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Beyond Neighbors: Distance-Generalized Graphlets
for Enhanced Graph Characterization

Anonymous Author(s)

Abstract

Graphs are widely used to model complex systems across various

domains, including social networks and biological systems. A key

task in graph analysis is identifying recurring structural patterns,

known as graphlets, which capture connectivity among a fixed-size

subset of nodes. While graphlets have been extensively applied

in tasks such as measuring graph similarity and identifying com-

munities, conventional graphlets focus only on direct connections

between nodes. This limitation overlooks potential insights from

more distant relationships within the graph structure.

In this paper, we introduce (𝑑, 𝑠)-graphlets, a generalization of

size-𝑠 graphlets that incorporates indirect connections between

nodes up to distance 𝑑 . This new formulation provides a more fine-

grained and comprehensive understanding of local graph structures.

To efficiently count (𝑑, 𝑠)-graphlets in a graph, we present EDGE,

an exact counting algorithm that employs optimized combinatorial

techniques to significantly reduce computational complexity com-

pared to naive enumeration. Our empirical analysis across diverse

real-world datasets demonstrates that (𝑑, 𝑠)-graphlets provide supe-
rior graph characterization, outperforming conventional graphlets

in the graph clustering task. Moreover, our case studies show that

(𝑑, 𝑠)-graphlets uncover non-trivial insights that would remain

undiscovered when using conventional graphlets.

ACM Reference Format:

AnonymousAuthor(s). 2018. BeyondNeighbors: Distance-GeneralizedGraphlets

for Enhanced Graph Characterization. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation email (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 17 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 INTRODUCTION

Graphs are widely used to model complex systems across various

domains, from social networks to biological systems. A key task

in understanding and predicting the behaviors of these systems is

identifying recurring structural patterns, which can provide insights

into their underlying dynamics.

Among the various approaches, graphlets [49, 50] describe con-
nectivity patterns among a small set of nodes (typically 3, 4, or 5

nodes). Graphlets capture local structures within a graph, and real-

world graphs can often be distinguished by their domain, or from

random graphs, based on the occurrence patterns of the graphlets.
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Figure 1: A sample graph and three sets of 4-node subgraphs.

The red dotted lines indicate that the distance between two

nodes is 2. If there is no line between two nodes, it means the

distance between them is greater than 2. Graphlets, which

only account for direct connections betweennodes, (1) cannot

distinguish between subgraphs such as {1, 4, 7, 8} and {9, 10,

11, 12}, and (2) cannot describe subgraphs with disconnected

nodes such as {2, 3, 5, 6}. Our proposed (𝑑, 𝑠)-graphlets address
these limitations by considering relationships that extend

beyond direct connections (distance ≥ 2), allowing for more

fine-grained and comprehensive local structure analysis.

In practice, the occurrences of each graphlet within a given graph

are counted [53], and these counts are then used to measure graph

similarity [56], detect anomalies [6, 28], classify nodes [18, 33], or

identify communities [8, 37, 73].

While graphlets are defined to capture connectivity patterns

based only on direct connections in a general context of graph

analysis, both traditional and recent studies have highlighted the

potential of exploring relationships beyond direct connections. The

significance of relationships between nodes that are not directly

connected (i.e., at a distance of 2 or larger) has long been recog-

nized in social science to enhance the contextual interpretation of

nodes [39]. More recently, incorporating non-neighboring nodes

has been shown to offer key benefits across multiple domains, in-

cluding improved feature representation in machine learning tasks,

with applications in biology [4], recommendation systems [17], and

general graph machine learning methods [24, 64, 70, 72].

Motivated by these insights, in this paper, we introduce (𝒅, 𝒔)-
graphlets, a novel generalization of size-𝑠 graphlets that accounts

for indirect connections between nodes up to distance 𝑑 (see Fig-

ure 2 in Section 4). We first define 𝑑-edges, which generalize edges

by representing relationships between non-neighboring nodes at

a distance of 𝑑 . Using these higher-order connections, we define

(𝑑, 𝑠)-graphlets to describe the local connectivity pattern, incorpo-

rating all 1-edges to𝑑-edges while distinguishing connections based

on their distances. This extension allows for a more fine-grained

and comprehensive analysis of local graph structures, revealing pat-

terns that would otherwise remain undiscovered with conventional

graphlets. An example is shown in Figure 1, where (𝑑, 𝑠)-graphlets
effectively capture and distinguish local structural patterns, while

simple graphlets fail to differentiate or identify them.

Our comprehensive analysis using 13 real-world datasets from 5

different domains reveals that (𝑑, 𝑠)-graphlets are highly effective at
1
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capturing local structural patterns. Specifically, the relative counts

of each (𝑑, 𝑠)-graphlet, when compared to those of null models,

show better differentiation between graphs from different domains

compared to simple graphlets. This enhanced characterization high-

lights the importance of modeling relationships beyond immediate

neighbors for a more accurate analysis of local graph structures.

As a means to count the occurrences of each (𝑑, 𝑠)-graphlet in a

graph, we develop EDGE (Exact Counting ofDistance-Generalized

Graphlets), an algorithm for exactly counting instances of each

(2, 3)-, (3, 3)-, and (2, 4)-graphlets. To avoid exhaustive enumera-

tion, EDGE categorizes (𝑑, 𝑠)-graphlets into non-deducible, semi-

deducible and deducible (𝑑, 𝑠)-graphlets based on structural prop-

erties. It selectively enumerates instances of non/semi-deducible

(𝑑, 𝑠)-graphlets, and using their counts, rapidly computes the count

of deducible (𝑑, 𝑠)-graphlets through combinatorial methods with-

out enumeration. Moreover, EDGE employs a specialized directed

acyclic graph that models relationships between nodes up to dis-

tance 𝑑 , further enhancing its speed and scalability.

To summarize, our contributions are:

• New concept.We introduce a novel definition of graphlets by

generalizing them to additionally consider relationships between

non-neighboring nodes (Section 4).

• Algorithm.We develop an efficient algorithm for exactly count-

ing the occurrences of each (𝑑, 𝑠)-graphlet. EDGE is up to 14.86×
faster than a naive counting method (Section 5).

• Discoveries. Using the counts of (𝑑, 𝑠)-graphlets, we demon-

strate that they exhibit strong characterization power in distin-

guishing real-world graphs (Section 6).

Reproducibility. The code and datasets used in this work are

anonymously available at [26].

2 RELATEDWORK

In this section, we review previous work relevant to our study.

Local structural patterns and graphlets.Mining local structural

patterns from graphs is a common approach for understanding the

underlying dynamics of complex systems [20, 30, 68]. A key chal-

lenge is identifying structural properties that distinguish real-world

graphs from random ones, as these distinctions provide valuable in-

sights into the behavior and organization of such systems. Among

the various analytic tools for graph analysis, graphlets [49, 50]

have been effective in characterizing network structures. As funda-

mental building blocks of graphs, the counts of graphlets serve as

characteristic measures used to assess graph similarity [56], detect

anomalies [6, 28], classify nodes [18, 33], and identify communi-

ties [8, 37, 73]. Recently, graphlets have also been leveraged to en-

hance the graphmachine learning techniques [15, 19, 33]. Graphlets

have been extended in various directions by incorporating node

or edge labels [27, 55], node attributes [57], edge weights [63], and

multi-layer structures [10, 52]. However, existing definitions focus

on direct connections between nodes and overlook the potential

insights from examining indirect (i.e., multi-hop) connections.

Graphlet counting algorithm. Various methods have been pro-

posed to count graphlets in a graph. Early approaches enumerate all

connected subgraphs with a small number of nodes [41, 43, 66, 67].

To improve scalability and avoid exhaustive enumeration, more

recent methods take a more analytical approach. These methods

Table 1: Frequently-used notations.

Notation Definition

𝐺 = (𝑉 , 𝐸) a graph with nodes 𝑉 and edges 𝐸

𝛿 (𝑢, 𝑣) distance between nodes 𝑢 and 𝑣

𝐸 (𝑑 ) the set of 𝑑-edges (the distance between nodes is 𝑑)

𝐸 (≤𝑑 ) the set of {1, 2, · · · , 𝑑}-edges (i.e., {𝐸 (1) , · · · , 𝐸 (𝑑 ) })
𝑁
(𝑑 )
𝑢 the set of 𝑑-neighbors of node 𝑢

®𝑁 (𝑑 )𝑢 the set of out-going 𝑑-neighbors of node 𝑢

𝐺 (𝑑 ) = (𝑉 , 𝐸 (≤𝑑 ) ) 𝑑-graph of the graph 𝐺

®𝐺 (𝑑 ) = (𝑉 , ®𝐸 (≤𝑑 ) ) 𝑑-DAG (directed acyclic graph) of the graph 𝐺

C(𝑔;𝐺) (or C(𝑔)) the counts of (𝑑, 𝑠)-graphlet 𝑔 in a graph 𝐺

exploit the relationships between the counts of different graphlets

and deduce the count of some graphlets based on the counts of

others [1, 2, 29, 40, 48]. For example, PGD [1, 2] and ESCAPE [48]

decompose graphlets into smaller primitives and use their counts to

derive the count of the larger ones using combinatorial arguments.

This approach significantly improves the scalability of graphlet

counting and the size of the graphlets that can be counted. Specifi-

cally, PGD can count up to size-4 graphlets, and ESCAPE extends

this capability to count graphlets up to size-5. Moreover, approxi-

mate counting methods for graphlets, such as path sampling [65],

random walk [71], and color coding [16], make a trade-off by sacri-

ficing some accuracy to gain time efficiency. We take an approach

based on exact counting algorithms, not approximate ones, to en-

sure a precise comparison with conventional graphlets.

Distance generalization in general graph analysis.Many prior

studies have emphasized the potential of exploring relationships

between nodes that are not directly connected by edges [14, 17, 39,

51, 64]. Incorporating relationships between nodes without direct

connections (i.e., those at a distance greater than 1) has been shown

to enhance the performance on various tasks in domains including

natural language processing [9, 22, 51], biology [4], and recom-

mendation systems [17], and improving graph machine learning

methods [24, 47, 64, 70, 72]. A natural extension of this idea is to

generalize the concept of distance between two nodes to incorpo-

rate indirect connections. Conventionally, the degree of a node is

defined as the number of its directly connected neighbors. This can

be generalized by introducing a distance threshold 𝑑 , where the

degree of a node is defined as the number of nodes within a dis-

tance of at most 𝑑 . This generalization of degree has led to various

extensions of graph mining tools. One of the earliest such general-

izations is 𝑑-clique [5, 39], where every pair of nodes in the clique

is within a distance of 𝑑 . Similarly, a 𝑑-club [5, 44] is defined as a

maximal subset of nodes in which the induced subgraph has a diam-

eter of at most 𝑑 . More recently, 𝑘-cores have been generalized to

(𝑘,𝑑)-cores [14, 21, 38, 58], which ensure that each node has at least
𝑘 other nodes within a distance of 𝑑 . These generalizations have

uncovered interesting patterns previously undetected, providing

deeper insights by extending analysis beyond direct relationships.

However, generalizing distances in graphlets has not been explored,

which we focus in this paper.

3 NOTATIONS & BASIC CONCEPTS

In this section, we discuss the notations and basic concepts that

will be used to explain our concepts (Section 4) and algorithms

(Section 5). Refer to Table 1 for the frequently-used notations.

2
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Graphs and distances. A graph 𝐺 = (𝑉 , 𝐸) consists of a set of

nodes 𝑉 and a set of edges 𝐸. The distance 𝛿 (𝑢, 𝑣) between two

nodes 𝑢, 𝑣 ∈ 𝑉 is defined as the length of the shortest path connect-

ing them. Specifically, if 𝑢 and 𝑣 are directly connected by an edge

(i.e., (𝑢, 𝑣) ∈ 𝐸), the distance between them is 1. If no path exists

between the two nodes, their distance is considered infinite.

Induced subgraphs. Given a set of nodes 𝑆 ⊆ 𝑉 , the induced

subgraph on 𝑆 is the subgraph 𝐺𝑆 = (𝑆, 𝐸𝑆 ), where 𝐸𝑆 is the set of

all edges between nodes in 𝑆 that are present in the original graph

𝐺 , i.e., 𝐸𝑆 = {(𝑢, 𝑣) ∈ 𝐸 : 𝑢, 𝑣 ∈ 𝑆}.
Graphlets. A graphlet is an induced subgraph that represents a

specific connectivity pattern among a small number of nodes (typi-

cally, 3, 4, or 5 nodes). The size of a graphlet refers to the number

of nodes it contains. Formally, a graphlet is an equivalence class

of such subgraphs under graph isomorphism. Specifically, two in-

duced subgraphs 𝐺𝑆 = (𝑆, 𝐸𝑆 ) and 𝐺𝑆 ′ = (𝑆 ′, 𝐸𝑆 ′ ) are considered
isomorphic if there exists a bijection 𝜙 : 𝑆 → 𝑆 ′ such that for

every pair of nodes (𝑢, 𝑣) ∈
(𝑆
2

)
, the connectivity relationship is

preserved, i.e., (𝑢, 𝑣) ∈ 𝐸𝑆 ⇔ (𝜙 (𝑢), 𝜙 (𝑣)) ∈ 𝐸𝑆 ′ . This implies that

the connectivity patterns are identical between the subgraphs on 𝑆

and 𝑆 ′ under the mapping 𝜙 .

Null models. To accurately characterize real-world graphs, we

compare them with null models. In this work, we employ random

graphs generated by the configuration model [45] as null graphs,

which preserves degree distributions of the nodes.

4 PROPOSED CONCEPTS

In this section, we propose (𝑑, 𝑠)-graphlets, which are tools for

understanding the local structural characteristics of graphs. We

first discuss some specialized concepts and definitions. Using these

concepts, we formally define (𝑑, 𝑠)-graphlets.

4.1 Preliminary Concepts

We begin by defining some specialized concepts that are essential

for defining (𝑑, 𝑠)-graphlets in Section 4.2.

𝑑-edges. We define a 𝑑-edge as a pair of nodes whose distance is 𝑑

in the graph. Any pair of nodes (𝑢, 𝑣) that forms an actual edge in

the graph (i.e., (𝑢, 𝑣) ∈ 𝐸) is referred to as a 1-edge. For node pairs

with a distance of 𝑑 ≥ 2, they form 𝑑-edges, where explicit edges

do not exist in the original graph, representing virtual connections
between the nodes. We denote the set of 𝑑-edges in 𝐺 by 𝐸 (𝑑 ) :=
{(𝑢, 𝑣) ∈

(𝑉
2

)
: 𝛿 (𝑢, 𝑣) = 𝑑}. Importantly, the sets 𝐸 (𝑑 ) are pairwise

disjoint (i.e., 𝐸 (𝑑 )∩𝐸 (𝑑 ′ ) = ∅ for all𝑑 ≠ 𝑑′) since 𝛿 (𝑢, 𝑣) is uniquely
defined for each node pair (𝑢, 𝑣). We denote the union of all 1-edges

through 𝑑-edges as 𝐸 (≤𝑑 ) = {𝐸 (1) , 𝐸 (2) , · · · , 𝐸 (𝑑 ) }, and define the

𝑑-extended graph as𝐺 (𝑑 ) = (𝑉 , 𝐸 (≤𝑑 ) ) which includes both actual

and virtual connections up to distance 𝑑 . Finally, a node 𝑣 is called

a 𝑑-neighbor of 𝑢 if (𝑢, 𝑣) is a 𝑑-edge, and we denote the set of

𝑑-neighbors of 𝑢 as 𝑁
(𝑑 )
𝑢 .

𝑑-induced subgraphs. Given a set of nodes 𝑆 ⊆ 𝑉 , the 𝑑-induced

subgraph on 𝑆 is the subgraph 𝐺
(𝑑 )
𝑆

= (𝑆, 𝐸 (≤𝑑 )
𝑆
), where 𝐸

(≤𝑑 )
𝑆

consists of all 1-edges, 2-edges, up to 𝑑-edges between nodes in

𝑆 from the original graph 𝐺 . More formally, 𝐸
(≤𝑑 )
𝑆

is defined as:

𝐸
(≤𝑑 )
𝑆

= {𝐸 (1)
𝑆

, 𝐸
(2)
𝑆

, · · · , 𝐸 (𝑑 )
𝑆
}, where for each 𝑑′ ∈ {1, 2, · · · , 𝑑},

the edge set 𝐸
(𝑑 ′ )
𝑆

represents the set of all 𝑑′-edges between nodes

in 𝑆 , i.e., 𝐸
(𝑑 ′ )
𝑆

= {(𝑢, 𝑣) ∈ 𝐸 (𝑑 ′ ) : 𝑢, 𝑣 ∈ 𝑆}. (Note that the distance
between nodes in 𝐺

(𝑑 )
𝑆

is measured in the original graph, not in

the subgraph 𝐺
(𝑑 )
𝑆

.) Notably, conventional induced subgraphs are

1-induced subgraphs, which only consider direct connections (i.e.,

1-edges) between nodes in 𝑆 . In contrast, 𝑑-induced subgraphs

generalize this concept by capturing higher-order connectivity

patterns beyond direct connections.

𝑑-isomorphism. Given two sets of nodes, 𝑆 and 𝑆 ′, and their 𝑑-

induced subgraphs𝐺
(𝑑 )
𝑆

= (𝑆, 𝐸 (≤𝑑 )
𝑆
) and𝐺 (𝑑 )

𝑆 ′ = (𝑆 ′, 𝐸 (≤𝑑 )
𝑆 ′ ), they

are considered 𝑑-isomorphic if there exists a bijection 𝜙 : 𝑆 → 𝑆 ′

such that for every pair of nodes (𝑢, 𝑣) ∈
(𝑆
2

)
, the following holds:

(𝑢, 𝑣) ∈ 𝐸 (𝑑
′ )

𝑆
⇔ (𝜙 (𝑢), 𝜙 (𝑣)) ∈ 𝐸 (𝑑

′ )
𝑆 ′ , ∀𝑑′ ∈ {1, 2, · · · , 𝑑}.

This indicates that the mapping 𝜙 preserves the structure of all

edges up to distance 𝑑 between the nodes in 𝑆 and 𝑆 ′, meaning the

subgraphs are structurally identical with respect to 𝑑-edges.

4.2 (𝑑, 𝑠)-Graphlets
We are now ready to present the definition of (𝑑, 𝑠)-graphlets. We

generalize graphlets by incorporating relationships beyond direct
connections to describe the connectivity patterns of 𝑠 nodes.

Definition. A (𝑑, 𝑠)-graphlet is a 𝑑-isomorphism class of size-𝑠

𝑑-induced subgraphs. More specifically, the 𝑑-induced subgraphs

𝐺
(𝑑 )
𝑆

and 𝐺
(𝑑 )
𝑆 ′ of two sets, 𝑆 and 𝑆 ′, each containing 𝑠 nodes (i.e.,

|𝑆 | = |𝑆 ′ | = 𝑠), belong to the same (𝑑, 𝑠)-graphlet if they are 𝑑-

isomorphic. In essence, a (𝑑, 𝑠)-graphlet represents an equivalence

class of 𝑑-induced subgraphs where the local structure, including

both direct and indirect connections up to distance 𝑑 , is identical.

Examples. In Figure 2, we present examples of (𝑑, 𝑠)-graphlets.
We let T

(𝑑 )
denote the set of all size-3 (𝑑, 𝑠)-graphlets (triplets) and

Q
(𝑑 )

denote that of size-4 (𝑑, 𝑠)-graphlets (quartets). There exist
6 (2, 3)-graphlets (T(2)

1
- T
(2)
6

; |T(2) |=6), 13 (3, 3)-graphlets (T(3)
1

-

T
(3)
13

; |T(3) |=13), and 36 (2, 4)-graphlets (Q(2)
1

- Q
(2)
36

; |Q(2) |=36).
Comparison with graphlets.When considering only direct edges

(i.e., 1-edges), there are only two types of size-3 graphlets (a triangle

and a wedge) and six types of size-4 graphlets (e.g., as a 4-clique

or 4-cycle). However, as shown in Figure 2, incorporating edges

beyond direct neighbors (e.g., 2-edges and 3-edges) allows for finer

distinctions among patterns of 3 or 4 nodes. While increasing the

number of nodes in simple graphlets may provide more insights

into graph structure, it also exponentially increases the number of

graphlet types and thus requiring significantly more complex and

computationally expensive counting algorithms. In Section 6, we

demonstrate that size-3 and size-4 (𝑑, 𝑠)-graphlets more effectively

characterize graphs compared to larger graphlets.

4.3 Characteristic Profiles

To summarize the (𝑑, 𝑠)-graphlet characteristics of a graph, we use
a measure called characteristic profile (CP), which is conventionally

used in graphlet studies [31, 42, 61, 62, 69]. First, we count the

occurrences (i.e., number of instances) of each (𝑑, 𝑠)-graphlet. Let
the occurrence count of the (𝑑, 𝑠)-graphlet 𝑔 in graph𝐺 be denoted

3
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Figure 2: All the (2, 3)-graphlets (T(2)
1

- T
(2)
6

), (3, 3)-graphlets (T(3)
1

- T
(3)
13

), and (2, 4)-graphlets (Q(2)
1

- Q
(2)
36

). Solid edges represent

actual edges (i.e., 1-edges), while dotted edges represent virtual edges (i.e., 2-edges and 3-edges). The 1-edges, 2-edges, and 3-edges

are colored in black, red, and blue, respectively.

as C(𝑔;𝐺) (or C(𝑔) for brevity). Then, the significance of a (𝑑, 𝑠)-
graphlet 𝑔 is defined as:

𝜇𝑔 =
C(𝑔;𝐺) − C(𝑔;𝐺

rand
)

C(𝑔;𝐺) + C(𝑔;𝐺
rand
) + 𝜖

where 𝐺
rand

is a randomized graph of 𝐺 generated by a null model

(see Section 3), and 𝜖 is a small constant (e.g., 𝜖 = 1). Based on the

significance, the CP of 𝑔 is computed as the normalized significance:

CP𝑔 =
𝜇𝑔√︃∑
𝑔′∈𝑔 𝜇

2

𝑔′

where 𝑔 is the set of all considered (𝑑, 𝑠)-graphlets (e.g., T(2) , T(3) ,
or Q

(2)
). The CP is represented as a vector by concatenating the CP

values of each (𝑑, 𝑠)-graphlet, which contains the local structural

information of the graph.

5 PROPOSED ALGORITHMS

In this section, we present EDGE, our algorithm for the exact count-

ing of (𝑑, 𝑠)-graphlets in a given graph. While (𝑑, 𝑠)-graphlets are
generally defined for arbitrary values of 𝑑 and 𝑠 , we focus on three

specific configurations: (𝑑, 𝑠) = {(2, 3), (3, 3), (2, 4)}. In Section 6,

we empirically demonstrate that these configurations are effective

and general enough, compared to simple graphlets with similar

sizes, to uncover non-trivial structural patterns within the graph.

We first introduce our method for counting size-3 (𝑑, 𝑠)-graphlets
(i.e., (2, 3)- and (3, 3)-graphlets), followed by our method for count-

ing size-4 (𝑑, 𝑠)-graphlets (i.e., (2, 4)-graphlets).
Remarks. The problem of counting (𝑑, 𝑠)-graphlets (particularly
for 𝑑 ≥ 2), is computationally more challenging than counting

graphlets (i.e., for 𝑑 = 1). Specifically, (𝑑, 𝑠)-graphlets are defined
based on relationships between nodes up to distance 𝑑 , requiring

the exploration of 𝐸 (2) , · · · , 𝐸 (𝑑 ) , where the number of edges grows

exponentially as𝑂 (Δ𝑑 ), where Δ is the maximum node degree. For

example, as shown in Table 4, the number of 3-edges is at most 15×
more than that of the original edges (i.e., 1-edges). Moreover, the

distance that each edge connects should be accounted for when

determining the (𝑑, 𝑠)-graphlet of an instance. These unique chal-

lenges incur significant bottlenecks for exhaustive enumeration

methods, and thus efficient and specialized algorithms for counting

(𝑑, 𝑠)-graphlets without direct enumeration are demanded.

5.1 Graph Construction

For efficient (𝑑, 𝑠)-graphlet counting, EDGE constructs a directed

acyclic graph (DAG) that consists of actual edges (connecting im-

mediate neighbors) and virtual edges (connecting nodes beyond

their immediate neighbors), as a common preprocessing step.

𝑑-Graph construction. Firstly, EDGE constructs virtual edges that

connect nodes at distances beyond their immediate neighbors.

Specifically, it builds additional edge sets 𝐸 (2) , · · · , 𝐸 (𝑑 ) , resulting
in a 𝑑-graph 𝐺 (𝑑 ) = (𝑉 , 𝐸 (≤𝑑 ) ). This process is performed using

a breadth-first search (BFS) traversal, as outlined in Algorithm 3

(see Appendix A.1). The time complexity of this step is given in

Lemma 1, and the proof is provided in Appendix A.1.

Lemma 1 (Complexity of 𝑑-Edge Construction). The time
complexity of constructing𝑑-edges for a graph𝐺 = (𝑉 , 𝐸) is𝑂 ( |𝑉 |Δ𝑑 ),
where Δ is the maximum degree of the graph.

𝑑-DAG construction. Once the (undirected) 𝑑-graph 𝐺 (𝑑 ) is con-
structed, EDGE builds a 𝑑-degree-ordered directed acyclic graph

(DAG) of 𝐺 , referred to as a 𝑑-DAG. Specifically, for each dis-

tance 𝑑′ ∈ {1, · · · , 𝑑}, it creates a directed edge (𝑢, 𝑣) if 𝑢 ≺ (𝑑 ) 𝑣 ,
where ≺ (𝑑 ) represents the degree ordering based on the 𝑑-edges,

implying |𝑁 (𝑑 )𝑢 | ≤ |𝑁 (𝑑 )𝑣 |. The resulting 𝑑-DAG is denoted as

®𝐺 = (𝑉 , ®𝐸 (≤𝑑 ) ), where ®𝐸 (≤𝑑 ) = { ®𝐸 (1) , · · · , ®𝐸 (𝑑 ) }, and ®𝐸 (𝑑 ′ ) =

{(𝑢, 𝑣) ∈ 𝐸 (𝑑
′ )

: 𝑢 ≺ (𝑑 ) 𝑣} for each 𝑑′ ∈ {1, · · · , 𝑑}. For a node

𝑢, ®𝑁 (𝑑 )𝑢 denotes the out-going neighbors of 𝑢 at distance 𝑑 , i.e.,

®𝑁 (𝑑 )𝑢 = {𝑣 : (𝑢, 𝑣) ∈ ®𝐸 (𝑑 ) }. Importantly, the number of out-going

neighbors is typically smaller than the number of neighbors in

undirected graphs (i.e., | ®𝑁 (𝑑 )𝑢 | ≪ |𝑁 (𝑑 )𝑢 |), which significantly con-

tributes to improving the scalability of EDGE, as empirically demon-

strated in Section 6. For more details, refer to Appendix A.2.

5.2 Size-3 (𝑑, 𝑠)-Graphlet Counting
Wenow explain how EDGE counts size-3 (𝑑, 𝑠)-graphlets (i.e., 𝑠 = 3),

specifically focusing on (2, 3)-graphlets (T(2) ) and (3, 3)-graphlets
4
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Algorithm 1: Counting Size-3 (𝑑, 𝑠)-Graphlets
Input: (1) 𝑑-Graph𝐺 (𝑑 ) = (𝑉 , 𝐸 (≤𝑑 ) ) of graph𝐺

(2) 𝑑-DAG ®𝐺 (𝑑 ) = (𝑉 , ®𝐸 (≤𝑑 ) ) of graph𝐺
(3) Maximum considered distance 𝑑

Output: The count of each size-3 (𝑑, 𝑠 )-graphlet T(𝑑 )
𝑖

:

C(T(𝑑 )
𝑖
) ∀𝑖 ∈ {1, · · · , |T(𝑑 ) | }

// Initialization

1 C(T(𝑑 )
𝑖
) ← 0 ∀𝑖 ∈ {1, · · · , |T(𝑑 ) | }

// Count non-deducible (𝑑, 𝑠 )-graphlets T

(𝑑 )

2 for each 𝑢 ∈ 𝑉
3 𝑃𝑢 ← Effective_Neighbor_Pairs(𝑢,𝑑, ®𝐺 (𝑑 ) )
4 for each (𝑣, 𝑤 ) ∈ 𝑃𝑢
5 T

(𝑑 )
∗ ← Get_Triangle

(
(𝑢, 𝑣, 𝑤 ), 𝑑, ®𝐺 (𝑑 )

)
6 C(T(𝑑 )∗ ) ← C(T

(𝑑 )
∗ ) + 1

// Count deducible (𝑑, 𝑠 )-graphlets T̂
(𝑑 )

7 for each T
(𝑑 )
𝑗
∈ T̂(𝑑 )

8 C(T(𝑑 )
𝑗
) ← Comb_Three

(
T
(𝑑 )
𝑗

, {C(T(𝑑 )
𝑖
) } |T

(𝑑 ) |
𝑖=1

,𝐺 (𝑑 )
)

9 return C(T(𝑑 )
𝑖
) ∀𝑖 ∈ {1, · · · , |T(𝑑 ) | }

(T
(3)

). As detailed in Algorithm 1
1
, we categorize size-3 (𝑑, 𝑠)-

graphlets (T
(𝑑 )

) into two groups: non-deducible and deducible (𝑑, 𝑠)-
graphlets as follows:

• Non-deducible size-3 (𝑑, 𝑠)-graphlets (T(𝑑 ) ) require explicit
enumeration, as their counts cannot be directly inferred. These

include the following types of triangles:

◦ T

(2)
= {T(2)

1
,T
(2)
2

,T
(2)
4
}

◦ T

(3)
= {T(3)

1
,T
(3)
2

,T
(3)
3

,T
(3)
4

,T
(3)
6

,T
(3)
7

,T
(3)
9
}

• Deducible size-3 (𝑑, 𝑠)-graphlets (T̂(𝑑 ) ) are thosewhose counts
can be inferred from the graph structure (e.g., node degrees) and

the counts of non-deducible (𝑑, 𝑠)-graphlets:
◦ T̂

(2) = {T(2)
3

,T
(2)
5

,T
(2)
6
}

◦ T̂
(3) = {T(3)

5
,T
(3)
8

,T
(3)
10

,T
(3)
11

,T
(3)
12

,T
(3)
13
}

As we describe in detail below, we first selectively enumerate each

instance of non-deducible (𝑑, 𝑠)-graphlets (lines 2 - 6). Afterward,
the counts of deducible (𝑑, 𝑠)-graphlets can be rapidly computed us-

ing specialized combinatorial methods without enumeration (lines 7

- 8). This adaptive counting scheme significantly improves the speed

of EDGE, as empirically demonstrated in Section 6.

Counting non-deducible (𝑑, 𝑠)-graphlets. To count each non-

deducible (𝑑, 𝑠)-graphlet, EDGE iterates over each node𝑢. It samples

a subset of its neighboring pairs to ensure that only instances of

non-deducible (𝑑, 𝑠)-graphlets are enumerated (line 3). For each

effective neighboring pair (𝑣,𝑤), it identifies the (𝑑, 𝑠)-graphlet of
the triangle (𝑢, 𝑣,𝑤) based on the distances between the constituent
nodes (line 5). The count of the corresponding (𝑑, 𝑠)-graphlet is
then incremented (line 6).

Counting deducible (𝑑, 𝑠)-graphlets.Once EDGE counts the non-
deducible (𝑑, 𝑠)-graphlets, it efficiently computes the counts of de-

ducible (𝑑, 𝑠)-graphlets using combinatorial counting (line 8). For

1
Refer to Appendix A.3 for details on its sub-algorithms.

each deducible (𝑑, 𝑠)-graphlet, EDGE leverages predefined equa-

tions specific to each (𝑑, 𝑠)-graphlet, based on (1) the exact count

of the non-deducible (𝑑, 𝑠)-graphlets and (2) structural information

(e.g., node degree), if needed. This deductive approach avoids the

need for explicit enumeration for deducible (𝑑, 𝑠)-graphlets. For
example, C(T(2)

5
) can be computed by using the following equation:

C(T(2)
5
) =

∑︁
𝑢∈𝑉

(
|𝑁 (2)𝑢 |

2

)
− 3C(T(2)

1
) − C(T(2)

2
)

The first term counts all cases where the center node of T
(2)
5

has

neighbors connected by 2-edges on both sides. Since these neigh-

bors may also be connected, the counts of the non-deducible (2, 3)-
graphlets T

(2)
1

and T
(2)
2

, are subtracted. As T
(2)
1

can appear at any

of the three nodes in a triangle, its count is multiplied by 3 when

subtracting. While we do not detail the derivation of equations

for all deducible (𝑑, 𝑠)-graphlets, we experimentally verified the

correctness. All specific equations for Comb_Three are provided

in Algorithm 7 of Appendix A.3.

Complexity analysis.We analyze the time complexity of EDGE

for counting size-3 (𝑑, 𝑠)-graphlets (Algorithm 1) in Theorem 1.

Theorem 1 (Complexity of Algorithm 1). The time complex-
ity of EDGE for counting size-3 (𝑑, 𝑠)-graphlets is𝑂 ( |𝑉 |𝑑4 ®Δ2𝑑

log ®Δ),
where ®Δ is themaximum out-going node degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. Refer to Appendix A.3.

Remarks. The time complexity of Algorithm 1 is primarily domi-

nated by the counting of only non-deducible (𝑑, 𝑠)-graphlets. EDGE
achieves the complexity in two ways: (1) It employs 𝑑-DAGs, where

each node has fewer neighbors compared to 𝑑-graphs, reducing

redundancy in enumeration. (2) EDGE selectively enumerates only

non-deducible (𝑑, 𝑠)-graphlets and rapidly counts deducible (𝑑, 𝑠)-
graphlets afterward. As demonstrated in Section 6, these optimiza-

tions lead to a significant speedup of EDGE.

5.3 Size-4 (𝑑, 𝑠)-Graphlet Counting
We now describe how EDGE counts size-4 (𝑑, 𝑠)-graphlets (i.e., 𝑠 =
4), focusing on (2, 4)-graphlets (Q(2) ), as outlined in Algorithm 2

2
.

For (2, 4)-graphlets, we categorize the 36 possible configurations
(i.e., Q

(2)
1

- Q
(2)
36

) into non-deducible, semi-deducible, and deducible.

• Non-deducible (2, 4)-graphlets (Q(2) ), which are all cliques,
require explicit enumeration to obtain their exact counts:

◦ Q

(2)
= {Q(2)

1
,Q
(2)
2

, · · · ,Q(2)
11
}

• Semi-deducible (2, 4)-graphlets (Q̃(2) ), which are all cycles,
partially require enumeration, and their counts are then adjusted:

◦ Q̃
(2) = {Q(2)

28
,Q
(2)
29

,Q
(2)
30
}

• Deducible (2, 4)-graphlets (Q̂(2) ) are those whose counts can
be rapidly obtained using the counts of non-deducible (2, 4)-
graphlets and the graph structure:

◦ Q̂
(2) = {Q(2)

12
, · · · ,Q(2)

27
,Q
(2)
31

, · · · ,Q(2)
36
}

We first count the non-deducible (𝑑, 𝑠)-graphlets by enumerat-

ing over the graph (lines 3 - 10) and use their counts to compute

the counts of the deducible ones through combinatorial methods

2
Refer to Appendix A.4 for details on its sub-algorithms.
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Algorithm 2: (2, 4)-Graphlets Counting
Input: (1) 2-graph𝐺 (2) = (𝑉 , 𝐸 (≤2) ) of graph𝐺

(2) 2-DAG ®𝐺 (2) = (𝑉 , ®𝐸 (≤2) ) of graph𝐺
Output: The count of each size-4 (𝑑, 𝑠 )-Graphlets Q(2)

𝑖
:

C(Q(2)
𝑖
) ∀𝑖 ∈ {1, · · · , |Q(2) | }

// Initialization

1 C(Q(2)
𝑖
) ← 0 ∀𝑖 ∈ {1, · · · , |Q(2) | }

2 for each 𝑢 ∈ 𝑉
// Count non-deducible Q

(2)

3 for each 𝑣 ∈ ®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢

4 𝑁𝑢,𝑣 ←
(
®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢

)
∩
(
®𝑁 (1)𝑣 ∪ ®𝑁 (2)𝑣

)
5 T𝑢,𝑣 ← Triangle_Pairs( (𝑢, 𝑣), 𝑁𝑢,𝑣, ®𝐺 (2) )
6 for each ( (𝑢, 𝑣, 𝑤 ), (𝑢, 𝑣, 𝑤′ ) ) ∈ T𝑢,𝑣
7 T

(2)
◦ ← Get_Triangle

(
(𝑢, 𝑣, 𝑤 ), ®𝐺 (2)

)
8 T

(2)
• ← Get_Triangle

(
(𝑢, 𝑣, 𝑤′ ), ®𝐺 (2)

)
9 Q

(2)
∗ ← Get_Cliqe

(
T
(2)
◦ ,T

(2)
• ,𝑢, 𝑣, 𝑤, 𝑤′

)
10 C(Q(2)∗ ) ← C(Q

(2)
∗ ) + 1

// Count semi-deducible Q̃
(2)

11 for each (𝑣, 𝑣′ ) ∈ ( ®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢 ) × ®𝑁
(2)
𝑢

12 for each 𝑤 ∈ {𝑤′ ∈ 𝑁 (2)𝑣 ∩
(
𝑁
(1)
𝑣′ ∪ 𝑁

(2)
𝑣′

)
: 𝑢 ≺ (𝑑 ) 𝑤′ }

13 T
(2)
△ ← Get_Non-Induced_Wedge

(
(𝑢, 𝑣, 𝑤 ), ®𝐺 (2)

)
14 T

(2)
▲ ← Get_Non-Induced_Wedge

(
(𝑢, 𝑣′, 𝑤 ), ®𝐺 (2)

)
15 Q

(2)
∗ ← Get_Non-Induced_Cycle

(
T
(2)
△ ,T

(2)
▲

)
16 C(Q(2)∗ ) ← C(Q

(2)
∗ ) + 1

// Count deducible (𝑑, 𝑠 )-graphlets Q̂
(2)

17 for each Q
(2)
𝑗
∈ Q̂(2)

18 C(Q(2)
𝑗
) ← Comb_Four

(
Q
(2)
𝑗

, {C(Q(2)
𝑖
) } |Q

(2) |
𝑖=1

,𝐺 (2)
)

// Adjust counts of semi-deducible (𝑑, 𝑠 )-graphlets Q̃
(2)

19 for each Q
(2)
𝑗
∈ Q̃(2)

20 C(Q(2)
𝑗
) ← Comb_Four

(
Q
(2)
𝑗

, {C(Q(2)
𝑖
) } |Q

(2) |
𝑖=1

)
21 return C(Q(2)

𝑖
) ∀𝑖 ∈ {1, · · · , |Q(2) | }

(lines 17 - 18). For semi-deducible ones, we initially compute the

number of their non-induced instances (i.e., instances that induce

semi-deducible (𝑑, 𝑠)-graphlets) (lines 11 - 16) and adjust their

counts accordingly after the enumeration (lines 19 - 20).

Counting non-deducible (𝑑, 𝑠)-graphlets. Instead of exhaustively
enumerating all size-4 instances in the graph to obtain exact count

of (2, 4)-graphlets, we count them by decomposing their structure.

Notably, all non-deducible (𝑑, 𝑠)-graphlets form cliques, which can

be decomposed into two triangles sharing an edge, and the remain-

ing two nodes are also connected (see an example in Figure 3).

For every edge (𝑢, 𝑣), using their common neighbors (line 4), we

determine the set of triangle pairs where the remaining nodes are

connected (line 5). For each pair of triangles, we first identify the

(2, 3)-graphlet of each triangle (lines 7 - 8) and then determine the

(2, 4)-graphlet based on the combination of the two (2, 3)-graphlets

T2
(2) T4

(2) Q7
(2)

𝒖

𝒗

𝑤

𝑤!

𝒖

𝒗𝑤

𝒖

𝒗𝑤′

1-edges 2-edges

𝒗

𝒗′

𝑤

𝑤!

𝒗

𝒗′𝑤

𝒗

𝒗′𝑤′

T6
(2) Q30

(2)T6
(2)

Figure 3: Examples of: (left) two triangles forming a clique,

assuming𝑤 and𝑤 ′ are connected by a 2-edge, and (right) two

wedges forming a cycle, assuming𝑤 and𝑤 ′ are disconnected.

(line 9). The count of the identified (2, 4)-graphlet is then incre-

mented (line 10).

Counting semi-deducible (𝑑, 𝑠)-graphlets. For semi-deducible

(2, 4)-graphlets, which are cycles, we adopt a two-step approach.

Note that a cycle is composed of two wedges that share two end

nodes (see an example in Figure 3). Based on this structure, given

two (dis)connected nodes (𝑣, 𝑣 ′), we first enumerate pairs of non-

induced wedges (which can be either wedges or triangles) using

their common neighbors. Next, we identify the (2, 3)-graphlet of
each non-induced wedge (lines 13 - 14). Based on their combination,

we determine the (2, 4)-graphlet of the non-induced cycle (line 15)

and increment the count (line 16). Once the enumeration finishes,

we adjust the counts by subtracting the counts of (2, 4)-graphlets
that are not cycles, ensuring the correct count of semi-deducible

(𝑑, 𝑠)-graphlets (lines 19 - 20).
Counting deducible (𝑑, 𝑠)-graphlets. The counts of deducible

(2, 4)-graphlets can be rapidly computed from the counts of the

non-deducible (2, 4)-graphlets (lines 17 - 18). The equations of

Comb_Four are provided in Algorithm 13 of Appendix A.4.

Complexity analysis.We analyze the time complexity of EDGE

for counting (2, 4)-graphlets (Algorithm 2) in Theorem 2.

Theorem 2 (Complexity of Algorithm 2). The time com-
plexity of EDGE for counting (2, 4)-graphlets is ( |𝑉 | ®Δ4Δ2

log ®Δ),
where Δ and ®Δ denote the maximum undirected degree and the max-
imum outgoing degree, respectively, i.e., Δ = max𝑢∈𝑉 |𝑁 (1)𝑢 | and
®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. Refer to Appendix A.4.

6 EXPERIMENTS

We share our empirical analysis using (𝑑, 𝑠)-graphlets and its count-
ing algorithm, EDGE. We aim to answer the following questions:

• Q1. Graph characterization: How effective are (𝑑, 𝑠)-graphlets
in distinguishing and clustering graphs across different domains?

• Q2. Real-world discoveries: What insights do (𝑑, 𝑠)-graphlets
provide that cannot be uncovered by simple graphlets?

• Q3. Speed and scalability: How fast and scalable is EDGE? Do

𝑑-DAG and deduced counting contribute to its efficiency?

6.1 Experimental Settings

We report the settings where the experiments were performed.

Datasets.Weused 13 real-world graphs fromfive different domains:

collaboration [3, 13, 25, 34], web [11, 12], social-Facebook [59, 60],

tags [7], and road [36]. We present basic statistics of the datasets

with further details in Appendix B.1.
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Figure 4: Graphs from the same domain exhibit similar CPs derived from the counts of (2, 4)-, (3, 3)-, and (2, 3)-graphlets.
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Figure 5: The domains of the graphs are effectively distinguished by CPs derived from the counts of (𝑑, 𝑠)-graphlets. Specifically,
(2, 4)-, (3, 3)-, and (2, 3)-graphlets, which account for generalized distances, provide a clearer distinction of graphs across domains

compared to simple graphlets that consider only direct connections (e.g., (1, 4)- and (1, 5)-graphlets, which represent size-4 and

size-5 graphlets, respectively). For numerical comparisons, refer to Table 2.

Table 2: (𝑑, 𝑠)-graphlets exhibit larger correlation gaps be-

tween graphs within the same domain and across domains,

as well as superior clustering performance compared to the

original graphlets.

(𝑑, 𝑠) Correlation Gap Clustering

(Within - Across) F1 NMI SH

(1, 3) 0.000 0.467 0.455 0.266

Original (1, 4) 0.252 0.670 0.772 0.539

(1, 5) 0.440 0.920 0.908 0.680

(2, 3) 0.253 0.667 0.856 0.585

Ours (3, 3) 0.667 1.000 1.000 0.797

(2, 4) 0.473 1.000 1.000 0.795

Implementations. We implemented EDGE in C++. EDGE sup-

ports multi-threading, and we set the number of threads to 6. To

count size-4 and size-5 graphlets, we used the open-source C++

implementations of recent exact counting methods, PGD [46] and

ESCAPE [23]. We ran PGD with 6 threads, while ESCAPE does not

support multi-threading.

Machines.We performed all the experiments on a machine with

an Intel i9-10900K CPU and 64GB memory.

6.2 Q1. Graph Characterization

We analyzed the characterization power of the (𝑑, 𝑠)-graphlets
counted by EDGE. Specifically, we computed the characteristic

profiles (CPs; see Section 4.3) for each graph using counts of (2, 3),
(2, 4), and (3, 3)-graphlets. As shown in Figure 4, graphs within

the same domain exhibit highly similar CPs for all (𝑑, 𝑠)-graphlets,
while CPs are clearly distinguished across different domains.

We computed the correlations between CPs of different graphs,

as shown in Figure 5. Notably, (2, 4)-, (3, 3)-, and (2, 3)-graphlets
provide clearer distinctions between graphs across domains com-

pared to the original graphlets (i.e., (1, 4)- and (1, 5)-graphlets).
Specifically, as shown in Table 2, the correlation gap (i.e., the dif-

ference between average correlations within and across domains)

is largest for (3, 3)-graphlets, followed by (2, 4)-graphlets, even
though they use fewer nodes per graphlet than (1, 5)-graphlets.
These large gaps demonstrate the effectiveness of incorporating

multi-hop distances for graphlets.

We further evaluated the clustering of graphs using the CPs as

input features, specifically applying spectral clustering. As shown

in Table 2, (𝑑, 𝑠)-graphlets lead to higher clustering performance in

terms of F1 score, NMI, and Silhouette score. This further validates

the effectiveness of (𝑑, 𝑠)-graphlets in graph characterization.
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when considering distances beyond those in the graphlet.

6.3 Q2. Real-World Discoveries

We conduct case studies on real-world data that support the granu-

larity and generality of (𝑑, 𝑠)-graphlets.
Finer granularity.Wefirst demonstrate that incorporating higher-

order distances between nodes allows for finer differentiation of

local structures, as shown in Figure 6. On the left, the original

3-path size-4 graphlet is divided into two cases, Q
(2)
5

and Q
(2)
19

,

when considering distances up to 2. A 2D representation shows

that the proportions of these finer local structures lead to clearer

graph characterization. For example, graphs in the collaboration

domain, were indistinguishable when considering only the 3-path

graphlet, become distinguishable due to a lower proportion of Q
(2)
19

.

Similarly, on the right, a (2, 3)-graphlet is generalized to (3, 3)-
graphlets, where T

(2)
5

splits into T
(2)
3

and T
(2)
12

when considering

distances up to 3. This further improves domain distinction and

thus enhanced graph characterization.

Comprehensiveness.To assess the significance of the (𝑑, 𝑠)-graphlets
in graph characterization, we use a scoring function that measures

each (𝑑, 𝑠)-graphlet’s contribution to distinguishing graphs by do-

main [32]. Based on these scores, we ranked the (𝑑, 𝑠)-graphlets
and retrieved the top 5 from each graph. Notably, 59 out of the

65 retrieved (𝑑, 𝑠)-graphlets were newly defined (2, 4)-graphlets,
which cannot be described by simple graphlets, demonstrating the

effectiveness of (𝑑, 𝑠)-graphlets in capturing more comprehensive

structural patterns. For more details, refer to Appendix B.2.

6.4 Q3. Speed and Scalability

We evaluate the speed and scalability of EDGE by comparing it

with its variants and existing counting methods.

Effects of EDGE’s components. We first analyze the effects of

EDGE’s design components: (1) deducible counting for deducible

(𝑑, 𝑠)-graphlets (i.e., T̃(𝑑 ) and Q̃(𝑑 ) ) and (2) using 𝑑-DAG for count-

ing non- and semi-deducible (𝑑, 𝑠)-graphlets. We evaluate two vari-

ants: EDGE-D2, which removes both (1) and (2), and EDGE-D, which

removes only (1). As shown in Figure 7, EDGE is significantly faster

10.68 X

3.15 X

(a) (2, 3)-graphlet

14.86 X

3.93 X

(b) (3, 3)-graphlet
Figure 7: EDGE is faster than its variants: (1) EDGE-D2, which

lacks deducible counting and 𝑑-DAG, and (2) EDGE-D, which

lacks 𝑑-DAG. This demonstrates the effectiveness of EDGE’s

design choices for fast (𝑑, 𝑠)-graphlet counting.
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Figure 8: Comparison between EDGE (for counting (2, 4)-
graphlets) and PGD & ESCAPE (for counting (1, 4)-graphlets).
(Left) In total runtime, EDGE is slower than PGD and ESCAPE

due to the additional virtual edges. (Right) In runtime per

instance, EDGE is competitive and even faster in some cases.

than these variants, achieving up to 14.86× and 3.93× speedups over
EDGE-D2 and EDGE-D, respectively. These results demonstrate

the effectiveness of EDGE’s design choices in avoiding unnecessary

enumeration and using 𝑑-DAGs to reduce the neighbors. For more

details, see Appendix B.3.

Comparison to graphlet counting methods. We compare the

counting times of PGD and ESCAPE for (1, 4)-graphlets with EDGE

for (2, 4)-graphlets. As shown in Figure 8, EDGE is generally slower

than PGD and ESCAPE due to the additional edges connecting

indirect nodes. However, when comparing per graphlet, EDGE’s

runtime is competitive, and in some cases, even faster than the

baselines. For more details, see Appendix B.3.

7 CONCLUSIONS

We present (𝑑, 𝑠)-graphlets, distance-generalized graphlets for en-

hanced graph characterization. Our contributions are as follows:

• New Definition:We formally define (𝑑, 𝑠)-graphlets, distance-
generalized graphlets that provide more detailed analysis of local

structures (Section 4).

• Efficient Counting Algorithm:We introduce EDGE, an opti-

mized counting algorithm for (𝑑, 𝑠)-graphlets that reduces unnec-
essary enumeration through deducible computation and efficient

data structures (Section 5).

• Comprehensive Experiments: Our experiments across 13

real-world datasets demonstrate both the effectiveness of (𝑑, 𝑠)-
graphlets and the efficiency of EDGE (Section 6).

For reproducibility, our code and datasets are available at [26].

Future research directions include accelerating the counting of

(𝑑, 𝑠)-graphlets through approximation.
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A ALGORITHM DETAILS

In this section, we provide a more detailed explanation of the count-

ing algorithms introduced in Section 5.

A.1 𝑑-Graph Construction

To count the instances of (𝑑, 𝑠)-graphlets, we construct 𝐸 (≤𝑑 ) =
{𝐸 (1) , 𝐸 (2) , · · · , 𝐸 (𝑑 ) } as a preprocessing step. Algorithm 3 describes

the process of constructing 𝑑-edges (i.e., 𝐸 (𝑑 ) ) from the input graph.

For each node 𝑢 ∈ 𝑉 , we utilize the BFS function to identify all

nodes that are exactly 𝑑-hops away from 𝑢 (line 3). Then, these

nodes are added as edges in 𝐸 (𝑑 ) (line 6) while avoiding duplicates.

The time complexity of this preprocessing step is given in Lemma 1,

and we provide its proof as follows:

Proof of Lemma 1. For each node 𝑢 ∈ 𝑉 , the algorithm per-

forms a BFS up to 𝑑-hops, and thus the total number of nodes

explored up to 𝑑-hops is 𝑂 (Δ + Δ2 + · · · + Δ𝑑 ) = 𝑂 (Δ𝑑 ). Thus, the
time complexity for performing for all nodes 𝑢 ∈ 𝑉 is 𝑂 ( |𝑉 |Δ𝑑 ).

A.2 Effects of 𝑑-DAG

In this section, we assess the effectiveness of using 𝑑-DAGs instead

of (undirected) 𝑑-graphs. As shown in Table 3, both the average and

maximum degrees of nodes with respect to 1-edges, 2-edges, and

3-edges are significantly smaller in 𝑑-DAGs compared to 𝑑-graphs,

i.e., 𝑑𝑎𝑣𝑔 ≫ ®𝑑𝑎𝑣𝑔 and Δ ≫ ®Δ. This reduction dramatically decreases

the number of enumerations required for counting non-deducible

(𝑑, 𝑠)-graphlets. We empirically demonstrate the effectiveness of

employing 𝑑-DAGs in Section 6.

Algorithm 3: 𝑑-Edge Construction (Preprocess)

Input: (1) Input graph𝐺 = (𝑉 , 𝐸 = 𝐸 (1) )
(2) Maximum distance considered 𝑑

Output: Set of 𝑑-edges 𝐸 (𝑑 )

1 𝐸 (𝑑 ) ← ∅
2 for each 𝑢 ∈ 𝑉

// Get all nodes at exactly 𝑑-hops from 𝑢

3 𝑆 (𝑑 ) ← BFS(𝑢,𝑑,𝐺 )
4 for each 𝑣 ∈ 𝑆 (𝑑 )
5 if 𝑢 ≺ 𝑣

6 𝐸 (𝑑 ) ← 𝐸 (𝑑 ) ∪ { (𝑢, 𝑣) }

7 return 𝐸 (𝑑 )

Table 3: Degree statistics for various datasets. Each value

represents the degree characteristics of 1-edge, 2-edge, and

3-edge types. Δ represents the maximum degree, ®Δ denotes

the out-going maximum degree, and 𝑑𝑎𝑣𝑔 and
®𝑑𝑎𝑣𝑔 represent

the average degree and the out-going average degree, respec-

tively.

Datasets Edge type 𝑑𝑎𝑣𝑔 Δ ®𝑑𝑎𝑣𝑔 ®Δ

1-edge 3 343 2 113

ca-DBLP 2-edge 39 5.15K 20 378

3-edge 482 42.9K 241 3.10K

1-edge 3 1.37K 2 206

ca-Citeseer 2-edge 32 5.45K 16 1.36K

3-edge 221 24.4K 111 1.91K

1-edge 10 1.10K 5 164

web-Arabic 2-edge 18 2.66K 9 1.10K

3-edge 91 15.8K 46 1.13K

1-edge 4 199 2 83

web-Indochina 2-edge 37 2.01K 19 194

3-edge 325 3.92K 163 1.47K

1-edge 24 454 12 82

soc-UCSC 2-edge 799 5.64K 400 1.46K

3-edge 2.76K 6.91K 1.38K 4.51K

1-edge 22 660 11 99

soc-UC 2-edge 690 4.90K 345 1.35K

3-edge 1.97K 5.12K 987 3.19K

A.3 Details of Algorithm 1

In this subsection, we provide the details of sub-algorithms used in

Algorithm 1. Then, we provide the proof of Theorem 1 regarding

the complexity of Algorithm 1.

Retrieve_Distance (Algorithm 4).Given a pair of nodes (𝑢, 𝑣)
and the 𝑑-DAG ®𝐺 (𝑑 ) , which considers up to 𝑑-edges, this function

computes the distance between 𝑢 and 𝑣 . Equivalently, it determines

in which of ®𝐸 (≤𝑑 ) = { ®𝐸 (1) , · · · , ®𝐸 (𝑑 ) } the edge (𝑢, 𝑣) is contained.
If (𝑢, 𝑣) is not included in any of the ®𝐸 (1) , · · · , ®𝐸 (𝑑 ) , the distance
is considered to be∞. Since the 𝑑-DAG is 𝑑-degree-ordered, a di-

rected edge 𝑢 → 𝑣 (or 𝑣 → 𝑢) exists if 𝑢 ≺ (𝑑 ) 𝑣 (or 𝑣 ≺ (𝑑 ) 𝑢). For
each distance 𝑑′ ∈ {1, · · · , 𝑑}, it checks whether 𝑣 is an out-going

neighbor of 𝑢 (i.e., 𝑣 ∈ ®𝑁 (𝑑
′ )

𝑢 ) if 𝑢 ≺ (𝑑 ) 𝑣 , and vice versa. If the

neighbor is found, the function returns the corresponding distance

𝑑′. The time complexity of Algorithm 4 is provided in Lemma 2.
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Algorithm 4: Retrieve_Distance

Input: (1) A pair of nodes 𝑢 and 𝑣

(2) 𝑑-DAG ®𝐺 (𝑑 ) = (𝑉 , ®𝐸 (≤𝑑 ) ) of graph𝐺
(3) Maximum considered distance 𝑑

Output: 𝛿 (𝑢, 𝑣) (distance between 𝑢 and 𝑣)

1 for each 𝑑 ′ ∈ {1, · · · , 𝑑 }
2 if 𝑢 ≺ (𝑑 ) 𝑣
3 if 𝑣 ∈ ®𝑁 (𝑑

′ )
𝑢 ⊲ Binary Search

4 return 𝑑 ′

5 else

6 if 𝑢 ∈ ®𝑁 (𝑑
′ )

𝑣 ⊲ Binary Search
7 return 𝑑 ′

8 return∞

Lemma 2 (Complexity of Algorithm 4). The time complexity
of retrieving the distance between two nodes is 𝑂 (𝑑2 log ®Δ), where ®Δ
is the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. Without loss of generality, let 𝑢 ≺ (𝑑 ) 𝑣 . For each dis-

tance 𝑑′ ∈ {1, · · · , 𝑑}, we check 𝑣 is the out-going 𝑑′-neighbor
of 𝑢, i.e., 𝑣 ∈ ®𝑁 (𝑑

′ )
𝑢 . Assuming that ®𝑁 (𝑑

′ )
𝑢 is implemented as a

sorted list, we employ a binary search with a time complexity of

𝑂 (log | ®𝑁 (𝑑
′ )

𝑢 |). In the worst case, we search through all distances

𝑑′ ∈ {1, · · · , 𝑑}, yielding a total time complexity of 𝑂 (log | ®𝑁 (1)𝑢 | +
· · · + log | ®𝑁 (𝑑 )𝑢 |). Let ®Δ be the maximum out-degree, i.e., ®Δ =

max𝑣∈𝑉 | ®𝑁 (1)𝑣 |. The time complexity of Algorithm 4 is thus derived

as 𝑂 (log ®Δ + · · · log ®Δ𝑑 ) = 𝑂 (𝑑2 log ®Δ).
Effective_Neighbor_Pairs (Algorithm 5). This function de-

termines the effective neighboring pairs from all possible pairs

of neighbors. Specifically, given a node 𝑢 and the maximum con-

sidered distance 𝑑 , the set of all neighbors of node 𝑢 up to dis-

tance 𝑑 is

⋃
𝑑 ′∈{1,· · · ,𝑑 } ®𝑁

(𝑑 ′ )
𝑢 . Among all pairs of neighbors (i.e.,(⋃

𝑑′ ∈{1,· · · ,𝑑} ®𝑁
(𝑑′ )
𝑢

2

)
), we only consider those that are connected and

thus form a triangle with 𝑢. In addition, we exclude the neighbor

pairs whose triangle forms deducible (𝑑, 𝑠)-graphlets, as these can
be efficiently counted without enumeration. This reduction in the

set of neighbor pairs significantly and speeds up EDGE. The time

complexity of Algorithm 5 is provided in Lemma 3.

Lemma 3 (Complexity of Algorithm 5). The time complexity
of retrieving effective neighboring pairs of a node is 𝑂 (𝑑4 ®Δ2𝑑

log ®Δ),
where ®Δ is the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. For a given node𝑢 and themaximum considered distance

𝑑 , we consider 𝑢’s out-going neighbors at all 𝑂 (𝑑2) combinations

of distances (𝑑𝑖 , 𝑑 𝑗 ). For each pair of distances, we examine all

pairs (𝑣,𝑤) (where 𝑣 ≺ (𝑑 ) 𝑤 ) of 𝑑𝑖 -neighbors and 𝑑 𝑗 -neighbors,

which results is 𝑂 ( | ®𝑁𝑑𝑖
𝑢 | · | ®𝑁

𝑑 𝑗

𝑢 |) = 𝑂 ( ®Δ2𝑑 ) pairs, where ®Δ is the

maximum out-degree, i.e., max𝑢∈𝑉 | ®𝑁 (1)𝑢 |. Next, we check whether

the two neighbors are connected, which can be done by performing

a binary search for𝑤 from ®𝑁 (𝑑𝑘 )𝑣 ∀𝑑𝑘 ∈ {1, · · · , 𝑑𝑘 } which takes

𝑂 (log | ®𝑁 (1)𝑣 | + · · · + log | ®𝑁
(𝑑 )
𝑣 |) = (𝑑2 log ®Δ) time. Thus, the overall

time complexity is 𝑂 (𝑑4 ®Δ2𝑑
log ®Δ).

Algorithm 5: Effective_Neighbor_Pairs

Input: (1) Node 𝑢

(2) Maximum considered distance 𝑑

(3) 𝑑-DAG ®𝐺 (𝑑 ) = (𝑉 , ®𝐸 (≤𝑑 ) ) of graph𝐺
Output: Effective node pairs set 𝑃𝑢

1 𝑃𝑢 ← ∅
2 for each (𝑑𝑖 , 𝑑 𝑗 ) ∈ { (𝑑 ′𝑖 , 𝑑 ′𝑗 ) : 1 ≤ 𝑑 ′

𝑖
≤ 𝑑 ′

𝑗
≤ 𝑑 }

3 for each (𝑣, 𝑤 ) ∈ { (𝑣′, 𝑤′ ) ∈ ®𝑁 (𝑑𝑖 )𝑢 × ®𝑁 (𝑑 𝑗 )
𝑢 : 𝑣′ ≺ (𝑑 ) 𝑤′ }

4 if 𝑤 ∈ ®𝑁 (𝑑𝑘 )𝑣 ∃𝑑𝑘 ∈ {1, · · · , 𝑑 } \ {𝑑𝑖 + 𝑑 𝑗 , |𝑑𝑖 − 𝑑 𝑗 | }
5 𝑃𝑢 ← 𝑃𝑢 ∪ { (𝑣, 𝑤 ) }

6 return 𝑃𝑢

Get_Triangle (Algorithm 6).Given three nodes (𝑢, 𝑣,𝑤)which
consists a triangle, and the maximum distance considered 𝑑 , this

function returns the corresponding (𝑑, 3)-graphlet of the triangle.
First, it retrieves the distances for all pairs of edges. Then, based

on these three distances, it identifies the (𝑑, 3)-graphlet. The time

complexity of Algorithm 6 is provided in Lemma 4.

Lemma 4 (Complexity of Algorithm 6). The time complexity
of identifying (𝑑, 3)-graphlet of a triangle is 𝑂 (𝑑2 log ®Δ), where ®Δ is
the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. The time complexity for retrieving the distances of three

pairs of nodes is 𝑂 (𝑑2 log ®Δ) (from Lemma 2). Once the distances

are obtained, the corresponding (𝑑, 3)-graphlet can be identified in

𝑂 (1) time. Thus, the overall time complexity is 𝑂 (𝑑2 log ®Δ).
Comb_Three (Algorithm 7). This function is for computing the

counts of deducible (𝑑, 3)-graphlets (T̂(𝑑 ) ). Based on the counts

of non-deducible (𝑑, 3)-graphlets (T(𝑑 ) ), it computes the counts

of the target deducible (𝑑, 3)-graphlets. The time complexity of

Algorithm 7 is provided in Lemma 5.

Lemma 5 (Complexity of Algorithm 7). The time complexity of
computing the count of the given deducible (𝑑, 3)-graphlet is 𝑂 ( |𝑉 |).

Proof. To compute the count of the target deducible (𝑑, 3)-
graphlet, degree-based computations are required, e.g.,

∑
𝑢∈𝑉

( |𝑁 (1)𝑢 |
2

)
to compute C(T(2)

3
). This takes 𝑂 ( |𝑉 |) time.

Proof of Theorem 1. Below, we provide the proof for Theorem 1.

Proof. The time complexity of Algorithm 1 is determined by

two main operations: (1) counting non-deducible (𝑑, 3)-graphlets
and (2) counting deducible (𝑑, 3)-graphlets.
• To count non-deducible (𝑑, 3)-graphlets, we iterate over each

node 𝑢 ∈ 𝑉 and obtain its effective neighbor pairs using Effec-

tive_Neighbor_Pairswhich takes𝑂 (𝑑4 ®Δ2𝑑
logΔ) time (Lemma 3).

For each effective neighbor pair (𝑣,𝑤), we identifies the (𝑑, 3)-
graphlet of the triangle (𝑢, 𝑣,𝑤) using Get_Triangle, which

takes 𝑂 (𝑑2 log ®Δ) time (Lemma 4). In practice, we (1) check the

connectivity between 𝑣 and 𝑤 takes 𝑂 (𝑑2 log ®Δ) time, and (2)

subsequently identify the (𝑑, 3)-graphlet if it is connected which
takes𝑂 ( |𝑉 |𝑑2 log ®Δ) time as well. Thus, the total time complexity

of counting non-deducible (𝑑, 3)-graphlets is 𝑂 (𝑑4 ®Δ2𝑑
log ®Δ).

• To count deducible (𝑑, 3)-graphlets, we use Comb_Three which
takes 𝑂 ( |𝑉 |) time (Lemma 5).
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Algorithm 6: Get_Triangle

Input: (1) Three nodes consisting a triangle 𝑢, 𝑣, 𝑤

(2) Maximum distance considered 𝑑

(3) 𝑑-DAG ®𝐺 (𝑑 ) = (𝑉 , ®𝐸 (≤𝑑 ) ) of graph𝐺
Output: The corresponding (𝑑, 𝑠 )-graphlet T(𝑑 )∗ ∈ T(𝑑 )
// Retrieve pairwise distances (Algorithm 4)

1 𝑑𝑖 ← Retrieve_Distance( (𝑢, 𝑣), 𝑑, ®𝐺 (𝑑 ) )
2 𝑑 𝑗 ← Retrieve_Distance( (𝑢, 𝑤 ), 𝑑, ®𝐺 (𝑑 ) )
3 𝑑𝑘 ← Retrieve_Distance( (𝑣, 𝑤 ), 𝑑, ®𝐺 (𝑑 ) )
// (2, 3)-graphlets (𝑑 = 2)

4 if 𝑑 = 2

5 if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (2, 2, 2) }
6 T

(2)
∗ ← T

(2)
1

7 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (1, 2, 2), (2, 1, 2), (2, 2, 1) }
8 T

(2)
∗ ← T

(2)
2

9 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (2, 1, 1), (1, 2, 1), (1, 1, 2) }
10 T

(2)
∗ ← T

(2)
3

11 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (1, 1, 1) }
12 T

(2)
∗ ← T

(2)
4

// (3, 3)-graphlets (𝑑 = 3)

13 if 𝑑 = 3

14 if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (3, 3, 3) }
15 T

(3)
∗ ← T

(3)
1

16 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (2, 3, 3), (3, 2, 3), (3, 3, 2) }
17 T

(3)
∗ ← T

(3)
2

18 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (2, 2, 3), (2, 3, 2), (3, 2, 2) }
19 T

(3)
∗ ← T

(3)
3

20 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (1, 3, 3), (3, 1, 3), (3, 3, 1) }
21 T

(3)
∗ ← T

(3)
4

22 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (2, 2, 2) }
23 T

(3)
∗ ← T

(3)
6

24 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (1, 2, 2), (2, 1, 2), (2, 2, 1) }
25 T

(3)
∗ ← T

(3)
7

26 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ) ∈ { (1, 1, 1) }
27 T

(3)
∗ ← T

(3)
9

28 return T
(𝑑 )
∗

Since counting non-deducible (𝑑, 𝑠)-graphlets dominates the entire

complexity, the total time complexity of Algorithm 1 is𝑂 ( |𝑉 |𝑑4 ®Δ2𝑑
log ®Δ).

A.4 Details of Algorithm 2

In this subsection, we provide the details of sub-algorithms used in

Algorithm 2. Then, we provide the proof of Theorem 2 regarding

the complexity of Algorithm 2.

Triangle_Pairs (Algorithm 8). This function identifies the set

of effective triangle pairs formed by the edge (𝑢, 𝑣), where the re-
maining nodes are connected. Specifically, we consider a pair of

triangles (𝑢, 𝑣,𝑤) and (𝑢, 𝑣,𝑤 ′) effective if𝑤 and𝑤 ′ for a 1-edge or
2-edge. The time complexity of Algorithm 8 is provided in Lemma 6.

Lemma 6 (Complexity of Algorithm 8). The time complexity
of retrieving effective triangle pairs is 𝑂 ( ®Δ4

log ®Δ), where ®Δ is the
maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. It retrieves the distance for every common neighboring

pair (𝑤,𝑤 ′) of (𝑢, 𝑣), which takes 𝑂 ( |𝑁𝑢,𝑣 |2) = 𝑂 ( ®Δ2𝑑 ), where ®Δ
is the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |. For each pair,

retrieving the distance between 𝑤 and 𝑤 ′ takes 𝑂 (𝑑2 log ®Δ) time

(Lemma 2). Thus, the total time complexity is 𝑂 ( ®Δ2𝑑𝑑2 log ®Δ) =
𝑂 ( ®Δ4

log ®Δ) since we assume 𝑑 = 2.

Get_Cliqe (Algorithm 9).Given two triangles ((2, 3)-graphlets)
T
(2)
◦ ,T

(2)
• and four nodes (𝑢, 𝑣,𝑤,𝑤 ′) that form a clique, this func-

tion returns the corresponding (2, 4)-graphlet of the clique. It first
retrieves the distances of the additional necessary edge pairs. Then,

based on these four distances and the (2, 3)-graphlets of the two
triangles, it immediately identifies the (2, 4)-graphlet of the clique.
The time complexity of Algorithm 9 is provided in Lemma 7.

Lemma 7 (Complexity of Algorithm 9). The time complexity
of identifying (2, 4)-graphlet of a clique is 𝑂 (log ®Δ), where ®Δ is the
maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. The time complexity for retrieving the distances of pairs

of nodes in the clique is 𝑂 (𝑑2 log ®Δ) (from Lemma 2). Once the dis-

tances are obtained, the corresponding (2, 4)-graphlet can be iden-

tified in 𝑂 (1) time. Thus, the overall time complexity is 𝑂 (log ®Δ)
assuming that we use 𝑑 = 2.

Get_Non-induced_Wedge (Algorithm 11).This function iden-

tifies the type of non-induced wedges (which can either be a wedge

or a triangle) for a given set of three nodes (𝑢, 𝑣,𝑤). Here, we
assume that (𝑢,𝑤) is disconnected, and focus on identifying the

wedge (i.e., T
(5)
5

and T
(6)
5

) formed by the triple of nodes. To this

end, we retrieve the distances between (𝑢, 𝑣) and (𝑣,𝑤) and then

rapidly identify the corresponding wedge based on these distances.

The time complexity of Algorithm 11 is provided in Lemma 8.

Lemma 8 (Complexity of Algorithm 11). The time complexity
of identifying T

(2)
5

and T
(2)
6

of the given triple of nodes (𝑢, 𝑣,𝑤),
assuming that 𝑢 and𝑤 are disconnected, is 𝑂 (log ®Δ), where ®Δ is the
maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. The time complexity for retrieving the distances of pairs

of nodes in the clique is 𝑂 (𝑑2 log ®Δ) (from Lemma 2). Once the

distances are obtained, the corresponding wedge (T
(2)
5

and T
(2)
6

)

can be identified in 𝑂 (1) time. Thus, the overall time complexity is

𝑂 (log ®Δ) assuming that we use 𝑑 = 2.

Get_Non-induced_Cycle (Algorithm 12). A non-induced cy-

cle can be obtained based on the predefined conditions of the given

pair of wedges. Thus, the time complexity of Algorithm 12 is 𝑂 (1).
Comb_Four (Algorithm 13). This function computes the counts

of deducible (2, 4)-graphlets (Q̂(2) ) and adjusts the counts of semi-

deducible (2, 4)-graphlets (Q̃(2) . Specifically, it leverages node de-
grees or edge counts to quickly compute these values. In the worst

case, enumeration over the 𝐸 (2) . The time complexity of Algo-

rithm 13 is provided in Lemma 9.
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Algorithm 7: Comb_Three

Input: (1) Target deducible (𝑑, 𝑠 )-graphlet T(𝑑 )
𝑗
∈ T̂(𝑑 )

(2) Intermediate counts of (𝑑, 𝑠 )-graphlets {C(T(𝑑 )
𝑖
) } |T

(𝑑 ) |
𝑖=1

(3) 𝑑-graph𝐺 (𝑑 ) = (𝑉 , 𝐸 (≤𝑑 ) ) of graph𝐺
Output: The count of the target (𝑑, 𝑠 )-graphlet T(𝑑 )

𝑗

// (2, 3)-graphlets (𝑑 = 2)

1 if 𝐺 (𝑑 ) = 𝐺 (2)

// Apply the appropriate equation to T
(2)
𝑗

. The equations should be applied in the below following order.

2 C(T(2)
3
) ← ∑

𝑢∈𝑉
( |𝑁 (1)𝑢 |

2

)
− 3C(T(2)

4
)

3 C(T(2)
5
) ← ∑

𝑢∈𝑉
( |𝑁 (2)𝑢 |

2

)
− 3C(T(2)

1
) − C(T(2)

2
)

4 C(T(2)
6
) ← ∑

𝑢∈𝑉 ( |𝑁
(1)
𝑢 | |𝑁

(2)
𝑢 | ) − 2C(T(2)

2
) − 2C(T(2)

3
)

// (3, 3)-graphlets (𝑑 = 3)

5 if 𝐺 (𝑑 ) = 𝐺 (3)

// Apply the appropriate equation to T
(3)
𝑗

. The equations should be applied in the below following order.

6 C(T(3)
8
) ← ∑

𝑢∈𝑉
( |𝑁 (1)𝑢 |

2

)
− 3C(T(3)

9
)

7 C(T(3)
5
) ← ∑

𝑢∈𝑉 ( |𝑁
(1)
𝑢 | |𝑁

(2)
𝑢 | ) − 2C(T(3)

7
) − 2C(T(3)

8
)

8 C(T(3)
10
) ← ∑

𝑢∈𝑉
( |𝑁 (3)𝑢 |

2

)
− 3C(T(3)

1
) − C(T(3)

2
) − C(T(3)

4
)

9 C(T(3)
11
) ← ∑

𝑢∈𝑉 ( |𝑁
(2)
𝑢 | |𝑁

(3)
𝑢 | ) − 2C(T(3)

2
) − 2C(T(3)

3
) − 2C(T(3)

5
)

10 C(T(3)
12
) ← ∑

𝑢∈𝑉
( |𝑁 (2)𝑢 |

2

)
− C(T(3)

3
) − 3C(T(3)

6
) − C(T(3)

7
)

11 C(T(3)
13
) ← ∑

𝑢∈𝑉 ( |𝑁
(1)
𝑢 | |𝑁

(3)
𝑢 | ) − 2C(T(3)

4
) − C(T(3)

5
)

Algorithm 8: Triangle_Pairs

Input: (1) Two nodes consisting an edge (𝑢, 𝑣)
(2) Common neighbor nodes set between 𝑢 and 𝑣 : 𝑁𝑢,𝑣

(3) 2-DAG ®𝐺 (2) = (𝑉 , ®𝐸 (≤2) ) of graph𝐺
Output: The set of effective pairs triangles { (𝑢, 𝑣, 𝑤 ), (𝑢, 𝑣, 𝑤′ ) }

that share nodes 𝑢 and 𝑣 : T𝑢,𝑣
1 T𝑢,𝑣 ← ∅
2 for each (𝑤, 𝑤′ ) ∈

(𝑁𝑢,𝑣
2

)
3 𝛿 (𝑤, 𝑤′ ) ← Retrieve_Distance( (𝑤, 𝑤′ ), 2, ®𝐺 (2) )
4 if 𝛿 (𝑤, 𝑤′ ) ≠ ∞
5 T𝑢,𝑣 ← T𝑢,𝑣 ∪ {{ (𝑢, 𝑣, 𝑤 ), (𝑢, 𝑣, 𝑤′ ) } }

6 return T𝑢,𝑣

Lemma 9 (Complexity of Algorithm 13). The time complexity
of computing the counts of deducible (2, 4)-graphlets and adjusting
the counts of semi-deducible (2, 4)-graphlet is 𝑂 ( |𝑉 |Δ2).

Proof. In the worst case, it requires enumeration over 𝐸 (2) , and
thus the time complexity is 𝑂 ( |𝐸 | (2) ) = 𝑂 ( |𝑉 |Δ2).
Proof of Theorem 2. Below, we provide the proof for Theorem 2.

Proof. The time complexity of Algorithm 2 is determined by

threemain operations: (1) computing non-deducible (2, 4)-graphlets,
(2) computing semi-deducible (2, 4)-graphlets, and (3) computing

deducible (2, 4)-graphlets.
• To count non-deducible (2, 4)-graphlets, we iterate over each

node 𝑢 ∈ 𝑉 . For each of 𝑢’s neighbor 𝑣 ∈ ®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢 , we first

compute the common neighbors𝑁𝑢,𝑣 which takes𝑂 (min( | ®𝑁 (1)𝑢 ∪
®𝑁 (2)𝑢 |, | ®𝑁

(1)
𝑣 ∪ ®𝑁 (2)𝑣 |)) = 𝑂 ( ®Δ2) time. Using the common neigh-

bors, the effective triangle pairs are retrieved using Triangle_Pairs,

which takes 𝑂 ( ®Δ4
log ®Δ) time (Lemma 6), and the number of

pairs is 𝑂 ( ®Δ4). Then for each triangle pair, each of the corre-

sponding triangle’s (2, 3)-graphlet is identified. Using these (2, 3)-
graphlets, the clique is then determined, which takes 𝑂 (log ®Δ)
time (Lemma 7). Thus, the time complexity of counting non-

deducible (2, 4)-graphlets is ( |𝑉 | ®Δ4
log ®Δ).

• To count semi-deducible (2, 4)-graphlets, for each node 𝑣 , we

enumerate over its neighboring pairs (𝑣, 𝑣 ′), which takes 𝑂 ( ®Δ4)
time. Then we iterate each of the 𝑂 (Δ2) common neighbors𝑤

of 𝑣 and 𝑣 ′, and identify the non-induced wedge which takes

𝑂 (log ®Δ) time (Lemma 8). Then the cycle is identified in 𝑂 (1)
time. Thus, the time complexity of counting semi-deducible (2, 4)-
graphlets is ( |𝑉 | ®Δ4Δ2

log ®Δ).
• To count deducible (2, 4)-graphlets, we use the Comb_Four

which takes 𝑂 ( |𝑉 | ®Δ2) time.

As a result, counting semi-deducible (𝑑, 𝑠)-graphlets dominate the

entire complexity, and thus the overall time complexity of Algo-

rithm 2 is ( |𝑉 | ®Δ4Δ2
log ®Δ).

B EXPERIMENT DETAILS

In this section, we provide further details on our experiments.
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Algorithm 9: Get_Cliqe

Input: (1) Two triangle types T
(2)
◦ ,T

(2)
•

(2) Four nodes consisting a clique 𝑢, 𝑣, 𝑤, 𝑤′

(3) 2-DAG ®𝐺 (2) = (𝑉 , ®𝐸 (≤2) ) of graph𝐺
Output: The corresponding (𝑑, 𝑠 )-graphlet Q(𝑑 )∗ ∈ Q(𝑑 )

1 𝑑 (𝑢,𝑣) ← Retrieve_Distance(𝑢, 𝑣, 2, ®𝐺 (2) )
2 𝑑 (𝑢,𝑤) ← Retrieve_Distance(𝑢, 𝑤, 2, ®𝐺 (2) )
3 𝑑 (𝑢,𝑤′ ) ← Retrieve_Distance(𝑢, 𝑤′, 2, ®𝐺 (2) )
4 𝑑 (𝑤,𝑤′ ) ← Retrieve_Distance(𝑤, 𝑤′, 2, ®𝐺 (2) )
5 if 𝑑 (𝑢,𝑣) = 2

6 if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)1

,T
(2)
1

, 2)
7 Q

(2)
∗ ← Q

(2)
1

8 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)1

,T
(2)
1

, 1)
9 Q

(2)
∗ ← Q

(2)
2

10 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)1

,T
(2)
2

, 2)
11 Q

(2)
∗ ← Q

(2)
2

12 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)1

,T
(2)
2

, 1)
13 Q

(2)
∗ ← Q

(2)
4

14 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)1

,T
(2)
3

, 2)
15 Q

(2)
∗ ← Q

(2)
4

16 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)1

,T
(2)
3

, 1)
17 Q

(2)
∗ ← Q

(2)
6

18 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)2

,T
(2)
2

, 2)
19 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′ )
20 Q

(2)
∗ ← Q

(2)
4

21 else

22 Q
(2)
∗ ← Q

(2)
3

23 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)2

,T
(2)
2

, 1)
24 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′ )
25 Q

(2)
∗ ← Q

(2)
7

26 else

27 Q
(2)
∗ ← Q

(2)
5

28 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)2

,T
(2)
3

, 2)
29 Q

(2)
∗ ← Q

(2)
5

30 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)2

,T
(2)
3

, 1)
31 Q

(2)
∗ ← Q

(2)
9

32 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)3

,T
(2)
3

, 2)
33 Q

(2)
∗ ← Q

(2)
8

34 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)3

,T
(2)
3

, 1)
35 Q

(2)
∗ ← Q

(2)
10

// Continue next page

B.1 Datasets

The details of the datasets and domains are provided below:

• collaboration (ca-DBLP [13], ca-Citeseer [3, 25], ca-HepTh [34]):
Collaboration networks from various academic fields, where

nodes represent authors and edges represent co-authorship be-

tween two authors.

Algorithm 10: Get_Cliqe (continued)

1 else

2 if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)2

,T
(2)
2

, 2)
3 Q

(2)
∗ ← Q

(2)
2

4 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)2

,T
(2)
2

, 1)
5 Q

(2)
∗ ← Q

(2)
3

6 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)2

,T
(2)
3

, 2)
7 Q

(2)
∗ ← Q

(2)
4

8 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)2

,T
(2)
3

, 1)
9 Q

(2)
∗ ← Q

(2)
5

10 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)2

,T
(2)
4

, 2)
11 Q

(2)
∗ ← Q

(2)
7

12 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)2

,T
(2)
4

, 1)
13 Q

(2)
∗ ← Q

(2)
9

14 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)3

,T
(2)
3

, 2)
15 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′ )
16 Q

(2)
∗ ← Q

(2)
6

17 else

18 Q
(2)
∗ ← Q

(2)
5

19 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)3

,T
(2)
3

, 1)
20 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′ )
21 Q

(2)
∗ ← Q

(2)
9

22 else

23 Q
(2)
∗ ← Q

(2)
8

24 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)3

,T
(2)
4

, 2)
25 Q

(2)
∗ ← Q

(2)
9

26 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)3

,T
(2)
4

, 1)
27 Q

(2)
∗ ← Q

(2)
10

28 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)4

,T
(2)
4

, 2)
29 Q

(2)
∗ ← Q

(2)
10

30 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′ ) ) = (T(2)4

,T
(2)
4

, 1)
31 Q

(2)
∗ ← Q

(2)
11

32 return Q
(2)
∗

Algorithm 11: Get_Non-induced_Wedge

Input: (1) Three nodes consisting a wedge (𝑢, 𝑣, 𝑤 )
(2) 𝑑-DAG ®𝐺 (𝑑 ) = (𝑉 , ®𝐸 (≤𝑑 ) ) of graph𝐺

Output: The corresponding (𝑑, 𝑠 )-graphlet T(2)∗ ∈ T(2)
1 𝛿 (𝑢, 𝑣) ← Retrieve_Distance(𝑢, 𝑣, 2, ®𝐺 (2) )
2 𝛿 (𝑣, 𝑤 ) ← Retrieve_Distance(𝑣, 𝑤, 2, ®𝐺 (2) )
3 if (𝛿 (𝑢, 𝑣), 𝛿 (𝑣, 𝑤 ) ∈ { (1, 2), (2, 1) }
4 T

(2)
∗ ← T

(2)
6

5 else

6 T
(2)
∗ ← T

(2)
5

7 return T
(2)
∗

• web [11, 12, 54] (web-Arabic, web-Indochina): Web networks,

where nodes represent web pages and edges represent hyperlinks

between pages.

14
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Algorithm 12: Get_Non-induced_Cycle

Input: (1) Two wedge type T
(2)
△ ,T

(2)
▲

Output: The corresponding (𝑑, 𝑠 )-graphlet Q(2)∗ ∈ Q̃(2)

1 if (T(2)△ ,T
(2)
▲ ) ∈ { (T

(2)
5

,T
(2)
5
) }

2 Q
(2)
∗ ← Q

(2)
30

3 else if (T(2)△ ,T
(2)
▲ ) ∈ { (T

(2)
5

,T
(2)
6
), (T(2)

6
,T
(2)
5
) }

4 Q
(2)
∗ ← Q

(2)
29

5 else

6 Q
(2)
∗ ← Q

(2)
28

7 return Q
(2)
∗

Table 4: Statistics for 13 real-world graphs across 5 domains:

|𝐸 (𝑑 ) | is the number of 𝑑-edges, and |T(𝑑 ) | and |Q(𝑑 ) | are the
counts of size-3 and size-4 (𝑑, 𝑠)-graphlets, respectively.

Dataset |𝑉 | |𝐸 (1) | |𝐸 (2) | |𝐸 (3) | |T(2) | |T(3) | |Q(2) |
ca-DBLP 317K 1.05M 12.7M 153M 4.89B 769B 3.95T

ca-Citeseer 227K 814K 7.38M 50.4M 1.70B 107B 659B

ca-HepTh 9.88K 26.0K 179K 1.10M 21.8M 797M 3.77B

web-Arabic 164K 1.75M 3.06M 14.9M 755M 12.6B 205B

web-Indochina 11.4K 47.6K 425K 3.70M 121M 2.93B 54.5B

soc-UCSC 8.99K 225K 7.19M 24.8M 12.7B 98.9B 21.9T

soc-UC 6.83K 155K 4.72M 13.5M 7.13B 42.5B 9.80T

soc-MB 3.08K 125K 2.35M 1.96M 2.34B 4.62B 1.79T

tags-Ubuntu 3.03K 133K 3.66M 764K 3.96B 4.59B 3.07T

tags-Math 1.63K 91.7K 1.08M 152K 661M 716M 275B

road-CA 1.97M 2.77M 5.12M 8.07M 45.0M 189M 301M

road-PA 1.09M 1.54M 2.88M 4.58M 25.7M 109M 175M

road-TX 1.38M 1.92M 3.52M 5.55M 30.7M 128M 202M

Table 5: Importance scores of (2, 4)-graphlets for each dataset.

Each rank is based on the importance score, and each value

represents the index of graphlet instance, with the score

shown in parentheses.

Dataset 1st 2nd 3rd 4th 5th

ca-DBLP 4 (0.91) 13 (0.90) 2 (0.86) 3 (0.85) 27 (0.76)

ca-Citeseer 4 (0.82) 13 (0.81) 3 (0.76) 5 (0.76) 2 (0.70)

ca-HepTh 4 (0.89) 13 (0.89) 2 (0.84) 5 (0.79) 3 (0.79)

web-Arabic 3 (0.99) 5 (0.98) 36 (0.94) 12 (0.94) 8 (0.93)

web-Indochina 3 (0.99) 5 (0.98) 36 (0.94) 12 (0.94) 8 (0.94)

soc-UCSC 5 (0.96) 4 (0.91) 3 (0.89) 2 (0.89) 1 (0.87)

soc-UC 5 (0.95) 4 (0.93) 3 (0.91) 2 (0.91) 6 (0.89)

soc-MB 5 (0.93) 27 (0.89) 18 (0.88) 4 (0.85) 6 (0.84)

tags-Ubuntu 6 (0.96) 20 (0.94) 3 (0.94) 22 (0.93) 28 (0.91)

tags-Math 6 (0.96) 3 (0.94) 20 (0.93) 22 (0.92) 14 (0.91)

road-CA 30 (0.99) 17 (0.99) 29 (0.99) 12 (0.99) 28 (0.99)

road-PA 17 (0.99) 30 (0.99) 12 (0.99) 14 (0.99) 29 (0.99)

road-TX 30 (0.99) 29 (0.99) 17 (0.99) 28 (0.99) 12 (0.99)

• social-Facebook [59, 60] (soc-UCSC, soc-UC, soc-MB): Social

friendship networks from Facebook at various US schools, where

nodes represent users and edges represent friendship connec-

tions between them.

• tags [7] (tags-Ubuntu, tags-Math): Tag co-occurrence networks

from question-and-answer sites, where nodes represent tags and

edges link tags that appear together on the same question post.

• road [36] (road-CA, road-PA, road-TX): Road networks from

various US regions, where nodes represent intersections or road

endpoints, and edges represent the roads connecting them.

We removed self-loops for our analysis. The preprocessed datasets

can be accessed at [26]. All original datasets used in this study are

publicly available from [7, 35, 54]. We present the dataset statistics,

including the number of nodes, edges, and graphlet instances, in

Table 4.

B.2 Importance scores

Among the (2, 4)-graphlets, Q(2)
6

,Q
(2)
8

,Q
(2)
9

,Q
(2)
10

,Q
(2)
11

,Q
(2)
19

can

also be represented in the original size-4 graphlet. Since the 2-edges

of these instances can be inferred from the 1-edge (i.e., the distance

between nodes that are not connected by a 1-edge is guaranteed to

be at most 2.), they are naturally represented in the (2, 4)-graphlets
as well. The remaining (2, 4)-graphlet instances are newly captured
local structures, identified by considering distances up to 2. To

understand how the newly defined (𝑑, 𝑠)-graphlet plays a significant
role in characterization, we use the scoring function proposed by

[32], which denotes the importance of each graphlet 𝑔.

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝑔) = 1 − 𝑑𝑖𝑠𝑡𝑤𝑖𝑡ℎ𝑖𝑛 (𝑔)
𝑑𝑖𝑠𝑡𝑎𝑐𝑟𝑜𝑠𝑠 (𝑔)

𝑑𝑖𝑠𝑡𝑤𝑖𝑡ℎ𝑖𝑛 (𝑔) is the average CP distance between other graphs from

the same domain, and 𝑑𝑖𝑠𝑡𝑎𝑐𝑟𝑜𝑠𝑠 (𝑔) is the average CP distance be-

tween other graphs from different domains. We calculate the impor-

tance of (2, 4)-graphlets across all 13 datasets and display the top

5 instances for each dataset in Table 5, where the graphlet indices

are ranked by the importance score.

B.3 Exact Counting time for all algorithms

In Section 6.4, we evaluate the counting time of EDGE from two

perspectives: (1) in comparison to conventional graphlet counting

algorithms (PGD and ESCAPE) for size-4 (𝑑, 𝑠)-graphlets, and (2)

against two ablation variants of EDGE (EDGE-D2 and EDGE-D).

Table 6 presents the exact counting time of all algorithms along

with additional information about graphlet instances.
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Algorithm 13: Comb_Four

Input: (1) Target deducible or semi-deducible (2, 4)-graphlet Q(2)
𝑗
∈ Q̂(2) ∪ Q̃(2)

(2) Intermediate counts of (𝑑, 𝑠 )-graphlets {C(Q(𝑑 )
𝑖
) } |Q

(𝑑 ) |
𝑖=1

(3) The counts of each T
(2)
𝑖

per edge {C𝑒 (T(2)𝑖
) } |T

(2) |
𝑖=1

(4) 2-graph𝐺 (2) = (𝑉 , 𝐸 (≤2) ) of graph𝐺
Output: The count of the target (𝑑, 𝑠 )-graphlet Q(𝑑 )

𝑗

// Apply the appropriate equation to Q
(2)
𝑗

. The equations should be applied in the below following order.

1 C(Q(2)
12
) ← ∑

(𝑢,𝑣) ∈𝐸 (2)
(C(𝑢,𝑣) (T(2)1

)
2

)
− 6C(Q(2)

1
) − C(Q(2)

2
)

2 C(Q(2)
13
) ← ∑

(𝑢,𝑣) ∈𝐸 (1)
(C(𝑢,𝑣) (T(2)2

)
2

)
− C(Q(2)

2
) − 2C(Q(2)

3
)

3 C(Q(2)
14
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) (C(𝑢,𝑣) (T
(2)
1
) C(𝑢,𝑣) (T(2)2

) ) − 4C(Q(2)
2
) − 2C(Q(2)

4
)

4 C(Q(2)
15
) ← ∑

(𝑢,𝑣) ∈𝐸 (2)
(C(𝑢,𝑣) (T(2)2

)
2

)
− 4C(Q(2)

3
) − C(Q(2)

5
) − C(Q(2)

4
) − 3C(Q(2)

7
)

5 C(Q(2)
16
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) (C(𝑢,𝑣) (T
(2)
2
) C(𝑢,𝑣) (T(2)3

) ) − 2C(Q(2)
4
) − 2C(Q(2)

5
)

6 C(Q(2)
17
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) (C(𝑢,𝑣) (T
(2)
1
) C(𝑢,𝑣) (T(2)3

) ) − C(Q(2)
4
) − 3C(Q(2)

6
)

7 C(Q(2)
18
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) (C(𝑢,𝑣) (T
(2)
2
) C(𝑢,𝑣) (T(2)4

) ) − 3C(Q(2)
7
) − C(Q(2)

9
)

8 C(Q(2)
19
) ← ∑

(𝑢,𝑣) ∈𝐸 (1)
(C(𝑢,𝑣) (T(2)3

)
2

)
− C(Q(2)

5
) − 4C(Q(2)

8
) − 3C(Q(2)

6
) − C(Q(2)

9
)

9 C(Q(2)
20
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
1
) ( |𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 | ) } − 4C(Q(2)

12
) − C(Q(2)

14
) − 12C(Q(2)

1
) − 4C(Q(2)

2
) − C(Q(2)

4
)

10 C(Q(2)
21
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
1
) ( |𝑁 (1)𝑢 | + |𝑁

(1)
𝑣 | ) } − C(Q

(2)
14
) − 2C(Q(2)

17
) − 2C(Q(2)

2
) − 2C(Q(2)

4
) − 3C(Q(2)

6
)

11 C(Q(2)
22
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T
(2)
2
) ( |𝑁 (2)𝑢 |+ |𝑁

(2)
𝑣 | ) }−4C(Q

(2)
13
) −C(Q(2)

14
) −2C(Q(2)

15
) −C(Q(2)

16
) −4C(Q(2)

2
) −8C(Q(2)

3
) −2C(Q(2)

4
) −2C(Q(2)

5
)

12 C(Q(2)
23
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
2
) ( |𝑁 (2)𝑢 |+ |𝑁

(2)
𝑣 | ) }−

∑
(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T

(2)
2
) ( |𝑁 (2)𝑢 |+ |𝑁

(2)
𝑣 | ) }−C(Q

(2)
14
) −2C(Q(2)

2
) −2C(Q(2)

4
) −3C(Q(2)

7
)

13 C(Q(2)
24
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
2
) ( |𝑁 (1)𝑢 |+ |𝑁

(1)
𝑣 | ) }−

∑
(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T

(2)
2
) ( |𝑁 (1)𝑢 |+ |𝑁

(1)
𝑣 | ) }−2C(Q

(2)
15
) −4C(Q(2)

3
) −2C(Q(2)

5
) −C(Q(2)

9
)

14 C(Q(2)
25
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T
(2)
3
) ( |𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 | ) } −

∑
(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T

(2)
3
) ( |𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 | ) } − C(Q

(2)
16
) − 2C(Q(2)

19
)

15 −C(Q(2)
4
) − 2C(Q(2)

5
) − 4C(Q(2)

8
)

16 C(Q(2)
26
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
3
) ( |𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 | ) } ) − C(Q

(2)
16
) − 2 · C (Q(2)

17
) − 2 · C (Q(2)

4
) − 2 · C (Q(2)

5
) − 6 · C (Q(2)

6
) − 2 · C (Q(2)

9
)

17 C(Q(2)
27
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T
(2)
4
) ( |𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 | ) } − 2 · C (Q(2)

18
) − C(Q(2)

9
) − 2 · C (Q(2)

10
) − 3 · C (Q(2)

7
) − C(Q(2)

9
)

18 C(Q(2)
28
) ← C(Q(2)

28
) − C(Q(2)

12
) − C(Q(2)

13
) − 3 · C (Q(2)

1
) − C(Q(2)

2
) − C(Q(2)

3
)

19 C(Q(2)
29
) ← C(Q(2)

29
) − C(Q(2)

14
) − C(Q(2)

16
) − 2 · C (Q(2)

2
) − 2 · C (Q(2)

4
) − C(Q(2)

5
)

20 C(Q(2)
30
) ← C(Q(2)

30
) − C(Q(2)

15
) − C(Q(2)

19
) − 2C(Q(2)

3
) − C(Q(2)

5
) − 2C(Q(2)

8
)

21 C(Q(2)
31
) ← ∑

𝑢∈𝑉
(𝑁 (2)𝑢

3

)
− C(Q(2)

20
) − C(Q(2)

23
) − 2C(Q(2)

12
) − C(Q(2)

14
) − 4C(Q(2)

1
) − 2C(Q(2)

2
) − C(Q(2)

4
) − C(Q(2)

7
)

22 C(Q(2)
32
) ← ∑

𝑢∈𝑉 {
( |𝑁 (2)𝑢 |

2

)
|𝑁 (1)𝑢 | } − C(Q

(2)
21
) − C(Q(2)

22
) − C(Q(2)

24
) − C(Q(2)

26
) − 2C(Q(2)

13
) − C(Q(2)

14
) − 2C(Q(2)

15
) − C(Q(2)

16
) − 2C(Q(2)

17
)

23 −2C(Q(2)
2
) − 4C(Q(2)

3
) − 2C(Q(2)

4
) − 2C(Q(2)

5
) − 3C(Q(2)

6
) − C(Q(2)

9
)

24 C(Q(2)
33
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) { ( |𝑁
(2)
𝑢 | − 1) ( |𝑁 (2)𝑣 | − 1) − C(𝑢,𝑣) (T(2)1

) } − 4C(Q(2)
28
) − C(Q(2)

29
) − 2C(Q(2)

20
) − C(Q(2)

22
) − 6C(Q(2)

12
) − 4C(Q(2)

13
)

25 −2C(Q(2)
14
) − C(Q(2)

15
) − C(Q(2)

16
) − 12C(Q(2)

1
) − 6C(Q(2)

2
) − 4C(Q(2)

3
) − 2C(Q(2)

4
) − C(Q(2)

5
)

26 C(Q(2)
34
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) { |𝑁
(1)
𝑢 | ( |𝑁

(2)
𝑣 | − 1) + ( |𝑁 (2)𝑢 | − 1) |𝑁 (2)𝑣 | − 1

2
C(𝑢,𝑣) (T(2)2

) } − 2C(Q(2)
29
) − 2C(Q(2)

21
) − 2C(Q(2)

23
) − C(Q(2)

26
)

27 −3C(Q(2)
14
) − 2C(Q(2)

16
) − 4C(Q(2)

17
) − 2C(Q(2)

18
) − 4C(Q(2)

2
) − 6C(Q(2)

4
) − 2C(Q(2)

5
) − 6C(Q(2)

6
) − 6C(Q(2)

7
) − 2C(Q(2)

9
)

28 C(Q(2)
35
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) ( |𝑁
(2)
𝑢 | |𝑁

(2)
𝑣 | − C(𝑢,𝑣) (T

(2)
2
) ) − C(Q(2)

29
) − 2C(Q(2)

30
) − C(Q(2)

22
) − 2C(Q(2)

25
) − 2C(Q(2)

13
) − C(Q(2)

14
) − 2C(Q(2)

15
)

29 −2C(Q(2)
16
) − 3C(Q(2)

19
) − 2C(Q(2)

2
) − 4C(Q(2)

3
) − 2C(Q(2)

4
) − 3C(Q(2)

5
) − 4C(Q(2)

8
)

30 C(Q(2)
36
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) ( |𝑁
(1)
𝑢 | |𝑁

(1)
𝑣 | − C(𝑢,𝑣) (T

(2)
3
) ) − 2C(Q(2)

30
) − 2C(Q(2)
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) − 3C(Q(2)

15
) − 2C(Q(2)

19
) − 4C(Q(2)

3
) − 3C(Q(2)

5
) − 4C(Q(2)

8
)

31 −2C(Q(2)
9
) − 2C(Q(2)
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)
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1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914
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1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Table 6: Dataset statistics and exact counting time (sec.) for each algorithm. |T(𝑑 ) | represents the number of instances of size-3

(𝑑, 𝑠)-graphlets, and |Q(𝑑 ) | represents the number of instances of size-4 (𝑑, 𝑠)-graphlets. Additionally, the table includes the

counting time for the conventional 4-size graphlet counting algorithms, PGD and ESCAPE, as well as the counting time for our

method EDGE and the two baselines (EDGE-D2, EDGE-D).

Datasets |T(2) | |T(3) | |Q(1) | |Q(2) | PGD ESCAPE EDGE-D2-(2,3) EDGE-D-(2,3) EDGE-(2,3) EDGE-D2-(3,3) EDGE-D-(3,3) EDGE-(3,3) EDGE-(2,4)

ca-DBLP 4.89B 769B 629M 3.95T 0.381 0.297 82.3 17.5 4.31 19.0K 4.64K 913 62.5

ca-Citeseer 1.70B 107B 806M 659B 0.206 0.216 40.1 11.6 3.84 2.64K 651 154 807

ca-HepTh 21.8M 797M 3.99M 3.77B 0.004 0.003 0.40 0.09 0.03 23.1 5.52 1.32 0.17

web-Arabic 755M 12.6B 779M 205B 0.427 1.25 23.2 7.58 2.72 308 69.0 18.0 607

web-Indochina 121M 2.93B 23.2M 54.5B 0.009 0.009 1.23 0.30 0.06 89.3 24.2 6.70 1.46

soc-UCSC 12.7B 98.9B 1.97B 21.9T 0.361 0.323 363 103 27.6 5.80K 1.82K 627 3.87K

soc-UC 7.13B 42.5B 1.60B 9.80T 0.296 0.256 212 60.0 15.7 2.53K 789 273 2.75K

soc-MB 2.34B 4.62B 1.99B 1.79T 0.372 0.339 95.8 27.4 8.14 344 102 36.5 2.40K

tags-Ubuntu 3.96B 4.59B 14.2B 3.07T 1.95 1.11 170 54.0 17.6 327 89.9 33.0 9.74K

tags-Math 661M 716M 4.76B 275B 1.17 0.938 33.0 9.80 3.20 51.4 13.2 5.14 936

road-CA 45.0M 189M 14.0M 301M 0.312 0.285 7.76 7.66 7.30 19.0 17.5 15.5 7.88

road-PA 25.7M 108.9M 8.01M 175M 0.187 0.149 2.73 2.64 2.53 7.16 5.86 5.19 2.75

road-TX 30.7M 128M 9.52M 202M 0.238 0.188 4.24 4.20 3.96 10.4 9.33 8.2 4.31
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