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Abstract. Precision agriculture relies heavily on effective weed man-
agement to ensure robust crop yields. This study presents RoWeeder,
an innovative framework for unsupervised weed mapping that combines
crop-row detection with a noise-resilient deep learning model. By leverag-
ing crop-row information to create a pseudo-ground truth, our method
trains a lightweight deep learning model capable of distinguishing be-
tween crops and weeds, even in the presence of noisy data. Evaluated on
the WeedMap dataset, RoWeeder achieves an F1 score of 75.3, outper-
forming several baselines. Comprehensive ablation studies further val-
idated the model’s performance. By integrating RoWeeder with drone
technology, farmers can conduct real-time aerial surveys, enabling pre-
cise weed management across large fields. The code is available at: https:
//github.com/pasqualedem/RoWeeder. EI
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1 Introduction

Agriculture is essential for human sustenance, and advancements in farming ma-
chinery and techniques have improved crop yield. Weed management is crucial
for removing unwanted plants that compete with crops. Effective weed manage-
ment enhances crop productivity and promotes sustainable agriculture.
Drones, or unmanned aerial vehicles (UAVs), have proven invaluable assets in
precision agriculture, offering both versatility and cost-effectiveness . These
devices can capture high-resolution imagery and data from farmlands, enabling
farmers to monitor crop development, detect diseases and pests, and fine-tune
irrigation strategies. By providing accurate and timely information, drones help
reduce expenses, boost crop yields, and minimize the use of inputs such as water,
fertilizers, and pesticides. Traditional methods like manual field inspections or
satellite-based remote sensing cannot match the level of detail drones provide.
UAVs can conduct real-time aerial surveys of crops, allowing farmers to make
prompt, informed decisions. Moreover, drones can efficiently cover vast areas
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in a matter of hours, a task that would typically require days or weeks using
conventional approaches. This time-saving capability enables farmers to conserve
resources and make more timely decisions.

Recent research has suggested that deep learning models can be used for
semantic segmentation and weed identification in drone-captured or aerial im-
agery [8l{10L[28]. However, despite these significant advancements, automatically
detecting weeds remains a complex challenge. Deep learning techniques are not
yvet widely adopted in agriculture, mainly due to the extensive manual annota-
tion required for the large amount of data needed in the learning phase. This
issue is particularly pronounced in agricultural datasets, where labeling plants in
field images is time-consuming. Furthermore, these models often demand signif-
icant computational resources, posing challenges for drone implementation with
constrained processing capabilities and limited power supply. The need for real-
time performance, coupled with these limitations, underscores the importance
of developing lightweight solutions for weed mapping applications.

In agricultural landscapes, crops are systematically planted in linear crop
rows. Automatically detecting these crop rows can benefit various applications
[3235]. Among them, it can be used to distinguish crops from weeds, as unwanted
vegetation typically proliferates in the spaces between these rows. This spatial
pattern has led to a significant body of research focused on developing and
refining crop-row detection techniques [5,(6}/144|16}133]. This mechanism allows
to detect inter-rows weeds. However, it may fail to detect intra-row weeds, as
they are classified as crops. The generated detection can be used to create a
pseudo-ground truth, which can be used to train a deep learning model. This
approach has been explored in previous works [3l/4], but these methods primarily
functioned as image classifiers rather than end-to-end segmentation tools.

This paper proposes a novel lightweight, fully automatic method for weed
mapping that combines crop-row detection with a noise-resilient deep learning
model. Our approach, RoWeeder (Fig. , leverages the crop-row information to
create a pseudo-ground truth, which is then used to train a deep learning model.
The model is based on the SegFormer encoder architecture |36, coupled with
an ad-hoc decoder that fuses the features extracted by the encoder. Evaluation
is conducted on the WeedMap dataset [29], which contains multispectral images
of sugar beet fields captured by drones.

The rest of this paper is organized as follows. Section [2reviews related work.
Section [3] details our proposed approach. Section [] evaluates our model’s per-
formance. Section [5| concludes the paper with a summary of our findings and
directions for future research.

2 Related Work

Advances in computer vision and remote sensing have revolutionized precision
agriculture, addressing tasks such as disease and pest identification, abiotic stress
assessment, growth monitoring, crop yield prediction, and weed mapping.
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Weed mapping, a semantic segmentation task, assigns each pixel in an image
to one of two classes, either weed or crop. Deep learning algorithms have demon-
strated superior performance over traditional techniques in this area. Early work
by Dos Santos et al. [10] highlighted the effectiveness of Convolutional Neural
Networks (CNNs), such as AlexNet, over SVMs and Random Forests. Lottes et
al. [22] further advanced the field by using a CNN with dual decoders for stem
detection and plant segmentation, showing promising results on the BoniRob
and UAV datasets.

Integrating multispectral images, which capture detailed information on plant
health and species, enhances the accuracy of deep learning models compared to
RGB-only models. For example, U-Net has successfully separated weeds from
crops and soil [9]. WeedNet, based on SegNet and trained on the WeedMap
dataset, is another example of successful application in this domain [28]. The
WeedMap dataset, containing multispectral images from sugar beet fields in Ger-
many and Switzerland, has become a benchmark for weed mapping studies |29].
Recently, we have explored the benefits of RGB pre-training and fine-tuning
on multispectral images, as well as the application of knowledge distillation to
improve the performance of lightweight models [7},8].

Partially supervised methods, such as semi supervised and unsupervised
learning, have also been explored for weed detection. Studies employing semi
supervised approaches include [17}/23,/26}31], while clustering methods for unsu-
pervised weed detection are discussed in [2}[12}25]. Crop-row detection methods,
such as those using the Hough Transform, have been employed to distinguish be-
tween crop plants and weeds [24,27,30]. Bah et al. [3,/4] introduced deep learning
techniques incorporating crop-row information, though these methods primarily
functioned as image classifiers rather than end-to-end segmentation tools.

Building on these unsupervised methods, our work proposes a novel approach
that combines crop-row detection with a noise-resilient end-to-end deep learning
model. This lightweight model can detect weeds in real-time during inference,
integrating crop-row information learned during training. To our knowledge, this
is the first work that merges these two approaches.

3 RoWeeder

This research aims to develop a framework that can transfer knowledge derived
from crop-row detection to a deep learning model for weed mapping. Our ap-
proach, RoWeeder, uses crop-row information to create a pseudo-ground truth,
which is then used to train the deep learning model. The proposed framework
consists of three main components: a plant detection module, a crop-row detec-
tion module, and a deep learning model for final segmentation. Figure [1] illus-
trates the workflow of the RoWeeder framework.

The plant detection module uses classical thresholding to detect plants in
the image. When Near Infrared (NIR) images are available, the Normalized
Difference Vegetation Index (NDVI) is calculated to improve plant detection.
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Fig. 1: Overview of the proposed framework, illustrating the training process of the
semantic segmentation model. In the top branch, the image is fed into a plant detection
algorithm, and the mask produced is used to detect crop rows. Every plant on a crop
row is classified as a crop; otherwise, it is classified as a weed. This pseudo-ground
truth is used to train a deep learning model.

The crop-row detection module employs the Hough Transform [11] to detect
crop rows in the image. The module takes the segmentation mask of the plants
as input and outputs the crop-row mask. The crop-row mask is then used to
create the pseudo-ground truth for the deep learning model. Since all the images
are rotated by the same angle, they are first rotated to align the crop rows with
the horizontal axis before crop-row detection. This consistent rotation ensures
accurate detection by the Hough Transform. Moreover, the data may contain
images filled with weeds (found at the edges of the fields), leading to the detection
of false positive lines by the Hough Transform. In these images, the detected lines’
angles () are evenly distributed, while in images with crop rows, the 6 angles
are concentrated around a specific value. To tackle this issue, we analyze the
distribution of # angles to filter out false positive lines. We use the Kolmogorov-
Smirnov test to check the uniformity of the 6 angle distribution, and if the
distribution is found to be uniform, we discard all the detected lines.

Crop and weed classification is performed using a simple rule-based method:
if at least one pixel of a plant overlaps with a crop row, it is classified as a
crop; otherwise, it is classified as a weed. Each plant instance can be detected
using either the Simple Linear Iterative Clustering (SLIC) algorithm [1| or by
calculating each connected component (CC) of the image. This method effec-
tively detects inter-row weeds but may fail to detect intra-row weeds, as they
are classified as crops. The hypothesis is that the deep learning model will learn
to distinguish between crops and weeds despite the pseudo-ground truth noise.
Examples of segmentations produced by the Hough Crop-Row Detector with the
decision rule are shown in Fig.

RoWeeder is built on the SegFormer architecture [36], a Transformer-based
model that has shown state-of-the-art performance in semantic segmentation
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Fig. 2: Visual representation of the crop lines detected by the Hough Transform. From
left to right: the original input image, the ground truth with crops in green and weeds
in red, and the generated pseudo-ground truth with detected crop rows in purple.

tasks. SegFormer comes in six configurations, ranging from small to large mod-
els. We chose the smallest configuration, SegFormer-B0, which has only 3.7M
parameters, to ensure that the model is light enough to be deployed on edge
devices like NVIDIA Jetson TX2 and Jetson Nano [18]. The model is trained on
the pseudo-ground truth created by the crop-row detection module.

SegFormer employs an all-MLP lightweight decoder. We designed different
segmentation decoders to identify the most suitable for our task. The first is a
pyramid-based decoder. Starting from the deepest feature map, at each stage,
this map is upsampled to the next one, projected to the same dimension as the
feature map with a point-wise convolution, and then fused. Fusion can be done
by concatenation or addition, while upsampling can be done by bilinear interpo-
lation or transposed convolution. Finally, the fused feature map is processed by
a 3 x 3 convolution to handle spatial information, followed by a GELU activation
function [15]. Given Fyeep and Fipaiiow, the deepest and shallowest feature maps,
a pyramid-based decoder block with addition as fusion can be defined as:

F,ut = GELU (Convsys (Convy 1 (Upsample (Fyeep)) + Fsnatiow)) (1)

where Upsample can be bilinear interpolation or transposed convolution. A
pyramid-based decoder block with concatenation as fusion can be defined as:

Fout = GELU (Convsys (Convi ki1 (Upsample (Feep) || Fshatiow))) (2)

where || denotes concatenation.
The second decoder is a “flat” decoder that projects all the feature maps in
one step. The flat decoder with sum as fusion can be defined as:

Fout = GELU <COIIV3><3 (Z(Conlel(Upsample(an)))>) (3)

n=1
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Fig. 3: Overview of the two decoders. On top is the pyramid decoder with concate-
nation as a fusion method. On the bottom is the flat decoder with sum as the fusion

method. The input feature maps are ordered from the most shallow to the deeper ones.
“Spatial Conv” is a 3 x 3 convolution, while “Point Conv” is a 1 x 1 convolution.
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where a,, is the n-th feature map, N is the number of blocks, Upsample can be
either bilinear interpolation or transposed convolution, and Fusion can be either
concatenation or addition. The flat decoder with concatenation as fusion can be
defined as:

Fout = GELU (Convsy3(Convyx1 (Upsample(ay)|] ... [|[Upsample(an)))) (4)

where || denotes concatenation.

Each decoder is followed by a 1 x 1 convolution to reduce the number of
channels to the number of classes and a softmax activation function to output
the probability of each class. The two decoders are shown in Fig.

4 Experimental Evaluation

4.1 Dataset and Validation

We assessed RoWeeder on the WeedMap dataset [29], which includes multispec-
tral images from sugar beet fields in Germany (Rheinbach) and Switzerland
(Eschikon). These images were captured using UAVs equipped with RedEdge-
M and Sequoia cameras, respectively (see [29] for further details). The dataset
comprises eight orthomosaic maps, labeled [000] through [007], with the first five
belonging to the Rheinbach subset and the last three to the Eschikon subset.
Multiple tiles of size 512 x 512 pixels were derived from each orthomosaic map
by sliding a non-overlapping window over the maps.

We focused on the Rheinbach subset because the Eschikon subset lacks the
blue channel necessary for our RGB-focused experiments. Experimentation with
other channels is beyond the scope of this work. The dataset was split to perform
a b-fold cross-validation. Additionally, the training set was randomly divided into
training and validation subsets, and the validation subset was used for model
selection. We randomly divided the training set rather than basing it on specific
fields to avoid relying solely on a single field for validation. The dataset contains
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annotations for crops and weeds used only to evaluate the model’s performance
at test time.

We used the macro-averaged F1 score as a metric for our experiments, which
can deal with the class imbalance typical of this task.

4.2 Setting

The NDVI-based plant detection system utilized a threshold value of 0.1 to
detect significant pixels of plants. For the Hough transform, a threshold of 160
was used. The uniformity test employed a p-value of 0.1. In the SLIC algorithm,
the number of clusters was calculated as n = 0.005 x H x W, where H and W
are the image height and width. The compactness parameter was set to 20, and
o was set to 1. The mentioned parameters were selected through an empirical
evaluation of the detected lines within a representative sample of the dataset.

Our training strategy optimized the focal loss [19], which addresses class
imbalance by focusing on difficult-to-classify examples. The loss for a single
training instance was computed as:

N+1
r__Lt Z {wn (- eflcg(ymyn))v Aee (s yn) | (5)

n

where N +1 is the number of classes, w,, are class-specific weights, [, is the cross-
entropy loss, and + is the focusing parameter that adjusts the emphasis on hard
examples. We used the AdamW optimizer |21] with 8; = 0.9 and S = 0.999,
complemented by a linear learning rate warmup [13] for 1000 iterations, followed
by a step-wise cosine learning rate decay schedule [20]. The initial learning rate
after warmup was le—5. The model was trained for 20 epochs, with the iteration
count per epoch equivalent to the size of the training set.

Training harnessed the resources of the Leonardo cluster, which provided
512GB of RAM and four NVIDIA A100-64GB GPUs. This setup ensured the
high-performance processing capabilities necessary to support our experiments’
computational demands.

4.3 Results

We conducted a 5-fold cross-validation on the Rheinbach subset, with each fold
corresponding to a different orthomosaic map. The pseudo-ground truth was
used for the training folds, and the original ground truth was used for the test-
ing folds. The results in Table [I|show that our method achieved a mean F1 score
of 75.3, outperforming the baseline methods Hough+CC and Hough+SLIC. The
results demonstrate that the model can learn to distinguish between crops and
weeds even with noise in the pseudo-ground truth. This is particularly evident in
fold 004, where the pseudo-ground truth generated by the Hough+CC method
yielded an F1 score of 63.0, while our method achieved an F1 score of 74.3, and
the Hough+CC+ResNet50 method adapted from [3]| achieved an F1 score of
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Field
Method 000 001 002 003 oo4| Mean

Hough-+SLIC+ResNet50 [3] 73.8 79.3 72.7 77.5 52.9 71.2 + 4.2

Hough+CC 68.1 72.0 76.1 72.7 63.0 70.4 £ 2.0
Hough+SLIC 68.1 72.0 76.1 72.5 63.1 70.4 £ 2.0
RoWeeder (SegFormer) 70.3 76.4 75.5 77.1 72.8 744 £ 1.1
RoWeeder (Pyramid) 71.6 74.2 74.7 76.8 72.0 73.9 £ 0.8
RoWeeder (Flat) 74.5 749 75.6 77.2 74.3 75.3 £ 0.5

Table 1: F1 scores from 5-fold cross-validation on the Rheinbach subset. RoWeeder,
in the three different settings, outperforms the baselines and the competitors.

Full Inter-row Intra-row
BG Crop Weed| BG Crop Weed| BG Crop Weed
Hough+SLIC+ResNet50 [3]{98.5 62.6 52.6 [99.0 25.4 54.6 (98.8 64.5 35.1

Method

Hough+CC 98.5 65.8 46.9 [99.0 01.9 55.6 |98.8 69.4 00.1
RoWeeder (SegFormer) 98.4 69.5 55.4|98.8 40.9 59.5|98.6 70.3 38.2
RoWeeder (Pyramid) 98.4 69.9 53.3 (98.9 41.0 56.6 |98.7 71.3 36.9
RoWeeder (Flat) 98.4 70.9 56.6 (98.9 42.4 59.8|98.7 71.9 40.3

Table 2: Per-class F1 score averaged over 5-fold cross-validation. Full represents the
F1 score calculated across all pixels in the image. Inter-row refers to the F1 score for
pixels belonging to plants on the crop rows, while inter-rows refers to the F1 score for
pixels belonging to plants outside the crop rows. BG stands for background.

52.9. Fold 004 contains some low-quality, blurred images that may have compro-
mised the Hough algorithm’s predictions and effectiveness. However, the end-
to-end model successfully overcame this issue, maintaining its accuracy. Note
that RoWeeder learns from the output of Hough+CC, so achieving a higher
score than its ground truth indicates its resilience to noise. The results also indi-
cate that the SLIC superpixels do not enhance the model’s performance, as the
Hough+SLIC method achieved the same F1 score as the Hough+CC method.

The noise in the pseudo-ground truth arises from intra-row weeds being mis-
classified as crops. To evaluate the model’s ability to handle this issue, we cal-
culated two Fl-scores: one for the pixels of plants within the rows, termed the
intra-row F1-score, and another for the pixels of plants outside the rows, termed
the inter-row F1-score. The results, averaged over the five folds test set, are
presented in Table 2] Given the definitions of these two metrics, the inter-row
F1-score for crops is 0, as the model cannot detect crops outside the rows. Simi-
larly, the intra-row F1-score for weeds is 0 since the model fails to identify weeds
within the rows. These scores, therefore, reflect the model’s ability to learn from
noisy data, indicating its noise resiliency.

Table [3] presents the computational requirements of the analyzed methods.
The Hough+SLIC+ResNet50 method uses a CNN to classify detected crop
rows and requires significant computational resources, with an inference time
of 1620ms. In contrast, our method achieves an inference time of 7ms, making it
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Method Params (M) GMACs Inference time (ms)
Hough+SLIC+ResNet50 3]  23.51 21.58* 1620
Hough+CC / / 84
Hough+SLIC / / 377
RoWeeder (SegFormer) 3.71 7.84 7.07
RoWeeder (Pyramid) 3.90 3.91 7.79
RoWeeder (Flat) 3.60 3.68 7.16

Table 3: Computational cost comparison between RoWeeder and competitors. * in-
dicates that GMACs are calculated for the deep learning model only, and the method
needs to rerun the deep learning model for each plant in the image, which is variable.

suitable for real-time applications through drones. Inference time was calculated
on a single NVIDIA RTX 4090, a consumer-grade GPU, which is more powerful
than a typical edge device but can still reflect the difference in computational
cost between the methods. The RoWeeder model is lightweight, with only 3.6M
parameters and 3.68 GMACs, making it suitable for edge-device deployment.
Future work will focus on testing the model on edge devices to evaluate its
performance in real-world scenarios.

Figure |4| presents qualitative results from the RoWeeder (flat) model. The
first two rows highlight the primary limitation of the Hough baselines. In the
first example, a line of weeds is misidentified as a crop row, while in the second,
some crop rows go undetected. These errors stem from the Hough transform’s
sensitivity to parameters, such as the threshold value. Applying uniform pa-
rameters across an entire dataset can lead to such inaccuracies. Despite these
ground truth errors, RoWeeder demonstrates robust performance, successfully
identifying most weeds in the first example and most crops in the second.

4.4 Ablation Study

Our comprehensive ablation studies examined different components and config-
urations of the RoWeeder decoders. These experiments were performed using
field 003 as the test set. Table [4] shows the results for different fusion and up-
sampling methods across the two decoder settings. The results indicate that
the flat decoder with sum as the fusion method achieved the best performance,
with an F'1 score of 77.2. The pyramid decoder with concatenation as the fusion
method was the second best, with an F1 score of 76.8. Thus, for each decoder, a
different fusion method proved more suitable. Additionally, upsampling through
interpolation yielded better results than deconvolution.

Another component evaluated was the decoder’s 3 x 3 spatial convolution.
An ablation study over field 003, removing the spatial convolution from the
flat and pyramid decoders, showed that spatial convolution is crucial for good
performance. The F1 score dropped from 77.2 to 75.4 for the flat decoder and
from 76.8 to 74.0 for the pyramid decoder when the spatial convolution was
removed. Lastly, we evaluated the impact of the number of blocks in the model.
Table [p| shows that removing blocks from the encoder and decoder decreased the
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Fig. 4: Pseudo-ground truth is generated with the Hough+CC method and prediction
by RoWeeder. The background is denoted in black, crops in green, and weeds in red.

model’s performance for both the flat and pyramid decoders. However, GMACs
linearly decrease with the number of blocks, while the F1 score drop is less
pronounced. Therefore, this trade-off could be considered when the environment
has limited computational resources.

We also trained our model in a supervised setting to establish a benchmark
for the unsupervised approach. Using 5-fold cross-validation, we achieved an F1
score of 82.8. Although the unsupervised method results in a 7.5-point decrease
in F1 score, it still delivers competitive performance.

5 Conclusion

In this study, we presented RoWeeder, an innovative framework for unsuper-
vised weed mapping that combines crop-row detection with a noise-resilient deep
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F1 score
Pyramid Flat
Add 73.7  77.2
Concat| 76.8 75.3
Add 73.1  73.1
Concat| 74.7 73.5
Table 4: Results of different settings of the decoders over field 003.

Upsample Fusion

Interpolation

Deconvolution

Method # blocks|F1 Score GMACs Params
2 75.3 2.00 0.69

Pyramid 3 76.3 3.10 1.67
4 76.8 3.91 3.90
2 72.3 2.00 0.69

Flat 3 74.8 2.97 1.62
4 77.2 3.68 3.60

Table 5: Ablation study over the number of blocks in the encoder and decoder.

learning model. Our approach leverages crop-row information to create a pseudo-
ground truth, which is then used to train a deep learning model. We evaluated
our method on the WeedMap dataset, achieving an F1 score of 75.3, outper-
forming other methods. Our results demonstrate that the model can effectively
distinguish between crops and weeds, even with noise in the pseudo-ground truth.
Additionally, we conducted an ablation study on different components and con-
figurations of the RoWeeder decoders, showing that the flat decoder with sum
as the fusion method achieved the best performance.

We envision a broad spectrum of future research directions to advance our
method. These include exploring different architectures for the deep learning
model, investigating the impact of various crop-row detection methods, and ex-
tending the framework to other crops and datasets. We also plan to develop a
new decoder more resilient to noise by leveraging contrastive learning to build a
class prototype for each class and then use this prototype to classify each pixel.
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