919090
https://api.semanticscholar.org/CorpusID:52919090
https://api.semanticscholar.org/CorpusID:15539264
https://api.semanticscholar.org/CorpusID:15539264
https://api.semanticscholar.org/CorpusID:117487859
https://api.semanticscholar.org/CorpusID:246430444
https://api.semanticscholar.org/CorpusID:246430444
https://api.semanticscholar.org/CorpusID:240493350
https://api.semanticscholar.org/CorpusID:235313383
https://api.semanticscholar.org/CorpusID:249926461
https://api.semanticscholar.org/CorpusID:249926461

Published as a conference paper at ICLR 2024

M. Schlichtkrull, Thomas Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional networks. In Extended Semantic Web Confer-
ence, 2017. URL https://api.semanticscholar.org/CorpusID:5458500.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. In The AI Magazine, 2008.

Alex Smola, Arthur Gretton, Le Song, and Bernhard Scholkopf. A hilbert space embedding for
distributions. In IFIP Working Conference on Database Semantics, 2007. URL https://
api.semanticscholar.org/CorpusID:144300.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and
mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 990–998, 2008.

Komal K. Teru, E. Denis, and William L. Hamilton. Inductive relation prediction by subgraph
reasoning. In International Conference on Machine Learning, 2019. URL https://api.
semanticscholar.org/CorpusID:211082667.

Erik H. Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural nets.
In Neural Information Processing Systems, 2021. URL https://api.semanticscholar.
org/CorpusID:232092767.

Kristina Toutanova, Xi Victoria Lin, Wen tau Yih, Hoifung Poon, and Chris Quirk. Compositional
learning of embeddings for relation paths in knowledge base and text. In ACL, 2016.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Bethe free energy, kikuchi approxima-
tions, and belief propagation algorithms. 2001. URL https://api.semanticscholar.
org/CorpusID:13980420.

Jonathan S Yedidia, William T Freeman, and Yair Weiss. Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Transactions on information theory, 51(7):
2282–2312, 2005.

Jiaxuan You, Jonathan M. Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In AAAI Conference on Artificial Intelligence, 2021. URL https://api.
semanticscholar.org/CorpusID:231698873.

Alan L Yuille and Anand Rangarajan. The concave-convex procedure (cccp). Advances in neural
information processing systems, 14, 2001.

Alan Loddon Yuille. A double-loop algorithm to minimize the bethe free energy. In Energy
Minimization Methods in Computer Vision and Pattern Recognition, 2001. URL https:
//api.semanticscholar.org/CorpusID:17025398.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power
of gnns via graph biconnectivity. ArXiv, abs/2301.09505, 2023a. URL https://api.
semanticscholar.org/CorpusID:256105774.

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
lehman: A quantitative framework for gnn expressiveness. In International Conference on Ma-
chine Learning, 2024.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Neural
Information Processing Systems, 2018. URL https://api.semanticscholar.org/
CorpusID:3573161.

13

https://api.semanticscholar.org/CorpusID:5458500
https://api.semanticscholar.org/CorpusID:144300
https://api.semanticscholar.org/CorpusID:144300
https://api.semanticscholar.org/CorpusID:211082667
https://api.semanticscholar.org/CorpusID:211082667
https://api.semanticscholar.org/CorpusID:232092767
https://api.semanticscholar.org/CorpusID:232092767
https://api.semanticscholar.org/CorpusID:13980420
https://api.semanticscholar.org/CorpusID:13980420
https://api.semanticscholar.org/CorpusID:231698873
https://api.semanticscholar.org/CorpusID:231698873
https://api.semanticscholar.org/CorpusID:17025398
https://api.semanticscholar.org/CorpusID:17025398
https://api.semanticscholar.org/CorpusID:256105774
https://api.semanticscholar.org/CorpusID:256105774
https://api.semanticscholar.org/CorpusID:3573161
https://api.semanticscholar.org/CorpusID:3573161

Published as a conference paper at ICLR 2024

Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural networks. In
ICLR, 2020.

Muhan Zhang and Pan Li. Nested graph neural networks. ArXiv, abs/2110.13197, 2021. URL
https://api.semanticscholar.org/CorpusID:239885856.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. In Neural Information Processing
Systems, 2020. URL https://api.semanticscholar.org/CorpusID:239998439.

Zhen Zhang, Mohammed Haroon Dupty, Fan Wu, and Fan Wu. Factor graph neural net-
works. ArXiv, abs/2308.00887, 2023b. URL https://api.semanticscholar.org/
CorpusID:227276486.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplift-
ing any gnn with local structure awareness. ArXiv, abs/2110.03753, 2021. URL https:
//api.semanticscholar.org/CorpusID:238531375.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. In Neural Information
Processing Systems, 2021. URL https://api.semanticscholar.org/CorpusID:
235422273.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

14

https://api.semanticscholar.org/CorpusID:239885856
https://api.semanticscholar.org/CorpusID:239998439
https://api.semanticscholar.org/CorpusID:227276486
https://api.semanticscholar.org/CorpusID:227276486
https://api.semanticscholar.org/CorpusID:238531375
https://api.semanticscholar.org/CorpusID:238531375
https://api.semanticscholar.org/CorpusID:235422273
https://api.semanticscholar.org/CorpusID:235422273

Published as a conference paper at ICLR 2024

Appendix

Table of Contents
A Extended Related Works 16

B Weisfeiler-Lehman tests 17
B.1 1-WL (Color Refinement) . 17
B.2 k-WL . 17
B.3 k-FWL . 17
B.4 Colors of k-WL / k-FWL . 18

C Discussions about the Fixed Point Properties of MPNNs and Bethe approximation 18

D Extended Discussions about Phantom Nodes / Edges 19
D.1 Phantom Nodes . 19
D.2 Phantom Edges . 20

E Experimental Details 21
E.1 Datasets . 21
E.2 Configurations . 22
E.3 Additional Experiments . 23

F Proof w.r.t. invariant MRFs 23
F.1 Proof of Lemma 1 . 23
F.2 Proof of Theorem 2. 24

G Proof w.r.t. MPNNs 25
G.1 Proof of Theorem 3 . 25
G.2 Proof of Theorem 4 . 27
G.3 Proof of Theorem 20 . 29
G.4 Proof of Corolloary 5 . 32
G.5 Proof of Theorem 7 . 32

H Proof w.r.t. Approximating Complex Distributions 33
H.1 k-l-CWL: A Tool for the Proof . 33
H.2 Proof. w.r.t. k-GNNs . 35
H.3 Proof w.r.t. Subgraph GNNs . 36
H.4 Proof w.r.t. SWL / CWL . 36
H.5 Proof w.r.t. Other Variants . 37

I Proof w.r.t. Approximating Joint Posteriori 38
I.1 k-Node Labeling: A Tool for Proof . 38
I.2 Proof w.r.t. k-GNNs . 39
I.3 Proof w.r.t. k-FWL-MPNNs . 40
I.4 Proof w.r.t. labeling trick . 41
I.5 Proof w.r.t. Ordered Node Labeling . 41
I.6 Proof w.r.t. Source Node Labeling . 41

J Proof w.r.t. Phantom Nodes / Edges 42
J.1 Proof of Proposition 17 . 42
J.2 Proof of Proposition 18 . 42

15

Published as a conference paper at ICLR 2024

J.3 Proof of Proposition 19 . 42

K The expressiveness of GNNs without the WL hierarchy 43
K.1 A redefinition of the metrics . 43
K.2 Results w.r.t. node-level expressiveness . 43
K.3 Proofs . 44

A EXTENDED RELATED WORKS

In this section we discuss more related works that aims to improve GNNs.

Higher order GNNs. Since the works of Xu et al. (2018); Morris et al. (2018) that relate GNNs
with the 1-WL tests, it is straightforward to extend GNNs by imitating higher-order WL tests. Pre-
cisely, k-order WL tests assign colors for k-tuples of nodes and perform color aggregation between
different tuples. Similarly, instead of learning representations for nodes, many works choose to
apply the message passing paradigm in higher-order WL tests to GNNs and directly learn represen-
tations for node tuples (Morris et al., 2018; Maron et al., 2019a; 2018; 2019b; Keriven & Peyré,
2019; Azizian & Lelarge, 2020; Geerts & Reutter, 2022).

Subgraph GNNs. Since the higher order GNNs are often too expensive for larger graphs, many
works try to find cheaper ways to design more expressive GNNs. A variety of works feed subgraphs
to MPNNs. At each layer, a set of subgraphs is generated according to some predefined permutation-
invariant policies, including node deletion (Cotta et al., 2021), edge deletion Bevilacqua et al. (2021),
node marking (Papp & Wattenhofer, 2022), ego-networks (Zhao et al., 2021; Zhang & Li, 2021; You
et al., 2021). We will focus on the unified ESAN framework proposed by Bevilacqua et al. (2021).
Qian et al. (2022); Frasca et al. (2022) studied the expressive power of different branches of subgraph
GNNs.

Substructure counting GNNs. There is another way to design GNNs that surpass 1-WL by con-
structing structural features for GNNs. Chen et al. (2020b) showed that regular MPNNs cannot
capture simple patterns such as cycles, cliques and paths. Bouritsas et al. (2020); Barcel’o et al.
(2021) proposed to apply substructure counting as pre-processing, and add substructure information
into node features. Bodnar et al. (2021b;a); Thiede et al. (2021); Horn et al. (2021) further designed
novel WL variants and proposed fully-neural approaches that captures complex substructures.

GNNs for link prediction. Standard GNNs learn representations for each node. Early methods
such as GAE Kipf & Welling (2016a) use GNN as an encoder and decode link representations as
a function over node representation pairs. These methods are problematic in capturing complex
graph structures, and might lead to poor performance. Later on, labeling trick was introduced by
SEAL Zhang & Chen (2018) and adopted by GraIL Teru et al. (2019), IGMC Zhang & Chen (2020),
INDIGO Liu et al. (2021), etc. These methods encode source and target nodes to mark them differ-
ently from the rest of the graph, and are proved to be more powerful than GAE. ID-GNN You et al.
(2021) and NBFNet Zhu et al. (2021) both augments GNNs with the identity of the source nodes.
Besides, All-path Toutanova et al. (2016) encodes relations as linear projections and proposes to ef-
ficiently aggregate all paths with dynamic programming. However, All-Path is restricted to bilinear
models, has limited link prediction capability and is also not inductive. EdgeTransformer Bergen
et al. (2021a) utilizes attention mechanism to learn representations for nodes and links. While it also
follows the 2-FWL message passing procedure, it operates directly on fully-connected graphs and
have no proposals for simplifications as we do, thus it is not scalable to larger graphs. ELPH and
BUDDY (Chamberlain et al., 2023) incorporate neighbor counting into node features to enhance the
link prediction performance of MPNNs.

PGM-GNN combined methods. There are also works that aim to combine GNNs and PGMs
to obtain better graph representations. Dai et al. (2016) first proposed to parameterize the mean
field iterations and loopy belief propagation of PGMs and construct two neural architectures, one of
which is similar to MPNNs. Compared with our work, Dai et al. (2016) only showed that MPNNs

16

Published as a conference paper at ICLR 2024

parameterize the mean field iterations of a simple pairwise MRF with identical potential functions.
Satorras & Welling (2021); Zhang et al. (2023b) propose to parameterize the loopy belief propa-
gation inference algorithm for higher-order PGMs. Satorras & Welling (2021) propose to directly
parameterize the loopy belief propagation algorithm, which operates on edge-level messages. Zhang
et al. (2023b) propose a different message passing paradigm which consists of two distinct modules
namely factor-to-variable module and variable-to-factor module. To summarize, these frameworks
are fundamentally different with typical GNNs. Compared with their work, our proposed phantom
node framework can also capture higher-order PGMs, but is built on MPNNs and thus can provably
improve the probabilistic inference capacity of different MPNN architectures. Qu et al. (2022) pro-
pose to parameterize the potential functions of CRFs with GNNs and propose a novel method for
training the CRFs. Compared with our work, they are only able to handle pairwise potentials and
GNNs only serve as a component of the training and inference framework while we aim to improve
GNNs themselves to be able to capture higher-order MRFs.

B WEISFEILER-LEHMAN TESTS

In this section we introduce the Weisfeiler-Lehman (WL) tests and their variants.

B.1 1-WL (COLOR REFINEMENT)

The classic 1-WL test (Weisfeiler & Leman, 1968) maintains a color for each node which is refined
by aggregating the colors of their neighbors. It can be easily applied on node-featured graphs (Xu
et al., 2018) as in Algorithm 1.

Algorithm 1: The 1-WL test (color refinement)
Input : G = (A,X)

1 l← 0;
2 c0v ← hash(xv) for all v ∈ VG;
3 while not converge do
4 cl+1

v ← hash(clv,
{{
clu | u ∈ N (v)

}}
);

5 l← l + 1;
6 end
7 return

{{
clv | v ∈ VG

}}
;

The iteration converges when the partitions of nodes no longer changes. The 1-WL test decides
two graphs are non-isomorphic if the multisets of colors of the two graphs are different. The WL
algorithm successfully distinguishes most pairs of graphs, apart from some special examples such
as regular graphs. Similarly, given a subset of nodes C, 1-WL define its color as

{{
clv | v ∈ C

}}
,

and 1-WL distinguishes two set of nodes if the colors of them are differernt.

B.2 k-WL

The k-WL tests extend 1-WL to coloring k-tuples of nodes as in Algorithm 2, where we use v to
denote a tuple of nodes, G[v] for ordered subgraphs. The neighbors N k(v) are defined as follows:
assume v = (v1, ..., vk), then N k(v) = (N k

1 (v),N k
1 (v), ...,N k

k (v)), where

N k
i (v) = {{(v1, ..., vi−1, u, vi+1, ..., vk) | u ∈ V}} .

B.3 k-FWL

The k-FWL (Cai et al., 1989) test is equally expressive with the (k+1)-WL test. It has the same ini-
tialization with (k+1)-WL. The neighborsN k(v) are defined as follows: assume v = (v1, ..., vk),
then N k(v) =

{{
N k

u (v) | u ∈ V
}}

, where

N k
u (v) = ((u, v2, ..., vk), (v1, u, ..., vk), ..., (v1, ..., u, vk)).

17

Published as a conference paper at ICLR 2024

Algorithm 2: The k-WL tests
Input : G = (A,X)

1 l← 0;
2 c0v ← hash(G[v]) for all v ∈ Vk

G;
3 while not converge do
4 cl+1

v ← hash(clv,
{{
clu | u ∈ N k(v)

}}
);

5 l← l + 1;
6 end
7 return

{{
clv | v ∈ VG for all v ∈ v

}}
;

Algorithm 3: The k-FWL tests
Input : G = (A,X)

1 l← 0;
2 c0v ← hash(G[v]) for all v ∈ Vk

G;
3 while not converge do
4 cl+1

v ← hash(clv,
{{
clu | u ∈ N k(v)

}}
);

5 l← l + 1;
6 end
7 return

{{
clv | v ∈ VG for all v ∈ v

}}
;

B.4 COLORS OF k-WL / k-FWL

From the previous discussions k-WL and k-FWL both assign colors for k-tuples of nodes. The color
of the graph G is defined by

cG = Hash(
{{
cv | v ∈ Vk

}}
).

Similarly, given any subset of nodes S ⊆ V , we also define its color as

cS = Hash(
{{
cv | v ∈ Sk

}}
).

C DISCUSSIONS ABOUT THE FIXED POINT PROPERTIES OF MPNNS AND
BETHE APPROXIMATION

In the previous discussion we have seen that MPNNs are capable of approximating local extrema
of the Bethe approximation. To further extend our results we ask: can MPNNs capture all local
extrema of the Bethe approximation? We first notice that recently a class of neural networks (Bai
et al., 2019) treat the fixed points of their layers as outputs. To better discuss the properties of
MPNNs, we try to establish a general correspondence between MPNN layers and the Bethe free
energy in the perspective of fixed points.

Theorem 20. Given a 1-WL distinguishable 2-orderA, there is a MPNN layer L such that all fixed
points of H = L(Concat(H,X),A) implies local extrema of the Bethe free energy of the MRF
given any graph G, and also all local extrema of Bethe approximation are implied in L. That is,
there exists a function f such that given any graph G (of the size n), let H be the set of fixed points
of L and S be the set of local extrema of Bethe approximation, then f is always surjective from H
to S .

Recall that the fixed points of Bethe approximation contain not only node marginals but also edge
marginals, thus Theorem 20 confirms the fact that MPNNs are actually able to learn edge represen-
tations. In practice, there are several fixed-point MPNNs (Gu et al., 2020; Park et al., 2021; Liu
et al., 2022b;a) that work well on node classification, and Theorem 20 suggests the possibility of
using them to learn node and edge marginals of Bethe approximation.

18

Published as a conference paper at ICLR 2024

D EXTENDED DISCUSSIONS ABOUT PHANTOM NODES / EDGES

In this section we give extended description of the proposed phantom nodes / edges methods.

D.1 PHANTOM NODES

We summarize the procedure in Algorithm 4. For the original phantom nodes, the function
FindCliques finds maximum cliques in a given graph; for the relaxed version the function finds
all cliques with no more than k nodes.

Algorithm 4: The Phantom Node Procedure
Input : G = (A,X)

Output: Ĝ = (Â, X̂)
1 C ← FindCliques(G);
2 (N, d)←Shape(X);
3 N̂ ← N + |C|;
4 d̂← d+ 1;
5 Â←Zeros(N̂ , N̂);
6 X̂ ←Zeros(N̂ , d̂);
7 Â:N,:N ← A;
8 X̂:N,:d ←X;
9 p = N + 1;

10 for C ∈ C do
11 X̂p,d̂ ← 1;
12 for i ∈ C do
13 Âi,p ← 1;
14 Âp,i ← 1;
15 end
16 end
17 return Ĝ = (Â, X̂);

The procedure is standard and easy to implement, but it might not suit most practical MPNN archi-
tectures such as GCNs, SAGE, etc. because the MPNNs will have to learn from data to treat the
phantom nodes (tagged with only the last dimension of the input node feature) are differently from
the regular nodes. A practical implementation is realized as follows, where we use i, j to refer to
regular nodes and p to refer to phantom nodes.

ht+1
i = COMt

(
ht
i,AGGt

PN

({{
ht
p | p ∈ N (i) ∩ V̂

}})
,AGGt

({{
ht
j | j ∈ N (i)

}}))
,

ht+1
p = ˆCOM

t
(

ht
p, ˆAGG

t ({{
ht
i | i ∈ N (p)

}}))
,

where V̂ is the set of phantom nodes.

Algorithm complexities. We now discuss the time and space complexities of the proposed Algo-
rithm 4 and compare with k-GNNs.

The major complexities come from finding cliques in line 1. Suppose the input graph G contains
N nodes. In worst cases when the graph is dense (contains O(N2) edges), FindCliques would

return O
((

N

k

))
= O(Nk) results (suppose k << N) and takes no more than O(Nk) time

(Nesetril & Poljak, 1985). In this case the augmented graph Ĝ contains N̂ = O(Nk) nodes and
O(kNk) edges. Applying MPNNs on such augmented graph then takes O(kNk) time at each layer
(for ease of comparison we only consider terms w.r.t. sizes of graphs). To summarize, the algorithm
takes O(Nk) space and O(kNk) time. k-GNNs takes O(Nk) space and O(kNk+1) time.

19

Published as a conference paper at ICLR 2024

Figure 1: Relation between node labeling and phantom edges.

If the input graph is sparse, our method is far more efficient than k-GNNs when the number of
k-cliques is much less than Nk. Suppose there are C cliques, then the augmented graph contains
O(N+C) nodes andO(M+kC) edges, whereM is the number of edges in the original graph, and
each layer of the MPNNs only takesO(M+kC) time andO(N+C) space. The time complexity of
finding cliques in sparse graphs is hard to estimate, but there are empirically efficient algorithms that
can effective find k-cliques in large graphs (see, eg. Gianinazzi et al. (2021)). Since FindCliques
is a one-time pre-processing procedure, the proposed algorithm is much more efficient than k-GNNs.

Limitations. From the above analysis it is evident that when the input graph is large and dense,
the proposed method might add a large amount of phantom nodes to the input graph, making the
algorithm inefficient especially when k is set to a large value. Even so, the proposed method is still
more efficient than k-GNNs.

D.2 PHANTOM EDGES

It’s simple to extend MPNNs to learn edges of different types, and our practical implementation here
follows the common approaches Schlichtkrull et al. (2017). Let E denote the set of regular edges
and Ê the set of phantom edges. Let N (i) denote the neighbors of i via regular edges and N̂ (i) the
neighbors of i via phantom edges. Our practical implementation is

ht+1
i = ht+1

i + λht+1
i ,

ht+1
i = COMt

(
ht
i,AGGt

({{
ht
j | j ∈ N (i)

}}))
,

ht+1
i = ˆCOM

t
(
ht
i,

ˆAGG
t
({{

ht
j | j ∈ N̂ (i)

}}))
,

Note that, we can also implement phantom edges for predicting p(zi1 , ..., zik | X). This is done by
noticing that belief propagation on factor graphs also produces marginals for factors, i.e., cliques of
nodes. By adding a phantom node which is connected with i1, ..., ik, we have shown in the proof of
Proposition 17, 18 that by applying MPNNs we can also learn the posteriori p(zi1 , ..., zik |X), even
if the nodes i1, ..., ik are not connected in the original graph.

Algorithm complexities. We now discuss the time and space complexities of the proposed phan-
tom edges and compare with node labeling methods. Given a graph G with N nodes and M edges,
we are asked to predict a batch of links Ê . Simultaneously predicting all links in Ê is equiva-
lent to applying MPNNs on an induced graph with N nodes and M + |Ê | edges thus requires
O(N +M + |Ê |) time. For labeling trick methods, they need to rerun GNNs for each target link
thus requires O(Ê(N +M)) time. For source node labeling methods, they need to rerun GNNs for
target links with different source nodes. Therefore, suppose the target links Ê contains S different
source nodes, they require O(S(N +M)) time.

Relation with node labeling methods. We now discuss the relation between our methods and
node labeling methods. We will mainly focus on the ordered labeling trick (Zhang et al., 2020; Liu
et al., 2021) and the partial node labeling (Zhu et al., 2021).

20

Published as a conference paper at ICLR 2024

Table 4: Statics of datasets.

Dataset Task # Features # Labels # Nodes # Edges
PPI NC 50 121 56944 818716
Cora LP 1433 1 2708 5278

Citeseer LP 3703 1 3327 4676
Pubmed LP 500 1 18717 44237

We first show that labeling trick can be seen as a special case of the phantom edge. Suppose given
a graph G, the target links Ê only contain one link Ê = {(s, t)}. In this case, we only add one
phantom edge (s, t) into the original graph (Figure 1 (b)). Labeling trick methods add additional
labels to mark s, t differently from the rest of the nodes (Figure 1 (a)). As we shall see later,
both the two methods aim to mark the target link (s, t) uniquely: that is, for any graphs G,H and
s, t ∈ VG, p, q ∈ VH , obviously

Ĝ ≃ Ĥ ⇐⇒ G ≃ H ⇐⇒ There exists an isomorphism π from G to H , π(s) = p, π(t) = q,
(3)

where Ĝ, Ĥ are graphs induced by phantom edges and G,H are graphs induced by labeling trick.
Therefore, both the methods aim to tag the target link uniquely.

Now we discuss how partial node labeling and general phantom edges extend the above methods to
obtain more efficient variants. As we shall see later, both the methods aim to produce representations
of multiple links within one run of GNNs. Since the labeling trick methods can only compute the
representation of one link, partial node labeling methods relax this deficiency by modifying the
node-level labels. By only considering the source nodes (or the tail nodes), they are able to produce
representations of links that share the same source (or tail) node within one run of GNNs (Figure
1 (c)). In contrast, our methods work at the edge level: we extend (b) in Figure 1 by allowing
more than one phantom edges to present simultaneously (Figure 1 (d)). Compared with the partial
node labeling methods, the advantage of our method is that it is more flexible, since we allow the
simultaneous computation of link representations that not necessary share the same source (tail)
node. The limitation, however, is that our methods no longer strictly preserve the isomorphism
property in Eq. 4.

E EXPERIMENTAL DETAILS

In this section we describe our experimental setup in more details.

E.1 DATASETS

Statics of datasets are in Table 4.

For node classification tasks, the experiments follow the settings in Qu et al. (2022). For fairness
we have rerun the results GCN (Kipf & Welling, 2016b), SAGE (Hamilton et al., 2017) and GCNII
Chen et al. (2020a) on the datasets. We train the GNNs to output 121 dimensional vectors, with each
dimension corresponds to one of the labels.

For link prediction tasks, the experiment configurations follow the settings in Chamberlain et al.
(2023). To make the tasks more challenging we record the Hit@10 metric. For all tasks we use
negative sampling to generate negative targets. At training time the message passing links are equal
to the supervision links, while at test time disjoint sets of links are held out that are never seen
at training time. We random generate 70-10-20 percent train-val-test splits which is the same as
Chamberlain et al. (2023). The predictor of the model is designed as p(u, v) = MLP(hu ⊙ hv)
where hu,hv are node representations of u, v respectively.

For syntactic tasks, we first randomly generate a set of graphs. Then, we define potential functions
of MRFs. For simplicity we select the following potential functions:

Ψ2(zi, zj) =

{
1, zi = zj ,

2, else,

21

Published as a conference paper at ICLR 2024

for all edges, and select

Ψ3(zi, zj , zk) =

{
10, zi = zj = zk,

1, else,

for all 3-cliques. We then run loopy belief propagation on the graphs and obtain node marginals
and edge marginals. We also obtain node pair marginals by adding phantom terms as discussed in
Section 5. These marginals are use as training targets for GNNs, where we optimize on the cross
entropy loss. We also evaluate the KL divergence between the marginals produced by GNNs and
the marginals produced by loopy belief propagation.

E.2 CONFIGURATIONS

Phantom nodes for node classification. We apply our phantom nodes on GNNs without changing
hyperparameters or network structures. We choose the Adam (Kingma & Ba, 2014) optimizer, with
learning rate 5× 10−3, weight decay 0.

GCN (Kipf & Welling, 2016b). We set the numbers of hidden neurons to 128, and the number of
layers to 2. We use ReLU (Nair & Hinton, 2010) as the activation function. We set dropout rate to
be 0.5 and apply layer normalization.

SAGE (Hamilton et al., 2017). We set the numbers of hidden neurons to 1024, and the number
of layers to 2. We use ReLU (Nair & Hinton, 2010) as the activation function. We set dropout rate
to be 0.5 and apply layer normalization.

GCNII (Chen et al., 2020a). We set the numbers of hidden neurons to 1024, and the number of
layers to 5. We use ReLU (Nair & Hinton, 2010) as the activation function. We set dropout rate to
be 0.5 and do not apply layer normalization.

Implementation with phantom nodes. The configurations of GNN layers are the same. For each
input graph we find all maximum cliques. The layers are implemented as follows,

Ht+1 = Ht+1
reg + ÃphH

t+1
pht ,

Ht+1
reg = Layer1(H

t,Areg),

Ht+1
pht = Layer2(H

t,Apht),

where A is the adjacency matrix, Apht is the adjacency matrix w.r.t. phantom nodes, i.e. only edges
connected with phantom nodes are considered. Areg is the original adjacency matrix. ˜Apht is the
normalized version of Aph.

Phantom edges for link prediction. We apply our phantom nodes on GNNs without changing
hyperparameters or network structures. We choose the Adam (Kingma & Ba, 2014) optimizer, with
learning rate 1× 10−4, weight decay 5× 10−4.

GCN (Kipf & Welling, 2016b). We set the numbers of hidden neurons to 1024, and the number
of layers to 2. We use ReLU (Nair & Hinton, 2010) as the activation function. We set dropout rate
to be 0.5 and apply layer normalization.

SAGE (Kipf & Welling, 2016b). We set the numbers of hidden neurons to 1024, and the number
of layers to 2. We use ReLU (Nair & Hinton, 2010) as the activation function. We set dropout rate
to be 0.5 and apply layer normalization.

GCNII (Chen et al., 2020a). We set the numbers of hidden neurons to 1024, and the number of
layers to 2. We use ReLU (Nair & Hinton, 2010) as the activation function. We set dropout rate to
be 0.5 and do not apply layer normalization.

22

Published as a conference paper at ICLR 2024

Table 5: Results on the DBLP dataset built by Qu et al. (2022).

Model GAT GAT-SPN GAT-PN GCNII GCNII-SPN GCNII-PN

Accuracy 79.16 84.84 86.34 81.79 83.57 85.08

Implementation with phantom edges. The configurations of GNN layers are the same. We set
the batch size to 1024. At each iteration, we randomly select 1024 edges as positive and negative
training targets, and add 1024 phantom edges to the original graphs. The layers are implemented as
follows,

Ht+1 = Layer1(H
t,Areg) + λLayer2(H

t,Apht),

where Areg is the original adjacency matrix, Apht is the phantom edge matrix. To predict the link
(i, j) we have

yij = MLP(hi ⊙ hj),

where ⊙ is the Hadamard production.

E.3 ADDITIONAL EXPERIMENTS

We also conduct additional experiments on DBLP (Tang et al., 2008) datasets. The experimental
setup follows Qu et al. (2022), where papers from eight conferences are treated as nodes, and are
splitted them into three categories for classification according to conference domains. For each
paper, the mean GloVe embedding (Pennington et al., 2014) of words in the title and abstract as
node features. The training/validation/test graph is formed as the citation graph of papers published
before 1999, from 2000 to 2009, after 2010 respectively. The results are in Table 5.

F PROOF W.R.T. INVARIANT MRFS

F.1 PROOF OF LEMMA 1

Lemma 1. Suppose there is an algorithm F , given any graph G = (A,X), F maps its structure
A to a MRF pG = F(A). Then, F satisfies that for any permutation π : [n]→ [n] and A:

pπ(G)(π(X), π(Z)) = pG(X,Z),

if and only if pG can be represented in the form 1 with potentials given by ΨC = A(C,A) where A
is permutation-invariant:

A(C,A) = A(π(C), π(A)) ∀ C,G, and π : [n]→ [n].

Proof. Since MRFs can be written in the form of

p(X,Z) =
1

Z

∏
i∈V

Ψi(zi,xi)
∏
C∈C

ΨC(zC),

therefore F can be seen as a function that maps a graph G = (A,X) to a set of potential functions
{ΨC | C ∈ CG ∪ VG}.

1→2. Given any F , we define the corresponding A as follows. Given a graph G, we can identify
all graphs that are isomorphic to G, and we suppose these graphs compose a set G which we refer to
as the isomorphism set of G. For each isomorphism set G of arbitrary graph, we arbitrarily specify
an element G0 in G and refer to it as the isomorphism prototype of all graphs in G. Then, for any
graph, G we define A as

A(C,G) = ΨC0
,

where ΨC0
is computed by F(G0), G0 is the isomorphism prototype of G with G0 = π(G), and

C0 = π(C). Now we showA satisfies the constraint. Given any graphG and permutation π : [n]→
[n], we have

A(C,G) = ΨC0 = A(π(C), π(G)).

23

Published as a conference paper at ICLR 2024

Since F satisfies pπ(G),F (π(X), π(Z)) = pG,F (X,Z), we also have

pG,F (X,Z) = pG0,F (π(X), π(Z)),

thus pG,F can be represented by A.

2→1. For any G, we denote ΨC = A(C,G). Then, we have

pπ(G),A(π(X), π(Z)) =
1

Z

∏
i∈π(V)

A(i, π(G))(zπ(i),xπ(i))
∏

C∈π(C)

A(C, π(G))(zπ(C))

=
1

Z

∏
i∈V)

A(π(i), π(G))(zi,xi)
∏
C∈C
A(π(C), π(G))(zC)

=
1

Z

∏
i∈V

Ψi(zi,xi)
∏
C∈C

ΨC(zC)

= pG,A(X,Z).

F.2 PROOF OF THEOREM 2.

Theorem 2. Consider simple pairwise MRFs parameterized with:

A(C,G) =
{
Φ1, |C| = 1,

Φ2, |C| = 2,

Given any connected graphs G = (AG,XG), H = (AH ,XH) and i ∈ VG, j ∈ VH . If i and j are
not isomorphic, then there exists Φ1,Φ2 and z ∈ Z such that the pair-wise MRFs pG, pH specified
by G and H satisfy:

pG(zi = z |X = XG) ̸= pH(zj = z |X = XH). (4)

Proof. We proof the theorem by manually constructing Φ1,Φ2 that distinguishes nodes i, j. With-
out loss of generality we may assume node features are taken from a finite discrete space xi ∈
{x1, ...,xl}. If not, we simply encode all features in G and H into such a discrete space.

By flatting Eq. 4 we have

pG(zi = z |X = XG) ̸= pH(zj = z |X = XH)

⇐⇒ 1

ZG

∑
Z\i

∏
k∈[n]

Φ1(xG,k, zk)
∏

(k,l)∈EG

Φ2(zk, zl)

̸= 1

ZH

∑
Z\i

∏
k∈[n]

Φ1(xH,k, zk)
∏

(k,l)∈EH

Φ2(zk, zl)

⇐⇒ ZH

∑
Z\i

∏
k∈[n]

Φ1(xG,k, zk)
∏

(k,l)∈EG

Φ2(zk, zl)

̸= ZG

∑
Z\i

∏
k∈[n]

Φ1(xH,k, zk)
∏

(k,l)∈EH

Φ2(zk, zl),

where
∑

Z\i
denotes summing over all z1, z2... in Z except zi. If we combine G,H into a huge

graph G′ = (A,X) with (|VG|+ |VH |) nodes such that

A =

[
AG,O

O, AH

]
,

X =

[
XG

XH

]
,

24

Published as a conference paper at ICLR 2024

and denote its edges as E and nodes as V , and let i′ = i, j′ = j + |VG| be the nodes corresponding
to i, j in G,H , we can describe Eq. 4 over G′ as

pG(zi = z |X = XG) ̸= pH(zj = z |X = XH)

⇐⇒
∑
Z\i′

∏
k∈V

Φ1(xk, zk)
∏

(k,l)∈E

Φ2(zk, zl)

̸=
∑
Z\j′

∏
k∈V

Φ1(xk, zk)
∏

(k,l)∈E

Φ2(zk, zl)

⇐⇒ ZG′pG′(zi′ = z |X) ̸= ZG′pG′(zj′ = z |X)

To proceed, we assume latent variables zk are taken from a discrete space zk ∈ Z = {1, ..., nln2n2}
where n = |V|. Obviously we can encode a tuple (b,A,X) into the space of zk where
b ∈ {1, ..., n},A ∈ {0, 1}n×n,X ∈ Rn×d with a bijective mapping f(b,A,X). To lighten nota-
tions we denote (b(zk),A(zk),X(zk)) = f−1(zk) to be the inverse mapping of f . Given (A,X),
we design the potential functions as follows:

Φ1(zi,xi) = 1{X(zi)b(zi) = xi} · g(b(zi)),

Φ2(zi, zj) = 1


A(zi) = A(zj), and
X(zi) = X(zj), and
A(zi)b(zi),b(zj) = 1

 ,

where we define g(b) = (n! + 1)n
b

. Denote gi′(z) = ZG′pG′(zi′ = z |X), we now prove

gi′(f(i
′,A,X)) ̸= gj′(f(i

′,A,X)),

thus proving the theorem. We do this by manually summing all non-zero assignments of Z and
show that the special bit of the base-(n! + 1) numbers of gi′(f(i′,A,X)) and gj′(f(i′,A,X)) are
different. First, it’s obvious that both gi′(f(i

′,A,X)) and gj′(f(i
′,A,X)) are integers. Now

let’s consider the possible values of Z given zi′ = f(i′,A,X). Obviously all zk for k ∈ V
must share the same X and A, thus the only difference is the assignments of b. Note that the
non-zero probability assignments of b satisfying {{b(z1), ..., b(zn)}} = {{b1, ..., bn}} is exactly the(∑

i∈[n] n
bi
)

-bit of the base-(n!+1) form of gi′(f(i′,A,X)) (Since there are no more than n! per-

mutations of {{b1, ..., bn}}, no carry-in are produced). Thus the
(∑

i∈[n] n
i
)

bit of the base-(n!+1)

form of gi′(f(i′,A,X)) corresponds to situations where {{b(z1), ..., b(zn)}} = {{1, 2, ..., n}}.
Clearly, b(zk) = k for k ∈ [n] is a valid situation for calculating gi′(f(i

′,A,X)), there-
fore the

(∑
i∈[n] n

i
)

bit is non-zero. In contrast, because G and H are non-isomorphic, when
calculating gj′(f(i

′,A,X)) it’s impossible to find a valid assignment of b that both satisfies

{{b(z1), ..., b(zn)}} = {{1, 2, ..., n}} and makes the potentials non-zero, therefore the
(∑

i∈[n] n
i
)

bit is zero. Thus, we have
gi′(f(i

′,A,X)) ̸= gj′(f(i
′,A,X)).

G PROOF W.R.T. MPNNS

G.1 PROOF OF THEOREM 3

Theorem 3. Given any graphs G = (AG,XG), H = (AH ,XH) and any 1-WL distinguishable 2-
order A. If at some iteration, the messages of parallel belief propagation on G and H are different,
then 1-WL also distinguishes G,H .

Proof. 1→2. We suppose after iteration t, 1-WL assigns different colors for nodes i, j in G,H ,
and denote the node colors as Col(i, G) and Col(j,H). We define zi ∈ Z = {0, 1}. Denoting

25

Published as a conference paper at ICLR 2024

Ψk,G′ = A(k,G′) and Ψ{k,l},G′ = A({k, l}, G′), we let

Ψk,G′(0) =

{
1, Col(G′, k) = Col(G, i),

0, else.

And
Ψk,G′(1) ≡ 0,

Ψ{k,l},G′(·) ≡ 1.

Obviously, we have qG(zi = 0 |XG) > 0 while qH(zj = 0 |XH) = 0 for both methods.

2→1. The standard belief propagation is summarized as follows.

Probabilistic formulation. Given any graph, the conditional distribution p(Z |X) is given as

p(Z |X) =
1

Z

∏
i∈V

Ψi(zi,xi)
∏

(i,j)∈E

Ψij(zi, zj).

Initialization. For (i, j) ∈ E and zi, zj ∈ Z ,

m0
i→j(zj) ∝ 1 ∝ m0

j→i(zi).

Message passing. (t = 0, 1, 2, ...) For i ∈ V and j ∈ N (i),

mt+1
i→j(zj) ∝

∑
zi∈Z

Ψi(zi,xi)Ψij(zi, zj)
∏

k∈N (i)\j

mt
k→i(zi),

where all messages are normalized:
∑

zj∈Z m
t
i→j(zj) = 1.

We denote mt
i→j to be all messages computed in iteration t w.r.t. message functions mt

i→j stacked
up into a giant vector. Then we have

m0
i→j ∝ 1

and
mt+1

i→j = f
(
xi,
{{

mt
k→i | k ∈ N (i)\j

}})
= f ′

(
xi,m

t
j→i,

{{
mt

k→i | k ∈ N (i)
}})

.
(5)

Next, we show that all messages can be written as mt
i→j = ϕt(ci, cj) where cti is the color of node

i computed by 1-WL test. At iteration 0, clearly we have m0
i→j ∝ 1 = ϕ0(ci, cj) where for all

i ∈ V (recall that A is within 1-WL’s expressiveness). At iteration t, we have

mt+1
i→j = f ′

(
xi,m

t
j→i,

{{
mt

k→i | k ∈ N (i)
}})

= f ′
(
φ(ci), ϕ

t(cj , ci),
{{
ϕt(ck, ci) | k ∈ N (i)

}})
= f ′′ (ci, cj , {{ck | k ∈ N (i)}}) .

Substituting ct+1
i = Hash(cti, {{cj | j ∈ N (i)}}), we have

mt+1
i→j = ϕt+1(ci, cj).

The marginal distribution q(zi |X) is then given by

q(zi |X) ∝ Ψ1(zi,xi)
∏

j∈N (i)

mt
j→i(zi).

Similarly, we represent q(zi |X) with a embedding qi, and

qi = h(
{{

mt
j→i

}}
| j ∈ N (i))

= h(
{{
ϕt(ctj , c

t
i) | j ∈ N (i)

}}
)

= h′(ct+1
i).

As a conclusion, we have proved that the belief propagation update steps can be described by the
1-WL (color refinement), therefore any nodes that are distinguished by belief propagation can also
be distinguished by a MPNN.

26

Published as a conference paper at ICLR 2024

G.2 PROOF OF THEOREM 4

Theorem 4. MPNNs can learn marginals that are at least as accurate as Bethe approximation.
Formally, there exists decoding functions f, g such that given any 1-WL distinguishable 2-order A,
for arbitrary ϵ > 0 and n ∈ N, there exists a MPNN such that for any graphs with no more than n
nodes, such that:

• DKL(f(hi) | qi) ≤ ϵ for i ∈ V and DKL(g(hi,hj) | qij) ≤ ϵ for (i, j) ∈ E , where qi, qij
are node and edge marginals specified by a local extrema of Bethe approximation.

where hi is the representation of node i obtained by the MPNN, DKL is the Kullback-Leibler diver-
gence.

Proof. Given a graph G, the conditional distribution is given by

p(Z |X) =
1

Z

∏
i∈V

Ψi(zi,xi)
∏

(i,j)∈E

Ψij(zi, zj).

Bethe approximation is defined by minimizing the corresponding free energy DKL(q∥p), where we
assume q(Z) =

∏
i∈V qi(zi)

∏
(i,j)∈V

qij(zi,zj)
qi(zi)qj(zj)

and the Bethe free energy is

EBethe =
∑

(i,j)∈E

∑
zi,zj∈Z

qij(zi, zj) log
qij(zi, zj)

Ψij(zi, zj)
−
∑
i∈V

(di − 1)
∑
zi

qi(zi) log
qi(zi)

Ψi(zi)
,

where qi(zi) ≥ 0,
∑

zi
qi(zi) = 1, qij(zi, zj) ≥ 0,

∑
zi
qij(zi, zj) = qj(zj),

∑
zj
qij(zi, zj) =

qi(zi), and di is the degree of node i. Unluckily, the variational free energy is not convex, therefore
finding the global extrema is hard.

We now describe a procedure to find local extrema of the Bethe free energy EBethe, which is further
captured by MPNNs. The procedure is based on the concave-convex procedure (Yuille & Ran-
garajan, 2001), which states that by decomposing an energy function into a convex function and a
concave function, we can use an discrete iteration procedure to monotonically decrease the energy
and hence converge to a minimum or a saddle point.

We can decompose the Bethe free energy into convex and concave parts (Yuille, 2001):

Evex
Bethe =

∑
(i,j)∈E

∑
zi,zj∈Z

qij(zi, zj) log
qij(zi, zj)

Ψij(zi, zj)
+
∑
i∈V

∑
zi∈Z

qi(zi) log
qi(zi)

Ψi(zi)
,

Ecave
Bethe = −

∑
i∈V

di
∑
zi∈Z

qi(zi) log
qi(zi)

Ψi(zi,xi)
.

The double-loop algorithm for optimization is proposed by Yuille (2001), which is summarized as
follows. The outer loop which has discrete time parameter t is given by:

qt+1
ij (zi, zj) = Ψij(zi, zj)e

−1eλij(zj)e−λji(zi)e−γij ,

qt+1
i (zi) = Ψi(zi,xi)e

−1edi

(
qti(zi)

Ψi(zi,xi)

)di

e
∑

k∈N(i) λki(zi).

The {γij}, {λij}, {λji} are specified by the inner loop which has discrete time parameter τ :

eγ
τ+1
ij =

∑
zi,zj∈Z

Ψij(zi, zj)e
−1e−λτ

ij(zj)e−λτ
ji(zi),

e2λ
τ+1
ij (zj) =

∑
zi
Ψij(zi, zj)e

−λτ
ji(zi)e−γτ

ij

Ψj(zj ,xj)e
dj

(
qt
j
(zj)

Ψj(zj ,xj)

)dj

e
∑

k∈N(j)\i λ
τ
kj(zj)

.

We now show that these iterations can be captured by MPNNs. At the beginning, we assume that
we initialize {q0ij}, {q0i }, {γ0ij}, {λ0ij} uniformly:

q0ij(·, ·) ∝ q0i (·) ∝ γ0ij ∝ λ0ij(·, ·) ∝ 1.

27

Published as a conference paper at ICLR 2024

Since the random variables zi ∈ Z have finite states, the functions qij , qi, λij overZ orZ×Z can be
fully described by vectors. For example, if we assumeZ hasK states, we can use aK2-dimensional
vector to represent the function qij where qij(p, q) corresponds to the (pK + q)-th entrance of the
vector. We then design the MPNN as follows. The first layers of the MPNN are corresponded to the
1-WL coloring procedure. We add sufficient layers for all graphs of no more than n nodes to obtain
a stable node color. For ease of notation we denote the colors by h0

i for all i ∈ V . The parameters
of the double-loop algorithm (at iteration 0) can be expressed as

q0ij = g02(h
0
i ,h

0
j),

q0i = g01(h
0
i),

γ0ij = g0γ(h
0
i ,h

0
j),

λ0ij = g0λ(h
0
i ,h

0
j),

where g02 , g
0
1 , g

0
γ , g

0
λ are some functions that maps the node representations h0

i to the parameters in
the double-loop algorithm.

For ease of notation we use a binary tuple (t, τ) to sequentially and uniquely represent the number
of the iterations, where t corresponds the current iteration of the outer loop and τ corresponds to the
current iteration of the inner loop. We now prove that for both the inner loop and the outer loop, if
at iteration (t, τ) we can express the parameters as follows:

qt,τij = gt2(h
t,τ
i ,ht,τ

j),

qt,τi = gt1(h
t,τ
i),

γt,τij = gt,τγ (ht,τ
i ,ht,τ

j),

λt,τij = gt,τλ (ht,τ
i ,ht,τ

j),

then at iteration (t+1, τ) or (t, τ +1), we can still express the parameters in the same forms, where
node representations are computed by a MPNN. Since the MRF is within 1-WL’s discriminative
power, the potential functions Ψi,Ψij can be computed by Ψi = Φ(h0

i) and Ψij = Φ(h0
ij). For qtij

in the outer loop, we thus have

qt+1,τ
ij (zi, zj) = Ψij(zi, zj)e

−1eλ
t,τ
ij (zj)e−λt,τ

ji (zi)e−γij

= f(ht,τ
i ,ht,τ

j),

where we only use f to refer to node-irrelevant functions. For qti in the outer loop, we have

qt+1,τ
i (zi) = Ψi(zi,xi)e

−1edi

(
qt,τi (zi)

Ψi(zi,xi)

)di

e
∑

k∈N(i) λ
t,τ
ki (zi)

= f(ht,τ
i ,
{{

(ht,τ
k ,ht,τ

i) | k ∈ N (i)
}}
)

= f(ht+1,τ
i),

where ht+1,τ
i = hash(ht,τ

i ,
{{
ht,τ
j | j ∈ N (i)

}}
). For γt,τ+1

ij in the inner loop, we have

eγ
t,τ+1
ij =

∑
zi,zj∈Z

Ψij(zi, zj)e
−1e−λt,τ

ij (zj)e−λt,τ
ji (zi),

= f(ht,τ
i ,ht,τ

j).

For λt,τ+1
ij in the inner loop, we have

e2λ
t,τ+1
ij (zj) =

∑
zi
Ψij(zi, zj)e

−λt,τ
ji (zi)e−γt,τ

ij

Ψj(zj ,xj)e
dj

(
q
t,τ
j

(zj)

Ψj(zj ,xj)

)dj

e
∑

k∈N(j)\i λ
t,τ
kj (zj)

= f(ht,τ
i ,ht,τ

j ,
{{

(ht,τ
k ,ht,τ

j) | k ∈ N (i)\j
}}

)

= f(ht,τ
i ,ht,τ

j ,
{{

(ht,τ
k ,ht,τ

j) | k ∈ N (i)
}}

))

= f(ht,τ+1
i),

28

Published as a conference paper at ICLR 2024

where ht,τ+1
i = hash(ht,τ

i ,
{{
ht,τ
j | j ∈ N (i)

}}
). Therefore, all the iterations in the double-loop

algorithm can be described by iterations of MPNNs. Since the double-loop algorithm is proved to
converge (Yuille, 2001), given any positive integer n, we can implement the algorithm with sufficient
MPNN layers to guarantee that for all graphs of size less or equal than n, the error between the
MPNN outputs and the true local extrema is arbitrary small.

G.3 PROOF OF THEOREM 20

Theorem 20. Given a 1-WL distinguishable 2-orderA, there is a MPNN layer L such that all fixed
points of H = L(Concat(H,X),A) implies fixed points of Bethe approximation of the MRF given
any graph G, and all fixed points of Bethe approximation are implied in L. That is, there exists a
function f such that given any graph G (of the size n), letH be the set of fixed points of L and S be
the set of local extrema of Bethe approximation, then f is always surjective fromH to S.

Proof. The layer is implemented as

hi = ϕ (hi,xi, {{hj | j ∈ N (i)}}) .

We need to add the node features X into the layer because otherwise the fixed points would be
irrelevant w.r.t. X . Without loss of generality we assume Z ∈ Zn comes from a discrete space, but
the proof is equivalently applicable on continuous situations.

We begin by summarizing the Bethe approximation of the original distribution p(Z |X) given some
fixed X ∈ Rn×d. Recall that

p(Z |X) =
1

Z

∏
i∈V

Ψi(zi,xi)
∏

(i,j)∈E

Ψij(zi, zj) =
1

Z
expE(Z).

By introducing

µ(Z) =
∏
i∈V

µi(xi)
∏

(i,j)∈E

µij(zi, zj)

µi(zi)µj(zj)
,

where µi, µij are pseudo node marginals and edge marginals, we aim to minimize the Kullback-
Leibler divergence DKL(µ∥p) between µ and p. By further denoting

F(µ) = −
∑

Z∈Zn

µ(Z)E(Z)−
∑

Z∈Zn

µ(Z) logµ(Z)

= −Eµ[E(Z)] + Eµ[− logµ(Z)],

the Bethe variational problem for the log partition function then given as

logZbethe = max
µ
F(µ), (6)

subject to:

µ(Z) =
∏
i∈V

µi(xi)
∏

(i,j)∈E

µij(zi, zj)

µi(zi)µj(zj)
for all Z ∈ Zn

µi(zi) ≥ 0 for all i ∈ V, zi ∈ Z∑
zi∈Z

µi(zi) = 1 for all i ∈ V

µij(zi, zj) ≥ 0 for all (i, j) ∈ E , zi, zj ∈ Z∑
zj∈Z

µij(zi, zj) = µi(zi) for all (i, j) ∈ E , zi ∈ Z∑
zi∈Z

µij(zi, zj) = µj(zj) for all (i, j) ∈ E , zj ∈ Z

29

Published as a conference paper at ICLR 2024

To solve Eq. 7 we first unroll F(µ) to be
F(µ) =− Eµ[E(Z)] + Eµ[− logµ(Z)]

=Eµ[logZ + log p(Z |X)] + Eµ[− logµ(Z)]

=Eµ

[∑
i∈V

(1− di) logΨi(zi,xi)

]

+ Eµ

 ∑
(i,j)∈E

(logΨij(zi, zj) + logΨi(zi,xi) + logΨj(zj ,xj))


− Eµ

∑
i∈V

(1− di) logµi(zi) +
∑

(i,j)∈E

logµij(zi, zj)


=
∑
i∈V

(1− di)Eµi [logΨi(zi,xi)]

+
∑

(i,j)∈E

Eµij
[logΨij(zi, zj) logΨi(zi,xi) + logΨj(zj ,xj)]

+
∑
i∈V

(1− di)Eµi
[− logµi(zi)] +

∑
(i,j)∈E

Eµij
[− logµij(zi, zj)]

=Fbethe(µ)

=
∑
i∈V

(1− di)
∑
zi∈Z

µi(zi)[logΨi(zi,xi)− logµi(zi)]

+
∑

(i,j)∈E

∑
zi,zj∈Z

µij(zi, zj)

[logΨij(zi, zj) + logΨi(zi,xi) + logΨj(zj ,xj)− logµij(zi, zj)],

where di is the degree of node i. Then, the problem 6 is equivalent to:
max
µ
Fbethe(µ) (7)

subject to:
µi(zi) ≥ 0 for all i ∈ V, zi ∈ Z∑

zi∈Z
µi(zi) = 1 for all i ∈ V

µij(zi, zj) ≥ 0 for all (i, j) ∈ E , zi, zj ∈ Z∑
zj∈Z

µij(zi, zj) = µi(zi) for all (i, j) ∈ E , zi ∈ Z∑
zi∈Z

µij(zi, zj) = µj(zj) for all (i, j) ∈ E , zj ∈ Z

We now introduce Lagrange multipliers to solve Eq. 7: λi for constraints
∑

zi∈Z µi(zi) = 1, λji(zi)
for constraints

∑
zj∈Z µij(zi, zj) = µi(zi), and λij(zj) for constraints

∑
zi∈Z µij(zi, zj) =

µj(zj). The non-negative constraints are not active, therefore we do not introduce multipliers for
these constraints. The Lagrangian is defined as

L(µ, λ) =Fbethe(µ) +
∑
i∈V

λi

(∑
zi∈Z

µi(zi)− 1

)

+
∑

(i,j)∈E

∑
zi∈Z

λji(zi)

∑
zj∈Z

µij(zi, zj)− µi(zi)


+
∑

(i,j)∈E

∑
zj∈Z

λij(zj)

(∑
zi∈Z

µij(zi, zj)− µj(zj)

)
.

30

Published as a conference paper at ICLR 2024

Since the local extrema of L corresponds to extrema of the problem 7, we now only need to prove
that there exists a MPNN layer such that all the fixed points satisfying

hi = ϕ (hi,xi, {{hj | j ∈ N (i)}})
corresponds to local extrema of the Lagrangian L. This is to show that hi contains sufficient statistic
for µi for all i ∈ V and (hi,hj) contains sufficient statistic for µij for all (i, j) ∈ E .

We begin by setting the derivatives of L(µ, λ) to be 0. First we differentiate w.r.t. µi:

∂L(µ, λ)
∂µi(zi)

= (1− di)(logΨi(zi,xi)− logµi(zi)− 1) + λi −
∑

j∈N (i)

λji(zi)

= −(di − 1) logΨi(zi,xi) + (di − 1)(logµi(zi) + 1) + λi −
∑

j∈N (i)

λji(zi) = 0.

Therefore

µi(zi) = exp

logΨi(zi,xi) +
1

di − 1

 ∑
j∈N (i)

λji(zi)λi

− 1


= f1 (zi,xi, λi, {{λji | j ∈ N (i)}} ,A(i, G)) ,

where di is implied in {{λji | j ∈ N (i)}}. Since A is within 1-WL expressiveness, by denoting ci
to be the 1-WL color of node i, we have

µi = F1 (xi, λi, {{λji | j ∈ N (i)}} , ci) .
Next, we differentiate w.r.t. µij :

∂L(µ, λ)
∂µij(zi, zj)

= logΨij(zi, zj) + logΨi(zi,xi) + logΨj(zj ,xj)− 1

− logµij(zi, zj) + λji(zi) + λij(zj) = 0.

Therefore
µij(zi, zj) = exp {logΨij(zi, zj) + logΨi(zi,xi) + logΨj(zj ,xj)− 1 + λji(zi) + λij(zj)}

= f2 (zi, zj ,xi,xj , λij , λji,A({i, j}, G)) ,
and similarly

µij = F2(xi,xj , λij , λji, ci, cj).

Setting the derivatives w.r.t. λ to 0 results in

1 = F3(µi, ci),

µi = F4(µij , ci, cj),

µi = F5(µji, cj , ci),

We now parameterize µi, µij , λi, λij as

µi = ψµ1(hi),

µij = ψµ2
(hi,hj),

λi = ψλ1
(hi),

λij = ψλ2
(hi,hj),

where hi is the node representation for node i. Note that for arbitrary choices of
{µi}, {µij}, {λi}, {λij} there must be a set of node representations {hi} that express them. For ex-
ample, we can set hi[0] = i,hi[1] = µi,hi[2] = λi,hi[2+j] = µij if (i, j) ∈ E ,hi[2+n+j] = λij
if (i, j) ∈ E , and all other dimensions of hi being 0. Then we can express those terms via node rep-
resentations. The above results are then written as

ψµ1(hi) = F1(xi, ψλ1(hi), {{ψλ2(hj ,hi) | j ∈ N (i)}}),
ψµ2

(hi,hj) = F2(xi,xj , ψλ2
(hi,hj), ψλ2

(hj ,hi)),

1 = F3(ψµ1
(hi)),

ψµ1(hi) = F4(ψµ2(hi,hj)),

ψµ1
(hi) = F5(ψµ2

(hj ,hi)),

31

Published as a conference paper at ICLR 2024

Figure 2: 1-WL undistinguished graphs

To summarize, these equations correspond to two properties: a node property where for all i ∈ V ,

Mnode(hi,xi, {{hj | j ∈ N (i)}}) = 0,

and an edge property where for all (i, j) ∈ E ,

Medge(hi,hj ,xi,xj) = 0

which can be equivalently described as for all i ∈ V ,

M′
edge({{(hi,hj ,xi,xj) | j ∈ N (i)}}) = 0.

By introducing constraints for all i ∈ V , ψx(hi) = xi, we have

M′′
edge(hi, {{hj | j ∈ N (i)}}) = 0.

Therefore, all constraints are specified by a MPNN layer.

G.4 PROOF OF COROLLOARY 5

Corolloary 5. Given any graphG and corresponding pairwise MRF, ifG is a tree, there is a MPNN
that outputs true node and edge marginals.

Proof. From Theorem 4 we know that MPNNs capture belief propagation. Since belief propagation
can compute exact marginals on trees, so do MPNNs.

G.5 PROOF OF THEOREM 7

Theorem 7. MPNNs can at most 1-2 approximate p(zi |X) for arbitrary G and i ∈ VG.

Proof. We only need to show that MPNNs cannot 2-2 or 1-3 approximate p(zi | X). For 2-2
approximations, recall that although 2-WL and 1-WL are equivalent in distinguishing graphs, they
differ in distinguishing nodes. We set a graphG to only contain one nodes, and setH to only contain
two isolated nodes. 1-WL always assigns all nodes the same color, but 2-WL assigns different color
for nodes in G and H . In this manner we can set a 2-WL distinguishable A to assign different
potentials for nodes in G and H , thus the posteriori are different.

Now we consider the 1-3 approximations. Consider the graphs in Figure 2. G and H are undistin-
guished by 1-WL, but we can set potential functions to be

Ψi(zi) ≡ Ψij(zi, zj) ≡ 1,

Ψijk(zi, zj , zk) =

{
1, zi = zj = zk = 0,

0, else.

for all i, j, k, where we let Z = {0, 1}. Obviously due to the application of the 3-order potential
function in G, the posteriori of nodes in G is different from that in H .

32

Published as a conference paper at ICLR 2024

H PROOF W.R.T. APPROXIMATING COMPLEX DISTRIBUTIONS

H.1 k-l-CWL: A TOOL FOR THE PROOF

In this section we will prove results for many GNN variants. For simplicity we first design a family
of WL variants that provably approximate complex MRFs, then show that the GNN variants are
expressive enough for capturing these WL variants.

We name our WL variants k-l Clique WL (CWL). At the beginning, the k-l CWL first apply
classic k-WL on the graph and assign colors for k-tuples. Recall that for any subset of nodes
C = {i1, ...im}, k-WL computes the color of C as Colk(C) =

{{
cv | v ∈ Ck

}}
. At iteration 0, we

initialize the colors of CWL as c0(i) = Hash(xi) for all i ∈ V . At iteration t+ 1, we have

ct+1
i = Hash

(
cti,
{{

(ctj ,Col
k({i, j})) | j ∈ N1(i)

}}
, ...,

{{
(ctj,Col

k(j ∪ {i})) | j ∈ Nl(i)
}})

,

where Nk(i) = {{j1, ..., jk} | j1, ..., jl ∈ N (i), (j1, ..., jl) ∈ C},
ct{j1,...,jl} =

{{
ctj1 , ..., c

t
jl

}}
, C is the set of cliques, Colk is the colors specified by k-WL.

By parameterizing the hashing functions in k-l-CWL, we obtain the k-l-CWL-GNNs. Our next
result confirms the expressiveness of k-l-CWL-GNNs.

Theorem 21. k-l-CWL-GNNs can k-(l + 1) approximate p(zi |X).

Proof. We first show that k-l-CWL is expressive enough for distinguishing non-isomorphic graphs
compared with belief propagation. Belief propagation on a (l + 1)-order MRF is summarized as
follows.

Initialization. We first transform the original graph G into a factor graph Gf . For each term in the
MRF formulation, we create a corresponding factor. That is, each clique C of order no more than
l + 1 is corresponded to a unique factor c, corresponding to the term ΨC . Further more, each node
i is connected with its own factor, corresponding to the term Ψi. In the factor graph, each node is
connected and only connected factor nodes, thus composing a bipartite graph. We use i, j, ... to refer
to nodes and a, b, c, ... to refer to factors. For all (i, a) ∈ EGf

and zi ∈ Z ,

ma→i(zi) ∝ 1 ∝ mi→a(zi).

Message passing. (t = 0, 1, 2, ...) For (i, a) ∈ EGf
,

mt+1
a→i(zi) =

∑
zN(a)\i

Ψa(zi, zN (a)\i)
∏

j∈N (a)\i

mt
j→a(zj),

mt+1
i→a(zi) =

∏
b∈N (i)\a

mt
b→i(zi),

where Ψa denotes the potential function w.r.t. the factor a. Specifically, when a only contains a
single node i, we let mt+1

a→i(zi) = Ψi(zi,xi).

Similarly as before, if we use mt
a→i,m

t
i→a to represent sufficient statistics of the pseudo distribu-

tions mt
a→i,m

t
i→a, the above iterations can be written as follows in the factor graph:

mt+1
a→i = f(|N (a)|,xi,Col

k(N (a)),
{{

mt
j→a | j ∈ N (a)\j

}}
)

= f ′(xi,m
t
i→a,Col

k(N (a)),
{{

mt
j→a | j ∈ N (a)

}}
),

mt+1
i→a = g(

{{
mt

b→i | b ∈ N (i)\a
}}

)

= g′(mt
a→i,

{{
mt

b→i | b ∈ N (i)
}}

).

We first prove that this procedure can be captured by 1-WL on the factor graph, where we set the
initial color of factors to be equivalent but different from the nodes. Next we show that all messages
can be written as mt

a→i = ϕt(cta, c
t
i) and mt

i→a = ψt(cti, c
t
a), where cti is the color of k-l-CWL

for node i in the original graph G at iteration t and cta for a in the factor graph Gf stands for

33

Published as a conference paper at ICLR 2024

cta =
{{
ctj | j ∈ N (a)

}}
. At iteration 0 clearly the statement is true. At iteration t we assume it is

still true. At iteration t+ 1, we have

mt+1
a→i = f ′(xi,Col

k(N (a)),mt
i→a,

{{
mt

j→a | j ∈ N (a)
}}
)

= f ′′(xi,Col
k(N (a)), ϕt(cti, c

t
a,
{{
ϕt(ctj , c

t
a) | j ∈ N (a)

}}
)

= f ′′′(cti,Col
k(N (a)), cta,

{{
ctj | j ∈ N (a)

}}
)

= ϕt+1(ct+1
a , ct+1

i).

mt+1
i→a = g′(mt

a→i,
{{
mt

b→i | b ∈ N (i)
}}

)

= g′′(ψt(cta, c
t
i),
{{
ψt(ctb, c

t
i) | b ∈ N (i)

}}
)

= ψt+1(ct+1
i , ct+1

a).

Thus the statement holds. The last steps hold because

Hash(cti,
{{
cta | a ∈ N (i)

}}
)

=Hash(cti,
{{
(ct−1

a ,
{{
ct−1
j | j ∈ N (a)

}}
) | a ∈ N (i)

}}
)

=Hash(cti,
{{
(ct−2

a ,
{{
ct−2
j | j ∈ N (a)

}}
,
{{

ct−1
j | j ∈ N (a)

}}
) | a ∈ N (i)

}}
)

= · · ·
=Hash

(
cti,
{{({{

c0j | j ∈ N (a)
}}
, ...,

{{
ct−1
j | j ∈ N (a)

}})
| a ∈ N (i)

}})
=Hash

(
cti,
{{{{

ct−1
j | j ∈ N (a)

}}
| a ∈ N (i)

}})
=Hash

(
cti,
{{
ct−1
j | j ∈ N1(i)

}}
, ...,

{{
ct−1
j | j ∈ Nk(i)

}})
=Hash

(
ct−1
i ,

{{
ct−2
j | j ∈ N1(i)

}}
, ...,

{{
ct−2
j | j ∈ Nk(i)

}}
,{{

ct−1
j | j ∈ N1(i)

}}
, ...,

{{
ct−1
j | j ∈ Nk(i)

}})
=Hash

(
ct−1
i ,

{{
ct−1
j | j ∈ N1(i)

}}
, ...,

{{
ct−1
j | j ∈ Nk(i)

}})
,

where N1, ...,Nk follow the definitions given by k-CWL in the original graph. Therefore, the up-
dates follow the k-CWL procedure. The marginal distribution qi can be described as

qi = ψ(
{{

mt
a→i | a ∈ N (i)

}}
)

= ψ(
{{
ϕt(cta, c

t
i) | a ∈ N (i)

}}
)

= ψ′(ct+1
i).

Thus the statement holds.

Now we show that k-l-CWL-GNNs can approximate a local extrema of the Bethe approximation to
arbitrary precision. We will adopt the general Bethe free energy on factor graphs, which have been
shown its connection with belief propagation on factor graphs (Heskes, 2002a; Yedidia et al., 2005),
which is defined as follows:

EBethe =
∑
C∈C

∑
zC

qC(zC) log
qC(zC)

ΨC(zC)
−
∑
i∈V

(ni − 1)
∑
zi

qi(zi) log qi(zi),

where for simplicity we assume a single node i also composes a clique C and in that case ΨC(zC) is
shorthand for Ψi(zi,xi). Again, there is a convex-concave algorithm for finding the local extrema
of the Bethe approximation (Heskes, 2002a), where for the outer loop at iteration (t+1, τ) we have

logΨt+1,τ
a (za) = logΨt,τ

a (za) +
∑

i∈N (a)

ni − 1

ni
log qt,τa (za),

qt+1,τ
a (za) =

1

Za
Ψt+1,τ (za)

∏
i∈N (a)

mt,τ
i→a(zi),

34

Published as a conference paper at ICLR 2024

and for the inner loop at iteration t, τ + 1 the messagesm are computed by regular belief propagation
and

qt,τ+1
i (zi) =

1

Zi

 ∏
a∈N (i)

mt,τ
a→i(zi)

 1
ni

,

qt,τ+1
a (za) =

1

Za
Ψt+1,τ

a (za)
∏

i∈N (a)

mt,τ
i→a(zi).

We now show that both the inner and outer loops are captured by k-l-CWL-GNNs. Previously
we have shown that the messages of belief propagation can be captured by k-l-CWL-GNNs. By
assuming

Ψt,τ
a = gt,τΨ (

{{
ct,τi | i ∈ N (a)

}}
),

qt,τa = gt,τC (
{{

ct,τi | i ∈ N (a)
}}
),

qt,τi = gt,τ1 (ct,τi),

we have
logΨt+1,τ

a (za) = logΨt,τ
a (za) +

∑
i∈N (a)

ni − 1

ni
log qt,τa (za)

= f(Colk(N (a)),
{{
ct,τi | i ∈ N (a)

}}
)

= f(
{{
ct,τ+1
i | i ∈ N (a)

}}
),

qt,τ+1
a (za) =

1

Za
Ψt+1,τ

a (za)
∏

i∈N (a)

mt,τ
i→a(zi)

= f(Colk(N (a)),
{{
ct,τi | i ∈ N (a)

}}
)

= f(
{{
ct,τ+1
i | i ∈ N (a)

}}
),

qt,τ+1
i (zi) =

1

Zi

 ∏
a∈N (i)

mt,τ
a→i(zi)

 1
ni

= f(
{{

ct,τa | a ∈ N (i)
}}

),

thus the iterations are also within k-l-CWL-GNNs’ expressive power.

H.2 PROOF. W.R.T. k-GNNS

Proposition 8. k-GNNs can k-k approximate p(zi |X) for arbitrary G.

Proof. We prove this by showing k-GNNs can implement k-(k−1)-CWL-GNNs. We use h to stand
for the embeddings of k-(k − 1)-CWL-GNNs and h for k-GNNs. We will reuse the symbol f to
represent arbitrary functions. We have

ht+1
i = f

(
ht
i,
{{

(ht
j ,Col

k({i, j})) | j ∈ N1(i)
}}

, ...,
{{

(ht
j,Col

k(j ∪ {i})) | j ∈ Nk−1(i)
}})

.

We first show that k-GNNs can implement the following procedure

ht+1
i = f(ht

i,
{{

(ht
j,Col

k(j ∪ {i}) | j ∈ Nl(i))
}}

)

for any l ≤ k − 1. By letting the corresponding k-GNN layers to be
hτ
i,i,...,i = f(hτ−1

i,i,...,i,
{{
hτ−1
j,i,...,i | j ∈ V

}}
, ...,

{{
hτ−1
i,i,...,j | j ∈ V

}}
)

= f0(h
τ−1
i,i,...,i,

{{
hτ−1
i,j,...,i | j ∈ V

}}
)

= f1(h
τ−1
i,i,...,i,

{{{{
hτ−2
i,j1,j2,...,i

| j2 ∈ V
}}
| j1 ∈ V

}}
)

= f2(h
τ1
i,i,...,i,

{{
hτ−2
i,j1,j2,...,i

| j1, j2 ∈ V
}}
)

= ...

= fτ (h
τ−1
i,i,...,i,

{{
hτ−l
i,j1,j2,...jl,i

| j1, j2, ..., jl ∈ V
}}
)

35

Published as a conference paper at ICLR 2024

Note that since the embeddings of k-GNNs are initialized with internal structural information, we
can define

hτ
i,i,...,i = fτ (h

τ−1
i,i,...,i,

{{
hτ−l
i,j1,j2,...jl,i

| j1, j2, ..., jl ∈ V
}}

)

= f ′(hτ−1
i,i,...,i,

{{
hτ−l
i,j1,j2,...jl,i

| {j1, ..., jl} ∈ Nl(i)
}}
).

Thus any function f ′ can be implemented by k-GNNs via backtrace of the above procedure. Since
hτ
i,j1,...

are computed by k-GNNs it can also capture the k-WL colors with sufficient layers. Thus
by using multiple layers together the k-GNN layers can implement the above procedure with

ht
i = hτ

i,i,...,i

for some τ . Obviously, the k-(k − 1)-CWL-GNN layers are implemented by this procedure, thus
k-GNNs implement k-(k − 1)-CWL-GNNs.

H.3 PROOF W.R.T. SUBGRAPH GNNS

Proposition 9. ESANs with node marking policy can 1-3 approximate p(zi |X) for arbitrary G.

Proof. Recall that the update iterations in ESANs is called DSS-WL. Its node marking variant is
implemented as:

ct+1
i = Hash(ct+1

i (j) | j ∈ V),
ct+1
i (j) = Hash(cti(j),

{{
ctk(j) | k ∈ N (i)

}}
, cti,

{{
ctk | k ∈ N (i)

}}
),

with initialization

c0i (j) =

{
(0,xi), i ̸= j,

(1,xi), i = j.

We will focus on the 1-2-CWL-GNN variant, which is given as

ct+1
i = f(ct

i,
{{

ct
j | j ∈ N1(i)

}}
,
{{

ct
j1,j2 | (j1, j2) ∈ N2(i)

}}
).

Note that we exclude the Col1 terms in the original definition because since the 1-2-CWL already
implies 1-WL, the colors of 1-WL can also be obtained by applying 1-2-CWL solely. We next show
how we can implement 1-2-CWL-GNNs with ESANs. In the first iteration we can compute the
colors of ESANs to be

c1i (j) = (1(i,j)∈E ,1i=j ,xi),

thus identifying the neighbors of each marked nodes. Then we can implement 1-2-CWL as

ct+1
i = f(cti,

{{
ctj | j ∈ N1(i)

}}
,
{{

ctj1,j2 | (j1, j2) ∈ N2(i)
}}

)

= f0(c
t
i,
{{
ctj | j ∈ N (i)

}}
,
{{
ctj1(j2) | (j1, j2), (i, j1), (i, j2) ∈ E

}}
)

= f1(c
t
i,
{{
ctj | j ∈ N (i)

}}
,
{{
ctj1(j2) | j1 ∈ N (i), j2 ∈ N (i)

}}
)

= f2(c
t
i,
{{
ctj | j ∈ N (i)

}}
,
{{{{

ctj1(j2) | j1 ∈ N (i)
}}
| j2 ∈ N (i)

}}
)

= f3(c
t
i,
{{
ctj | j ∈ N (i)

}}
,
{{
ct+1
i (j2) | j2 ∈ N (i)

}}
)

= f4(c
t
i,
{{
ctj | j ∈ N (i)

}}
,
{{

ct+1
i (j2) | j2 ∈ V

}}
)

= f5(
{{
ct+1
i (j2) | j2 ∈ V

}}
),

where ct+1
i (j) = Hash(cti(j), {{ctk(j) | k ∈ N (i)}} , cti, {{ctk | k ∈ N (i)}}). Thus we can imple-

ment 1-2-CWL-GNN layers with ESANs and DSS-WL.

H.4 PROOF W.R.T. SWL / CWL

Proposition 10. The SWL / CWL and the corresponding GNN variants with k-clique simplex can
1-k approximate p(zi |X).

36

Published as a conference paper at ICLR 2024

Figure 3: Counter example for ID-GNNs and Nested GNNs.

Proof. Considering the expressiveness of the two approaches (Bodnar et al., 2021a), we will focus
on the less expressive SWL variant, together with its GNN variant, MPSN, which is given by

ht+1
σ = f(ht+1

σ ,mt+1
B (σ),mt+1

C (σ),mt+1
↓ (σ),mt+1

↑ (σ)),

mt+1
B (σ) =

{{
MB(h

t
σ,h

t
τ) | τ ∈ B(σ)

}}
,

mt+1
C (σ) =

{{
MC(h

t
σ,h

t
τ) | τ ∈ C(σ)

}}
,

mt+1
↑ (σ) =

{{
M↑(h

t
σ,h

t
τ ,h

t
σ∪τ) | τ ∈ N↑(σ)

}}
,

mt+1
↓ (σ) =

{{
M↓(h

t
σ,h

t
τ ,h

t
σ∩τ) | τ ∈ N↓(σ)

}}
.

For details of the definitions please refer to Bodnar et al. (2021b). The k-clique complex lifting is
described as follows. Given a graph G, its corresponding simplicial complex K satisfies: if nodes
{i1, ..., il} where l ≤ k forms a clique in G, then {i1, ..., il} ∈ K.

We first show that in this case, nodes and cliques can interchange messages via finite of MPSN
layers. Suppose σ corresponds to a single node. Then by repeatedly applying the co-boundary
adjacency C(σ), we obtain the edges, 3-cliques, ... that contains σ. For simplicity we refer to the set
of edges, 3-cliques, ... as C(σ), C3(σ), Similarly, if σ corresponds to a clique, then by repeatedly
applying the boundary adjacency B(σ), we eventually obtain the nodes that it contains. We also
refer to the set of nodes as B0(σ) Thus we can implement 1-(k − 1)-CWL with MPSNs as

ht+1
i = f(ht

i,
{{
ht
j | j ∈ N1(i)

}}
, ...,

{{
ht
j | j ∈ Nk−1(i)

}}
)

= f(ht
i,
{{
(ht

i,h
t
j) | j ∈ N1(i)

}}
, ...,

{{
ht
j∪{i} | j ∈ Nk−1(i)

}}
)

= f(ht
i,
{{
ht
σ | σ ∈ C(i)

}}
, ...,

{{
ht
σ | σ ∈ Ck(i)

}}
),

where ht
σ = B0(σ). Thus the above procedure can be realized by finite iterations of MPSN layers.

H.5 PROOF W.R.T. OTHER VARIANTS

We now construct counter examples for these GNN variants.

ID-GNNs. Consider the graphs in Figure 3, where we use ID-GNNs to learn the black colored
nodes. Obviously, ID-GNNs cannot distinguish the node in (a) with the node in (b), but clearly (a)
has 6 3-cliques while (b) has 8 3-cliques, thus (a) and (b) are distinguishable by 3-order MRFs. To
show that ID-GNNs is weaker than 2-WL, consider the graphs (c) and (d) in Figure 3. Since (c) has
7 nodes and (d) has 4 nodes, the black nodes are distinguished by 2-WL. However, since 1-WL only
aggregates local neighbors, it cannot distinguish the black nodes in (c) and (d).

Nested GNNs We still consider the graphs in Figure 3, where we use Nested GNNs to learn the
black colored nodes. For graphs (a) and (b), no matter what the number of hops we choose, NGNNs
cannot distinguish the black nodes (a) between the black node in (b). Similarly, it also cannot
distinguish the black nodes in (c) and (d).

37

Published as a conference paper at ICLR 2024

I PROOF W.R.T. APPROXIMATING JOINT POSTERIORI

I.1 k-NODE LABELING: A TOOL FOR PROOF

We first introduce the k-node labeling framework. Suppose we are to learn the posteriori
p(zi1 , ..., zik |X). We set augmented node features as

x̃i = (1i=i2 , ...,1i=ik ,xi),

Then we apply a MPNN on the augmented graph and output the node representation h1 as the final
representation of the posteriori p(zi1 , ..., zik |X). Then, we have
Theorem 22. The k-node labeling with MPNNs 1-2 approximates p(zi1 , ..., zik |X).

Proof. As discussed above, we factorize p(zi1 , ..., zik |X) as
p(zi1 , ..., zik |X) = p(zi1 | zi2 , ..., zik ,X) · · · p(zik |X).

Thus to compute p(zi1 , ..., zik | X) we need to repeatedly apply belief propagation (Bethe approx-
imation) on the conditional MRFs. Concretely, to compute p(zi1 , ..., zik | X) for all values of
zi1 , ..., zik we need to

Compute p(zi1 | zi2 , ..., zik ,X) for all zi1 , ..., zik ∈ Z,
Compute p(zi2 | zi3 , ..., zik ,X) for all zi2 , ..., zik ∈ Z,
· · ·
Compute p(zik |X) for all zik ∈ Z.

We now show that the k-node labeling can compute all the above functions. First consider computing
p(zi1 | zi2 , ..., zik ,X). The original MRF can be written as

p(Z |X) =
1

Z

∏
i∈V

Ψi(zi,xi)
∏

(i,j)∈E

Ψij(zi, zj).

Fixing zi2 , ..., zik , we can rewrite the MRF as

p(Z\{i2,...,ik} | zi2 , ..., zik ,X) =
1

Z

∏
i∈V\{i2,...,ik}

Ψi(zi,xi)
∏

(i,j)∈E,i,j /∈{i2,...,ik}

Ψij(zi, zj)

∏
i∈{i2,...,ik}

Ψi(zi,xi)
∏

i∈{i2,...,ik},j∈N (i)

Ψij(zi, zj)

=
1

Z ′

∏
i∈V\{i2,...,ik}

Ψi(zi,xi)
∏

(i,j)∈E,i,j /∈{i2,...,ik}

Ψij(zi, zj)

∏
j∈N (i2)

Ψi2,j(zi2 , zj) · · ·
∏

j∈N (ik)

Ψik,j(zik , zj).

(8)

Assume each zi ∈ Z has S states, then the above equations induce Sk−1 MRFs based on different
values of zi2 , ..., zik . We notice that the above conditional MRFs can be regarded as normal MRFs
on the modified graphs: given the original graph G, we first add a unique label l2 for each neighbor
of the node i2, then delete i2 from G; we then repeat this procedure for i3, ..., ik, obtaining the
induced graph G̃. Then, there exists 1-WL distinguishable 2-order A1, ...,ASk−1 , such that the
conditional MRFs on G are given by A1, ...,ASk−1 on G̃. This is simply done by setting

As2+s3S+s4S2+...+skSk−2(i, G̃) =

{
Ψi(·) + Ψim(sm, ·), node i has label lm for m ∈ [k],

Ψi(·), else.

As({i, j}, G̃) = Ψij .

According to our previous discussion on MPNNs and 1-WL expressive 2-order MRFs, MPNNs on G̃
can compute marginals on all Sk−1 MRFs. There’s only one step before we prove the theorem. Note
that after one iteration of MPNN on our k-node labeling framework, the neighbors of zi2 , ..., zik are
naturally tagged with unique labels, thus G̃ and our k-node labeling enhanced graph are equivalent
for MPNNs. Thus, k-node labeling with MPNNs can also 1-2 approximates p(zi1 | zi2 , ..., zik ,X).
Since computing p(zi2 | zi3 , ..., zik ,X), ... only requires performing node labeling on i3, ..., ik,...,
the k-node labeling can also approximate them. Putting these together, the k-node labeling with
MPNNs 1-2 approximates p(zi1 , ..., zik |X).

38

Published as a conference paper at ICLR 2024

I.2 PROOF W.R.T. k-GNNS

Proposition 12. k-GNNs cannot 1-2 approximate p(zi1 , ..., zik |X) for arbitrary k ≥ 2.

Proof. The proof is similar with the proof in (Qian et al., 2022), where they showed that k-node
labeling is not weaker than k-WL. The core is to construct graphs that are undistinguished by k-WL
but are distinguished by (k − 1)-node labeling. We construct CFI graphs X (K) and X̂ (K). From
Grohe & Otto (2012) we know that X (K) and X̂ (K) cannot be distinguished by (k−1)-WL, whose
expressive power is bounded by (k − 2)-FWL.

Next we show that X (K) and X̂ (K) can be distinguished by (k − 2)-node labeling. To do so we
need to introduce the concept of pebble games (Grohe & Otto, 2012; Cai et al., 1989). The readers
are welcome to check Grohe & Otto (2012) for a more detailed introduction. Given two structures
A,B, the bijective k-pebble game is played by two players by placing k pairs of pebbles on a pair
of structures A,B. The rounds of the game are as follows. Player I picks up one of his pebbles,
and player II picks up her corresponding pebble. Then player II chooses a bijection f between A
and B (if no such bijection exists player II immediately loses). Then player I places his pebble on
an element a of A, and player II places her pebble on f(a). After each round there is a subset
p ⊆ A×B consisting of the at most k pairs of elements corresponding to the pebbles placed. Player
II wins a play if every position p is a local isomorphism.

Theorem 23. (Cai et al. (1989)) A ≡k
C B if and only if player II has a winning strategy for the

bijective k-pebble game on A,B.

Theorem 23 indicates that (k − 1)-FWL can distinguish A,B if and only if player II has a winning
strategy for the bijective k-pebble game onA,B. However, although it justifies (k− 1)-FWL, it has
nothing to do with the (k − 2)-node labelind here. We propose a variant of the bijective k-pebble
game, namely restricted bijective k-i-pebble game, described as follows. Given two structuresA,B,
the restricted bijective k-i-pebble game is also played by two players by placing k pairs of pebbles
on a pair of structures A,B. The rounds of the game are as follows. Player I picks up one of his
pebbles, and player II picks up her corresponding pebble. Then player II chooses a bijection f
between A and B (if no such bijection exists player II immediately loses). Then player I places his
pebble on an element a of A, and player II places her pebble on f(a). The difference is, i pairs of
the pebbles are static, as when the players place these pebbles on the elements of A,B, they can no
longer pick and replace them on other elements. Then, we have

Theorem 24. There is a (k − 2)-node labeling MPNN that distinguishes the (k − 2)-tuples u,v
from A,B if and only if player II has a winning strategy for the restricted bijective k-(k-2)-pebble
game on A,B which initially places (k − 2) static pebbles on u,v, if A,B are connected graphs.

Proof. Let G,H be a pair of connected graphs and let u,v be the target k-tuples. Let G(u), H(v)

be the corresponding node labeling induced graphs. Since G,H are connected, we need to show the
following statements are equivalent.

1. 1-WL cannot distinguish G(u), H(v)

2. 2-WL cannot distinguish G(u), H(v)

3. No FOC2 formula distinguishes G(u), H(v)

4. Player II has a winning strategy for the (k + 2)-k pebble game on G,H which initially
places the k pairs of static pebbles on u,v.

1⇐⇒ 2⇐⇒ 3: 2⇐⇒ 3 is proved as a special case in Cai et al. (1989). Since G,H are connected,
1⇐⇒ 2 also holds.

2⇒4: Suppose after r iterations the 2-WL still assigns the same color to G(u), H(v). We instead
prove the following statement:

39

Published as a conference paper at ICLR 2024

• After r + k iterations 2-WL gives (x1, y1) ∈ V2
G(u)

and (x2, y2) ∈ V2
H(v)

the same color
=⇒ Player II has a winning strategy for the (k+2)-k pebble game onG,H which initially
places the k pairs of static pebbles on u,v and place the other 2 pairs of static pebbles on
(x1, y1) and (x2, y2) in r moves.

We assume W r to be the color assignment of 2-WL at iteration r + k. Clearly player I can only
chooses one of the pebbles on x1, y1. Without loss of generality suppose he picks up x1. The player
II answers with the bijective mapping that maps node pairs with the same W r−1 color, that is,
f(t1) ∈ {t2 |W r−1(t1, y1) =W r−1(t2, y2)}. Note that such mapping must exist because

W r(x, y) = Hash
(
W r−1(x, y),

{{
W r−1(x, z) | z ∈ VG

}}
,
{{
W r−1(z, y) | z ∈ VG

}})
is the same for (x1, y1) and (x2, y2). No matter which node player I places his pebble on, player II
places her pebble on the corresponding node. Player II has not yet lost: the structure between (t1, y1)
and (t2, y2) must be the same, otherwise they have different W r−1 colors. The structure between
(t1,u) and (t2,v) are also the same: This is because that at the start we added unique labels to the
k-tuples u and v. Therefore, after the first k rounds of 2-WL iterations if the subgraphs induced by
t1, y1,u fromG(u) and t2, y2,v fromH(v) are different, (t1, y1) and (t2, y2) will also have different
2-WL colors. Now, since (t1, y1) and (t2, y2) have the same W r−1 colors, by induction on r we
proved the above statement.

By further induction on r in the statement, we can prove 2⇒4 because we have showed that for any
node pairs the results of 2-WL and the pebble game are always consistent.

¬3⇒ ¬4: Suppose for some FOC2 formula φ, G(u)φ and H(v)φ. If φ is a conjunction then
G(u), H(v) must differs on at least one of the conjuncts, so we may assume φ is of the form ∃Nxψ.
Without loss of generality we assume the quantifier depth of φ is r. Note that there are total 2
free pairs of pebbles that can be placed to nodes, which exactly corresponds to the number of free
variables in FOC2 formula. Player I takes a pebble, corresponding to the variable x in φ. Player II
must respond with a bijective mapping f . SinceG(u)φ andH(v)φ, we know that there are at leastN
nodes satisfying ψ in G(u) but less than N nodes satisfying ψ in H(v). Player I then picks the node
w in G(u) such that ψ(w) is true but ψ(f(w)) is false. By induction we can see that at quantifier
depth 0 player II loses the game.

With Theorem 24 we can now prove that the graphsX (K) and X̂ (K) can be distinguished by (k−2)-
node labeling. The prove steps are exactly the same as in Grohe & Otto (2012), as the steps in Grohe
& Otto (2012) naturally follow the constraints of the bijective k-(k − 2)-pebble game.

We give a winning strategy for player I in the bijective k-(k − 2)-pebble game. In the first k − 1

rounds of the game, player I picks his k − 1 pebbles on v∅2 , ..., v
∅
k and suppose p(v∅i) = vSi

i is the
corresponding position for some sets Si. That is,

p = {v∅2v
S2
2 , ..., v∅kv

Sk

k }.

We now assume that the pebbles at v∅3 , ..., v
∅
k are static. Therefore v∅3 , ..., v

∅
k compose all k − 2

static pebbles and the pebble at v∅2 is still movable. In the next round of the game player I starts by
selecting this pebble, and places it on e012. In the next round, player I starts by selecting the pebble
on e012 and places it on v∅1 . It is proved by Grohe & Otto (2012) that player I wins at this time.

I.3 PROOF W.R.T. k-FWL-MPNNS

Proposition 13. k-FWL-MPNNs can 1-2 approximate p(zi1 , ..., zik |X).

Proof. Given G = (V, E), the k-FWL at each layer evaluates

Col(l+1)(u1, ..., uk) = Hash
(
Col(l)(u1, ..., uk),{{(

Col(l)(v, u2, ..., uk),Col
(l)(u1, v, ..., uk), ...,Col

(l)(u1, ..., uk−1, v)
)
| v ∈ V

}})
.

40

Published as a conference paper at ICLR 2024

If we consider a fragment of the above procedure where we replace the last colors in each neighbor
with the initial colors

Col(l+1)(u1, ..., uk) = Hash
(
Col(l)(u1, ..., uk),{{(

Col(l)(v, u2, ..., uk),Col
(0)(u1, v, ..., uk), ...,Col

(0)(u1, ..., uk−1, v)
)
| v ∈ N (u1)

}})
.

Note that the neighbors N (u1) are already encoded in Col(0)(u1, v, ...). Clearly, this variant is less
expressive than the original one. We can rewrite this variant to make it strictly corresponded to
k − 1-node labeling as

f (l+1)(u) = ϕ
(
f (l)(u),

{{
f (l)(v) | v ∈ V

}})
,

where we initialize f (0) as f (0)(v) = Col(0)(v, u2, ..., uk). The computation of f (l) is exactly
the same as (k − 1)-node labeling when we apply node labeling on u2, ..., uk. Since f is clearly
corresponded to a smaller fragment of the above equations compared with k-FWL, we have proved
the result.

I.4 PROOF W.R.T. LABELING TRICK

Proposition 14. k-labeling trick MPNNs 1-2 approximate f(z) = p(zi1 = · · · zik = z | X) but
not p(zi, zj |X).

Proof. It’s simple to show that labeling trick cannot capture p(zi, zj |X). Consider a graph G with
two isolated nodes 1, 2 with different node features. Then obviously we can have p(z1, z2 | X) ̸=
p(z2, z1 |X) but labeling trick will always assign them the same representation.

Next we show that k-labeling trick MPNNs 1-2 approximate f(z) = p(zi1 = · · · zik = z | X).
This is done by altering the MRFs in Eq. 8. We can rewrite the MRFs as

p(Z\{i1,i2,...,ik} | zi2 = ... = zik = z,X) =
1

Z

∏
i∈V\{i1,...,ik}

Ψi(zi,xi)
∏

(i,j)∈E,i,j /∈{i1,...,ik}

Ψij(zi, zj)

∏
j∈N (i1)

Ψi2,j(z, zj) · · ·
∏

j∈N (ik)

Ψik,j(z, zj)

Thus f(z) is computed by only reserving the MRFs specified by As for s ∈ Z (for simplicity we
assume Z = [S]) where we add an identical label to i2, ..., ik and set

As(i, G̃) =

{
Ψi(·) + Ψij(s, ·), j is labeled,
Ψi(·), else.

As({i, j}, G̃) =
{
Ψij , i, j are not labeled,
1, else.

This identical labeling procedure is captured by the k-labeling trick, thus the representation of node
i in k-labeling trick can capture p(zi | zi1 = ... = zik = z,X) and similarly as our discussion
before, p(zi, zi1 = ... = zik = z,X). Since k-labeling trick aggregates all nodes in the graph, the
graph representation can capture p(zi1 = ... = zik = z,X).

I.5 PROOF W.R.T. ORDERED NODE LABELING

Proposition 15. MPNNs with ordered node pair labeling 1-2 approximate p(zi, zj |X).

Proof. To approximate p(zi, zj | X) we only need to add an label on node j. Since ordered node
pair labeling adds labels on both i and j, it can also approximate p(zi, zj |X).

I.6 PROOF W.R.T. SOURCE NODE LABELING

Proposition 16. Source node labeling MPNNs 1-2 approximate p(zi, zj |X).

Proof. The source node labeling is exactly 1-node labeling applied on j.

41

Published as a conference paper at ICLR 2024

J PROOF W.R.T. PHANTOM NODES / EDGES

J.1 PROOF OF PROPOSITION 17

Proposition 17. MPNNs with phantom nodes can 1-∞ approximate p(zi |X).

Proof. We prove by showing that for any n ∈ N+, phantom nodes can capture 1-n-CWL-GNNs for
graphs with no more than n nodes. To separate our notations for nodes and phantom nodes, we will
use i, j, ... to refer to nodes and p, q, ... to refer to phantom nodes. We next show that two layers of
phantom node enhanced MPNNs can capture one layer of 1-n-CWL-GNNs:

ct+1
i = f

(
cti,
{{
(ctj | j ∈ N1(i)

}}
, ...,

{{
(ctj | j ∈ Nn(i)

}})
= f0

(
cti,
{{
(ctj | j ∈ N1(i) ∪ ... ∪Nn(i)

}})
Since smaller cliques are completely contained in larger cliques, we can also only preserve maximum
cliques in the above equation:

ct+1
i = f1

(
cti,
{{

(ctj | (j ∪ {i}) ∈ C
}})

= f2
(
cti,
{{

(ctp | p ∈ N (i)
}})

,

where we further define for phantom nodes

ctp =
{{

cti | i ∈ N (p)
}}
.

Therefore, two iterations of phantom node enhanced MPNNs can capture one layer of 1-n-CWL-
GNNs for arbitrary large n.

J.2 PROOF OF PROPOSITION 18

Proposition 18. MPNNs with phantom nodes of cliques no more than k can 1-k approximate
p(zi |X).

Proof. The proof is equivalent to the proof of Proposition 17, except that the phantom nodes at most
corresponds to k-cliques thus are corresponded to 1-(k − 1)-CWL-GNNs:

ct+1
i = f

(
cti,
{{
(ctj | j ∈ N1(i)

}}
, ...,

{{
(ctj | j ∈ Nk−1(i)

}})
= f0

(
cti,
{{
(ctj | j ∈ N1(i) ∪ ... ∪Nk−1(i)

}})
= f1

(
cti,
{{
(ctj | (j ∪ {i}) ∈ Ck

}})
= f2

(
cti,
{{
(ctp | p ∈ N (i)

}})
.

J.3 PROOF OF PROPOSITION 19

Proposition 19. MPNNs with phantom edges 1-2 approximates p(zu, zv) given by the modified
Bethe free energy with altered distribution in Eq. 2.

Proof. Given a MRF

p(Z |X) =
1

Z

∏
i∈V

Ψi(zi,xi)
∏

(i,j)∈E

Ψij(zi, zj)

and the corresponding altered distribution for Bethe free energy

q(Z) =
∏
i∈V

qi(zi)
∏

(i,j)∈E

qij(zi, zj)

qi(zi)qj(zj)

∏
(u,v)∈Ê

quv(zu, zv)

qu(zu)qv(zv)
, (9)

we aim to
min
q
DKL(q∥p).

42

Published as a conference paper at ICLR 2024

We can write an altered MRF as

p(Z |X) =
1

Z

∏
i∈V

Ψi(zi,xi)
∏

(i,j)∈E

Ψij(zi, zj)
∏

(u,v)∈Ê

Φ(zu, zv),

where Φ(·, ·) ≡ 1, thus this formulation is equivalent with the original one. Applying Bethe approx-
imation on this formulation naturally yields the quasi distribution in Eq. 9. Obviously, by adding
phantom edges for each (u, v) ∈ Ê to the original G, the augmented graph Ĝ can naturally produce
the altered MRF with

A(i, Ĝ) = Ψi,

A({i, j}, Ĝ) =

{
Ψij , (i, j) ∈ E ,
Φ, (i, j) ∈ Ê .

Since this A is still within 1-WL’s expressive power, MPNNs with phantom edges can 1-2 approxi-
mate the modified Bethe approximation.

K THE EXPRESSIVENESS OF GNNS WITHOUT THE WL HIERARCHY

K.1 A REDEFINITION OF THE METRICS

In our previous discussions, we constrain the expressiveness of the function A for producing poten-
tials in MRFs by the k-WL hierarchy. In this section we relax this constraint and provide a more
fine-grained description of GNN variants without the k-WL constraints of A. In contrast, we re-
strict the expressiveness of A to be dependent on the GNN models M we are to evaluate. Since
obviously M won’t be able to capture A if A is more expressive than M, we restrict that A is
equally or less expressive thanM, which further leads to the following redefinition of our metrics
of expressiveness.

Our discussion now begins with the following definition of expressiveness.
Definition 25. A class of GNN modelsM can l-approximate some posteriori p if and only if given
arbitrary A satisfying:

• The maximum order of A is l.

• For arbitrary G = (AG,XG), H = (AH ,XH) and C1, C2 being two nodes or cliques
with no more than l nodes from G,H respectively, A(C1,AG) ̸= A(C2,AH) only when
there exists a GNN instance fromM that distinguishes C1 and C2.

There exists an instance ofM such that:

• It can distinguish all graphs distinguished by iterations of belief propagation as in Theorem
3.

• It can provide marginals at least as accurate as Bethe approximation as in Theorem 4.

Clearly, the above definition relaxes the k-WL constraint of A in Definition 6 by restricting A
to share the equivalent expressiveness with the GNN models. As we shall see, the results of the
expressiveness of GNN models in Section 4 still holds.

K.2 RESULTS W.R.T. NODE-LEVEL EXPRESSIVENESS

Proposition 26. MPNNs can at most 2-approximate p(zi |X) for arbitrary G and i ∈ VG.
Proposition 27. k-GNNs can k-approximate p(zi |X) for arbitrary G.
Proposition 28. ESANs with node marking policy can 3-approximate p(zi |X) for arbitrary G.
Proposition 29. The GNN variants corresponding with SWL / CWL with k-clique simplex can k-
approximate p(zi |X).
Proposition 30. ID-GNNs (You et al., 2021) and Nested GNNs (Zhang & Li, 2021) can at most
2-approximate p(zi |X).

43

Published as a conference paper at ICLR 2024

K.3 PROOFS

First we note that the only difference between the above propositions and the main results in this
paper is that A is now is limited by the GNN models themselves rather than the k-WL tests. In
the previous proof in Section H.1 and Section I.1 it is seen that the potential functions Ψa over
factors a, when restricted by the k-WL tests, can be regarded as functions over the k-WL colors
Ψa = f(Colk(a)), where Colk(·) indicates the k-WL color. We can then extend Theorem 21 to
proof the above propositions.
Theorem 31. Suppose the expressiveness of A is limited by some coloring functionM. We define
generalized l-CWL, whose only difference between k-l-CWL is that l-CWL first apply M to the
graph and records the colors. Then, l-CWL-GNNs can (l + 1)-approximate p(zi |X).

Proof. The proof is the same except that we replace all Colk(·) emerged in the proof in Section H.1
withM(·).

With Theorem 31, the additional results in Section K.2 are proved with exactly the say steps in
Section H, except that we replace the k-l-CWL in Section H with the l-CWL in Theorem 31 and set
M to be the GNN models (i.e. MPNNs, k-GNNs, ESANs, etc.) in each proposition.

44

	Introduction
	Background
	A Probabilistic Interpretation of Graphs
	The Probabilistic Formulation
	Metrics for Evaluating GNNs

	Analysing the Probabilistic Inference Capacity of GNNs
	On MPNNs and Pairwise MRFs
	Analysing Existing GNN variants
	GNNs that Focus on Expressive Power
	GNNs that Focus on Complex Prediction Tasks

	Extending MPNNs for Modeling More Complex Distributions
	Phantom Nodes for Modeling Higher-order Dependencies
	Phantom Edges for Modeling Joint Posteriori

	Evaluation
	Conclusion
	Appendix
	 Appendix
	Extended Related Works
	Weisfeiler-Lehman tests
	1-WL (Color Refinement)
	k-WL
	k-FWL
	Colors of k-WL / k-FWL

	Discussions about the Fixed Point Properties of MPNNs and Bethe approximation
	Extended Discussions about Phantom Nodes / Edges
	Phantom Nodes
	Phantom Edges

	Experimental Details
	Datasets
	Configurations
	Additional Experiments

	Proof w.r.t. invariant MRFs
	Proof of Lemma 1
	Proof of Theorem 2.

	Proof w.r.t. MPNNs
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 20
	Proof of Corolloary 5
	Proof of Theorem 7

	Proof w.r.t. Approximating Complex Distributions
	k-l-CWL: A Tool for the Proof
	Proof. w.r.t. k-GNNs
	Proof w.r.t. Subgraph GNNs
	Proof w.r.t. SWL / CWL
	Proof w.r.t. Other Variants

	Proof w.r.t. Approximating Joint Posteriori
	k-Node Labeling: A Tool for Proof
	Proof w.r.t. k-GNNs
	Proof w.r.t. k-FWL-MPNNs
	Proof w.r.t. labeling trick
	Proof w.r.t. Ordered Node Labeling
	Proof w.r.t. Source Node Labeling

	Proof w.r.t. Phantom Nodes / Edges
	Proof of Proposition 17
	Proof of Proposition 18
	Proof of Proposition 19

	The expressiveness of GNNs without the WL hierarchy
	A redefinition of the metrics
	Results w.r.t. node-level expressiveness
	Proofs

