
Under review as a conference paper at ICLR 2022

MAX-AFFINE SPLINE INSIGHTS INTO
DEEP NETWORK PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art (SOTA) approaches to deep network (DN) training over-
parametrize the model and then prune a posteriori to obtain a “winning ticket”
subnetwork that can be trained from scratch to achieve high accuracy. To date,
the literature has remained largely empirical and hence provides little insights into
how pruning affects a DN’s decision boundary and no guidance regarding how to
design a principled pruning technique. Using a recently developed spline inter-
pretation of DNs, we develop new theory and visualization tools that provide new
insights into how pruning DN nodes affects the decision boundary. We discover
that a DN’s spline mappings exhibit an early-bird (EB) phenomenon whereby the
spline’s partition converges at early training stages, bridging the recently devel-
oped DN spline theory and lottery ticket hypothesis of DNs. We leverage this
new insight to develop a principled and efficient pruning strategy that focuses on
a tiny fraction of DN nodes whose corresponding spline partition regions actually
contribute to the final decision boundary. Extensive experiments on four networks
and three datasets validate that our new spline-based DN pruning approach re-
duces training FLOPs by up to 3.5× while achieving similar or even better accu-
racy than current state-of-the-art methods. All the codes will be released publicly
upon acceptance.

1 INTRODUCTION

Deep Networks (DNs) are powerful and versatile function approximators that have reached outstand-
ing performances across various tasks, such as board-game playing (Silver et al., 2017), genomics
(Zou et al., 2019), and computer vision (Esteva et al., 2019). For decades, the main driving factor of
DN performances has been progresses in their architectures, e.g. with the finding of novel nonlinear
operators (Glorot et al., 2011; Maas et al., 2013), or by discovering novel arrangements of the suc-
cession of linear and nonlinear operators (LeCun et al., 1995; He et al., 2016; Zhang et al., 2018).
With a tremendously increasing need for DNs’ practical deployments, one line of research aims to
produce a simpler, energy efficient DN by pruning a dense and overparametrized one, e.g. removing
either weights, nodes, filters, layers, or any combination of these options from a DN architecture,
leading to a much reduced computational cost (Frankle & Carbin, 2019b; Han et al., 2015; Chin
et al., 2020; Liu et al., 2017). Recent progresses (You et al., 2020; Molchanov et al., 2016) in this
direction allow to obtain models much more energy friendly while nearly maintaining the models’
task accuracy (Li et al., 2020).
While tremendous empirical progress has been made regarding DN pruning, there remains a lack of
explicit understanding of its impact on a DN’s decision boundary plus a lack of theoretical tools for
deriving pruning techniques in a principled way. Such understandings are crucial for one to study
the possible failure modes of pruning techniques, to better decide which to use based on a given
application, or to design pruning techniques possibly guided by some a priori knowledge about the
given task and data. Our core motivation is to bridge the affine spline formulation of DNs and the
recently developed empirical pruning techniques, e.g., lottery ticket hypothesis Frankle & Carbin
(2019b); You et al. (2020); Evci et al. (2019); Su et al. (2020); Blalock et al. (2020).
In this paper, we shed new light on the inner workings of pruning techniques from a spline per-
spective, by leveraging recent advances in DN understandings and spline formulation (Montufar
et al., 2014; Balestriero & Baraniuk, 2018). Specifically, current DNs are affine splines, that is the
input-output mapping is affine in polytopal regions of the input space partition. From this viewpoint
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Figure 1: (a) Input space partitioning presents how deeper layers successively subdivide the space,
where the newly introduced boundaries are in dark and previously built ones are in grey. We see
that: (i) the turning point of splines in later layers are exactly located at previous ones, and (ii)
splines in the final classification layer are exactly the decision boundary (denoted as blue lines).
Additional examples are supplied in Appendix H; (b) Node (structured) pruning removes entire
subdivision splines; (c) Weight (unstructured) pruning quantizes the partition splines to be colin-
ear to the space axes. Both (b) and (c) lead to the less expressiveness of the final decision boundary.

pruning acts upon a DN by removing/altering the partition boundaries as demonstrated in Fig. 1, and
therefore pruning affects the decision boundary which is constrained to be linear within the regions
of the DN partition. We will demonstrate how this viewpoint allows us to interpret current pruning
techniques (e.g., lottery tickets hypothesis (Frankle & Carbin, 2019a)) by studying their impact on
the DN input space partition, demonstrating how and when can pruning be used without sacrificing
the final performances. Finally, we demonstrate how to derive a new pruning scheme based on our
gained understandings that reaches competitive performances. In order to ease our development,
we slightly abuse notations and refer to a DN as being overparametrized whenever it can be pruned
while maintaining its performances and refer to a DN as being minimal whenever it can not be
pruned without impacting its performances. We summarize our contributions as follows:

[C1] We discover and bridge the connection between spline theory and network pruning techniques.
Specifically, we relate the pruning of DN nodes or weights to (i) the DN input space partition, (ii) the
per-region affine parameters, and (iii) the decision boundary, providing the explicit interpretation of
existing empirical pruning strategies at various granularity levels (either structured or unstructured).
[C2] We further extend these insights by proposing a partition-based metric to quantify the evolution
of the partition boundaries during training, which allows us to efficiently detect early-bird (EB)
tickets when an overparametrize DN has been trained enough and can be pruned; and as opposed
to previous EB methods, ours detects EB tickets regardless of the employed pruning techniques or
hyperparameters.
[C3] We leverage the new insights and the finding of [C2] to derive an efficient pruning strategy from
first principles, which only focuses on DN nodes whose corresponding spline partition boundaries
contribute to the final decision boundary. A series of experiments on various benchmarked models
and datasets validate that our pruning method achieves 3.5× training FLOPs reduction and maintains
similar or even better accuracies over state-of-the-art pruning techniques, while being principled and
interpretable.

2 BACKGROUND AND RELATED WORKS

A DN transforms an input x through a composition of L layers f `, ` = 1, . . . , L to form the final
prediction: f(x) = (fL ◦ ⋅ ⋅ ⋅ ◦ f1)(x). Each layer is a (nonlinear) mapping taking as input a
D
`−1-dimensional feature map and producing a D`-dimensional one, where D` is the `th feature

map’s dimension1; each layer’s parameters are collected in θ`. For a fully-connected and activation
function layer, θ` comprises the D` × D`−1 dense matrix W

` and the D`-dimensional bias vector
b
`. For convolution operators (LeCun et al., 1995), the dense matrix W

` is replaced with a circulant
block circulant matrix C

` for channel-wise convolutions and summations.

1we consider matrices and tensors as flattened vectors for clarity
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Max-affine spline DNs. A key result of (Montufar et al., 2014; Balestriero & Baraniuk, 2018) is
the reformulation of current DN layers with (leaky-)ReLu/Linear/Abs. Value activation functions
as spline operators and in particular as Max-Affine Spline Operator (MASO). With this formulation
each layer’s input-output mapping can be written as

f
`(z) = max

r=1,...,R
(A`

rz + v
`
r) , (1)

with the maximum taken coordinate-wise. By the form of Eq. (1) it is clear that there exists an
underlying layer input space partition based on the realization of the maximum operator; for a study
of this partitioning, see (Balestriero et al., 2019). Jointly, the layers combine their input space
partition to form the DN input space partition Ω. A few work have focused on studying the relation
between the number of regions and the DN architecture (Hanin & Rolnick, 2019b), the analytical
form of the partition (Balestriero et al., 2019), the upper bound in the number of regions (Montufar
et al., 2014; Montúfar et al., 2021).The fundamental property that we will leverage throughout this
paper is that the internal weights of the layers are paired with their input space partition. As pruning
impacts those weights and/or nodes directly, this will offer us new ways to study pruning in DNs’
input space. More background on DNs, their spline formulation, and its difference with our work
can be found in Appendix F.

Network pruning. Pruning is a widely used DN compression technique reducing the number of
activated nodes (Liu et al., 2019c; LeCun et al., 1990) in a given model. The common pruning
scheme adopts a three-step routine: (i) training a large model with more parameters than the desired
final DN, (ii) pruning this overly large trained DN, and (iii) fine-tuning the pruned model to adjust
the remaining parameters and restore as best as possible the performance lost during the pruning
step. Those three steps can be iterated to get a highly-sparse network (Han et al., 2015). Within this
routine, different pruning methods can be employed, each with a specific pruning criteria, granular-
ity, and scheduling (Liu et al., 2019c; Blalock et al., 2020). Those techniques roughly fall into two
categories: unstructured pruning (Han et al., 2015; Frankle & Carbin, 2019b) and structured pruning
(He et al., 2018; Liu et al., 2017; Chin et al., 2020). Regardless of pruning methods, the trade-offs
lie between the amount of pruning performed on a model and the final accuracy. For various energy
efficient applications, novel pruning techniques have been able to push this trade-off favorably. The
most recent theoretical works on DN pruning relies on studying the existence of Winning Tickets.
(Frankle & Carbin, 2019b) first hypothesized the existence of sub-networks (pruned DNs), called
winning tickets, that can produce comparable performances to their non-pruned counterpart. Later,
(You et al., 2020) showed that those winning tickets could be identified in the early training stage of
the unpruned model. Such sub-networks are denoted as early-bird (EB) tickets.

Despite the above discoveries, the DN pruning literature lacks an explicit understanding and visu-
alization via theoretical analysis that would bring insights into (i) current pruning techniques and
(ii) observed phenomenons such as EB tickets, while leading to principled pruning techniques. We
propose to approach this task by leveraging the spline viewpoint of DNs to provide novel interpreta-
tions of existing pruning techniques, study the conditions to their success and when should they be
avoided, and finally, how to derive novel pruning strategies from first principles.

3 DEEP NETWORKS PARTITION, DECISION BOUNDARY AND PRUNING
WORK HAND-IN-HAND

In this section, we first introduce our novel spline interpretation of pruning at various granularity
levels. Then we extend such insights by detecting spline EB tickets through a pruning invariant
partition-based metric. Finally, we leverage the new insights to derive an principle and efficient
pruning strategy.

3.1 INTERPRETING PRUNING FROM A SPLINE PERSPECTIVE

We first propose to leverage the DN input space partition to study the difference between node and
weight pruning, representing structured and unstructured pruning, respectively. In the former, nodes
of different layers are removed, while in the latter, entries of the W ` matrices (or C for convolutions)
are removed. We demonstrate in Fig. 1 (b) and (c) that node pruning removes entire subdivision
splines while weight pruning (or quantization) can be thought as finer granular limitations on the
slopes of subdivision splines, and will only remove the subdivision lines when all entries of a spe-
cific row in W

` are pruned, in which case node and weight pruning become identical. From this
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Figure 2: Classification task pruning using FCNets, where the blue lines represent subdivisions
in the first layer and the red lines denote the last layer’s decision boundary. We see that: (i) pruning
indeed removes redundant subdivision lines so that the decision boundary remains an X-shape until
80% nodes are pruned; and (ii) ideally, one blue subdivision line would be sufficient to provide two
turning points for the decision boundary, e.g., visualization at 80% sparsity.

Data Grid

ConvNet Pruning Ratio (%) ConvNet Splines Visualization

Unpruned Prune 20% Prune 40%

Prune 60% Prune 80% Prune 90%

Figure 3: Classification task pruning using ConvNets, where to produce these visuals, we choose
two images from different classes to obtain a 2-dimensional slice of the 764-dimensional input space
(grid depicted on the left). We thus obtain a low-dimensional depiction of the subdivision splines
that we depict in blue for the first layer, green for the second convolutional layer, and red for the
decision boundary of 6 vs. 9 (based on the left grid). We consistently find that only a fraction of
splines are necessary to provide the turning points of final decision boundary.

perspective, we can already identify the reason why pruned networks are less expressive than the
overparametrized variants (Sharir & Shashua, 2018) as pruned DNs’ input space partition and final
decision boundary shape are limited compared to their unpruned counterparts. Thus this limitation
occurs first on the DN partition which in turn constrains the regions in the space where the decision
boundary can be nonlinear as we recall that the DN decision boundary must be linear within the
regions of the DN input space partition.

Despite the constraints that pruning imposes on the DN input space partition, classification perfor-
mances do not necessarily reduce when pruning is employed. In fact, the final decision boundary,
while being tied with the DN input space partition, does not always depend on all the existing
subdivision lines. That is, pruning will not degrade performances as long as the needed decision
boundary geometry does not rely on the partition regions that are being affected by pruning. We
demonstrate and provide explicit visualization of the above in Fig. 2 and Fig. 3 with fully-connected
networks (FCNets) and convolutional networks (ConvNets), respectively. The observation consis-
tently shows that only parts of subdivision splines are useful for decision boundary; and the
goal of pruning is to remove those (redundant) subdivision splines and find winning tickets.
For example, we observe that for a two-layer FCNet (20 nodes per layer), applying pruning ratios
ranging from 20% ∼ 95% (i.e., prune 4 ∼ 19 nodes) does not prevent solving the task as long as
the remaining subdivision lines are positioned to allow the decision boundary geometry to remain
intact. We also extend the above experiment to a high dimensional case with MNIST classification
and a DN with two convolutional layers, 20 filters, and kernel sizes of 21 and 5, respectively in Fig.
3. By adopting the same channel pruning method as in (Liu et al., 2017), we see that most of the
pruned nodes remove subdivision lines that were not crucial for the decision boundary and thus only
have a small impact on the final classification performance. Hence, as long as pruning leaves at least
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Figure 4: Visual-
ization of spline
trajectories, which
mainly adapt
during early phase
of training demon-
strating the lottery
ticket hypothesis
for DN partitions.

those few subdivision lines, the final performances will remain high. Apart from the empirical study,
we also provide some analysis about the connection between pruning (e.g, lottery ticket hypothesis
(LTH)) and spline theory in Appendix G.

3.2 SPLINE EARLY-BIRD TICKETS DETECTION

Early-Bird (EB) tickets (You et al., 2020) provides a method to draw winning ticket sub-networks
from a large model very early during training (10% ∼ 20% of the total number of training epochs).
The EB drawn is based on an a priori designed pruning strategy and hyperparameters and compares
how different (in terms of which nodes/channels are removed) are the hypothetical pruned models
through the training steps; this method outperforms SOTA methods (Frankle & Carbin, 2019b; Liu
et al., 2017). The main limitation of EB lies in the need to define a priori a pruning technique (itself
depending on various hyperparameters). Based on the spline formulation, we formulate a novel EB
method that does not rely on an external technique and only considers the evolution of the DN
input space partition during training.
Early-bird in the spline trajectory. First, we demonstrate that there exists an EB phenomenon
when viewing the DN input space partition, which should follow naturally as the DN weights and
the DN input space partition are tied. We visualize DN partition’s evolution at different training
stages in Fig. 4 (a) and (b), under the same settings as Sec. 3.1. From this, we clearly see that
the partition quickly adapts to the task and data at hand, and then is only slightly refined through
the remaining training epochs. This fast convergence comes as early as the 2000-th iteration (w.r.t.
10000 iterations for FCNets) and the 30-th epoch (w.r.t. 160 epochs for ConvNets). Additionally,
we observe that the contribution of the first layers in the input space partition becomes stable more
rapidly than for deeper layers. We can thus leverage this early convergence to detect EB tickets
with a novel metric based on those subdivision lines to draw more unified EB tickets than (You
et al., 2020). Moreover, EB tickets have been found to be universal under different optimization and
initialization methods, of which the experiments are provided in Appendix D and E.

Quantitative distance between input space partitions. To draw EB tickets based on the evolution
of DN input space partitions, we first need to provide a metric that conveys such information. First,
recall that each region from the DN input space has an associated binary code based on which side
of the subdivision trajectories the regions lie (Montufar et al., 2014; Balestriero & Baraniuk, 2018).
Given a large collection of data points, we can assign each datum the code of the region it lies in
(found simply based on the sign of the per-layer feature maps). As training occurs and the partition
adapts, the code associated with an input will vary. However, once training stabilizes and regions do
not change anymore, this code will remain the same. In fact, one can easily show that in the infinite
data sample regime covering the entire input space, DNs with the same codes also have the same
input space partition, in turn the same decision boundary geometry. The proposed metric is thus the
hamming distance between the codes of each datum observed at two consecutive training steps.

We visualize the above hamming distance of the DN partition between 160 consecutive epochs,
when training AlexNet on CIFAR-10 (shown as the spline distance matrix (160 × 160) in Fig. 5,
where the (i, j)-th element represents the spline distance between networks from the i-th and j-th
epochs. The distances are normalized between 0 and 1, where a lower value (w.r.t. warmer tem-
perature) indicates a smaller spline distance (and thus DNs with similar partitions). We consistently
observe that such distance becomes small (i.e., < 0.15) in the first few epochs under different models
and datasets settings. indicating the EB phenomenon, but now captured in terms of the DN input
space partition. To obtain an active EB drawing strategy from that, we measure and record the spline
distance between three consecutive epochs, and stop the training when the two associated distances
are smaller than a predefined threshold of 0.15, denoted by the red block in Fig. 5. The detailed
algorithm is provided in Appendix A. We conclude by emphasizing that as opposed to the usual EB
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(a) AlexNet on CIFAR10 (b) VGG-16 on CIFAR100 (c) PreResNet-101 on CIFAR100

Figure 5: Visualization of the early-bird (EB) phenomenon, which can be leveraged to largely reduce
the training costs due to the less training of costly overparametrized DNs.

tickets drawn in (You et al., 2020), our formulation provide a more interpretable scheme that is
invariant to the pruning strategy as well as its hyperparameters (e.g., the pruning ratio). Hence, our
formulation allows for a unified solution that does not require to be adapted based on the pruning
technique that users experiment with.

3.3 SPLINE PRUNING POLICY

We now propose to derive from first principles novel pruning strategies of DNs based on the spline
viewpoint insights. Recall from Sec. 2 that the layer input space partition is formed by a successive
subdivision process involving each per-layer input space partition. As we also studied in the previous
section, for classification performances, not all the input space partition regions and boundaries are
relevant since not all affect the final decision boundary. Knowing a priori which regions of the input
space partition are helping in solving the task is extremely challenging, since it requires knowledge
of the desired decision boundary and of the input space partition, both being highly difficult to
obtain for high dimensional spaces and large networks (Montufar et al., 2014; Balestriero et al.,
2019; Hanin & Rolnick, 2019a). What is simpler to obtain, however, is how redundant are some of
the layer weights/units in terms of the forming of the DN partition relative to other units/weights.
From that, it will become easy to prune the redundant units/weights as their impact on the forming
of the decision boundary is already carried by another unit/weight.

DN Partition Ω N
2
1 (k, k′) Pruned Ω

Figure 6: Left: a small (L = 2, D
1
= 5, D

2
= 8) DN input

space partition. Middle: the pruning criteria as in Eq. (2).
Right: the pruned input space partition based on the criteria.

When considering the layer input
space partition, we can identify “re-
dundant” units based on how each
unit impacts the partition with re-
spect to other units. For example, if
two units have biases and slope vec-
tors proportional to each other, then
one can effectively remove one of the
two units without altering the layer
input space partition. While this is
a pathological case, we will demon-
strate that the angles between per-
unit slope matrices and inter-bias dis-
tances measure such a redundancy.
We first introduce our pairwise re-
dundancy measure as the following
equation:

N
`
ρ(k, k′) = (1 −

∣⟨[W `]k,., [W `]k′,.⟩∣
∥[W `]k,.∥2∥[W `]k′,.∥2

) + ρ∣[b`]k − [b`]k′∣, ρ > 0, (2)

where Wk refers to the corresponding slope matrices of the k-th unit, ρ is an hyper-parameter mea-
suring the sensitivity of the difference in angle versus the biases. In the case of a convolutional layer,
Wk is the flattened filter of shape (channels in,height,width). Finding the two units with the most
similar contribution to the DN input space partitioning can be done via arg mink,k′/=kN

`
ρ(k, k′)

where the obtained couple (k, k′) encodes the two units which are the most redundant. In turn, one
of those two units can be pruned such that the impact of pruning onto the DN input space partition
is minimized.
Proposition 1. Given a layer and its input space partition, removing sequentially one of the two
units, k and k′, for which N `

ρ(k, k′) = 0, leaves the layer input space partition unchanged.
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Table 1: Evaluating the proposed layerwise spline pruning over SOTA pruning methods on CIFAR-
100, where all accuracies are averaged over five runs and “Improv.” denotes the improvements of
our layerwise spline pruning over the network slimming (NS) method.

Dataset Pruning
ratio

PreResNet-101 VGG-16
NS Spline EB Spline Improv. NS Spline EB Spline Improv.

CIFAR-10

Unpruned 93.66 93.66 93.66 - 92.71 92.71 92.71 -
30% 93.48 93.56 93.07 +0.08 93.29 93.21 92.83 -0.08
50% 92.52 92.55 92.37 +0.03 91.85 92.13 92.23 +0.38
70% 91.27 91.33 91.33 +0.06 88.52 89.68 88.65 +1.16

CIFAR-100

Unpruned 73.10 73.10 73.10 - 71.43 71.43 71.43 -
10% 71.58 71.58 73.14 +1.56 71.6 71.78 72.28 +0.68
30% 70.70 70.13 72.11 +1.41 70.32 71.15 71.59 +1.27
50% 68.70 69.05 70.88 +2.18 66.1 69.92 69.96 +3.86
70% 66.51 67.06 68.41 +1.90 61.16 63.13 64.01 +2.85

The above result exploits (Balestriero et al., 2019). In short, if N `
ρ(k, k′) for any positive ρ, then the

layer-partition boundaries (of layer `) of units k, k′ perfectly overlap. The DN partition boundaries
correspond to the layer-partition boundaries backpropagated through the earlier layers to reach the
data space. But this process is a continuous operator i.e., the layer-partition boundaries that overlap
will produce DN partition boundaries that overlap.In practice, units with small enough but nonzero
N
`
ρ(k, k′) are also highly redundant and can be removed. We provide an example of this procedure

in Fig. 6, where a small DN input space partition (layer 1 trajectories in black and layer 2 in blue)
is depicted. In the middle we visualize the measurements from Eq. (2) that trying to find similar
“partition trajectories” from layer 2 seen in the DN input space (comparing the green trajectory to
the others with coloring based on the induce similarity from dark to light). Based on this measure,
pruning can be done to remove the “grouped partition trajectoris” and obtain the pruned partition on
the right.
Efficiency of the spline pruning. Note that instead of using parameter-wise pruning, we perform
channel-wise pruning of which the pruning overhead is negligible when evaluating across four mod-
els and three datasets. For example, ResNet-50 has about 20k channels and needs 100G FLOPs to
prune, which is only 1/30,000,000 of the training costs (3000P FLOPs).

4 EXPERIMENT RESULTS

In this section, we first describe our experiment settings, and then benchmark the proposed spline
pruning method over ten SOTA pruning baselines in the context of layerwise pruning and gloabl
pruning, respectively. Finally, we present ablation studies in terms of the only hyper-parameter ρ.

4.1 EXPERIMENT SETTINGS

Models, datasets, baslines, and metrics: Models & Datasets: We consider four DNN models
(PreResNet-101, VGG-16, and ResNet-18/50) on both the CIFAR-10/100 and ImageNet datasets
following the basic setting of (You et al., 2020). Baselines: We evaluate the proposed spline pruning
methods over ten SOTA training and pruning baselines, including network slimming (NS) (Liu et al.,
2017), lottery tickets (LT) (Frankle & Carbin, 2019a), SNIP (Lee et al., 2019), ThiNet (Luo et al.,
2017), SFP (He et al., 2018), LeGR (Chin et al., 2020), GAL-0.5 (Lin et al., 2019), GDP (Lin et al.),
C-SGC-50 (Ding et al., 2019), and meta pruning (Liu et al., 2019b). Metrics: We evaluate in terms
of the retraining accuracy, total training FLOPs, and real-device energy cost, the latter of which are
measured by training the models on an edge GPU (NVIDIA JETSON TX2) (NVIDIA Inc.), which
considers both the computational and data movement costs.

Training settings: For the CIFAR-10/100 datasets, the training takes a total of 160 epochs; and the
initial learning rate is set to 0.1 and is divided by 10 at the 80-th and 120-th epochs, respectively.
For the ImageNet dataset, the training takes a total of 90 epochs while the learning rate drops at the
30-th and 60-th epochs, respectively. In all the experiments, the batch size is set to 256, and an SGD
solver is adopted with a momentum of 0.9 and a weight decay of 0.0001, following the setting of
(Liu et al., 2019c). Additionally, ρ in Equ. 2 is set to 0.05 for all experiments except for the ablation
studies. All experiments are run in a server with ten NVIDIA 2080 Ti GPUs.

4.2 LAYERWISE SPLINE PRUNING

Recall that the spline pruning policy is done by solving arg mink,k′/=kN
`
ρ(k, k′). By regard k as the

index of channels for convolutional layers, we are able to conduct channel pruning in a layerwise
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Table 2: Evaluating our global spline pruning method over SOTA methods on CIFAR-10/100
datasets. Note that the “Spline Improv.” denotes the improvement of our spline pruning (w/ or
w/o EB) as compared to the strongest baselines. All accuracies are averaged over five runs.

Setting Methods
Retrain acc. Energy cost (KJ)/FLOPs (P)

p=30% p=50% p=70% p=30% p=50% p=70%

PreResNet-101
CIFAR-10

LT (one-shot) 93.7 93.21 92.78 6322/14.9 6322/14.9 6322/14.9
SNIP 93.76 93.31 92.76 3161/7.40 3161/7.40 3161/7.40
NS 93.83 93.42 92.49 5270/13.9 4641/12.7 4211/11.0
ThiNet 93.39 93.07 91.42 3579/13.2 2656/10.6 1901/8.65
Spline 94.13 93.92 92.06 4897/13.6 4382/12.1 3995/10.1
EB Spline 93.67 93.18 92.32 2322/6.00 1808/4.26 1421/2.74
Spline Improv. +0.3 +0.5 -0.46 1.4x/1.2x 1.5x/2.5x 1.4x/3.2x

VGG16
CIFAR-10

LT (one-shot) 93.18 93.25 93.28 746.2/30.3 746.2/30.3 746.2/30.3
SNIP 93.2 92.71 92.3 373.1/15.1 373.1/15.1 373.1/15.1
NS 93.05 92.96 92.7 617.1/27.4 590.7/25.7 553.8/23.8
ThiNet 92.82 91.92 90.4 631.5/22.6 383.9/19.0 380.1/16.6
Spline 93.62 93.46 92.85 643.5/26.4 603.4/25.0 538.1/19.6
EB Spline 93.28 93.05 91.96 476.1/19.4 436.1/15.5 370.7/11.1
Spline Improv. +0.42 +0.21 -0.43 0.8x/0.8x 0.9x/1.0x 1.0x/1.4x

PreResNet-101
CIFAR-100

LT (one-shot) 71.9 71.6 69.95 6095/14.9 6095/14.9 6095/14.9
SNIP 72.34 71.63 70.01 3047/7.40 3047/7.40 3047/7.40
NS 72.8 71.52 68.46 4851/13.7 4310/12.5 3993/10.3
ThiNet 73.1 70.92 67.29 3603/13.2 2642/10.6 1893/8.65
Spline 73.79 72.04 68.24 4980/12.6 4413/10.9 4008/9.36
EB Spline 72.67 71.99 69.74 2388/5.44 1821/3.84 1416/2.46
Spline Improv. +0.69 +0.44 -0.27 1.3x/1.4x 1.5x/2.8x 1.3x/3.5x

p=10% p=30% p=50% p=10% p=30% p=50%

VGG16
CIFAR-100

LT (one-shot) 72.62 71.31 70.96 741.2/30.3 741.2/30.3 741.2/30.3
SNIP 71.55 70.83 70.35 370.6/15.1 370.6/15.1 370.6/15.1
NS 71.24 71.28 69.74 636.5/29.3 592.3/27.1 567.8/24.0
ThiNet 70.83 69.57 67.22 632.2/27.4 568.5/22.6 381.4/19.0
Spline 72.18 71.54 70.07 688.3/28.0 605.2/22.9 555.0/19.4
EB Spline 72.07 71.46 70.29 512.2/19.9 429.1/15.3 378.9/11.8
Spline Improv. -0.44 +0.23 -0.67 0.7x/0.8x 0.9x/1.0x 1.0x/1.3x

manner. Table 1 shows the comparison between the spline pruning (w/ and w/o EB detection) and
SOTA network slimming (NS) method (Liu et al., 2017) on CIFAR-10/100 datasets. We can see that
the spline pruning consistently outperforms NS, achieving -0.08% ∼ 3.86% accuracy improvements.
This set of results verifies our hypothesis that removing redundant splines incurs little changes in
decision boundary and thus provides a good a priori initialization for retraining.

4.3 GLOBAL SPLINE PRUNING

We next extend the analysis to global pruning, where the mismatch of the filter dimension in different
layers impedes the cosine similarity calculation. To solve this issue, in practice, we adopt PCA
(Scholz et al., 2008) for reducing the feature dimensions to the same before applying the spline
pruning. PCA is well motivated as we aim to maintain as much information about the filters while
reducing their dimensionality. However, we also consider factor analysis (FA) dimension reduction
to demonstrate that spline pruning is not sensitive to the adopted dimension reduction methods as
long as it can be used to measure the correlation between two units, and these FA experiments are
provided in Appendix C.

Spline pruning over SOTA on CIFAR. Table 2 compares the retraining accuracy, the total train-
ing FLOPs, and the total training energy of our spline pruning methods with four SOTA pruning
baselines, including two unstructured pruning baselines (i.e., the original lottery ticket (LT) train-
ing (Frankle & Carbin, 2019b) and SNIP (Lee et al., 2019)) and two structured pruning baselines
(i.e., NS (Liu et al., 2017) and ThiNet (Luo et al., 2017)). The results demonstrate that our spline
pruning again consistently outperforms all the competitors in terms of the achieved accuracy and
training efficiency trade-offs. Specifically, compared with the strongest competitor among the four
SOTA baselines, spline pruning achieves 0.8 × ∼ 3.5 × training FLOPs reductions and 0.7 × ∼ 1.5
× energy cost reductions while offering comparable or even better (-0.67% ∼ 0.69%) accuracies.
In particular, spline pruning consistently achieves 1.16 × ∼ 3.16 × training FLOPs reductions than
all the structured pruning baselines, while leading to comparable or better accuracies (-0.17% ∼

1.28%). More comparisons with baselines of pruning at initialization can be found in Appendix B.
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Table 3: Evaluating the proposed global spline pruning over SOTA pruning methods on ImageNet.

Models Methods Pruning
ratio

Top-1
Acc. (%)

Top-1 Acc.
Improv. (%)

Top-5
Acc. (%)

Top-5 Acc.
Improv. (%)

Total Training
FLOPs (P)

Total Training
Energy (MJ)

ResNet-18

Unpruned - 69.57 - 89.24 - 1259.13 98.14

NS
10% 69.65 +0.08 89.20 -0.04 2424.86 193.51
30% 67.85 -1.72 88.07 -1.17 2168.89 180.92

SFP 30% 67.10 -2.47 87.78 -1.46 1991.94 158.14

EB Spline
10% 69.41 -0.16 89.04 -0.20 1101.24 95.63
30% 67.81 -1.76 87.99 -1.25 831.00 82.85

ResNet-50

Unpruned - 75.99 - 92.98 - 2839.96 280.72

ThiNet
30% 72.04 -3.95 90.67 -2.31 4358.53 456.13
50% 71.01 -4.98 90.02 -2.96 3850.03 431.73

SFP 30% 74.61 -1.38 92.06 -0.92 4330.86 470.72

LeGR 50% 75.3 -0.69 92.4 -0.58 4174.74 412.66

GAL-0.5 40% 72.0 -3.99 91.8 -1.18 4458.74 440.73

GDP 40% 72.6 -3.39 91.1 -1.88 4487.14 443.54

C-SGD-50 50% 74.5 -1.49 92.1 -0.88 4117.94 407.04

Meta Pruning 50% 73.4 -2.59 - - 3532.63 349.12

EB Spline
30% 75.08 -0.91 92.58 -0.40 2434.09 264.24
50% 73.37 -2.62 91.53 -1.45 1636.02 197.09

Spline pruning over SOTA on ImageNet. We further investigate whether the spline pruning have
consistent performance in a harder dataset, using ResNet-18/50 on ImageNet and benchmarking
with eight SOTA pruning methods including ThiNet, NS, SFP, LeGR, GAL-0.5, GDP, C-SGD-50,
and Meta Pruning. Specifically, spline pruning with EB detection (EB Spline) achieves a reduced
training FLOPs of 43.8% ∼ 57.5% and a reduced training energy of 42.1% ∼ 54.3% for ResNet-50,
while leading to a top-1 accuracy improvement of -0.12% ∼ 3.04% (a top-5 accuracy improvement
of 0.18% ∼ 1.91%). Consistently, EB Spline achieves a reduced training FLOPs of 44.7% ∼ 61.7%
and a reduced training energy of 39.5% ∼ 54.2% for ResNet-18, while leading to comparable top-1
accuracies (-0.24% ∼ 0.71%) and top-5 accuracies (-0.16% ∼ 0.21%).

4.4 ABLATION STUDIES OF THE SPLINE PRUNING METHOD
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Figure 7: Abalation studies of the hyperparameter ρ in our
spline pruning on two models, VGG-16 and PreResNet-101.

Recalling that the only hyper-
parameters ρ in our spline pruning
method (see Equ. 2 of the main con-
tent), which balances the difference
between the angles versus the biases.
Here we conduct ablation studies
to measure the retraining accuracies
under different values of ρ for inves-
tigating its sensitivity, as shown in
Fig. 7. Without loss of generality, we
evaluate two commonly used models,
VGG-16 and PreResNet-101, on the representative CIFAR-100 dataset. Results show that spline
pruning consistently performs well for a wide range of ρ values ranging from 0.01 to 0.4, which
also generalizes to different pruning ratios (denoted by p). This set of experiments demonstrate the
robustness of our spline pruning methods.

5 CONCLUSIONS

We discover and bridge the connection between spline theory and network pruning techniques,
providing explicit visualization and new insights into how pruning DN nodes affects the decision
boundary, which well explains the presence of winning tickets and the importance of obtaining good
initialization staring from overparametrization. Moreover, we extend these insights by proposing a
pruning invariant metric to quantify the evolution of splines during training and detect the unified
spline EB tickets. Finally, we leveraged the spline formulation of DNs to sharpen our understanding
of different pruning policies, study the conditions in which pruning does not deteriorate perfor-
mances, and develop a novel and more principled pruning strategy extending spline EB tickets; and
extensive experiments demonstrated the superior performances (accuracy and energy efficiency) of
the proposed method. The proposed spline viewpoint opens new avenues to theoretically study novel
and existing pruning techniques as well as guide practitioners via the proposed visualization tools.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameter-
ized neural networks, going beyond two layers. In Advances in neural information processing
systems, pp. 6158–6169, 2019.

Devansh Arpit and Yoshua Bengio. The benefits of over-parameterization at initialization in deep
relu networks. arXiv preprint arXiv:1901.03611, 2019.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford, 2006.

R. Balestriero and R. G. Baraniuk. A spline theory of deep networks. In Proc. Int. Conf. Mach.
Learn., volume 80, pp. 374–383, Jul. 2018.

Randall Balestriero and Richard Baraniuk. From hard to soft: Understanding deep network nonlin-
earities via vector quantization and statistical inference. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=Syxt2jC5FX.

Randall Balestriero, Romain Cosentino, Behnaam Aazhang, and Richard Baraniuk. The geometry
of deep networks: Power diagram subdivision. arXiv preprint arXiv:1905.08443, 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In International conference on machine learning, pp. 583–593. PMLR, 2019.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? In Third Conference on Machine Learning and Systems, 2020.

M Emre Celebi, Hassan A Kingravi, and Patricio A Vela. A comparative study of efficient initial-
ization methods for the k-means clustering algorithm. Expert systems with applications, 40(1):
200–210, 2013.

Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Towards efficient model com-
pression via learned global ranking. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning
very deep convolutional networks with complicated structure. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4943–4953, 2019.

Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark DePristo,
Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. A guide to deep
learning in healthcare. Nature medicine, 25(1):24–29, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. arXiv preprint arXiv:1911.11134, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019a. URL https://
openreview.net/forum?id=rJl-b3RcF7.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019b.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323, 2011.

Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better cluster-
ings. In Proceedings of the eleventh international conference on Information and knowledge
management, pp. 600–607, 2002.

10

https://openreview.net/forum?id=Syxt2jC5FX
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7


Under review as a conference paper at ICLR 2022

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. arXiv preprint
arXiv:1901.09021, 2019a.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2596–2604.
PMLR, 09–15 Jun 2019b. URL https://proceedings.mlr.press/v97/hanin19a.
html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and
Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE
transactions on pattern analysis and machine intelligence, 24(7):881–892, 2002.

Kenji Kawaguchi, Jiaoyang Huang, and Leslie Pack Kaelbling. Effect of depth and width on local
minima in deep learning. Neural computation, 31(7):1462–1498, 2019.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIVITY. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=B1VZqjAcYX.

Chaojian Li, Tianlong Chen, Haoran You, Zhangyang Wang, and Yingyan Lin. Halo: Hardware-
aware learning to optimize. In Proceedings of the European Conference on Computer Vision
(ECCV), September 2020.

Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang Zhang. Ac-
celerating convolutional networks via global dynamic filter pruning. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18.

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue
Huang, and David Doermann. Towards optimal structured cnn pruning via generative adver-
sarial learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2790–2799, 2019.

Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. Bad global minima exist and sgd
can reach them. arXiv preprint arXiv:1906.02613, 2019a.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 3296–3305, 2019b.

11

https://proceedings.mlr.press/v97/hanin19a.html
https://proceedings.mlr.press/v97/hanin19a.html
https://openreview.net/forum?id=B1VZqjAcYX


Under review as a conference paper at ICLR 2022

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2736–2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. In International Conference on Learning Representations, 2019c. URL
https://openreview.net/forum?id=rJlnB3C5Ym.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural net-
work acoustic models. In Proc. icml, volume 30, pp. 3, 2013.

Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint arXiv:1511.06422, 2015.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.
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A ALGORITHM FOR SEARCHING SPLINE EB TICKETS

Algorithm 1: The Algorithm for Searching Spline EB Tickets
1: Initialize the weights W and the FIFO queue Q with length l;
2: while t (epoch) < tmax do
3: Update W and r using SGD training;
4: Calculate the distance between the input space partitions of the current and the previous

networks, and then add it to Q.
5: t = t + 1
6: if Max(Q) < ε then
7: Return f(x;W ) (Spline EB ticket);
8: end if
9: end while

B COMPARISON WITH PRUNING AT INITIALIZATION BASELINES

We further supply another three pruning-at-initialization methods, RigL (Evci et al., 2019), GraSP
(Wang et al., 2020), and SynFlow (Tanaka et al., 2020), as our baselines and present the comparison
results as shown in Tab. 4. We can see that our method consistently outperforms the pruning-at-
initialization baselines in terms of accuracy-efficiency trade-offs, achieving up to 2.68% accuracy
improvement at comparable or even (up to 3.2×) lower total training FLOPs.

Table 4: Evaluating our global spline pruning method over SOTA pruning at initialization methods
on CIFAR-10/100 datasets. All accuracies are averaged over three runs.

Setting Methods
Retrain Accuracy (%) FLOPs (P)

p=30% p=50% p=70% p=30% p=50% p=70%

PreResNet-101
CIFAR-10

RigL 93.56 93.26 92.72 7.81 7.81 7.81
GraSP 93.21 92.83 92.57 7.5 7.5 7.5
SynFlow 93.25 92.86 91.76 7.5 7.5 7.5
Spline 94.13 93.92 92.06 13.6 12.1 10.1
EB Spline 93.67 93.18 92.32 6 4.26 2.74
Spline Improv. +0.57% ∼ +0.92% +0.66% ∼ +1.09% -0.4% ∼ +0.56% 0.6× ∼ 2.9×

VGG-16
CIFAR-10

RigL 92.65 92.72 92.4 15.6 15.6 15.6
GraSP 92.49 91.47 90.79 15.3 15.3 15.3
SynFlow 92.74 91.89 92.17 15.3 15.3 15.3
Spline 93.62 93.46 92.85 26.4 25 19.6
EB Spline 93.28 93.05 91.96 19.4 15.5 11.1
Spline Improv. +0.88% ∼ +1.13% +0.74% ∼ 1.99% +0.45% ∼ 2.06% 0.6× ∼ 1.4×

PreResNet-101
CIFAR-100

RigL 72.55 71.87 69.92 7.81 7.81 7.81
GraSP 72.09 71.66 69.6 7.5 7.5 7.5
SynFlow 72.33 71.88 69.86 7.5 7.5 7.5
Spline 73.79 72.04 68.24 12.6 10.9 9.36
EB Spline 72.67 71.99 69.74 5.44 3.84 2.46
Spline Improv. +1.24% ∼ +1.7% +0.16% ∼ +0.38% -0.18% ∼ 0.14% 0.6× ∼ 3.2×

p=10% p=30% p=50% p=10% p=30% p=50%

VGG-16
CIFAR-100

RigL 71.4 70.98 70.75 15.6 15.6 15.6
GraSP 69.5 69.25 68.43 15.3 15.3 15.3
SynFlow 72.08 71.48 71.2 15.3 15.3 15.3
Spline 72.18 71.54 70.07 28 22.9 19.4
EB Spline 72.07 71.46 70.29 19.9 15.3 11.8
Spline Improv. +0.1% ∼ +2.68% +0.06% ∼ +2.29% -0.91% ∼ +1.86% 0.6× ∼ 1.3×

C GLOBAL SPLINE PRUNING WITH FA DIMENSION REDUCTION

We further adopt factor analysis (FA) dimension reduction methods on PreResNet-101 and VGG-16.
The results are shown in the Tab. 5. We can see that our spline based pruning method is not sensitive
to the adopted dimension reduction methods as long as it can be used to measure the correlation
between two units. We think that studying the theoretical guarantees on what methods and in which
regime those methods are in fact preserving that information would be an interesting future research
direction to provide further theoretical guarantees.
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Table 5: Global spline pruning with PCA and FA dimension reduction methods.

Setting Methods
Accuracy (%)

p=30% p=50% p=70%

PreResNet-101@CIFAR-10
Spline (FA) 94.27 94.26 91.97
Spline (PCA) 94.13 93.92 92.06

VGG-16@CIFAR-10
Spline (FA) 93.10 93.25 92.49
Spline (PCA) 93.62 93.46 92.85

PreResNet-101@CIFAR-100
Spline (FA) 74.37 72.94 68.02
Spline (PCA) 73.79 72.04 68.24

p=10% p=30% p=50%

VGG-16@CIFAR-100
Spline (FA) 72.20 71.99 70.62
Spline (PCA) 72.18 71.54 70.07

D HOW UNIVERSAL IS THE EB FOR DIFFERENT OPTIMIZATION METHODS?

We detect EB tickets using different optimization methods, including SGD, Adam, Adagrad, and
RMSprop (Ruder, 2016), and report both the emerging epochs and the retraining accuracies of de-
tected EB tickets on PreResNet-101 and VGG-16 in the Tab. 6. The results show that our spline EB
tickets consistently emerge at early training stages and perform on par with their unpruned counter-
parts, and thus are empirically observed to be universal to different optimization methods.

Table 6: EB tickets detection using different optimization methods.

Setting Methods EB Emerge Epoch
Retrain Accuracy (%)

Unpruned p=30% p=50%

PreResNet-101@CIFAR-10

EB (SGD) 61 93.66 93.67 93.18
EB (Adam) 30 89.63 89.63 89.26
EB (Adagrad) 33 90.64 90.76 90.79
EB (RMSprop) 80 87.41 86.83 86.37

VGG-16@CIFAR-10

EB (SGD) 24 92.71 93.28 93.05
EB (Adam) 41 90.11 91.25 90.73
EB (Adagrad) 27 90.17 91.04 89.55
EB (RMSprop) 88 87.35 87.86 88.1

E HOW UNIVERSAL IS THE EB FOR ADVERSARIAL INITIALIZATION?

we also detect EB tickets with the adversarial initialization (Liu et al., 2019a). The results shown in
the Tab. 7 demonstrate that our EB tickets can consistently be found under the adversarial initializa-
tion and perform on par with their corresponding unpruned dense networks after being retrained.

Table 7: EB tickets detection using adversarial initialization.

Setting Methods EB Emerge Epoch
Retrain Accuracy (%)

Unpruned p=30% p=50%

PreResNet-101@CIFAR-10
EB (Random Init.) 61 93.66 93.67 93.18
EB (Adv. Init) 81 93.33 93.38 93.36

VGG-16@CIFAR-10
EB (Random Init.) 24 92.71 93.28 93.05
EB (Adv. Init) 40 92.20 92.63 91.66

F BACKGROUND OF MASO AND ITS TIES WITH OUR METHOD

The entire CPA/max-affine spline formulation of deep networks (DNs) has been extensively studied
before (Balestriero & Baraniuk, 2018). However the prior published works merely focus on studying
the various spline properties that one can obtain on a DN from the MASO formulation. Those works
did not study the contributions that we propose in this paper, i.e., (1) bridging the connection between
spline theory and network pruning techniques, (2) discovering that a DN’s spline mappings exhibit
an early-bird (EB) phenomenon whereby the spline’s partition converges at early training stages, and
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(3) leveraging the aforementioned EB finding to develop a principled pruning strategy that focuses
on a tiny fraction of DN nodes whose corresponding spline partition regions actually contribute to
the final decision boundary.

Needless to say that, we do not claim that the MASO formulation is one of our contribution. In fact,
we refer the readers to those prior works in Sec. 2. Instead, we propose to build-upon the MASO
formulation to in-turn study pruning in deep networks, and this (as far as we are aware) has not been
done (even succinctly) previously.

G ANALYSIS ABOUT THE CONNECTION BETWEEN LTH AND SPLINE THEORY

At the lowest level, LTH and spline theory are connected as follows. A DN partitions its input space
according to a power diagram subdivision that is formed by a recursive subdivision process through
the layers. Each subdivision is analytically known and involves the layer weights of each unit and
the biases. When pruning a unit at layer l, the subdivisions of layers 1,⋯, l − 1 are unchanged, the
power diagram of layer l is altered only by removal of a single hyperplane from its boundary, and
all the subdivisions of layers l + 1,⋯, L are altered.

Additionally, in classification tasks, the decision boundary is constrained to be linear within each
region of this input space partition. Hence, for the decision to be nonlinear in a part of the space, the
input space partition at that location must contain at least two regions. The LTH, in terms of splines,
states that it is possible to obtain an input space partition obtained by a power diagram subdivision
each containing significantly less regions, that can still be positioned such that the decision boundary
solves the task at hand. This is the exact phenomenon we tried to highlight in Fig. 2 and Fig. 3
where we depicted that the same (or similar) decision boundary (in red) could be obtained from a
much reduced input space partition.

While we have limited ourselves to mostly empirical evaluations and validations as an important first
step, we agree that an in-depth theoretical study would be immensely beneficial for the community.
This is something we are hoping to achieve in a next study as this theoretical question is incredibly
challenging, for which this work can provide critical insights and inspirations.

H ADDITIONAL VISUALIZATION
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Figure 8: Additional visualization of the partitioning and subdivision layer after layer, where each
node introduces a spline in the input space which is depicted under the current partitioning with a
highlighted path linked via a dotted line.
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Table 8: Accuracies of layerwise (LW) pretraining, structured pruning with random and lottery ticket
initialization.

Setting Pruning Ratio Random Init. Lottery Init. LW Pretrain

VGG-16 on CIFAR-10

30% 93.33±0.01 93.57±0.01 93.08±0.00
50% 93.07±0.03 93.55±0.03 93.08±0.01
70% 92.68±0.02 93.44±0.01 92.81±0.02
90% 90.48±0.06 90.41±0.23 90.88±0.02

VGG-16 on CIFAR-100

10% 71.49±0.03 71.70±0.09 71.14±0.02
30% 71.34±0.10 71.24±1.18 71.35±0.01
50% 67.74±1.05 69.73±1.15 70.19±0.01
70% 60.44±4.98 66.61±0.95 67.40±0.83

I DN INITIALIZATION: AN ALTERNATIVE TO PRUNING

The initialization dilemma and the importance of overparameterization. In the case of DNs,
most initialization techniques focus on maintaining feature maps statistics bounded through depth
to avoid vanishing of exploding gradient (Glorot & Bengio, 2010; Sutskever et al., 2013; Mishkin
& Matas, 2015). However, incorporating data information into the DN weights initialization as is
done in Kmeans with say kmeans++ remains to be developed for DNs. Hence, overparametrization
allows successful training, and a posteriori, one can remove the redundant parameters and obtain a
final model with much better performances versus the non-overparametrized and non-pruned coun-
terpart. This is the key motivation of Early Bird tickets. Furthermore, the parallel between DNs
and K-means is most relevant as it has been shown in (Balestriero et al., 2019) that the DN deci-
sion process relies on an input space partition based on centroids that is very similar to the one of
K-means and which thus benefit in the same way to overparametrization. Beyond this geometric
aspect, overparametrization has been proven to facilitate optimization (Arpit & Bengio, 2019) and
to position the initial parameters close to good local minima (Allen-Zhu et al., 2019; Zou & Gu,
2019; Kawaguchi et al., 2019) reducing the number of updates needed during training.

Remark 1. Winning tickets are the result of employing overly parametrized DNs which are simpler
to optimize and produce better performances, as current optimization techniques can not escape
from poor local minima and advanced DN initialization (near good local minima) is unknown.

We further support the above remark in the following paragraphs where we demonstrate how the ab-
sence of good initialization coupled with non-optimal optimization problems impacts performances
unless overparametrization is used, in which case winning tickets naturally emerge.

DN initialization alternative: layerwise pretraining. We saw in the previous section that the
concept of winning tickets emerges from the need to overparametrize DNs which in turn emerges
naturally from architecture search and cross-validation as overparametrizing greatly facilitates train-
ing and improves final results. We now show that if a better initialization of DNs existed, one
would have the ability to train a minimal DN directly and thus would not resort to the entire pruning
pipeline.

We convey the above point with a carefully designed experiment. We consider three cases. First,
the case of employ a minimal DN with random weights initialized from random Kaiming initial-
ization (He et al., 2015). Second, we consider the same minimal DN architecture but with weights
initialized based on unsupervised layerwise pretraining which we consider as a data-aware initial-
ization (no label information is used) (Belilovsky et al., 2019). In both cases, training is done on the
classification task in the same manner. Third, we consider an overparametrize DN trained with the
lottery ticket (LT) method (training, pruning, and re-training). The final models of the three cases
have the same architecture (but different weights based on their own training method). We report
their classification results in Table 8, from which we can see that especially for very small final DNs
(high pruning ratios) LT models outperform a randomly initialized DN, but in turn a well initialized
DN is able to outperform LT training. From this, we see that the ability of pruning methods and, in
particular, LT to produce better-performing minimal DNs than directly training the same minimal
DN lies in the lack of good initialization for Deep Networks.
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Figure 9: Accuracy vs. efficiency trade-offs of lottery initialization and layerwise pretraining.

In fact, for high pruning ratios, layerwise pretraining even offers a more energy efficient method
overall (including the pretraining phase) than LT training, As shown in Fig. 9, we further compare
the required FLOPs when networks are initialized using lottery initialization and layerwise pretrain-
ing, respectively. We observer that (1) when the pruning ratio is low (i.e., < 50%), networks with
lottery initialization require a smaller number of computational FLOPs to provide a good initial-
ization for the pruned network, while leading to a comparable or even higher retraining accuracy;
and (2) when the pruning ratio is higher, layerwise pretraining requires a much smaller number of
computational FLOPs as compared to training highly overparametrized dense networks. Such a phe-
nomenon opens a door for investigating the following two questions, which we leave as our further
works.

• Is there a clear boundary/condition to show whether we should start from overparametrization or
consider pretraining as a good initialization for samll DNs instead?

• How much overparametrization do we need to maintain better trade-offs between accuracy and
efficiency, as compared to other initialization ways (e.g., layerwise pretraining)?

As the amount of different architectures grows rapidly and the specificity of those architectures
can vary drastically, simple layerwise pretraining falls short of providing an advanced initialization
solution. For example, it is not clear how layerwise pretraining can be used with a DenseNet Huang
et al. (2017) where some parameters connect layers that are far apart in the architecture. Hence,
while we believe in searching for improved initialization strategies, we now focus on studying LT
training and DN pruning as they provide a universal solution.

J ANALYSIS ABOUT WHY THERE ARE REDUNDANT PARTITION BOUNDARIES
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Figure 10: K-means experiments on a
toy mixture of 64 Gaussian.

Network pruning literature follows the chaining of (i)
overparametrization, (ii) training, and (iii) pruning to ob-
tain a small but critical subnetwork, i.e., “winning ticket”
that achieve high accuracies. This offers a powerful alter-
native to training a small network from scratch as good
initialization for such sparse network is not known (Fran-
kle & Carbin, 2019a; Blalock et al., 2020) making the
optimization challenging. This strategy finds benefits not
only with DN but also with traditional methods such as
K-means, in which case pruning removes centroids (Ka-
nungo et al., 2002; Hamerly & Elkan, 2002; Celebi et al.,
2013). We propose to briefly employK-means to demon-
strate the superiority of such pruning strategies. As shown
in Fig. 10, we consider K-means++ (Arthur & Vassilvit-
skii, 2006) as a ground-truth method to represent good initialization (denoted as kmeans++), where
we know a priori the number of clusters (64) for artificial data generated from a Gaussian Mixture
Model (GMM) (Reynolds, 2009) with spherical and identical covariances. Against that baseline, we
perform the three-step pruning strategy over multiple runs and with varying numbers of initial clus-
ters to generate winning initialization (denoted as tickets). In all case the clusters will be pruned to
64 (true number of Gaussians) from the initial number that varies from 64 to 128 (-axis of Fig. 10).
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Figure 11: Left: Depiction of a simple (toy) univariate regression task with target function being
a sawtooth with two peaks. Right: The `2 training error (y-axis) as a function of the width of the
DN layer (2 layers in total). In theory, only 4 units are requires to perfectly solve the task at hand
with a ReLU layer, however we see that optimization in narrow DNs is difficult and gradient based
learning fails to find the correct layer parameters. As the width is increased as the difficulty of
the optimization problem reduces and SGD manages to find a good set of parameters solving the
regression task.

We observe that the winning initialization perform near-optimal results (i.e., closer to kmeans++)
when starting from overparameterization (i.e., initial clusters ≥ 100), otherwise suffer from large ac-
curacy drops. We highlight that employing overparameterization facilitate finding winning tickets.
From the above experiments it is clear that in the absence of “optimal” initialization of small DNs,
pruning is the current preferred solution to obtain performing minimal architectures.

K ADDITIONAL RESULTS ON INITIALIZATION AND PRUNING

Next we extend the overparametrization-pruning vs. initialization insights to univariate DNs on a
carefully designed dataset. Considering a simple unidimensional sawtooth as displayed in Fig. 11
with P peaks (here P = 2). In the special case of a single hidden layer with a ReLU activation
function, one must have at least 2P units to perfectly fit this function with the weight configuration
being [1]1,k = 1, [1]k = −k with k = 1, . . . , D1 and [2]1,1 = 1, [2]1,k(−2)(k−1)%2

, k = 2, . . . , D1.
Note that these weights are not unique (other ones can identically fit the function) and are given as
an example. At initialization, if the DN has only 2P units, the probability that a random weight
initialization arranges the initial splines in a way to allow effective gradient based training is low.
Increasing the width of the initial network will increase the probability that some of the units are ad-
vantageously initialized throughout the domain and aligned with the natural input space partitioning
of the target function (different regions for different increasing or decreasing sides of the sawtooth).
This is what empirically illustrated in Fig. 11 (right) where one can see that even repeating multiple
initializations of a DN without overparametrization does not allow to solve the task, while over-
parametrizing, training, and then pruning that together preserve only the correct number of units
allow for better approximation.
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L RELATION BETWEEN ACTIVATION PATTERNS AND SPLINE PARTITION OF
INPUT SPACE
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Figure 12: Visualize one
subdivision line on grid.

Subdivision Lines. Every layer in deep networks (DNs) with piecewise
nonlinearities (e.g. ReLU activation) can be viewed as subdivision lines
for partitioning the given input space (Balestriero et al., 2019). For ex-
ample, suppose the DNs’ input space is shaped as a square grid with
N × N data points, we extract the activations from one intermediate
layer of k hidden nodes, then each node corresponds one subdivision
line to distinguish non-zero activations in the input grid, thus we have
k subdivision lines in this layer, same as the number of hidden nodes.
From such geometry perspective, there are two good characteristics to
leverage: (1) Subdivision lines in the first layer are linear affine func-
tions taking layer parameters as slopes and biases, following subdivision
lines are piecewise linear, whose turning points are exactly located at the
subdivision lines in previous layers; (2) The derived subdivision lines at
the final classification layer are exactly the network decision boundary. Such connection provides us
a new perspective to analyze how the decision boundary are gradually formulated and what network
compression methods (e.g., pruning, quantization) really mean from such geometry perspective.

M EARLY-BIRD VISUALIZATION ON TEST AND RANDOM SAMPLES

To investigate what happens to the partitioned regions that do not contain any training data, we
redraw Fig. 5 (early-bird visualization) on test samples, and show the visualization of early-bird
phenomenon at Fig. 13.

VGG-16 on CIFAR100 PreResNet-101 on CIFAR100

(a) Visualization on Training Samples

VGG-16 on CIFAR100 PreResNet-101 on CIFAR100

(b) Visualization on Testing Samples

VGG-16 on CIFAR100 PreResNet-101 on CIFAR100

(c) Visualization on Random Samples

Figure 13: visualization of the early-bird (EB) phenomenon when using training samples, testing
samples, and random samples, respectively.

N SPLINE TRAJECTORY AND EB TICKETS WITH LEAKY RELU ACTIVATION

We redraw Fig. 4 (spline trajectory) and Fig. 5 (early-bird visualization) when using Leaky ReLU as
activation functions, and show the corresponding spline trajectory at Fig. 14 and the visualization of
early-bird phenomenon at Fig. 15. From these figures, we can consistently observe that the splines
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will adapt during the early phase while converging at later training stages, demonstrating that the
early-bird phenomenon still holds under the Leaky ReLU activation functions. In addition, we
supply the pruning experiment comparisons using networks with Leaky-ReLU activation functions
to Table 9, from which we see that the spline pruning consistently outperforms all baselines in terms
of both accuracy and efficiency, leading to -0.44% ∼ +1.38% accuracy improvement and up to 4×
training flops savings.

Iterations

Lo
ss

Spline Trajectory for FCNet 

Replace ReLU with Leaky ReLU

Figure 14: Visualization of spline trajectories using FCNet with Leaky ReLU activation functions.

(a) PreResNet-101 on CIFAR10

Replace ReLU with Leaky ReLU

(b) PreResNet-101 on CIFAR100

Figure 15: Visualization of the early-bird (EB) phenomenon when training PreResNet-101 with
Leaky ReLU activation functions.

Table 9: Evaluating our spline pruning method over baselines when using Leaky ReLU activation
functions.

Setting Methods
Retrain Accuracy (%) FLOPs (P)

p=30% p=50% p=70% p=30% p=50% p=70%

PreResNet-101 on CIFAR-10

NS 93.54% 93.18% 90.89% 13.9P 12.7P 11.0P
ThiNet 92.18% 91.57% 90.25% 13.2P 10.6P 8.65P
Spline 93.56% 92.74% 91.11% 13.6P 12.1P 10.1P
EB Spline 92.76% 92.13% 90.66% 6.00P 4.26P 2.74P
Spline Improv. -0.44% ∼ +1.38% 1.1x ∼ 4.0x
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O COMPARISON UNDER 90% PRUNING RATIOS

As shown in the Table 10, the proposed spline pruning outperforms the baselines across two models
(PreResNet-101 and VGG-16) and two datasets (CIFAR-10 and CIFAR-100), leading to -0.35%
∼ +63.87% accuracy improvements. Note that the network slimming (NS) method suffers from
bottleneck layers due to the “over-pruning” channels on specific layers.

Table 10: Evaluating our spline pruning method over baselines under 90% pruning ratios.
Datasets Model Methods Accuracy (p=90%)

CIFAR-10

PreResNet-101

NS 77.63%
ThiNet 87.80%
Spline 87.96%
EB Spline 88.15%
Spline Improv. +0.35% ∼ +10.52%

VGG-16

NS 89.13%
ThiNet 86.90%
Spline 89.11%
EB Spline 89.24%
Spline Improv. +0.11% ∼ +2.34%

CIFAR-100

PreResNet-101

NS 28.90%
ThiNet 60.66%
Spline 58.97%
EB Spline 60.31%
Spline Improv. -0.35% ∼ +31.41%

VGG-16

NS 1%
ThiNet 56.31%
Spline 59.37%
EB Spline 64.87%
Spline Improv. +8.56% ∼ 63.87%

P COMPARISON WITH ITERATIVE PRUNING METHODS

We further supply the comparison with network slimming with the mentioned iterative pruning
method (NS-IP). As shown in the Table 11, our spline pruning again outperforms those methods in
terms of both accuracy and efficiency, leading to -0.47% ∼ +1.11% accuracy improvement and up
to 7.1× training flops savings. We will add this set of experiments and discussion in our revision.

Table 11: Evaluating our spline pruning method over iterative pruning baseline.

Setting Methods
Retrain Accuracy (%) FLOPs (P)

p=30% p=50% p=70% p=30% p=50% p=70%

PreResNet-101 on CIFAR-10

NS-IP 93.74% 92.72% 92.53% 23.6P 21.6P 18.7P
Spline 94.13% 93.92% 92.06% 13.6P 12.1P 10.1P
EB Spline 93.67% 93.18% 92.32% 6.00P 4.26P 2.74P
Spline Improv. +0.39% +1.20% -0.47% 1.7x ∼ 6.8x

PreResNet-101 on CIFAR-100

NS-IP 72.68% 71.82% 69.86% 23.3P 21.3P 17.5P
Spline 73.79% 72.04% 68.24% 12.6P 10.9P 9.36P
EB Spline 72.67% 71.99% 69.74% 5.44P 3.84P 2.46P
Spline Improv. +1.11% +0.22% -0.12% 1.8x ∼ 7.1x

Q QUANTITATIVE DISTANCES OF DIFFERENT LAYERS ALONG TRAINING
TRAJECTORY

As shown in the Table 12, the quantitative distance of early layers converges faster than later layers,
indicating that the base partition regions divided by first few layers will not change too much since
the very early epochs.
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Table 12: Record of the quantitative distance between input space partitions of different layers, i.e.,
early, middle, or later layers, along the training trajectory.

Datasets Models Layers
Quantitative Distances

10th epoch 40th epoch 80th epoch 120th epoch 160th epoch

CIFAR-100

VGG-16
Early (1st) 0.247 0.197 0.061 0.021 0.003
Medium (8th) 0.538 0.424 0.183 0.024 0.003
Late (16th) 0.579 0.512 0.236 0.027 0.004

PreResNet-101
Early (1st) 0.621 0.562 0.296 0.023 0.002
Medium (16th) 0.704 0.612 0.273 0.025 0.003
Late (32th) 0.781 0.728 0.376 0.038 0.005

R SPLINE PRUNING FOR VISION TRANSFORMER (VIT)?

For self-attention layers in ViT, the spline theory is not directly applicable due to the softmax func-
tion which is not continuous piecewise affine. However, one possible direction would be to model
such layers as “smooth splines”. The discussion in (Balestriero & Baraniuk, 2019) that would allow
such extension, this is recognized as an interesting future direction.
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