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ABSTRACT

Multi-armed bandit (MAB) algorithms have achieved significant success in se-
quential decision-making applications, under the premise that humans perfectly
implement the recommended policy. However, existing methods often overlook
the crucial factor of human trust in learning algorithms. When trust is lacking,
humans may deviate from the recommended policy, leading to undesired learning
performance. Motivated by this gap, we study the trust-aware MAB problem by in-
tegrating a dynamic trust model into the standard MAB framework. Specifically, it
assumes that the recommended and actually implemented policy differs depending
on human trust, which in turn evolves with the quality of the recommended policy.
We establish the minimax regret in the presence of the trust issue and demonstrate
the suboptimality of vanilla MAB algorithms such as the upper confidence bound
(UCB) algorithm. To overcome this limitation, we introduce a novel two-stage
trust-aware procedure that provably attains near-optimal statistical guarantees. A
simulation study is conducted to illustrate the benefits of our proposed algorithm
when dealing with the trust issue.

1 INTRODUCTION

The (stochastic) multi-armed bandit (MAB) algorithms have achieved remarkable success across
diverse domains related to sequential decision-making, including healthcare intervention (Tewari &
Murphy, 2017; Rabbi et al., 2018), recommendation systems (Li et al., 2010; Kallus & Udell, 2020),
and dynamic pricing (Kleinberg & Leighton, 2003; Wang et al., 2021), to name a few. While a variety
of prior work has been dedicated to this problem, existing results often emphasize learning uncertain
environments and overlook humans’ willingness to trust the output of learning algorithms, assuming
humans implement the recommended policy with perfect precision. However, in numerous real-world
applications, there may exist a discrepancy between the recommended and actually executed policy,
which heavily relies on the humans’ trust in the recommendations. The humans would embrace the
suggested policy only if they have a high level of trust; otherwise, they tend to adhere to their own
policy. Meanwhile, high-quality recommendations, in turn, can foster growing trust throughout the
decision-making process. One concrete example can be found in human-robot interaction (HRI),
where autonomous systems such as robots are employed to assist humans in performing tasks (Chen
et al., 2020). Although the robot is fully capable of completing tasks, a novice user may not trust
the robot and refuse its suggestion, leading to inefficient collaboration. Additionally, trust-aware
decision-making finds crucial applications in emergency evacuations (Robinette & Howard, 2012).
Myopic individuals might follow their own policy, such as the shortest path strategy, which is not
necessarily optimal due to traffic congestion. If the evacuation plan designer fails to account for the
uncertainty in action execution caused by trust issues, a skeptical individual is unlikely to follow the
recommendations, potentially resulting in disastrous consequences.

This motivates research on trust-aware sequential decision-making, where deviations in decision
implementation arising from trust issues need to be taken into account. Human trust should be
monitored and influenced during the decision-making process in order to achieve optimal performance.
Despite the foundational importance, studies of trust-aware sequential decision-making remain largely
unexplored. Only recently have researchers begun to empirically incorporate trust into algorithm
design (Moyano et al., 2014; Azevedo-Sa et al., 2020; Xu & Dudek, 2016; Chen et al., 2018; Akash
et al., 2019). However, the theoretical understanding of trust-aware sequential decision-making still
remains an open area of research.
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In this paper, we take an initial step by formulating the problem of trust-aware MAB composed of
three key components: (i) uncertain environments and unknown human trust that can be learned
and influenced, (ii) a policy-maker that designs MAB algorithms for decision recommendation, and
(iii) an implementer who may or may not execute the recommended action based on trust, which
is unobservable to the policy-maker. The sequential decision-making process can be described as
follows. At each time h, (1) the policy-maker selects an arm apmh according to some policy πpm

h and
recommends it to the implementer that takes actions in reality; (2) the implementer pulls an arm aach
according to some policy πac

h , which depends on the recommended arm apmh , her own policy πown
h , and

her trust th in the policy-maker; (3) the implementer receives a random reward Rh(a
ac
h ) associated

with the pulled arm aach . The goal is to design a policy πpm for the policy-maker to maximize the
expected cumulative rewards received, that is, E[

∑H
h=1 Rh(a

ac
h )].

One critical issue surrounding the trust-aware MAB lies in decision implementation deviation. The
policy-maker loses full control of exploration and exploitation due to the trust issue, which signifi-
cantly hurts the balanced trade-off attained by the standard MAB methods. When the implementer’s
trust level is low, she will not explore the uncertain environment effectively as desired by the recom-
mended policy πpm, while at the same time failing to fully exploit the optimal arm even after it has
been identified. In particular, when her own policy πown outperforms most arms, ignoring deviations
in decision execution and blindly applying vanilla MAB algorithms, such as the upper confidence
bound (UCB) algorithm, can severely decrease performance. Indeed, when πown performs relatively
well, the suboptimal arms are rarely selected by the implementer. The UCB-type algorithm, however,
attempts to keep pulling those suboptimal arms for exploration purposes, causing a persistent decline
in trust. This further exacerbates decision implementation deviation and hinders effective exploration,
resulting in a large regret.

In light of such challenges, a fundamental question we seek to address in this paper is:

Can we design a trust-aware MAB algorithm that achieves (near-)minimax optimal statistical
guarantees in the presence of trust issues?

1.1 CONTRIBUTIONS

Encouragingly, we deliver an affirmative answer to the question above. We integrate a dynamic trust
model in the standard MAB framework that characterizes sequential decision-making under uncertain
environments with unknown human trust behavior. We establish that the minimax lower bound on
the H-period regret scales as Ω(

√
KH), where K is the size of the arm set. Furthermore, we show

that the standard UCB algorithm (Lai et al., 1985; Auer et al., 2002a) can incur a near-linear regret
Ω̃(H) when the trust issue is present. Here and throughout, we use the asymptotic notations O(·)
(resp. Õ(·)) to represent upper bounds on the growth rate up to a constant (resp. logarithmic) factor,
and Ω(·) (resp. Ω̃(·)) for lower bounds similarly.

To address this gap, we design a novel trust-aware UCB algorithm consisting of two stages. The
approach first identifies the arms that ensure the implementer’s trust in recommendations grows.
It then conducts trust-aware exploration and exploitation, simultaneously optimizing decisions
and building trust. Notably, our procedure operates in an adaptive manner without requiring any
knowledge of the implementer’s trust level, trust set, or own policy. We characterize the regret of
our algorithm as Õ(

√
KH +K4), which provably achieves the minimax regret up to a logarithmic

factor for a wide range of horizon H .

To the best of our knowledge, this is the first theory to develop a trust-aware algorithm that provably
achieves near-minimax optimal statistical efficiency. The major technical contribution lies in the
delicate characterization of the interplay between the trust dynamics and decision-making.

1.2 RELATED WORK

Multi-armed bandits. Since the seminal work (Robbins, 1952), the MAB problem has been exten-
sively studied, which is well-understood to a large extent. We refer readers to Bubeck et al. (2012);
Slivkins et al. (2019); Lattimore & Szepesvári (2020) for a comprehensive overview. Numerous
algorithms—including the UCB (Lai et al., 1985; Auer et al., 2002a), successive elimination (SE)
(Even-Dar et al., 2006; Auer & Ortner, 2010), and Thompson sampling (TS) (Thompson, 1933;
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Agrawal & Goyal, 2012)—have been developed that provably attain the minimax regret (Auer et al.,
2002b; Gerchinovitz & Lattimore, 2016). Our trust-aware MAB formulation shares the same spirit
as numerous variants of the MAB problem that are motivated by diverse practical constraints in
real-world applications. A non-comprehensive list of examples includes MAB with safety constraints
where actions must satisfy uncertain and cumulative or round-wise constraints (Amani et al., 2019;
Pacchiano et al., 2021; Badanidiyuru et al., 2018; Liu et al., 2021), transfer/meta-learning for MAB
where datasets collected from similar bandits are leveraged to improve learning performances (Cai
et al., 2024; Lazaric et al., 2013; Cella et al., 2020; Kveton et al., 2021), risk-averse MAB where the
objective is to minimize risk measures such as Conditional Value-at-Risk (CVaR) and Value-at-Risk
(VaR) (Sani et al., 2012; Cassel et al., 2018; Wang et al., 2023), etc. It is worth noting that deviations
in decision implementations have been explored in the context of MABs. For instance, the incentive-
compatible MAB (Frazier et al., 2014; Mansour et al., 2015) studies the scenarios where deviations
arise from the nature of recommendations—exploitative arms are more likely to be followed than
exploratory ones. In contrast, our framework focuses on deviations driven by trust issues.

Trust-aware decision-making. Trust-aware decision-making is largely driven by human-robot
interaction, where trust between humans and autonomous systems presents as a fundamental factor in
realizing their full potential (Azevedo-Sa et al., 2020; Xu & Dudek, 2016; Chen et al., 2018; Akash
et al., 2019; Bhat et al., 2022). Research on trust-aware decision-making can be broadly divided
into reactive and proactive approaches. The reactive approach employs a predetermined scheme
that specifies the policy-maker’s behaviors when the human’s trust falls outside an optimal range
(Azevedo-Sa et al., 2020; Xu & Dudek, 2016). The formulation considered in the current paper
belongs to the proactive approach, which integrates human trust into the design of decision-making
algorithms. In addition to MABs, Markov decision processes (MDPs) and Partially Observable
Markov decision processes (POMDPs) are also widely used in modeling the trust-aware decision-
making process (Chen et al., 2018; 2020; Bhat et al., 2022; Akash et al., 2019). This proactive
approach allows the learner to adapt its recommendations in response to human trust. However, these
studies are predominantly empirical and lack a theoretical foundation.

1.3 NOTATION

For any a, b ∈ R, we define a ∨ b := max{a, b} and a ∧ b := min{a, b}. For any finite set A, we let
∆(A) be the probability simplex overA. For any positive integer K, denote by [K] := {1, 2, · · · ,K}.
We use 1{·} to represent the indicator function. For any distributions P,Q, KL(P∥Q) stands
for the KL-divergence. For any a ∈ R, denote by ⌊a⌋ (resp. ⌈a⌉) the largest (resp. smallset)
integer that is no larger (resp. smaller) than a. For any two functions f(n), g(n) > 0, the notation
f(n) ≲ g(n) (resp. f(n) ≳ g(n)) means that there exists a constant C > 0 such that f(n) ≤ Cg(n)
(resp. f(n) ≥ Cg(n)). The notation f(n) ≍ g(n) means that C0f(n) ≤ g(n) ≤ C1f(n) holds for
some constants C0, C1 > 0. In addition, f(n) = o(g(n)) means that lim supn→∞ f(n)/g(n) = 0,
f(n)≪ g(n) means that f(n) ≤ c0g(n) for some small constant c0 > 0, and f(n)≫ g(n) means
that f(n) ≥ c1g(n) for some large constant c1 > 0.

1.4 ORGANIZATION

The rest of the paper is organized as follows. Section 2 formulates the problem and introduces
definitions and assumptions. Section 3 presents our theoretical findings and the analysis of main
theories is presented in Section 4. The detailed proofs and technical lemmas are deferred to the
appendix. Section 5 presents the numerical performance of the proposed algorithms. We conclude
with a discussion of future directions in Section 6.

2 PROBLEM FORMULATION

Trust-aware multi-armed bandit. We study a (stochastic) K-armed bandit, described by a se-
quence of i.i.d. random variables

(
Rh(1), · · · , Rh(K)

)
h≥1

, where Rh(k) denotes the random reward
generated by arm k at time h. The rewards are assumed to be bounded in [0, 1] for any k ∈ [K] and
h ≥ 1. The expected reward associated with arm k is denoted by r(k) := E[R1(k)] for any k ∈ [K].
We denote r⋆ the maximum expected reward, i.e., r⋆ := maxk∈[K] r(k). A policy π = {πh}h≥1 is a
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collection of distributions over the arm set, where πh ∈ ∆([K]) specifies the (possibly randomized)
arm selection at time h.

The MAB game operates as follows: at each time step h, the policy-maker recommends an arm
apmh to the implementer. Based on apmh , the implementer pulls arm aach according to some policy πac

h
(which may differ from apmh ) and receives a random reward Rh(a

ac
h ) yielded by the arm aach .

Decision implementation deviation. To characterize deviations in decision implementation, we
focus on the disuse trust behavior model, which is widely recognized by empirical studies in human-
robot interaction scenarios (Chen et al., 2020; Bhat et al., 2024).

Specifically, the implementer is assumed to have an own policy πown, which is unknown to the
policy-maker. Given the recommended action apmh , the implementer chooses to either follow the
instruction apmh or take action according to her own policy πown

h , based on her trust level th at time h.
More concretely, we assume that

aach =

{
apmh , if χh = 1;

aownh , if χh = 0.
(1)

Here, χh
ind.∼ Bern(th), h ≥ 1 is a sequence of independent Bernoulli random variables, where th

represents the implementer’s trust level in the policy-maker at time h. Without loss of generality,
the trust level th is assumed to be bounded in [0, 1]. When χh = 1, the implementer adopts the
recommendation apmh . Otherwise, she chooses an arm aownh according to her own policy πown

h . In
other words, at time h, the implementer adopts the recommendation apmh with probability th, while
reverting to her own policy πown

h with probability 1− th. Intuitively, a higher trust level indicates a
greater tendency for the implementer to follow the policy-maker.

Trust update mechanism. We incorporate a dynamic trust model to capture how recommendations
influence the implementer’s evolving trust. The trust level th at time h is assumed to satisfy

th =
αh

αh + βh
, (2)

where α1 = β1 = 1, and
αh = αh−1 + 1{apmh−1 ∈ T }, and βh = βh−1 + 1{apmh−1 /∈ T }, ∀h ≥ 2. (3)

Here, the set T ⊂ [K] consists of arms that, when recommended, increase the implementer’s trust
in the policy-maker. Roughly speaking, the implementer’s trust level is the frequency at which the
recommended arm belongs to her trust set. The trust increases whenever an arm from the trust set T
is recommended, resulting in a higher likelihood of following it in the future.
Remark 1. The trust update rule is motivated by the pattern observed in real-world human-subject
experiments (Guo & Yang, 2021) and aligns with the well-known Laplace’s rule of succession
in probability theory. We note that the initial values α1 = β1 = 1 are chosen for simplicity of
presentation. Our results naturally extend to general cases with arbitrary constants α1, β1 > 0.

We emphasize that the trust set T is chosen by the implementer and is inaccessible to the policy-
maker. This information asymmetry is an inherent factor driving the challenges in such a hierarchical
structure.
Remark 2. The trust set T can be viewed as representing the implementer’s a priori beliefs or
preferences regarding the arms. For instance, it may consist of arms that the implementer initially
considers potentially optimal based on her limited knowledge. When the policy-maker suggests
pulling an arm outside T , it challenges the implementer’s preconceptions and undermines her trust in
the credibility of recommendations.

We denote by Π(K, T , πown) the class of trust-aware MABs that satisfy the conditions above.

To ensure effective learning when the policy-maker and implementer share aligned interests—both
seeking to maximize rewards—we introduce a consistency assumption regarding the trust set T , as
described below.
Assumption 1. The trust set T includes at least an optimal arm, that is, ∃k ∈ T such that r(k) = r⋆.

Assumption 1 requires that the trust set contains the optimal arm when it is unique, and at least one
optimal arm when multiple exist. All in all, it guarantees that the implementer’s trust increases when
an optimal arm is recommended, and hence building trust aligns with learning the optimal arm.
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Goal. Our objective is to develop a policy πpm for the policy-maker that minimizes the expected
regret accumulated over H time steps by the implementer policy πac, namely,

E[regH(πpm)] := E

[
H∑

h=1

(
r⋆ − r(aach )

) ∣∣∣ aach ∼ πac
h

]
.

The expectation is taken with respect to the randomness of the executed policy πac, which depends
on the recommended policy πpm and trust level {th}h≥1. We emphasize that the policy πpm

h at time
h depends only on observations anterior to h, specifically

{(
aaci , Ri(a

ac
i ), χi

)}
1≤i<h

. Moreover, the
own policy πown and trust {ti}1≤i<h is unobservable to the policy-maker.

3 MAIN RESULTS

3.1 SUB-OPTIMALITY OF UCB

One may naturally wonder whether we can resort to the classical MAB algorithms such as the UCB
algorithm (Lai et al., 1985; Auer et al., 2002a) to solve the trust-aware MAB problem. Unfortunately,
the answer is negative, which is formalized by the following regret lower bound for the UCB algorithm
in Theorem 1 below. The proof can be found in Appendix B. For completeness of presentation, we
present the UCB algorithm in Algorithm 2 in the appendix.
Theorem 1. Suppose Assumption 1 holds. There exists a multi-armed bandit, a trust set, and an own
policy such that the expected regret of the policy πUCB generated by the UCB algorithm obeys

E[regH(πUCB)] ≥ cH√
log(H)

, (4)

where c is some constant independent of H .

Remark 3. This theorem constructs a hard MAB instance with a fixed number of arms, emphasizing
the suboptimality of horizon dependency H . It is straightforward to generalize it to encompass a
broader range of cases.

Theorem 1 reveals the suboptimality of the UCB algorithm in the presence of the trust issue. To
develop some intuition about its failure, note that the arm prescribed at time h is only selected with
probability th due to deviations in decision implementation and that recommending an arm not
in the trust set reduces the implementer’s trust. As shall be clear from the analysis in Section 4,
without accounting for the trust issue, the UCB algorithm adopts a relatively “aggressive” exploration
strategy, causing the suboptimal arms to dominate the recommendations in the initial stage. As a
consequence, the trust level th delays rapidly to nearly zero within o(H) time steps. This implies that
the UCB algorithm effectively loses control of the decision-making in practice, with the implementer
adhering to her own policy πown for the remainder of the game. Therefore, the UCB algorithm incurs
a near-linear regret Ω̃(H) as long as πown is not the optimal policy.

3.2 TRUST-AWARE UCB ALGORITHM

Revisiting the failure of the UCB approach highlights an important lesson for trust-aware policy
design: maintaining a high level of trust is essential when exploring the suboptimal arms. In light of
this observation, we proposed a two-stage trust-aware UCB paradigm that leverages the information
contained in the pattern of decision implementation deviations. The first phase involves uniform
arm selection by the policy-maker, aiming to identify the implementer’s trust set and eliminate the
arms outside this set. This procedure guarantees that the recommended policy will be followed
subsequently. Once this elimination step is complete, the algorithm transitions to the second stage,
where the policy-maker conducts trust-aware exploration and exploitation to identify the optimal arm.
All in all, our strategy maintains the implementer’s trust while effectively distinguishing the best arm.

We summarize our trust-aware method in Algorithm 1 and elaborate on its two stages.

Stage 1: trust set identification. As a preliminary stage for trust-aware exploration and exploitation,
we aim to identify arms that do not belong to the implementer’s trust set. The rationale behind this

5
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Algorithm 1 Trust-aware UCB

1: Input: arm set [K], time horizon H .
2: Initialize arm set T̂ ← ∅, m← 30K3 log(H), and H0 ← 2mK.
3: for h = 1, . . . ,H0 do
4: Choose apmh ← k, where k ← ⌈h/(2m)⌉.
5: Observe aach , Rh(a

ac
h ), and χh.

6: if h ≡ 0 mod 2m then
7: Compute Y

(1)
k and Y

(2)
k as in (7).

8: if h = 2m then
9: if Y (1)

1 + Y
(2)
1 ≥ 1/2 then

10: Update T̂ ← T̂ ∪ {1}.
11: else
12: if Y (2)

k − Y
(1)
k ≥ λk(T̂ ) (cf. (8)) then

13: Update T̂ ← T̂ ∪ {k}.
14: Set N ac

H0+1(a)← 1 and UCBH0+1(a)← 1 for any a ∈ [K].
15: for h = H0 + 1, . . . ,H do
16: Choose apmh ← argmaxa∈T̂ UCBh(a) with ties broken uniformly at random.
17: Observe aach , Rh(a

ac
h ), and χh.

18: Update N ac
h+1(a

ac
h ), where

N ac
s (a) := 1 ∨

s−1∑
i=H0+1

1{aaci = a}, ∀a ∈ [K], s > H0 + 1. (5)

19: Update UCBh+1(a
ac
h ), where

UCBs(a) := 1 ∧
{

1

N ac
s (a)

s−1∑
i=H0+1

Ri(a)1{aaci = a}+ 2

√
log(H)

N ac
s (a)

}
, ∀a ∈ [K], s > H0 + 1.

(6)

20: Output: policy
{
apmh
}
h≥1

.

step is grounded in the trust update mechanism described in (2) and (3). Eliminating these arms
allows the policy-maker to explore safely without losing the implementer’s trust in Stage 2.

Since the trust level is not observable, we estimate it by counting the frequency with which each
recommended arm is followed. Specifically, this phase runs for K rounds and maintains an estimated
trust set T̂ at the end of each round, where the round length m ≍ K3 log(H) is chosen to ensure
accurate identification while controlling cumulative regret. In round k, Algorithm 1 selects the k-th
arm 2m times and records whether the recommendations are followed. For each k ∈ [K], we define

Y
(1)
k :=

1

m

m∑
i=1

χ2m(k−1)+i and Y
(2)
k :=

1

m

2m∑
i=m+1

χ2m(k−1)+i. (7)

Moreover, we define the comparison threshold at round k for each k > 1 as

λk(T̂ ) =


1/(5k), if |T̂ | = 0;

−1/(5k), if |T̂ | = k − 1;

0, otherwise.
(8)

For k = 1, we compare Y
(1)
k + Y

(2)
k with 1/2 to determine if arm 1 belongs to the implementer’s

trust set T , as the sum approaches 1 if 1 ∈ T and 0 otherwise with high probability. For k > 1,
we use Y

(2)
k − Y

(1)
k to determine whether the k-th arm belongs to the trust set T . This difference

represents the discrepancy between the implementer’s policy compliance frequency in the first and
subsequent m trials. It is not hard to see that the expectation of the difference Y

(2)
k − Y

(1)
k exceeds

λk when k ∈ T and is smaller otherwise. Moreover, our choice of round length m ensures that the
observed difference aligns with its expectation with high probability.

6
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Stage 2: trust-aware exploration-exploitation. Equipped with our estimate of the trust set T̂ , the
remainder of our algorithm builds on the optimistic principle to distinguish the optimal arm. Thanks
to the elimination procedure in Stage 1, the trust level th is guaranteed to keep increasing in the
second stage at a rate of 1 − th = O(1/h). This gradual increase ensures the implementer’s trust
remains high, allowing for effective exploration and exploitation, as will be demonstrated in the
analysis in Section 4.

3.3 NEARLY MINIMAX OPTIMAL REGRET

We proceed to present the theoretical guarantees of Algorithm 1 in Theorem 2 below. The proof is
postponed to Appendix C.
Theorem 2. Suppose Assumption 1 holds. For any K ≥ 2, the expected regret of the policy π
generated by Algorithm 1 satisfies

sup
Π(K,T ,πown)

E[regH(π)] ≤ C1

√
KH log(H) + C2K

4 log2(H), (9)

for some positive constants C1 and C2 independent of H and K.

The regret upper bound of our proposed algorithm contains two terms. The first term
O(
√
KH log(H)) represents the regret accumulated in the trust-aware exploration and exploitation

phase, while the second term O(K4 log2(H)) accounts for the trust set identification stage.

In addition, Theorem 3 below establishes the minimax lower bound on the regret of the trust-aware
MAB problem. The proof can be found in Appendix D.
Theorem 3. Suppose Assumption 1 holds. For any K ≥ 2, one has

inf
π

sup
Π(K,T ,πown)

E[regH(π)] ≥ c
√
KH, (10)

for some positive constant c that is independent of H and K.

Here, the infimum is taken over the class of admissible policies obeying the policy at time h depends
only on observations prior to time h, that is,

(
aaci , Ri(a

ac
i ), χi

)
1≤i<h

.

We provide several important implications as follows.

(1) Near-minimax optimal regret. When the time horizon H is sufficiently large (H ≳ K7 log3(H)),
the second term becomes negligible. As a result, the regret upper bound (9) in Theorem 2 matches
the minimax lower bound (10) in Theorem 3 up to a logarithmic term. This illustrates that near-
optimal statistical efficiency can be attained despite the presence of trust issues. Also, in the classical
setting where the recommended policy is executed exactly, the minimax lower bound on regret scales
Ω(
√
KH) (Auer et al., 2002b; Gerchinovitz & Lattimore, 2016). Therefore, the trust issue does not

increase the complexity of the problem.

(2) Adaptivity to unknown trust and own policy. Our algorithm does not require any prior knowledge
of the implementer’s trust level t, trust set T , or own policy πown. This adaptivity ensures its broad
applicability across diverse practical scenarios.

(3) Cost of decision implementation deviation. The term Õ(K4) in the regret upper bound (9) can be
seen as a burn-in cost incurred by deviations in arm selection. Before the policy-maker establishes
enough trust, such deviations lead to extra regret if we do not impose any assumption on the own
policy πown.
Remark 4. While optimizing the dependency of burn-in cost on K seems plausible, it remains
unclear whether this term is an inherent consequence of the trust issue or an artifact of the algorithm
and proof. Therefore, we did not prioritize further optimization at this stage and focus on achieving
the optimal dependence on H . We leave the task of addressing this burn-in cost and achieving the
optimal dependence on K to future work.
Remark 5. We remark that the logarithmic term in O(

√
KH log(H)) can be removed by modifying

the bonus term. However, given that this work’s primary focus is to demonstrate how to overcome
trust issues, we chose not to devote significant effort to optimizing this dependency.
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4 ANALYSIS

A critical difference in analyzing the trust-aware MAB compared to the standard MAB lies in
capturing the trust behavior {th}h≥1. For any policy πpm, the expected regret can be decomposed as

E[regH(πpm)] = E

[
H∑

h=1

th
(
r⋆ − r(apmh )

)
︸ ︷︷ ︸

=:regpmH

]
+ E

[
H∑

h=1

(1− th)(r
⋆ − rownh

)
︸ ︷︷ ︸

=:regownH

]
, (11)

where rownh := Ea∼πown
h

[Rh(a)]. Controlling regpmH is more or less standard where one can apply
standard UCB-type arguments (see e.g. Lattimore & Szepesvári (2020)). On the other hand, con-
trolling regownH requires more delicate effort due to the trust factor. In the classical MAB problem
without the trust issue, th = 1 for any h ≥ 1 and thus regownH = 0. However, when the trust factor is
incorporated, the trust level and arm selection are intertwined: the trust level influences the likelihood
of the recommended arm being pulled, which in turn affects the trust level in the subsequent time
step. Therefore, our main technical contribution towards developing regret bounds lies in pinning
down the interaction among the trust dynamics {th}h≥1, the recommended arms {apmh }h≥1, and the
selected arms {aach }h≥1.

4.1 REGRET LOWER BOUND FOR THE UCB ALGORITHM

We present the proof outline of Theorem 1 in this section. For the MAB instance, we set K =

260. The expected rewards are chosen to be r(k) = 1/6
√
log(H) + 1 if k < K and r(k) =

1/3
√

log(H) + 1 if k = K. The implementation’s trust set is set as T = {K} and the own policy
πown is chosen to be a uniform distribution over {K − 1,K}, i.e., πown

h (K − 1) = πown
h (K) = 1/2

for all h ≥ 1. For convenience of notation, we define ∆own
h := r⋆ − rownh = 1/(12

√
log(H) + 1).

Recall the decomposition in (11). Since r⋆ ≥ r(apmh ) for any h ≥ 1, we can lower bound the regret
as follows:

regH ≥ regownH =

H∑
h=1

∆own
h (1− th) =

1

12
√
log(H) + 1

H∑
h=1

(1− th). (12)

The key idea of the proof is to show that with high probability, the sum of the trust levels up to the
final time step

∑H
h=1 th is bounded by O

(
log2(H)

)
. Intuitively, the time horizon can be divided into

three stages.

1. During the first stage 1 ≤ h ≤ ⌊256 log(H)⌋, the trust level is simply upper bound by 1 and
hence the sum is bounded by h.

2. In the second stage ⌊256 log(H)⌋ < h ≤ ⌊1024 log(H)⌋, as the suboptimal arms are
insufficiently explored, their UCB estimates can be as high as that of the optimal arm.
Consequently, the UCB algorithm recommends these suboptimal arms with at least a
constant probability, causing a constant upper bound for the trust level (1/3 in our analysis).
Therefore, the sum of trust levels in this stage scales O(h/3).

3. In the third stage ⌊1024 log(H)⌋ < h ≤ H , due to the frequent recommendations of
suboptimal arms in the previous two stages, the trust level keeps decaying at a rate of
O(1/h). Hence, the sum of trust levels in this step scales Õ(log(h)). Combining the trust
accumulated in these three stages leads to the expression of sh in the analysis.

More specifically, let us define sh as follows:

sh :=


h, if 1 ≤ h ≤ ⌊256 log(H)⌋;
1
3h+ 2

3⌊256 log(H)⌋, if ⌊256 log(H)⌋ < h ≤ ⌊1024 log(H)⌋;
1
2⌊1024 log(H)⌋

{
1 + log

(
h

⌊1024 log(H)⌋

)}
, if ⌊1024 log(H)⌋ < h ≤ H.

(13)

We shall show that with high probability,
∑h

i=1 ti ≤ sh holds simultaneously for all h ∈ [H]. As
an immediate consequence, we have E

[∑H
h=1 th

]
= o(H). Substituting this into (12) leads to the

claimed conclusion.
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4.2 REGRET UPPER BOUND FOR OUR PROPOSED ALGORITHM

We proceed to provide the proof outline of Theorem 2 in this section. We shall bound the regret
incurred in the two stages separately:

regH =

H0∑
h=1

(
r⋆ − r(aach )

)
︸ ︷︷ ︸

=:regtsH

+

H∑
h=H0+1

(r⋆ − r(aach )
)

︸ ︷︷ ︸
=:regtaH

. (14)

Stage 1: trust set identification. In this stage, it suffices to upper bound the round length m required
to determine whether each arm k belongs to the trust set T . Towards this, recall the definitions of Y (1)

k

and Y
(2)
k in (7). For k = 1, it is easy to see that E

[
Y

(1)
k + Y

(2)
k

]
equals 1− Õ(1/m) (resp. Õ(1/m))

when 1 ∈ T (resp. 1 /∈ T ). Moreover, the variance satisfies Var(Y (1)
k + Y

(2)
k ) = Õ(1/m2). Hence,

applying the Bernstein inequality shows that with high probability, Y (1)
k +Y

(2)
k exceeds 1/2 if 1 ∈ T ,

and falls below 1/2 otherwise. As for k > 1, straightforward calculations yields E
[
Y

(2)
k − Y

(1)
k

]
=

Ω
(
1/(k2m) ∨ Sk−1/k

2
)

and Var(Y
(2)
k − Y

(1)
k ) = O

(
(k − Sk−1)/(k

2m2) ∨ Sk−1/(mk2)
)
, where

Sk−1 :=
∑

1≤i≤k−1 1{i ∈ T }. Given our choice of round length m ≍ K3 log(H), we can invoke

the Bernstein inequality to show that with high probability, Y (2)
k − Y

(1)
k exceeds the comparison

threshold λk in (8) when k ∈ T . Similarly, one can also apply the same argument to show that the
difference is smaller than λk in the case k /∈ T . Combining these two observations allows us to
reliably test whether k ∈ T for each k ∈ [K].

Therefore, the regret incurred in Stage 1 can be bounded by

E
[
regtsH

]
= E

[
H0∑
h=1

(
r⋆ − r(aach )

)]
≤ H0 = 2mK ≲ K4 log(H). (15)

Stage 2: trust-aware exploration-exploitation. In view of (11), we decompose the regret in this
stage into the following two parts:

regtaH =

H∑
h=H0+1

th
(
r⋆ − r(apmh )

)
︸ ︷︷ ︸

regta-pm
H

+

H∑
h=H0+1

(1− th)(r
⋆ − rownh )︸ ︷︷ ︸

regta-own
H

. (16)

To control the second term regta-own
H , we note the key observation that T̂ output by Stage 1 accurately

estimate the trust set T with high probability. Consequently, one can use induction to show that the
trust level th obeys

1− th =

(
1− 1

1 +H0 + h

)
(1− th−1) ≲

H0

h
=

K4 log(H)

h
. (17)

As a direct result, regta-own
H can be controlled by

E
[
regta-own

H

]
= E

[
H∑

h=H0+1

∆own
h (1− th)

]
≤ E

[
H∑

h=H0+1

(1− th)

]
≲ K4 log2(H). (18)

Turning to regta-pm
H , recall that χh = 1 means that the implementation implements the recommended

policy. One can express

regta-pm
H =

H∑
h=H0+1

th
(
r⋆ − r(apmh )

)
=
∑
a∈T̂

∆(a)

H∑
h=H0+1

th1{apmh = a}. (19)

9
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Figure 1: Comparison of the trust-aware and trust-blind algorithms: (a) regret; (b) trust level.

By invoking a concentration argument, we know that with high probability,

H∑
h=H0+1

χh1{apmh = a} ≥
H∑

h=H0+1

th1{apmh = a} −O
(
K2 log(H)

)
.

Meanwhile, one can apply a standard UCB argument (see e.g., Lattimore & Szepesvári (2020)) to
show that with high probability,

∑H
h=H0+1 χh1{apmh = a} ≲ log(H)

∆2(a) . Putting these two observations

together leads to
∑H

h=H0+1 th1{a
pm
h = a} ≲ O

( log(H)
∆2(a) +K2 log(H)

)
∧H . Combined with (19),

this leads to

E
[
regta-pm

H

]
≲
√
KH log(H) +K3 log(H). (20)

Combining (15), (18), and (20) completes the proof of Theorem 2.

5 NUMERICAL EXPERIMENTS

The numerical effectiveness of our algorithm is shown in Figure 1. Additional numerical experiments
can be found in Appendix A. For the sake of comparison, we plot the regrets of the UCB algorithm
both in the presence and absence of the trust issue. We set K = 10. For each arm k, the expected
reward is set as r(k) = k/(2K) and the random reward follows Rh(k) ∼ N (r(k), 0.1). The
implementer’s trust set is set to be T = {9, 10} and the own policy πown

h is chosen to be Unif({9, 10})
for all h ≥ 1.

Figure 1 (a) plots the regret vs. the horizon length H , with the regret averaged over 100 independent
Monte Carlo trials; (b) depicts the trust level vs. the horizon length H in a typical Monte Carlo trial.
As can be seen, our trust-aware algorithm outperforms the (trust-blind) UCB algorithm in the presence
of trust issues, whose regret grows linearly as predicted by our theorem. When recommendations are
fully trusted and followed, our algorithm achieves comparable performances to the UCB algorithm.
In addition, our algorithm maintains a high level of trust after the initial stage, whereas the trust level
of the UCB algorithm decays rapidly to near zero, which is consistent with our theory.

6 DISCUSSION

We have studied the trust-aware MAB problem, where decision-making needs to account for de-
viations in decision implementation due to human trust issues. We established the suboptimality
of vanilla MAB algorithms when faced with the trust issue and proposed a two-stage trust-aware
algorithm, which achieves provable (near-)minimax optimal statistical guarantees.

Moving forward, several extensions are worth pursuing. To begin with, the proposed algorithm
achieves the minimax regret when the time horizon is not too small. Investigating whether it is
possible to achieve minimax optimality across the entire H range would be valuable. Also, it is
important to develop a general framework that accommodates a wider variety of trust models, making
the approach more robust and broadly applicable. Finally, extending the MAB framework to study
trust-aware reinforcement learning within the MDP framework would be of great interest.
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Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

Changxiao Cai, T Tony Cai, and Hongzhe Li. Transfer learning for contextual multi-armed bandits.
The Annals of Statistics, 52(1):207–232, 2024.

Asaf Cassel, Shie Mannor, and Assaf Zeevi. A general approach to multi-armed bandits under risk
criteria. In Conference on learning theory, pp. 1295–1306. PMLR, 2018.

Leonardo Cella, Alessandro Lazaric, and Massimiliano Pontil. Meta-learning with stochastic linear
bandits. In International Conference on Machine Learning, pp. 1360–1370. PMLR, 2020.
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Figure 2: Comparison of the trust-aware and trust-blind algorithms where the own policy improves
over time: (a) regret; (b) trust level.
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Figure 3: Comparison of the trust-aware and trust-blind algorithms where the trust set contains the
best and highly suboptimal arms: (a) regret; (b) trust level.

A ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we provide additional numerical experiments to support our theory. We set K = 10.
For each arm k, the random reward follows Rh(k) ∼ N (r(k), 0.1). The regret is averaged over 100
independent Monte Carlo trials, and the trust level is in a typical Monte Carlo trial.

Set the expected reward as r(k) = k/(2K) for each k ∈ [K]. Figure 2 shows the case where
the trust set T = {9, 10} contains near-optimal arms, with an improving own policy satisfying
πown
h (10) = 1/2 + h/(2H) and πown

h (9) = 1/2− h/(2H). Figure 3 demonstrates the scenario with
T = {1, 2, 3, 4, 10}, that is, the trust set consists of the best and highly suboptimal arm. The own
policy obeys πown

h (10) = 1/5 + 4h/(5H) and πown
h (k) = 1/5− h/(5H) for all 1 ≤ k ≤ 4. In both

these cases, our proposed algorithm outperforms the trust-blind UCB, which incurs linear regrets.

Figure 4 exhibits the case where the trust set contains the best-50% arms, i.e., T = {k : 6 ≤ k ≤ 10}.
The own policy is chosen to improve over time, with πown

h (10) = 1/5 + 4h/(5H) and πown
h (k) =

1/5 − h/(5H) for all 6 ≤ k < 10. As can be seen, our algorithm achieves a regret performance
comparable to that of the standard UCB algorithm, demonstrating a regret scaling of Õ(

√
H). In this

case, building trust is relatively easy as the trust set comprises many suboptimal arms. Consequently,
the impact of trust issues is mild, and the regrets of the UCB algorithm with and without trust issues
are nearly identical.

Finally, let us consider the case where multiple optimal arms exist and the trust set only contains
one. We choose r(k) = k/(2K) for each k > 1 and r(1) = r(10). Figure 5 presents the
case where the trust set is T = {9, 10} and own policy obeys πown

h (10) = 1/2 + h/(2H) and
πown
h (9) = 1/2− h/(2H). As evident from the plot, our proposed algorithm achieves a substantially

smaller regret than the trust-blind UCB.

B PROOF OF THEOREM 1
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Figure 4: Comparison of the trust-aware and trust-blind algorithms where the trust set contains the
best-50% arms: (a) regret; (b) trust level.
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Figure 5: Comparison of the trust-aware and trust-blind algorithms where the trust set only contains
one optimal arm: (a) regret; (b) trust level.

Recall the definition of random variables {χi}i≥1, where χi = 1 indicates the implementer follows
the recommended policy πpm

i at time i, whereas χi = 0 means the implementer takes her own policy
πown. Let us define a sequence of random variables {γi}i≥1, where γi := 1{aowni = K} indicates
whether or not the implementer’s own policy chooses the K-th arm at time i. In addition, we define
the filtration Fi generated by the information by time i, that is

Fi = σ
((

apmj , aacj , R(aacj ), χj

)
j∈[i]

)
.

By Algorithm 1 and the trust update rule in Section 2, {ti}i≥1 and
{(

UCBi(k)
)
k∈[K]

}
i≥1

are
predictable with respect to the filtration {Fi}i≥1, that is, ti+1 ∈ Fi and UCBi+1(k) ∈ Fi for all
k ∈ [K]. Moreover, according to the assumption on the policy implementation deviation in Section 2,
the distribution of χi conditional on the filtration Fi−1 is given by

χi | Fi−1 ∼ Bern(ti).

Now let us begin the proof. As a reminder, the expected rewards of the MAB instance are set as

r(k) =


1

6
√
log(H) + 1

, if k < K;

1

3
√
log(H) + 1

, if k = K.

The implementer’s own policy is chosen to be πown
h ≡ πown = Unif({K − 1,K}) for all h ≥ 1. As a

result, we have ∆own
h := r⋆ − rownh = 1/(12

√
log(H) + 1).

As r⋆ ≥ r(apmh ) for any h ≥ 1, we use the decomposition in (11) to lower bound the regret

regH ≥ regownH = ∆ownE

[
H∑

h=1

(1− th)

]
=

1

12
√
log(H) + 1

(
H − E

[
H∑

h=1

th

])
. (23)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2 (Trust-blind) UCB

1: Input: arm set [K], time horizon H .
2: Initialize arm set A ← [K]. Set N tb

1 (a)← 1 and UCBtb
1 (a)← 1 for any a ∈ [K].

3: for h = 1, . . . ,H do
4: Choose apmh ← argmaxa∈A UCBtb

h (a) with ties broken uniformly at random.
5: Observe aach , Rh(a

ac
h ), and χh.

6: Update N tb
h+1(a

ac
h ), where

N tb
s (a) := 1 ∨

s−1∑
i=1

1{aaci = a}, ∀a ∈ [K], s > 1. (21)

7: Update UCBtb
h+1(a

ac
h ), where

UCBtb
s (a) :=

1

N tb
s (a)

s−1∑
i=1

Ri(a)1{aaci = a}+ 2

√
log(H)

N tb
s (a)

, ∀a ∈ [K], s > 1. (22)

8: Output: policy {apmh }h≥1.

This implies it boils down to controlling the cumulative sum of the trust levels.

Towards this, recall the definition of sh in (13) where

sh :=


h, if 1 ≤ h ≤ ⌊256 log(H)⌋;
1

3
h+

2

3
⌊256 log(H)⌋, if ⌊256 log(H)⌋ < h ≤ ⌊1024 log(H)⌋;

1

2
⌊1024 log(H)⌋

{
1 + log

( h

⌊1024 log(H)⌋
)}

, if ⌊1024 log(H)⌋ < h ≤ H.

Let us define the event

Hh :=

{
h∑

i=1

ti > sh

}
, (24)

for each h ≥ 1. We shall show that

P
( H⋃

i=1

Hi

)
≤ 4H−1/3. (25)

As an immediate consequence, one obtains

E

[
H∑

h=1

th

]
≤ E

[
1{Hc

H}
H∑

h=1

th

]
+ E

[
1{HH}

H∑
h=1

th

]
≤ sH + P(HH)H

≤ 512
(
log(H) + 1

)
+ 4H2/3,

where the last step applies (13), (25) and the fact that th ≤ 1 for any h ≥ 1. Substituting this into
(23) yields that for H sufficiently large,

regH ≥
1

12
√
log(H) + 1

(
H − 512

(
log(H) + 1

)
− 4H2/3

)
≥ c

H√
log(H)

,

where c > 0 is some universal constant.

Therefore, it suffices to establish (25). To this end, we need the following Freedman’s inequality
(Cesa-Bianchi & Lugosi, 2006, Lemma A.8), which is a generalization of the Bernstein inequality for
a sum of bounded martingale difference sequences. (See also Freedman (1975)).
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Lemma 1 (Freedman’s inequality). Let X1, . . . , Xn be a bounded martingale difference sequence
with respect to a filtration (Fi)0≤i≤n and with |Xi| ≤ R. Let Si :=

∑i
j=1 Xj be the associated

martingale. Denote the sum of the conditional variances by

Σ2
n :=

n∑
i=1

E
[
X2

i | Fi−1

]
. (26)

Then for any τ, σ2 ¿ 0, one has

P
{
max
i∈[n]

Si > τ and Σ2
n ≤ σ2

}
≤ exp

(
− τ2

2(σ2 +Rτ/3)

)
. (27)

As a consequence, for any 0 < δ < 1, one further has

P
{
max
i∈[n]

Si > 3R log(1/δ) ∨
√
3σ2 log(1/δ) and Σ2

n ≤ σ2

}
≤ δ. (28)

With Lemma 1 in place, we proceed to prove (25).

• We start with the case 1 ≤ h ≤ ⌊256 log(H)⌋. As the trust level ti is bounded in [0, 1] for
any i ≥ 1, it is straightforward to bound

h∑
i=1

ti ≤ h = sh,

where we recall the definition of sh in (13) for h ≤ ⌊256 log(H)⌋. Therefore, we have

P(Hh) = 0, (29)

for all 1 ≤ h ≤ ⌊256 log(H)⌋.
• Next, let us fix an arbitrary ⌊256 log(H)⌋ < h ≤ ⌊1024 log(H)⌋. We decompose the sum

h∑
i=1

ti =

⌊256 log(H)⌋∑
i=1

ti +

h∑
i=⌊256 log(H)⌋+1

ti. (30)

We shall show that the trust level ti is upper bounded by 1/3 for all i > ⌊256 log(H)⌋ with
high probability. By construction, any arm in the complement of the support of πown (namely,
{1, 2, . . . ,K − 2}) gets pulled only when the implementer follows the recommended policy,
i.e., when χi = 1. Therefore, the following bound holds for any 1 ≤ i ≤ ⌊1024 log(H)⌋,

K−2∑
k=1

N tb
i (k) ≤

i∑
j=1

χj ≤ i ≤ 1024 log(H). (31)

As a result, this indicates that there exist at least three arms k1, k2, k3 ∈ [K] satisfying

max
j∈[3]

N tb
i (kj) ≤ 4 log(H).

This further implies that

UCBtb
i (kj) =

(
µ̂i(kj) + 2

√
log(H)

N tb
i (kj)

)
∧ 1 = 1.

Therefore, we find that {k1, k2, k3} ⊂ argmaxk∈[K] UCBi(k) for any 1 ≤ i ≤
⌊1024 log(H)⌋. On the other hand, note that the trust increases only if apmi = K by the
choice of the trust set. Combining this observation with the uniformly random tie-breaking
in Algorithm 1, we know that

P{apmi = K | Fi−1} ≤
1

4
, (32)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

for all 1 ≤ i ≤ ⌊1024 log(H)⌋. Let us define Xi := 1{apmi = K} − P{apmi = K | Fi−1}
for each 1 ≤ i ≤ ⌊1024 log(H)⌋. Straightforward calculation reveals that |Xi| ≤ 1,

E
[
Xi | Fi−1

]
= 0,

and

E
[
X2

i | Fi−1

]
= P{apmi = K | Fi−1}

(
1− P{apmi = K | Fi−1}

)
≤ 1

4
.

Applying Lemma 1 with δ = H−4/3, R = 1, and σ2 = i/4, we obtain that for any
1 ≤ i ≤ ⌊1024 log(H)⌋,

P

{
i∑

j=1

1{apmj = K} >
i∑

j=1

P
{
apmj = K | Fi−1

}
+ 4 log(H) ∨

√
i log(H)

}
≤ H−4/3.

(33)

Note that when i ≥ ⌊256 log(H)⌋ ≥ 225 log(H), we have

4 log(H) ∨
√
i log(H) ≤ i

(
4

225
∨
√

1

225

)
=

1

15
i. (34)

Therefore, let us define the event

Ji :=
{

i∑
j=1

1{apmj = K} > 19

60
i

}
, (35)

for each ⌊256 log(H)⌋ ≤ i ≤ ⌊1024 log(H)⌋. Combining (32), (33), and (34), we have
P(Ji) ≤ H− 4

3 for all ⌊256 log(H)⌋ ≤ i ≤ ⌊1024 log(H)⌋. It follows from the union
bound that

P

( ⌊1024 log(H)⌋⋃
i=⌊256 log(H)⌋

Ji
)
≤ H− 1

3 , (36)

In what follows, we shall work on the event
⋂⌊1024 log(H)⌋

i=⌊256 log(H)⌋ J c
i . Recall the trust update rule

in (2)–(3). The trust level ti at time i admits the following expression:

ti =
1

1 + i
+

1

1 + i

i−1∑
j=1

1{apmj = K}. (37)

This allows us to derive that for any ⌊256 log(H)⌋ < i ≤ ⌊1024 log(H)⌋+ 1,

ti ≤
1

1 + i
+

1

i− 1

i−1∑
j=1

1{apmj = K} ≤ 1

1 + i
+

19

60
≤ 1

3
, (38)

for sufficiently large H (for instance, ⌊256 log(H)⌋ ≥ 591). As a result, this demonstrates
that
h∑

i=1

ti =

⌊256 log(H)⌋∑
i=1

ti +

h∑
i=⌊256 log(H)⌋+1

ti ≤
⌊
256 log(H)

⌋
+

1

3

(
h−

⌊
256 log(H)

⌋)
= sh,

where the last step follows from the definition of sh in (13). Consequently, this shows that
⌊1024 log(H)⌋⋂
i=⌊256 log(H)⌋

J c
i ⊂ Hc

H .

Recognizing that this holds for an arbitrary ⌊256 log(H)⌋ < h ≤ ⌊1024 log(H)⌋, we find
that

⌊1024 log(H)⌋⋂
i=⌊256 log(H)⌋

J c
i ⊂

⌊1024 log(H)⌋⋂
i=⌊256 log(H)⌋+1

Hc
i .
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Combining this with (36), we conclude that

P

( ⌊1024 log(H)⌋⋃
i=⌊256 log(H)⌋+1

Hi

)
≤ P

( ⌊1024 log(H)⌋⋃
i=⌊256 log(H)⌋

Ji
)
≤ H− 1

3 . (39)

• As for any h > ⌊1024 log(H)⌋, we shall prove

P

(( ⌊1024 log(H)⌋⋃
i=⌊256 log(H)⌋

Ji
)⋃( h⋃

i=⌊1024 log(H)⌋+1

Hi

))
≤ H− 1

3 + 2hH− 4
3 . (40)

Then taking h = H leads to

P

(
H⋃

i=⌊1024 log(H)⌋+1

Hi

)
≤ H− 1

3 + 2H ·H− 4
3 = 3H−1/3.

Towards this, we would like to establish (40) by induction. To begin with, (40) holds for the
base case h = ⌊1024 log(H)⌋ as shown in (39).
Next, let us fix an arbitrary h > ⌊1024 log(H)⌋ and assume that (40) holds for h. We wish
to prove the claim for h+ 1. By the trust update rule in (2) and (3), we can also express the
trust level ti at time i as

ti =

(
1− 1

1 + i

)
ti−1 +

1

1 + i
1{apmi−1 = K}. (41)

For each i > ⌊1024 log(H)⌋, let us define the event

Ji :=
{
apmi = K

}
. (42)

On the event
⋂h

i=⌊1024 log(H)⌋+1 J c
i , we can use (41) to derive

ti =

(
1− 1

1 + i

)
ti−1 =

(
1− 1

1 + i

)(
1− 1

i

)
ti−2 =

2 + ⌊1024 log(H)⌋
1 + i

t⌊1024 log(H)⌋+1,

for all ⌊1024 log(H)⌋ < i ≤ h + 1. Moreover, recall from (38) that on the event⋂⌊1024 log(H)⌋
i=⌊256 log(H)⌋ J c

i , the trust at time i satisfies ti ≤ 1
3 for any ⌊256 log(H)⌋ < i ≤

⌊1024 log(H)⌋+1. This reveals that on the event
⋂h

i=⌊256 log(H)⌋ J c
i , the trust level at time

i obeys

ti =
2 + ⌊1024 log(H)⌋

1 + i
t⌊1024 log(H)⌋+1 ≤

2 + ⌊1024 log(H)⌋
3(1 + i)

≤ ⌊1024 log(H)⌋
2i

, (43)

for all ⌊1024 log(H)⌋ < i ≤ h+ 1 provided H is sufficiently large. As a consequence, on
the event

⋂h
i=⌊256 log(H)⌋ J c

i , the following holds for all ⌊1024 log(H)⌋ < i ≤ h+ 1:

i∑
j=1

tj =

⌊256 log(H)⌋∑
j=1

tj +

⌊1024 log(H)⌋∑
j=⌊256 log(H)⌋+1

tj +

i∑
j=⌊1024 log(H)⌋+1

tj

(i)

≤ ⌊256 log(H)⌋+ 1

3

(
⌊1024 log(H)⌋ − ⌊256 log(H)⌋

)
+

i∑
j=⌊1024 log(H)⌋+1

⌊1024 log(H)⌋
2j

(ii)

≤ 1

2
⌊1024 log(H)⌋+

∫ i

⌊1024 log(H)⌋

⌊1024 log(H)⌋
2x

dx

=
1

2
⌊1024 log(H)⌋+ 1

2
⌊1024 log(H)⌋ log

(
i

⌊1024 log(H)⌋

)
(iii)
= si.

Here, (i) arises from ti ∈ [0, 1] for any i ≥ 1, (38), and (43) ; (ii) is true as 4⌊x⌋ ≤ ⌊4x⌋ for
any x ∈ [0, 1]; (iii) uses the definition of sh in (13). This demonstrates that

h⋂
i=⌊256 log(H)⌋

J c
i ⊂

h+1⋂
i=⌊1024 log(H)⌋+1

Hc
i .
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It follows that( ⌊1024 log(H)⌋⋃
i=⌊256 log(H)⌋

Ji
)⋃( h+1⋃

i=⌊1024 log(H)⌋+1

Hi

)

⊂
( ⌊1024 log(H)⌋⋃

i=⌊256 log(H)⌋

Ji
)⋃( h⋃

i=⌊256 log(H)⌋

Ji
)

=

( ⌊1024 log(H)⌋⋃
i=⌊256 log(H)⌋

Ji
)⋃( h⋃

i=⌊1024 log(H)⌋+1

(Ji ∩Hi)

)⋃( h⋃
i=⌊1024 log(H)⌋+1

(Ji ∩Hc
i)

)

⊂
( ⌊1024 log(H)⌋⋃

i=⌊256 log(H)⌋

Ji
)⋃( h⋃

i=⌊1024 log(H)⌋+1

Hi

)⋃( h⋃
i=⌊1024 log(H)⌋+1

(
Ji ∩Hc

i

))
,

which leads to

P

(( ⌊1024 log(H)⌋⋃
i=⌊256 log(H)⌋

Ji
)⋃( h+1⋃

i=⌊1024 log(H)⌋+1

Hi

))

≤ P

(( ⌊1024 log(H)⌋⋃
i=⌊256 log(H)⌋+1

Ji
)⋃( h⋃

i=⌊1024 log(H)⌋+1

Hi

))
+

h∑
i=⌊1024 log(H)⌋+1

P
(
Ji ∩Hc

i

)
.

We claim that for any ⌊1024 log(H)⌋ < i ≤ h, one has

P
(
Ji ∩Hc

i

)
≤ 2H− 7

3 . (44)

Assuming the validity of (44), we arrive at

P

(( ⌊1024 log(H)⌋⋃
i=⌊256 log(H)⌋

Ji
)⋃( h+1⋃

i=⌊1024 log(H)⌋+1

Hi

))
≤ H− 1

3 + 2hH− 4
3 + 2hH− 7

3 ≤ H− 1
3 + 2(h+ 1)H− 4

3 ,

leading to the claim in (40) for h + 1. This completes the proof of the claim in (40) by
standard induction arguments.
Therefore, it remains to prove (44). Before proceeding, we summarize several bounds for sh
(cf. (13)) that will be useful for the proof. First of all, for any i > ⌊1024 log(H)⌋, one has

si =
1

2
⌊1024 log(H)⌋

(
1+log

(
i

⌊1024 log(H)⌋

))
≤ 1

2
⌊1024 log(H)⌋ i

⌊1024 log(H)⌋ =
i

2
,

(45)
where the inequality holds since 1 + log(x) ≤ x for any x > 0. Next, it is straight-
forward to check that (45) also holds for i = ⌊1024 log(H)⌋, namely, s⌊1024 log(H)⌋ =
1
3⌊1024 log(H)⌋ + 2

3⌊256 log(H)⌋ ≤ 1
2⌊1024 log(H)⌋. In addition, for any i ≥

⌊1024 log(H)⌋, we have

si ≥
1

2
⌊1024 log(H)⌋ ≥ 511 log(H), (46)

for sufficiently large H , and

si <
1

2
⌊1024 log(H)⌋

(
1 + log(H)

)
≤ 512 log(H)

(
1 + log(H)

)
. (47)

With these results in place, let us begin proving (44). For each i ≥ 1, let us define the
random variables

Xi := χi − ti and Yi := γi(1− χi)−
1

2
(1− ti),
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where we recall γi := 1{aowni = K}. In addition, we define the events

Ki :=

{
i∑

j=1

χj >

i∑
j=1

tj + 7 log(H) ∨
√
7 log(H)si

}
,

Li :=

{
i∑

j=1

γj(1− χj) <

i∑
j=1

1

2
(1− tj)− 7 log(H) ∨

√
7 log(H)i

}
,

for each ⌊1024 log(H)⌋ < i ≤ h. It is straightforward to check that E[Xi | Fi−1] = E[Yi |
Fi−1] = 0,

E
[
X2

i | Fi−1

]
= ti(1− ti) ≤ ti,

E
[
Y 2
i | Fi−1

]
≤ 1,

for any i ≥ 1. Invoking Lemma 1 with δ = H− 7
3 , R = 1, and σ2 = si, we know that for

each ⌊1024 log(H)⌋ < i ≤ h,

P{Ki ∩Hc
i} ≤ H−7/3, (48)

and

P{Li ∩Hc
i} ≤ H−7/3. (49)

Recall the definition of Hi in (24) and πown
h = Unif({K − 1,K}) for all h ≥ 1. On the

event Kc
i

⋂Hc
i , we have

K−2∑
k=1

N tb
i (k) ≤

i∑
j=1

χj ≤
i∑

j=1

tj + 7 log(H) ∨
√
7 log(H)si

≤
(
1 +

7

511
∨
√

7

511

)
si ≤

3

2
si.

where the last line uses the fact that
∑i

j=1 tj ≤ si on the eventHc
i and the lower bound of

si in (46). In particular, this allows us to obtain

min
1≤k≤K−2

N tb
i (k) ≤ 1

K − 2

K−2∑
k=1

N tb
i (k) ≤ 1

258

3

2
si =

1

172
si. (50)

Meanwhile, on the event Lc
i ∩Hc

i , we can lower bound

N tb
i (K) ≥

i∑
j=1

γj(1− χj) ≥
i∑

j=1

1

2
(1− tj)− 7 log(H) ∨

√
7 log(H)i

≥
(
1

2
− 7

511
∨
√

7

511

)
i− 1

2
si ≥

1

6
si,

where the penultimate inequality holds because
∑i

j=1 tj ≤ si on the eventHc
i and log(H) ≤

1
511si ≤ 1

1022 i due to (45) and (46); the last inequality holds because of (45). This implies
that

UCBi(K) ≤
(
r(K) + 4

√
log(H)

N tb
i (K)

)
∧ 1 ≤

(
r(K) +

√
96 log(H)

si

)
∧ 1.

On the other hand, (50) allows us to derive

max
1≤k≤K−2

UCBi(k) ≥ 4

√
log(H)

min1≤k≤K−2 N tb
i (K)

∧ 1 ≥
√

2752 log(H)

si
∧ 1. (51)
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By our construction of the instance, the reward of the optimal arm satisfies

r(K) =
1

3

√
1

1 + log(H)
<

√
512 log(H)

9si
,

where the last step follows from (47). Taken collectively with the fact that
√
512/9+

√
96 <√

2752, this leads to

UCBi(K) < max
1≤k≤K−2

UCBi(k).

By the arm selection procedure of the UCB algorithm, we know that r(apmi ) ̸= K. Recall
the definition of Ji for i > ⌊1024 log(H)⌋ in (42). This implies that

Kc
i ∩ Lc

i ∩Hc
i ⊂ J c

i ∩Hc
i ,

which further yields

Ji ∩Hc
i ⊂

(
Ki ∩Hc

i

)
∪
(
Li ∩Hc

i

)
.

As a result, combining (48), (49) with the union bound proves (44).

• Finally, putting (29), (39), and (40) collectively with the union bound establishes (25). This
concludes the proof of Theorem 1.

C PROOF OF THEOREM 2

Stage 1: trust set identification. Recall the definitions of Y (1)
k and Y

(2)
k in (7):

Y
(1)
k :=

1

m

m∑
i=1

χ2m(k−1)+i and Y
(2)
k :=

1

m

2m∑
i=m+1

χ2m(k−1)+i.

In addition, we denote

δk := Y
(2)
k − Y

(1)
k , ∀k > 1.

As a reminder, for any k > 1, the value of δk will be used to test whether the k-th arm belongs to the
implementer’s trust set T or, equivalently, leads to increasing trust.

To this end, denote Sk :=
∑k

ℓ=1 1{l ∈ T } for each k ∈ [K] and we set S0 := 0 by default. It is
straightforward to see that for any k ∈ [K] and i ∈ [2m],

t2m(k−1)+i = E
[
χ2m(k−1)+i

]
=


1 + 2mSk−1 + i− 1

2 + 2m(k − 1) + i− 1
, if k ∈ T ;

1 + 2mSk−1

2 + 2m(k − 1) + i− 1
, if k /∈ T .

• We begin with the case k = 1. Let us denote Y1 := Y
(1)
1 + Y

(2)
1 .

– If 1 /∈ T , the expectation of Y1 can be upper bounded by

E[Y1] =
1

2m

2m∑
i=1

1

1 + i
≤ 1

2m

∫ 2m

0

1

1 + x
dx ≤ 1

2m
log(1 + 2m).

As for the variance, we can compute

V1 :=

2m∑
i=1

Var(χi) =

2m∑
i=1

ti(1− ti) =

2m∑
i=1

i

(1 + i)2
.
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As x 7→ x/(a+ x)2 is increasing in [0, a] and decreasing in [a,∞) for any a > 0, we
can bound

V1 =

2m∑
i=1

i

(1 + i)2
=

1

4
+

2m∑
i=2

i

(1 + i)2
≤ 1

4
+

∫ 2m

1

x

(1 + x)2
dx

=
1

1 + 2m
− 1

4
+ log

(
m+

1

2

)
≤ log(m),

where the last step holds as long as m ≥ 4. Therefore, applying the Bernstein inequality
shows that with probability at least 1−H−2,

Y1 ≤ E[Y1] +
4

3

log(H)

m
+

2

m

√
V1 log(H)

≤ log(1 + 2m)

2m
+

4 log(H)

3m
+

2

m

√
log(m) log(H) ≤ 1

2
,

where the last step holds provided m ≥ 3 log(H) and H is sufficiently large.
– On the other hand, if 1 ∈ T , we can compute

E[Y1] =
1

2m

2m∑
i=1

i

1 + i
≥ 1− 1

2m
log(1 + 2m).

and

V1 :=

2m∑
i=1

Var(χi) =

2m∑
i=1

i

(1 + i)2
≤ log(m).

Invoking the Bernstein inequality yields that with probability exceeding 1−H−2,

Y1 ≥ E[Y1]−
4

3

log(H)

m
− 2

m

√
V1 log(H)

≥ 1− log(1 + 2m)

2m
− 4 log(H)

3m
− 2

m

√
log(m) log(H) ≥ 1

2
,

where the last step is true as long as m ≥ 3 log(H) and H is sufficiently large.
– As a result, our procedure that adding arm 1 to the estimated trust set if Y1 ≥ 1

2

correctly identifies 1 ∈ T with probability at least 1−H−2.

• We proceed to consider the case k > 1, where δk is used to identify the trust set.
– Let us first consider the case k /∈ T .

To begin with, we can apply the trust update mechanism to control the expectation of
δk by

E[δk] =
1

m

m−1∑
i=0

1 + 2Sk−1m

2 + 2(k − 1)m+m+ i
− 1

m

m−1∑
i=0

1 + 2Sk−1m

2 + 2(k − 1)m+ i

= −
m−1∑
i=0

1 + 2Sk−1m(
2 + 2(k − 1)m+ i

)(
2 + 2(k − 1)m+m+ i

)
≤ −

∫ m

0

1 + 2Sk−1m(
2 + 2(k − 1)m+ x

)(
2 + 2(k − 1)m+m+ x

) dx
= − 1

m
(1 + 2Sk−1m) log

(
1 +

m2

4
(
1 + (k − 1)m

)
(1 + km)

)
.

As log(1 + x) ≥ x/2 for any x ∈ [0, 1], one can further upper bound

E[δk] ≤ −
m(1 + 2Sk−1m)

8
(
1 + (k − 1)m

)
(1 + km)

≤ −1 + 2Sk−1m

9(k − 1)km
, (52)

where the last step is true provided m≫ 1.
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As for the variance of δk, it is not hard to see that

Vk :=

2m∑
i=1

Var
(
χ2(k−1)m+i

)
=

2m∑
i=1

t2(k−1)m+i(1− t2(k−1)m+i)

= t2(k−1)m+1

(
1− t2(k−1)m+1

)
+ (1 + 2Sk−1m)

2m−1∑
i=1

1 + 2(k − 1− Sk−1)m+ i(
2 + 2(k − 1)m+ i

)2 .

Straightforward calculation yields

2m−1∑
i=1

1 + 2(k − 1− Sk−1)m+ i(
2 + 2(k − 1)m+ i

)2
≤
∫ 2m−1

0

1 + 2(k − 1− Sk−1)m(
2 + 2(k − 1)m+ x

)2 dx+

∫ 2m

1

x(
2 + 2(k − 1)m+ x

)2 dx

≤
∫ 2m

0

1 + 2(k − 1− Sk−1)m+ x(
2 + 2(k − 1)m+ x

)2 dx

= −1 + 2Sk−1m

2 + 2km

m

1 + (k − 1)m
+ log

(
1 +

m

1 + (k − 1)m

)
≤ −1 + 2Sk−1m

2 + 2km

m

1 + (k − 1)m
+

m

1 + (k − 1)m

=
m

1 + (k − 1)m

1 + 2(k − Sk−1)m

2(1 + km)
,

where we use that fact that x 7→ x/(a+ x)2 is increasing in [0, a] and decreasing in
[a,∞) for any a > 0 and 2 + 2(k − 1)m > 2m for k > 1; the last inequality follows
from log(1 + x) ≤ x for any x ≥ 0. Therefore, we find that

Vk ≤ t2(k−1)m+1

(
1− t2(k−1)m+1

)
+

m(1 + 2Sk−1m)
(
1 + 2(k − Sk−1)m

)
2
(
1 + (k − 1)m

)
(1 + km)

≤ 1

4
+

2(1 + 2Sk−1m)(k − Sk−1)

(k − 1)k
, (53)

where the last line holds because th(1− th) ≤ 1/4 for any h ≥ 1, k − Sk−1 ≥ 1, and
m≫ 1.
Putting (52) and (53) together, we now invoke the Bernstein inequality to find that with
probability at least 1−H−2,

δk ≤ E[δk] +
4

3

log(H)

m
+

2

m

√
Vk log(H)

≤ −1 + 2Sk−1m

9(k − 1)km
+

4

3

log(H)

m
+

2

m

√
log(H)

4
+

2(1 + 2Sk−1m)(k − Sk−1) log(H)

(k − 1)k

≤ −1 + 2Sk−1m

9(k − 1)km
+

7

3

log(H)

m
+

2
√
2

m

√
(k − Sk−1) log(H)

(k − 1)k
+ 4

√
Sk−1(k − Sk−1) log(H)

(k − 1)km

(54)

≤ −1 + 2Sk−1m

9(k − 1)km
+

6 log(H)

m
+ 4

√
Sk−1(k − Sk−1) log(H)

(k − 1)km
. (55)

where we use
√
a+ b ≤ √a+

√
b for any a, b ≥ 0.

If Sk−1 = 0, (55) implies that

δk ≤ −
1

9(k − 1)km
+

6 log(H)

m
≤ 1

5k
. (56)
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where the final step is true as long as m ≥ 30K log(H).
If Sk−1 = k − 1, one has

δk ≤ −
2

9k
+

6 log(H)

m
≤ − 1

5k
, (57)

provided m≫ K log(H).
Otherwise, we obtain

δk ≤ −
2

9

Sk−1

(k − 1)k
+

6 log(H)

m
+ 4

√
Sk−1(k − Sk−1) log(H)

(k − 1)km
≤ −1

9

Sk−1

(k − 1)k
< 0,

(58)

where the last step holds as long as m ≫ K3 log(H) ≥ log(H)k(k − 1)(k −
Sk−1)/Sk−1.

– Let us proceed to consider the case k ∈ T .
First, the expected difference E[δk] can be bounded by

E[δk] =
1

m

m−1∑
i=0

1 + 2Sk−1m+m+ i

2 + 2(k − 1)m+m+ i
− 1

m

m−1∑
i=0

1 + 2Sk−1m+ i

2 + 2(k − 1)m+ i

=

m−1∑
i=0

1 + 2(k − 1− Sk−1)m(
2 + 2(k − 1)m+ i

)(
2 + 2(k − 1)m+m+ i

)
≥
∫ m

0

1 + 2(k − 1− Sk−1)m(
2 + 2(k − 1)m+ x

)(
2 + 2(k − 1)m+m+ x

) dx
=

1

m

(
1 + 2(k − 1− Sk−1)m

)
log

(
1 +

m2

4
(
1 + (k − 1)m

)
(1 + km)

)
≥ 1 + 2(k − 1− Sk−1)m

9(k − 1)km
, (59)

where the last step holds as m≫ 1 and log(1 + x) ≥ x/2 for any x ∈ [0, 1].
Next, it is straightforward to compute the variance

Vk :=

2m∑
i=1

Var
(
χ2(k−1)m+i

)
=

m∑
i=1

t2(k−1)m+i(1− t2(k−1)m+i)

= t2(k−1)m+1

(
1− t2(k−1)m+1

)
+
(
1 + 2(k − 1− Sk−1)m

) 2m−1∑
i=1

1 + 2Sk−1m+ i(
2 + 2(k − 1)m+ i

)2 .
Applying the same argument for (53), we can bound

Vk ≤
1

4
+
(
1 + 2(k − 1− Sk−1)m

) ∫ 2m

0

1 + 2Sk−1m+ x(
2 + 2(k − 1)m+ x

)2 dx

≤ 1

4
+

m
(
1 + 2(k − 1− Sk−1)m

)(
1 + 2(Sk−1 + 1)m

)
2
(
1 + (k − 1)m

)
(1 + km)

≤ 1

4
+

(
1 + 2(k − 1− Sk−1)m

)
(Sk−1 + 1)

(k − 1)k
. (60)
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Combining (59) and (60) with the Bernstein inequality yields that with probability at
least 1−H−2,

δk ≥ E[δk]−
4

3

log(H)

m
− 2

m

√
Vk log(H)

≥ 1 + 2(k − 1− Sk−1)m

9(k − 1)km
− 4

3

log(H)

m
(61)

− 2

m

√
log(H)

4
+

(
1 + 2(k − 1− Sk−1)m

)
(Sk−1 + 1) log(H)

(k − 1)k

≥ 1 + 2(k − 1− Sk−1)m

9(k − 1)km
− 7

3

log(H)

m
− 2
√
2

m

√
(Sk−1 + 1) log(H)

(k − 1)k
(62)

+ 4

√
(k − 1− Sk−1)(Sk−1 + 1) log(H)

(k − 1)km

≥ 1 + 2(k − 1− Sk−1)m

9(k − 1)km
− 6 log(H)

m
− 4

√
(k − 1− Sk−1)(Sk−1 + 1) log(H)

(k − 1)km
.

(63)

where we use
√
a+ b ≤ √a+

√
b for any a, b ≥ 0.

If Sk−1 = 0, we know from (55) that

δk ≥
2

9k
− 6 log(H)

m
− 4

√
log(H)

km
>

1

5k
, (64)

where the last step follows from m≫ K log(H).
If Sk−1 = k − 1, one knows that

δk ≥
1

9(k − 1)km
− 6 log(H)

m
≥ − 1

5k
. (65)

where the final inequality is true as long as m ≥ 30K log(H).
Otherwise, we obtain

δk ≥
2

9

k − 1− Sk−1

(k − 1)k
− 6 log(H)

m
− 4

√
(k − 1− Sk−1)(Sk−1 + 1) log(H)

(k − 1)km

≥ 1

9

k − 1− Sk−1

(k − 1)k
> 0, (66)

where the last step holds as long as m ≫ K3 log(H) ≥
(
k(k − 1)(k −

Sk−1)/Sk−1

)
log(H).

– When Sk−1 = 0, combining (56) and (64) shows that adding arm k to T if δk > 1/(5k)
correctly identifies whether k ∈ T with probability at least 1−H−2.
When Sk−1 = k − 1, putting (57) and (65) together reveals that adding arm k to T if
δk > −1/(5k) correctly tests whether k ∈ T with probability exceeding 1−H−2.
Otherwise, collecting (58) and (66) together demonstrates that adding arm k to T if
δk > 0 correctly determines whether k ∈ T with probability at least 1−H−2.

Finally, we can use an induction argument to conclude with probability exceeding 1−KH−2, all
arms outside the trust set have been eliminated after the first stage. In other words, by defining the
event

Ets :=
{
T̂ = T

}
, (67)

we have

P{Ects} ≤ 2KH−2. (68)

In what follows, we shall work on the event Ets.
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Stage 2: trust-aware exploration-exploitation. By Stage 1 of Algorithm 1, the trust level at time
H0 + 1 satisfies tH0+1 = SK/K = |T |/K, where we recall SK :=

∑K
k=1 1{k ∈ T } counts the

number of the arms that belong to the trust set T . Similar to (41), we can express

1− th =

(
1− 1

1 + h

)
(1− th−1) +

1

1 + h
1
{
apmh−1 /∈ T

}
=

(
1− 1

1 + h

)
(1− th−1),∀h > H0 + 1.

Here, the last line is true under the event Ets. Therefore, one can then use induction to obtain that for
each h > H0,

1− th =
H0 + 2

h+ 1
(1− tH0+1) =

H0 + 2

h+ 1

K − SK

K
. (69)

In particular, th is an increasing function in h when h > H0.

With this in place, we are ready to control the regret. By (14) and (16), one can derive

regH =

H0∑
h=1

(
r⋆ − r(aach )

)
︸ ︷︷ ︸

regtsH

+

H∑
h=H0+1

th
(
r⋆ − r(apmh )

)
︸ ︷︷ ︸

regta-pm
H

+

H∑
h=H0+1

(1− th)(r
⋆ − rownh )︸ ︷︷ ︸

regta-own
H

.

In what follows, we shall control regtsH , regta-pm
H and regta-own

H separately.

• Let us start with regtsH . By our choice of the round length m, it is easy to bound

regtsH ≤ H0 = 2mK = 2K4 log(H). (70)

• To bound regpmH , let us first recall the notation ∆(a) := r⋆ − r(a) for any a ∈ [K]. In
addition, we define

Npm
s (a) := 1 ∨

s−1∑
i=H0+1

1{apmi = a}, (71)

for any a ∈ [K] and s > H0. With these notations in hand, it is straightforward to derive

regta-pm
H =

∑
a∈T̂

∆(a)

H∑
h=H0+1

th1{apmh = a}. (72)

This suggests we need to control
∑H

h=H0+1 th1{a
pm
h = a}. Towards this, let us fix an

a ∈ [K] such that r(a) < r⋆. Recall the definition of χh, which obeys

χh | Fh−1 ∼ Bern(th).

Let us define a sequence of random variables Xh := χh1{apmh = a} − th1{apmh = a},
h ≥ 1. Straightforward calculation yields that

E
[
Xh | Fh−1] = 0.

The sum of the conditional variances can be controlled by
H∑

h=H0+1

E
[
X2

h | Fh−1] =

H∑
h=H0+1

1{apmh = a}th(1− th) ≤
H∑

h=H0+1

(1− th)

=

H∑
h=H0+1

H0 + 2

h+ 1

K − SK

K

≤
∫ H

H0

(H0 + 2)
K − SK

K

1

x+ 1
dx

≤ (H0 + 2)
K − SK

K
log

(
H + 1

H0 + 1

)
≤ 2H0 log(H) ≤ c1K

4 log2(H),

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where we use (69) under the event Ets in the second line, and c1 > 0 is some universal
constant. Applying Lemma 1 by taking δ = H−1, R = 1, and σ = c1K

4 log2(H), we find
that with probability 1−H−1,

H∑
h=H0+1

χh1{apmh = a} ≥
H∑

h=H0+1

th1{apmh = a} −
√
3c1K

2 log(H). (73)

Moreover, let us define the event

Eta-pm :=

{∣∣∣∣ h∑
i=H0+1

(
Ri(a)− r(a)

)
1{aaci = a}

∣∣∣∣ ≤√N ac
h+1(a) log(H), ∀a ∈ [K], h > H0

}
.

(74)

We claim that under the event Eta-pm, the following holds for all a ∈ [K] such that r(a) < r⋆:

H∑
h=H0+1

χh1{apmh = a} ≤
⌈
16 log(H)

∆2(a)

⌉
. (75)

To see this, suppose that
∑H

h=H0+1 χh1{apmh = a} >
⌈
16 log(H)
∆2(a)

⌉
for some a ∈ [K]

satisfying r(a) < r⋆. Then there exists an H ′ ≤ H such that

H′∑
h=H0+1

χh1{apmh = a} =
⌈
16 log(H)

∆2(a)

⌉
.

Now, for any h ≥ H ′, one knows from the definition of N ac
h (a) in (5) that

N ac
h+1(a) ≥ N ac

H′+1(a) =

H′∑
h=H0+1

χh1{aach = a}

=

H′∑
h=H0+1

χh1{apmh = a}+
H′∑

h=H0+1

(1− χh)1{aownh = a} ≥
⌈
16 log(H)

∆2(a)

⌉
,

(76)

where the second equality follows from the assumption on decision implementation devia-
tions in (1).
On the other hand, note that the UCB estimator (6) is constructed based on N ac

h (a). Under
the event Eta-pm, one can derive

UCBh(a) =
1

N ac
h+1(a)

h∑
i=H0+1

Ri(a)1{aaci = a}

(i)

≤ r(a) +

√
log(H)

N ac
h+1(a)

(ii)

≤ r(a) +
1

4
∆(a)

< r(a⋆)− 1

4
∆(a)

(iii)

≤ r(a⋆)−
√

log(H)

N ac
h+1(a

⋆)

(iv)

≤ 1

N ac
h+1(a

⋆)

h∑
i=H0+1

Ri(a
⋆)1{aaci = a⋆} = UCBh(a

⋆).

where (i) holds under the event (74); (ii) and (iii) are due to (76); (iv) arises from (74). By
the arm selection criterion of the UCB algorithm, this implies that apmh ̸= a for all h > H ′.
This further leads to

H∑
h=H0+1

χh1{apmh = a} =
H′∑

h=H0+1

χh1{apmh = a}+
H∑

h=H′

χh1{apmh = a} =
⌈
16 log(H)

∆2(a)

⌉
,
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which contradicts the assumption. Therefore, this proves the claim (75).
In addition, recognize that

{(
Ri(a) − r(a)

)
1{aaci = a}

}
i≥1

is a sequence of martingale
differences with respect to the filtration (Fi)i≥0. It is straightforward to see that

E
[(
Ri(a)− r(a)

)
1{aaci = a} | Fi−1

]
= 0;

h∑
i=1

E
[(
Ri(a)− r(a)

)2
1{aaci = a} | Fi−1

]
≤

h∑
i=1

E
[
1{aaci = a} | Fi−1

]
= N ac

h+1(a).

We can then invoke the Azuma-Hoeffding inequality to obtain that for any fixed h ≥ H ′,
with probability at least 1− 2H−2,∣∣∣∣ h∑

i=H0+1

(
Ri(a)− r(a)

)
1{aaci = a}

∣∣∣∣ ≤√N ac
h+1(a) log(H).

Combined with the union bound, we find that

P
{
Ecta-pm

}
≤ 2KH−1. (77)

As a result, combining (73), (75), and (77) reveals that with probability at least 1 −
O(KH−1), for all a ∈ [K] such that r(a) < r⋆:

H∑
h=H0+1

th1{apmh = a} ≤ c2

(
log(H)

∆2(a)
+K2 log(H)

)
∧H, (78)

where c2 > 0 is some numerical number. Plugging (78) back into (72) and taking ∆ =√
K log(H)/H , we obtain with probability exceeding 1−O(KH−1),

regta-pm
H =

∑
a∈T :∆(a)≤∆

∆(a)

H∑
h=H0+1

th1{apmh = a}+
∑

a∈T :∆(a)>∆

∆(a)

H∑
h=H0+1

th1{apmh = a}

≤ ∆H +
∑

a∈T :∆(a)>∆

∆(a)

H∑
h=H0+1

th1{apmh = a}

≤ ∆H + c2
∑

a∈T :∆(a)>∆

∆(a)

(
log(H)

∆2(a)
+K2 log(H)

)

≤ ∆H + c2
|T |
∆

log(H) + c2|T |K2 log(H)

≤ 2
√
c2|T |H log(H) + c2|T |K2 log(H). (79)

• It remains to control regta-own
H . By the trust bound in (69) under the event Ets, we can show

that

regta-own
H =

H∑
h=H0+1

(1− th)∆
own
h

(i)

≤
H∑

h=H0+1

(1− th)

(ii)

≤
H∑

h=H0+1

H0 + 2

h+ 1

K − |T |
K

≤
∫ H

H0

(H0 + 2)
K − |T |

K

1

x+ 1
dx

≤ (H0 + 2)
K − |T |

K
log

(
H + 1

H0 + 1

)
≤ 2H0

K − |T |
K

log(H) ≤ c1K
3(K − |T |) log2(H). (80)

Here, (i) follows from ∆own
h ≤ 1 for all h ≥ 1; (ii) arises from (69); the last step follows

from the choice of the round length m.
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• Combining (70), (79), and (80) yields that with probability at least 1−O(KH−1),

regH ≲ K4 log(H) +
√
|T |H log(H) + |T |K2 log(H) +K3(K − |T |) log2(H) (81)

≲
√
KH log(H) +K4 log2(H).

Combining Stage 1 and Stage 2. Finally, we can bound

E[regH ] ≲
√
KH log(H) +K4 log2(H) +KH−1H

≤ C1

√
KH log(H) + C2K

4 log2(H)

for some constants C1, C2 independent of H and K. This concludes the proof.

D PROOF OF THEOREM 3

Fix an arbitrary admissible policy πpm. We will construct two trust-aware K-armed bandit instances
and use the superscripts (1) and (2) to distinguish the quantities associated with the first and second
instances, respectively.

Let us denote by D :=
(
apmh , aach , aownh , Rh(a

ac
h ), χh

)
i∈[H]

and D̃ :=
(
apmh , aach , Rh(a

ac
h ), χh

)
i∈[H]

.

Let P(1) and P̃(1) denote the probability distribution of the random variables in D̃ and D in the first
instance, respectively. The probability distributions P(2) and P̃(2) are defined similarly for the second
instance. Also, we use E(1) and E(2) to denote the associated expectations.

For the MABs, the random rewards are chosen to be Bernoulli random variables where Rh(k) ∼
Bern

(
r(k)

)
for all k ∈ [K] and h ≥ 1. For the first instance, we let r(1)(1) = 1/2 + ∆ and

r(1)(k) = 1/2 for any k ̸= 1, where 0 < ∆ ≤ 1/8 will be specified later. Moreover, let k0 ̸= 1 be
some arm such that E(1)[N ac

H+1(k)] ≤ H/(K − 1) under the policy πpm. As for the second instance,
we let r(2)(1) = 1/2 + ∆, r(2)(k0) = 1/2 + 2∆, and r(2)(k) = 1/2 otherwise. Finally, the trust set
T and own policy πown are chosen to be the same in the two instances.

With these definitions in hand, we can express the probability density p(1) of P(1) as

p(1)(D) =
H∏
i=1

p(1)(apmh | Fi−1)p
(1)(aownh | Fi−1)p

(1)(χh | Fi−1)p
(1)(aach | apmh , aownh , χh)p

(1)
(
Rh(a

ac
h ) | aach

)
.

Since πpm is fixed and πown and T are the same in the two instances, we have

log
dP(1)

dP(2)
(D) =

H∑
i=1

log
p(1)
(
Rh(a

ac
h ) | aach

)
p(2)
(
Rh(aach ) | aach

) .
Taking the expectation with respect to P(1) yields

KL
(
P(1) ∥ P(2)

)
= E(1)

[
H∑
i=1

log
p(1)
(
Rh(a

ac
h ) | aach

)
p(2)
(
Rh(aach ) | aach

)]
(i)
=

K∑
k=1

E(1)[N ac
H+1(k)]KL

(
Bern

(
r(1)(k)

)
∥ Bern

(
r(2)(k)

))
(ii)
= E(1)[N ac

H+1(k0)]KL
(
Bern

(
r(1)(k0)

)
∥ Bern

(
r(2)(k0)

))
(iii)

≤ H

K − 1
KL
(
Bern(1/2) ∥ Bern(1/2 + 2∆)

)
(iv)

≲
H

K − 1
∆2.

Here, (i) follows from the divergence decomposition in Lattimore & Szepesvári (2020, Lemma 15.1);
(ii) and (iii) are due to the construction of the instances; (iv) follows from Lemma 2 below and
∆ ≤ 1/8.
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Lemma 2. For any a, b ∈ [0, 1], let Bern(a) and Bern(b) denote two Bernoulli distributions with
parameters a and b, respectively. Then one has

KL(Bern(a) ∥ Bern(b)) ≤ (a− b)2

b(1− b)
. (82)

In addition, if |b− 1/2| ≤ 1/4, then one further has

KL(Bern(a) ∥ Bern(b)) ≤ 8(a− b)2. (83)

Consequently, by choosing ∆ ≍
√

K/H , we obtain

KL
(
P(1) ∥ P(2)

)
≤ H∆2

K − 1
≲ 1. (84)

Moreover, from the data processing inequality (Cover, 1999), we can further control

KL
(
P̃(1) ∥ P̃(2)

)
≤ KL

(
P(1) ∥ P(2)

)
≲ 1. (85)

Therefore, applying the standard reduction scheme (see e.g., Tsybakov (2008)), we conclude that

inf
π

sup
Π(K,T ,πown)

E[regH(π)] ≳ H∆exp
(
−KL

(
P̃(1) ∥ P̃(2)

))
≳
√
KH.

E EXTENSION TO GENERAL TRUST SET

We now briefly discuss the scenario where Assumption 1 does not hold, i.e., where no optimal arm is
included in the trust set. This extension accommodates the practical applications where implementer
limitations may preclude optimal arms from the trust set.

First, we present Theorem 4 below, which characterizes the minimax lower bound of the regret in this
setting.
Theorem 4. Let ε := r⋆ −maxk∈T r(k). For any algorithm that outputs a policy π, there exists a
MAB instance, a trust set, and an own policy such that

E[regH(π)] ≥ cεH, (86)

for some absolute constant c > 0. In particular, for any K ≥ 2, one has

inf
π

sup
Π(K,T ,πown)

E[regH(π)] ≥ c(
√
KH ∨ εH). (87)

In other words, if the best arm in the trust set is suboptimal by a constant gap, Theorem 4 demonstrates
that all algorithms must incur a linear regret in the worst case.

Next, we present the theoretical guarantees of Algorithm 1 without Assumption 1.
Theorem 5. For any K ≥ 2, the expected regret of the policy π generated by Algorithm 1 satisfies

sup
Π(K,T ,πown)

E[regH(π)] ≤ C1

√
KH log(H) + C2K

4 log2(H) + εH, (88)

for some positive constants C1 and C2 independent of H and K, where ε := r⋆ −maxk∈T r(k).

In short, the proposed algorithm continues to attain the minimax regret (up to some logarithmic
factors) when H is sufficiently large. The additional term εH can be treated as the cost paid for the
trust set not containing any optimal arm.

Proof of Theorem 4. Fix an arbitrary policy π and ε > 0. Let us construct a trust-aware MAB
instance as follows. We choose K = 2, r(1) = 1/2 − ε, r(2) = 1/2, Rh(k) = Bern

(
r(k)

)
for

k = 1, 2, and πown
h (1) = 1 for all h ≥ 1.

By the decomposition in (11), we know that

E[regH(π)] = E

[
H∑

h=1

thε1{apmh = 1}
]
+ E

[
H∑

h=1

(1− th)ε

]
= εH − εE

[
H∑

h=1

th1{apmh = 2}
]
.
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Suppose Npm
H+1(2) ≤ H/2. Then we can use th ≤ 1 to bound

H∑
h=1

th1{apmh = 2} ≤
H∑

h=1

1{apmh = 2} = Npm
H+1(2) ≤

H

2
.

Alternatively, if Npm
H+1(2) > H/2 (or equivalently, Npm

H+1(1) ≤ H/2), by the trust update rule

th =
1 +Npm

h (1)

h+ 1
,

we can bound
H∑

h=1

th1{apmh = 2} =
H∑

h=1

1 +Npm
h (1)

h+ 1
1{apmh = 2}

≤
3H/4∑
h=1

1 +

H∑
h=3H/4+1

1 +Npm
H+1(1)

1 + h

≤ 3

4
H +

1

4
H

1 +H/2

1 + 3H/4

≤ 27

28
H.

Combining these two bounds, we obtain

E[regH(π)] ≥ ε

28
H.

Proof of Theorem 5. Let us denote rts := maxk∈T r(k), namely, the highest expected reward of
the arms belonging to the trust set. We can then express

regH =

H∑
h=1

(
r⋆ − r(aach )

)
=

H∑
h=1

(r⋆ − rts) +

H∑
h=1

(
rts − r(aach )

)
. (89)

By slightly modifying the proof analysis for (81), it can be shown that with probability at least
1−O(KH−1),

H∑
h=1

(
rts − r(aach )

)
≲ K4 log(H) +

√
|T |H log(H) + |T |K2 log(H) +K3(K − |T |) log2(H).

Combining this with
∑H

h=1(r
⋆ − rts) ≤ εH , Theorem 5 follows as an immediate consequence.
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