
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Beyond Neighbors: Distance-Generalized Graphlets
for Enhanced Graph Characterization

Anonymous Author(s)

Abstract

Graphs are widely used to model complex systems across various

domains, including social networks and biological systems. A key

task in graph analysis is identifying recurring structural patterns,

known as graphlets, which capture connectivity among a fixed-size

subset of nodes. While graphlets have been extensively applied

in tasks such as measuring graph similarity and identifying com-

munities, conventional graphlets focus only on direct connections

between nodes. This limitation overlooks potential insights from

more distant relationships within the graph structure.

In this paper, we introduce (𝑑, 𝑠)-graphlets, a generalization of

size-𝑠 graphlets that incorporates indirect connections between

nodes up to distance 𝑑 . This new formulation provides a more fine-

grained and comprehensive understanding of local graph structures.

To efficiently count (𝑑, 𝑠)-graphlets in a graph, we present EDGE,

an exact counting algorithm that employs optimized combinatorial

techniques to significantly reduce computational complexity com-

pared to naive enumeration. Our empirical analysis across diverse

real-world datasets demonstrates that (𝑑, 𝑠)-graphlets provide supe-
rior graph characterization, outperforming conventional graphlets

in the graph clustering task. Moreover, our case studies show that

(𝑑, 𝑠)-graphlets uncover non-trivial insights that would remain

undiscovered when using conventional graphlets.

ACM Reference Format:

AnonymousAuthor(s). 2018. BeyondNeighbors: Distance-GeneralizedGraphlets

for Enhanced Graph Characterization. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation email (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 17 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 INTRODUCTION

Graphs are widely used to model complex systems across various

domains, from social networks to biological systems. A key task

in understanding and predicting the behaviors of these systems is

identifying recurring structural patterns, which can provide insights

into their underlying dynamics.

Among the various approaches, graphlets [49, 50] describe con-
nectivity patterns among a small set of nodes (typically 3, 4, or 5

nodes). Graphlets capture local structures within a graph, and real-

world graphs can often be distinguished by their domain, or from

random graphs, based on the occurrence patterns of the graphlets.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Q19
(2)

1

3

4

5

6

7

8

9

11

10

12

Q5
(2)

(2, 4)-Graphlets

1-edges 2-edges

Size-4 Graphlets

Undistinguishable
& Unidentifiable

2

13

14
Q1
(2)

?

Figure 1: A sample graph and three sets of 4-node subgraphs.

The red dotted lines indicate that the distance between two

nodes is 2. If there is no line between two nodes, it means the

distance between them is greater than 2. Graphlets, which

only account for direct connections betweennodes, (1) cannot

distinguish between subgraphs such as {1, 4, 7, 8} and {9, 10,

11, 12}, and (2) cannot describe subgraphs with disconnected

nodes such as {2, 3, 5, 6}. Our proposed (𝑑, 𝑠)-graphlets address
these limitations by considering relationships that extend

beyond direct connections (distance ≥ 2), allowing for more

fine-grained and comprehensive local structure analysis.

In practice, the occurrences of each graphlet within a given graph

are counted [53], and these counts are then used to measure graph

similarity [56], detect anomalies [6, 28], classify nodes [18, 33], or

identify communities [8, 37, 73].

While graphlets are defined to capture connectivity patterns

based only on direct connections in a general context of graph

analysis, both traditional and recent studies have highlighted the

potential of exploring relationships beyond direct connections. The

significance of relationships between nodes that are not directly

connected (i.e., at a distance of 2 or larger) has long been recog-

nized in social science to enhance the contextual interpretation of

nodes [39]. More recently, incorporating non-neighboring nodes

has been shown to offer key benefits across multiple domains, in-

cluding improved feature representation in machine learning tasks,

with applications in biology [4], recommendation systems [17], and

general graph machine learning methods [24, 64, 70, 72].

Motivated by these insights, in this paper, we introduce (𝒅, 𝒔)-
graphlets, a novel generalization of size-𝑠 graphlets that accounts

for indirect connections between nodes up to distance 𝑑 (see Fig-

ure 2 in Section 4). We first define 𝑑-edges, which generalize edges

by representing relationships between non-neighboring nodes at

a distance of 𝑑 . Using these higher-order connections, we define

(𝑑, 𝑠)-graphlets to describe the local connectivity pattern, incorpo-

rating all 1-edges to𝑑-edges while distinguishing connections based

on their distances. This extension allows for a more fine-grained

and comprehensive analysis of local graph structures, revealing pat-

terns that would otherwise remain undiscovered with conventional

graphlets. An example is shown in Figure 1, where (𝑑, 𝑠)-graphlets
effectively capture and distinguish local structural patterns, while

simple graphlets fail to differentiate or identify them.

Our comprehensive analysis using 13 real-world datasets from 5

different domains reveals that (𝑑, 𝑠)-graphlets are highly effective at
1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

capturing local structural patterns. Specifically, the relative counts

of each (𝑑, 𝑠)-graphlet, when compared to those of null models,

show better differentiation between graphs from different domains

compared to simple graphlets. This enhanced characterization high-

lights the importance of modeling relationships beyond immediate

neighbors for a more accurate analysis of local graph structures.

As a means to count the occurrences of each (𝑑, 𝑠)-graphlet in a

graph, we develop EDGE (Exact Counting ofDistance-Generalized

Graphlets), an algorithm for exactly counting instances of each

(2, 3)-, (3, 3)-, and (2, 4)-graphlets. To avoid exhaustive enumera-

tion, EDGE categorizes (𝑑, 𝑠)-graphlets into non-deducible, semi-

deducible and deducible (𝑑, 𝑠)-graphlets based on structural prop-

erties. It selectively enumerates instances of non/semi-deducible

(𝑑, 𝑠)-graphlets, and using their counts, rapidly computes the count

of deducible (𝑑, 𝑠)-graphlets through combinatorial methods with-

out enumeration. Moreover, EDGE employs a specialized directed

acyclic graph that models relationships between nodes up to dis-

tance 𝑑 , further enhancing its speed and scalability.

To summarize, our contributions are:

• New concept.We introduce a novel definition of graphlets by

generalizing them to additionally consider relationships between

non-neighboring nodes (Section 4).

• Algorithm.We develop an efficient algorithm for exactly count-

ing the occurrences of each (𝑑, 𝑠)-graphlet. EDGE is up to 14.86×
faster than a naive counting method (Section 5).

• Discoveries. Using the counts of (𝑑, 𝑠)-graphlets, we demon-

strate that they exhibit strong characterization power in distin-

guishing real-world graphs (Section 6).

Reproducibility. The code and datasets used in this work are

anonymously available at [26].

2 RELATEDWORK

In this section, we review previous work relevant to our study.

Local structural patterns and graphlets.Mining local structural

patterns from graphs is a common approach for understanding the

underlying dynamics of complex systems [20, 30, 68]. A key chal-

lenge is identifying structural properties that distinguish real-world

graphs from random ones, as these distinctions provide valuable in-

sights into the behavior and organization of such systems. Among

the various analytic tools for graph analysis, graphlets [49, 50]

have been effective in characterizing network structures. As funda-

mental building blocks of graphs, the counts of graphlets serve as

characteristic measures used to assess graph similarity [56], detect

anomalies [6, 28], classify nodes [18, 33], and identify communi-

ties [8, 37, 73]. Recently, graphlets have also been leveraged to en-

hance the graphmachine learning techniques [15, 19, 33]. Graphlets

have been extended in various directions by incorporating node

or edge labels [27, 55], node attributes [57], edge weights [63], and

multi-layer structures [10, 52]. However, existing definitions focus

on direct connections between nodes and overlook the potential

insights from examining indirect (i.e., multi-hop) connections.

Graphlet counting algorithm. Various methods have been pro-

posed to count graphlets in a graph. Early approaches enumerate all

connected subgraphs with a small number of nodes [41, 43, 66, 67].

To improve scalability and avoid exhaustive enumeration, more

recent methods take a more analytical approach. These methods

Table 1: Frequently-used notations.

Notation Definition

𝐺 = (𝑉 , 𝐸) a graph with nodes 𝑉 and edges 𝐸

𝛿 (𝑢, 𝑣) distance between nodes 𝑢 and 𝑣

𝐸 (𝑑) the set of 𝑑-edges (the distance between nodes is 𝑑)

𝐸 (≤𝑑) the set of {1, 2, · · · , 𝑑}-edges (i.e., {𝐸 (1) , · · · , 𝐸 (𝑑) })
𝑁
(𝑑)
𝑢 the set of 𝑑-neighbors of node 𝑢

®𝑁 (𝑑)𝑢 the set of out-going 𝑑-neighbors of node 𝑢

𝐺 (𝑑) = (𝑉 , 𝐸 (≤𝑑)) 𝑑-graph of the graph 𝐺

®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) 𝑑-DAG (directed acyclic graph) of the graph 𝐺

C(𝑔;𝐺) (or C(𝑔)) the counts of (𝑑, 𝑠)-graphlet 𝑔 in a graph 𝐺

exploit the relationships between the counts of different graphlets

and deduce the count of some graphlets based on the counts of

others [1, 2, 29, 40, 48]. For example, PGD [1, 2] and ESCAPE [48]

decompose graphlets into smaller primitives and use their counts to

derive the count of the larger ones using combinatorial arguments.

This approach significantly improves the scalability of graphlet

counting and the size of the graphlets that can be counted. Specifi-

cally, PGD can count up to size-4 graphlets, and ESCAPE extends

this capability to count graphlets up to size-5. Moreover, approxi-

mate counting methods for graphlets, such as path sampling [65],

random walk [71], and color coding [16], make a trade-off by sacri-

ficing some accuracy to gain time efficiency. We take an approach

based on exact counting algorithms, not approximate ones, to en-

sure a precise comparison with conventional graphlets.

Distance generalization in general graph analysis.Many prior

studies have emphasized the potential of exploring relationships

between nodes that are not directly connected by edges [14, 17, 39,

51, 64]. Incorporating relationships between nodes without direct

connections (i.e., those at a distance greater than 1) has been shown

to enhance the performance on various tasks in domains including

natural language processing [9, 22, 51], biology [4], and recom-

mendation systems [17], and improving graph machine learning

methods [24, 47, 64, 70, 72]. A natural extension of this idea is to

generalize the concept of distance between two nodes to incorpo-

rate indirect connections. Conventionally, the degree of a node is

defined as the number of its directly connected neighbors. This can

be generalized by introducing a distance threshold 𝑑 , where the

degree of a node is defined as the number of nodes within a dis-

tance of at most 𝑑 . This generalization of degree has led to various

extensions of graph mining tools. One of the earliest such general-

izations is 𝑑-clique [5, 39], where every pair of nodes in the clique

is within a distance of 𝑑 . Similarly, a 𝑑-club [5, 44] is defined as a

maximal subset of nodes in which the induced subgraph has a diam-

eter of at most 𝑑 . More recently, 𝑘-cores have been generalized to

(𝑘,𝑑)-cores [14, 21, 38, 58], which ensure that each node has at least
𝑘 other nodes within a distance of 𝑑 . These generalizations have

uncovered interesting patterns previously undetected, providing

deeper insights by extending analysis beyond direct relationships.

However, generalizing distances in graphlets has not been explored,

which we focus in this paper.

3 NOTATIONS & BASIC CONCEPTS

In this section, we discuss the notations and basic concepts that

will be used to explain our concepts (Section 4) and algorithms

(Section 5). Refer to Table 1 for the frequently-used notations.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Graphs and distances. A graph 𝐺 = (𝑉 , 𝐸) consists of a set of

nodes 𝑉 and a set of edges 𝐸. The distance 𝛿 (𝑢, 𝑣) between two

nodes 𝑢, 𝑣 ∈ 𝑉 is defined as the length of the shortest path connect-

ing them. Specifically, if 𝑢 and 𝑣 are directly connected by an edge

(i.e., (𝑢, 𝑣) ∈ 𝐸), the distance between them is 1. If no path exists

between the two nodes, their distance is considered infinite.

Induced subgraphs. Given a set of nodes 𝑆 ⊆ 𝑉 , the induced

subgraph on 𝑆 is the subgraph 𝐺𝑆 = (𝑆, 𝐸𝑆), where 𝐸𝑆 is the set of

all edges between nodes in 𝑆 that are present in the original graph

𝐺 , i.e., 𝐸𝑆 = {(𝑢, 𝑣) ∈ 𝐸 : 𝑢, 𝑣 ∈ 𝑆}.
Graphlets. A graphlet is an induced subgraph that represents a

specific connectivity pattern among a small number of nodes (typi-

cally, 3, 4, or 5 nodes). The size of a graphlet refers to the number

of nodes it contains. Formally, a graphlet is an equivalence class

of such subgraphs under graph isomorphism. Specifically, two in-

duced subgraphs 𝐺𝑆 = (𝑆, 𝐸𝑆) and 𝐺𝑆 ′ = (𝑆 ′, 𝐸𝑆 ′) are considered
isomorphic if there exists a bijection 𝜙 : 𝑆 → 𝑆 ′ such that for

every pair of nodes (𝑢, 𝑣) ∈
(𝑆
2

)
, the connectivity relationship is

preserved, i.e., (𝑢, 𝑣) ∈ 𝐸𝑆 ⇔ (𝜙 (𝑢), 𝜙 (𝑣)) ∈ 𝐸𝑆 ′ . This implies that

the connectivity patterns are identical between the subgraphs on 𝑆

and 𝑆 ′ under the mapping 𝜙 .

Null models. To accurately characterize real-world graphs, we

compare them with null models. In this work, we employ random

graphs generated by the configuration model [45] as null graphs,

which preserves degree distributions of the nodes.

4 PROPOSED CONCEPTS

In this section, we propose (𝑑, 𝑠)-graphlets, which are tools for

understanding the local structural characteristics of graphs. We

first discuss some specialized concepts and definitions. Using these

concepts, we formally define (𝑑, 𝑠)-graphlets.

4.1 Preliminary Concepts

We begin by defining some specialized concepts that are essential

for defining (𝑑, 𝑠)-graphlets in Section 4.2.

𝑑-edges. We define a 𝑑-edge as a pair of nodes whose distance is 𝑑

in the graph. Any pair of nodes (𝑢, 𝑣) that forms an actual edge in

the graph (i.e., (𝑢, 𝑣) ∈ 𝐸) is referred to as a 1-edge. For node pairs

with a distance of 𝑑 ≥ 2, they form 𝑑-edges, where explicit edges

do not exist in the original graph, representing virtual connections
between the nodes. We denote the set of 𝑑-edges in 𝐺 by 𝐸 (𝑑) :=
{(𝑢, 𝑣) ∈

(𝑉
2

)
: 𝛿 (𝑢, 𝑣) = 𝑑}. Importantly, the sets 𝐸 (𝑑) are pairwise

disjoint (i.e., 𝐸 (𝑑)∩𝐸 (𝑑 ′) = ∅ for all𝑑 ≠ 𝑑′) since 𝛿 (𝑢, 𝑣) is uniquely
defined for each node pair (𝑢, 𝑣). We denote the union of all 1-edges

through 𝑑-edges as 𝐸 (≤𝑑) = {𝐸 (1) , 𝐸 (2) , · · · , 𝐸 (𝑑) }, and define the

𝑑-extended graph as𝐺 (𝑑) = (𝑉 , 𝐸 (≤𝑑)) which includes both actual

and virtual connections up to distance 𝑑 . Finally, a node 𝑣 is called

a 𝑑-neighbor of 𝑢 if (𝑢, 𝑣) is a 𝑑-edge, and we denote the set of

𝑑-neighbors of 𝑢 as 𝑁
(𝑑)
𝑢 .

𝑑-induced subgraphs. Given a set of nodes 𝑆 ⊆ 𝑉 , the 𝑑-induced

subgraph on 𝑆 is the subgraph 𝐺
(𝑑)
𝑆

= (𝑆, 𝐸 (≤𝑑)
𝑆
), where 𝐸

(≤𝑑)
𝑆

consists of all 1-edges, 2-edges, up to 𝑑-edges between nodes in

𝑆 from the original graph 𝐺 . More formally, 𝐸
(≤𝑑)
𝑆

is defined as:

𝐸
(≤𝑑)
𝑆

= {𝐸 (1)
𝑆

, 𝐸
(2)
𝑆

, · · · , 𝐸 (𝑑)
𝑆
}, where for each 𝑑′ ∈ {1, 2, · · · , 𝑑},

the edge set 𝐸
(𝑑 ′)
𝑆

represents the set of all 𝑑′-edges between nodes

in 𝑆 , i.e., 𝐸
(𝑑 ′)
𝑆

= {(𝑢, 𝑣) ∈ 𝐸 (𝑑 ′) : 𝑢, 𝑣 ∈ 𝑆}. (Note that the distance
between nodes in 𝐺

(𝑑)
𝑆

is measured in the original graph, not in

the subgraph 𝐺
(𝑑)
𝑆

.) Notably, conventional induced subgraphs are

1-induced subgraphs, which only consider direct connections (i.e.,

1-edges) between nodes in 𝑆 . In contrast, 𝑑-induced subgraphs

generalize this concept by capturing higher-order connectivity

patterns beyond direct connections.

𝑑-isomorphism. Given two sets of nodes, 𝑆 and 𝑆 ′, and their 𝑑-

induced subgraphs𝐺
(𝑑)
𝑆

= (𝑆, 𝐸 (≤𝑑)
𝑆
) and𝐺 (𝑑)

𝑆 ′ = (𝑆 ′, 𝐸 (≤𝑑)
𝑆 ′), they

are considered 𝑑-isomorphic if there exists a bijection 𝜙 : 𝑆 → 𝑆 ′

such that for every pair of nodes (𝑢, 𝑣) ∈
(𝑆
2

)
, the following holds:

(𝑢, 𝑣) ∈ 𝐸 (𝑑
′)

𝑆
⇔ (𝜙 (𝑢), 𝜙 (𝑣)) ∈ 𝐸 (𝑑

′)
𝑆 ′ , ∀𝑑′ ∈ {1, 2, · · · , 𝑑}.

This indicates that the mapping 𝜙 preserves the structure of all

edges up to distance 𝑑 between the nodes in 𝑆 and 𝑆 ′, meaning the

subgraphs are structurally identical with respect to 𝑑-edges.

4.2 (𝑑, 𝑠)-Graphlets
We are now ready to present the definition of (𝑑, 𝑠)-graphlets. We

generalize graphlets by incorporating relationships beyond direct
connections to describe the connectivity patterns of 𝑠 nodes.

Definition. A (𝑑, 𝑠)-graphlet is a 𝑑-isomorphism class of size-𝑠

𝑑-induced subgraphs. More specifically, the 𝑑-induced subgraphs

𝐺
(𝑑)
𝑆

and 𝐺
(𝑑)
𝑆 ′ of two sets, 𝑆 and 𝑆 ′, each containing 𝑠 nodes (i.e.,

|𝑆 | = |𝑆 ′ | = 𝑠), belong to the same (𝑑, 𝑠)-graphlet if they are 𝑑-

isomorphic. In essence, a (𝑑, 𝑠)-graphlet represents an equivalence

class of 𝑑-induced subgraphs where the local structure, including

both direct and indirect connections up to distance 𝑑 , is identical.

Examples. In Figure 2, we present examples of (𝑑, 𝑠)-graphlets.
We let T

(𝑑)
denote the set of all size-3 (𝑑, 𝑠)-graphlets (triplets) and

Q
(𝑑)

denote that of size-4 (𝑑, 𝑠)-graphlets (quartets). There exist
6 (2, 3)-graphlets (T(2)

1
- T
(2)
6

; |T(2) |=6), 13 (3, 3)-graphlets (T(3)
1

-

T
(3)
13

; |T(3) |=13), and 36 (2, 4)-graphlets (Q(2)
1

- Q
(2)
36

; |Q(2) |=36).
Comparison with graphlets.When considering only direct edges

(i.e., 1-edges), there are only two types of size-3 graphlets (a triangle

and a wedge) and six types of size-4 graphlets (e.g., as a 4-clique

or 4-cycle). However, as shown in Figure 2, incorporating edges

beyond direct neighbors (e.g., 2-edges and 3-edges) allows for finer

distinctions among patterns of 3 or 4 nodes. While increasing the

number of nodes in simple graphlets may provide more insights

into graph structure, it also exponentially increases the number of

graphlet types and thus requiring significantly more complex and

computationally expensive counting algorithms. In Section 6, we

demonstrate that size-3 and size-4 (𝑑, 𝑠)-graphlets more effectively

characterize graphs compared to larger graphlets.

4.3 Characteristic Profiles

To summarize the (𝑑, 𝑠)-graphlet characteristics of a graph, we use
a measure called characteristic profile (CP), which is conventionally

used in graphlet studies [31, 42, 61, 62, 69]. First, we count the

occurrences (i.e., number of instances) of each (𝑑, 𝑠)-graphlet. Let
the occurrence count of the (𝑑, 𝑠)-graphlet 𝑔 in graph𝐺 be denoted

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

T1
(2) T2

(2) T3
(2) T4

(2) T5
(2) T6

(2) T1
(3) T2

(3) T3
(3) T4

(3) T5
(3) T6

(3) T7
(3) T8

(3) T9
(3) T10

(3) T11
(3) T12

(3) T13
(3)

Q1
(2) Q2

(2) Q3
(2) Q4

(2) Q5
(2) Q6

(2) Q7
(2) Q8

(2) Q9
(2) Q10

(2) Q11
(2) Q12

(2) Q13
(2) Q14

(2) Q15
(2) Q16

(2) Q17
(2) Q18

(2) Q19
(2)

Q20
(2) Q21

(2) Q22
(2) Q23

(2) Q24
(2) Q25

(2) Q26
(2) Q27

(2) Q28
(2) Q29

(2) Q30
(2) Q31

(2) Q32
(2) Q33

(2) Q34
(2) Q35

(2) Q36
(2)

(2, 3)-Graphlets (3, 3)-Graphlets

(2, 4)-Graphlets

1-edges

2-edges

3-edges

Figure 2: All the (2, 3)-graphlets (T(2)
1

- T
(2)
6

), (3, 3)-graphlets (T(3)
1

- T
(3)
13

), and (2, 4)-graphlets (Q(2)
1

- Q
(2)
36

). Solid edges represent

actual edges (i.e., 1-edges), while dotted edges represent virtual edges (i.e., 2-edges and 3-edges). The 1-edges, 2-edges, and 3-edges

are colored in black, red, and blue, respectively.

as C(𝑔;𝐺) (or C(𝑔) for brevity). Then, the significance of a (𝑑, 𝑠)-
graphlet 𝑔 is defined as:

𝜇𝑔 =
C(𝑔;𝐺) − C(𝑔;𝐺

rand
)

C(𝑔;𝐺) + C(𝑔;𝐺
rand
) + 𝜖

where 𝐺
rand

is a randomized graph of 𝐺 generated by a null model

(see Section 3), and 𝜖 is a small constant (e.g., 𝜖 = 1). Based on the

significance, the CP of 𝑔 is computed as the normalized significance:

CP𝑔 =
𝜇𝑔√︃∑
𝑔′∈𝑔 𝜇

2

𝑔′

where 𝑔 is the set of all considered (𝑑, 𝑠)-graphlets (e.g., T(2) , T(3) ,
or Q

(2)
). The CP is represented as a vector by concatenating the CP

values of each (𝑑, 𝑠)-graphlet, which contains the local structural

information of the graph.

5 PROPOSED ALGORITHMS

In this section, we present EDGE, our algorithm for the exact count-

ing of (𝑑, 𝑠)-graphlets in a given graph. While (𝑑, 𝑠)-graphlets are
generally defined for arbitrary values of 𝑑 and 𝑠 , we focus on three

specific configurations: (𝑑, 𝑠) = {(2, 3), (3, 3), (2, 4)}. In Section 6,

we empirically demonstrate that these configurations are effective

and general enough, compared to simple graphlets with similar

sizes, to uncover non-trivial structural patterns within the graph.

We first introduce our method for counting size-3 (𝑑, 𝑠)-graphlets
(i.e., (2, 3)- and (3, 3)-graphlets), followed by our method for count-

ing size-4 (𝑑, 𝑠)-graphlets (i.e., (2, 4)-graphlets).
Remarks. The problem of counting (𝑑, 𝑠)-graphlets (particularly
for 𝑑 ≥ 2), is computationally more challenging than counting

graphlets (i.e., for 𝑑 = 1). Specifically, (𝑑, 𝑠)-graphlets are defined
based on relationships between nodes up to distance 𝑑 , requiring

the exploration of 𝐸 (2) , · · · , 𝐸 (𝑑) , where the number of edges grows

exponentially as𝑂 (Δ𝑑), where Δ is the maximum node degree. For

example, as shown in Table 4, the number of 3-edges is at most 15×
more than that of the original edges (i.e., 1-edges). Moreover, the

distance that each edge connects should be accounted for when

determining the (𝑑, 𝑠)-graphlet of an instance. These unique chal-

lenges incur significant bottlenecks for exhaustive enumeration

methods, and thus efficient and specialized algorithms for counting

(𝑑, 𝑠)-graphlets without direct enumeration are demanded.

5.1 Graph Construction

For efficient (𝑑, 𝑠)-graphlet counting, EDGE constructs a directed

acyclic graph (DAG) that consists of actual edges (connecting im-

mediate neighbors) and virtual edges (connecting nodes beyond

their immediate neighbors), as a common preprocessing step.

𝑑-Graph construction. Firstly, EDGE constructs virtual edges that

connect nodes at distances beyond their immediate neighbors.

Specifically, it builds additional edge sets 𝐸 (2) , · · · , 𝐸 (𝑑) , resulting
in a 𝑑-graph 𝐺 (𝑑) = (𝑉 , 𝐸 (≤𝑑)). This process is performed using

a breadth-first search (BFS) traversal, as outlined in Algorithm 3

(see Appendix A.1). The time complexity of this step is given in

Lemma 1, and the proof is provided in Appendix A.1.

Lemma 1 (Complexity of 𝑑-Edge Construction). The time
complexity of constructing𝑑-edges for a graph𝐺 = (𝑉 , 𝐸) is𝑂 (|𝑉 |Δ𝑑),
where Δ is the maximum degree of the graph.

𝑑-DAG construction. Once the (undirected) 𝑑-graph 𝐺 (𝑑) is con-
structed, EDGE builds a 𝑑-degree-ordered directed acyclic graph

(DAG) of 𝐺 , referred to as a 𝑑-DAG. Specifically, for each dis-

tance 𝑑′ ∈ {1, · · · , 𝑑}, it creates a directed edge (𝑢, 𝑣) if 𝑢 ≺ (𝑑) 𝑣 ,
where ≺ (𝑑) represents the degree ordering based on the 𝑑-edges,

implying |𝑁 (𝑑)𝑢 | ≤ |𝑁 (𝑑)𝑣 |. The resulting 𝑑-DAG is denoted as

®𝐺 = (𝑉 , ®𝐸 (≤𝑑)), where ®𝐸 (≤𝑑) = { ®𝐸 (1) , · · · , ®𝐸 (𝑑) }, and ®𝐸 (𝑑 ′) =

{(𝑢, 𝑣) ∈ 𝐸 (𝑑
′)

: 𝑢 ≺ (𝑑) 𝑣} for each 𝑑′ ∈ {1, · · · , 𝑑}. For a node

𝑢, ®𝑁 (𝑑)𝑢 denotes the out-going neighbors of 𝑢 at distance 𝑑 , i.e.,

®𝑁 (𝑑)𝑢 = {𝑣 : (𝑢, 𝑣) ∈ ®𝐸 (𝑑) }. Importantly, the number of out-going

neighbors is typically smaller than the number of neighbors in

undirected graphs (i.e., | ®𝑁 (𝑑)𝑢 | ≪ |𝑁 (𝑑)𝑢 |), which significantly con-

tributes to improving the scalability of EDGE, as empirically demon-

strated in Section 6. For more details, refer to Appendix A.2.

5.2 Size-3 (𝑑, 𝑠)-Graphlet Counting
Wenow explain how EDGE counts size-3 (𝑑, 𝑠)-graphlets (i.e., 𝑠 = 3),

specifically focusing on (2, 3)-graphlets (T(2)) and (3, 3)-graphlets
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1: Counting Size-3 (𝑑, 𝑠)-Graphlets
Input: (1) 𝑑-Graph𝐺 (𝑑) = (𝑉 , 𝐸 (≤𝑑)) of graph𝐺

(2) 𝑑-DAG ®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) of graph𝐺
(3) Maximum considered distance 𝑑

Output: The count of each size-3 (𝑑, 𝑠)-graphlet T(𝑑)
𝑖

:

C(T(𝑑)
𝑖
) ∀𝑖 ∈ {1, · · · , |T(𝑑) | }

// Initialization

1 C(T(𝑑)
𝑖
) ← 0 ∀𝑖 ∈ {1, · · · , |T(𝑑) | }

// Count non-deducible (𝑑, 𝑠)-graphlets T

(𝑑)

2 for each 𝑢 ∈ 𝑉
3 𝑃𝑢 ← Effective_Neighbor_Pairs(𝑢,𝑑, ®𝐺 (𝑑))
4 for each (𝑣, 𝑤) ∈ 𝑃𝑢
5 T

(𝑑)
∗ ← Get_Triangle

(
(𝑢, 𝑣, 𝑤), 𝑑, ®𝐺 (𝑑)

)
6 C(T(𝑑)∗) ← C(T

(𝑑)
∗) + 1

// Count deducible (𝑑, 𝑠)-graphlets T̂
(𝑑)

7 for each T
(𝑑)
𝑗
∈ T̂(𝑑)

8 C(T(𝑑)
𝑗
) ← Comb_Three

(
T
(𝑑)
𝑗

, {C(T(𝑑)
𝑖
) } |T

(𝑑) |
𝑖=1

,𝐺 (𝑑)
)

9 return C(T(𝑑)
𝑖
) ∀𝑖 ∈ {1, · · · , |T(𝑑) | }

(T
(3)

). As detailed in Algorithm 1
1
, we categorize size-3 (𝑑, 𝑠)-

graphlets (T
(𝑑)

) into two groups: non-deducible and deducible (𝑑, 𝑠)-
graphlets as follows:

• Non-deducible size-3 (𝑑, 𝑠)-graphlets (T(𝑑)) require explicit
enumeration, as their counts cannot be directly inferred. These

include the following types of triangles:

◦ T

(2)
= {T(2)

1
,T
(2)
2

,T
(2)
4
}

◦ T

(3)
= {T(3)

1
,T
(3)
2

,T
(3)
3

,T
(3)
4

,T
(3)
6

,T
(3)
7

,T
(3)
9
}

• Deducible size-3 (𝑑, 𝑠)-graphlets (T̂(𝑑)) are thosewhose counts
can be inferred from the graph structure (e.g., node degrees) and

the counts of non-deducible (𝑑, 𝑠)-graphlets:
◦ T̂

(2) = {T(2)
3

,T
(2)
5

,T
(2)
6
}

◦ T̂
(3) = {T(3)

5
,T
(3)
8

,T
(3)
10

,T
(3)
11

,T
(3)
12

,T
(3)
13
}

As we describe in detail below, we first selectively enumerate each

instance of non-deducible (𝑑, 𝑠)-graphlets (lines 2 - 6). Afterward,
the counts of deducible (𝑑, 𝑠)-graphlets can be rapidly computed us-

ing specialized combinatorial methods without enumeration (lines 7

- 8). This adaptive counting scheme significantly improves the speed

of EDGE, as empirically demonstrated in Section 6.

Counting non-deducible (𝑑, 𝑠)-graphlets. To count each non-

deducible (𝑑, 𝑠)-graphlet, EDGE iterates over each node𝑢. It samples

a subset of its neighboring pairs to ensure that only instances of

non-deducible (𝑑, 𝑠)-graphlets are enumerated (line 3). For each

effective neighboring pair (𝑣,𝑤), it identifies the (𝑑, 𝑠)-graphlet of
the triangle (𝑢, 𝑣,𝑤) based on the distances between the constituent
nodes (line 5). The count of the corresponding (𝑑, 𝑠)-graphlet is
then incremented (line 6).

Counting deducible (𝑑, 𝑠)-graphlets.Once EDGE counts the non-
deducible (𝑑, 𝑠)-graphlets, it efficiently computes the counts of de-

ducible (𝑑, 𝑠)-graphlets using combinatorial counting (line 8). For

1
Refer to Appendix A.3 for details on its sub-algorithms.

each deducible (𝑑, 𝑠)-graphlet, EDGE leverages predefined equa-

tions specific to each (𝑑, 𝑠)-graphlet, based on (1) the exact count

of the non-deducible (𝑑, 𝑠)-graphlets and (2) structural information

(e.g., node degree), if needed. This deductive approach avoids the

need for explicit enumeration for deducible (𝑑, 𝑠)-graphlets. For
example, C(T(2)

5
) can be computed by using the following equation:

C(T(2)
5
) =

∑︁
𝑢∈𝑉

(
|𝑁 (2)𝑢 |

2

)
− 3C(T(2)

1
) − C(T(2)

2
)

The first term counts all cases where the center node of T
(2)
5

has

neighbors connected by 2-edges on both sides. Since these neigh-

bors may also be connected, the counts of the non-deducible (2, 3)-
graphlets T

(2)
1

and T
(2)
2

, are subtracted. As T
(2)
1

can appear at any

of the three nodes in a triangle, its count is multiplied by 3 when

subtracting. While we do not detail the derivation of equations

for all deducible (𝑑, 𝑠)-graphlets, we experimentally verified the

correctness. All specific equations for Comb_Three are provided

in Algorithm 7 of Appendix A.3.

Complexity analysis.We analyze the time complexity of EDGE

for counting size-3 (𝑑, 𝑠)-graphlets (Algorithm 1) in Theorem 1.

Theorem 1 (Complexity of Algorithm 1). The time complex-
ity of EDGE for counting size-3 (𝑑, 𝑠)-graphlets is𝑂 (|𝑉 |𝑑4 ®Δ2𝑑

log ®Δ),
where ®Δ is themaximum out-going node degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. Refer to Appendix A.3.

Remarks. The time complexity of Algorithm 1 is primarily domi-

nated by the counting of only non-deducible (𝑑, 𝑠)-graphlets. EDGE
achieves the complexity in two ways: (1) It employs 𝑑-DAGs, where

each node has fewer neighbors compared to 𝑑-graphs, reducing

redundancy in enumeration. (2) EDGE selectively enumerates only

non-deducible (𝑑, 𝑠)-graphlets and rapidly counts deducible (𝑑, 𝑠)-
graphlets afterward. As demonstrated in Section 6, these optimiza-

tions lead to a significant speedup of EDGE.

5.3 Size-4 (𝑑, 𝑠)-Graphlet Counting
We now describe how EDGE counts size-4 (𝑑, 𝑠)-graphlets (i.e., 𝑠 =
4), focusing on (2, 4)-graphlets (Q(2)), as outlined in Algorithm 2

2
.

For (2, 4)-graphlets, we categorize the 36 possible configurations
(i.e., Q

(2)
1

- Q
(2)
36

) into non-deducible, semi-deducible, and deducible.

• Non-deducible (2, 4)-graphlets (Q(2)), which are all cliques,
require explicit enumeration to obtain their exact counts:

◦ Q

(2)
= {Q(2)

1
,Q
(2)
2

, · · · ,Q(2)
11
}

• Semi-deducible (2, 4)-graphlets (Q̃(2)), which are all cycles,
partially require enumeration, and their counts are then adjusted:

◦ Q̃
(2) = {Q(2)

28
,Q
(2)
29

,Q
(2)
30
}

• Deducible (2, 4)-graphlets (Q̂(2)) are those whose counts can
be rapidly obtained using the counts of non-deducible (2, 4)-
graphlets and the graph structure:

◦ Q̂
(2) = {Q(2)

12
, · · · ,Q(2)

27
,Q
(2)
31

, · · · ,Q(2)
36
}

We first count the non-deducible (𝑑, 𝑠)-graphlets by enumerat-

ing over the graph (lines 3 - 10) and use their counts to compute

the counts of the deducible ones through combinatorial methods

2
Refer to Appendix A.4 for details on its sub-algorithms.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 2: (2, 4)-Graphlets Counting
Input: (1) 2-graph𝐺 (2) = (𝑉 , 𝐸 (≤2)) of graph𝐺

(2) 2-DAG ®𝐺 (2) = (𝑉 , ®𝐸 (≤2)) of graph𝐺
Output: The count of each size-4 (𝑑, 𝑠)-Graphlets Q(2)

𝑖
:

C(Q(2)
𝑖
) ∀𝑖 ∈ {1, · · · , |Q(2) | }

// Initialization

1 C(Q(2)
𝑖
) ← 0 ∀𝑖 ∈ {1, · · · , |Q(2) | }

2 for each 𝑢 ∈ 𝑉
// Count non-deducible Q

(2)

3 for each 𝑣 ∈ ®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢

4 𝑁𝑢,𝑣 ←
(
®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢

)
∩
(
®𝑁 (1)𝑣 ∪ ®𝑁 (2)𝑣

)
5 T𝑢,𝑣 ← Triangle_Pairs((𝑢, 𝑣), 𝑁𝑢,𝑣, ®𝐺 (2))
6 for each ((𝑢, 𝑣, 𝑤), (𝑢, 𝑣, 𝑤′)) ∈ T𝑢,𝑣
7 T

(2)
◦ ← Get_Triangle

(
(𝑢, 𝑣, 𝑤), ®𝐺 (2)

)
8 T

(2)
• ← Get_Triangle

(
(𝑢, 𝑣, 𝑤′), ®𝐺 (2)

)
9 Q

(2)
∗ ← Get_Cliqe

(
T
(2)
◦ ,T

(2)
• ,𝑢, 𝑣, 𝑤, 𝑤′

)
10 C(Q(2)∗) ← C(Q

(2)
∗) + 1

// Count semi-deducible Q̃
(2)

11 for each (𝑣, 𝑣′) ∈ (®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢) × ®𝑁
(2)
𝑢

12 for each 𝑤 ∈ {𝑤′ ∈ 𝑁 (2)𝑣 ∩
(
𝑁
(1)
𝑣′ ∪ 𝑁

(2)
𝑣′

)
: 𝑢 ≺ (𝑑) 𝑤′ }

13 T
(2)
△ ← Get_Non-Induced_Wedge

(
(𝑢, 𝑣, 𝑤), ®𝐺 (2)

)
14 T

(2)
▲ ← Get_Non-Induced_Wedge

(
(𝑢, 𝑣′, 𝑤), ®𝐺 (2)

)
15 Q

(2)
∗ ← Get_Non-Induced_Cycle

(
T
(2)
△ ,T

(2)
▲

)
16 C(Q(2)∗) ← C(Q

(2)
∗) + 1

// Count deducible (𝑑, 𝑠)-graphlets Q̂
(2)

17 for each Q
(2)
𝑗
∈ Q̂(2)

18 C(Q(2)
𝑗
) ← Comb_Four

(
Q
(2)
𝑗

, {C(Q(2)
𝑖
) } |Q

(2) |
𝑖=1

,𝐺 (2)
)

// Adjust counts of semi-deducible (𝑑, 𝑠)-graphlets Q̃
(2)

19 for each Q
(2)
𝑗
∈ Q̃(2)

20 C(Q(2)
𝑗
) ← Comb_Four

(
Q
(2)
𝑗

, {C(Q(2)
𝑖
) } |Q

(2) |
𝑖=1

)
21 return C(Q(2)

𝑖
) ∀𝑖 ∈ {1, · · · , |Q(2) | }

(lines 17 - 18). For semi-deducible ones, we initially compute the

number of their non-induced instances (i.e., instances that induce

semi-deducible (𝑑, 𝑠)-graphlets) (lines 11 - 16) and adjust their

counts accordingly after the enumeration (lines 19 - 20).

Counting non-deducible (𝑑, 𝑠)-graphlets. Instead of exhaustively
enumerating all size-4 instances in the graph to obtain exact count

of (2, 4)-graphlets, we count them by decomposing their structure.

Notably, all non-deducible (𝑑, 𝑠)-graphlets form cliques, which can

be decomposed into two triangles sharing an edge, and the remain-

ing two nodes are also connected (see an example in Figure 3).

For every edge (𝑢, 𝑣), using their common neighbors (line 4), we

determine the set of triangle pairs where the remaining nodes are

connected (line 5). For each pair of triangles, we first identify the

(2, 3)-graphlet of each triangle (lines 7 - 8) and then determine the

(2, 4)-graphlet based on the combination of the two (2, 3)-graphlets

T2
(2) T4

(2) Q7
(2)

𝒖

𝒗

𝑤

𝑤!

𝒖

𝒗𝑤

𝒖

𝒗𝑤′

1-edges 2-edges

𝒗

𝒗′

𝑤

𝑤!

𝒗

𝒗′𝑤

𝒗

𝒗′𝑤′

T6
(2) Q30

(2)T6
(2)

Figure 3: Examples of: (left) two triangles forming a clique,

assuming𝑤 and𝑤 ′ are connected by a 2-edge, and (right) two

wedges forming a cycle, assuming𝑤 and𝑤 ′ are disconnected.

(line 9). The count of the identified (2, 4)-graphlet is then incre-

mented (line 10).

Counting semi-deducible (𝑑, 𝑠)-graphlets. For semi-deducible

(2, 4)-graphlets, which are cycles, we adopt a two-step approach.

Note that a cycle is composed of two wedges that share two end

nodes (see an example in Figure 3). Based on this structure, given

two (dis)connected nodes (𝑣, 𝑣 ′), we first enumerate pairs of non-

induced wedges (which can be either wedges or triangles) using

their common neighbors. Next, we identify the (2, 3)-graphlet of
each non-induced wedge (lines 13 - 14). Based on their combination,

we determine the (2, 4)-graphlet of the non-induced cycle (line 15)

and increment the count (line 16). Once the enumeration finishes,

we adjust the counts by subtracting the counts of (2, 4)-graphlets
that are not cycles, ensuring the correct count of semi-deducible

(𝑑, 𝑠)-graphlets (lines 19 - 20).
Counting deducible (𝑑, 𝑠)-graphlets. The counts of deducible

(2, 4)-graphlets can be rapidly computed from the counts of the

non-deducible (2, 4)-graphlets (lines 17 - 18). The equations of

Comb_Four are provided in Algorithm 13 of Appendix A.4.

Complexity analysis.We analyze the time complexity of EDGE

for counting (2, 4)-graphlets (Algorithm 2) in Theorem 2.

Theorem 2 (Complexity of Algorithm 2). The time com-
plexity of EDGE for counting (2, 4)-graphlets is (|𝑉 | ®Δ4Δ2

log ®Δ),
where Δ and ®Δ denote the maximum undirected degree and the max-
imum outgoing degree, respectively, i.e., Δ = max𝑢∈𝑉 |𝑁 (1)𝑢 | and
®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. Refer to Appendix A.4.

6 EXPERIMENTS

We share our empirical analysis using (𝑑, 𝑠)-graphlets and its count-
ing algorithm, EDGE. We aim to answer the following questions:

• Q1. Graph characterization: How effective are (𝑑, 𝑠)-graphlets
in distinguishing and clustering graphs across different domains?

• Q2. Real-world discoveries: What insights do (𝑑, 𝑠)-graphlets
provide that cannot be uncovered by simple graphlets?

• Q3. Speed and scalability: How fast and scalable is EDGE? Do

𝑑-DAG and deduced counting contribute to its efficiency?

6.1 Experimental Settings

We report the settings where the experiments were performed.

Datasets.Weused 13 real-world graphs fromfive different domains:

collaboration [3, 13, 25, 34], web [11, 12], social-Facebook [59, 60],

tags [7], and road [36]. We present basic statistics of the datasets

with further details in Appendix B.1.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

ca-DBLP

ca-Citeseer

ca-HepTh

web-Arabic

web-Indochina

soc-UCSC

soc-UC

soc-MB

tags-Ubuntu

tags-Math

road-CA

road-PA

road-TX

(2, 4)-
Graphlets

N
or

m
al

ize
d

Si
gn

ifi
ca

nc
e

N
or

m
al

ize
d

Si
gn

ifi
ca

nc
e

N
or

m
al

ize
d

Si
gn

ifi
ca

nc
e

(3, 3)-
Graphlets

(2, 3)-
Graphlets

Index

Graphlet Index

Figure 4: Graphs from the same domain exhibit similar CPs derived from the counts of (2, 4)-, (3, 3)-, and (2, 3)-graphlets.

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

(2, 4)-Graphlets (3, 3)-Graphlets (2, 3)-Graphlets (1, 4)-Graphlets (1, 5)-Graphlets

ca

web

soc

tags

road

Figure 5: The domains of the graphs are effectively distinguished by CPs derived from the counts of (𝑑, 𝑠)-graphlets. Specifically,
(2, 4)-, (3, 3)-, and (2, 3)-graphlets, which account for generalized distances, provide a clearer distinction of graphs across domains

compared to simple graphlets that consider only direct connections (e.g., (1, 4)- and (1, 5)-graphlets, which represent size-4 and

size-5 graphlets, respectively). For numerical comparisons, refer to Table 2.

Table 2: (𝑑, 𝑠)-graphlets exhibit larger correlation gaps be-

tween graphs within the same domain and across domains,

as well as superior clustering performance compared to the

original graphlets.

(𝑑, 𝑠) Correlation Gap Clustering

(Within - Across) F1 NMI SH

(1, 3) 0.000 0.467 0.455 0.266

Original (1, 4) 0.252 0.670 0.772 0.539

(1, 5) 0.440 0.920 0.908 0.680

(2, 3) 0.253 0.667 0.856 0.585

Ours (3, 3) 0.667 1.000 1.000 0.797

(2, 4) 0.473 1.000 1.000 0.795

Implementations. We implemented EDGE in C++. EDGE sup-

ports multi-threading, and we set the number of threads to 6. To

count size-4 and size-5 graphlets, we used the open-source C++

implementations of recent exact counting methods, PGD [46] and

ESCAPE [23]. We ran PGD with 6 threads, while ESCAPE does not

support multi-threading.

Machines.We performed all the experiments on a machine with

an Intel i9-10900K CPU and 64GB memory.

6.2 Q1. Graph Characterization

We analyzed the characterization power of the (𝑑, 𝑠)-graphlets
counted by EDGE. Specifically, we computed the characteristic

profiles (CPs; see Section 4.3) for each graph using counts of (2, 3),
(2, 4), and (3, 3)-graphlets. As shown in Figure 4, graphs within

the same domain exhibit highly similar CPs for all (𝑑, 𝑠)-graphlets,
while CPs are clearly distinguished across different domains.

We computed the correlations between CPs of different graphs,

as shown in Figure 5. Notably, (2, 4)-, (3, 3)-, and (2, 3)-graphlets
provide clearer distinctions between graphs across domains com-

pared to the original graphlets (i.e., (1, 4)- and (1, 5)-graphlets).
Specifically, as shown in Table 2, the correlation gap (i.e., the dif-

ference between average correlations within and across domains)

is largest for (3, 3)-graphlets, followed by (2, 4)-graphlets, even
though they use fewer nodes per graphlet than (1, 5)-graphlets.
These large gaps demonstrate the effectiveness of incorporating

multi-hop distances for graphlets.

We further evaluated the clustering of graphs using the CPs as

input features, specifically applying spectral clustering. As shown

in Table 2, (𝑑, 𝑠)-graphlets lead to higher clustering performance in

terms of F1 score, NMI, and Silhouette score. This further validates

the effectiveness of (𝑑, 𝑠)-graphlets in graph characterization.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Q5
(2)

Q19
(2)

T3
(3)

T12
(3)

3-edges2-edges1-edges

collaboration web soc tags road

Figure 6: Incorporating higher-order node distances allows

for finer differentiation of local structures. (Top) The ratio of

a graphlet relative to the total number of instances. (Bottom)

The graphlet can be further decomposed into finer structures

when considering distances beyond those in the graphlet.

6.3 Q2. Real-World Discoveries

We conduct case studies on real-world data that support the granu-

larity and generality of (𝑑, 𝑠)-graphlets.
Finer granularity.Wefirst demonstrate that incorporating higher-

order distances between nodes allows for finer differentiation of

local structures, as shown in Figure 6. On the left, the original

3-path size-4 graphlet is divided into two cases, Q
(2)
5

and Q
(2)
19

,

when considering distances up to 2. A 2D representation shows

that the proportions of these finer local structures lead to clearer

graph characterization. For example, graphs in the collaboration

domain, were indistinguishable when considering only the 3-path

graphlet, become distinguishable due to a lower proportion of Q
(2)
19

.

Similarly, on the right, a (2, 3)-graphlet is generalized to (3, 3)-
graphlets, where T

(2)
5

splits into T
(2)
3

and T
(2)
12

when considering

distances up to 3. This further improves domain distinction and

thus enhanced graph characterization.

Comprehensiveness.To assess the significance of the (𝑑, 𝑠)-graphlets
in graph characterization, we use a scoring function that measures

each (𝑑, 𝑠)-graphlet’s contribution to distinguishing graphs by do-

main [32]. Based on these scores, we ranked the (𝑑, 𝑠)-graphlets
and retrieved the top 5 from each graph. Notably, 59 out of the

65 retrieved (𝑑, 𝑠)-graphlets were newly defined (2, 4)-graphlets,
which cannot be described by simple graphlets, demonstrating the

effectiveness of (𝑑, 𝑠)-graphlets in capturing more comprehensive

structural patterns. For more details, refer to Appendix B.2.

6.4 Q3. Speed and Scalability

We evaluate the speed and scalability of EDGE by comparing it

with its variants and existing counting methods.

Effects of EDGE’s components. We first analyze the effects of

EDGE’s design components: (1) deducible counting for deducible

(𝑑, 𝑠)-graphlets (i.e., T̃(𝑑) and Q̃(𝑑)) and (2) using 𝑑-DAG for count-

ing non- and semi-deducible (𝑑, 𝑠)-graphlets. We evaluate two vari-

ants: EDGE-D2, which removes both (1) and (2), and EDGE-D, which

removes only (1). As shown in Figure 7, EDGE is significantly faster

10.68 X

3.15 X

(a) (2, 3)-graphlet

14.86 X

3.93 X

(b) (3, 3)-graphlet
Figure 7: EDGE is faster than its variants: (1) EDGE-D2, which

lacks deducible counting and 𝑑-DAG, and (2) EDGE-D, which

lacks 𝑑-DAG. This demonstrates the effectiveness of EDGE’s

design choices for fast (𝑑, 𝑠)-graphlet counting.

ESCAPE EDGE

Ru
nt

im
e

(s
ec

.)
Pe

r G
ra

ph
le

t I
ns

ta
nc

e

Ru
nt

im
e

(s
ec

.)

PGD

Figure 8: Comparison between EDGE (for counting (2, 4)-
graphlets) and PGD & ESCAPE (for counting (1, 4)-graphlets).
(Left) In total runtime, EDGE is slower than PGD and ESCAPE

due to the additional virtual edges. (Right) In runtime per

instance, EDGE is competitive and even faster in some cases.

than these variants, achieving up to 14.86× and 3.93× speedups over
EDGE-D2 and EDGE-D, respectively. These results demonstrate

the effectiveness of EDGE’s design choices in avoiding unnecessary

enumeration and using 𝑑-DAGs to reduce the neighbors. For more

details, see Appendix B.3.

Comparison to graphlet counting methods. We compare the

counting times of PGD and ESCAPE for (1, 4)-graphlets with EDGE

for (2, 4)-graphlets. As shown in Figure 8, EDGE is generally slower

than PGD and ESCAPE due to the additional edges connecting

indirect nodes. However, when comparing per graphlet, EDGE’s

runtime is competitive, and in some cases, even faster than the

baselines. For more details, see Appendix B.3.

7 CONCLUSIONS

We present (𝑑, 𝑠)-graphlets, distance-generalized graphlets for en-

hanced graph characterization. Our contributions are as follows:

• New Definition:We formally define (𝑑, 𝑠)-graphlets, distance-
generalized graphlets that provide more detailed analysis of local

structures (Section 4).

• Efficient Counting Algorithm:We introduce EDGE, an opti-

mized counting algorithm for (𝑑, 𝑠)-graphlets that reduces unnec-
essary enumeration through deducible computation and efficient

data structures (Section 5).

• Comprehensive Experiments: Our experiments across 13

real-world datasets demonstrate both the effectiveness of (𝑑, 𝑠)-
graphlets and the efficiency of EDGE (Section 6).

For reproducibility, our code and datasets are available at [26].

Future research directions include accelerating the counting of

(𝑑, 𝑠)-graphlets through approximation.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. 2015.

Efficient graphlet counting for large networks. In ICDM.

[2] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, Nick G Duffield, and

Theodore L Willke. 2017. Graphlet decomposition: Framework, algorithms,

and applications. KAIS 50 (2017), 689–722.
[3] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner.

2012. Graph Partitioning and Graph Clustering. In 10th DIMACS Implementation
Challenge Workshop.

[4] Sasitharan Balasubramaniam et al. 2013. Multi-hop conjugation based bacteria

nanonetworks. TNB 12, 1 (2013), 47–59.

[5] Balabhaskar Balasundaram, Sergiy Butenko, and Svyatoslav Trukhanov. 2005.

Novel approaches for analyzing biological networks. Journal of Combinatorial
Optimization 10 (2005), 23–39.

[6] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2010. Efficient

algorithms for large-scale local triangle counting. TKDD 4, 3 (2010), 1–28.

[7] Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Klein-

berg. 2018. Simplicial closure and higher-order link prediction. Proceedings of the
National Academy of Sciences (2018). https://doi.org/10.1073/pnas.1800683115

[8] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-

zation of complex networks. Science 353, 6295 (2016), 163–166.
[9] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski,

Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr

Nyczyk, et al. 2024. Graph of thoughts: Solving elaborate problems with large

language models. In AAAI.
[10] Hanjo D Boekhout, Walter A Kosters, and FrankW Takes. 2019. Efficiently count-

ing complex multilayer temporal motifs in large-scale networks. Computational
Social Networks 6, 1 (2019), 8.

[11] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004.

UbiCrawler: A Scalable Fully Distributed Web Crawler. Software: Practice &
Experience 34, 8 (2004), 711–726.

[12] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered

Label Propagation: A MultiResolution Coordinate-Free Ordering for Compress-

ing Social Networks. InWWW. 587–596.

[13] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-

pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[14] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized

core decomposition. In SIGMOD.
[15] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein.

2022. Improving graph neural network expressivity via subgraph isomorphism

counting. TPAMI 45, 1 (2022), 657–668.
[16] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro

Panconesi. 2018. Motif counting beyond five nodes. TKDD 12, 4 (2018), 1–25.

[17] Hao Chen, Zhong Huang, Yue Xu, Zengde Deng, Feiran Huang, Peng He, and

Zhoujun Li. 2022. Neighbor enhanced graph convolutional networks for node

classification and recommendation. Knowledge-based systems 246 (2022), 108594.
[18] Lina Chen, Xiaoli Qu, Mushui Cao, Yanyan Zhou, Wan Li, Binhua Liang, Weiguo

Li, Weiming He, Chenchen Feng, Xu Jia, et al. 2013. Identification of breast

cancer patients based on human signaling network motifs. Scientific reports 3, 1
(2013), 3368.

[19] Xuexin Chen, Ruichu Cai, Yuan Fang, Min Wu, Zijian Li, and Zhifeng Hao. 2023.

Motif graph neural network. TNNLS (2023).
[20] Hong Cheng, Xifeng Yan, and Jiawei Han. 2014. Mining graph patterns. Frequent

pattern mining (2014), 307–338.

[21] Qiangqiang Dai, Rong-Hua Li, Lu Qin, Guoren Wang, Weihua Yang, Zhiwei

Zhang, and Ye Yuan. 2021. Scaling up distance-generalized core decomposition.

In CIKM.

[22] Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. 2019. Cogni-

tive Graph for Multi-Hop Reading Comprehension at Scale. In ACL.
[23] ESCAPE. 2016. Efficient Subgraph Counting Algorithmic PackagE (ESCAPE)

library. https://bitbucket.org/seshadhri/escape.

[24] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffu-

sion improves graph learning. In NeurIPS.
[25] Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better Approxi-

mation of Betweenness Centrality.. In ALENEX. SIAM, 90–100.

[26] Anonymous Github. 2024. Code and datasets for distance-generalized graphlet.

https://anonymous.4open.science/r/distance-generalized-graphlet.

[27] Shawn Gu, John Johnson, Fazle E Faisal, and Tijana Milenković. 2018. From ho-

mogeneous to heterogeneous network alignment via colored graphlets. Scientific
reports 8, 1 (2018), 12524.

[28] Christopher R Harshaw, Robert A Bridges, Michael D Iannacone, Joel W Reed,

and John R Goodall. 2016. Graphprints: Towards a graph analytic method for

network anomaly detection. In CISRC.
[29] Tomaž Hočevar and Janez Demšar. 2014. A combinatorial approach to graphlet

counting. Bioinformatics 30, 4 (2014), 559–565.

[30] Hong Huang, Jie Tang, Sen Wu, Lu Liu, and Xiaoming Fu. 2014. Mining triadic

closure patterns in social networks. InWWW.

[31] Geon Lee, Jihoon Ko, and Kijung Shin. 2020. Hypergraph motifs: concepts,

algorithms, and discoveries. PVLDB 13, 12 (2020), 2256–2269.

[32] Geon Lee, Seokbum Yoon, Jihoon Ko, Hyunju Kim, and Kijung Shin. 2024. Hy-

pergraph motifs and their extensions beyond binary. The VLDB Journal 33, 3
(2024), 625–665.

[33] John Boaz Lee, Ryan A Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and

Anup Rao. 2019. Graph convolutional networks with motif-based attention. In

CIKM.

[34] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:

Densification and shrinking diameters. TKDD 1, 1 (2007), 2–es.

[35] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[36] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.

Community structure in large networks: Natural cluster sizes and the absence of

large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.
[37] Pei-Zhen Li, Ling Huang, Chang-Dong Wang, and Jian-Huang Lai. 2019. EdMot:

An edge enhancement approach for motif-aware community detection. In KDD.
[38] Qing Liu, Xuliang Zhu, Xin Huang, and Jianliang Xu. 2021. Local algorithms for

distance-generalized core decomposition over large dynamic graphs. PVLDB 14,

9 (2021), 1531–1543.

[39] R Duncan Luce. 1950. Connectivity and generalized cliques in sociometric group

structure. Psychometrika 15, 2 (1950), 169–190.
[40] Dror Marcus and Yuval Shavitt. 2010. Efficient counting of network motifs. In

ICDCS Workshops.
[41] Brendan D McKay. 2007. Nauty user’s guide (version 2.4). Computer Science

Dept., Australian National University (2007), 225–239.

[42] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal

Ayzenshtat, Michal Sheffer, and Uri Alon. 2004. Superfamilies of evolved and

designed networks. Science 303, 5663 (2004), 1538–1542.
[43] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.

Science 298, 5594 (2002), 824–827.
[44] Robert J Mokken et al. 1979. Cliques, clubs and clans. Quality & Quantity 13, 2

(1979), 161–173.

[45] Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
review 45, 2 (2003), 167–256.

[46] PGD. 2015. Parallel Parameterized Graphlet Decomposition (PGD) library.

https://github.com/nkahmed/PGD.

[47] Yinhua Piao, Sangseon Lee, Dohoon Lee, and Sun Kim. 2022. Sparse structure

learning via graph neural networks for inductive document classification. In

AAAI.
[48] Ali Pinar, Comandur Seshadhri, and Vaidyanathan Vishal. 2017. Escape: Effi-

ciently counting all 5-vertex subgraphs. InWWW.

[49] Nataša Pržulj. 2007. Biological network comparison using graphlet degree

distribution. Bioinformatics 23, 2 (2007), e177–e183.
[50] Natasa Pržulj, Derek G Corneil, and Igor Jurisica. 2004. Modeling interactome:

scale-free or geometric? Bioinformatics 20, 18 (2004), 3508–3515.
[51] Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li, Weinan Zhang, and Yong

Yu. 2019. Dynamically fused graph network for multi-hop reasoning. In ACL.
[52] Yuanfang Ren, Aisharjya Sarkar, Ahmet Ay, Alin Dobra, and Tamer Kahveci.

2019. Finding conserved patterns in multilayer networks. In BCB.
[53] Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando

Silva. 2021. A survey on subgraph counting: concepts, algorithms, and applica-

tions to network motifs and graphlets. CSUR 54, 2 (2021), 1–36.

[54] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with

Interactive Graph Analytics and Visualization. In AAAI.
[55] Ryan A Rossi, Nesreen K Ahmed, Aldo Carranza, David Arbour, Anup Rao,

Sungchul Kim, and Eunyee Koh. 2020. Heterogeneous graphlets. TKDD 15, 1

(2020), 1–43.

[56] Nino Shervashidze, SVNVishwanathan, Tobias Petri, KurtMehlhorn, and Karsten

Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In

AISTATS.
[57] Shinji Tajima, Ren Sugihara, Ryota Kitahara, and Masayuki Karasuyama. 2024.

Learning Attributed Graphlets: Predictive Graph Mining by Graphlets with

Trainable Attribute. In KDD.
[58] Nikolaj Tatti. 2023. Fast computation of distance-generalized cores using sam-

pling. KAIS 65, 6 (2023), 2429–2453.
[59] Amanda L Traud, Eric DKelsic, Peter JMucha, andMasonA Porter. 2011. Compar-

ing Community Structure to Characteristics in Online Collegiate Social Networks.

SIAM Rev. 53, 3 (2011), 526–543.
[60] Amanda L Traud, Peter J Mucha, and Mason A Porter. 2012. Social structure of

Facebook networks. Phys. A 391, 16 (2012), 4165–4180.

[61] Kun Tu, Jian Li, Don Towsley, Dave Braines, and Liam D Turner. 2019. gl2vec:

Learning feature representation using graphlets for directed networks. In

ASONAM.

9

https://doi.org/10.1073/pnas.1800683115
https://anonymous.4open.science/r/distance-generalized-graphlet
http://snap.stanford.edu/data

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[62] Katherine Van Koevering, Austin Benson, and Jon Kleinberg. 2021. Random

graphs with prescribed k-core sequences: A new null model for network analysis.

InWWW.

[63] Virginia Vassilevska and RyanWilliams. 2009. Finding, minimizing, and counting

weighted subgraphs. In STOC.
[64] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. 2020. Multi-hop

attention graph neural network. arXiv preprint arXiv:2009.14332 (2020).
[65] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng Cheng,

John CS Lui, Don Towsley, Jing Tao, and Xiaohong Guan. 2017. MOSS-5: A fast

method of approximating counts of 5-node graphlets in large graphs. TKDE 30,

1 (2017), 73–86.

[66] Sebastian Wernicke. 2005. A faster algorithm for detecting network motifs. In

International Workshop on Algorithms in Bioinformatics. Springer, 165–177.
[67] Sebastian Wernicke and Florian Rasche. 2006. FANMOD: a tool for fast network

motif detection. Bioinformatics 22, 9 (2006), 1152–1153.
[68] Qinghua Wu and Jin-Kao Hao. 2015. A review on algorithms for maximum

clique problems. EJOR 242, 3 (2015), 693–709.

[69] Wen-Jie Xie, Ming-Xia Li, Zhi-Qiang Jiang, and Wei-Xing Zhou. 2014. Triadic

motifs in the dependence networks of virtual societies. Scientific Reports 4, 1
(2014), 5244.

[70] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. In ICML.
[71] Chen Yang, Min Lyu, Yongkun Li, Qianqian Zhao, and Yinlong Xu. 2018. SSRW:

a scalable algorithm for estimating graphlet statistics based on random walk. In

DASFAA.
[72] Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang,

Martin Ester, and Can Wang. 2018. ANRL: attributed network representation

learning via deep neural networks.. In IJCAI.
[73] Junyou Zhu, Chunyu Wang, Chao Gao, Fan Zhang, Zhen Wang, and Xuelong Li.

2021. Community detection in graph: An embedding method. TNSE 9, 2 (2021),

689–702.

A ALGORITHM DETAILS

In this section, we provide a more detailed explanation of the count-

ing algorithms introduced in Section 5.

A.1 𝑑-Graph Construction

To count the instances of (𝑑, 𝑠)-graphlets, we construct 𝐸 (≤𝑑) =
{𝐸 (1) , 𝐸 (2) , · · · , 𝐸 (𝑑) } as a preprocessing step. Algorithm 3 describes

the process of constructing 𝑑-edges (i.e., 𝐸 (𝑑)) from the input graph.

For each node 𝑢 ∈ 𝑉 , we utilize the BFS function to identify all

nodes that are exactly 𝑑-hops away from 𝑢 (line 3). Then, these

nodes are added as edges in 𝐸 (𝑑) (line 6) while avoiding duplicates.

The time complexity of this preprocessing step is given in Lemma 1,

and we provide its proof as follows:

Proof of Lemma 1. For each node 𝑢 ∈ 𝑉 , the algorithm per-

forms a BFS up to 𝑑-hops, and thus the total number of nodes

explored up to 𝑑-hops is 𝑂 (Δ + Δ2 + · · · + Δ𝑑) = 𝑂 (Δ𝑑). Thus, the
time complexity for performing for all nodes 𝑢 ∈ 𝑉 is 𝑂 (|𝑉 |Δ𝑑).

A.2 Effects of 𝑑-DAG

In this section, we assess the effectiveness of using 𝑑-DAGs instead

of (undirected) 𝑑-graphs. As shown in Table 3, both the average and

maximum degrees of nodes with respect to 1-edges, 2-edges, and

3-edges are significantly smaller in 𝑑-DAGs compared to 𝑑-graphs,

i.e., 𝑑𝑎𝑣𝑔 ≫ ®𝑑𝑎𝑣𝑔 and Δ ≫ ®Δ. This reduction dramatically decreases

the number of enumerations required for counting non-deducible

(𝑑, 𝑠)-graphlets. We empirically demonstrate the effectiveness of

employing 𝑑-DAGs in Section 6.

Algorithm 3: 𝑑-Edge Construction (Preprocess)

Input: (1) Input graph𝐺 = (𝑉 , 𝐸 = 𝐸 (1))
(2) Maximum distance considered 𝑑

Output: Set of 𝑑-edges 𝐸 (𝑑)

1 𝐸 (𝑑) ← ∅
2 for each 𝑢 ∈ 𝑉

// Get all nodes at exactly 𝑑-hops from 𝑢

3 𝑆 (𝑑) ← BFS(𝑢,𝑑,𝐺)
4 for each 𝑣 ∈ 𝑆 (𝑑)
5 if 𝑢 ≺ 𝑣

6 𝐸 (𝑑) ← 𝐸 (𝑑) ∪ { (𝑢, 𝑣) }

7 return 𝐸 (𝑑)

Table 3: Degree statistics for various datasets. Each value

represents the degree characteristics of 1-edge, 2-edge, and

3-edge types. Δ represents the maximum degree, ®Δ denotes

the out-going maximum degree, and 𝑑𝑎𝑣𝑔 and
®𝑑𝑎𝑣𝑔 represent

the average degree and the out-going average degree, respec-

tively.

Datasets Edge type 𝑑𝑎𝑣𝑔 Δ ®𝑑𝑎𝑣𝑔 ®Δ

1-edge 3 343 2 113

ca-DBLP 2-edge 39 5.15K 20 378

3-edge 482 42.9K 241 3.10K

1-edge 3 1.37K 2 206

ca-Citeseer 2-edge 32 5.45K 16 1.36K

3-edge 221 24.4K 111 1.91K

1-edge 10 1.10K 5 164

web-Arabic 2-edge 18 2.66K 9 1.10K

3-edge 91 15.8K 46 1.13K

1-edge 4 199 2 83

web-Indochina 2-edge 37 2.01K 19 194

3-edge 325 3.92K 163 1.47K

1-edge 24 454 12 82

soc-UCSC 2-edge 799 5.64K 400 1.46K

3-edge 2.76K 6.91K 1.38K 4.51K

1-edge 22 660 11 99

soc-UC 2-edge 690 4.90K 345 1.35K

3-edge 1.97K 5.12K 987 3.19K

A.3 Details of Algorithm 1

In this subsection, we provide the details of sub-algorithms used in

Algorithm 1. Then, we provide the proof of Theorem 1 regarding

the complexity of Algorithm 1.

Retrieve_Distance (Algorithm 4).Given a pair of nodes (𝑢, 𝑣)
and the 𝑑-DAG ®𝐺 (𝑑) , which considers up to 𝑑-edges, this function

computes the distance between 𝑢 and 𝑣 . Equivalently, it determines

in which of ®𝐸 (≤𝑑) = { ®𝐸 (1) , · · · , ®𝐸 (𝑑) } the edge (𝑢, 𝑣) is contained.
If (𝑢, 𝑣) is not included in any of the ®𝐸 (1) , · · · , ®𝐸 (𝑑) , the distance
is considered to be∞. Since the 𝑑-DAG is 𝑑-degree-ordered, a di-

rected edge 𝑢 → 𝑣 (or 𝑣 → 𝑢) exists if 𝑢 ≺ (𝑑) 𝑣 (or 𝑣 ≺ (𝑑) 𝑢). For
each distance 𝑑′ ∈ {1, · · · , 𝑑}, it checks whether 𝑣 is an out-going

neighbor of 𝑢 (i.e., 𝑣 ∈ ®𝑁 (𝑑
′)

𝑢) if 𝑢 ≺ (𝑑) 𝑣 , and vice versa. If the

neighbor is found, the function returns the corresponding distance

𝑑′. The time complexity of Algorithm 4 is provided in Lemma 2.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Algorithm 4: Retrieve_Distance

Input: (1) A pair of nodes 𝑢 and 𝑣

(2) 𝑑-DAG ®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) of graph𝐺
(3) Maximum considered distance 𝑑

Output: 𝛿 (𝑢, 𝑣) (distance between 𝑢 and 𝑣)

1 for each 𝑑 ′ ∈ {1, · · · , 𝑑 }
2 if 𝑢 ≺ (𝑑) 𝑣
3 if 𝑣 ∈ ®𝑁 (𝑑

′)
𝑢 ⊲ Binary Search

4 return 𝑑 ′

5 else

6 if 𝑢 ∈ ®𝑁 (𝑑
′)

𝑣 ⊲ Binary Search
7 return 𝑑 ′

8 return∞

Lemma 2 (Complexity of Algorithm 4). The time complexity
of retrieving the distance between two nodes is 𝑂 (𝑑2 log ®Δ), where ®Δ
is the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. Without loss of generality, let 𝑢 ≺ (𝑑) 𝑣 . For each dis-

tance 𝑑′ ∈ {1, · · · , 𝑑}, we check 𝑣 is the out-going 𝑑′-neighbor
of 𝑢, i.e., 𝑣 ∈ ®𝑁 (𝑑

′)
𝑢 . Assuming that ®𝑁 (𝑑

′)
𝑢 is implemented as a

sorted list, we employ a binary search with a time complexity of

𝑂 (log | ®𝑁 (𝑑
′)

𝑢 |). In the worst case, we search through all distances

𝑑′ ∈ {1, · · · , 𝑑}, yielding a total time complexity of 𝑂 (log | ®𝑁 (1)𝑢 | +
· · · + log | ®𝑁 (𝑑)𝑢 |). Let ®Δ be the maximum out-degree, i.e., ®Δ =

max𝑣∈𝑉 | ®𝑁 (1)𝑣 |. The time complexity of Algorithm 4 is thus derived

as 𝑂 (log ®Δ + · · · log ®Δ𝑑) = 𝑂 (𝑑2 log ®Δ).
Effective_Neighbor_Pairs (Algorithm 5). This function de-

termines the effective neighboring pairs from all possible pairs

of neighbors. Specifically, given a node 𝑢 and the maximum con-

sidered distance 𝑑 , the set of all neighbors of node 𝑢 up to dis-

tance 𝑑 is

⋃
𝑑 ′∈{1,· · · ,𝑑 } ®𝑁

(𝑑 ′)
𝑢 . Among all pairs of neighbors (i.e.,(⋃

𝑑′ ∈{1,· · · ,𝑑} ®𝑁
(𝑑′)
𝑢

2

)
), we only consider those that are connected and

thus form a triangle with 𝑢. In addition, we exclude the neighbor

pairs whose triangle forms deducible (𝑑, 𝑠)-graphlets, as these can
be efficiently counted without enumeration. This reduction in the

set of neighbor pairs significantly and speeds up EDGE. The time

complexity of Algorithm 5 is provided in Lemma 3.

Lemma 3 (Complexity of Algorithm 5). The time complexity
of retrieving effective neighboring pairs of a node is 𝑂 (𝑑4 ®Δ2𝑑

log ®Δ),
where ®Δ is the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. For a given node𝑢 and themaximum considered distance

𝑑 , we consider 𝑢’s out-going neighbors at all 𝑂 (𝑑2) combinations

of distances (𝑑𝑖 , 𝑑 𝑗). For each pair of distances, we examine all

pairs (𝑣,𝑤) (where 𝑣 ≺ (𝑑) 𝑤) of 𝑑𝑖 -neighbors and 𝑑 𝑗 -neighbors,

which results is 𝑂 (| ®𝑁𝑑𝑖
𝑢 | · | ®𝑁

𝑑 𝑗

𝑢 |) = 𝑂 (®Δ2𝑑) pairs, where ®Δ is the

maximum out-degree, i.e., max𝑢∈𝑉 | ®𝑁 (1)𝑢 |. Next, we check whether

the two neighbors are connected, which can be done by performing

a binary search for𝑤 from ®𝑁 (𝑑𝑘)𝑣 ∀𝑑𝑘 ∈ {1, · · · , 𝑑𝑘 } which takes

𝑂 (log | ®𝑁 (1)𝑣 | + · · · + log | ®𝑁
(𝑑)
𝑣 |) = (𝑑2 log ®Δ) time. Thus, the overall

time complexity is 𝑂 (𝑑4 ®Δ2𝑑
log ®Δ).

Algorithm 5: Effective_Neighbor_Pairs

Input: (1) Node 𝑢

(2) Maximum considered distance 𝑑

(3) 𝑑-DAG ®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) of graph𝐺
Output: Effective node pairs set 𝑃𝑢

1 𝑃𝑢 ← ∅
2 for each (𝑑𝑖 , 𝑑 𝑗) ∈ { (𝑑 ′𝑖 , 𝑑 ′𝑗) : 1 ≤ 𝑑 ′

𝑖
≤ 𝑑 ′

𝑗
≤ 𝑑 }

3 for each (𝑣, 𝑤) ∈ { (𝑣′, 𝑤′) ∈ ®𝑁 (𝑑𝑖)𝑢 × ®𝑁 (𝑑 𝑗)
𝑢 : 𝑣′ ≺ (𝑑) 𝑤′ }

4 if 𝑤 ∈ ®𝑁 (𝑑𝑘)𝑣 ∃𝑑𝑘 ∈ {1, · · · , 𝑑 } \ {𝑑𝑖 + 𝑑 𝑗 , |𝑑𝑖 − 𝑑 𝑗 | }
5 𝑃𝑢 ← 𝑃𝑢 ∪ { (𝑣, 𝑤) }

6 return 𝑃𝑢

Get_Triangle (Algorithm 6).Given three nodes (𝑢, 𝑣,𝑤)which
consists a triangle, and the maximum distance considered 𝑑 , this

function returns the corresponding (𝑑, 3)-graphlet of the triangle.
First, it retrieves the distances for all pairs of edges. Then, based

on these three distances, it identifies the (𝑑, 3)-graphlet. The time

complexity of Algorithm 6 is provided in Lemma 4.

Lemma 4 (Complexity of Algorithm 6). The time complexity
of identifying (𝑑, 3)-graphlet of a triangle is 𝑂 (𝑑2 log ®Δ), where ®Δ is
the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. The time complexity for retrieving the distances of three

pairs of nodes is 𝑂 (𝑑2 log ®Δ) (from Lemma 2). Once the distances

are obtained, the corresponding (𝑑, 3)-graphlet can be identified in

𝑂 (1) time. Thus, the overall time complexity is 𝑂 (𝑑2 log ®Δ).
Comb_Three (Algorithm 7). This function is for computing the

counts of deducible (𝑑, 3)-graphlets (T̂(𝑑)). Based on the counts

of non-deducible (𝑑, 3)-graphlets (T(𝑑)), it computes the counts

of the target deducible (𝑑, 3)-graphlets. The time complexity of

Algorithm 7 is provided in Lemma 5.

Lemma 5 (Complexity of Algorithm 7). The time complexity of
computing the count of the given deducible (𝑑, 3)-graphlet is 𝑂 (|𝑉 |).

Proof. To compute the count of the target deducible (𝑑, 3)-
graphlet, degree-based computations are required, e.g.,

∑
𝑢∈𝑉

(|𝑁 (1)𝑢 |
2

)
to compute C(T(2)

3
). This takes 𝑂 (|𝑉 |) time.

Proof of Theorem 1. Below, we provide the proof for Theorem 1.

Proof. The time complexity of Algorithm 1 is determined by

two main operations: (1) counting non-deducible (𝑑, 3)-graphlets
and (2) counting deducible (𝑑, 3)-graphlets.
• To count non-deducible (𝑑, 3)-graphlets, we iterate over each

node 𝑢 ∈ 𝑉 and obtain its effective neighbor pairs using Effec-

tive_Neighbor_Pairswhich takes𝑂 (𝑑4 ®Δ2𝑑
logΔ) time (Lemma 3).

For each effective neighbor pair (𝑣,𝑤), we identifies the (𝑑, 3)-
graphlet of the triangle (𝑢, 𝑣,𝑤) using Get_Triangle, which

takes 𝑂 (𝑑2 log ®Δ) time (Lemma 4). In practice, we (1) check the

connectivity between 𝑣 and 𝑤 takes 𝑂 (𝑑2 log ®Δ) time, and (2)

subsequently identify the (𝑑, 3)-graphlet if it is connected which
takes𝑂 (|𝑉 |𝑑2 log ®Δ) time as well. Thus, the total time complexity

of counting non-deducible (𝑑, 3)-graphlets is 𝑂 (𝑑4 ®Δ2𝑑
log ®Δ).

• To count deducible (𝑑, 3)-graphlets, we use Comb_Three which
takes 𝑂 (|𝑉 |) time (Lemma 5).

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Algorithm 6: Get_Triangle

Input: (1) Three nodes consisting a triangle 𝑢, 𝑣, 𝑤

(2) Maximum distance considered 𝑑

(3) 𝑑-DAG ®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) of graph𝐺
Output: The corresponding (𝑑, 𝑠)-graphlet T(𝑑)∗ ∈ T(𝑑)
// Retrieve pairwise distances (Algorithm 4)

1 𝑑𝑖 ← Retrieve_Distance((𝑢, 𝑣), 𝑑, ®𝐺 (𝑑))
2 𝑑 𝑗 ← Retrieve_Distance((𝑢, 𝑤), 𝑑, ®𝐺 (𝑑))
3 𝑑𝑘 ← Retrieve_Distance((𝑣, 𝑤), 𝑑, ®𝐺 (𝑑))
// (2, 3)-graphlets (𝑑 = 2)

4 if 𝑑 = 2

5 if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (2, 2, 2) }
6 T

(2)
∗ ← T

(2)
1

7 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (1, 2, 2), (2, 1, 2), (2, 2, 1) }
8 T

(2)
∗ ← T

(2)
2

9 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (2, 1, 1), (1, 2, 1), (1, 1, 2) }
10 T

(2)
∗ ← T

(2)
3

11 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (1, 1, 1) }
12 T

(2)
∗ ← T

(2)
4

// (3, 3)-graphlets (𝑑 = 3)

13 if 𝑑 = 3

14 if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (3, 3, 3) }
15 T

(3)
∗ ← T

(3)
1

16 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (2, 3, 3), (3, 2, 3), (3, 3, 2) }
17 T

(3)
∗ ← T

(3)
2

18 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (2, 2, 3), (2, 3, 2), (3, 2, 2) }
19 T

(3)
∗ ← T

(3)
3

20 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (1, 3, 3), (3, 1, 3), (3, 3, 1) }
21 T

(3)
∗ ← T

(3)
4

22 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (2, 2, 2) }
23 T

(3)
∗ ← T

(3)
6

24 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (1, 2, 2), (2, 1, 2), (2, 2, 1) }
25 T

(3)
∗ ← T

(3)
7

26 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (1, 1, 1) }
27 T

(3)
∗ ← T

(3)
9

28 return T
(𝑑)
∗

Since counting non-deducible (𝑑, 𝑠)-graphlets dominates the entire

complexity, the total time complexity of Algorithm 1 is𝑂 (|𝑉 |𝑑4 ®Δ2𝑑
log ®Δ).

A.4 Details of Algorithm 2

In this subsection, we provide the details of sub-algorithms used in

Algorithm 2. Then, we provide the proof of Theorem 2 regarding

the complexity of Algorithm 2.

Triangle_Pairs (Algorithm 8). This function identifies the set

of effective triangle pairs formed by the edge (𝑢, 𝑣), where the re-
maining nodes are connected. Specifically, we consider a pair of

triangles (𝑢, 𝑣,𝑤) and (𝑢, 𝑣,𝑤 ′) effective if𝑤 and𝑤 ′ for a 1-edge or
2-edge. The time complexity of Algorithm 8 is provided in Lemma 6.

Lemma 6 (Complexity of Algorithm 8). The time complexity
of retrieving effective triangle pairs is 𝑂 (®Δ4

log ®Δ), where ®Δ is the
maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. It retrieves the distance for every common neighboring

pair (𝑤,𝑤 ′) of (𝑢, 𝑣), which takes 𝑂 (|𝑁𝑢,𝑣 |2) = 𝑂 (®Δ2𝑑), where ®Δ
is the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |. For each pair,

retrieving the distance between 𝑤 and 𝑤 ′ takes 𝑂 (𝑑2 log ®Δ) time

(Lemma 2). Thus, the total time complexity is 𝑂 (®Δ2𝑑𝑑2 log ®Δ) =
𝑂 (®Δ4

log ®Δ) since we assume 𝑑 = 2.

Get_Cliqe (Algorithm 9).Given two triangles ((2, 3)-graphlets)
T
(2)
◦ ,T

(2)
• and four nodes (𝑢, 𝑣,𝑤,𝑤 ′) that form a clique, this func-

tion returns the corresponding (2, 4)-graphlet of the clique. It first
retrieves the distances of the additional necessary edge pairs. Then,

based on these four distances and the (2, 3)-graphlets of the two
triangles, it immediately identifies the (2, 4)-graphlet of the clique.
The time complexity of Algorithm 9 is provided in Lemma 7.

Lemma 7 (Complexity of Algorithm 9). The time complexity
of identifying (2, 4)-graphlet of a clique is 𝑂 (log ®Δ), where ®Δ is the
maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. The time complexity for retrieving the distances of pairs

of nodes in the clique is 𝑂 (𝑑2 log ®Δ) (from Lemma 2). Once the dis-

tances are obtained, the corresponding (2, 4)-graphlet can be iden-

tified in 𝑂 (1) time. Thus, the overall time complexity is 𝑂 (log ®Δ)
assuming that we use 𝑑 = 2.

Get_Non-induced_Wedge (Algorithm 11).This function iden-

tifies the type of non-induced wedges (which can either be a wedge

or a triangle) for a given set of three nodes (𝑢, 𝑣,𝑤). Here, we
assume that (𝑢,𝑤) is disconnected, and focus on identifying the

wedge (i.e., T
(5)
5

and T
(6)
5

) formed by the triple of nodes. To this

end, we retrieve the distances between (𝑢, 𝑣) and (𝑣,𝑤) and then

rapidly identify the corresponding wedge based on these distances.

The time complexity of Algorithm 11 is provided in Lemma 8.

Lemma 8 (Complexity of Algorithm 11). The time complexity
of identifying T

(2)
5

and T
(2)
6

of the given triple of nodes (𝑢, 𝑣,𝑤),
assuming that 𝑢 and𝑤 are disconnected, is 𝑂 (log ®Δ), where ®Δ is the
maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. The time complexity for retrieving the distances of pairs

of nodes in the clique is 𝑂 (𝑑2 log ®Δ) (from Lemma 2). Once the

distances are obtained, the corresponding wedge (T
(2)
5

and T
(2)
6

)

can be identified in 𝑂 (1) time. Thus, the overall time complexity is

𝑂 (log ®Δ) assuming that we use 𝑑 = 2.

Get_Non-induced_Cycle (Algorithm 12). A non-induced cy-

cle can be obtained based on the predefined conditions of the given

pair of wedges. Thus, the time complexity of Algorithm 12 is 𝑂 (1).
Comb_Four (Algorithm 13). This function computes the counts

of deducible (2, 4)-graphlets (Q̂(2)) and adjusts the counts of semi-

deducible (2, 4)-graphlets (Q̃(2) . Specifically, it leverages node de-
grees or edge counts to quickly compute these values. In the worst

case, enumeration over the 𝐸 (2) . The time complexity of Algo-

rithm 13 is provided in Lemma 9.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Algorithm 7: Comb_Three

Input: (1) Target deducible (𝑑, 𝑠)-graphlet T(𝑑)
𝑗
∈ T̂(𝑑)

(2) Intermediate counts of (𝑑, 𝑠)-graphlets {C(T(𝑑)
𝑖
) } |T

(𝑑) |
𝑖=1

(3) 𝑑-graph𝐺 (𝑑) = (𝑉 , 𝐸 (≤𝑑)) of graph𝐺
Output: The count of the target (𝑑, 𝑠)-graphlet T(𝑑)

𝑗

// (2, 3)-graphlets (𝑑 = 2)

1 if 𝐺 (𝑑) = 𝐺 (2)

// Apply the appropriate equation to T
(2)
𝑗

. The equations should be applied in the below following order.

2 C(T(2)
3
) ← ∑

𝑢∈𝑉
(|𝑁 (1)𝑢 |

2

)
− 3C(T(2)

4
)

3 C(T(2)
5
) ← ∑

𝑢∈𝑉
(|𝑁 (2)𝑢 |

2

)
− 3C(T(2)

1
) − C(T(2)

2
)

4 C(T(2)
6
) ← ∑

𝑢∈𝑉 (|𝑁
(1)
𝑢 | |𝑁

(2)
𝑢 |) − 2C(T(2)

2
) − 2C(T(2)

3
)

// (3, 3)-graphlets (𝑑 = 3)

5 if 𝐺 (𝑑) = 𝐺 (3)

// Apply the appropriate equation to T
(3)
𝑗

. The equations should be applied in the below following order.

6 C(T(3)
8
) ← ∑

𝑢∈𝑉
(|𝑁 (1)𝑢 |

2

)
− 3C(T(3)

9
)

7 C(T(3)
5
) ← ∑

𝑢∈𝑉 (|𝑁
(1)
𝑢 | |𝑁

(2)
𝑢 |) − 2C(T(3)

7
) − 2C(T(3)

8
)

8 C(T(3)
10
) ← ∑

𝑢∈𝑉
(|𝑁 (3)𝑢 |

2

)
− 3C(T(3)

1
) − C(T(3)

2
) − C(T(3)

4
)

9 C(T(3)
11
) ← ∑

𝑢∈𝑉 (|𝑁
(2)
𝑢 | |𝑁

(3)
𝑢 |) − 2C(T(3)

2
) − 2C(T(3)

3
) − 2C(T(3)

5
)

10 C(T(3)
12
) ← ∑

𝑢∈𝑉
(|𝑁 (2)𝑢 |

2

)
− C(T(3)

3
) − 3C(T(3)

6
) − C(T(3)

7
)

11 C(T(3)
13
) ← ∑

𝑢∈𝑉 (|𝑁
(1)
𝑢 | |𝑁

(3)
𝑢 |) − 2C(T(3)

4
) − C(T(3)

5
)

Algorithm 8: Triangle_Pairs

Input: (1) Two nodes consisting an edge (𝑢, 𝑣)
(2) Common neighbor nodes set between 𝑢 and 𝑣 : 𝑁𝑢,𝑣

(3) 2-DAG ®𝐺 (2) = (𝑉 , ®𝐸 (≤2)) of graph𝐺
Output: The set of effective pairs triangles { (𝑢, 𝑣, 𝑤), (𝑢, 𝑣, 𝑤′) }

that share nodes 𝑢 and 𝑣 : T𝑢,𝑣
1 T𝑢,𝑣 ← ∅
2 for each (𝑤, 𝑤′) ∈

(𝑁𝑢,𝑣
2

)
3 𝛿 (𝑤, 𝑤′) ← Retrieve_Distance((𝑤, 𝑤′), 2, ®𝐺 (2))
4 if 𝛿 (𝑤, 𝑤′) ≠ ∞
5 T𝑢,𝑣 ← T𝑢,𝑣 ∪ {{ (𝑢, 𝑣, 𝑤), (𝑢, 𝑣, 𝑤′) } }

6 return T𝑢,𝑣

Lemma 9 (Complexity of Algorithm 13). The time complexity
of computing the counts of deducible (2, 4)-graphlets and adjusting
the counts of semi-deducible (2, 4)-graphlet is 𝑂 (|𝑉 |Δ2).

Proof. In the worst case, it requires enumeration over 𝐸 (2) , and
thus the time complexity is 𝑂 (|𝐸 | (2)) = 𝑂 (|𝑉 |Δ2).
Proof of Theorem 2. Below, we provide the proof for Theorem 2.

Proof. The time complexity of Algorithm 2 is determined by

threemain operations: (1) computing non-deducible (2, 4)-graphlets,
(2) computing semi-deducible (2, 4)-graphlets, and (3) computing

deducible (2, 4)-graphlets.
• To count non-deducible (2, 4)-graphlets, we iterate over each

node 𝑢 ∈ 𝑉 . For each of 𝑢’s neighbor 𝑣 ∈ ®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢 , we first

compute the common neighbors𝑁𝑢,𝑣 which takes𝑂 (min(| ®𝑁 (1)𝑢 ∪
®𝑁 (2)𝑢 |, | ®𝑁

(1)
𝑣 ∪ ®𝑁 (2)𝑣 |)) = 𝑂 (®Δ2) time. Using the common neigh-

bors, the effective triangle pairs are retrieved using Triangle_Pairs,

which takes 𝑂 (®Δ4
log ®Δ) time (Lemma 6), and the number of

pairs is 𝑂 (®Δ4). Then for each triangle pair, each of the corre-

sponding triangle’s (2, 3)-graphlet is identified. Using these (2, 3)-
graphlets, the clique is then determined, which takes 𝑂 (log ®Δ)
time (Lemma 7). Thus, the time complexity of counting non-

deducible (2, 4)-graphlets is (|𝑉 | ®Δ4
log ®Δ).

• To count semi-deducible (2, 4)-graphlets, for each node 𝑣 , we

enumerate over its neighboring pairs (𝑣, 𝑣 ′), which takes 𝑂 (®Δ4)
time. Then we iterate each of the 𝑂 (Δ2) common neighbors𝑤

of 𝑣 and 𝑣 ′, and identify the non-induced wedge which takes

𝑂 (log ®Δ) time (Lemma 8). Then the cycle is identified in 𝑂 (1)
time. Thus, the time complexity of counting semi-deducible (2, 4)-
graphlets is (|𝑉 | ®Δ4Δ2

log ®Δ).
• To count deducible (2, 4)-graphlets, we use the Comb_Four

which takes 𝑂 (|𝑉 | ®Δ2) time.

As a result, counting semi-deducible (𝑑, 𝑠)-graphlets dominate the

entire complexity, and thus the overall time complexity of Algo-

rithm 2 is (|𝑉 | ®Δ4Δ2
log ®Δ).

B EXPERIMENT DETAILS

In this section, we provide further details on our experiments.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Algorithm 9: Get_Cliqe

Input: (1) Two triangle types T
(2)
◦ ,T

(2)
•

(2) Four nodes consisting a clique 𝑢, 𝑣, 𝑤, 𝑤′

(3) 2-DAG ®𝐺 (2) = (𝑉 , ®𝐸 (≤2)) of graph𝐺
Output: The corresponding (𝑑, 𝑠)-graphlet Q(𝑑)∗ ∈ Q(𝑑)

1 𝑑 (𝑢,𝑣) ← Retrieve_Distance(𝑢, 𝑣, 2, ®𝐺 (2))
2 𝑑 (𝑢,𝑤) ← Retrieve_Distance(𝑢, 𝑤, 2, ®𝐺 (2))
3 𝑑 (𝑢,𝑤′) ← Retrieve_Distance(𝑢, 𝑤′, 2, ®𝐺 (2))
4 𝑑 (𝑤,𝑤′) ← Retrieve_Distance(𝑤, 𝑤′, 2, ®𝐺 (2))
5 if 𝑑 (𝑢,𝑣) = 2

6 if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
1

, 2)
7 Q

(2)
∗ ← Q

(2)
1

8 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
1

, 1)
9 Q

(2)
∗ ← Q

(2)
2

10 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
2

, 2)
11 Q

(2)
∗ ← Q

(2)
2

12 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
2

, 1)
13 Q

(2)
∗ ← Q

(2)
4

14 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
3

, 2)
15 Q

(2)
∗ ← Q

(2)
4

16 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
3

, 1)
17 Q

(2)
∗ ← Q

(2)
6

18 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
2

, 2)
19 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′)
20 Q

(2)
∗ ← Q

(2)
4

21 else

22 Q
(2)
∗ ← Q

(2)
3

23 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
2

, 1)
24 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′)
25 Q

(2)
∗ ← Q

(2)
7

26 else

27 Q
(2)
∗ ← Q

(2)
5

28 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
3

, 2)
29 Q

(2)
∗ ← Q

(2)
5

30 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
3

, 1)
31 Q

(2)
∗ ← Q

(2)
9

32 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
3

, 2)
33 Q

(2)
∗ ← Q

(2)
8

34 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
3

, 1)
35 Q

(2)
∗ ← Q

(2)
10

// Continue next page

B.1 Datasets

The details of the datasets and domains are provided below:

• collaboration (ca-DBLP [13], ca-Citeseer [3, 25], ca-HepTh [34]):
Collaboration networks from various academic fields, where

nodes represent authors and edges represent co-authorship be-

tween two authors.

Algorithm 10: Get_Cliqe (continued)

1 else

2 if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
2

, 2)
3 Q

(2)
∗ ← Q

(2)
2

4 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
2

, 1)
5 Q

(2)
∗ ← Q

(2)
3

6 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
3

, 2)
7 Q

(2)
∗ ← Q

(2)
4

8 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
3

, 1)
9 Q

(2)
∗ ← Q

(2)
5

10 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
4

, 2)
11 Q

(2)
∗ ← Q

(2)
7

12 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
4

, 1)
13 Q

(2)
∗ ← Q

(2)
9

14 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
3

, 2)
15 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′)
16 Q

(2)
∗ ← Q

(2)
6

17 else

18 Q
(2)
∗ ← Q

(2)
5

19 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
3

, 1)
20 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′)
21 Q

(2)
∗ ← Q

(2)
9

22 else

23 Q
(2)
∗ ← Q

(2)
8

24 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
4

, 2)
25 Q

(2)
∗ ← Q

(2)
9

26 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
4

, 1)
27 Q

(2)
∗ ← Q

(2)
10

28 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)4

,T
(2)
4

, 2)
29 Q

(2)
∗ ← Q

(2)
10

30 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)4

,T
(2)
4

, 1)
31 Q

(2)
∗ ← Q

(2)
11

32 return Q
(2)
∗

Algorithm 11: Get_Non-induced_Wedge

Input: (1) Three nodes consisting a wedge (𝑢, 𝑣, 𝑤)
(2) 𝑑-DAG ®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) of graph𝐺

Output: The corresponding (𝑑, 𝑠)-graphlet T(2)∗ ∈ T(2)
1 𝛿 (𝑢, 𝑣) ← Retrieve_Distance(𝑢, 𝑣, 2, ®𝐺 (2))
2 𝛿 (𝑣, 𝑤) ← Retrieve_Distance(𝑣, 𝑤, 2, ®𝐺 (2))
3 if (𝛿 (𝑢, 𝑣), 𝛿 (𝑣, 𝑤) ∈ { (1, 2), (2, 1) }
4 T

(2)
∗ ← T

(2)
6

5 else

6 T
(2)
∗ ← T

(2)
5

7 return T
(2)
∗

• web [11, 12, 54] (web-Arabic, web-Indochina): Web networks,

where nodes represent web pages and edges represent hyperlinks

between pages.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Algorithm 12: Get_Non-induced_Cycle

Input: (1) Two wedge type T
(2)
△ ,T

(2)
▲

Output: The corresponding (𝑑, 𝑠)-graphlet Q(2)∗ ∈ Q̃(2)

1 if (T(2)△ ,T
(2)
▲) ∈ { (T

(2)
5

,T
(2)
5
) }

2 Q
(2)
∗ ← Q

(2)
30

3 else if (T(2)△ ,T
(2)
▲) ∈ { (T

(2)
5

,T
(2)
6
), (T(2)

6
,T
(2)
5
) }

4 Q
(2)
∗ ← Q

(2)
29

5 else

6 Q
(2)
∗ ← Q

(2)
28

7 return Q
(2)
∗

Table 4: Statistics for 13 real-world graphs across 5 domains:

|𝐸 (𝑑) | is the number of 𝑑-edges, and |T(𝑑) | and |Q(𝑑) | are the
counts of size-3 and size-4 (𝑑, 𝑠)-graphlets, respectively.

Dataset |𝑉 | |𝐸 (1) | |𝐸 (2) | |𝐸 (3) | |T(2) | |T(3) | |Q(2) |
ca-DBLP 317K 1.05M 12.7M 153M 4.89B 769B 3.95T

ca-Citeseer 227K 814K 7.38M 50.4M 1.70B 107B 659B

ca-HepTh 9.88K 26.0K 179K 1.10M 21.8M 797M 3.77B

web-Arabic 164K 1.75M 3.06M 14.9M 755M 12.6B 205B

web-Indochina 11.4K 47.6K 425K 3.70M 121M 2.93B 54.5B

soc-UCSC 8.99K 225K 7.19M 24.8M 12.7B 98.9B 21.9T

soc-UC 6.83K 155K 4.72M 13.5M 7.13B 42.5B 9.80T

soc-MB 3.08K 125K 2.35M 1.96M 2.34B 4.62B 1.79T

tags-Ubuntu 3.03K 133K 3.66M 764K 3.96B 4.59B 3.07T

tags-Math 1.63K 91.7K 1.08M 152K 661M 716M 275B

road-CA 1.97M 2.77M 5.12M 8.07M 45.0M 189M 301M

road-PA 1.09M 1.54M 2.88M 4.58M 25.7M 109M 175M

road-TX 1.38M 1.92M 3.52M 5.55M 30.7M 128M 202M

Table 5: Importance scores of (2, 4)-graphlets for each dataset.

Each rank is based on the importance score, and each value

represents the index of graphlet instance, with the score

shown in parentheses.

Dataset 1st 2nd 3rd 4th 5th

ca-DBLP 4 (0.91) 13 (0.90) 2 (0.86) 3 (0.85) 27 (0.76)

ca-Citeseer 4 (0.82) 13 (0.81) 3 (0.76) 5 (0.76) 2 (0.70)

ca-HepTh 4 (0.89) 13 (0.89) 2 (0.84) 5 (0.79) 3 (0.79)

web-Arabic 3 (0.99) 5 (0.98) 36 (0.94) 12 (0.94) 8 (0.93)

web-Indochina 3 (0.99) 5 (0.98) 36 (0.94) 12 (0.94) 8 (0.94)

soc-UCSC 5 (0.96) 4 (0.91) 3 (0.89) 2 (0.89) 1 (0.87)

soc-UC 5 (0.95) 4 (0.93) 3 (0.91) 2 (0.91) 6 (0.89)

soc-MB 5 (0.93) 27 (0.89) 18 (0.88) 4 (0.85) 6 (0.84)

tags-Ubuntu 6 (0.96) 20 (0.94) 3 (0.94) 22 (0.93) 28 (0.91)

tags-Math 6 (0.96) 3 (0.94) 20 (0.93) 22 (0.92) 14 (0.91)

road-CA 30 (0.99) 17 (0.99) 29 (0.99) 12 (0.99) 28 (0.99)

road-PA 17 (0.99) 30 (0.99) 12 (0.99) 14 (0.99) 29 (0.99)

road-TX 30 (0.99) 29 (0.99) 17 (0.99) 28 (0.99) 12 (0.99)

• social-Facebook [59, 60] (soc-UCSC, soc-UC, soc-MB): Social

friendship networks from Facebook at various US schools, where

nodes represent users and edges represent friendship connec-

tions between them.

• tags [7] (tags-Ubuntu, tags-Math): Tag co-occurrence networks

from question-and-answer sites, where nodes represent tags and

edges link tags that appear together on the same question post.

• road [36] (road-CA, road-PA, road-TX): Road networks from

various US regions, where nodes represent intersections or road

endpoints, and edges represent the roads connecting them.

We removed self-loops for our analysis. The preprocessed datasets

can be accessed at [26]. All original datasets used in this study are

publicly available from [7, 35, 54]. We present the dataset statistics,

including the number of nodes, edges, and graphlet instances, in

Table 4.

B.2 Importance scores

Among the (2, 4)-graphlets, Q(2)
6

,Q
(2)
8

,Q
(2)
9

,Q
(2)
10

,Q
(2)
11

,Q
(2)
19

can

also be represented in the original size-4 graphlet. Since the 2-edges

of these instances can be inferred from the 1-edge (i.e., the distance

between nodes that are not connected by a 1-edge is guaranteed to

be at most 2.), they are naturally represented in the (2, 4)-graphlets
as well. The remaining (2, 4)-graphlet instances are newly captured
local structures, identified by considering distances up to 2. To

understand how the newly defined (𝑑, 𝑠)-graphlet plays a significant
role in characterization, we use the scoring function proposed by

[32], which denotes the importance of each graphlet 𝑔.

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝑔) = 1 − 𝑑𝑖𝑠𝑡𝑤𝑖𝑡ℎ𝑖𝑛 (𝑔)
𝑑𝑖𝑠𝑡𝑎𝑐𝑟𝑜𝑠𝑠 (𝑔)

𝑑𝑖𝑠𝑡𝑤𝑖𝑡ℎ𝑖𝑛 (𝑔) is the average CP distance between other graphs from

the same domain, and 𝑑𝑖𝑠𝑡𝑎𝑐𝑟𝑜𝑠𝑠 (𝑔) is the average CP distance be-

tween other graphs from different domains. We calculate the impor-

tance of (2, 4)-graphlets across all 13 datasets and display the top

5 instances for each dataset in Table 5, where the graphlet indices

are ranked by the importance score.

B.3 Exact Counting time for all algorithms

In Section 6.4, we evaluate the counting time of EDGE from two

perspectives: (1) in comparison to conventional graphlet counting

algorithms (PGD and ESCAPE) for size-4 (𝑑, 𝑠)-graphlets, and (2)

against two ablation variants of EDGE (EDGE-D2 and EDGE-D).

Table 6 presents the exact counting time of all algorithms along

with additional information about graphlet instances.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Algorithm 13: Comb_Four

Input: (1) Target deducible or semi-deducible (2, 4)-graphlet Q(2)
𝑗
∈ Q̂(2) ∪ Q̃(2)

(2) Intermediate counts of (𝑑, 𝑠)-graphlets {C(Q(𝑑)
𝑖
) } |Q

(𝑑) |
𝑖=1

(3) The counts of each T
(2)
𝑖

per edge {C𝑒 (T(2)𝑖
) } |T

(2) |
𝑖=1

(4) 2-graph𝐺 (2) = (𝑉 , 𝐸 (≤2)) of graph𝐺
Output: The count of the target (𝑑, 𝑠)-graphlet Q(𝑑)

𝑗

// Apply the appropriate equation to Q
(2)
𝑗

. The equations should be applied in the below following order.

1 C(Q(2)
12
) ← ∑

(𝑢,𝑣) ∈𝐸 (2)
(C(𝑢,𝑣) (T(2)1

)
2

)
− 6C(Q(2)

1
) − C(Q(2)

2
)

2 C(Q(2)
13
) ← ∑

(𝑢,𝑣) ∈𝐸 (1)
(C(𝑢,𝑣) (T(2)2

)
2

)
− C(Q(2)

2
) − 2C(Q(2)

3
)

3 C(Q(2)
14
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) (C(𝑢,𝑣) (T
(2)
1
) C(𝑢,𝑣) (T(2)2

)) − 4C(Q(2)
2
) − 2C(Q(2)

4
)

4 C(Q(2)
15
) ← ∑

(𝑢,𝑣) ∈𝐸 (2)
(C(𝑢,𝑣) (T(2)2

)
2

)
− 4C(Q(2)

3
) − C(Q(2)

5
) − C(Q(2)

4
) − 3C(Q(2)

7
)

5 C(Q(2)
16
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) (C(𝑢,𝑣) (T
(2)
2
) C(𝑢,𝑣) (T(2)3

)) − 2C(Q(2)
4
) − 2C(Q(2)

5
)

6 C(Q(2)
17
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) (C(𝑢,𝑣) (T
(2)
1
) C(𝑢,𝑣) (T(2)3

)) − C(Q(2)
4
) − 3C(Q(2)

6
)

7 C(Q(2)
18
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) (C(𝑢,𝑣) (T
(2)
2
) C(𝑢,𝑣) (T(2)4

)) − 3C(Q(2)
7
) − C(Q(2)

9
)

8 C(Q(2)
19
) ← ∑

(𝑢,𝑣) ∈𝐸 (1)
(C(𝑢,𝑣) (T(2)3

)
2

)
− C(Q(2)

5
) − 4C(Q(2)

8
) − 3C(Q(2)

6
) − C(Q(2)

9
)

9 C(Q(2)
20
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
1
) (|𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 |) } − 4C(Q(2)

12
) − C(Q(2)

14
) − 12C(Q(2)

1
) − 4C(Q(2)

2
) − C(Q(2)

4
)

10 C(Q(2)
21
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
1
) (|𝑁 (1)𝑢 | + |𝑁

(1)
𝑣 |) } − C(Q

(2)
14
) − 2C(Q(2)

17
) − 2C(Q(2)

2
) − 2C(Q(2)

4
) − 3C(Q(2)

6
)

11 C(Q(2)
22
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T
(2)
2
) (|𝑁 (2)𝑢 |+ |𝑁

(2)
𝑣 |) }−4C(Q

(2)
13
) −C(Q(2)

14
) −2C(Q(2)

15
) −C(Q(2)

16
) −4C(Q(2)

2
) −8C(Q(2)

3
) −2C(Q(2)

4
) −2C(Q(2)

5
)

12 C(Q(2)
23
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
2
) (|𝑁 (2)𝑢 |+ |𝑁

(2)
𝑣 |) }−

∑
(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T

(2)
2
) (|𝑁 (2)𝑢 |+ |𝑁

(2)
𝑣 |) }−C(Q

(2)
14
) −2C(Q(2)

2
) −2C(Q(2)

4
) −3C(Q(2)

7
)

13 C(Q(2)
24
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
2
) (|𝑁 (1)𝑢 |+ |𝑁

(1)
𝑣 |) }−

∑
(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T

(2)
2
) (|𝑁 (1)𝑢 |+ |𝑁

(1)
𝑣 |) }−2C(Q

(2)
15
) −4C(Q(2)

3
) −2C(Q(2)

5
) −C(Q(2)

9
)

14 C(Q(2)
25
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T
(2)
3
) (|𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 |) } −

∑
(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T

(2)
3
) (|𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 |) } − C(Q

(2)
16
) − 2C(Q(2)

19
)

15 −C(Q(2)
4
) − 2C(Q(2)

5
) − 4C(Q(2)

8
)

16 C(Q(2)
26
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
3
) (|𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 |) }) − C(Q

(2)
16
) − 2 · C (Q(2)

17
) − 2 · C (Q(2)

4
) − 2 · C (Q(2)

5
) − 6 · C (Q(2)

6
) − 2 · C (Q(2)

9
)

17 C(Q(2)
27
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T
(2)
4
) (|𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 |) } − 2 · C (Q(2)

18
) − C(Q(2)

9
) − 2 · C (Q(2)

10
) − 3 · C (Q(2)

7
) − C(Q(2)

9
)

18 C(Q(2)
28
) ← C(Q(2)

28
) − C(Q(2)

12
) − C(Q(2)

13
) − 3 · C (Q(2)

1
) − C(Q(2)

2
) − C(Q(2)

3
)

19 C(Q(2)
29
) ← C(Q(2)

29
) − C(Q(2)

14
) − C(Q(2)

16
) − 2 · C (Q(2)

2
) − 2 · C (Q(2)

4
) − C(Q(2)

5
)

20 C(Q(2)
30
) ← C(Q(2)

30
) − C(Q(2)

15
) − C(Q(2)

19
) − 2C(Q(2)

3
) − C(Q(2)

5
) − 2C(Q(2)

8
)

21 C(Q(2)
31
) ← ∑

𝑢∈𝑉
(𝑁 (2)𝑢

3

)
− C(Q(2)

20
) − C(Q(2)

23
) − 2C(Q(2)

12
) − C(Q(2)

14
) − 4C(Q(2)

1
) − 2C(Q(2)

2
) − C(Q(2)

4
) − C(Q(2)

7
)

22 C(Q(2)
32
) ← ∑

𝑢∈𝑉 {
(|𝑁 (2)𝑢 |

2

)
|𝑁 (1)𝑢 | } − C(Q

(2)
21
) − C(Q(2)

22
) − C(Q(2)

24
) − C(Q(2)

26
) − 2C(Q(2)

13
) − C(Q(2)

14
) − 2C(Q(2)

15
) − C(Q(2)

16
) − 2C(Q(2)

17
)

23 −2C(Q(2)
2
) − 4C(Q(2)

3
) − 2C(Q(2)

4
) − 2C(Q(2)

5
) − 3C(Q(2)

6
) − C(Q(2)

9
)

24 C(Q(2)
33
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) { (|𝑁
(2)
𝑢 | − 1) (|𝑁 (2)𝑣 | − 1) − C(𝑢,𝑣) (T(2)1

) } − 4C(Q(2)
28
) − C(Q(2)

29
) − 2C(Q(2)

20
) − C(Q(2)

22
) − 6C(Q(2)

12
) − 4C(Q(2)

13
)

25 −2C(Q(2)
14
) − C(Q(2)

15
) − C(Q(2)

16
) − 12C(Q(2)

1
) − 6C(Q(2)

2
) − 4C(Q(2)

3
) − 2C(Q(2)

4
) − C(Q(2)

5
)

26 C(Q(2)
34
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) { |𝑁
(1)
𝑢 | (|𝑁

(2)
𝑣 | − 1) + (|𝑁 (2)𝑢 | − 1) |𝑁 (2)𝑣 | − 1

2
C(𝑢,𝑣) (T(2)2

) } − 2C(Q(2)
29
) − 2C(Q(2)

21
) − 2C(Q(2)

23
) − C(Q(2)

26
)

27 −3C(Q(2)
14
) − 2C(Q(2)

16
) − 4C(Q(2)

17
) − 2C(Q(2)

18
) − 4C(Q(2)

2
) − 6C(Q(2)

4
) − 2C(Q(2)

5
) − 6C(Q(2)

6
) − 6C(Q(2)

7
) − 2C(Q(2)

9
)

28 C(Q(2)
35
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) (|𝑁
(2)
𝑢 | |𝑁

(2)
𝑣 | − C(𝑢,𝑣) (T

(2)
2
)) − C(Q(2)

29
) − 2C(Q(2)

30
) − C(Q(2)

22
) − 2C(Q(2)

25
) − 2C(Q(2)

13
) − C(Q(2)

14
) − 2C(Q(2)

15
)

29 −2C(Q(2)
16
) − 3C(Q(2)

19
) − 2C(Q(2)

2
) − 4C(Q(2)

3
) − 2C(Q(2)

4
) − 3C(Q(2)

5
) − 4C(Q(2)

8
)

30 C(Q(2)
36
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) (|𝑁
(1)
𝑢 | |𝑁

(1)
𝑣 | − C(𝑢,𝑣) (T

(2)
3
)) − 2C(Q(2)

30
) − 2C(Q(2)

24
) − 3C(Q(2)

15
) − 2C(Q(2)

19
) − 4C(Q(2)

3
) − 3C(Q(2)

5
) − 4C(Q(2)

8
)

31 −2C(Q(2)
9
) − 2C(Q(2)

10
)

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Table 6: Dataset statistics and exact counting time (sec.) for each algorithm. |T(𝑑) | represents the number of instances of size-3

(𝑑, 𝑠)-graphlets, and |Q(𝑑) | represents the number of instances of size-4 (𝑑, 𝑠)-graphlets. Additionally, the table includes the

counting time for the conventional 4-size graphlet counting algorithms, PGD and ESCAPE, as well as the counting time for our

method EDGE and the two baselines (EDGE-D2, EDGE-D).

Datasets |T(2) | |T(3) | |Q(1) | |Q(2) | PGD ESCAPE EDGE-D2-(2,3) EDGE-D-(2,3) EDGE-(2,3) EDGE-D2-(3,3) EDGE-D-(3,3) EDGE-(3,3) EDGE-(2,4)

ca-DBLP 4.89B 769B 629M 3.95T 0.381 0.297 82.3 17.5 4.31 19.0K 4.64K 913 62.5

ca-Citeseer 1.70B 107B 806M 659B 0.206 0.216 40.1 11.6 3.84 2.64K 651 154 807

ca-HepTh 21.8M 797M 3.99M 3.77B 0.004 0.003 0.40 0.09 0.03 23.1 5.52 1.32 0.17

web-Arabic 755M 12.6B 779M 205B 0.427 1.25 23.2 7.58 2.72 308 69.0 18.0 607

web-Indochina 121M 2.93B 23.2M 54.5B 0.009 0.009 1.23 0.30 0.06 89.3 24.2 6.70 1.46

soc-UCSC 12.7B 98.9B 1.97B 21.9T 0.361 0.323 363 103 27.6 5.80K 1.82K 627 3.87K

soc-UC 7.13B 42.5B 1.60B 9.80T 0.296 0.256 212 60.0 15.7 2.53K 789 273 2.75K

soc-MB 2.34B 4.62B 1.99B 1.79T 0.372 0.339 95.8 27.4 8.14 344 102 36.5 2.40K

tags-Ubuntu 3.96B 4.59B 14.2B 3.07T 1.95 1.11 170 54.0 17.6 327 89.9 33.0 9.74K

tags-Math 661M 716M 4.76B 275B 1.17 0.938 33.0 9.80 3.20 51.4 13.2 5.14 936

road-CA 45.0M 189M 14.0M 301M 0.312 0.285 7.76 7.66 7.30 19.0 17.5 15.5 7.88

road-PA 25.7M 108.9M 8.01M 175M 0.187 0.149 2.73 2.64 2.53 7.16 5.86 5.19 2.75

road-TX 30.7M 128M 9.52M 202M 0.238 0.188 4.24 4.20 3.96 10.4 9.33 8.2 4.31

17

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 NOTATIONS & BASIC CONCEPTS
	4 PROPOSED CONCEPTS
	4.1 Preliminary Concepts
	4.2 (d,s)-Graphlets
	4.3 Characteristic Profiles

	5 PROPOSED ALGORITHMS
	5.1 Graph Construction
	5.2 Size-3 (d,s)-Graphlet Counting
	5.3 Size-4 (d,s)-Graphlet Counting

	6 EXPERIMENTS
	6.1 Experimental Settings
	6.2 Q1. Graph Characterization
	6.3 Q2. Real-World Discoveries
	6.4 Q3. Speed and Scalability

	7 CONCLUSIONS
	References
	A ALGORITHM DETAILS
	A.1 d-Graph Construction
	A.2 Effects of d-DAG
	A.3 Details of Algorithm 1
	A.4 Details of Algorithm 2

	B EXPERIMENT DETAILS
	B.1 Datasets
	B.2 Importance scores
	B.3 Exact Counting time for all algorithms

