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Abstract

This paper introduces a novel crowdsourcing
worker selection algorithm, enhancing annota-
tion quality and reducing costs. Unlike previ-
ous studies targeting simpler tasks, this study
contends with the complexities of label inter-
dependencies in sequence labeling. The pro-
posed algorithm utilizes a Combinatorial Multi-
Armed Bandit (CMAB) approach for worker
selection, and a cost-effective human feedback
mechanism. The challenge of dealing with im-
balanced and small-scale datasets, which hin-
ders offline simulation of worker selection, is
tackled using an innovative data augmentation
method termed shifting, expanding, and shrink-
ing (SES). Rigorous testing on CoNLL 2003
NER and Chinese OEI datasets showcased the
algorithm’s efficiency, with an increase in Fy
score up to 100.04% of the expert-only base-
line, alongside cost savings up to 65.97%. The
paper also encompasses a dataset-independent
test emulating annotation evaluation through
a Bernoulli distribution, which still led to an
impressive 97.56% F; score of the expert base-
line and 59.88% cost savings. Furthermore,
our approach can be seamlessly integrated into
Reinforcement Learning from Human Feed-
back (RLHF) systems, offering a cost-effective
solution for obtaining human feedback. This
research not only addresses the challenges in
worker selection for intricate NLP tasks but
also paves the way for more economical and
efficient human-in-the-loop systems.

1 Introduction

Crowdsourcing, the practice of obtaining labeled
data from a multitude of contributors (Howe, 2006),
has emerged as a pivotal tool in data collection for
deep learning models. It offers a cost-effective
alternative to expert labeling, making it espe-
cially valuable in today’s data-driven research land-
scape (Nowak and Riiger, 2010). While its applica-
tion spans various domains, from image labeling to
text classification (Venanzi et al., 2014), this paper
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Figure 1: Our online worker selection framework for
crowdsourcing.

narrows its focus on span-based sequence labeling
tasks, which assign categorical labels to individual
words within a sentence (Erdogan, 2010). Notable
examples of such tasks include named entity recog-
nition (NER) and opinion expression identification
(OEI) (Collobert et al., 2011).

The inherent complexity of sequence labeling
lies in the interdependencies of labels within a se-
quence. Unlike simpler tasks where labels are in-
dependent, sequence labeling requires contextual
understanding, making it inherently more challeng-
ing (Rodrigues et al., 2014). Consequently, annota-
tions from crowd workers, who might not possess
the expertise of trained annotators, often exhibit
reduced accuracy. This underscores the imperative
to enhance annotation quality, a challenge that this
study addresses.

A significant motivation driving this research
is the potential application of a mixed feedback
mechanism in Reinforcement Learning from Hu-
man Feedback (RLHF) systems. RLHF systems tra-
ditionally rely heavily on expert feedback, which,
while accurate, is expensive and often not scal-
able (Casper et al., 2023). By integrating feedback



from both experts and aggregated crowd workers,
we can achieve a balance between accuracy and
cost. This hybrid approach not only maintains the
quality of feedback but also significantly reduces
the financial burden, making RLHF systems more
accessible and scalable.

Historically, research in this domain has con-
centrated on annotation aggregation (Rodrigues
et al., 2014; Nguyen et al., 2017; Simpson and
Gurevych, 2019), employing methods post data
collection. However, given the varied skill levels
among crowd workers, a proactive approach that
identifies and leverages the most accurate workers
during the data collection phase can significantly
enhance data quality. Termed as online worker se-
lection, this strategy involves iterative allocation
of a set budget across a pool of workers to opti-
mize annotation quality (Chen et al., 2013). This
dynamic process grapples with the uncertainty of
worker skill levels, necessitating a balance between
exploring new workers and exploiting currently
identified proficient ones.

In the context of sequence labeling, traditional
bandit-based algorithms (Rangi and Franceschetti,
2018) fall short due to the intricacies introduced
by label dependencies. These intricacies manifest
challenges in both annotation evaluation and aggre-
gation. To address the evaluation challenge, this
study employs the span-level F; score (Derczynski,
2016), a widely recognized metric, as the feedback
signal in the worker selection process. The core
challenge here is the accurate computation of the
F; score in the absence of expert annotations as a
reference. The objective is to minimize reliance on
costly expert annotations. For aggregation, while
the majority voting method is employed for its sim-
plicity and effectiveness, its reliability can be com-
promised when faced with divergent annotations
from different annotators.

The overarching goal of this research is to maxi-
mize the quality of annotations while minimizing
costs. This involves strategically replacing expert
ground truth labels with aggregated crowd-sourced
labels, ensuring that the overall F; score remains
high. Such replacements are made only when
there’s a high level of agreement among crowd
workers, indicating that expert evaluation might be
redundant for that particular sequence. The pro-
posed worker selection algorithm, as illustrated in
Figure 1, adopts an iterative approach: tasks are as-
signed to a subset of workers, their annotations are

evaluated, and the resulting scores inform worker
selection in subsequent rounds.

However, real-world datasets present chal-
lenges due to their imbalanced nature and limited
scale (Rodrigues et al., 2014; Zhang et al., 2022).
Addressing these challenges, this paper introduces
a data augmentation method tailored for span-based
sequence labeling datasets. This method, designed
to emulate potential human annotation errors, en-
sures that aggregated annotations remain meaning-
ful. Three specific modifications, namely shift-
ing, expanding, and shrinking, are applied to ex-
pert annotations, generating a spectrum of potential
human annotations. This augmentation addresses
dataset limitations, facilitating the offline evalua-
tion of worker selection algorithms.

In summary, this paper’s contributions are mani-
fold':

* It presents the exploration of worker selection
for span-based sequence labeling tasks, recog-
nizing the unique challenges they present.

* It employs the span-level F; score, evaluated
by both experts and crowd workers, as a feed-
back mechanism, ensuring accurate worker
selection.

* It introduces a data augmentation technique
to counteract the limitations of real datasets,
enabling effective offline simulations.

* Through rigorous experimentation, it demon-
strates the efficacy of the proposed method,
achieving impressive F; scores while signifi-
cantly reducing expert annotation costs.

To provide a comprehensive understanding of
the background of this work, we briefly introduce
the related work in Appendix A.

2 Methodology

Consider an online crowdsourcing system that can
reach out to a group of crowd workers W =
{wi,wa,...,wn}. The workers are required to
provide sequential annotations to a set of sentences
S = {s1,s2,...,Sm}. More specifically, a worker
annotates a sentence by assigning a tag from a finite
possible tag set C (e.g., a set of BIO tags (Ramshaw
and Marcus, 1995)) to each word. An annotation
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on sentence s; by worker w; is a tag sequence
a;; = aiaz...a...a; where a € C and [ de-
notes the length of the sentence. We assume that
every sentence is annotated by K different workers
independently. We define a task as the process of
annotating one entire sentence, and hence there are
in total K M tasks. We seek to acquire an anno-
tated dataset in which the average F; score of a;;
is maximized. If we know which workers give the
best annotations a priori, we can simply ask these
workers to finish all the tasks. However, such in-
formation is unavailable in practice, and we aim
to design an algorithm that learns the best workers
throughout the crowdsourcing process.

In the beginning, we let each crowd worker an-
notate one sentence. We also ask the experts(e.g.,
well-trained linguists assumed to give the most pre-
cise annotations) to give one annotation for each
of these sentences. Then we calculate the Fq score
of the annotation with the expert annotations as
ground truth. We use these scores as the initial F;
scores of workers. At each time step ¢ after ini-
tialization (as illustrated in Figure 1), we select a
subset of workers W; C W to do annotation, based
on criteria discussed in Section 2.2. The size of
the subset W} should be neither too big nor too
small (e.g., 0.3N). We randomly choose a subset
of sentences S; C .S, assign each s; € S; to K dif-
ferent workers in W3, and collect their annotations
A; = {ail, a;2,..., aiK},Vi S {1, 2,..., ’St|}
To evaluate workers’ F; scores on A;, one can use
the expert annotations as the ground truth, which,
however, can be very expensive (Iren and Bilgen,
2014). To cut down this cost, we reduce the usage
of expert evaluations whenever crowd annotations
are similar enough. We use the Fleiss’ Kappa score
K to measure this similarity. The x score (x < 1) is
a statistical measure of inter-annotator agreement.
A larger value of « indicates stronger agreement
between the workers. « score exceeding an em-
pirical threshold indicates that the crowd workers
reach a consensus on s;. In that case, we aggregate
A; with MV and use the aggregated annotation as
the ground truth of sentence s;. If the workers do
not reach a consensus, we resort to expert annota-
tions as ground truth. Next, we can calculate the Fy
scores of each a;; € A; and update the F; scores
of the selected workers.

2.1 Problem Formulation

At time ¢, we obtain K crowd annotations A; on
each sentence s; € S;. We denote all annotations
collected on S; by A; = {A1, As,..., A}
To simplify our expression, we use FIpr(aij) to
represent the F; score of a;; using expert anno-
tation as ground truth, and F}V(a;;) to represent
the Fy score of a;; using the MV aggregation of
A; € A, as ground truth. On collected annotation
sets, F];:Xp(Ai) denotes the average F; score of all
a;j € A;. Similarly, FfXP(At) denotes the average
F1 score of all A; € A;. As Flep(At) reflects the
true accuracy of crowd annotations, our objective
is to maximize the average expectation, or equiva-
lently the cumulative expectation of F;*(\A;) over
time 7'. We formulate this problem as a CMAB
problem below:

T

max Y E[F(A)] (1)
t=1

st. WycW,te{l,2,...,T} 2)

Since we have no information about workers’
average F; scores, we need to balance exploring
potentially better workers and exploiting the cur-
rent best workers during worker selection. This
tradeoff is extensively discussed in bandit litera-
ture where arms with unknown distributions form
super-arms. The arms are associated with a set of
random variables X ; ; with bounded support on [0,
1]. Variable X ; indicates the random outcome of
arm j in time step ¢. The set of random variables
{Xj+|t > 1} associated with arm j are indepen-
dent and identically distributed according to certain
unknown distribution D; with unknown expecta-
tion fi;. The platform plays a super-arm at each
time step, and the reward of arms in it is revealed.
These rewards are used as a metric for selecting
the super-arm in future time steps. After enough
time steps, the platform will be able to identify the
best super-arm and keep playing it to maximize the
overall reward. Similar to bandit terminologies, we
call each worker w; € W an arm and the worker
subset Wy C W a super-arm selected at ¢.

2.2  Worker Selection Algorithm

Specifically, there are three methods to calculate
the reward of worker w; at time step ¢ as follows.

Expert Only This is a benchmark approach
where the F; score is calculated using only expert



annotations as ground truth. This method provides
intuitively the most accurate F; scores. The reward
of worker w; is defined as:

P () = B (ag;(t)) 3)

The expert-only method requires an expert annota-
tion on every sentence, which is costly and usually
not practical.

Majority Voting (MV) To reduce expert anno-
tations, we aggregate A; for each sentence s;, and
use the aggregated annotation via MV as ground
truth, i.e.,

wi™ (t) = FYY(ai; (1)) )

Expert+MV When workers give very different
annotations on the same sentence (usually when
the task is difficult), one can be uncertain about
the voted (and possibly noisy) ground truth. In this
case, we want to resort to both crowd workers and
experts. The choice is based on the well-known
Fleiss’ Kappa score x that can quantitatively eval-
uate the agreement of crowd workers. For each
sentence s;, if k(A;) is greater than a preset em-
pirical threshold value 7, the reward of annotating
workers is F\V (a;;(t)). Otherwise, the reward is
F?Xp(aij (t)). In this way, MV is only used when
the crowd workers can reach an agreement. Thus
the reward is always calculated based on reliable
ground truth. We summarize the reward of worker
w; as:

FY¥(ai; (1)),
Exp+MV _ 1 J
g W {F]{:Xp (aij(t)),

The e-Greedy, Thompson Sampling, and Com-
binatorial Upper Confidence Bound (CUCB) are
three effective algorithms to solve the CMAB
problem. For each worker w; € W, both algo-
rithms maintain a variable fi;(t) as the average
reward (i.e., the average F score) of worker w; at
time step ¢t. CUCB additionally maintains a vari-
able T}j(t) as the total number of sentences worker
w; has annotated till time step ¢. Details of the
worker selection algorithm with our Exp.+MYV met-
ric are shown in Algorithm 1. As for the selection
criterion mentioned in the algorithm, e-Greedy uti-
lize a hyper-parameter € which refers to the prob-
ability of exploring random workers. Thus 1 — €
refers to the probability of exploiting the best work-

Measure Chinese OEI CoNLL 2003
# of Sentence 8047 4580
# of Worker 70 47
Span Length 5.05 1.51
Max 658 1626
Min 153 48
Range 505 1578
Mean 368 350
Median 332.5 230
SD 135.23 328.01
Variance 18286.52 107589.34
Ccv 36.71% 93.57%

Table 1: Statistics of the original datasets. Span lengths
are averages. The terms SD and CV represent Standard
Deviation and Coefficient of Variation respectively. The
metrics Max, Min, Range, Mean, Median, SD, Variance,
and CV pertain to the number of sentences annotated by
each worker, indicating dataset imbalances.

ers till the current time step. Formally, W, is se-
lected with a random variable p € [0, 1] as below:

random W; C W,

argmax g s
WiCW wJ‘GWt

p<e

W, = p>e ©

Thompson Sampling samples from gaussian dis-
tributions of workers’ rewards at each time step ¢,
and select workers which could maximize the total
reward. CUCB handles the tradeoff by adding an
item considering T and ¢ to fi; like:

_ 3lnt
Wy = argmax > | i+ [ 5 ()
WiCW S, J

This makes workers with less annotations more
likely to be selected as the algorithm proceeds. We
provide a brief analysis in Appendix C. We explain
on the application of our worker selection algo-
rithms when building new datasets in Appendix F

2.3 Data Augmentation Method

We propose the data augmentation method to fa-
cilitate the offline simulation of the crowdsourcing
process, thus evaluating the worker selection algo-
rithms. During offline simulation, when the worker
selection strategy selects a certain worker to anno-
tate a certain sentence, we can use the annotation
in the original dataset if it exists. But if the selected
worker did not annotate the sentence in the original
dataset, we need to generate an annotation for the



Shifting Expanding Shrinking
Expert A R Y H G R R 2R T i R A R R R R i i B Y A R BH R R i i Y
P Today’s sunshine is Today’s sunshine is Today’s sunshine is
Modified | 4K B R ik W ) AR B R TR T U A R B TR I
by lword i Today’s sunshinewarm Today’s sunshine Today’s sunshine is gentle and
Modified | 4 R BB R SR T 5 B2 A 4 R BIBEDE R SR 1T i R A R BB R 2R T i
by 2 words Today’s and warm Today’s|sunshine is gentle and warm‘ Today’s sunshine is gentle and
Modified | A REIBDERERFTIREN A KRB R FE TR A A R B 8 R T U
by 3 words | [Today’s sunshine is|gentle and warm ‘Today’s sunshine is gentle and Warm‘ Today’s sunshine is gentle and warm

Figure 2: An example of the three methods to generate annotations. Chinese characters and corresponding English
words with red backgrounds indicate annotation spans. Transliteration of the Chinese sentence is jin tian de ydng

guang shi qing rou ér wén nudn de.

sentence. And the generated annotation should be
in the same quality (depicted in F-score) as the real
annotations by the worker. The generated annota-
tion will be then used with the other annotations on
the same sentence for majority voting.

Generating the missing annotations for each
worker w; is a great challenge when we expect
the generated annotations to reflect the factual reli-
ability of w;. In other words, we expect the average
Fy score of each w; € W to remain constant before
and after augmenting the dataset with generated an-
notations. This is critical and difficult since real
datasets are imbalanced and of small scale that can-
not well support worker selection algorithms.

As there lack previous work on generating miss-
ing crowd annotations for span-based sequence
labeling, we start with several naive algorithms
such as randomly generating label sequences as
annotations, and mixing expert annotations with
completely incorrect (e.g., empty) annotations. But
these algorithms either cannot produce annotations
with expected F; scores, or generate confusing an-
notations which make later aggregation meaning-
less. This motivates us to design a data augmenta-
tion method specialized for span-based sequence
labeling datasets.

Through our statistical analysis and observation
on the real datasets, we characterized the 3 most
common annotation error patterns. Due to space
limitation, we defer the detailed analysis to Ap-
pendix D. Based on these analysis results, we pro-
pose a data augmentation method as follows: For
each sentence s; € S, we modify the annotation
span based on the expert annotation. We use three
types of modifications to generate new annotation
spans with different F; scores as illustrated in Fig-
ure 2. The goal of these modifications is to simulate
varying annotation errors made by human annota-

tors.

Shifting We move both the left and the right bor-
der of the annotation span simultaneously in the
same direction by one word per step.

Expanding We set one of the span borders fixed,
and move the other border by one word per step to
increase the length of the annotation span.

Shrinking We set one of the span borders fixed,
and move the other border by one word per step to
decrease the length of the annotation span.

We perform these modifications on a span multi-
ple times, generating new annotation spans, until
(1)the modified span does not overlap with the orig-
inal one, (2)one of the span borders reaches an end
of sentence or another span in the same sentence,
or (3) the span length becomes 0.

For each sentence s; € .5, s; may contain multi-
ple annotation spans. We perform modifications on
each span in s;, and find all combinations of spans
to form possible sentence annotations. With these
methods, we can imitate crowd annotations with
different kinds of errors in practice. Next, for each
worker w; € Wy, if w; has no annotation on s;
in the original dataset, we select one from all the
expert and generated annotations on s;.

We first calculate ; as the average F; score of
all annotations by w; on the original dataset, and
then follow the detailed steps described in Algo-
rithm 2 to do the selection. We aim to keep the
overall Fq score of w; unchanged.

To better illustrate the procedure of the aug-
mentation, we provide a running example in Ap-
pendix E.



Worker Rnd. SES SES
D Gen. Only +Alg.2
|AF | |AF | |AF |
25 2.83 6.69 0.01
52 8.15 10.83 0.00
46 3.83 13.48 0.00
43 10.02 11.21 0.00
18 9.87 12.84 0.00
50 16.69 10.71 0.00
12 47.18 10.52 0.00
Avg. 14.08 10.90 0.0014

Table 2: Comparisons between different data augmenta-
tion methods on the error of span-level exact F; score
of every crowd worker. The error |AF;| is calculated
as the absolute difference between each worker’s Fy
score after augmentation and his real F; score. Rnd.
Gen. is a naive augmentation method with random gen-
erated annotations. SES Only indicates the shifting,
shrinking, and expanding method we proposed. SES +
Alg.2 means SES with Algorithm 2 which is our optimal
method.

3 Experiments

3.1 Original Datasets

We compare our CMAB-based algorithms to sev-
eral widely adopted baselines on two span-based
sequence labeling datasets.

CoNLL 2003 The CoNLL 2003 English named-
entity recognition dataset (Tjong Kim Sang and
De Meulder, 2003) is a collection of news article
from Reuters Corpus (Lewis et al., 2004). The
dataset contains only expert annotations for four
named entity categories (PER, LOC, ORG, MISC).
Rodrigues et al. (2014) collected crowd annotations
on 400 articles from the original dataset.

Chinese OEI The Chinese OEI dataset (Zhang
et al., 2022) consists of sentences on the topic of
COVID-19 collected from Sina Weibo?, in which
the task is to mark the spans of opinion expressions.
The Chinese OEI dataset contains expert and crowd
labels for two opinion expression categories (POS,
NEG). Detailed statistics are shown in Table 1.

3.2 Data Augmentation

We augment both datasets with the method pro-
posed in Section 2.3. According to Table 1, the
most hard-working annotator in the OEI dataset

2https://english.sina.com/weibo/
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Figure 3: Cumulative regrets w.r.t time steps of all dif-
ferent worker selection methods.

provided annotations on 658 sentences, while the
least one annotated only 153 sentences. On aver-
age, each crowd worker annotated 368 out of 8047
sentences in the Chinese OEI dataset. For the of-
fline simulation of the worker selection process, we
want every worker to annotate all 8047 sentences.
Therefore we need to generate the missing 8047 -
368 = 7679 annotations for every worker, on aver-
age. This also applies similarly to the CoNLL 2003
dataset.

Through our method, the average F; score of
each w € W remains nearly unchanged before
and after augmenting the original dataset with gen-
erated annotations>. Due to space limitation, we
present comparisons of different augmentation al-
gorithms with 10 sampled workers in Table 2. The
complete results are deferred to Table 7 in the ap-
pendix. These results show that our SES + Alg.2
method clearly outperforms the other baselines,
producing almost the same F; scores for each
worker as their original ones.

The augmentation procedure takes about 2 hours on a
computer with a 2.9 GHz Quad-Core Intel Core i7 CPU.
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Token-level

Span-level Exact

Span-level Prop.

Method

| P R F, | P R F, | P R F;
Oracle 65.69 8399 70.00 | 78.15 7223 7496 | 87.97 80.03 83.82
Random 5595 6642 57.50 | 6442 55.64 59.40 | 7570 62.61 68.54
e-G (Exp.) 64.94 8048 68.56 | 7524 68.16 7134 | 8585 76.79 81.06
-G (MV) 64.44 8022 67.98 | 74.69 67.59 70.77 | 85.67 76.09 80.59
e-G (Exp+MV) | 64.68 80.94 68.41 | 7508 6837 71.40 | 8593 76.62 81.01
TS (Exp.) 6494 79.88 68.51 | 75.64 6831 7157 |85.02 7571 80.09
TS (MV) 6447 79.19 6791 | 7497 67.54 70.80 | 84.14 74.21 78.86
TS (Exp+MV) 6420 79.09 67.62 | 75.27 67.83 7112 | 8477 7539 79.81
CUCB (Exp.) 65.65 80.34 69.24 | 7594 69.12 72.20 | 86.17 77.22 81.45
CUCB (MV) 65.39 80.00 6891 | 75.95 68.90 72.08 | 86.13 76.67 81.12
CUCB (Exp+MV) | 6533 81.12 69.11 | 7570 69.30 72.21 | 86.17 77.28 81.48

Table 3: Detailed P, R, and F; scores of all methods on the CoNLL 2003 dataset. All our algorithms perform
significantly better than the Random (i.e., naive crowdsourcing) baseline.

3.3 Worker Selection

Baselines We test the Exp.+MYV method with 4
baselines: Oracle, Random, Exp., and MV. Or-
acle always selects the empirical best super-arm
WPt at every time step . Random selects a dif-
ferent set of workers randomly at every time step
t, which is equivalent to usual crowdsourcing pro-
cedure without worker selection. Exp., MV, and
Exp.+MYV are CMAB-based algorithms introduced
in Section 2.2. The CMAB-based algorithms are
tested with CUCB, Thompson Sampling and e-
Greedy as the worker selection criterion respec-
tively.

Regret as a Metric We evaluate our worker se-
lection algorithms using cumulative regret, a metric
indicating the performance deviation from the ora-
cle’s selection defined as:

RT)=> | > m— >, m)

t=1 ’w]'EWOPt wr €Wy

®)

In our experiments, we request 10 annotations per
sentence, allowing CMAB-based algorithms to con-
verge, and select 20 workers at each time step ¢. On
the Chinese OEI dataset, setting the kappa thresh-
old 7 to 0.4 in Exp.+MYV results in a 57.02% reduc-
tion in expert annotation cost, while a 0.65 thresh-
old on the CoNLL 2003 dataset leads to a 43.83%
cost reduction.

Results show Random consistently underper-
forms across datasets. On the Chinese OEI dataset,

Exp.+MYV surpasses MV, albeit with higher re-
gret than Exp., justified by the substantial cost
savings. On the CoNLL 2003 dataset, Exp.+MV
even outperforms Exp., suggesting crowd workers
can provide valuable input for simpler tasks like
NER. Overall, algorithms employing the CUCB
criterion demonstrate superior performance, with
CUCB (Exp.+MYV) excelling in balancing cumula-
tive regret and expert cost.

Effect of 7 on F; and cost Next, we discuss how
different kappa threshold values 7 affect the aver-
age F; score of the produced annotation dataset.
We test 7 € [0,1] with a step of 0.05. In real
datasets like CoNLL 2003 and Chinese OEI, the
number of annotations per sentence is often quite
small. To better fit the practical situations, we ask
for 4 annotations on each sentence in the follow-
ing experiments. Other settings remain unchanged.
Since CUCB performs better than Thompson Sam-
pling and e-Greedy on both datasets, we display
only the results from CUCB in later experiments.

On the Chinese OEI dataset, as illustrated in
Figure 4, F; increases sharply with 7 € [0,0.4].
When 7 = 0.4, Exp.+MYV achieves 99.47% F;
score of Exp., and saves 47.19% of the expert cost.
The F; score goes up slowly until 7 reaches 0.8.
When 7 = 0.8, the F; score of Exp.+MYV becomes
exactly the same as the one of Exp., and Exp.+MV
still saves 6.6% of the expert cost.

The results on the CoNLL 2003 dataset are
shown in Figure 5. Similarly, the F; score of



Exp+MV
—— MY
-—- Exp

Expert Usage (%)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Kappa Threshold Kappa Threshold

(a) Fy score w.r.t 7 (b) Expert usage w.r.t 7
Figure 4: F; scores of the produced annotations and us-
age of expert for annotation evaluations w.r.t the kappa
threshold 7 of the Exp.+MYV method on the Chinese
OEI dataset.
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Figure 5: F; scores of the produced annotations and us-
age of expert for annotation evaluations w.r.t the kappa
threshold 7 of the Exp.+MYV method on the CoNLL
2003 dataset.

the produced annotation dataset grows fast as 7 €
[0,0.45]. When 7 = 0.45, the Exp.+MYV method
already produce an annotation dataset with its Fy
reaching 99.86% of Exp.. At this point, Exp.+MV
saves 88.57% of the expert cost. When 7 = 0.65,
Exp.+MYV outperforms Exp. with a 100.04% F;
score and a 65.97% reduction in expert usage.

Our CUCB (Exp.+MYV) worker selection algo-
rithm eliminates the need for expert evaluation on
every sentence. Instead, we harness crowd intel-
ligence via our kappa-thresholded MV, producing
datasets of comparable or even superior quality to
those relying solely on expert evaluations.

Extended F; Metrics All of the F; scores in the
previous experiments are span-level proportional
scores calculated by the proportion of the overlap
referring to the expert annotation (Zhang et al.,
2022). To provide additional comparisons between
different methods, we also invoke token-level and
span-level exact P, R, F; scores as supporting met-
rics. We run the whole process from data aug-
mentation to worker selection with all 3 metrics
separately. The kappa threshold 7 in Exp.+MYV is
set to 0.4 on the Chinese OEI dataset and 0.65 on

the CoNLL 2003 dataset. Detailed scores are listed
in Table 3 and 6. The results show that Exp.+MV
achieves scores as good as Exp. and much better
than MV, which validates previous experiments
and shows our worker selection methods are robust
to different metrics.

Feedback Simulator We also test our worker
selection methods with a feedback simulator.
The simulator generates numerical feedback from
Bernoulli distribution in annotation evaluations.
This is to eliminate the varying level of difficulty
in different tasks and evaluate our worker selection
algorithms under more stable settings. Our algo-
rithm achieves good results on the simulator. We
put the definitions and results in Appendix B.

Effect on ML Models To further show the effect
of our worker selection algorithm on the perfor-
mance of machine learning models, we have run
experiments with several widely-accepted models
and provide the results in Table 5. We observe a
consistent increment of F1 score on the ML models,
with our bandit-based worker selection algorithm.
This validates that our worker selection algorithm
may help improve the performance of ML models
while saving budget on data crowdsourcing.

4 Conclusion

In this study, we introduced a CMAB-based worker
selection strategy tailored for span-based sequence
labeling tasks, leveraging the span-level F; with
Exp.+MYV as a feedback mechanism. To address
the challenges posed by unbalanced and limited
real datasets, we innovated a data augmentation
method. This technique not only facilitates offline
simulation but also mirrors the genuine annotation
behaviors of workers closely.

Our empirical evaluations underscore the effi-
cacy of the proposed method. On the Chinese
OEI dataset, our approach achieved an impres-
sive 99.47% F; score, translating to a substan-
tial 47.19% reduction in expert costs. Similarly,
on the CoNLL 2003 dataset, we observed a re-
markable 100.04% F; score, with savings of up
to 65.97% in expert costs, both benchmarks set
against expert-evaluation-only baselines. Further-
more, our method demonstrated its robustness with
a 94.86% F; score and a 65.97% reduction in ex-
pert costs on a data-free simulator. Our approach
also boosts ML model performance, optimizing
both accuracy and cost.



Limitations

In this paper, we provide theoretical analysis and
offline simulation results of our worker selection
algorithm. These results show that our algorithm
performs well. But due to the budget limitation,
we are unable to apply our algorithm on real online
crowdsourcing systems and test it with real-time
annotation tasks. Future work could explore ex-
tending our worker selection strategy to other do-
mains and tasks and in online environment, further
solidifying its role as a versatile and cost-effective
tool in the realm of crowdsourcing and beyond.
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A Related Work

Many studies (Rodrigues et al., 2014; Rodrigues
and Pereira, 2018; Nangia et al., 2021) have used
crowdsourcing for its efficiency and scalability.
However, crowdsourcing suffers from the diversity
of crowd workers’ expertise and effort levels that
are hardly measurable to task requesters. Different
approaches to improving the quality of collected
data have been proposed and studied. For span-
based sequence labeling tasks, prior studies mainly
focus on annotation aggregation. Rodrigues et al.
(2014) proposed CRF-MA, a CRF-based model
with an assumption that only one worker is cor-
rect for any label. HMM-crowd from Nguyen
et al. (2017) outperforms CRF-MA, but the effect
of sequential dependencies is not taken into ac-
count. Simpson and Gurevych (2019) uses a fully
Bayesian approach BSC which is proved to be more
effective in handling noise in crowdsourced data.
Aggregation methods are used affer the data collec-
tion process completes. But we aim to assure data
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quality and reduce cost during collecting. To this
end, we focus on worker selection in our paper.

In online worker selection, we need to balance
between exploring new workers and exploiting ob-
served good workers. This exploration-exploitation
tradeoff is extensively studied in the bandit litera-
ture (Lai and Robbins, 1985). In practice, we usu-
ally employ multiple crowd workers at the same
time to finish the tasks more effectively. The com-
binatorial multi-armed bandit (CMAB) (Chen et al.,
2013) models this circumstance. Biswas et al.
(2015); Rangi and Franceschetti (2018) reformulate
the problem as a bounded knapsack problem (BKP)
and address it with the B-KUBE (Tran-Thanh et al.,
2014) algorithm. Song and Jin (2021) introduce
empirical entropy as the metric in CMAB and mini-
mize the cumulative entropy with upper confidence
bound (UCB) based algorithm. Li et al. (2022) con-
sider the scalability of worker selection on large-
scale crowdsourcing systems. These studies pro-
pose different methods under the CMAB settings,
but on more complex span-based sequence label-
ing tasks there exists no discussion. We present
the study of worker selection with CMAB on span-
based sequence labeling tasks and show that our
work performs well on the quality and efficiency
of data collection.

B Feedback Simulator

The performance of crowd workers can vary across
different types of annotation tasks. To evaluate the
Exp.+MYV worker selection method in more stable
conditions without task-specific influence, we do
not actually annotate the sentences, but directly use
a worker’s average F; score to simulate his score on
each sentence he annotates. The simulated scores
are used as the numerical feedback for worker selec-
tion. Specifically, for each worker w, we calculate
in advance two average F; scores for all of their
annotations on the original dataset. The two F;
scores for each worker are calculated using expert
and majority vote (MV) evaluation respectively, de-
noted as @, and @MV . At each time step ¢, for
every sentence s; in the sentence set to be annotated
S, we ask K different workers from the current
selected workers W; to annotate it. Then, we use
a random value between 0 and 1 as the agreement
level k. If k exceeds the threshold value 7 (set
to 0.4 in Exp.+MYV), we independently generate
feedback for the K workers from a Bernoulli distri-
bution with a probability parameter set to @MV, If


https://doi.org/10.18653/v1/D19-1101
https://doi.org/10.18653/v1/D19-1101
https://doi.org/10.18653/v1/D19-1101
https://doi.org/10.1109/INFOCOM42981.2021.9488800
https://doi.org/10.1109/INFOCOM42981.2021.9488800
https://doi.org/10.1109/INFOCOM42981.2021.9488800
https://doi.org/10.1109/INFOCOM42981.2021.9488800
https://doi.org/10.1109/INFOCOM42981.2021.9488800
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/https://doi.org/10.1016/j.artint.2014.04.005
https://doi.org/https://doi.org/10.1016/j.artint.2014.04.005
https://doi.org/https://doi.org/10.1016/j.artint.2014.04.005
https://doi.org/https://doi.org/10.1016/j.artint.2014.04.005
https://doi.org/https://doi.org/10.1016/j.artint.2014.04.005
https://doi.org/10.1145/2566486.2567989
https://doi.org/10.1145/2566486.2567989
https://doi.org/10.1145/2566486.2567989
https://doi.org/10.1145/2566486.2567989
https://doi.org/10.1145/2566486.2567989
https://doi.org/10.18653/v1/2022.acl-long.200
https://doi.org/10.18653/v1/2022.acl-long.200
https://doi.org/10.18653/v1/2022.acl-long.200
https://doi.org/10.18653/v1/2022.acl-long.200
https://doi.org/10.18653/v1/2022.acl-long.200
https://doi.org/10.15346/hc.v1i2.14
https://doi.org/10.15346/hc.v1i2.14
https://doi.org/10.15346/hc.v1i2.14

Method F,
Oracle 74.12
Random | 65.12
Exp. 69.78
MV 66.80
Exp.+MV | 68.29

Table 4: The overall span-level proportional F; scores
of all methods with the feedback simulator.

Method Original w/ Our Alg.
LSTM-Crowd-cat 52.66 54.27
Bert-BiLSTM-CRF | 52.14 54.51
Annotator-Adaptor 53.86 56.16

Table 5: Span-level exact F; scores of widely-accepted
deep learning models on the Chinese OEI dataset.
LSTM-Crowd-cat is from Nguyen et al. (2017). Bert-
BiLSTM-CRF and Annotator-Adaptor are from Zhang
et al. (2022). We provide results with and without our
worker selection algorithm.

not, the feedback is generated from a Bernoulli dis-
tribution with a probability parameter set to ("7,
The span-level average F; scores of the annotated
dataset using different worker selection algorithm
are shown in Table 4. Our feedback mechanism
Exp.+MYV for worker selection achieved compara-
ble performance to the expert-only mechanism Exp.
(68.29 versus 69.78), while in the same time re-
duced expert involvement in evaluation by 59.88%

under the dataset-independent conditions.

C Regret Analysis

We provide a brief regret analysis of the worker
selection framework assuming that we use the e-
greedy algorithm and that each worker’s reward
follows a Bernoulli distribution.

The main proof follows the proof of Theorem
1 in (Garcelon et al., 2022). The key contribution
here is that we need to specify that the evaluation
signal (generated by majority voting) is a general-
ized linear model of workers’ true reward signal
(generated by expert/oracle). To this end, we utilize
the following form of the Chernoff bound which
applies for any random variables with bounded sup-
port.

Lemma 1 (Chernoff Bound (Motwani and Ragha-
van, 1995)) Let X1, Xa,--- , XN be independent
random variables such that x; < X; < xp for
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Algorithm 1 The worker selection algorithm with
the Expert+MV metric.

1: Let each worker w; € W annotate a random
sentence and initialize variable i; with Fy by
expert evaluation

2: For each worker w; € W, initialize Tj < 1

3t €—>|14/|

4: while unannotated sentences exist do

5: t+—t+1

6: Select W, C W based on certain crite-
rion (e.g., (6), (7))

7. Split W; into several disjoint subsets
{Wit,..., Wy, ..., Wy}, each containing
K workers

8: for all W do

9: Let each w; € Wy; annotate an sentence

s; and collect the annotations A;

10: if K(A;) > 7 then

11: Update Tj and fi; with F}1V(a;;(t))

12: else

13: Update T; and ji; with F™® (a;(t))

14: end if

15:  end for

16: end while

alli € {1,2,--- ,N}. Let X = "N X, and
= E(X). Given any 6 > 0, we have the follow-
ing result:

52,2

P(X <(1-0)u)<e Nen—=0?.  (9)

For the purpose of our discussion, let X; € {0,1}
be a binary random variable, where X; = 0 denotes
that worker ¢ provides an incorrect solution, and
X; = 1 denotes that worker ¢ generates a correct
solution. Define X =), \- X;.

We aim to approximate Pyry, which is the prob-
ability that the majority of the IV workers provide
the correct estimate. We apply the Chernoff Bound
in Lemma 1 to Pyrv. We can compute

N
> i1 Pi

EX)=p="=F

Based on (9), we let u = E(X), § =



Algorithm 2 The annotation selection algorithm.

1: For each worker w; € W, maintain (1)a vari-
able ¢, as the average F; score of the selected
annotations by w; so far, (2)a set A7 of se-
lected annotations by w)

Generate all possible annotations A} on s; €
S, calculate F-*"(ayy,) for each a,), € AY
For each w € W, initialize ¢; with the
F?Xp(alk) closest to (;, and append the ayj, to
Al

4: for all s; € S\s; do

5. Generate all possible annotations A on
s; € S, calculate Flfo(aik) for each a;;, €
A?
(2
for all w; € W do
if o; > ¢; then
8: Update ¢; with the maximal F; (a)
less than ¢, and append a;;, to A’
9: else
10: Update ¢; with the minimal F]pr (air)
greater than ¢;, and append a;;, to A’
11: end if
12:  end for
13: end for

x; = 0, xp, = 1, and get the following result:

N N
PMV:P<X22>:1—P<X§2>

52,2
>loe N (11)
2, 1,2
%[%W(ﬁ—jn?
—1—e" N (12)
N2(p—3)2
—l—e W (13)
2
_N<Z%1P¢_%)
—1-¢ . (14)

Through approximating Pyry by its lower bound
in (14), we can see that the evaluation signal (rep-
resented by Pyrv) is an increasing function in each
worker’s capability p; and twice-differentiable.
That is, Pyrv is a generalized linear function, which
satisfies Assumption 3 in (Garcelon et al., 2022).
Therefore, one can follow the proof of Theorem 1
in (Garcelon et al., 2022) that the e-greedy algo-
rithm yields a sub-linear regret with order O(T%/3).

D Case Study of Annotation Errors

Based on our statistical analysis of the Chinese OEI
dataset, we find that 74.80% of annotations have

12

different types of errors. And these annotation er-
rors could be decomposed to three basic error types,
namely Shifting, Expanding, and Shrinking (SES).
In our data augmentation algorithm, we reversely
used SES modifications and their combinations on
the ground truth annotations to generate annota-
tions with varying errors made by crowd workers.
In this section, we provide a detailed characteriza-
tion of human-made errors observed on annotated
data with real cases to better motivate these modifi-
cations.

Shifting Some crowd annotation spans are as
long as expert ones, but their positions are wrong.
Shifting simulates this type of error. As depicted
in Figure 6, both the expert span and the crowd
span are three words long and of negative polarity.
The difference is that the crowd span is shifted to
the left by 2 words compared with the expert span.
This type of error can be generated with Shifting
on the expert annotations.

IR AR E A LR . 1A Dtz B
If you feel slightly|depressed or lost, you could try sports.
IR SRR e R A RIRZ S . ;
If you|feel slightly depressed or lost, you could try sports.

Expert

Crowd
Worker

Figure 6: A case in which the crowd worker annotates
a span with correct length and polarity but incorrect
position.

Expanding FExpanding is used to generate longer
(than expert span) error spans. It might be intu-
itive that annotators barely make errors such as
expanding to a very long span. However, in the
case illustrated in Figure 7, the expert annotates
five short spans separated by commas, while the
crowd worker uses a very long span that covers the
whole sentence, which is obviously not accurate.
To simulate such human-made errors, we can ex-
pand an expert span to cover unnecessary words.
Statistically, 4.03% of annotation errors are very
long spans with more than 15 Chinese characters.
So we do not set an upper bound of span length in
Expanding.

Shrinking Shrinking is useful since crowd work-
ers often ignore some words when annotating. As
shown in Figure 8, the crowd worker failed to find
all words expressing positive opinions.
Sometimes crowd workers ignore a whole span
in expert annotations. This is why we set the lower



" bt 2 ¢ o BN, R, R
VTGRS 4 TR BRI . A i (R !
Good physical fitness is the‘guarantee of efﬁciencj, lgf succesﬂ,
‘a high standard of living, }of contributing more to societyL !
BLIEFA B e 2 T S A e AR, i A

Crowd VENRRIE, ATk Se % MR DR A A R !
Worker

Expert

)Good physical fitness is the guarantee of efficiency, of success, oﬂ
: ‘ a high standard of living, of contributing more to society, of life‘! ;

Figure 7: A case in which the crowd worker uses a very
long span that covers the whole sentence.

. TMFERAER i 12 A S TR 5K
Tt H
xpe H I had a productive and fruitful day yesterday at home.

Crowd | T AL i BT X 79«
Worker I had aand fruitful day yesterday at home.

Figure 8: A case in which the crowd worker does not
annotate all words with polarity.

bound of span length to zero in Shrinking, which
means we can shrink a span into no span.

These three types of errors may occur separately
or combined in real crowd annotations. Such that
an error could be both shifted and shrunk. This is
why we use the combination of these three types
of modifications to simulate human-made errors in
our data augmentation algorithm.

E A Running Example of Data
Augmentation

We here provide a running example to illustrate
how an annotation for a certain worker on a cer-
tain sentence is generated with our proposed aug-
mentation method. Suppose we have an English
sentence:

Although he looked very depressed yes-
terday, he has already become much
more cheerful now.

And an expert annotation:

Although he looked [NEGATIVE: very
depressed] yesterday, he has already be-
come [POSITIVE: much more cheer-
ful] now.

If the crowd worker Sam has an annotation on
this sentence in the original dataset, we use it di-
rectly in the augmented dataset. Otherwise, we
generate an annotation for Sam with our data aug-
mentation method.

When generating annotation for Sam, we follow
the steps below:

1. For each span in the expert annotation, we
apply the Shifting, Expanding, and Shrink-
ing (SES) modifications on it. After this step,
we have several lists of annotation, each list
contain annotations with only one modified
span:

» List 1, modifications of the first span,
containing N7 annotations:

— Although he looked [NEGATIVE:
very depressed] yesterday, he has al-
ready become much more cheerful
now. # Unmodified, span-level pro-
portional FI = 1.0

— Although he looked very [NEGA-
TIVE: depressed yesterday], he has
already become much more cheerful
now. # Shifting, F1 = 0.5

— Although he looked very depressed
[NEGATIVE: yesterday ,] he has
already become much more cheerful
now. # Shifting, FI1 =0

... # Other Shifting modifications

— Although he [NEGATIVE: looked
very depressed] yesterday, he has
already become much more cheerful
now. # Expanding, FI1 = 1.0

... # Other Expanding modifications

— Although he looked very [NEGA-
TIVE: depressed] yesterday, he has
already become much more cheerful
now. # Shrinking, FI1 = 0.5

... # Other Shrinking modifications

* List 2, modifications of the second span,
containing Ny annotations:

— Although he looked very depressed
yesterday, he has already become
[POSITIVE: much more cheerful]
now. # Unmodified, span-level pro-
portional FI = 1.0

— Although he looked very depressed
yesterday, he has already become
much [POSITIVE: more cheerful
now]. # Shifting, FI1 = 0.6667

— Although he looked very depressed
yesterday, he has already become
much more [POSITIVE: cheerful
now .] # Shifting, F1 = 0.3334

... # Other Shifting modifications

— Although he looked very depressed
yesterday, he has already [POSI-
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TIVE: become much more cheer-
ful] now. # Expanding, F1 = 1.0

... # Other Expanding modifications

— Although he looked very depressed
yesterday, he has already become
much [POSITIVE: more cheerful]
now. # Shrinking, F1 = 0.6667

... # Other Shrinking modifications

2. We choose one annotation from each list, and

combine them to generate an annotation with
2 spans. This is done for all combinations
of the annotations in the two lists. Note that
if the two spans overlay with each other, we
merge them into one span. After step 2, we
have one list of annotations:

Combined List, containing less than
or equal to N1 x Ny annotations:

e Although he looked [NEG-
ATIVE: very depressed]
yesterday, he has already
become [POSITIVE: much
more cheerful] now. #
span-level proportional FI =
1.0
Although he looked very [NEG-
ATIVE: depressed yesterday]
, he has already become [POS-
ITIVE: much more cheerful]
now. # span-level proportional

F1=0.75
e Although he looked very
depressed INEGATIVE:

yesterday ,] he has already
become [POSITIVE: much
more cheerful] now. #
span-level proportional FI1 =
0.5

.. # Other combinations with F1
ranging from 0 to 1.0

3. We choose one annotation from the combined

list as Sam’s annotation on this sentence, ac-
cording to the following procedure:

(a) Sam has an average F1 score Fy; = 0.57
on the original (real) dataset.

(b) We have already got 10 annotations for
Sam in the augmented dataset, which has
an average F1 score Fyye 10 = 0.54.

(c) We are choosing annotation on the 11th
sentence for Sam.
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(d) We firstly select two annotations with the
closest F1 scores to Fy,; from the com-
bined list, one higher than Fy,, and one
lower than F,;, as candidate annotations.
In this case, the two annotations could
have F1 scores of 0.58 and 0.52 respec-
tively.

(e) If Fayg 10 > Fori» we choose the anno-

tation with the lower F1 score (0.52)

as Sam’s annotation on this sentence.

Otherwise, we choose the annotation

with the higher F1 score (0.58). This

is to ensure that the average F1 score
of Sam’s annotations in the whole aug-
mented dataset, Fyyg, is as close to Fy
as possible, which reflects Sam’s reliabil-
ity (i.e., performance). In this case, we
choose the annotation with F1 score of
0.58.

By generating the missing annotations in the
original dataset with the method above, we could
have an augmented dataset.

F Explanation of Worker Selection on
Building New Datasets

When creating new datasets, we expect to have a
few (e.g. five) experts and a relatively large group
of (e.g. a hundred) crowd workers available for
annotation.

At each time step, we select a group of (e.g. 20)
crowd workers, and request them to annotate a few
(e.g. 5) sentences, resulting in 4 crowd annotations
on each sentence. Now we calculate the agreement
of the annotations on each sentence, if the agree-
ment is high (e.g. greater than 0.4), we use the MV
aggregation of the crowd annotations as the ground
truth, and calculate the F1 scores of each worker’s
annotation. Otherwise, we ask an expert to give
an annotation on the sentence, and calculate the
F1 score of each worker on the expert annotation.
Note that the expert annotates only when the agree-
ment is low. After this time step, we have crowd
annotations on the sentences and their F-scores,
which can be used to update the average score of
each worker. This procedure is repeated until we
have enough annotations on every sentence.

In other words, the Expert+MV approach works
with both crowd workers and experts available (e.g.
on an online system) when building datasets. The
Expert+MYV is an iterative approach in which the
expert annotates when needed. And it saves the



Method ‘ Token-level Span-level Exact Span-level Prop.

| P R F, | P R F, | P R Fy
Oracle 62.88 68.62 64.80 | 5448 51.97 53.07 [ 7279 64.07 68.15
Random 5849 5730 57.42|43.99 3550 39.18 | 69.01 52.36 59.55
e-G (Exp.) 6191 6458 62.61 | 51.72 4637 48.76 | 7228 60.25 65.72
-G (MV) 60.87 63.52 61.55 | 4872 44.66 46.37 | 70.15 58.94 64.05
e-G (Exp+MV) | 61.76 6446 62.47 | 49.14 4535 46.96 | 71.21 59.92 65.08
TS (Exp.) 62.66 6491 63.20 | 49.76 42.34 45.69 | 72.15 60.20 65.63
TS (MV) 59.82  61.90 60.25 | 4481 40.71 4236 | 67.72 56.05 61.34
TS (Exp+MV) 61.66 64.03 62.23 | 47.20 4236 44.49 | 70.66 59.07 6435
CUCB (Exp.) 63.02 6375 62.93 | 5224 4551 48.56 | 73.05 59.53 65.60
CUCB (MV) 61.94 62.09 61.55|49.57 4439 46.66 | 7122 57.59 63.68
CUCB (Exp4+MV) | 62.83 63.62 62.75 | 51.31 4560 48.16 | 72.48 5933 65.25

Table 6: Detailed P, R, and F; scores of all methods on the Chinese OEI dataset. All our algorithms perform
significantly better than the Random (i.e., naive crowdsourcing) baseline.

cost of expert annotations by using the MV aggrega-
tion of crowd annotations as the ground truth when
possible. Our experiment results show that the Ex-
pert+MV approach can save 47.19% of the cost of
expert annotations on the Chinese OEI dataset, and
65.97% on the CoNLL’03 dataset respectively.

However, even in the case that no expert is avail-
able, which means that Expert+MV falls back to
MYV, we can still observe that the MV approach out-
performs the Random baseline (which is an equiva-
lent of normal crowdsourcing procedure which as-
signs an equal amount of sentences to each worker
randomly) by a large gap. In this case, the MV
approach saves 100% of expert annotation cost, but
still produced crowd annotation with good qual-
ity. Please refer to Table 3 and Table 6 for more
detailed results.
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Worker Ori. Rnd. SES SES Worker Ori. Rnd. SES SES

Gen. Only +Alg.2 Gen. Only +Alg.2
ID F; F, F, F, ID F, F, F, F,
25 6290 60.07 69.59  62.89 37 37.15  96.10 26.79  37.16
32 60.87 4137 68.79  60.87 13 36.19  31.62 25.14  36.20
42 53.88 4.37 66.57  53.88 20 36.11 7144 2502  36.12
5 52.07 50.74  60.76  52.06 64 3597 65.66 2539 3597
55 50.70  30.24  61.13  50.70 63 3522 7540 2473 3522
2 50.53 9199 6092  50.53 6 35.15 6574 2500 35.16

52 50.08 4193 6091  50.08 10 34.63 51.28 25.08  34.64
17 49.82 4373 3582 49.82 66 3375 6098 2499 3375
57 49.25 13.17 3559  49.25 53 3290 2751 24778  32.89
11 49.04  53.71 35.19  49.03 4 32.72 8.40 2477 3272
26 48.89 5.17 35.59  48.82 21 3219 7347 24778 3219
36 48.71 1553 3527 48.70 62 32.16 4871  24.89  32.16
46 48.67 44.84 3519  48.67 1 3210 3442 2496  32.10
29 48.60 9539 3521  48.60 41 3194 7755 2488 3193
35 47.07  23.64 3534  47.07 51 3178 68.07 2485 31.78
49 46.80 6030 3527  46.80 31 31.61 2944 2459  31.61
54 45.63 18.74 3445  45.64 8 31.05 2855 2476  31.05
14 45.13 6099 3454  45.13 67 3091 9551 2422 3091
43 4493 3491 33.72 4493 58 30.70  21.64 2396  30.70
7 4437  23.89 3350 4437 65 30.61 4.51 24.17  30.60
59 4436 7237  33.61 44.37 38 30.47 4.82 24.11 30.47
23 43.38 4.85 33.58  43.38 28 29.86 2.63 24.00  29.86
56 4337 4196 3331  43.37 45 29.38  36.13 2415  29.38
0 41.60 6681 28.19 41.61 30 28770  61.16  21.88  28.71
18 4140 3153 2856 4140 15 25.73 3892 2140 2573
16 4131  57.13  28.03 41.31 19 24.69 4.39 2131 24770
22 41.05 8583 2821 41.06 44 2342 7.15 21.08  23.42
47 40.78 8233 2791  40.78 9 22.88 9622 2122  22.89
61 40.22 1220 2844  40.22 33 2236 29.89 19.50  22.36
40 40.01 84.98 2838  40.02 39 20.69  57.73 19.26  20.69
50 39.35 56.04 2864 3935 69 2039  63.02 1926  20.40
27 38777  34.07 2787 3877 3 17.12 2870 18.66  17.13
48 3835 2377 2757 3835 24 1696  42.73 18.68 16.98
34 38.29 5.69 28.08  38.30 68 14.53 13.63 7.69 14.53
12 3796  85.14 2744 3796 60 13.66  22.69 8.15 13.66

Table 7: Comparisons between different data augmentation methods on the span-level exact F; score of every
crowd worker. Ori. stands for the original score in real datasets before any augmentation. Rnd. Gen. is a
naive augmentation method with random generated annotations. SES Only indicates the shifting, shrinking, and
expanding method we proposed. SES + Alg.2 means SES with Algorithm 2 which is our final method.
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