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Extended Abstract
The pervasiveness of cooperation has long puzzled researchers [1]. In a Darwinian world driven
by self-interest, altruistic behaviours seem counterintuitive, since cooperators bear costs while
defectors free-ride. Such situations are known as social dilemmas: cooperation benefits the
group at individual cost, while defection exploits collective benefits. Thus, although coopera-
tion is socially optimal, defection is individually rational [2]. Evolutionary game theory, partic-
ularly the Prisoner’s Dilemma (PD), provides a framework to study these dynamics. Structured
populations are often modelled as networks, where links capture pairwise interactions. Net-
work properties such as reciprocity, degree heterogeneity, and clustering can promote cooper-
ation [3]. However, networks remain limited, as they only represent pairwise relations, while
many real systems involve group interactions of higher order [4].

To address this, we model the population as a hypergraph where nodes are players and hy-
peredges represent interactions. A payoff tensor of dimension n is assigned to each hyperedge
of size n, combining n-body games with the representational power of higher-order networks.
We focus on hypergraphs with edges (2-hyperedges) and triangles (3-hyperedges), correspond-
ing to pairwise games (2-games) and three-player games (3-games). Players adopt one of two
strategies, cooperation (C) or defection (D), yielding four payoffs for 2-games and six for 3-
games. While 2-game payoffs form a 2× 2 matrix, 3-games require a 2× 2× 2 cube. The
complete payoff structure is shown in Fig. 1(a).

As is customary, mutual cooperation yields the reward R = 1, mutual defection the penalty
P = 0, unilateral defection the temptation payoff T , and unilateral cooperation the sucker’s
payoff S. The values of T and S classify pairwise games into four types with distinct Nash
Equilibria: PD, Chicken, Stag Hunt, and Harmony. Extending to 3-games introduces two addi-
tional payoffs: W (defection against a cooperator and a defector) and G (cooperation against a
cooperator and a defector), which capture effects absent in pairwise settings.

We analyse a well-mixed population where each interaction is a 3-game with probability δ

and a 2-game with probability 1−δ . The fraction ρ of cooperators evolves under the Replicator
Equation (RE): ρ̇ = ρ(1−ρ) [πC −πD], where πC and πD are expected payoffs of cooperators
and defectors. Besides the absorbing states ρ∗

D = 0 and ρ∗
C = 1, the RE admits two non-trivial

stationary states ρ∗
±:

ρ
∗
± =

cδ −b−2S±
√

(cδ −b)2 +4S(b+S)
2cδ

, (1)

with a = 2(G−W ), b = T −S−1, c = a+b. Real solutions exist when

δ ≥δ
th
1 =

b+
√
−4S(b+S)

c
. (2)

Stability analysis shows that ρ∗
D = 0 and ρ∗

+ are stable, while ρ∗
− and ρ∗

C = 1 are unstable.
Thus, if δ < δ th

1 , defection dominates as in the pairwise PD. If δ > δ th
1 , an explosive transition
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occurs to a bistable regime where both ρ∗
D = 0 and 0 < ρ∗

+ < 1 are stable. Fig. 1(b) confirms
analytical predictions with numerical simulations. Temporal dynamics (Fig. 1(c)) further reveal
that, beyond the threshold of higher-order interactions, a critical initial fraction of cooperators
is also required to reach majority cooperation.

Our main result shows that cooperation can persist even in the PD, where pairwise inter-
actions alone lead to full defection. Higher-order interactions enable an explosive transition
to stable cooperation once their fraction exceeds a threshold. However, bistability implies that
cooperation survives only if a critical mass of cooperators is initially present. We also find that
larger overlap between interactions of different orders and multi-dimensional strategies further
promote cooperation. Overall, higher-order interactions provide a new pathway for sustaining
cooperation in competitive settings, offering a potential resolution to social dilemmas.

References
[1] Robert Axelrod and William D Hamilton. “The evolution of cooperation”. In: Science

211.4489 (1981), pp. 1390–1396.

[2] Martin A Nowak and Robert M May. “Evolutionary games and spatial chaos”. In: Nature
359.6398 (1992), pp. 826–829.

[3] Francisco C Santos, Jorge M Pacheco, and Tom Lenaerts. “Evolutionary dynamics of so-
cial dilemmas in structured heterogeneous populations”. In: Proceedings of the National
Academy of Sciences 103.9 (2006), pp. 3490–3494.

[4] Federico Battiston et al. “Networks beyond pairwise interactions: Structure and dynam-
ics”. In: Physics reports 874 (2020), pp. 1–92.

ρ y

ρ* ρ* −

t

Q
S(

ρ)

ρ

ρ y

ρ* ρ* −

t

Q
S(

ρ)

ρ

ρ* ρ* −

p Q
S(ρ

)

ρδ
0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

a=2.0
a=1.5
a=1.0

(a)

(c)

ρ y

ρ* ρ* −

t

Q
S(

ρ)

ρ

(b)

S, T

T, S

G,T,G

T,G,G W,W,S

W,S,W

S,W,WG,G,T

Figure 1: (a) Hypergraph with 2- and 3-player games and their payoffs. (b) Equilibrium coop-
erator fraction in the PD as a function of δ , the share of 3-player interactions, for different a,
with simulations (symbols) matching analytics (dotted). (c) Temporal evolution of cooperators
showing the critical initial mass for cooperation.
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