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Abstract

Multi-lingual fine-tuning (MLF), which fine-tunes a multi-lingual language model
(MLLM) with multiple source languages, aims to gain good zero-shot performance
on target languages. In MLF, the fine-tuned model tends to fit the source languages
while forgetting its cross-lingual knowledge obtained from the pre-training stage.
This forgetting phenomenon degenerates the zero-shot performance of MLF, which
remains under-explored. To fill this gap, this paper proposes a multi-lingual fine-
tuning method, dubbed Less-forgetting Multi-lingual Fine-tuning (LF-MLF). In
LF-MLF, we cast multi-lingual fine-tuning as a constrained optimization problem,
where the optimization objective is to minimize forgetting, and constraints are
reducing the fine-tuning loss. The proposed method has superior zero-shot perfor-
mance; furthermore, it can achieve the Pareto stationarity. Extensive experiments on
Named Entity Recognition, Question Answering and Natural Language Inference
back up our theoretical analysis and validate the superiority of our proposals.

1 Introduction

Multi-lingual Language Models (MLLMs), which are pre-trained on multiple languages, have the
cross-lingual generalization ability. By fine-tuning MLLMs on source languages, we can expect
promising zero-shot performance on target languages [1, 2]. In literature, most of the works focus
on mono-lingual fine-tuning, which fine-tunes a multilingual model on only one source language
(typically English). However, in practice, it is common that there are multiple source languages
available, e.g., in name entity recognition, it is easy to obtain labeled data for English, German,
French and so on. In this background, multi-lingual fine-tuning (MLF), which fine-tunes an MLLM
on multiple source languages, becomes an emerging research topic.

In the fine-tuning procedure of MLF, each source language has a language-specific gradient descent
direction. Combining these gradient descent directions together, we can find a set of gradient descent
directions common for all the source languages. However, in this set, some directions lead a MLLM
to fit the source languages too much and forget its cross-lingual knowledge obtained from the pre-
training stage. This forgetting phenomenon can degenerate the zero-shot performance of MLF. Thus,
how to find a common gradient descent direction that benefits both the fine-tuning performance and
zero-shot performance is a important issue in MLF, which remains under-explored.

To address this issue, this paper proposes to find a less-forgetting descent direction, which prevents a
MLLM from forgetting the cross-lingual generalization ability and is a common descent direction for
the source languages. To find this less-forgetting descent direction, we cast MLF as a constrained

∗Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



optimization problem. The optimization objective is to minimize the forgetting of a MLLM’s cross-
lingual generalization ability, and the constraint is that the direction should be a descent direction
common to all the source languages. Correspondingly, we propose a novel algorithm, namely Less-
forgetting Multi-lingual Fine-tuning (LF-MLF), to solve this constrained optimization problem and
obtain the less-forgetting descent direction.

For LF-MLF, we have conducted both theoretical and experimental analysis. Theoretical results
demonstrate that LF-MLF can effectively reduce the forgetting of multi-lingual models in fine-
tuning; besides, LF-MLF can achieve the Pareto stationarity. The superiority of LF-MLF has been
experimentally verified on three kind of tasks (i.e., Named Entity Recognition, Question Answering
and Natural Language Inference). Furthermore, we also conduct experimental analysis on several
factors that impact the performance of multi-lingual fine-tuning (e.g., the impact of the number of the
fine-tuning languages), which have the potential to forge new trends in multi-lingual fine-tuning.

2 Related Works

Multi-lingual Language Models (MLLMs) are pre-trained using tons of unlabeled data from
multiple languages and expected to own the cross-lingual zero-shot transfer ability. This ability can
facilitate the low resource languages processing with knowledge transferred from the high resource
languages [2]. Several MLLMs have been proposed, such as mBERT [3] and XLM-R [4]. Given a
MLLM, most of the existing works analyze its cross-lingual zero-shot transfer ability by observing
the model’s zero-shot performance on the target languages after mono-lingual fine-tuning [5, 6, 7].
Few works [8, 9] have investigated the multi-lingual fine-tuning setting, but they do not consider the
forgetting of MLLMs’ cross-lingual generalization ability. To fill this gap, this paper focuses on the
forgetting problem in multi-lingual fine-tuning.

Continual Learning (CL) studies the problem of learning a model on sequential tasks without
forgetting knowledge obtained from the preceding tasks [10]. In CL, reducing forgetting is the major
challenge. Lots of methods have been proposed to reduce forgetting, such as GEM [11], EWC [12]
and IMM [13]; however, these methods typically focus on the single-objective optimization setting,
where there is only one learning objective. None of them considers the multi-objective optimization
setting, where multiple learning objectives involve. Nevertheless, multi-lingual fine-tuning involves a
multi-objective optimization problem, which aims to optimize the fine-tuning performance on all the
including languages. Thus, existing CL methods are not suitable for multi-lingual fine-tuning.

Multi-task Learning (MTL), which simultaneously learns multiple tasks, aims to achieve proper
performance on all included tasks. Recently, various MTL methods [14, 15, 16, 17, 18, 19, 20] have
been proposed. Among them, PCGrad [19] and Gradient Vaccine [20] have achieved the state-of-
the-art performance. Regarding the source languages of MLF as MTL tasks, MTL methods can be
used in MLF. However, MTL methods just focus on the performance of including source languages
(tasks), while they do not consider the performance of target languages. It will bring inferior zero-shot
performance on the target languages. For example, PCGrad and Gradient Vaccine just focus on
finding a proper common descent direction for the source languages, but the target languages are not
considered in these methods. Thus, they cannot expect to achieve promising zero-shot performance.
By contrast, the proposed LF-MLF finds the common descent direction that benefit the zero-shot
performance. Overall, LF-MLF have more advantages over the MTL methods in MLF.

3 Less-forgetting Multi-lingual Fine-tuning

The goal of multi-lingual fine-tuning is twofold: firstly, achieving proper fine-tuning performance on
the source languages, and secondly, achieving proper zero-shot performance on the target languages.
For the first goal, it is necessary to avoid the model from forgetting the cross-lingual knowledge
it obtained in the pre-training phase. For the second goal, we face a multi-objective optimization
problem, where the losses for the source languages should be jointly optimized. In this section, we
firstly give a formal definition of the multi-lingual fine-tuning and then propose a method (dubbed
LF-MLF) that can simultaneously achieve the above two goals.
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3.1 Problem Definition of Multi-lingual Fine-tuning

Given a multi-lingual language model θp, which is pre-trained using large amounts of unlabeled
data from language set Sp, we aim to fine-tune this model on a downstream task and achieve proper
performance. For the downstream task, we have task-specific labeled training data from a set of
source languages Sf , where Sf ⊆ Sp. After fine-tuning, θp has been updated as θf . Assume there
are T languages in source languages set Sf . For each language, the task-specific loss is denoted as
Lt(θf ). Under the gradient descent paradigm of deep learning, in the kth iteration of multi-lingual
fine-tuning, the model is updated by

θk = θk−1 − η

T∑
t=1

wk
t∇Lt(θk−1). (1)

where η is the learning rate,
∑T

t=1 w
k
t = 1 and wk

t ≥ 0, t ∈ {1, ..., T}. In Eq. (1),
−
∑T

t=1 w
k
t∇Lt(θk−1) is the convex hull of the gradient descent directions of the included lan-

guages, which contains feasible gradient descent directions for the multi-lingual fine-tuning.

Furthermore, denote the pre-training loss of θp and θf as Lp(θp) and Lp(θf ) respectively. According
to the classic definition of forgetting [21], we define the forgetting between θp and θf as Fp =
Lp(θf ) − Lp(θp), which quantifies the performance degeneration of θf on the multi-lingual pre-
training task (e.g., masking tokens). With the above notation, the two goals for multi-lingual
fine-tuning can be formally defined as: (1) minimizing Fp, and (2) minimizing {L1(θf ), ..., LT (θf )}.

3.2 Upper Bound the Forgetting in Multi-lingual Fine-tuning

In fine-tuning, we cannot directly compute the forgetting Fp. Alternatively, we propose to minimize
the forgetting by minimizing its upper bound. In Theorem 1, we give a upper bound for the forgetting
of multi-lingual fine-tuning. The assumptions in Theorem 1 are widely accepted [21, 22, 23] and can
ensure proper performance.
Theorem 1. Assume Lp(θf ) can be approximated by its second order Taylor expansion and θp is a
minima w.r.t the pre-training loss. Then, we have

Fp ≤
λpη

2
∥

K∑
k=1

T∑
t=1

wk
t∇Lt(θk−1)∥2. (2)

where λp is the maximum eigenvalue of∇2Lp(θp), and K is the number of iterations of fine-tuning.

3.3 Less-forgetting Multi-lingual Fine-tuning

In multi-lingual fine-tuning, we not only need to keep the multi-lingual memory of the pre-
trained model but also need to achieve proper fine-tuning performance, i.e., minimizing Fp and
{L1(θf ), ..., LT (θf )} together. Achieving these two goals at same time is challenging and remains
unexplored. In this section, we propose a novel method, dubbed Less-forgetting Multi-lingual
Fine-tuning (LF-MLF), to jointly achieve these two goals.

Specifically, we minimizing Fp by tightening its upper bound introduced in Theorem 1. Besides,
minimizing {L1(θf ), ..., LT (θf )} is a multi-objective optimization (MOO) problem. We solve this
MOO problem by the means of multi-objective gradient descent.

According to Theorem 1, in the kth iteration,

F k
p ≤

λpη

2
∥

k∑
i=1

T∑
t=1

wi
t∇Lt(θi−1)∥2 =

λpη

2
∥∇̄L+

T∑
t=1

wk
t∇Lt(θk−1)∥2 (3)

where ∇̄L =
∑k−1

i=1

∑T
t=1 w

i
t∇Lt(θi−1) and θ0 = θp.

To reduce fogetting, in the kth iteration, we propose to minimize F k
p ’s upper bound as in Eq. (4).

min
wk
∥∇̄L+

T∑
t=1

wk
t∇Lt(θk−1)∥2 (4)
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Figure 1: Toy example: comparison the model update procedures of LF-MLF and Uniform-MLF.

Except for reducing forgetting, we also need to decrease the task-specific losses of the fine-tuned
languages, i.e, move toward the objective of minimizing {L1(θf ), ..., LT (θf )}. Thus, in the kth

iteration, we need to update the model in a descent direction common to all the source languages,
which is the principle of multi-objective gradient descent. Under this principle, the update direction
should not have a obtuse angle with the gradient direction on each language as in Eq. (5).

(

T∑
t=1

wk
t∇Lt(θk−1))

⊤∇Lt(θk−1) ≥ 0, for t ∈ {1, ..., T}. (5)

To reduce fogetting and minimizing the downstream task losses, we combine Eq. (4) with Eq. (5)
and propose to formulate the less-forgetting multi-lingual fine-tuning as the following constrained
optimization problem.

Problem 1.
min
wk

∥∇̄L+
∑T

t=1 w
k
t∇Lt(θk−1)∥2

s.t. (
∑T

t=1 w
k
t∇Lt(θk−1))

⊤Lt(θk−1) ≥ 0, t ∈ {1, ..., T}∑T
t=1 w

k
t = 1

wk
t ≥ 0, t ∈ {1, ..., T}.

(6)

To illustrate the rationale of this constrained optimization problem, we give a toy example in Figure
1. In this example, we compare LF-MLF with the Uniform-MLF method which adopts the uniform
weights across the training procedure (i.e., wk

t = 1for t ∈ {1, ..., T} and k ∈ {1, ...,K}). LF-MLF
chooses the common descent direction that minimizes the distance between the original MLLM θp
and the updated MLLM θk at each update step. Obviously, LF-MLF has shorter distance than the
Uniform-MLF method, which illustrates that LF-MLF can slow the forgetting of original MLLM
down. Furthermore, to solve Problem 1, we formulate it as the following quadratic programming
problem with T variables and 2T + 1 constraints.

Problem 2.
min
wk

1
2 (w

k)⊤Gwk + (wk)⊤c

s.t. b⊤t w
k ≥ 0, t ∈ {1, ..., T}∑T

t=1 w
k
t = 1

wk
t ≥ 0, t ∈ {1, ..., T}.

(7)

where G = ∇L(θk−1)
T∇L(θk−1), ∇L(θk−1) = [∇L1(θk−1), L2(θk−1), ..., LT (θk−1)]

⊤. c =
∇L(θk−1)

T ∇̄L and bt = ∇L(θk−1)
⊤∇Lt(θk−1).

Problem 2 can be effectively solved. This paper adopts a interior-point solver [24]. Let w∗
k be the

solution of the above quadratic programming problem. In our proposed LF-MLF, the update rule is

θk = θk−1 − η

T∑
t=1

(w∗
k)

t∇Lt(θk−1). (8)

Overall, the challenging multi-lingual fine-tuning problem is transferred to a simple quadratic
programming problem. The detailed steps of LF-MLF can be referred to Algorithm 1.
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Algorithm 1: Less-forgetting Multi-lingual Fine-tuning (LF-MLF)
Input: Pre-trained model θp, Number of iterations K.
for k ← 1 to K do

if k == 1 then
Solve Problem. (2) with c = [0, 0, ..., 0]⊤ and obtain solution w∗

1 .
θ1 = θp − η

∑T
t=1(w

∗
1)

t∇Lt(θp).
else

Solve Problem. (2) and obtain solution w∗
k.

θk = θk−1 − η
∑T

t=1(w
∗
k)

t∇Lt(θk−1)
end if
if the feasible set of Problem. (2) is empty then

break.
end if

end for
return θK .

4 Theoretical Analysis

In less-forgetting multi-lingual fine-tuning, we explicitly set the goal, minimizing the upper bound, as
the optimization objective. Therefore, the less-forgetting property of the proposed LF-MLF method
is straightforward. By contrast, the target of minimizing {L1(θf ), ..., LT (θf )} is achieved by the
means of putting constraints on the update direction, which forces the update direction to be the
common decreasing direction for all the fine-tuned languages. Its effectiveness seems not obvious. To
make it clear, in this section, we conduct theoretical analysis on LF-MLF’s fine-tuning performance.

In multi-lingual fine-tuning, we aim to jointly fine-tune several languages, namely minimizing the
loss vector {L1(θf ), ..., LT (θf )}. It is a multi-objective optimization problem, where the optimal
solutions are Pareto optimal as in Definition 1.

Definition 1 (Pareto Optimality). For L(θ) = [{L1(θ), ..., LT (θ)}]⊤, the Pareto optimality w.r.t the
optimization objective minθ L(θ) is defined as follows: (1) A solution θ dominates a solution θ if
Lt(θ) ≤ Lt(θ) for all t ∈ T and L(θ) ̸= L(θ) and (2) A solution θ∗ is deemed Pareto optimal if
there exists no solution θ that dominates θ∗.

However, in deep learning, the parameter spaces are highly non-convex. To the best of our knowledge,
there is no method that can learn a Pareto optimal deep neural network model. Settling for less, the
best we can do is to achieve the Pareto stationarity as in Definition 2. Pareto stationarity is a necessary
condition of achieving Pareto optimality.

Definition 2 (Pareto Stationarity). For L(θ0) = [{L1(θ
0), ..., LT (θ

0)}]⊤ is said to be Pareto-
stationary at the design-point θ0 iff there exists a convex combination of the gradient-vectors,∑T

t=1 wt∇Lt(θ
0), that is equal to zero:

T∑
t=1

wt∇Lt(θ
0) = 0;

T∑
t=1

wk
t = 1; wk

t ≥ 0, t ∈ {1, ..., T}. (9)

In Theorem 2 and 3, we propose that LF-MLF can achieve Pareto stationarity, which theoretically
verifies that our proposed method can achieve proper performance on the fine-tuning languages.

Theorem 2. Let H be a Hilbert space of finite dimension N . Let Lt(θk) (1 ≤ t ≤ T ≤ N ) be T
smooth functions of the vector θk ∈ H, and θ0k a particular admissible design-point. Let w∗

k be the
solution of Problem 2 and descent direction ∇L =

∑T
t=1(w

∗
k)

t∇Lt(θk). Then, either ∇L = ∅,
and [L1(θ

0
k), ..., LT (θ

0
k)]

⊤ are pareto stationary at θ0k or ∇L ̸= ∅ and −∇L is a descent direction
common to all {Lt(θk)}Tt=1.

Theorem 3. LF-MLF can stop after a finite number of iterations if a Pareto stationary point is
reached. Otherwise, If the sequence of iterates {θk}Kk=1 of the LF-MLF is infinite, it admits a weakly
convergent subsequence.
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5 Experiments

In this section, we perform experimental studies on three downstream tasks– Named Entity Recog-
nition (NER), Question Answering (QA) and Natural Language Inference (NLI) respectively to
evaluate the performance of our proposed LF-MLF and verify our theoretical analysis.

5.1 Experimental Setup

Datasets: In our experiments, we adopt the NER [25], TyDiQA-GoldP [26] and XNLI [27] datasets
for NER, QA and NLI respectively from the XTREME benchmark [8]. The details of these datasets
are introuced in the supplementary material.

Baselines: We compare our proposed LF-MLF with the following baselines: (1) Single-lingual Fine-
tuning (SLF): fine-tuning on each language independently; (2) Uniform-MLF: fine-tuning on the
included languages simultaneously by means of a uniformly weighted sum of the language-specific
gradient descent directions, i.e., wk

t = 1
T constantly; (3) PCGrad-MLF: using the Project Conflicting

Gradients (PCGrad) method proposed by [19] on multi-lingual fine-tuning; (4) GradVac-MLF: using
the Gradient Vaccine (GradVac) method proposed by [20] on multi-lingual fine-tuning.

Experimental Settings: In our experiments, we generally fine-tune XLM-RoBERTa models (base-
sized model) [28] with a training batch size of 32, and AdamW [29] is used as the optimizer. As to
the numbers of fine-tuning epochs, we adopt the default setting of the XTREME benchmark, that
are 10, 3, 5 for NER, TyDiQA and XNLI respectively. Besides, the learning rates are selected from
{1e− 5, 2e− 5, 5e− 5}, {1e− 5, 2e− 5, 5e− 5} and {5e− 6, 1e− 5, 2e− 5} with grid search for
NER, TyDiQA and XNLI respectively. All the results are averaged over 3 runs.

5.2 Performance of Multi-lingual Fine-tuning

Conducting experiments on NER, TyDiQA and XNLI, we compare LF-MLF with the baselines on
the zero-shot performance and fine-tuning performance respectively. For each dataset, we choose two
or three source languages for fine-tuning according the following rules: (1) belongs to the Top 10
high-resource languages w.r.t Wikipedias; (2) the higher-resource the better. For NER and XNLI, en,
de, fr are chosen, while en, ru are chosen for TyDiQA.

5.2.1 Zero-shot Performance

To evaluate the zero-shot performance of LF-MLF and the baselines, we record the F1 score perfor-
mance (mean and standard deviation) over the target languages that have not been fine-tuned (i.e,. the
other 45 languages except en, de, fr in NER, the other 7 languages except en, ru in TyDiQA and the
other 10 languages except en, de, fr in XNLI). Furthermore, pairwise t-tests at 0.05 significance level
are conducted based on the three runs. The results are reported in Table 1, 2 and 3 for NER, TyDiQA
and XNLI respectively.

Figure 2: CD diagram of Bonferroni-Dunn test.

Besides, to comprehensively evaluate the supe-
riority of LF-MLF, we further utilized Fried-
man test as the statistical test to analyze the rela-
tive performance among the compared methods
across the three applications. At 0.05 signifi-
cance level, the Friedman statistics is 5.5, and
critical is 4.76. Thus, at 0.05 significance level,
the null hypothesis of indistinguishable performance of LF-MTF among all compared methods is
clearly rejected. Subsequently, we employ the Bonferroni-Dunn test as the post-hoc test by regarding
LF-MLF as the control approach. Figure 2 reports the CD diagrams at 0.1 significance level, where
the average ranks of the compared approaches is marked along the axis. From this figure, we can see
that LF-MTF achieves highly superior results to other baseline methods.

5.2.2 Fine-tuning Performance

Except the zero-shot performance, we also care about the fine-tuning performance, namely the F1-
score on the languages that have been fine-tuned. The results of fine-tuning performance are reported
in Table 4, 5 and 6 for NER, TyDiQA and XNLI respectively. From these results, we can see that:

6



Method en-SLF de-SLF fr-SLF Uniform-MLF PCGrad-MLF GradVac-MLF LF-MLF

Zero-Shot 60.05±0.18• 58.53±0.19• 63.97±0.58• 67.45±0.35• 67.40±0.32• 67.57±0.25• 68.50±0.21

Table 1: Zero-shot performance (F1 score (mean±std)) on NER. In addition, • indicates that LF-MLF
is statistically superior to the comparing method (pairwise t-test at 0.05 significance level).

Method en-SLF ru-SLF Uniform-MLF PCGrad-MLF GradVac-MLF LF-MLF

Zero-Shot 55.05±0.67• 60.66±0.34• 62.51±0.43 61.74±0.51• 61.36±0.36• 63.03±0.31

Table 2: Zero-shot performance (F1 score (mean±std)) on TyDiQA. In addition, • indicates that
LF-MLF is statistically superior to the comparing method (pairwise t-test at 0.05 significance level).

Method en-SLF de-SLF fr-SLF Uniform-MLF PCGrad-MLF GradVac-MLF LF-MLF

Zero-Shot 72.46±0.39• 74.26±0.38• 74.01±0.14• 75.17±0.12• 74.87±0.21• 74.67±0.14• 75.56±0.15

Table 3: Zero-shot performance (F1 score (mean±std)) on XNLI. In addition, • indicates that LF-
MLF is statistically superior to the comparing method (pairwise t-test at 0.05 significance level).

Method en-SLF de-SLF fr-SLF Uniform-MLF PCGrad-MLF GradVac-MLF LF-MLF

en 82.59±0.14 – – 83.30±0.15 81.76±0.08 82.07±0.18 82.75±0.10
de – 88.78±0.09 – 87.90±0.03 87.13±0.05 87.30±0.13 88.92±0.09
fr – – 89.75±0.09 89.68±0.17 88.85±0.19 89.70±0.33 89.15±0.26

Table 4: Fine-tuning performance (F1 score (mean±std)) on NER.

Method en-SLF ru-SLF Uniform-MLF PCGrad-MLF GradVac-MLF LF-MLF

en 66.03±0.31 – 68.71±0.57 69.28±0.63 67.26±0.38 69.31±0.41
ru – 70.89±0.48 72.43±0.08 71.76±0.19 71.87±0.15 71.66±0.21

Table 5: Fine-tuning performance (F1 score (mean±std)) on TyDiQA-GoldP.

Method en-SLF de-SLF fr-SLF Uniform-MLF PCGrad-MLF GradVac-MLF LF-MLF

en 84.29±0.35 – – 84.93±0.03 84.75±0.21 84.59±0.11 84.81±0.14
de – 78.98±0.23 – 79.92±0.07 79.48±0.18 79.96±0.12 80.01±0.15
fr – – 79.80±0.36 80.63±0.11 79.98±0.12 80.43±0.06 80.83±0.13

Table 6: Fine-tuning performance (F1 score (mean±std)) on XNLI.

(1) the multi-lingual methods do not clearly outperform single-lingual methods on corresponding
languages; (2) LF-MLF’s performance is comparable to the baselines, and there is no baseline method
can dominate LF-MLF. PCGrad-MLF and GradVac-MLF have inferior performance comparing with
Uniform-MLF and LF-MLF. It because that PCGrad-MLF and GradVac-MLF cannot guarantee to
find a Pareto stationary point, while Uniform-MLF and LF-MLF can find a Pareto stationary point. It
verifies the theoretical analysis proposed in Section 4.

Overall, from section 5.2.1 and 5.2.2, we can see that LF-MLF has superior zero-shot performance
and comparable fine-tuning performance. It verifies that LF-MLF has superior cross-lingual transfer
ability. The superiority comes from LF-MLF’s less-forgetting property, because such property enables
LF-MLF to remember more about the target languages.

5.3 Impact of the Number of the Source Languages

In the last section, it is concluded that multi-lingual fine-tuning can significantly improve the zero-shot
performance. Then, it is natural to ask whether the zero-shot performance can be further improved
when more languages have been fine-tuned? In this section, we experimentally present that the answer
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Figure 3: Zero-shot performance w.r.t different number of fine-tuning languages.

Figure 4: Relative fine-tuning performance w.r.t different number of fine-tuning languages.

is yes. Besides, we also investigate the impact of the number of source languages on the fine-tuning
performance. Our experiments are conducted on the NER dataset, and the source languages are
selected from the Top 10 high-resource languages w.r.t Wikipedias, i.e., en, de, fr, ru, es, ja, it, zh,
ko, ar. By contrast, the other thirty eight languages are used as target languages. In the experiments,
we increase the source languages from Top 2 to Top 10 and record the changing of zero-shot and
fine-tuning performance.

5.3.1 Impact on the Zero-shot Performance

Figure 3 illustrates the change of MLF’s zero-shot performance along with the increasing number
of source languages. From this figure, we can conclude that (1) generally speaking, the zero-shot
performance of a multi-lingual model continuously improves with the increasing of the number of
source languages; (2) LF-MLF consistently outperforms Uniform-MLF when the number of source
languages changes.

5.3.2 Impact on the Fine-tuning Performance

To evaluate the fine-tuning performance over different number of source languages, we present a
metric, dubbed average relative F1 score, which measures the average relative improvement of multi-
lingual methods’s fine-tuning performance comparing with the single-lingual fine-tuning. Specifically,
let Ss

t be the F1 score of the single-lingual fine-tuning on language t, and let Sm
t be the F1 score of

the multi-lingual fine-tuning on language t. Assume there are T fine-tuning languages, the average
relative F1 score is defined as RT = 1

T

∑T
t=1

Sm
t

Ss
t

.

Figure 4 demonstrates the change of fine-tuning performance along with the increasing number of
source languages. From this figure, we can see that (1) the fine-tuning performance just slightly
fluctuates when the number of source languages changes; (2) LF-MLF and Uniform-MLF do not
evidently outperform single-lingual fine-tuning, and they have similar average relative F1 score over
different number of source languages.
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Figure 5: Impact of the diversity on the fine-tuning languages’ branches for LF-MLF.
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Figure 6: Impact of the diversity on the fine-tuning languages’ branches for Uniform-MLF.

Language Family Germanic Italic Indo-Iranian Balto-Slavic

Fine-tuning Candidates en, de fr, it bn, hi bg, ru
Test Set for Zero-shot af, nl pt, es mr, ur pl, uk

Table 7: Data allocation for the language branches.

5.4 Impact of the Diversity of Language Branches Covered by the Source Languages

After investigating the impact of the number of source languages, we further explore whether the
diversity of language branches covered by the source languages impacts the zero-shot performance.
In this section, we conduct experiments on the different branches of Indo-European language family
based on the NER dataset. Specifically, we choose sixteen languages, which belong to four different
language branches (Germanic, Italic, Indo-Iranian, Balto-Slavic) and each branch has four languages,
from the NER dataset.

Firstly, we investigate the cross-language-branches transfer performance, namely fine-tuning on
the four languages of a branch and observe the zero-shot performance on another branch, such
as fine-tuning on Germanic and test zero-shot performance on Italic. The experimental results are
illustrated in Fig. 5 (a) and Fig. 6 (a) for LF-MLF and Uniform-MLF respectively. In these figures, the
vertical axis represents the source. These results present that: (1) the cross-language-branches transfer
performance of each pair of branches is asymmetric; (2) LF-MLF has better cross-language-branches
transfer ability than Uniform-MLF, which experimentally explains the superiority of LF-MLF and
further verifies LF-MLF’s less forgetting property.

Next, we explore the impact of language branches’ diversity of the source languages. Eight languages
are used as candidates for fine-tuning (i.e., source languages), while the other eight languages are used
to test the zero-shot performance. The detailed allocation of these languages are reported in Table 7.
Fixing the number of fine-tuning languages as four, we test the language branches’ combinations
that the source languages cover two branches, three branches and all four branches respectively,
and the results are illustrated in Fig. 5 (b) and Fig. 6 (b). From these figures, we can see that:
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(1) the language branches’ diversity of the fine-tuning languages does not have a clear impact on
the zero-shot performance, which means that covering more language branches might not lead to
better zero-shot performance; (2) LF-MLF generally outperforms Uniform-MLF on most of the
combinations.

6 Conclusion

This paper researches on a novel fine-tuning setting for multi-lingual language models, namely
multi-lingual fine-tuning; furthermore, we propose a novel multi-lingual fine-tuning method, dubbed
Less-forgetting Multi-lingual Fine-tuning (LF-MLF). Comparing with its mono-lingual fine-tuning
counterparts, multi-lingual fine-tuning can achieve superior zero-shot performance; moreover, our
proposed LF-MLF outperforms the baseline multi-lingual fine-tuning methods. Researching on
mono-lingual fine-tuning provides several inspirations and has the potential to forge new trends in
multi-lingual learning research. This paper only focuses on the multi-lingual fine-tuning scenario. In
the future, we will extend our method to more general scenarios, such as less-forgetting multi-task
learning.
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