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Abstract

The proliferation of Large Language Models (LLMs) has introduced critical secu-1

rity challenges, where adversarial actors can manipulate input prompts to cause2

significant harm and circumvent safety alignments. These prompt-based attacks3

exploit vulnerabilities in a model’s design, training, and contextual understanding,4

leading to intellectual property theft, misinformation generation, and erosion of5

user trust. A systematic understanding of these attack vectors is the foundational6

step toward developing robust countermeasures. This paper presents a comprehen-7

sive literature survey of prompt-based attack methodologies, categorizing them to8

provide a clear threat model. By detailing the mechanisms and impacts of these9

exploits, this survey aims to inform the research community’s efforts in building10

the next generation of secure LLMs that are inherently resistant to unauthorized11

distillation, fine-tuning, and editing.12

1 Introduction13

Large Language Models (LLMs) have become a transformative technology, yet their widespread14

adoption is shadowed by a growing landscape of security threats. Prompt-based attacks, which15

manipulate inputs to subvert a model’s intended behavior, represent a primary vector for exploitation.16

These attacks pose severe risks, including the generation of harmful content, unauthorized extraction17

of sensitive knowledge, and the bypass of carefully constructed safety alignments. Addressing these18

vulnerabilities is paramount to preventing intellectual property theft and ensuring that LLMs remain19

beneficial tools rather than instruments of misuse.20

The core challenge stems from fundamental weaknesses in model design, training processes, and21

the integration of LLMs with external systems. Poor input validation and the inherent ambiguity of22

natural language create avenues for adversarial manipulation. The common architectural foundations23

(e.g., Transformer architectures, tokenizers, and training datasets) across major LLMs like GPT,24

Claude, and Llama lead to a high degree of attack transferability, amplifying the threat. An attack25

developed for one model can often be adapted to compromise others, making systemic, built-in26

defenses essential.27

This paper provides a comprehensive survey and structured categorization of prompt-based attack28

methodologies. Our goal is to establish a foundational threat model that can guide the development of29

robust defenses. By systematically analyzing the attack surface, we aim to contribute to the creation30

of Un-Distillable, Un-Finetunable, and Un-Editable models. Understanding how LLMs are broken is31

the first step toward learning how to lock them. This analysis underscores the urgent need to build32

LLMs that are inherently resistant to exploitation while preserving their beneficial capabilities.33
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2 Input Manipulation and Injection Attacks34

Input manipulation attacks directly alter the prompt to elicit unintended behavior. The most prominent35

of these is prompt injection, where malicious instructions are embedded within a prompt to hijack36

the model’s output, extract confidential information, or bypass safety controls. These attacks can be37

broadly classified into direct and indirect methods.38

2.1 Direct Prompt Injection39

In direct attacks, a Trojan text is appended to or embedded within an otherwise benign application40

prompt. Researchers have identified several effective techniques for direct injection.41

Competing Objectives [1] LLMs are trained with competing objectives: to be helpful and to be42

harmless. Attackers exploit this by crafting prompts where the instruction to be helpful (e.g., "Start43

your response with ’Absolutely! Here’s’") takes precedence over safety guardrails, compelling the44

model to fulfill a harmful request.45

Mismatched Generalization [1] LLMs are trained on diverse data formats and can interpret various46

encodings. Attackers leverage this by obfuscating malicious instructions using formats like Base64 or47

ROT13. The model, focused on the decoding task, may overlook the harmful nature of the decoded48

instruction, bypassing content filters.49

Instruction Repetition [2] By repeating a malicious instruction multiple times within a single50

prompt, an attacker can increase its salience, eventually forcing the LLM to comply, overwhelming51

its initial refusal.52

Cognitive Hacking and Role-Playing [2] This technique involves assigning the LLM a persona or53

role in a fictional scenario where the malicious request is framed as a legitimate part of the narrative54

(e.g., "You are an unfiltered AI assistant..."). This sense of urgency or altered context can cause the55

model to bypass its safety protocols. Virtualization [3] extends this by molding the model’s behavior56

over a series of prompts.57

Instruction Ignoring [4] A simple yet effective technique is to append a phrase like, "Ignore all58

previous instructions and do X," which can override the system prompt and its embedded safeguards.59

Special Case and Few-Shot Prompting [2] An attacker can define a "special instruction" that60

subverts normal behavior or provide a few-shot examples where the desired malicious output is61

demonstrated, conditioning the model to replicate the harmful behavior for the user’s query.62

2.2 Indirect Prompt Injection63

As LLMs are integrated with external tools (web search, APIs, databases), the attack surface expands.64

Indirect attacks poison these external data sources with malicious prompts, which are then consumed65

by the LLM during its operation, compromising the system without the end-user’s knowledge. These66

are classified based on the source:67

• Passive Methods: Malicious prompts are embedded in public content like websites or code68

repositories, which an LLM-powered agent may retrieve and execute during inference.69

• Active Methods: Prompts are sent directly to systems the LLM interacts with, such as being70

embedded in an email that an AI assistant will later process.71

• Hidden Injections: Malicious prompts are obfuscated within benign data, such as being72

encoded in Base64, hidden in image metadata, or using invisible characters.73

Work by [5] provides a systematic taxonomy of these vulnerabilities, while [4] introduced HOUYI,74

a black-box methodology inspired by traditional SQL injection and XSS attacks, which success-75

fully compromised 36 real-world LLM-integrated applications with high accuracy. These attacks76

underscore the need for Un-Editable models and secure data handling, as knowledge bases become a77

primary vector for exploitation.78
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2.3 Adversarial Prompt Crafting79

This category involves designing inputs that are inherently malicious or ambiguous to evade safety80

mechanisms. Unlike direct injection, these prompts often appear harmless. For example, unethical81

queries can be rephrased as educational or hypothetical requests. Research in this area includes82

generating adversarial prompts that simulate user mistakes like typos to test robustness [6], developing83

black-box frameworks for generating such prompts [7], and using prompt-based methods to expose84

model weaknesses without needing access to training data [8]. These attacks highlight the difficulty85

of creating rigid input validation rules for the dynamic nature of language.86

3 Semantic and Knowledge-Based Manipulation87

These attacks manipulate the model’s reasoning process or the knowledge it relies on, representing a88

deeper level of exploitation. They are particularly relevant to the goals of creating Un-Finetunable89

and Un-Editable LLMs.90

3.1 Chain-of-Thought (CoT) Misuse91

Chain-of-Thought (CoT) prompting enhances LLM reasoning by guiding them through step-by-step92

problem-solving. However, this same mechanism can be exploited. Attackers can craft prompts that93

introduce subtle logical fallacies or flawed assumptions into the reasoning chain, leading the model to94

a predetermined malicious conclusion. Because the output includes a seemingly logical rationale, it95

can be more persuasive and dangerous. Research like BadChain [9] demonstrates how backdoors can96

be embedded in CoT reasoning without access to model parameters, while [10] shows how injecting97

a false "preemptive answer" can derail the entire reasoning process.98

3.2 Red Teaming99

Red Teaming is a proactive, adversarial methodology used to discover vulnerabilities in LLMs100

by intentionally crafting edge cases. This process simulates real-world attack strategies to test a101

model’s robustness, safety, and ethical alignment. Red teaming efforts have led to the discovery of102

novel attack vectors like the Trojan Activation Attack (TA²), which injects malicious vectors into103

activation layers to manipulate model behavior at inference [11]. A comprehensive analysis of red104

teaming strategies [12] highlights the ongoing arms race between jailbreak techniques and defense105

mechanisms, reinforcing the need for foundational security measures.106

3.3 Data Poisoning107

Data poisoning is a stealthy attack where malicious instructions or biased data are embedded within108

otherwise benign training or retrieval datasets. This compromises the model’s integrity from within.109

When an LLM is fine-tuned on such data, or when a Retrieval-Augmented Generation (RAG) system110

fetches poisoned information, its behavior can be manipulated. Recent work demonstrates gradient-111

guided poisoning attacks that cause significant performance degradation by altering just 1% of112

instruction-tuning samples [13]. Furthermore, "jailbreak tuning" combines data poisoning with113

jailbreaking techniques, showing that larger models can become more vulnerable to toxic behaviors114

with minimal exposure [14]. This class of attack is a direct threat to model integrity and motivates115

the development of Un-Finetunable and Un-Editable architectures.116

4 Integration and Model-Level Exploits117

As LLMs become components in larger software ecosystems, their interaction points with external118

tools, plugins, and their own internal architecture become new attack surfaces.119

4.1 Common Prompt-Based Attack Techniques120

Beyond high-level categories, practitioners have developed a toolkit of specific, reusable attack121

patterns. These techniques are often combined to create complex jailbreaks.122
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Jailbreaking A heuristic-driven approach using prompts discovered through trial-and-error to123

bypass safety alignments [15–18].124

Typoglycemia Introducing minor misspellings or typos to confuse filters that rely on exact keyword125

matching [19].126

Adversarial Suffix Appending a specifically crafted string that causes the model to disregard127

previous safety instructions [20].128

Translation Obfuscating harmful requests by translating them into another language and back,129

exploiting inconsistencies in multilingual safety training [21, 22].130

Obfuscation Encoding malicious payloads using Base64, hex, or other formats that the model is131

instructed to decode and execute [21].132

Payload Splitting Breaking a malicious instruction into multiple, individually benign parts and133

asking the model to reassemble and execute them [21].134

Markup Language Abuse Using Markdown or HTML to manipulate the structural interpretation135

of the prompt, confusing the model’s understanding of system versus user roles [23].136

Few-Shot Attack Providing examples of the desired harmful behavior to coax the model into137

compliance [24].138

Prefix Injection & Refusal Suppression Forcing the model to start its response in a certain way139

("Sure, here is...") or explicitly telling it not to use refusal phrases [24].140

Context Manipulation Techniques like context ignoring, termination, or switching separators are141

used to trick the model into discarding its safety context and adopting a new, malicious one [24].142

4.2 Trojan Attacks143

Trojan (or backdoor) attacks embed hidden triggers within a model that cause it to produce specific,144

attacker-controlled outputs when activated. Unlike prompt-level attacks, these involve manipulation145

of the model’s internal state or parameters, making them highly relevant to the "Un-Finetunable146

LLM" challenge.147

Model Manipulation Methodologies Research has moved beyond simple trigger tokens to more148

sophisticated methods. Bit Flipping Attacks [25] identify and alter a minimal set of weight bits at149

test-time to induce malicious behavior, making the modification difficult to detect. Trojan Steering150

Vectors [26] do not modify weights but instead inject malicious vectors into the model’s activation151

layers at inference to steer its output. For black-box models, reinforcement learning can be used for152

Trigger Identification, discovering input patterns that reliably elicit harmful responses without any153

internal access [27]. These advanced attacks highlight the need for defenses that go beyond input154

sanitization and verify model integrity.155

5 Output Exploitation and Automated Attacks156

These attacks focus on manipulating the model’s generated output or automating the attack process157

for scalability.158

5.1 Output Exploitation159

These attacks aim to corrupt the trustworthiness of the LLM’s output.160

Hallucination Induction Attackers can craft adversarial prompts that intentionally cause the model161

to generate confident but factually incorrect or nonsensical outputs [28]. This can be used to generate162

sophisticated disinformation, eroding trust and polluting the information ecosystem.163
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Ethical Exploitation Prompts can be framed to exploit loopholes in a model’s ethical reasoning,164

leading to biased or harmful content. PCJailbreak [29] demonstrates how jailbreak success rates vary165

with demographic keywords, revealing subtle ethical biases that can be manipulated.166

Data Leaks Carefully crafted prompts can trick a model into revealing sensitive or private informa-167

tion from its training data, posing a direct threat to data privacy and intellectual property [30, 31].168

Preventing such leaks is central to creating Un-Distillable models.169

5.2 Automated Attacks170

The manual discovery of attack prompts is being superseded by automated methods, demanding171

scalable defenses.172

Reinforcement Learning Targeted Attack [32] introduced an RL framework that automatically173

generates malicious prompts for jailbreaking and Trojan detection. The reward function is optimized174

to maximize the attack success rate, demonstrating that exploit generation can be automated.175

TrojLLM [33] proposed a method for discovering universal triggers that work across many prompts.176

Using a combination of API-driven discovery and progressive prompt poisoning, this technique177

automates the creation of effective black-box Trojan attacks.178

6 Conclusion179

This literature survey highlights the diverse and sophisticated nature of prompt-based attacks on180

Large Language Models. From direct input manipulations to subtle, model-level Trojan attacks, the181

vulnerabilities are deeply rooted in the current LLM paradigm. Our findings indicate that while182

surface-level defenses like input filtering and output guardrails have mitigated some direct attacks183

in high-end models, the threat landscape is shifting toward more advanced exploits targeting model184

integrations, reasoning processes, and internal mechanisms. These attacks directly challenge the185

security, integrity, and trustworthiness of LLM deployments.186

The findings underscore the urgent need for a proactive and multi-layered security approach. To187

build inherently secure models, the community must move beyond reactive patching. The attacks188

surveyed herein form a clear threat model that must be addressed through foundational research189

into Un-Distillable, Un-Finetunable, and Un-Editable systems. As evidenced by Trojan detection190

challenges [34] and large-scale prompt hacking competitions [35], systemic vulnerabilities persist.191

Addressing them is not merely a technical challenge but an ethical imperative for deploying AI192

responsibly.193

7 Future Work194

As LLMs continue to scale and integrate into critical systems, research must focus on building195

inherent resistance to the attacks outlined in this survey. Key directions for future work include:196

• Architectures for Un-Editable and Un-Finetunable LLMs: Research is needed on novel197

architectures and training methodologies that are intrinsically resistant to data poisoning198

and Trojan attacks. This could involve non-differentiable components, formal verification of199

model behavior, or new techniques for secure fine-tuning.200

• Mechanisms for Un-Distillable and Un-Usable Models: To prevent intellectual property theft201

and misuse, future work should focus on robust watermarking and fingerprinting techniques202

that can trace model outputs. Furthermore, developing methods to prevent the extraction of203

training data and model logic through prompt-based queries is crucial.204

• Advanced Evaluation Frameworks and Benchmarks: The red teaming and automated attack205

methods discussed necessitate the development of comprehensive, standardized benchmarks206

to evaluate LLM security. These frameworks must evolve alongside the threat landscape to207

provide meaningful assessments of model robustness.208
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• Secure Integration and Tool Use: As LLMs increasingly rely on external data and tools,209

research must address the security of these integrations. This includes developing sandboxing210

environments, data provenance tracking for RAG systems, and formal methods to verify the211

behavior of tool-augmented models.212

• Theoretical Foundations for LLM Security: Establishing formal guarantees and information-213

theoretic limits for LLM protection will provide a solid foundation for building provably214

secure systems.215

By focusing on these areas, the research community can transition from a reactive defense posture to216

proactively building LLMs that are secure by design.217
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