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Abstract

This paper introduces a novel crowdsourcing001
worker selection algorithm, enhancing annota-002
tion quality and reducing costs. Unlike previ-003
ous studies targeting simpler tasks, this study004
contends with the complexities of label inter-005
dependencies in sequence labeling. The pro-006
posed algorithm utilizes a Combinatorial Multi-007
Armed Bandit (CMAB) approach for worker008
selection, and a cost-effective human feedback009
mechanism. The challenge of dealing with im-010
balanced and small-scale datasets, which hin-011
ders offline simulation of worker selection, is012
tackled using an innovative data augmentation013
method termed shifting, expanding, and shrink-014
ing (SES). Rigorous testing on CoNLL 2003015
NER and Chinese OEI datasets showcased the016
algorithm’s efficiency, with an increase in F1017
score up to 100.04% of the expert-only base-018
line, alongside cost savings up to 65.97%. The019
paper also encompasses a dataset-independent020
test emulating annotation evaluation through021
a Bernoulli distribution, which still led to an022
impressive 97.56% F1 score of the expert base-023
line and 59.88% cost savings. Furthermore,024
our approach can be seamlessly integrated into025
Reinforcement Learning from Human Feed-026
back (RLHF) systems, offering a cost-effective027
solution for obtaining human feedback. This028
research not only addresses the challenges in029
worker selection for intricate NLP tasks but030
also paves the way for more economical and031
efficient human-in-the-loop systems.032

1 Introduction033

Crowdsourcing, the practice of obtaining labeled034

data from a multitude of contributors (Howe, 2006),035

has emerged as a pivotal tool in data collection for036

deep learning models. It offers a cost-effective037

alternative to expert labeling, making it espe-038

cially valuable in today’s data-driven research land-039

scape (Nowak and Rüger, 2010). While its applica-040

tion spans various domains, from image labeling to041

text classification (Venanzi et al., 2014), this paper042
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Figure 1: Our online worker selection framework for
crowdsourcing.

narrows its focus on span-based sequence labeling 043

tasks, which assign categorical labels to individual 044

words within a sentence (Erdogan, 2010). Notable 045

examples of such tasks include named entity recog- 046

nition (NER) and opinion expression identification 047

(OEI) (Collobert et al., 2011). 048

The inherent complexity of sequence labeling 049

lies in the interdependencies of labels within a se- 050

quence. Unlike simpler tasks where labels are in- 051

dependent, sequence labeling requires contextual 052

understanding, making it inherently more challeng- 053

ing (Rodrigues et al., 2014). Consequently, annota- 054

tions from crowd workers, who might not possess 055

the expertise of trained annotators, often exhibit 056

reduced accuracy. This underscores the imperative 057

to enhance annotation quality, a challenge that this 058

study addresses. 059

A significant motivation driving this research 060

is the potential application of a mixed feedback 061

mechanism in Reinforcement Learning from Hu- 062

man Feedback (RLHF) systems. RLHF systems tra- 063

ditionally rely heavily on expert feedback, which, 064

while accurate, is expensive and often not scal- 065

able (Casper et al., 2023). By integrating feedback 066
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from both experts and aggregated crowd workers,067

we can achieve a balance between accuracy and068

cost. This hybrid approach not only maintains the069

quality of feedback but also significantly reduces070

the financial burden, making RLHF systems more071

accessible and scalable.072

Historically, research in this domain has con-073

centrated on annotation aggregation (Rodrigues074

et al., 2014; Nguyen et al., 2017; Simpson and075

Gurevych, 2019), employing methods post data076

collection. However, given the varied skill levels077

among crowd workers, a proactive approach that078

identifies and leverages the most accurate workers079

during the data collection phase can significantly080

enhance data quality. Termed as online worker se-081

lection, this strategy involves iterative allocation082

of a set budget across a pool of workers to opti-083

mize annotation quality (Chen et al., 2013). This084

dynamic process grapples with the uncertainty of085

worker skill levels, necessitating a balance between086

exploring new workers and exploiting currently087

identified proficient ones.088

In the context of sequence labeling, traditional089

bandit-based algorithms (Rangi and Franceschetti,090

2018) fall short due to the intricacies introduced091

by label dependencies. These intricacies manifest092

challenges in both annotation evaluation and aggre-093

gation. To address the evaluation challenge, this094

study employs the span-level F1 score (Derczynski,095

2016), a widely recognized metric, as the feedback096

signal in the worker selection process. The core097

challenge here is the accurate computation of the098

F1 score in the absence of expert annotations as a099

reference. The objective is to minimize reliance on100

costly expert annotations. For aggregation, while101

the majority voting method is employed for its sim-102

plicity and effectiveness, its reliability can be com-103

promised when faced with divergent annotations104

from different annotators.105

The overarching goal of this research is to maxi-106

mize the quality of annotations while minimizing107

costs. This involves strategically replacing expert108

ground truth labels with aggregated crowd-sourced109

labels, ensuring that the overall F1 score remains110

high. Such replacements are made only when111

there’s a high level of agreement among crowd112

workers, indicating that expert evaluation might be113

redundant for that particular sequence. The pro-114

posed worker selection algorithm, as illustrated in115

Figure 1, adopts an iterative approach: tasks are as-116

signed to a subset of workers, their annotations are117

evaluated, and the resulting scores inform worker 118

selection in subsequent rounds. 119

However, real-world datasets present chal- 120

lenges due to their imbalanced nature and limited 121

scale (Rodrigues et al., 2014; Zhang et al., 2022). 122

Addressing these challenges, this paper introduces 123

a data augmentation method tailored for span-based 124

sequence labeling datasets. This method, designed 125

to emulate potential human annotation errors, en- 126

sures that aggregated annotations remain meaning- 127

ful. Three specific modifications, namely shift- 128

ing, expanding, and shrinking, are applied to ex- 129

pert annotations, generating a spectrum of potential 130

human annotations. This augmentation addresses 131

dataset limitations, facilitating the offline evalua- 132

tion of worker selection algorithms. 133

In summary, this paper’s contributions are mani- 134

fold1: 135

• It presents the exploration of worker selection 136

for span-based sequence labeling tasks, recog- 137

nizing the unique challenges they present. 138

• It employs the span-level F1 score, evaluated 139

by both experts and crowd workers, as a feed- 140

back mechanism, ensuring accurate worker 141

selection. 142

• It introduces a data augmentation technique 143

to counteract the limitations of real datasets, 144

enabling effective offline simulations. 145

• Through rigorous experimentation, it demon- 146

strates the efficacy of the proposed method, 147

achieving impressive F1 scores while signifi- 148

cantly reducing expert annotation costs. 149

To provide a comprehensive understanding of 150

the background of this work, we briefly introduce 151

the related work in Appendix A. 152

2 Methodology 153

Consider an online crowdsourcing system that can 154

reach out to a group of crowd workers W = 155

{w1, w2, . . . , wN}. The workers are required to 156

provide sequential annotations to a set of sentences 157

S = {s1, s2, . . . , sM}. More specifically, a worker 158

annotates a sentence by assigning a tag from a finite 159

possible tag set C (e.g., a set of BIO tags (Ramshaw 160

and Marcus, 1995)) to each word. An annotation 161

1All resources, including source code and datasets, are
made available for the broader research community at https:
//anonymous.4open.science/r/CostEffi/
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on sentence si by worker wj is a tag sequence162

aij = a1a2 . . . ak . . . al where ak ∈ C and l de-163

notes the length of the sentence. We assume that164

every sentence is annotated by K different workers165

independently. We define a task as the process of166

annotating one entire sentence, and hence there are167

in total KM tasks. We seek to acquire an anno-168

tated dataset in which the average F1 score of aij169

is maximized. If we know which workers give the170

best annotations a priori, we can simply ask these171

workers to finish all the tasks. However, such in-172

formation is unavailable in practice, and we aim173

to design an algorithm that learns the best workers174

throughout the crowdsourcing process.175

In the beginning, we let each crowd worker an-176

notate one sentence. We also ask the experts(e.g.,177

well-trained linguists assumed to give the most pre-178

cise annotations) to give one annotation for each179

of these sentences. Then we calculate the F1 score180

of the annotation with the expert annotations as181

ground truth. We use these scores as the initial F1182

scores of workers. At each time step t after ini-183

tialization (as illustrated in Figure 1), we select a184

subset of workers Wt ⊂W to do annotation, based185

on criteria discussed in Section 2.2. The size of186

the subset Wt should be neither too big nor too187

small (e.g., 0.3N ). We randomly choose a subset188

of sentences St ⊂ S, assign each si ∈ St to K dif-189

ferent workers in Wt, and collect their annotations190

Ai = {ai1,ai2, . . . ,aiK},∀i ∈ {1, 2, . . . , |St|}.191

To evaluate workers’ F1 scores on Ai, one can use192

the expert annotations as the ground truth, which,193

however, can be very expensive (İren and Bilgen,194

2014). To cut down this cost, we reduce the usage195

of expert evaluations whenever crowd annotations196

are similar enough. We use the Fleiss’ Kappa score197

κ to measure this similarity. The κ score (κ ≤ 1) is198

a statistical measure of inter-annotator agreement.199

A larger value of κ indicates stronger agreement200

between the workers. κ score exceeding an em-201

pirical threshold indicates that the crowd workers202

reach a consensus on si. In that case, we aggregate203

Ai with MV and use the aggregated annotation as204

the ground truth of sentence si. If the workers do205

not reach a consensus, we resort to expert annota-206

tions as ground truth. Next, we can calculate the F1207

scores of each aij ∈ Ai and update the F1 scores208

of the selected workers.209

2.1 Problem Formulation 210

At time t, we obtain K crowd annotations Ai on 211

each sentence si ∈ St. We denote all annotations 212

collected on St by At = {A1,A2, . . . ,A|St|}. 213

To simplify our expression, we use FExp
1 (aij) to 214

represent the F1 score of aij using expert anno- 215

tation as ground truth, and FMV
1 (aij) to represent 216

the F1 score of aij using the MV aggregation of 217

Ai ∈ At as ground truth. On collected annotation 218

sets, FExp
1 (Ai) denotes the average F1 score of all 219

aij ∈ Ai. Similarly, FExp
1 (At) denotes the average 220

F1 score of all Ai ∈ At. As FExp
1 (At) reflects the 221

true accuracy of crowd annotations, our objective 222

is to maximize the average expectation, or equiva- 223

lently the cumulative expectation of FExp
1 (At) over 224

time T . We formulate this problem as a CMAB 225

problem below: 226

max

T∑
t=1

E[FExp
1 (At)] (1) 227

s.t. Wt ⊂W, t ∈ {1, 2, . . . , T} (2) 228

Since we have no information about workers’ 229

average F1 scores, we need to balance exploring 230

potentially better workers and exploiting the cur- 231

rent best workers during worker selection. This 232

tradeoff is extensively discussed in bandit litera- 233

ture where arms with unknown distributions form 234

super-arms. The arms are associated with a set of 235

random variables Xj,t with bounded support on [0, 236

1]. Variable Xj,t indicates the random outcome of 237

arm j in time step t. The set of random variables 238

{Xj,t|t ≥ 1} associated with arm j are indepen- 239

dent and identically distributed according to certain 240

unknown distribution Dj with unknown expecta- 241

tion µ̄j . The platform plays a super-arm at each 242

time step, and the reward of arms in it is revealed. 243

These rewards are used as a metric for selecting 244

the super-arm in future time steps. After enough 245

time steps, the platform will be able to identify the 246

best super-arm and keep playing it to maximize the 247

overall reward. Similar to bandit terminologies, we 248

call each worker wj ∈ W an arm and the worker 249

subset Wt ⊂W a super-arm selected at t. 250

2.2 Worker Selection Algorithm 251

Specifically, there are three methods to calculate 252

the reward of worker wj at time step t as follows. 253

Expert Only This is a benchmark approach 254

where the F1 score is calculated using only expert 255
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annotations as ground truth. This method provides256

intuitively the most accurate F1 scores. The reward257

of worker wj is defined as:258

µ
Exp
j (t) = FExp

1 (aij(t)) (3)259

The expert-only method requires an expert annota-260

tion on every sentence, which is costly and usually261

not practical.262

Majority Voting (MV) To reduce expert anno-263

tations, we aggregate Ai for each sentence si, and264

use the aggregated annotation via MV as ground265

truth, i.e.,266

µMV
j (t) = FMV

1 (aij(t)) (4)267

Expert+MV When workers give very different268

annotations on the same sentence (usually when269

the task is difficult), one can be uncertain about270

the voted (and possibly noisy) ground truth. In this271

case, we want to resort to both crowd workers and272

experts. The choice is based on the well-known273

Fleiss’ Kappa score κ that can quantitatively eval-274

uate the agreement of crowd workers. For each275

sentence si, if κ(Ai) is greater than a preset em-276

pirical threshold value τ , the reward of annotating277

workers is FMV
1 (aij(t)). Otherwise, the reward is278

FExp
1 (aij(t)). In this way, MV is only used when279

the crowd workers can reach an agreement. Thus280

the reward is always calculated based on reliable281

ground truth. We summarize the reward of worker282

wj as:283

µ
Exp+MV
j (t) =

{
FMV
1 (aij(t)), κ(Ai) > τ

FExp
1 (aij(t)), κ(Ai) ≤ τ

(5)284

The ϵ-Greedy, Thompson Sampling, and Com-285

binatorial Upper Confidence Bound (CUCB) are286

three effective algorithms to solve the CMAB287

problem. For each worker wj ∈ W , both algo-288

rithms maintain a variable µ̄j(t) as the average289

reward (i.e., the average F1 score) of worker wj at290

time step t. CUCB additionally maintains a vari-291

able Tj(t) as the total number of sentences worker292

wj has annotated till time step t. Details of the293

worker selection algorithm with our Exp.+MV met-294

ric are shown in Algorithm 1. As for the selection295

criterion mentioned in the algorithm, ϵ-Greedy uti-296

lize a hyper-parameter ϵ which refers to the prob-297

ability of exploring random workers. Thus 1 − ϵ298

refers to the probability of exploiting the best work-299

Measure Chinese OEI CoNLL 2003
# of Sentence 8047 4580
# of Worker 70 47
Span Length 5.05 1.51

Max 658 1626
Min 153 48

Range 505 1578
Mean 368 350

Median 332.5 230
SD 135.23 328.01

Variance 18286.52 107589.34
CV 36.71% 93.57%

Table 1: Statistics of the original datasets. Span lengths
are averages. The terms SD and CV represent Standard
Deviation and Coefficient of Variation respectively. The
metrics Max, Min, Range, Mean, Median, SD, Variance,
and CV pertain to the number of sentences annotated by
each worker, indicating dataset imbalances.

ers till the current time step. Formally, Wt is se- 300

lected with a random variable p ∈ [0, 1] as below: 301

Wt =


random Wt ⊂W, p < ϵ

argmax
Wt⊂W

∑
wj∈Wt

µ̄j , p ≥ ϵ (6) 302

Thompson Sampling samples from gaussian dis- 303

tributions of workers’ rewards at each time step t, 304

and select workers which could maximize the total 305

reward. CUCB handles the tradeoff by adding an 306

item considering Tj and t to µ̄j like: 307

Wt = argmax
Wt⊂W

∑
wj∈Wt

(
µ̄j +

√
3 ln t

2Tj

)
(7) 308

This makes workers with less annotations more 309

likely to be selected as the algorithm proceeds. We 310

provide a brief analysis in Appendix C. We explain 311

on the application of our worker selection algo- 312

rithms when building new datasets in Appendix F 313

2.3 Data Augmentation Method 314

We propose the data augmentation method to fa- 315

cilitate the offline simulation of the crowdsourcing 316

process, thus evaluating the worker selection algo- 317

rithms. During offline simulation, when the worker 318

selection strategy selects a certain worker to anno- 319

tate a certain sentence, we can use the annotation 320

in the original dataset if it exists. But if the selected 321

worker did not annotate the sentence in the original 322

dataset, we need to generate an annotation for the 323
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Figure 2: An example of the three methods to generate annotations. Chinese characters and corresponding English
words with red backgrounds indicate annotation spans. Transliteration of the Chinese sentence is jı̄n tiān de yáng
guāng shì qı̄ng róu ér wēn nuǎn de.

sentence. And the generated annotation should be324

in the same quality (depicted in F-score) as the real325

annotations by the worker. The generated annota-326

tion will be then used with the other annotations on327

the same sentence for majority voting.328

Generating the missing annotations for each329

worker wj is a great challenge when we expect330

the generated annotations to reflect the factual reli-331

ability of wj . In other words, we expect the average332

F1 score of each wj ∈W to remain constant before333

and after augmenting the dataset with generated an-334

notations. This is critical and difficult since real335

datasets are imbalanced and of small scale that can-336

not well support worker selection algorithms.337

As there lack previous work on generating miss-338

ing crowd annotations for span-based sequence339

labeling, we start with several naive algorithms340

such as randomly generating label sequences as341

annotations, and mixing expert annotations with342

completely incorrect (e.g., empty) annotations. But343

these algorithms either cannot produce annotations344

with expected F1 scores, or generate confusing an-345

notations which make later aggregation meaning-346

less. This motivates us to design a data augmenta-347

tion method specialized for span-based sequence348

labeling datasets.349

Through our statistical analysis and observation350

on the real datasets, we characterized the 3 most351

common annotation error patterns. Due to space352

limitation, we defer the detailed analysis to Ap-353

pendix D. Based on these analysis results, we pro-354

pose a data augmentation method as follows: For355

each sentence si ∈ S, we modify the annotation356

span based on the expert annotation. We use three357

types of modifications to generate new annotation358

spans with different F1 scores as illustrated in Fig-359

ure 2. The goal of these modifications is to simulate360

varying annotation errors made by human annota-361

tors. 362

Shifting We move both the left and the right bor- 363

der of the annotation span simultaneously in the 364

same direction by one word per step. 365

Expanding We set one of the span borders fixed, 366

and move the other border by one word per step to 367

increase the length of the annotation span. 368

Shrinking We set one of the span borders fixed, 369

and move the other border by one word per step to 370

decrease the length of the annotation span. 371

We perform these modifications on a span multi- 372

ple times, generating new annotation spans, until 373

(1)the modified span does not overlap with the orig- 374

inal one, (2)one of the span borders reaches an end 375

of sentence or another span in the same sentence, 376

or (3) the span length becomes 0. 377

For each sentence si ∈ S, si may contain multi- 378

ple annotation spans. We perform modifications on 379

each span in si, and find all combinations of spans 380

to form possible sentence annotations. With these 381

methods, we can imitate crowd annotations with 382

different kinds of errors in practice. Next, for each 383

worker wj ∈ Wti, if wj has no annotation on si 384

in the original dataset, we select one from all the 385

expert and generated annotations on si. 386

We first calculate φ̄j as the average F1 score of 387

all annotations by wj on the original dataset, and 388

then follow the detailed steps described in Algo- 389

rithm 2 to do the selection. We aim to keep the 390

overall F1 score of wj unchanged. 391

To better illustrate the procedure of the aug- 392

mentation, we provide a running example in Ap- 393

pendix E. 394
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Worker
ID

Rnd.
Gen.
|∆F1|

SES
Only
|∆F1|

SES
+Alg.2
|∆F1|

25 2.83 6.69 0.01
52 8.15 10.83 0.00
46 3.83 13.48 0.00
43 10.02 11.21 0.00
18 9.87 12.84 0.00
50 16.69 10.71 0.00
12 47.18 10.52 0.00

Avg. 14.08 10.90 0.0014

Table 2: Comparisons between different data augmenta-
tion methods on the error of span-level exact F1 score
of every crowd worker. The error |∆F1| is calculated
as the absolute difference between each worker’s F1

score after augmentation and his real F1 score. Rnd.
Gen. is a naive augmentation method with random gen-
erated annotations. SES Only indicates the shifting,
shrinking, and expanding method we proposed. SES +
Alg.2 means SES with Algorithm 2 which is our optimal
method.

3 Experiments395

3.1 Original Datasets396

We compare our CMAB-based algorithms to sev-397

eral widely adopted baselines on two span-based398

sequence labeling datasets.399

CoNLL 2003 The CoNLL 2003 English named-400

entity recognition dataset (Tjong Kim Sang and401

De Meulder, 2003) is a collection of news article402

from Reuters Corpus (Lewis et al., 2004). The403

dataset contains only expert annotations for four404

named entity categories (PER, LOC, ORG, MISC).405

Rodrigues et al. (2014) collected crowd annotations406

on 400 articles from the original dataset.407

Chinese OEI The Chinese OEI dataset (Zhang408

et al., 2022) consists of sentences on the topic of409

COVID-19 collected from Sina Weibo2, in which410

the task is to mark the spans of opinion expressions.411

The Chinese OEI dataset contains expert and crowd412

labels for two opinion expression categories (POS,413

NEG). Detailed statistics are shown in Table 1.414

3.2 Data Augmentation415

We augment both datasets with the method pro-416

posed in Section 2.3. According to Table 1, the417

most hard-working annotator in the OEI dataset418

2https://english.sina.com/weibo/
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Figure 3: Cumulative regrets w.r.t time steps of all dif-
ferent worker selection methods.

provided annotations on 658 sentences, while the 419

least one annotated only 153 sentences. On aver- 420

age, each crowd worker annotated 368 out of 8047 421

sentences in the Chinese OEI dataset. For the of- 422

fline simulation of the worker selection process, we 423

want every worker to annotate all 8047 sentences. 424

Therefore we need to generate the missing 8047 - 425

368 = 7679 annotations for every worker, on aver- 426

age. This also applies similarly to the CoNLL 2003 427

dataset. 428

Through our method, the average F1 score of 429

each w ∈ W remains nearly unchanged before 430

and after augmenting the original dataset with gen- 431

erated annotations3. Due to space limitation, we 432

present comparisons of different augmentation al- 433

gorithms with 10 sampled workers in Table 2. The 434

complete results are deferred to Table 7 in the ap- 435

pendix. These results show that our SES + Alg.2 436

method clearly outperforms the other baselines, 437

producing almost the same F1 scores for each 438

worker as their original ones. 439

3The augmentation procedure takes about 2 hours on a
computer with a 2.9 GHz Quad-Core Intel Core i7 CPU.
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Method Token-level Span-level Exact Span-level Prop.

P R F1 P R F1 P R F1

Oracle 65.69 83.99 70.00 78.15 72.23 74.96 87.97 80.03 83.82
Random 55.95 66.42 57.50 64.42 55.64 59.40 75.70 62.61 68.54

ϵ-G (Exp.) 64.94 80.48 68.56 75.24 68.16 71.34 85.85 76.79 81.06
ϵ-G (MV) 64.44 80.22 67.98 74.69 67.59 70.77 85.67 76.09 80.59
ϵ-G (Exp.+MV) 64.68 80.94 68.41 75.08 68.37 71.40 85.93 76.62 81.01

TS (Exp.) 64.94 79.88 68.51 75.64 68.31 71.57 85.02 75.71 80.09
TS (MV) 64.47 79.19 67.91 74.97 67.54 70.80 84.14 74.21 78.86
TS (Exp.+MV) 64.20 79.09 67.62 75.27 67.83 71.12 84.77 75.39 79.81

CUCB (Exp.) 65.65 80.34 69.24 75.94 69.12 72.20 86.17 77.22 81.45
CUCB (MV) 65.39 80.00 68.91 75.95 68.90 72.08 86.13 76.67 81.12
CUCB (Exp.+MV) 65.33 81.12 69.11 75.70 69.30 72.21 86.17 77.28 81.48

Table 3: Detailed P, R, and F1 scores of all methods on the CoNLL 2003 dataset. All our algorithms perform
significantly better than the Random (i.e., naive crowdsourcing) baseline.

3.3 Worker Selection440

Baselines We test the Exp.+MV method with 4441

baselines: Oracle, Random, Exp., and MV. Or-442

acle always selects the empirical best super-arm443

W opt at every time step t. Random selects a dif-444

ferent set of workers randomly at every time step445

t, which is equivalent to usual crowdsourcing pro-446

cedure without worker selection. Exp., MV, and447

Exp.+MV are CMAB-based algorithms introduced448

in Section 2.2. The CMAB-based algorithms are449

tested with CUCB, Thompson Sampling and ϵ-450

Greedy as the worker selection criterion respec-451

tively.452

Regret as a Metric We evaluate our worker se-453

lection algorithms using cumulative regret, a metric454

indicating the performance deviation from the ora-455

cle’s selection defined as:456

R(T ) =
T∑
t=1

 ∑
wj∈W opt

µ̄j −
∑

wk∈Wt

µk(t)

 (8)457

In our experiments, we request 10 annotations per458

sentence, allowing CMAB-based algorithms to con-459

verge, and select 20 workers at each time step t. On460

the Chinese OEI dataset, setting the kappa thresh-461

old τ to 0.4 in Exp.+MV results in a 57.02% reduc-462

tion in expert annotation cost, while a 0.65 thresh-463

old on the CoNLL 2003 dataset leads to a 43.83%464

cost reduction.465

Results show Random consistently underper-466

forms across datasets. On the Chinese OEI dataset,467

Exp.+MV surpasses MV, albeit with higher re- 468

gret than Exp., justified by the substantial cost 469

savings. On the CoNLL 2003 dataset, Exp.+MV 470

even outperforms Exp., suggesting crowd workers 471

can provide valuable input for simpler tasks like 472

NER. Overall, algorithms employing the CUCB 473

criterion demonstrate superior performance, with 474

CUCB (Exp.+MV) excelling in balancing cumula- 475

tive regret and expert cost. 476

Effect of τ on F1 and cost Next, we discuss how 477

different kappa threshold values τ affect the aver- 478

age F1 score of the produced annotation dataset. 479

We test τ ∈ [0, 1] with a step of 0.05. In real 480

datasets like CoNLL 2003 and Chinese OEI, the 481

number of annotations per sentence is often quite 482

small. To better fit the practical situations, we ask 483

for 4 annotations on each sentence in the follow- 484

ing experiments. Other settings remain unchanged. 485

Since CUCB performs better than Thompson Sam- 486

pling and ϵ-Greedy on both datasets, we display 487

only the results from CUCB in later experiments. 488

On the Chinese OEI dataset, as illustrated in 489

Figure 4, F1 increases sharply with τ ∈ [0, 0.4]. 490

When τ = 0.4, Exp.+MV achieves 99.47% F1 491

score of Exp., and saves 47.19% of the expert cost. 492

The F1 score goes up slowly until τ reaches 0.8. 493

When τ = 0.8, the F1 score of Exp.+MV becomes 494

exactly the same as the one of Exp., and Exp.+MV 495

still saves 6.6% of the expert cost. 496

The results on the CoNLL 2003 dataset are 497

shown in Figure 5. Similarly, the F1 score of 498
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Figure 4: F1 scores of the produced annotations and us-
age of expert for annotation evaluations w.r.t the kappa
threshold τ of the Exp.+MV method on the Chinese
OEI dataset.
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Figure 5: F1 scores of the produced annotations and us-
age of expert for annotation evaluations w.r.t the kappa
threshold τ of the Exp.+MV method on the CoNLL
2003 dataset.

the produced annotation dataset grows fast as τ ∈499

[0, 0.45]. When τ = 0.45, the Exp.+MV method500

already produce an annotation dataset with its F1501

reaching 99.86% of Exp.. At this point, Exp.+MV502

saves 88.57% of the expert cost. When τ = 0.65,503

Exp.+MV outperforms Exp. with a 100.04% F1504

score and a 65.97% reduction in expert usage.505

Our CUCB (Exp.+MV) worker selection algo-506

rithm eliminates the need for expert evaluation on507

every sentence. Instead, we harness crowd intel-508

ligence via our kappa-thresholded MV, producing509

datasets of comparable or even superior quality to510

those relying solely on expert evaluations.511

Extended F1 Metrics All of the F1 scores in the512

previous experiments are span-level proportional513

scores calculated by the proportion of the overlap514

referring to the expert annotation (Zhang et al.,515

2022). To provide additional comparisons between516

different methods, we also invoke token-level and517

span-level exact P, R, F1 scores as supporting met-518

rics. We run the whole process from data aug-519

mentation to worker selection with all 3 metrics520

separately. The kappa threshold τ in Exp.+MV is521

set to 0.4 on the Chinese OEI dataset and 0.65 on522

the CoNLL 2003 dataset. Detailed scores are listed 523

in Table 3 and 6. The results show that Exp.+MV 524

achieves scores as good as Exp. and much better 525

than MV, which validates previous experiments 526

and shows our worker selection methods are robust 527

to different metrics. 528

Feedback Simulator We also test our worker 529

selection methods with a feedback simulator. 530

The simulator generates numerical feedback from 531

Bernoulli distribution in annotation evaluations. 532

This is to eliminate the varying level of difficulty 533

in different tasks and evaluate our worker selection 534

algorithms under more stable settings. Our algo- 535

rithm achieves good results on the simulator. We 536

put the definitions and results in Appendix B. 537

Effect on ML Models To further show the effect 538

of our worker selection algorithm on the perfor- 539

mance of machine learning models, we have run 540

experiments with several widely-accepted models 541

and provide the results in Table 5. We observe a 542

consistent increment of F1 score on the ML models, 543

with our bandit-based worker selection algorithm. 544

This validates that our worker selection algorithm 545

may help improve the performance of ML models 546

while saving budget on data crowdsourcing. 547

4 Conclusion 548

In this study, we introduced a CMAB-based worker 549

selection strategy tailored for span-based sequence 550

labeling tasks, leveraging the span-level F1 with 551

Exp.+MV as a feedback mechanism. To address 552

the challenges posed by unbalanced and limited 553

real datasets, we innovated a data augmentation 554

method. This technique not only facilitates offline 555

simulation but also mirrors the genuine annotation 556

behaviors of workers closely. 557

Our empirical evaluations underscore the effi- 558

cacy of the proposed method. On the Chinese 559

OEI dataset, our approach achieved an impres- 560

sive 99.47% F1 score, translating to a substan- 561

tial 47.19% reduction in expert costs. Similarly, 562

on the CoNLL 2003 dataset, we observed a re- 563

markable 100.04% F1 score, with savings of up 564

to 65.97% in expert costs, both benchmarks set 565

against expert-evaluation-only baselines. Further- 566

more, our method demonstrated its robustness with 567

a 94.86% F1 score and a 65.97% reduction in ex- 568

pert costs on a data-free simulator. Our approach 569

also boosts ML model performance, optimizing 570

both accuracy and cost. 571
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Limitations572

In this paper, we provide theoretical analysis and573

offline simulation results of our worker selection574

algorithm. These results show that our algorithm575

performs well. But due to the budget limitation,576

we are unable to apply our algorithm on real online577

crowdsourcing systems and test it with real-time578

annotation tasks. Future work could explore ex-579

tending our worker selection strategy to other do-580

mains and tasks and in online environment, further581

solidifying its role as a versatile and cost-effective582

tool in the realm of crowdsourcing and beyond.583
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A Related Work709

Many studies (Rodrigues et al., 2014; Rodrigues710

and Pereira, 2018; Nangia et al., 2021) have used711

crowdsourcing for its efficiency and scalability.712

However, crowdsourcing suffers from the diversity713

of crowd workers’ expertise and effort levels that714

are hardly measurable to task requesters. Different715

approaches to improving the quality of collected716

data have been proposed and studied. For span-717

based sequence labeling tasks, prior studies mainly718

focus on annotation aggregation. Rodrigues et al.719

(2014) proposed CRF-MA, a CRF-based model720

with an assumption that only one worker is cor-721

rect for any label. HMM-crowd from Nguyen722

et al. (2017) outperforms CRF-MA, but the effect723

of sequential dependencies is not taken into ac-724

count. Simpson and Gurevych (2019) uses a fully725

Bayesian approach BSC which is proved to be more726

effective in handling noise in crowdsourced data.727

Aggregation methods are used after the data collec-728

tion process completes. But we aim to assure data729

quality and reduce cost during collecting. To this 730

end, we focus on worker selection in our paper. 731

In online worker selection, we need to balance 732

between exploring new workers and exploiting ob- 733

served good workers. This exploration-exploitation 734

tradeoff is extensively studied in the bandit litera- 735

ture (Lai and Robbins, 1985). In practice, we usu- 736

ally employ multiple crowd workers at the same 737

time to finish the tasks more effectively. The com- 738

binatorial multi-armed bandit (CMAB) (Chen et al., 739

2013) models this circumstance. Biswas et al. 740

(2015); Rangi and Franceschetti (2018) reformulate 741

the problem as a bounded knapsack problem (BKP) 742

and address it with the B-KUBE (Tran-Thanh et al., 743

2014) algorithm. Song and Jin (2021) introduce 744

empirical entropy as the metric in CMAB and mini- 745

mize the cumulative entropy with upper confidence 746

bound (UCB) based algorithm. Li et al. (2022) con- 747

sider the scalability of worker selection on large- 748

scale crowdsourcing systems. These studies pro- 749

pose different methods under the CMAB settings, 750

but on more complex span-based sequence label- 751

ing tasks there exists no discussion. We present 752

the study of worker selection with CMAB on span- 753

based sequence labeling tasks and show that our 754

work performs well on the quality and efficiency 755

of data collection. 756

B Feedback Simulator 757

The performance of crowd workers can vary across 758

different types of annotation tasks. To evaluate the 759

Exp.+MV worker selection method in more stable 760

conditions without task-specific influence, we do 761

not actually annotate the sentences, but directly use 762

a worker’s average F1 score to simulate his score on 763

each sentence he annotates. The simulated scores 764

are used as the numerical feedback for worker selec- 765

tion. Specifically, for each worker w, we calculate 766

in advance two average F1 scores for all of their 767

annotations on the original dataset. The two F1 768

scores for each worker are calculated using expert 769

and majority vote (MV) evaluation respectively, de- 770

noted as φ̄Exp.
w and φ̄MV

w . At each time step t, for 771

every sentence si in the sentence set to be annotated 772

St, we ask K different workers from the current 773

selected workers Wt to annotate it. Then, we use 774

a random value between 0 and 1 as the agreement 775

level κ. If κ exceeds the threshold value τ (set 776

to 0.4 in Exp.+MV), we independently generate 777

feedback for the K workers from a Bernoulli distri- 778

bution with a probability parameter set to φ̄MV
w . If 779
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Method F1

Oracle 74.12
Random 65.12

Exp. 69.78
MV 66.80

Exp.+MV 68.29

Table 4: The overall span-level proportional F1 scores
of all methods with the feedback simulator.

Method Original w/ Our Alg.

LSTM-Crowd-cat 52.66 54.27
Bert-BiLSTM-CRF 52.14 54.51
Annotator-Adaptor 53.86 56.16

Table 5: Span-level exact F1 scores of widely-accepted
deep learning models on the Chinese OEI dataset.
LSTM-Crowd-cat is from Nguyen et al. (2017). Bert-
BiLSTM-CRF and Annotator-Adaptor are from Zhang
et al. (2022). We provide results with and without our
worker selection algorithm.

not, the feedback is generated from a Bernoulli dis-780

tribution with a probability parameter set to φ̄Exp.
w .781

The span-level average F1 scores of the annotated782

dataset using different worker selection algorithm783

are shown in Table 4. Our feedback mechanism784

Exp.+MV for worker selection achieved compara-785

ble performance to the expert-only mechanism Exp.786

(68.29 versus 69.78), while in the same time re-787

duced expert involvement in evaluation by 59.88%788

under the dataset-independent conditions.789

C Regret Analysis790

We provide a brief regret analysis of the worker791

selection framework assuming that we use the ϵ-792

greedy algorithm and that each worker’s reward793

follows a Bernoulli distribution.794

The main proof follows the proof of Theorem795

1 in (Garcelon et al., 2022). The key contribution796

here is that we need to specify that the evaluation797

signal (generated by majority voting) is a general-798

ized linear model of workers’ true reward signal799

(generated by expert/oracle). To this end, we utilize800

the following form of the Chernoff bound which801

applies for any random variables with bounded sup-802

port.803

Lemma 1 (Chernoff Bound (Motwani and Ragha-804

van, 1995)) Let X1, X2, · · · , XN be independent805

random variables such that xl ≤ Xi ≤ xh for806

Algorithm 1 The worker selection algorithm with
the Expert+MV metric.

1: Let each worker wj ∈ W annotate a random
sentence and initialize variable µ̄j with F1 by
expert evaluation

2: For each worker wj ∈W , initialize Tj ← 1
3: t← |W |
4: while unannotated sentences exist do
5: t← t+ 1
6: Select Wt ⊂ W based on certain crite-

rion (e.g., (6), (7))
7: Split Wt into several disjoint subsets

{Wt1, . . . ,Wti, . . . ,Wtn}, each containing
K workers

8: for all Wti do
9: Let each wj ∈Wti annotate an sentence

si and collect the annotations Ai

10: if κ(Ai) > τ then
11: Update Tj and µ̄j with FMV

1 (aij(t))
12: else
13: Update Ti and µ̄j with FExp

1 (aij(t))
14: end if
15: end for
16: end while

all i ∈ {1, 2, · · · , N}. Let X =
∑N

i=1Xi and 807

µ = E(X). Given any δ > 0, we have the follow- 808

ing result: 809

P (X ≤ (1− δ)µ) ≤ e
− δ2µ2

N(xh−xl)
2 . (9) 810

For the purpose of our discussion, let Xi ∈ {0, 1} 811

be a binary random variable, where Xi = 0 denotes 812

that worker i provides an incorrect solution, and 813

Xi = 1 denotes that worker i generates a correct 814

solution. Define X =
∑

i∈N Xi. 815

We aim to approximate PMV, which is the prob- 816

ability that the majority of the N workers provide 817

the correct estimate. We apply the Chernoff Bound 818

in Lemma 1 to PMV. We can compute 819

E(X) = p̄ =

∑N
i=1 pi
N

. (10) 820

Based on (9), we let µ = E(X), δ =
N(p̄− 1

2
)

N
2
+N(p̄− 1

2
)
, 821
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Algorithm 2 The annotation selection algorithm.
1: For each worker wj ∈ W , maintain (1)a vari-

able φ̂j as the average F1 score of the selected
annotations by wj so far, (2)a set Aj of se-
lected annotations by wj

2: Generate all possible annotations Ap
1 on s1 ∈

S, calculate FExp
1 (a1k) for each a1k ∈ Ap

1

3: For each w ∈ W , initialize φ̂j with the
FExp
1 (a1k) closest to φ̄j , and append the a1k to

Aj

4: for all si ∈ S\s1 do
5: Generate all possible annotations Ap

i on
si ∈ S, calculate FExp

1 (aik) for each aik ∈
Ap

i

6: for all wj ∈W do
7: if φ̂j > φ̄j then
8: Update φ̂j with the maximal FExp

1 (aik)
less than φ̄j , and append aik to Aj

9: else
10: Update φ̂j with the minimal FExp

1 (aik)
greater than φ̄j , and append aik to Aj

11: end if
12: end for
13: end for

xl = 0, xh = 1, and get the following result:822

PMV = P

(
X ≥ N

2

)
= 1− P

(
X ≤ N

2

)
823

≥ 1− e−
δ2µ2

N (11)824

= 1− e−

N2(p̄− 1
2 )2

[N2 +N(p̄− 1
2 )]2

[N2 +N(p̄− 1
2 )]2

N (12)825

= 1− e−
N2(p̄− 1

2 )2

N (13)826

= 1− e
−N

(∑N
i=1 pi
N

− 1
2

)2

. (14)827

Through approximating PMV by its lower bound828

in (14), we can see that the evaluation signal (rep-829

resented by PMV) is an increasing function in each830

worker’s capability pi and twice-differentiable.831

That is, PMV is a generalized linear function, which832

satisfies Assumption 3 in (Garcelon et al., 2022).833

Therefore, one can follow the proof of Theorem 1834

in (Garcelon et al., 2022) that the ϵ-greedy algo-835

rithm yields a sub-linear regret with order Õ(T 2/3).836

D Case Study of Annotation Errors837

Based on our statistical analysis of the Chinese OEI838

dataset, we find that 74.80% of annotations have839

different types of errors. And these annotation er- 840

rors could be decomposed to three basic error types, 841

namely Shifting, Expanding, and Shrinking (SES). 842

In our data augmentation algorithm, we reversely 843

used SES modifications and their combinations on 844

the ground truth annotations to generate annota- 845

tions with varying errors made by crowd workers. 846

In this section, we provide a detailed characteriza- 847

tion of human-made errors observed on annotated 848

data with real cases to better motivate these modifi- 849

cations. 850

Shifting Some crowd annotation spans are as 851

long as expert ones, but their positions are wrong. 852

Shifting simulates this type of error. As depicted 853

in Figure 6, both the expert span and the crowd 854

span are three words long and of negative polarity. 855

The difference is that the crowd span is shifted to 856

the left by 2 words compared with the expert span. 857

This type of error can be generated with Shifting 858

on the expert annotations. 859

如果你感到有些沮丧或失落，你不妨试试运动。

If you feel slightly depressed or lost, you could try sports.
Expert

Crowd 
Worker

如果你感到有些沮丧或失落，你不妨试试运动。

If you feel slightly depressed or lost, you could try sports.

Figure 6: A case in which the crowd worker annotates
a span with correct length and polarity but incorrect
position.

Expanding Expanding is used to generate longer 860

(than expert span) error spans. It might be intu- 861

itive that annotators barely make errors such as 862

expanding to a very long span. However, in the 863

case illustrated in Figure 7, the expert annotates 864

five short spans separated by commas, while the 865

crowd worker uses a very long span that covers the 866

whole sentence, which is obviously not accurate. 867

To simulate such human-made errors, we can ex- 868

pand an expert span to cover unnecessary words. 869

Statistically, 4.03% of annotation errors are very 870

long spans with more than 15 Chinese characters. 871

So we do not set an upper bound of span length in 872

Expanding. 873

Shrinking Shrinking is useful since crowd work- 874

ers often ignore some words when annotating. As 875

shown in Figure 8, the crowd worker failed to find 876

all words expressing positive opinions. 877

Sometimes crowd workers ignore a whole span 878

in expert annotations. This is why we set the lower 879
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良好的⾝体素质是⾼效的保障，是成功的保障，是⾼⽔准
⽣活的保障，是为社会多做贡献的保障，是⽣命的保障！

Good physical fitness is the guarantee of efficiency, of success, of 
a high standard of living, of contributing more to society, of life!

Expert

Crowd 
Worker

良好的⾝体素质是⾼效的保障，是成功的保障，是⾼⽔准
⽣活的保障，是为社会多做贡献的保障，是⽣命的保障！

Good physical fitness is the guarantee of efficiency, of success, of 
a high standard of living, of contributing more to society, of life!

Figure 7: A case in which the crowd worker uses a very
long span that covers the whole sentence.

我昨天在家⾥过得⾼效⽽又充实。

I had a productive and fruitful day yesterday at home.
Expert

Crowd 
Worker

我昨天在家⾥过得⾼效⽽又充实。

I had a productive and fruitful day yesterday at home.

Figure 8: A case in which the crowd worker does not
annotate all words with polarity.

bound of span length to zero in Shrinking, which880

means we can shrink a span into no span.881

These three types of errors may occur separately882

or combined in real crowd annotations. Such that883

an error could be both shifted and shrunk. This is884

why we use the combination of these three types885

of modifications to simulate human-made errors in886

our data augmentation algorithm.887

E A Running Example of Data888

Augmentation889

We here provide a running example to illustrate890

how an annotation for a certain worker on a cer-891

tain sentence is generated with our proposed aug-892

mentation method. Suppose we have an English893

sentence:894

Although he looked very depressed yes-895

terday, he has already become much896

more cheerful now.897

And an expert annotation:898

Although he looked [NEGATIVE: very899

depressed] yesterday, he has already be-900

come [POSITIVE: much more cheer-901

ful] now.902

If the crowd worker Sam has an annotation on903

this sentence in the original dataset, we use it di-904

rectly in the augmented dataset. Otherwise, we905

generate an annotation for Sam with our data aug-906

mentation method.907

When generating annotation for Sam, we follow908

the steps below:909

1. For each span in the expert annotation, we 910

apply the Shifting, Expanding, and Shrink- 911

ing (SES) modifications on it. After this step, 912

we have several lists of annotation, each list 913

contain annotations with only one modified 914

span: 915

• List 1, modifications of the first span, 916

containing N1 annotations: 917

– Although he looked [NEGATIVE: 918

very depressed] yesterday, he has al- 919

ready become much more cheerful 920

now. # Unmodified, span-level pro- 921

portional F1 = 1.0 922

– Although he looked very [NEGA- 923

TIVE: depressed yesterday], he has 924

already become much more cheerful 925

now. # Shifting, F1 = 0.5 926

– Although he looked very depressed 927

[NEGATIVE: yesterday ,] he has 928

already become much more cheerful 929

now. # Shifting, F1 = 0 930

... # Other Shifting modifications 931

– Although he [NEGATIVE: looked 932

very depressed] yesterday, he has 933

already become much more cheerful 934

now. # Expanding, F1 = 1.0 935

... # Other Expanding modifications 936

– Although he looked very [NEGA- 937

TIVE: depressed] yesterday, he has 938

already become much more cheerful 939

now. # Shrinking, F1 = 0.5 940

... # Other Shrinking modifications 941

• List 2, modifications of the second span, 942

containing N2 annotations: 943

– Although he looked very depressed 944

yesterday, he has already become 945

[POSITIVE: much more cheerful] 946

now. # Unmodified, span-level pro- 947

portional F1 = 1.0 948

– Although he looked very depressed 949

yesterday, he has already become 950

much [POSITIVE: more cheerful 951

now]. # Shifting, F1 = 0.6667 952

– Although he looked very depressed 953

yesterday, he has already become 954

much more [POSITIVE: cheerful 955

now .] # Shifting, F1 = 0.3334 956

... # Other Shifting modifications 957

– Although he looked very depressed 958

yesterday, he has already [POSI- 959
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TIVE: become much more cheer-960

ful] now. # Expanding, F1 = 1.0961

... # Other Expanding modifications962

– Although he looked very depressed963

yesterday, he has already become964

much [POSITIVE: more cheerful]965

now. # Shrinking, F1 = 0.6667966

... # Other Shrinking modifications967

2. We choose one annotation from each list, and968

combine them to generate an annotation with969

2 spans. This is done for all combinations970

of the annotations in the two lists. Note that971

if the two spans overlay with each other, we972

merge them into one span. After step 2, we973

have one list of annotations:974

Combined List, containing less than975

or equal to N1 ×N2 annotations:976

• Although he looked [NEG-977

ATIVE: very depressed]978

yesterday, he has already979

become [POSITIVE: much980

more cheerful] now. #981

span-level proportional F1 =982

1.0983

• Although he looked very [NEG-984

ATIVE: depressed yesterday]985

, he has already become [POS-986

ITIVE: much more cheerful]987

now. # span-level proportional988

F1 = 0.75989

• Although he looked very990

depressed [NEGATIVE:991

yesterday ,] he has already992

become [POSITIVE: much993

more cheerful] now. #994

span-level proportional F1 =995

0.5996

... # Other combinations with F1997

ranging from 0 to 1.0998

3. We choose one annotation from the combined999

list as Sam’s annotation on this sentence, ac-1000

cording to the following procedure:1001

(a) Sam has an average F1 score Fori = 0.571002

on the original (real) dataset.1003

(b) We have already got 10 annotations for1004

Sam in the augmented dataset, which has1005

an average F1 score Faug_10 = 0.54.1006

(c) We are choosing annotation on the 11th1007

sentence for Sam.1008

(d) We firstly select two annotations with the 1009

closest F1 scores to Fori from the com- 1010

bined list, one higher than Fori, and one 1011

lower than Fori, as candidate annotations. 1012

In this case, the two annotations could 1013

have F1 scores of 0.58 and 0.52 respec- 1014

tively. 1015

(e) If Faug_10 > Fori, we choose the anno- 1016

tation with the lower F1 score (0.52) 1017

as Sam’s annotation on this sentence. 1018

Otherwise, we choose the annotation 1019

with the higher F1 score (0.58). This 1020

is to ensure that the average F1 score 1021

of Sam’s annotations in the whole aug- 1022

mented dataset, Faug, is as close to Fori 1023

as possible, which reflects Sam’s reliabil- 1024

ity (i.e., performance). In this case, we 1025

choose the annotation with F1 score of 1026

0.58. 1027

By generating the missing annotations in the 1028

original dataset with the method above, we could 1029

have an augmented dataset. 1030

F Explanation of Worker Selection on 1031

Building New Datasets 1032

When creating new datasets, we expect to have a 1033

few (e.g. five) experts and a relatively large group 1034

of (e.g. a hundred) crowd workers available for 1035

annotation. 1036

At each time step, we select a group of (e.g. 20) 1037

crowd workers, and request them to annotate a few 1038

(e.g. 5) sentences, resulting in 4 crowd annotations 1039

on each sentence. Now we calculate the agreement 1040

of the annotations on each sentence, if the agree- 1041

ment is high (e.g. greater than 0.4), we use the MV 1042

aggregation of the crowd annotations as the ground 1043

truth, and calculate the F1 scores of each worker’s 1044

annotation. Otherwise, we ask an expert to give 1045

an annotation on the sentence, and calculate the 1046

F1 score of each worker on the expert annotation. 1047

Note that the expert annotates only when the agree- 1048

ment is low. After this time step, we have crowd 1049

annotations on the sentences and their F-scores, 1050

which can be used to update the average score of 1051

each worker. This procedure is repeated until we 1052

have enough annotations on every sentence. 1053

In other words, the Expert+MV approach works 1054

with both crowd workers and experts available (e.g. 1055

on an online system) when building datasets. The 1056

Expert+MV is an iterative approach in which the 1057

expert annotates when needed. And it saves the 1058
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Method Token-level Span-level Exact Span-level Prop.

P R F1 P R F1 P R F1

Oracle 62.88 68.62 64.80 54.48 51.97 53.07 72.79 64.07 68.15
Random 58.49 57.30 57.42 43.99 35.50 39.18 69.01 52.36 59.55

ϵ-G (Exp.) 61.91 64.58 62.61 51.72 46.37 48.76 72.28 60.25 65.72
ϵ-G (MV) 60.87 63.52 61.55 48.72 44.66 46.37 70.15 58.94 64.05
ϵ-G (Exp.+MV) 61.76 64.46 62.47 49.14 45.35 46.96 71.21 59.92 65.08

TS (Exp.) 62.66 64.91 63.20 49.76 42.34 45.69 72.15 60.20 65.63
TS (MV) 59.82 61.90 60.25 44.81 40.71 42.36 67.72 56.05 61.34
TS (Exp.+MV) 61.66 64.03 62.23 47.20 42.36 44.49 70.66 59.07 64.35

CUCB (Exp.) 63.02 63.75 62.93 52.24 45.51 48.56 73.05 59.53 65.60
CUCB (MV) 61.94 62.09 61.55 49.57 44.39 46.66 71.22 57.59 63.68
CUCB (Exp.+MV) 62.83 63.62 62.75 51.31 45.60 48.16 72.48 59.33 65.25

Table 6: Detailed P, R, and F1 scores of all methods on the Chinese OEI dataset. All our algorithms perform
significantly better than the Random (i.e., naive crowdsourcing) baseline.

cost of expert annotations by using the MV aggrega-1059

tion of crowd annotations as the ground truth when1060

possible. Our experiment results show that the Ex-1061

pert+MV approach can save 47.19% of the cost of1062

expert annotations on the Chinese OEI dataset, and1063

65.97% on the CoNLL’03 dataset respectively.1064

However, even in the case that no expert is avail-1065

able, which means that Expert+MV falls back to1066

MV, we can still observe that the MV approach out-1067

performs the Random baseline (which is an equiva-1068

lent of normal crowdsourcing procedure which as-1069

signs an equal amount of sentences to each worker1070

randomly) by a large gap. In this case, the MV1071

approach saves 100% of expert annotation cost, but1072

still produced crowd annotation with good qual-1073

ity. Please refer to Table 3 and Table 6 for more1074

detailed results.1075
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Worker
ID

Ori.
F1

Rnd.
Gen.
F1

SES
Only

F1

SES
+Alg.2

F1

Worker
ID

Ori.
F1

Rnd.
Gen.
F1

SES
Only

F1

SES
+Alg.2

F1

25 62.90 60.07 69.59 62.89 37 37.15 96.10 26.79 37.16
32 60.87 41.37 68.79 60.87 13 36.19 31.62 25.14 36.20
42 53.88 4.37 66.57 53.88 20 36.11 71.44 25.02 36.12
5 52.07 50.74 60.76 52.06 64 35.97 65.66 25.39 35.97
55 50.70 30.24 61.13 50.70 63 35.22 75.40 24.73 35.22
2 50.53 91.99 60.92 50.53 6 35.15 65.74 25.00 35.16
52 50.08 41.93 60.91 50.08 10 34.63 51.28 25.08 34.64
17 49.82 43.73 35.82 49.82 66 33.75 60.98 24.99 33.75
57 49.25 13.17 35.59 49.25 53 32.90 27.51 24.78 32.89
11 49.04 53.71 35.19 49.03 4 32.72 8.40 24.77 32.72
26 48.89 5.17 35.59 48.82 21 32.19 73.47 24.78 32.19
36 48.71 15.53 35.27 48.70 62 32.16 48.71 24.89 32.16
46 48.67 44.84 35.19 48.67 1 32.10 34.42 24.96 32.10
29 48.60 95.39 35.21 48.60 41 31.94 77.55 24.88 31.93
35 47.07 23.64 35.34 47.07 51 31.78 68.07 24.85 31.78
49 46.80 60.30 35.27 46.80 31 31.61 29.44 24.59 31.61
54 45.63 18.74 34.45 45.64 8 31.05 28.55 24.76 31.05
14 45.13 60.99 34.54 45.13 67 30.91 95.51 24.22 30.91
43 44.93 34.91 33.72 44.93 58 30.70 21.64 23.96 30.70
7 44.37 23.89 33.50 44.37 65 30.61 4.51 24.17 30.60
59 44.36 72.37 33.61 44.37 38 30.47 4.82 24.11 30.47
23 43.38 4.85 33.58 43.38 28 29.86 2.63 24.00 29.86
56 43.37 41.96 33.31 43.37 45 29.38 36.13 24.15 29.38
0 41.60 66.81 28.19 41.61 30 28.70 61.16 21.88 28.71
18 41.40 31.53 28.56 41.40 15 25.73 38.92 21.40 25.73
16 41.31 57.13 28.03 41.31 19 24.69 4.39 21.31 24.70
22 41.05 85.83 28.21 41.06 44 23.42 7.15 21.08 23.42
47 40.78 82.33 27.91 40.78 9 22.88 96.22 21.22 22.89
61 40.22 12.20 28.44 40.22 33 22.36 29.89 19.50 22.36
40 40.01 84.98 28.38 40.02 39 20.69 57.73 19.26 20.69
50 39.35 56.04 28.64 39.35 69 20.39 63.02 19.26 20.40
27 38.77 34.07 27.87 38.77 3 17.12 28.70 18.66 17.13
48 38.35 23.77 27.57 38.35 24 16.96 42.73 18.68 16.98
34 38.29 5.69 28.08 38.30 68 14.53 13.63 7.69 14.53
12 37.96 85.14 27.44 37.96 60 13.66 22.69 8.15 13.66

Table 7: Comparisons between different data augmentation methods on the span-level exact F1 score of every
crowd worker. Ori. stands for the original score in real datasets before any augmentation. Rnd. Gen. is a
naive augmentation method with random generated annotations. SES Only indicates the shifting, shrinking, and
expanding method we proposed. SES + Alg.2 means SES with Algorithm 2 which is our final method.
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