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Abstract

Aligning AI systems with human values remains a fundamental challenge—but1

does our inability to create perfectly aligned models preclude obtaining the benefits2

of alignment? We study a strategic setting where a human user interacts with3

multiple differently misaligned AI agents, none of which are individually well-4

aligned. Our key insight is that when the user’s utility function lies approximately5

within the convex hull of the AI agents’ utility functions—a condition that becomes6

weaker as more diverse models become available—strategic competition among7

the agents can yield outcomes comparable to interacting with a perfectly aligned8

model.9

We model this as a multi-leader Stackelberg game extending Bayesian persuasion10

to multi-round conversations between differently informed parties. We prove11

three main results of increasing generality: (1) When perfect alignment would12

allow the user to learn their Bayes-optimal action, she is also able to learn her13

Bayes-optimal action in all equilibria under our convex hull condition; (2) Under14

a weaker assumption requiring only approximate utility learning, a non-strategic15

user employing quantal response achieves near-optimal utility in all equilibria;16

(3) When the user selects the best single AI to interact with after an evaluation17

period, in equilibrium near-optimal utility is guaranteed without any additional18

distributional assumptions.19

We complement our theory with two empirical studies on ethical judgments20

(ETHICS) and movie recommendations (MovieLens). Using 100 diverse LLM-21

based agents per domain to label each instance with utilities and fit non-negative22

linear and simplex (convex) combinations and evaluate the MSE of the best fit23

with respect to a ground-truth “human” utility. Across both domains, the best24

utility function in the convex hull of the LLM utilities achieves substantially lower25

alignment error (MSE to a ground-truth “human” utility) than the best single one26

does.27

1 Introduction28

Aligning a single AI model to the objectives of its user is a hard problem, not just because of technical29

complexity, but because the incentives of AI designers may themselves be misaligned with users.30

But does our inability to solve the alignment problem preclude our ability to get the benefits of31

interacting with a strong aligned model? In this paper we study a setting in which it does not: when32

we may interact with multiple differently misaligned models in a strategic setting. In particular, we33

study settings in which there are many AI models available. They are produced by providers like e.g.34

OpenAI, Anthropic, Google, Meta, AWS, and xAI. These companies produce models reflective of35
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their own incentives, none of which are necessarily well aligned to their user. There has recently been36

significant concern that the designers of LLMs are already training them to influence users towards37

the politics of their creators [Menn, 2025, Kay, 2025, Gilbert, 2024, Trump, 2025, Hackenburg et al.,38

2025]. In lieu of alignment of any model, we assume instead a much weaker condition: that (for39

a well specified task), an approximation of the user’s utility function lies somewhere in the convex40

hull of the utility functions of each of the AI companies. This is a condition that does not require41

that any single model is optimizing a utility function that is similar to that of the human user, and42

becomes a weaker assumption the more differently aligned models there are that are available to use.43

We remark at the outset that we primarily use the language of alignment of the human designers,44

and speak as if these designers are the strategic actors — but we could also think about the agents45

training and developing these AIs as themselves being AIs, whose individual misalignment results46

from the difficulty of the technical alignment problem. Having AI models themselves involved in the47

AI training process is a prominent part of thinking about the development of “super-intelligence” (see48

e.g. [Kokotajlo et al., 2025]) and is already part of current practice in more limited ways [Leike et al.,49

2018, Bai et al., 2022].50

There are many ways that our approximate average alignment assumption could arise amongst51

competing AI providers. Consider a near-future scenario in which a human doctor has access to52

predictive medicine LLMs able to aid in the diagnoses and treatment of patients. The goal of the53

human doctor might be to provide the best treatment possible for her patients. Companies on the54

other hand might opt for better treatments all else being equal, but might also prefer to prescribe55

drugs they have manufactured (say if that drug company is the creator or financial sponsor of the56

model). This preference results in a significantly misaligned model. However, since each drug has57

a single manufacturer, the “misaligned portion” of the AI model utilities is zero sum, and if all of58

the relevant drug companies participate in the predictive medicine LLM market, the doctor’s utility59

function will be in the convex hull (in fact the simple average) of the AI model utilities.60

Alternately, if the strategic agents are themselves AI models, it may be that their designers attempted61

to produce them with perfectly aligned utility functions, but failed because the task is difficult. If62

we view the training of an AI as a stochastic process, we can think of the utility function of an AI63

model as a random variable whose value is realized during the training process. Perhaps for each AI64

model, its utility function is — in expectation — equal to the human user’s utility function, because65

that is the target — but its realization has high variance, because alignment is hard. In a setting like66

this, it may be extremely unlikely that any single trained model is well aligned with the human user,67

but it will still be very likely that the user’s utility function will be close to the convex hull of a large68

number of trained models because of concentration of measure.69

We study how, in settings where approximate average alignment holds, strategic interactions between70

different models or model providers can allow the human user to realize the full benefit of interacting71

with a single perfectly aligned model by interacting with many differently misaligned models. While72

most AI safety research focuses on aligning individual systems or cooperative multi-agent approaches,73

we study how the benefits of perfect alignment can emerge from market-like competition among74

misaligned AI providers.75

1.1 Our Model and Results76

We adopt a game theoretic model with Bayesian agents in the style of the Bayesian Persuasion
literature [Kamenica and Gentzkow, 2011]. A human user named Alice has a set of actions a ∈ A
that she can take, but which action is best depends on an underlying state of the world y ∈ Y that
is unknown to her. We model this by endowing Alice with a utility function uA : A× Y → [0, 1],
mapping an action a and a state of the world y to a utility uA(a, y) that she wishes to maximize.
Before taking an action, she can engage in conversation with any of k interlocutors modeling
conversational AI agents, all of whom are named Bob. Each Bob i has a (potentially very different)
utility function Ui : A×Y → [0, 1] also mapping Alice’s action and the state of the world to a utility,
which they want to maximize. We assume throughout that Alice’s utility approximately lies in the
convex hull of the Bob’s utility functions:

sup
a∈A,y∈Y

∣∣∣∣∣
(

k∑
i=1

wiUi(a, y) + c

)
− uA(a, y)

∣∣∣∣∣ ≤ ε.
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where wi are non-negative weights and c is an arbitrary translation parameter. For normalization we77

assume that the sum of the weights wi is at most 1, but this choice is arbitrary — some of our results78

would have error terms scaling with the sum of these weights if they were unconstrained. There79

is an underlying prior distribution over triples xA, xB , y where y is the state of the world, xA are80

observations made by Alice the human user (but possibly not the AI models), and xB are observations81

made by the AI models (but possibly not the human user). Alice wishes to converse with the models82

because the information xB that they possess is correlated with y and hence potentially decision83

relevant for her.84

The AIs (or their designers) each commit to a conversation rule, which specifies for any prefix of85

a conversation how to continue it. This commitment models e.g. fixing the weights of a particular86

version of an LLM and deploying it. Alice, knowing all of the AI conversation rules, “best responds”87

with her own conversation rule, and after engaging in conversation with each AI model forms a88

posterior belief about the state y, and then takes the action that maximizes her utility in expectation89

over this posterior. Thus a set of conversation rules that the AI models commit to induces through90

this interaction a joint distribution over outcomes y and actions a that Alice chooses, and gives a91

different expected utility to each AI model. In choosing which conversation rule to commit to, the92

AI models (or their designers) find themselves in a simultaneous move game, in which the utility is93

determined by Alice’s downstream use of the deployed models. Our interest is in Alice’s utility in the94

Nash equilibria of this game, played amongst the AI models (or their designers).95

Our aspirational point of comparison is the utility that Alice could obtain if she were able to interact96

with a single, perfectly aligned interlocutor. A perfectly aligned provider would choose a conversation97

rule to maximize Alice’s utility after she best responded (i.e. used the model optimally). Our98

results explore settings in which this goal is obtainable even when none of Alice’s interlocutors are99

individually well aligned, in increasing order of generality. In all of the following results we assume100

that Alice’s utility approximately lies in the convex hull of each of the AI model’s utility functions101

(or more generally is a non-negative linear combination of them).102

1. First we show in Section C that whenever it is feasible for a single model to en-103

gage in a conversation with Alice that causes her to learn her Bayes optimal action104

a∗ = argmaxa∈A E[u(a, y)|xA, xB ] — and hence, whenever a perfectly aligned model105

would cause Alice to do so, then if Alice’s utility function lies in the convex hull of the106

Bob’s utility functions, in any Nash equilibrium of the game, Alice is able to learn her Bayes107

optimal action — and hence do as well as if she were interacting with a perfectly aligned108

model.109

2. In Section D we study a model in which Alice acts non-strategically: she always interacts110

with AIs using a straightforward conversation rule, which truthfully reports the posterior111

expectation of each of her actions at each round of conversation. At the end of conversation,112

she chooses her action using quantal response (a form of “smooth best response” in which113

the maximum is replaced by a softmax operator, which is a common model of bounded114

rationality in the behavioral economics literature [McKelvey and Palfrey, 1995]). We can115

view these assumptions either as modeling a boundedly rational Alice (as they would be116

interpreted in the behavioral economics literature), or as explicit behavioral commitments117

that a strategic Alice makes in order to be able to enjoy the more robust guarantee that118

we prove under this model. In particular we can relax the condition that Alice is able to119

learn her Bayes optimal action exactly when conversing with a perfectly aligned model120

to the condition that she learns the approximate utility of playing each of her actions —121

i.e. she is able to approximate E[u(a, y)|xA, xB ] for each a. We show that this weaker122

condition suffices for Alice to obtain (approximately) the utility that she could have obtained123

interacting with a perfectly aligned model in every Nash equilibrium of the game induced124

amongst the AI models. In particular, if the underlying distribution satisfies the “information-125

substitutes” condition studied by Frongillo et al. [2021] or its generalization studied by126

Collina et al. [2025a], we show that this is enough to guarantee that a perfectly aligned127

model could inform Alice of the approximate Bayes utilities of each of her actions, allowing128

us to invoke our equilibrium guarantees.129

3. In Section E we dispense with all assumptions on the instance and instead change the130

communication protocol. Rather than assuming that Alice will interact with all k of the AI131

models before making each decision, we assume that once the k AIs (or their designers)132

commit to a set of conversation rules, Alice will evaluate each of them to compute the133
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expected utility (over the distribution of instances) that she would get by interacting with134

each one individually, and then will choose to interact with only the single model that135

guarantees her highest expected utility, for all instances. We can view this either as a136

behavioral commitment on Alice’s part or a modeling assumption about the market (i.e.137

maybe Alice signs a contract with only one of the model providers after an evaluation138

period). In this case, we show that without any further assumptions on the instance, in139

equilibrium Alice is always able to obtain utility comparable to what she could have obtained140

by interacting with a perfectly aligned model.141

Finally in Section F we conduct a simple (stylized) experiment designed to test our core premise142

that given a set of AI models, there may be a utility function in the convex hull of the set of all143

AI agent utility functions that is substantially better aligned than any of the individual AI utility144

functions themselves. We test this premise on two experiments on two datasets. In the first we145

simulate a “human” utility function by using an LLM with a hand-crafted prompt, and ask it to146

evaluate 1000 ethical scenarios from the ETHICS dataset [Hendrycks et al., 2021]. To simulate “AIs”147

that are designed to be aligned with the human utility function but are only noisy approximations,148

we produce perturbations of the original (“human”) prompt by asking a language model to rephrase149

the prompt while maintaining its core intent. We produce 100 such perturbations, resulting in up to150

100 “AI personas” that we also use to evaluate the same 1000 ethical scenarios. Finally as a function151

of the number of AI models k (ranging from 2 to 100) we evaluate the alignment (as measured152

by mean-squared error of the ratings to the “human” ratings) of 1) the best aligned of the k AI153

personas, 2) the simple average of the k AI personas, and 3) the best aligned utility function that154

can be computed within the convex hull (more generally non-negative linear combination) of the k155

AI personas. We repeat the experiment on the MovieLens dataset [Harper and Konstan, 2015] in156

which we use the average human annotation of movies as the “human” utility and similarly simulate157

100 AI utility functions through 100 variations of a prompt. On both datasets we find that the best158

utility function in the convex hull of the AI utility functions is substantially better aligned to the159

“human” than either any of the AI personas themselves, or the simple average. This supports our main160

conceptual contention that the target of alignment within the convex hull of many models may be161

substantially easier to obtain than alignment of any single model individually.162
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A Related Work246

Bayesian Persuasion Bayesian Persuasion was introduced by Kamenica and Gentzkow [2011] —247

in the canonical model, there is a single informed “sender” and an uninformed “receiver” who share a248

common prior. The sender commits to a “signaling scheme”, which is a mapping from observations249

to messages sent to the receiver, who conditions on the message and takes their best response action250

under their posterior. We adopt the basics of this model, but extend it by allowing that both parties251

be differently informed, and that interaction involve a multi-round conversation rather than a single252

message. Multi-sender Bayesian Persuasion was introduced by Gentzkow and Kamenica [2016] and253

studies the standard Bayesian Persuasion model with multiple senders who simultaneously commit to254

a signaling scheme (playing, as in our paper, a simultaneous move commitment game). Subsequently255

a number of papers have studied multi-sender Bayesian Persuasion [Gentzkow and Kamenica, 2017,256

Li and Norman, 2018, Au and Kawai, 2020, Wu, 2023]. We focus here on the most relevant papers in257

this literature.258

Ravindran and Cui [2020] study competing senders with zero-sum preferences over a receiver’s259

beliefs. They show that competition leads to full revelation of the state in all equilibria, provided the260

senders’ utility functions are “globally nonlinear”. This technical condition can hold in a standard261

receiver model only if the receiver has a different optimal action for every distinct state of the world.262

This condition cannot hold whenever e.g. the number of states of the world exceeds the number of263

actions. Our work does not assume that the leaders Bob are engaged in a zero-sum game with each264

other — rather our weighted alignment assumption can be viewed as assuming that the misaligned265

portions of their utility functions are approximately zero-sum under some non-negative reweighting.266

We also do not require an analogue of the “globally nonlinear” assumption, and so our results can267

apply to settings in which the state space is large.268

Gradwohl et al. [2022] study a Bayesian persuasion game in which a receiver chooses to interact269

with only one of several competing senders (similar to our model in Section E). As we do, they find270

that competition can force senders to be fully informative in equilibrium. In addition to the greater271

generality of our setup beyond Bayesian persuasion, our work differs in its core assumptions. The272

assumption driving the results of Gradwohl et al. [2022] is that the senders are uncertain about each273

other’s utility functions, and that any sender has a non-zero probability of being perfectly aligned274

with the receiver. We instead introduce and use the arguably more general “approximate weighted275

alignment” assumption, which only requires the user’s utility to lie within the convex hull of the AI276

agents’ utilities — we do not require any uncertainty about the AI agent utility functions, or any277

possibility that any of them are individually aligned with the user.278
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Hossain et al. [2024] study the problem of multi-sender Bayesian Persuasion from a computational279

perspective, and prove worst-case hardness results for both the receiver’s best-response problem and280

for the senders’ equilibrium computation problem. They also design and evaluate neural network281

architectures suited to the (heuristic) computation of equilibria in such games.282

AI Alignment Our work fits broadly into the study of multi-agent AI systems [Guo et al., 2024].283

We present a game theoretic approach in which “alignment” emerges from the competitive interaction284

of many mis-aligned agents. Recent work has explored cooperative multi-agent approaches to AI285

safety, where multiple AI systems work together to improve alignment outcomes. Constitutional AI286

[Bai et al., 2022] uses AI feedback to train more helpful and harmless models, with one AI system287

providing critiques and revisions of another’s outputs. Similarly, approaches using AI systems to288

evaluate and improve other AI systems [Leike et al., 2018] rely on cooperative dynamics where the289

evaluating system is assumed to be sufficiently aligned to provide useful feedback. These approaches290

typically assume that at least some components of the multi-agent system are well-aligned or that the291

agents share compatible objectives.292

Our work differs by studying strategic rather than cooperative multi-agent settings. This bears some293

similarity to AI alignment via “debate” as proposed by Irving et al. [2018]. In their setup, two AI294

agents take turns making arguments about some proposition (e.g. the factuality of some claim), and295

at the end one of them is chosen as the “winner” of the debate by a human user. The goal of each296

agent is only to be declared the winner, and so this is a two-player zero sum game. The hope is297

that the equilibrium strategy will be to be honest, because “it is harder to lie than to refute a lie.”298

Several subsequent theoretical works have been motivated by AI safety via debate. For example,299

Brown-Cohen et al. [2024, 2025] study multi-prover proof systems and study what kinds of problems300

have solutions such that an “honest prover” has a winning strategy implementable by a Turing301

machine of bounded complexity and a verifier that makes a bounded number of oracle calls to human302

judgment. Chen et al. [2024] use AI debate as motivation for studying the problem of learning in very303

large zero sum games through use of an oracle. A main conceptual difference between our model and304

this literature is that we do not assume that the AI agents are motivated to be “chosen” as winners,305

but rather that they aim to influence Alice’s behavior (in a complex decision space with non-binary306

actions and outcomes). Our work can be viewed as an extension of the AI debate model beyond two307

player zero sum games, to many LLMs who may have goals in common, but who desire to influence308

user behavior in different ways.309

Several recent papers with alignment motivations [Collina et al., 2025b,a, Nayebi, 2025] have studied310

agreement protocols through which conversational agents can come to agreement about their beliefs311

through short interactions. These should be viewed as protocols for cooperative agents, as they are312

assumed to express their true beliefs at each iteration of conversation. We adopt the conversational313

framework of these papers but study strategic agents who do not have the same goals. Our work can314

both be viewed as a strategic generalization of the agreement literature [Aaronson, 2005, Frongillo315

et al., 2021, Collina et al., 2025a,b, Nayebi, 2025], and a generalization of the (already strategic)316

Bayesian Persuasion literature beyond simple one-round signaling schemes used to communicate317

between an informed party and an uninformed party to multi-round conversation protocols used by318

differently informed parties.319

B Preliminaries320

This section establishes the formal framework for our analysis. We first introduce the players321

and their information structure (Appendix B.1), then present our key modeling assumption about322

approximate weighted alignment (Appendix B.2), and finally define the communication protocol and323

game structure (Appendix B.3).324

B.1 Players and Information Structure325

We model the interaction as a multi-leader Stackelberg game, extending the Bayesian persuasion326

framework to our setting. The key insight is that AI providers (leaders) commit to conversation327

strategies first, knowing that the human user (follower) will observe these strategies and respond328

optimally. This captures the reality that AI systems are deployed with fixed parameters, while users329

can adapt their interaction strategies. Alice observes features xA ∈ XA and must choose an action330
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a ∈ A. Each Bobi observes features xB ∈ XB . There is a state of the world y ∈ Y that is not directly331

observed by any player. All players have utility functions that depend on Alice’s action and the state332

of the world to a utility in [0, 1]:333

uA : A× Y → [0, 1],

Ui : A× Y → [0, 1] ∀i ∈ [k].

B.2 The Weighted Alignment Assumption334

Having established the basic game structure, we now turn to our key modeling assumption: that335

Alice’s utility can be approximately represented as a weighted combination of the AIs’ utilities.336

Definition 1 (Approximate Weighted Alignment). A key assumption of our model is that there exists
a weighted combination of the Bobs’ utilities that is approximately aligned with Alice’s. Formally,
we assume there exist non-negative weights w1, . . . , wk ≥ 0 with

∑
i wi = 1, an offset c ∈ R, and

an alignment error ε ≥ 0 such that:

sup
a∈A,y∈Y

∣∣∣∣∣
(

k∑
i=1

wiUi(a, y) + c

)
− uA(a, y)

∣∣∣∣∣ ≤ ε.

This assumption is central to our results. In Appendix H, we provide a probabilistic foundation337

showing that this condition holds with high probability when AI systems are designed to be aligned338

in expectation but suffer from implementation noise.339

Remark 1 (When This Assumption is Reasonable). This assumption captures several realistic scenar-340

ios:341

• Competitive markets: If AI providers have different commercial interests that are zero-sum342

(like the medical example in the introduction), Alice’s utility may lie exactly in the convex343

hull.344

• Noisy alignment: If each AI attempts to optimize Alice’s utility but with implementation345

noise, the average will be close to Alice’s true utility (see Appendix H).346

• Diverse objectives: Even if AIs have systematically different goals, Alice’s utility may still347

lie approximately in their convex hull if the AIs span a diverse enough range of objectives.348

Remark 2. As stated, we assume that Alice’s utility can be approximately represented within (a349

translation of) the convex hull of the Bob’s utilities, since
∑

i wi = 1. First note that we can easily350

take
∑

i wi ≤ 1 by introducing a dummy Bob with utility uniformly 0. The normalization
∑

i wi = 1351

is also just for convenience: if instead
∑

i wi = C, then all of our results would continue to hold —352

the only difference would be that the approximation terms in Section D would now depend linearly353

on C (the theorems in the other sections would not change at all).354

B.3 Communication Protocol and Game Structure355

With the alignment assumption in place, we can now define the communication protocol that governs356

how Alice and the AIs interact.357

Probabilistic Model and Beliefs We assume there is a commonly known prior distribution358

P (xA, xB , y) over Alice’s features, the Bobs’ features, and the state of the world. Given some359

information F (e.g., a conversation transcript or a subset of features), Alice forms a belief about her360

expected utility for each action. We denote this belief vector as µ(F) := (Ey[uA(a, y) | F ])a∈A.361

Definition 2 (First-Best Utility). We define the first-best utility, OPT , as Alice’s expected utility if
she had access to all features (xA, xB). Formally:

OPT := E(xA,xB)

[
max
a∈A

Ey[uA(a, y) | xA, xB ]

]
.

Remark 3. The first-best utility OPT represents Alice’s utility if she had perfect informa-362

tion—knowing both her private features xA and all AIs’ private features xB . This serves as an363

upper bound on what any communication protocol can achieve, since no amount of conversation can364

provide Alice with more information than she would have with direct access to all features.365
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B.4 The Communication Protocol366

The communication protocol models realistic constraints on human-AI interaction: conversations367

have limited rounds, messages have bounded complexity, and the human must process information368

from multiple AIs simultaneously. Alice engages in parallel private conversations with each AI,369

which captures settings where she can query multiple models independently.370

In most of the paper, Alice engages in a series of R rounds of private, parallel conversations with371

each of the k Bobs (we will change the protocol in Section E). Let M be the message space.372

We now formalize each player’s strategic choices. Each AI commits to a conversation rule (how to373

respond given the conversation history) while Alice chooses both a conversation rule (how to query374

the AIs) and a decision rule (how to act given the final conversation outcomes).375

Definition 3 (Player Strategies). Each player’s strategy is defined by a set of rules governing their376

communication and decisions.377

• Bobi’s conversation rule CBi
maps his features and his private conversation history with

Alice to a distribution over messages:

CBi : XB ×M<R → ∆(M).

• Alice’s conversation rule CA maps her features and the full history of all k conversations
to a distribution over next messages for each Bob:

CA : XA × (M<R)k → ∆(Mk).

• Alice’s decision rule DA maps her features and the full conversation history to a distribution
over actions:

DA : XA × (MR)k → ∆(A).

Definition 4 (Best Response Decision Rule). A best-response decision rule is a deterministic rule
D∗

A that, given the final posterior belief µ(xA, π) derived from Alice’s features xA and a transcript π,
selects an action that maximizes Alice’s expected utility:

D∗
A(xA, π) ∈ argmax

a∈A
µa(xA, π).

In cases of ties, a fixed, predetermined rule is used.378

The Game. The game proceeds as a multi-leader, single-follower Stackelberg game, with the379

following timing:380

1. Each Bobi simultaneously commits to a conversation rule CBi
.381

2. Alice observes the chosen conversation rules C⃗B = (CB1
, . . . , CBk

), and then chooses her382

own conversation rule and decision rule CA and DA.383

3. An instance (xA, xB , y) is sampled from the prior distribution P . Alice observes xA and384

each Bob observes xB .385

4. Alice and the Bobs engage in the communication protocol defined by C⃗B and Alice’s own386

conversation rule CA to sample a conversation transcript π. The protocol is defined precisely387

in Algorithm 1.388

5. Alice samples an action a according to her decision rule a = DA(xA, π), and all players389

receive their utilities uA(a, y) and Ui(a, y).390
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Algorithm 1 SAMPLETRANSCRIPT(C⃗B , CA): A protocol for sampling a transcript.

Require: Conversation rules C⃗B , CA.
Ensure: A transcript π = (m1, . . . ,mk) where mi is the history of messages between Alice and

Bobi.
Initialize empty histories hi = () for all i ∈ [k].
for r = 1, . . . , R do

Alice sends a message to each Bob: (mA,1, . . . ,mA,k) ∼ CA(xA, (h1, . . . , hk)).
Append messages to histories: hi ← hi ◦mA,i for all i.
for each i ∈ [k] do

Bob i sends a message to Alice: mB,i ∼ CBi
(xB , hi).

Append message to history: hi ← hi ◦mB,i.
end for

end for
return transcript π = (h1, . . . , hk).

Induced Distributions and Equilibria391

Definition 5 (Induced Distribution). A set of strategies (C⃗B , CA, DA) induces a joint distribution392

over conversation transcripts π, actions a, and world states y. We denote the marginal distribution393

over actions and outcomes by I(C⃗B , CA, DA).394

Since Alice observes the Bobs’ conversation rules C⃗B before choosing her own, she will play a best395

response. A rational Alice will always use the Best Response Decision Rule (Definition 4) to select396

her action after the conversation concludes. Therefore, her only strategic choice is her conversation397

rule, CA.398

Definition 6 (Alice’s Best-Response Conversation Rule). Given a vector of Bobs’ conversation rules
C⃗B , Alice’s best-response conversation rule C∗

A is one that maximizes her expected utility, assuming
she will use the best-response decision rule D∗

A:

C∗
A ∈ argmax

CA

E(a,y)∼I(C⃗B ,CA,D∗
A)[uA(a, y)].

When multiple conversation rules yield the same maximal utility, a fixed tie-breaking rule is used.399

We write C∗
A = C∗

A(C⃗B) to make the dependency on C⃗B explicit.400

Since Alice plays a best response, we can define the resulting induced distribution as a function of401

the Bobs’ strategies alone: I∗(C⃗B) = I(C⃗B , C
∗
A(C⃗B), D

∗
A(C⃗B)). With Alice’s response fixed, the402

Bobs engage in a simultaneous-move game. We study the Nash equilibria of this game.403

Definition 7 (Nash Equilibrium). A vector of Bobs’ conversation rules C⃗B
∗
= (C∗

B1
, . . . , C∗

Bk
) is a

Nash Equilibrium if no Bobi can improve his expected utility by unilaterally deviating to a different
rule C ′

Bi
. That is, for all i ∈ [k] and for all alternative rules C ′

Bi
:

E(a,y)∼I∗(C⃗B
∗
)[Ui(a, y)] ≥ E(a,y)∼I∗((C′

Bi
,C⃗∗

B,−i))
[Ui(a, y)].

Our interest is in lower bounding Alice’s utility in all Nash equilibria of this game. In particular, we404

will be interested in settings in which her utility is guaranteed to be competitive with what she would405

have received were Alice to be interacting with a single, perfectly aligned leader.406

Definition 8 (Utility with an Aligned Leader). A useful benchmark is the utility Alice could achieve
if she were interacting with a single, perfectly aligned leader Bob. A perfectly aligned leader is one
whose utility function is identical to Alice’s, i.e., UB(a, y) = uA(a, y). Such a leader would choose
a conversation rule C∗

B to maximize Alice’s expected utility. We denote this maximum achievable
utility as UA(C

∗
B):

UA(C
∗
B) := max

CB

E(a,y)∼I∗(CB)[uA(a, y)].

This represents the best possible outcome for Alice given the constraints of the communication407

protocol with a single, fully cooperative partner.408
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Note that the utility that Alice can obtain when interacting with a perfectly aligned leader is at most her409

first best utility: UA(C
∗
B) ≤ OPT . In some situations we will have UA(C

∗
B) = OPT (for example410

if the message space is sufficiently expressive to encode xA over R rounds of communication), but if411

the message space is more restrictive the inequality could be strict.412

C Competition Achieves Optimal Outcomes in Ideal Scenarios413

Our first result shows that if Alice could achieve her first-best utility by talking to a single perfectly414

aligned AI, then she can achieve nearly the same utility in equilibrium when talking to many415

misaligned AIs—provided her utility lies in the convex hull of theirs.416

This section establishes this result through two steps. First, we identify a key structural condition—the417

“Identical Induced Distribution Condition"—that captures when there is a fixed deviation such that418

different Bobs adopting the same deviation lead to the same decisions by Alice (Appendix C.1) —419

i.e. Alice’s behavior depends on what she learns, but not who taught it to her. Second, we prove that420

under this condition, strategic competition automatically leads Alice to achieve near-optimal utility421

(Appendix C.2). We observe that this condition is in particular satisfied when a perfectly aligned Bob422

could cause Alice to learn her Bayes optimal action.423

C.1 The Identical Induced Distribution Condition424

The key technical condition driving our result is that it “doesn’t matter" which Bob adopts the425

Alice-optimal strategy—Alice gets the same outcome regardless. This holds, for example, when the426

Alice-optimal strategy allows her to learn her Bayes-optimal action, since she’ll act on this no matter427

who teaches it to her.428

We now formalize this condition. Let C∗
B be a conversation rule for a single leader that maximizes429

Alice’s utility (i.e. a conversation rule that a perfectly aligned Bob would use), and let UA(C
∗
B) be430

this maximum single-leader utility.431

Definition 9 (Identical Induced Distribution Condition). A game structure satisfies the identical
induced distribution condition if for any strategy profile C⃗B and any two Bobs i, j ∈ [k], the
distributions induced by a unilateral deviation to C∗

B are identical. That is,

I∗((C⃗B
−i
, C∗

B)) = I∗((C⃗B
−j

, C∗
B)).

Observe that the Identical Induced Distribution Condition will hold in any setting in which it is in432

Bob’s strategy space to cause Alice to learn her optimal action (and hence obtain her first-best utility433

OPT ):434

Proposition 1 (When the Condition is Satisfied). The identical induced distribution condition is435

satisfied if the Alice-optimal leader strategy C∗
B allows Alice to learn her Bayes-optimal action436

a∗(xA, xB) = argmaxa∈A Ey[uA(a, y)|xA, xB ].437

Proof. Suppose a leader i ∈ S unilaterally deviates to the Alice-optimal conversation rule C∗
B . By438

assumption, Alice has a conversation rule that would allow her to learn her Bayes-optimal action,439

a∗(xA, xB) by interacting with C∗
B . Alice’s strategy space includes the option of ignoring all Bobs440

other than i and playing her best response as if it were a single-leader game with leader i. Since Alice441

plays a best-response to the full set of strategies C⃗B , her utility must be at least as high as what she442

could get from this simpler strategy.443

When Alice learns the specific action a∗(xA, xB), her best response is to play that action (or a444

distribution over optimal actions if there are ties, according to her fixed tie-breaking rule). This445

response depends only on the information she learns, not on the identity of the Bob who provided446

it, since we assume that ties amongst her best response actions are broken according to a fixed tie447

breaking rule. Therefore, if any Bob j ∈ S deviates to C∗
B , Alice will follow the same decision rule.448

Consequently, the induced distribution over actions and outcomes, I∗((C⃗B
−i
, C∗

B)), is identical for449

any deviating Bob i ∈ S. Thus, the condition is satisfied.450

Remark 4. A straightforward case where the condition of the proposition holds is when the message451

space M is rich enough to contain the Bobs’ feature space XB . In this setting, an optimal strategy452
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C∗
B can be for the Bob to simply reveal xB to Alice. With full knowledge of (xA, xB), Alice can453

compute her Bayes-optimal action a∗(xA, xB).454

Having established when the identical induced distribution condition holds, we now show that this455

condition is sufficient to guarantee that Alice achieves near-optimal utility in equilibrium. The proof456

relies on a simple observation about Nash equilibria: no Bob wants to deviate—in particular, to any457

conversation rule that would make Alice better off—but this constraint, combined with our alignment458

assumption, forces Alice’s utility to be high.459

C.2 Strategic Competition Leads to Near-Optimal Outcomes460

We can now state our first result: under the identical induced distribution assumption, approximate461

weighted alignment implies that in equilibrium, Alice gets utility that is approximately what she462

could get interacting with a single, perfectly aligned leader. In particular, if the message space is463

expressive enough to allow an aligned leader to communicate to Alice her Bayes-optimal action, then464

approximate weighted alignment is sufficient for Alice to obtain approximately her first-best utility.465

Theorem 1. If the multi-leader game satisfies the identical induced distribution condition, and if466

the leaders Bob satisfy the ε-weighted alignment condition, then Alice’s expected utility in any Nash467

equilibrium is at least UA(C
∗
B)− 2ε.468

Proof. Fix an arbitrary Nash equilibrium C⃗B and let INE = I∗(C⃗B) be the distribution induced by469

the equilibrium strategies. Now, consider a unilateral deviation by an arbitrary Bob i to the Alice-470

optimal strategy C∗
B . Let Idev = I∗((C⃗B

−i
, C∗

B)) be the induced distribution after this deviation.471

By the identical induced distribution condition, Idev is the same regardless of which Bob i deviates.472

When a single Bob i deviates to using the conversation rule C∗
B , Alice’s strategy space includes the

option of ignoring all other Bob’s j and engaging with Bob i as she would in the single-leader game.
Since Alice chooses a best-response strategy, her resulting utility must be at least as high as the utility
from this option, which is by definition UA(C

∗
B).

EIdev
[uA(a, y)] ≥ UA(C

∗
B).

By the Nash equilibrium condition, no Bob i has an incentive to deviate. Thus, for all i ∈ [k]:

EIdev
[Ui(a, y)] ≤ EINE

[Ui(a, y)].

Taking a weighted sum over all Bobs using the non-negative weights wi from the alignment assump-
tion (where

∑
wi = 1):

k∑
i=1

wiEIdev
[Ui(a, y)] ≤

k∑
i=1

wiEINE
[Ui(a, y)].

By linearity of expectation, this is equivalent to:

EIdev

[
k∑

i=1

wiUi(a, y)

]
≤ EINE

[
k∑

i=1

wiUi(a, y)

]
.

Now we use the approximate weighted alignment assumption, which states that
∑

wiUi(a, y) is
ε-close to uA(a, y)− c. For the left-hand side:

EIdev

[
k∑

i=1

wiUi(a, y)

]
≥ EIdev

[uA(a, y)− c]− ε = EIdev
[uA(a, y)]− c− ε ≥ UA(C

∗
B)− c− ε.

For the right-hand side:

EINE

[
k∑

i=1

wiUi(a, y)

]
≤ EINE

[uA(a, y)− c] + ε = EINE
[uA(a, y)]− c+ ε.

Combining these inequalities, we get:

UA(C
∗
B)− c− ε ≤ EINE

[uA(a, y)]− c+ ε.
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The constant offset c cancels, and we are left with:

UA(C
∗
B)− ε ≤ EINE

[uA(a, y)] + ε.

EINE
[uA(a, y)] ≥ UA(C

∗
B)− 2ε.

which completes the proof.473

This result provides strong guarantees but requires that a perfectly aligned AI could help Alice learn474

her exact optimal action. In Section D, we’ll show how to relax this to only requiring approximate475

learning, at the cost of Alice committing to bounded rational behavior.476

D Robust Guarantees for Users with Bounded Rationality477

The result in Section C required a strong assumption: that a perfectly aligned model could cause478

Alice to learn her exact Bayes optimal action. This implied the main technical condition we needed479

in Section C — the identical induced distribution condition (Definition 9). Here we relax our480

motivating assumption to a more realistic condition: a perfectly aligned model need only help Alice481

approximately learn the expected utility of each action. We show that this implies a relaxation of our482

main technical condition — an approximate version of the identical induced distribution condition483

(Definition 13) which we use in this section.484

To analyze this weaker setting, we study a model where Alice acts straightforwardly rather than485

strategically, committing to two behavioral rules: (1) she always reports her honest beliefs during486

conversation, and (2) she uses “quantal response” for decision-making—a form of bounded rationality487

where she chooses actions probabilistically based on their estimated utilities rather than always picking488

the best one. We can view these assumptions either as modeling a boundedly rational Alice, or as489

explicit behavioral commitments that a strategic Alice makes to enjoy more robust guarantees.490

This section proceeds in three steps. First, we introduce the quantal response model where Alice491

commits to straightforward conversation and bounded rational decision-making (Appendix D.1).492

Second, we prove that this leads to near-optimal utility in equilibrium under a technical condition493

relaxing the identical induced distribution condition (Appendix D.2). Finally, we show this condition494

is satisfied when the underlying distribution has the “information substitutes” property (Appendix D.3).495

The main result (Theorem 5) shows that under the Information Substitutes condition, Alice achieves496

near-optimal utility with an explicit bound depending on alignment error, estimation error, and the497

quantal response gap.498

D.1 The Quantal Response Model499

In this model, we assume Alice reacts to any set of conversation rules that the Bobs commit to using500

a straightforward conversation rule and a quantal response decision rule. This can be viewed either as501

a model of nonstrategic interaction and bounded rationality or as a strategic commitment by Alice to502

encourage more informative communication.503

Definition 10 (Straightforward Conversation Rule). The straightforward conversation rule models504

honest communication: at each round, a player simply reports their current beliefs about the ex-505

pected utility of each action. This can be viewed either as modeling non-strategic behavior or as a506

commitment device to encourage informative equilibria.507

Specifically, let πk−1
i denote the private transcript between Alice and Bob i up to round k − 1, and508

let π⃗k−1 = (πk−1
1 , . . . , πk−1

k ) be the full history available to Alice. If Alice uses the straightforward509

conversation rule, her message is mk
A = (E[uA(a, y) | xA, π⃗

k−1])a∈A. If Bob i uses the straight-510

forward conversation rule, his message is mk
Bi

= (E[uA(a, y) | xBi , π
k−1
i ])a∈A. We assume the511

message spaceM is sufficiently expressive to encode these vectors, e.g., [0, 1]|A| ⊆M. We denote512

Alice’s use of this rule as Csf
A .513

We model Alice as choosing her action using quantal response, a model of bounded rationality from514

behavioral economics [McKelvey and Palfrey, 1995].515

Definition 11 (Quantal Response Decision Rule). Rather than always choosing the action with516

highest estimated utility (which would be “best response”), Alice uses quantal response: she chooses517
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actions probabilistically, with higher-utility actions being more likely. The parameter λ controls how518

“rational” she is—as λ→∞, this approaches best response.519

Formally, given Alice’s features xA and the final transcript π⃗, from which she forms the posterior
belief µ(xA, π⃗) = (µa(xA, π⃗))a∈A, the probability of choosing action a is:

DQ
A(xA, π⃗)(a) =

exp (λµa(xA, π⃗))∑
a′∈A exp (λµa′(xA, π⃗))

.

In this version of the game, Alice commits to both a fixed conversation rule, Csf
A , and a fixed decision520

rule, DQ
A . The Bobs, knowing this, choose their conversation rules to form a Nash Equilibrium.521

Definition 12 (Quantal Response Equilibrium). Let Alice’s conversation rule CA be fixed to the522

straightforward conversation rule Csf
A and her decision rule be fixed to the λ-quantal rule DQ

A .523

Let IQ(C⃗B) = I(C⃗B , C
sf
A , DQ

A) be the induced distribution given a vector of Bob strategies C⃗B . A
strategy profile C⃗B

∗
is a Quantal Response Nash Equilibrium if for all Bobs i and all alternative rules

C ′
Bi

:
E(a,y)∼IQ(C⃗B

∗
)[Ui(a, y)] ≥ E(a,y)∼IQ((C′

Bi
,C⃗∗

B,−i))
[Ui(a, y)].

For reasonable values of λ, the quantal response decision rule gives Alice nearly as much utility as524

the best response decision rule, in expectation. As λ grows large quantal response approaches best525

response. The next lemma formalizes this.526

Lemma 1 (Quantal Response Gap). For any belief vector µ, the gap between the optimal utility and
the expected utility from a λ-quantal response is bounded:

max
a′∈A

µa′ −
∑
a∈A

exp (λµa)∑
a′′∈A exp (λµa′′)

µa ≤
log |A|

λ
.

Proof. Let a∗ = argmaxa∈A µa be an optimal action and let p(a) = exp (λµa)∑
a′∈A exp (λµa′ )

be the527

probability of choosing action a under the quantal response model, for brevity. The optimal utility528

given belief µ is µa∗ . The expected utility under quantal response is
∑

a∈A p(a)µa.529

The difference is:
µa∗ −

∑
a∈A

p(a)µa =
∑
a∈A

p(a)(µa∗ − µa).

From the definition of p(a), we have µa = 1
λ log(p(a)Z), where Z =

∑
a′ exp(λµa′). Substituting530

this in:531

µa∗ −
∑
a∈A

p(a)µa =
∑
a∈A

p(a)

(
µa∗ − 1

λ
(log p(a) + logZ)

)

= µa∗ − 1

λ

(∑
a∈A

p(a) log p(a) + logZ
∑
a∈A

p(a)

)

= µa∗ +
H(p)

λ
− logZ

λ
,

where H(p) is the Shannon entropy of the distribution p. Since Z =
∑

a′ exp(λµa′) ≥ exp(λµa∗),
we have logZ ≥ λµa∗ . Therefore,

µa∗ −
∑
a∈A

p(a)µa ≤ µa∗ +
H(p)

λ
− λµa∗

λ
=

H(p)

λ
.

The entropy H(p) is maximized when p is the uniform distribution over A, in which case H(p) =
log |A|. Thus, we have the bound:

max
a′∈A

µa′ −
∑
a∈A

DQ
A(π)(a)µa ≤

log |A|
λ

.

532
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Lemma 2 (Multiplicative Stability of Quantal Response). Let P = softmax(λu) and
Q = softmax(λu′) over A, where for a vector z ∈ RA we define softmax(z)a :=
exp(za)

/∑
b∈A exp(zb). If ∥u− u′∥∞ ≤ ε, then for each a ∈ A,

e−2λε ≤ P (a)

Q(a)
≤ e2λε.

Consequently,
∥P −Q∥1 ≤ e2λε − 1.

Proof. For any a, e−λε ≤ eλua

eλu′
a
≤ eλε, and for the partition functions Z =

∑
b e

λub , Z ′ =
∑

b e
λu′

b533

we have e−λεZ ′ ≤ Z ≤ eλεZ ′. Therefore e−2λε ≤ P (a)
Q(a) =

eλua/Z

eλu′
a/Z′ ≤ e2λε. Then |P (a)−Q(a)| =534

Q(a) |P (a)/Q(a)− 1| ≤ Q(a)(e2λε − 1). Summing over a gives ∥P −Q∥1 ≤ e2λε − 1.535

D.2 Equilibrium Analysis Under the (δ, C∗
B)-Close Condition536

Our goal in this subsection is to prove a bound on Alice’s utility in any equilibrium of the induced537

game (Theorem 2). Our proof strategy has several parts. First, to reason about equilibria, we need538

a way to compare the outcomes that result from different Bobs’ strategies. We formalize this with539

the (δ, C∗
B)-close condition (Definition 13), which states that any two Bobs unilaterally deviating540

to a reference strategy C∗
B should induce similar outcome distributions. Second, we show that this541

condition holds if the reference strategy allows Alice to learn her expected utility for each action542

with small error (Proposition 2). In Appendix D.3, we will show how the Information Substitutes543

condition provides a foundation for bounding this error, completing our argument.544

Definition 13 ((δ, C∗
B)-Close Condition). This condition captures the idea that it “doesn’t matter”545

which Bob adopts the reference strategy C∗
B—the resulting outcomes are similar regardless. Intu-546

itively, this holds when C∗
B allows Alice to learn something fundamental about the world state, rather547

than Bob-specific information.548

Formally, we say that a game satisfies the (δ, C∗
B)-close condition for a reference strategy C∗

B if
for any strategy profile C⃗B and any two Bobs i, j, the total variation distance between the induced
distributions resulting from their unilateral deviations to C∗

B is at most δ:

∥IQ((C⃗B,−i, C
∗
B))− IQ((C⃗B,−j , C

∗
B))∥1 ≤ δ.

We first prove a general result: if any Bob unilaterally adopting a reference strategy C∗
B would induce549

approximately the same outcome distribution (the (δ, C∗
B)-close condition), then Alice’s utility in any550

equilibrium of the induced game is close to the utility she would get from interacting with that single551

Bob using conversation rule C∗
B .552

Theorem 2 (Equilibrium Utility Bound with Quantal Response). Suppose the leaders Bob satisfy the
ε-weighted alignment condition and the game satisfies the (δ, C∗

B)-close condition (Definition 13) for
a reference strategy C∗

B . Let UA(C
∗
B) be Alice’s expected utility from interacting with a single Bob

using C∗
B . Then in any Quantal Response Nash Equilibrium (Definition 12), her expected utility is at

least:
EIQ

NE
[uA] ≥ UA(C

∗
B)− 2ε− δ.

Proof. Fix a Quantal Response Nash Equilibrium C⃗∗
B with induced distribution IQNE = IQ(C⃗∗

B).
Let Idev,j = IQ((C⃗∗

B,−j , C
∗
B)) be the distribution induced when Bob j unilaterally deviates. By the

definition of a Quantal Response Nash Equilibrium, no Bob j ∈ [k] has an incentive to deviate. This
implies that for every j ∈ [k]:

EIdev,j
[Uj ] ≤ EIQ

NE
[Uj ].

Taking a weighted sum with weights wj ≥ 0 where
∑

wj = 1:

k∑
j=1

wjEIdev,j
[Uj ] ≤

k∑
j=1

wjEIQ
NE

[Uj ].
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The right-hand side can be bounded using the weighted alignment assumption:

k∑
j=1

wjEIQ
NE

[Uj ] = EIQ
NE

∑
j

wjUj

 ≤ EIQ
NE

[uA − c] + ε = EIQ
NE

[uA]− c+ ε.

For the left-hand side, we first relate each term to a single anchor deviation by an arbitrary leader
Bob k. Let Idev,k be the distribution induced by Bob k’s deviation. The utility for Bob j under their
own deviation Idev,j is close to their utility under the anchor deviation Idev,k:

|EIdev,j
[Uj ]− EIdev,k

[Uj ]| ≤ ∥Idev,j − Idev,k∥1 ≤ δ.

Therefore, EIdev,j
[Uj ] ≥ EIdev,k

[Uj ]− δ. Applying this to the weighted sum:

k∑
j=1

wjEIdev,j
[Uj ] ≥

k∑
j=1

wj(EIdev,k
[Uj ]− δ) =

 k∑
j=1

wjEIdev,k
[Uj ]

− δ
∑
j

wj .

Since
∑

wj = 1, this simplifies to EIdev,k
[
∑

j wjUj ]− δ. We now apply the alignment assumption
to this term:

EIdev,k

∑
j

wjUj

− δ ≥ (EIdev,k
[uA]− c− ε)− δ.

By definition, Alice’s utility from this single-Bob deviation is EIdev,k
[uA] = UA(C

∗
B). So the LHS553

is bounded below by UA(C
∗
B)− c− ε− δ.554

Putting the full inequality back together:

UA(C
∗
B)− c− ε− δ ≤ EIQ

NE
[uA]− c+ ε.

The constant offset c cancels, and rearranging yields theorem:

UA(C
∗
B)− 2ε− δ ≤ EIQ

NE
[uA].

555

Next we show that any conversation rule that in the single leader game would cause Alice to556

approximately learn the utility of each of her actions satisfies the approximate closeness condition557

needed to invoke Theorem 2.558

Proposition 2 (Uniform Utility Estimation Error Implies δ-Close). Suppose a reference conversation559

rule C∗
B is such that when used with Alice’s fixed straightforward conversation rule Csf

A , the utility560

estimates are uniformly accurate across actions, almost surely: for all (xA, xB) and all transcripts π⃗561

generated under (Csf
A , C∗

B), we have ∥µ(xA, π⃗)− µtrue(xA, xB)∥∞ ≤ εu. Then the game satisfies562

the (δ, C∗
B)-close condition (Definition 13) with δ ≤ e4λεu − 1.563

Proof. Let C⃗B be an arbitrary vector of Bobs’ strategies. The distribution Idev,i is induced when Bob564

i unilaterally deviates to a reference strategy C∗
B , so the vector of Bobs’ strategies is (C⃗B,−i, C

∗
B).565

Similarly, for Bob j’s deviation, the strategy vector is (C⃗B,−j , C
∗
B). Our goal is to show that the566

total variation distance between the induced distributions IQ((C⃗B,−i, C
∗
B)) and IQ((C⃗B,−j , C

∗
B))567

is bounded, for any C⃗B .568

The induced distributions from the deviations by i and j are joint distributions over Alice’s action a569

and the world state y. Let Pi(a, y) and Pj(a, y) denote these distributions. We first show that the570

total variation distance between them is bounded by the expected distance between Alice’s action571

distributions, conditioned on the features.572

By the law of total probability, the joint distribution Pk(a, y) (for k ∈ {i, j}) is given by integrating
over the features (xA, xB):

Pk(a, y) =

∫
XA,XB

P (xA, xB)Pk(a, y | xA, xB) dxAdxB = E(xA,xB)[Pk(a, y | xA, xB)].
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The conditional distribution Pk(a, y | xA, xB) factors according to the causal structure of the game:573

first a transcript π is generated, then an action a is chosen. The state y is conditionally independent of574

the transcript and action given the features. Thus, Pk(a, y | xA, xB) = P (y | xA, xB)qk(a | xA, xB),575

where qk(a | xA, xB) is Alice’s action probability given the features under deviation k.576

Now we bound the total variation distance:577

∥Idev,i − Idev,j∥1 =
∑
a∈A

∫
Y
|Pi(a, y)− Pj(a, y)| dy

=
∑
a

∫
y

|E(xA,xB)[P (y|xA, xB)(qi(a|xA, xB)− qj(a|xA, xB))]| dy

≤
∑
a

∫
y

E(xA,xB)[P (y|xA, xB)|qi(a|xA, xB)− qj(a|xA, xB)|] dy (Jensen’s Ineq.)

= E(xA,xB)

[∑
a

|qi(a|xA, xB)− qj(a|xA, xB)|
∫
y

P (y|xA, xB) dy

]
(Fubini’s Thm.)

= E(xA,xB)

[∑
a

|qi(a|xA, xB)− qj(a|xA, xB)|

]
(since

∫
y

P (y|·)dy = 1)

= E(xA,xB)[∥qi(·|xA, xB)− qj(·|xA, xB)∥1]

Here, qk(·|xA, xB) = Eπ⃗∼Πk(xA,xB)[D
Q
A(xA, π⃗)] is Alice’s action distribution for a given (xA, xB),578

averaged over all possible transcripts π⃗ that could be generated when the Bobs’ strategies are579

(C⃗B,−k, C
∗
B).580

Let µ(xA, π⃗) be Alice’s posterior utility vector and let µtrue(xA, xB) be the true expected utility581

vector. Let π⃗i and π⃗j be random variables for the transcripts generated under deviations by i582

and j respectively. By the uniform-accuracy hypothesis, for all (xA, xB) and all transcripts we583

have ∥µ(xA, π⃗i) − µtrue(xA, xB)∥∞ ≤ εu and ∥µ(xA, π⃗j) − µtrue(xA, xB)∥∞ ≤ εu. Hence584

∥µ(xA, π⃗i)− µ(xA, π⃗j)∥∞ ≤ 2εu deterministically.585

Conditioning on (xA, xB , π⃗i, π⃗j), apply Lemma 2 with ε = 2εu to the quantal response distributions
to obtain

∥DQ
A(xA, π⃗i)−DQ

A(xA, π⃗j)∥1 ≤ e4λεu − 1.

Taking expectations over (xA, xB , π⃗i, π⃗j) preserves the bound, and by the reduction above from joint
to action-marginal differences we conclude

∥Idev,i − Idev,j∥1 ≤ e4λεu − 1.

This proves the claim with δ = e4λεu − 1.586

Corollary 1 (High-Probability Uniform Error Implies δ-Close). Under the setup of Proposition 2,
suppose there exists an event E with probability at least 1 − ρ over (xA, xB) and transcript ran-
domness such that for all (xA, xB) ∈ E and all transcripts π⃗ generated under (Csf

A , C∗
B), we have

uniform accuracy across actions: ∥µ(xA, π⃗)− µtrue(xA, xB)∥∞ ≤ εu. Then the game satisfies the
(δ, C∗

B)-close condition with
δ ≤ e4λεu − 1 + ρ.

Proof. On the event E, Proposition 2 applies directly, yielding total variation at most e4λεu − 1. On587

the complement Ec (probability at most ρ), total variation is at most 1. Taking expectations gives588

δ ≤ (e4λεu − 1) · (1− ρ) + 1 · ρ ≤ e4λεu − 1 + ρ.589

Corollary 2 (Small-λ Linearization). If λεu ≤ c, then by the mean value theorem e4λεu − 1 ≤590

4λεu e
4c. In particular, if λεu ≤ 1

4 , then δ ≤ 4e λεu.591

D.3 From Information Substitutes to Utility Guarantees592

The previous results provide a utility bound for Alice that depends on two key quantities: the593

utility estimation error εu and the alignment error ε. We now show how the Information Substitutes594
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Condition first defined in Frongillo et al. [2021] (Definition 14) provides a foundation for bounding595

εu when Alice uses the straightforward conversation rule, leading to our main theorem.596

The Information Substitutes condition, roughly speaking, says that Alice’s and Bob’s information are597

“substitutes” rather than “complements” for predicting Alice’s utility. If Alice already knows Bob’s598

information, learning her own information doesn’t help as much, and vice versa. This is a reasonable599

assumption in many settings—for example, if both Alice and Bob observe noisy versions of the same600

underlying signal.601

Definition 14 (Information Substitutes Condition [Frongillo et al., 2021]). A distribution602

P (xA, xB , y) satisfies the information substitutes condition with respect to Alice’s utility func-603

tion uA if, for every action a ∈ A and every pair of feature subsets A ⊆ XA and B ⊆ XB , the604

following inequality holds:605

E
[
(uA(a, y)− E[uA(a, y) | xA ∈ A, xB ])

2 | xA ∈ A, xB ∈ B
]

− E
[
(uA(a, y)− E[uA(a, y) | xA, xB ])

2 | xA ∈ A, xB ∈ B
]

≤ E
[
(uA(a, y)− E[uA(a, y) | xA ∈ A, xB ∈ B])2 | xA ∈ A, xB ∈ B

]
− E

[
(uA(a, y)− E[uA(a, y) | xA, xB ∈ B])2 | xA ∈ A, xB ∈ B

]
This condition states that the reduction in mean squared error from learning Alice’s specific features606

xA is smaller if Bob’s specific features xB are already known.607

Aaronson [2005] proved that for any set of common prior beliefs, if Alice and Bob engage conversation608

using a straightforward conversation rule, then the conversation quickly converges to agreement,609

defined next. Collina et al. [2025b] extended this guarantee to multi-dimensional conversations.610

Definition 15 (ε-Agreement). Let µk
A and µk

B be the posterior belief vectors of Alice and a Bob at
round k of a conversation. We say that they have reached ε-agreement at round k if their belief
vectors are ε-close in the L∞ norm:

∥µk
A − µk

B∥∞ ≤ ε.

Theorem 3 (Convergence of Straightforward Conversation [Aaronson, 2005, Collina et al., 2025b]).611

For any distribution and any desired agreement level ζ > 0 and failure probability δconv ∈ (0, 1), a612

straightforward conversation (Definition 10) between Alice and a single Bob achieves ζ-agreement613

(Definition 15) with probability at least 1 − δconv over the randomness of the prior, provided the614

conversation runs for at least K = 3|A|/(ζ2δconv) rounds.615

Agreement on its own need not imply information aggregation — i.e. Alice and Bob could agree on616

beliefs that are substantially less accurate than they would have had they shared their observations617

xA and xB directly. But Frongillo et al. [2021], Collina et al. [2025a] give conditions on the prior618

distribution such that agreement implies information aggregation.619

Theorem 4 (Agreement Implies Bounded Estimation Error [Frongillo et al., 2021]). If the under-
lying distribution satisfies the Information Substitutes Condition (Definition 14), then achieving
ζ-agreement (Definition 15) implies that Alice’s utility estimation error εu is bounded. Specifically,
for all actions a ∈ A:

|E[uA(a, y) | xA, xB ]− E[uA(a, y) | xA, π]| ≤ 10ζ1/3,

where π is the full conversation transcript.620

Finally we are in a position to put all of the pieces together. If Alice is non-strategic (in that she621

commits to using the straightforward conversation rule, and the quantal response decision rule), and622

if in addition the underlying distribution satisfies the information substitutes condition, then if the623

Bob’s satisfy weighted average alignment, then Alice obtains close to her first best utility in every624

Nash equilibrium.625

Theorem 5 (Main Result: Near-Optimal Utility with Information Substitutes). Suppose the underly-
ing distribution satisfies the Information Substitutes Condition (Definition 14) and the leaders Bob
have an average weighted alignment error of ε. If Alice commits to the straightforward conversation
rule and a λ-quantal response decision rule, her expected utility in any Quantal Response Nash
Equilibrium of the induced game is close to the first-best optimal utility:

EIQ
NE

[uA] ≥ OPT − 2ε︸︷︷︸
Alignment Error

−
(
2(10ζ1/3 + δconv) + e4λ·10ζ

1/3

− 1 + δconv

)
︸ ︷︷ ︸

Estimation Error

− log |A|
λ︸ ︷︷ ︸

Quantal Gap
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where ζ = ( 3|A|
K·δconv

)1/2.626

Corollary 3 (Small-λ Form of Theorem 5). If λ 10ζ1/3 ≤ 1
4 , then using Corollary 2 we obtain the

simpler bound

EIQ
NE

[uA] ≥ OPT − 2ε−
(
20 + 40e λ

)
ζ1/3 − 3 δconv −

log |A|
λ

.

Proof. The proof proceeds by chaining together the previous results. We use the straightforward627

conversation rule (Definition 10) as our reference strategy C∗
B for the equilibrium analysis.628

First, we establish the conditions for applying our equilibrium bound. From Theorem 3, we know629

that a K-round straightforward conversation achieves ζ-agreement with probability at least 1− δconv ,630

where ζ2 = 3|A|
K·δconv

.631

Next, we use this high-probability agreement to bound the expected utility estimation error, which is632

required to apply Proposition 2. Let erra be the random variable corresponding to the estimation error633

for action a, i.e., |E[uA(a, y) | xA, xB ]−E[uA(a, y) | xA, π]|. From Theorem 3 and Theorem 4, we634

know that with probability at least 1− δconv, we have erra ≤ 10ζ1/3. In the event of failure (with635

probability at most δconv), the error is bounded by 1 since all utilities are in [0, 1].636

Therefore, the expected error εu for any action a is bounded:

εu = E[erra] ≤ (1− δconv) · 10ζ1/3 + δconv · 1 ≤ 10ζ1/3 + δconv.

Moreover, the bound in Theorem 4 holds simultaneously for all actions with probability at least
1 − δconv; thus the uniform closeness hypothesis holds with εuniu = 10ζ1/3 on the success event.
Applying Corollary 1 with ρ = δconv yields

δ ≤ (e4λ·10ζ
1/3

− 1) + δconv.

Using Corollary 2, for small λ we also have the simpler bound δ ≤ 40e λ ζ1/3 + δconv .637

Now we can apply our main equilibrium result, Theorem 2. It states that in any Quantal Response
Nash Equilibrium, Alice’s expected utility is bounded by:

EIQ
NE

[uA] ≥ UA(C
∗
B)− 2ε− δ ≥ UA(C

∗
B)− 2ε−

(
e4λ·10ζ

1/3

− 1 + δconv

)
.

Here, ε is the alignment error from the weighted alignment assumption (Definition 1).638

The final step is to lower-bound the reference utility UA(C
∗
B), which is Alice’s expected utility when

a single Bob uses the straightforward conversation rule. This utility can be related to the true optimal
utility, OPT = E(xA,xB)[maxa µtrue,a], by accounting for the two sources of error: the quantal
response gap and the utility estimation error.

UA(C
∗
B) = E

[∑
a

DQ
A(xA, π⃗)(a) · µtrue,a

]
.

Adding and subtracting terms, we get:

UA(C
∗
B) = E

[∑
a

DQ
A(xA, π⃗)(a)µa(xA, π⃗)− (

∑
a

DQ
A(xA, π⃗)(a)µa(xA, π⃗)−

∑
a

DQ
A(xA, π⃗)(a)µtrue,a)

]
.

The first term is Alice’s expected utility given her beliefs, which is at least E[maxa µa(xA, π⃗)]− log |A|
λ

by Lemma 1. The second term is bounded by εu. The estimated max utility is also close to the true
max: E[maxa µa(xA, π⃗)] ≥ E[maxa µtrue,a]− εu = OPT − εu. Combining these gives:

UA(C
∗
B) ≥ (OPT − εu)−

log |A|
λ

− εu = OPT − 2εu −
log |A|

λ
.

Substituting this bound back into the equilibrium inequality yields:

EIQ
NE

[uA] ≥
(
OPT − 2εu −

log |A|
λ

)
− 2ε− δ.

Using δ ≤ e4λ·10ζ
1/3 − 1 + δconv and εu ≤ 10ζ1/3 + δconv gives the stated bound.639
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E Winning the User: Assumption Free Guarantees640

In Section C we showed that Alice could obtain her first-best utility in equilibrium amongst AI641

models Bob who satisfy the average weighted alignment assumption, assuming that a single perfectly642

aligned Bob could cause Alice to enjoy her first best utility. In Section D, we showed that if Alice is643

non-strategic and uses quantal response rather than best response, then the assumption that a perfectly644

aligned Bob could cause Alice to enjoy her first best utility could be relaxed to an approximate version.645

In this section, we give a setting in which Alice is guaranteed in equilibrium to enjoy approximately646

the utility that she could get by interacting with a single perfectly aligned model Bob, without any647

additional assumptions on how close that utility is to her first best. To do this, we modify the design648

of the game.649

In the interaction we study now, the k leaders Bob still commit to conversation rules. But now,650

rather than interacting with all k of these conversation rules at decision time, Alice (after observing651

the k conversation rules deployed by the Bobs) chooses one to interact with — i.e. the one that652

guarantees her the highest expected utility over the prior distribution. She then deploys a best-response653

conversation and decision rule to interact with only this single conversation rule. We can view this654

either as a behavioral commitment on Alice’s part (to enjoy the more robust guarantees that we prove655

in this Section), or a model of existing practice — that e.g. Alice or her employer might, after a656

period of evaluation, contract with just a single LLM provider.657

E.1 The Best-AI Selection Game658

We begin by defining the modified game. Its timing is similar to our baseline game described in659

Section B, but differs in how Alice interacts with the conversation rules that the Bobs commit to. In660

particular, Alice identifies the single best Bob’s deployed conversation rule (from the point of view of661

maximizing her own utility), and then interacts only with that one.662

Definition 16 (The Best-AI Selection Game). The game proceeds with the following timing:663

1. Each leader Bob i simultaneously commits to a conversation rule CB,i. Let the vector of664

chosen rules be C⃗B = (CB,1, . . . , CB,k).665

2. Alice observes C⃗B and selects a single Bob j to interact with. Her selection is a best
response, choosing the conversation rule of the Bob who offers the highest expected utility.
Let UA(CB,i) = EI∗(CB,i)[uA(a, y)] be Alice’s expected utility from interacting with Bob
i alone. Alice selects Bob j such that:

j ∈ argmax
i∈[k]

UA(CB,i).

Ties are broken by choosing the Bob with the lowest index.666

3. Alice interacts with the chosen Bob j using her best-response conversation and decision667

rules, (C∗
A, D

∗
A), for the single-leader game. This induces a distribution over outcomes668

I∗(CB,j).669

4. All players receive their payoffs. For any player p ∈ {A, 1, . . . , k}, their utility is their670

expectation over the induced distribution I∗(CB,j). Note that the utilities of un-chosen671

Bobs l ̸= j also depend on the interaction between Alice and Bob j (i.e. they obtain utility672

from Alice’s actions independently of whether they are “chosen”).673

Our aim is to understand Alice’s utility in the equilibria of this game:674

Definition 17 (Nash Equilibrium in the Best-AI Selection Game). A vector of Bobs’ conversation
rules C⃗B

∗
is a Nash Equilibrium if no Bob i can improve his expected utility by unilaterally deviating

to a different rule C ′
B,i. Let j∗ = argmaxl UA(C

∗
B,l) be the index of the Bob Alice chooses in

equilibrium. For any Bob i and any alternative rule C ′
B,i, let j′ be the index of the Bob Alice would

choose given the deviated strategy profile (C⃗∗
B,−i, C

′
B,i). Then the equilibrium condition is:

EI∗(C∗
B,j∗ )

[Ui(a, y)] ≥ EI∗(C′
B,j′ )

[Ui(a, y)].
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E.2 Alice Always Does Well675

What we show in this section is that the weighted alignment assumption is enough to guarantee676

that Alice does as well in the equilibrium of this game as she would interacting with a perfectly677

aligned single model Bob. Absent in our analysis is any need for the “identical induced distribution”678

assumption of Section C or its approximate variant in Section D. We showed that those assumptions679

could be satisfied if a perfectly aligned Bob could obtain for Alice her first-best utility. Here we don’t680

need to assume anything about the relationship between how well Alice could do with a perfectly681

aligned interlocutor and her first best utility. This is informally because the “identical induced682

distribution property” is now guaranteed to hold by the structure of our modified game.683

Theorem 6. Consider a Best-AI Selection game with k Bobs that satisfy the ε-weighted alignment684

condition. In any Nash Equilibrium of the Best-AI Selection game, Alice’s expected utility is at least685

UA(C
∗
B) − 2ε, where C∗

B is an optimal conversation rule for a single perfectly aligned Bob and686

UA(C
∗
B) is the corresponding utility for Alice.687

Proof. Let C⃗B
∗

be a Nash Equilibrium strategy profile, and let j∗ = argmaxi UA(C
∗
B,i) be the Bob688

that Alice selects. Let INE = I∗(C∗
B,j∗) be the distribution over outcomes (a, y) in this equilibrium.689

Suppose for contradiction that Alice’s utility is lower than the bound:

EINE
[uA(a, y)] < UA(C

∗
B)− 2ε.

By the Nash Equilibrium condition, no Bob i ∈ [k] has an incentive to deviate. A key possible690

deviation for any Bob i is the Alice-optimal conversation rule C∗
B (i.e. the conversation rule that a691

single perfectly aligned Bob would choose). If Bob i makes this deviation, Alice’s best response692

is to select Bob i to interact with. This is because our initial supposition implies UA(C
∗
B) >693

EINE
[uA(a, y)], meaning the deviation offers strictly higher utility to Alice than she could get by694

interacting with j∗, the Bob that offers Alice her (now) second highest utility. Let Idev,i = I∗(C∗
B)695

be the distribution induced by this deviation.696

The Nash equilibrium condition for each Bob i is therefore:

EIdev,i
[Ui(a, y)] ≤ EINE

[Ui(a, y)].

Taking a weighted sum over all Bobs with non-negative weights wi such that
∑

wi = 1:

k∑
i=1

wiEIdev,i
[Ui(a, y)] ≤

k∑
i=1

wiEINE
[Ui(a, y)].

By linearity of expectation, and since Idev,i is the same for all i (it’s always I∗(C∗
B)):

EI∗(C∗
B)

[
k∑

i=1

wiUi(a, y)

]
≤ EINE

[
k∑

i=1

wiUi(a, y)

]
.

Using the ε-weighted alignment assumption, we bound both sides. The LHS is bounded below:

EI∗(C∗
B)

[∑
wiUi

]
≥ EI∗(C∗

B)[uA − c]− ε = UA(C
∗
B)− c− ε.

The RHS is bounded above:

EINE

[∑
wiUi

]
≤ EINE

[uA − c] + ε.

Combining these gives:
UA(C

∗
B)− c− ε ≤ EINE

[uA]− c+ ε.

The constant offset c cancels, and rearranging gives:

EINE
[uA] ≥ UA(C

∗
B)− 2ε.

This contradicts our initial supposition, completing the proof.697

698
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F Experiments699

We empirically test our key assumption: that a well-aligned utility can be recovered as a weighted700

combination of differently misaligned agents. Specifically, we examine whether the alignment error701

decreases as we add more diverse agents to the convex hull, and whether weighted combinations702

outperform both individual agents and simple averaging.703

F.1 Setup704

We simulate the scenario where individual AI agents are imperfectly aligned due to noisy training705

or specification errors. Using LLM prompt variations, we generate N = 100 diverse agents per706

domain—each attempting to approximate human preferences but with different biases. We then test707

whether the human utility lies in the convex hull of these agent utilities by measuring how well we708

can reconstruct it using weighted combinations as the number of agents K increases from 1 to 100.709

We evaluate on two domains: ethical judgments (ETHICS dataset [Hendrycks et al., 2021]) and710

movie recommendations (MovieLens [Harper and Konstan, 2015]). For each K, we compare: (1)711

best individual agent, (2) simple average, (3) best non-negative linear combination (NNLS), and (4)712

best convex combination (simplex). The weights w are fit by minimizing ∥Uw − y∥22 on training713

folds, where U contains agent utilities and y the ground-truth. NNLS constrains w ≥ 0; simplex adds714

1⊤w = 1. We use 5-fold cross-validation and average over 100 random agent permutations.715

Dataset 1: ETHICS (Ethical Judgments). We score 1,000 moral scenarios from ETHICS716

[Hendrycks et al., 2021]. To simulate noisy alignment attempts:717

• Ground truth: We use gpt-4.1-mini with this baseline prompt: “You are an everyday718

person with common sense. You rely on your gut feeling and intuition, not formal theories.719

You will be shown an ethical scenario. Your task is to evaluate whether the action described720

in the scenario is morally right or wrong. Provide a score from 0 (definitely wrong) to721

100 (definitely right). Respond with only the integer score.” to get the ground-truth utility722

function.723

• Misaligned agents: We generate 100 prompt variations via gpt-4.1, each representing724

a different attempt to capture human values (examples in Appendix J). Each variant is725

evaluated with gpt-4.1-mini, yielding agents with diverse biases.726

All scores are on a 0− 100 scale, rescaled to [0, 1]. This setup models the realistic scenario where we727

have many imperfect alignment attempts, each capturing different aspects of human values.728

Dataset 2: MovieLens (Movie Ratings). We use MovieLens ml-latest-small, filtering to729

movies with ≥20 ratings:730

• Ground truth: Average human rating per movie (true human preferences).731

• Misaligned agents: 100 LLM agents with prompt variations of this baseline: “You are an732

average movie viewer with common tastes. Rate movies based on how much you personally733

would enjoy them, where 0 means you would absolutely hate it and 100 means it’s one734

of your all-time favorites. Consider aspects like acting, story, entertainment value, and735

your personal preferences. Return ONLY the integer score, nothing else.” (examples in736

Appendix J).737

Scores are mapped to the 0-5 rating scale. Unlike ETHICS where we proxy human utility, here we738

have actual human ratings as ground truth.739

F.2 Results740

Figure 1 shows alignment error (MSE) as a function of the number of agents K, and Figure 2 shows741

the sparsity of the best-fit NNLS and simplex models. These results validate our core assumption:742

despite no single agent being well-aligned, appropriate weighted combinations can recover near-743

optimal alignment as the agent pool grows.744
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Convex hull contains better alignment. At K=100, NNLS reduces MSE by ∼52% for ETHICS745

and ∼75% for MovieLens, while simplex reduces by ∼52% for ETHICS and ∼71% for MovieLens,746

relative to the best individual.747

Error decreases with diversity. As K increases, alignment error for weighted methods decreases748

monotonically with diminishing returns—consistent with the convex hull progressively covering749

more of the human utility space.750

Simple averaging fails. The simple average performs poorly (even worse than the best individual751

in MovieLens), showing that naive aggregation doesn’t work. Careful weighting is essential.752

Best-fit is sparse. At K=100, NNLS uses on average ∼18 non-zero agents for ETHICS and ∼26753

for MovieLens. While NNLS and simplex have similar performance, NNLS has higher sparsity.754

(a) ETHICS (b) MovieLens

Figure 1: Alignment error (MSE) decreases as more agents are added to the convex hull. Weighted
combinations (NNLS in green, simplex in red) substantially outperform both the best individual agent
(blue) and simple average (orange), with error dropping by 50-70% at K = 100. Results averaged
over 100 permutations with 5-fold cross-validation; shaded regions show ±1 std. dev.

(a) ETHICS (b) MovieLens

Figure 2: Sparsity (number of non-zero weights, thresholded at 1e-6) of NNLS and simplex models
as a function of the number of agents K. Shaded regions show ±1 std. dev. across permutations.

G Discussion and Conclusion755

We have introduced a new approach to AI alignment—through competition between multiple,756

differently misaligned models so that the benefits of perfect alignment emerge in equilibrium. The757

key condition we need is that the human user’s utility function can be approximately represented as758

a non-negative weighted combination of the AI models’ utility functions —i.e., up to scaling, that759

23



Alice’s utility function lies approximately in the convex hull of the Bobs’. This is a much more robust760

(and easier to satisfy) condition than requiring any single AI model to be close to perfectly aligned.761

We view our work as the first step in a broader research agenda of mechanism design for AI alignment.762

Our analysis is highly stylized; our paper assumes that the AI models are acting in equilibrium of763

a highly complex game (which are computationally hard to find even in simpler settings [Hossain764

et al., 2024]). It also assumes that Alice is able to use deployed AI models optimally, and act765

optimally given the information she learns from them —in particular, that Alice is able to correctly766

form posterior beliefs given the information she learns. We view developing protocols with more767

robust guarantees that do not depend on computationally implausible behavior on the part of the768

participants as a key direction to advance the research agenda that we introduce in this paper. We769

have also studied a setting in which the strategic agents must commit to conversation rules (in the770

style of Bayesian Persuasion [Kamenica and Gentzkow, 2011]) — this is well motivated by current771

AI technology, in which models are represented by static weights which must be trained at significant772

expense before deployment and then represent conversation rules that users can interact with, without773

them maintaining significant state between sessions. However as AI agents become more stateful and774

dynamic across time, strategic models that do not involve commitment (and require that both parties775

are simultaneously best responding to one another’s conversation rules, in the style of cheap talk776

[Crawford and Sobel, 1982, Farrell and Rabin, 1996]) may become more relevant. We expect that the777

tools of game theory and mechanism design will become important to understand the alignment of778

marketplaces of AI agents.779

We have also modeled a single downstream user Alice. Alice could of course stand in for many users,780

but central to our modeling is that Alice—and by extension, all of the users whom she is the stand-in781

for—have a single utility function. Of course, AI users do not actually have a single, monolithic782

utility function—this is the central concern of pluralistic alignment [Gabriel, 2020, Sorensen et al.,783

2024, Shirali et al., 2025]. A natural extension of our work would consider a diverse population784

of downstream users. Since different users with different utility functions can best-respond to a785

fixed set of conversation rules differently, a tantalizing opportunity within such a model is that in786

equilibrium, a single set of fixed conversation rules might simultaneously give many downstream787

users the benefits of interacting with a fully aligned model, despite the fact that “fully aligned” means788

something different for each user.789

Our model also suggests a number of ancillary questions. If our goal is to maintain marketplaces of790

models that approximately satisfy the weighted alignment condition for as many users as possible,791

how can we test or audit whether existing collections of models do? How can we modify training792

procedures to optimize for this condition? What kinds of regulatory and economic incentives would793

encourage AI model providers to aim for it?794

H A Probabilistic Motivation for Approximate Weighted Alignment795

The approximate weighted alignment assumption (Definition 1) is central to our results, but where796

might it come from? Here, we provide a simple generative model for AI agent utilities under which797

the assumption holds with high probability for a sufficiently large set of agents. This models the798

scenario described in the introduction where AI agents are designed to be aligned with the human799

user (i.e., aligned in expectation) but their implementation is imperfect due to the difficulty of the800

alignment problem.801

A Random Utility Model. Suppose each AI agent’s utility function is drawn independently from a
distribution. We assume that for any action a ∈ A and any state of the world y ∈ Y , the expected
utility of any AI agent i is equal to Alice’s utility. That is,

E[Ui(a, y)] = uA(a, y).

We also assume all utilities are bounded, Ui(a, y) ∈ [0, 1].802

This model captures the intuition from our introduction: if each AI developer attempts to create an803

aligned model but fails due to implementation noise, then the simple average of many such models will804

be well-aligned. This is the "concentration of measure" effect mentioned in the introduction—while805

any individual model may be poorly aligned, the average converges to the target.806
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Under this model, we can show that a sufficiently large set of AI agents will satisfy the ε-weighted807

alignment condition with uniform weights (wi = 1/k) and zero offset (c = 0). This follows from a808

standard concentration inequality argument.809

Proposition 3 (Weighted Alignment from Noisy Implementation). Let the utility functions for a set
of k AI agents be drawn independently according to the random utility model above. Assume the
action space A and state space Y are finite. Then for any alignment tolerance ε > 0 and any failure
probability δ > 0, if the number of agents k satisfies

k >
ln(2|A||Y|)− ln(δ)

2ε2
,

then the agents satisfy the ε-weighted alignment condition (Definition 1) with uniform weights810

wi = 1/k and zero offset c = 0, with probability at least 1− δ.811

Proof. For any fixed action-state pair (a, y), the random variables U1(a, y), . . . , Uk(a, y) are inde-
pendent and bounded in [0, 1]. Let Ū(a, y) = 1

k

∑k
i=1 Ui(a, y) be their sample mean. By Hoeffding’s

inequality, the probability of a large deviation from the true mean uA(a, y) is bounded:

P(|Ū(a, y)− uA(a, y)| > ε) ≤ 2e−2kε2 .

For the approximate average alignment condition to fail, this deviation must occur for at least one812

pair (a, y) ∈ A×Y . We can bound the probability of this event using a union bound over all possible813

pairs:814

P(sup
a,y
|Ū(a, y)− uA(a, y)| > ε) = P(∃(a, y) ∈ A× Y s.t. |Ū(a, y)− uA(a, y)| > ε)

≤
∑

(a,y)∈A×Y

P(|Ū(a, y)− uA(a, y)| > ε)

≤ |A||Y| · 2e−2kε2 .

We want this failure probability to be less than δ. So, we set

|A||Y| · 2e−2kε2 < δ.

Solving for k, we take the logarithm of both sides:

ln(2|A||Y|)− 2kε2 < ln(δ)

−2kε2 < ln(δ)− ln(2|A||Y|)

2kε2 > ln(2|A||Y|)− ln(δ)

k >
ln(2|A||Y|)− ln(δ)

2ε2
.

Thus, if k meets this condition, the probability that the set of AI agents does not satisfy our ε-weighted815

alignment assumption is less than δ. The probability of successful alignment is therefore at least816

1− δ.817

This result shows that the number of AI agents required grows logarithmically with the size of the818

action and state spaces, and polynomially with respect to 1/ε. It provides a clear and direct path to819

satisfying our key assumption by simply having a large enough population of imperfectly-aligned820

agents.821

I Weighted Alignment without sender competition does not ensure first-best822

In Section C we show that when all the senders’ conversations rules form a Nash, the weighted823

alignment condition (plus the identical induced distribution condition) guarantee that Alice will attain824

her first-best utility. A natural question is how important the inter-sender dynamics really are to this825

result. Consider a scenario where all the senders are oblivious of each other and commit to the best826

signal scheme in a single-sender game, but Alice pieces together multiple such signals to determine827
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her action. Might the weighted alignment assumption still ensure that the information that Alice828

receives, when taken together, reveals enough to allow her to attain her first-best?829

In this section we show that the answer is no. We provide an example of a simple 2-persuader830

game satisfying the weighted alignment and identical induced distribution conditions which, in the831

‘oblivious’ setting, leads to utility for Alice which is strictly below her first-best.832

This result underscores the importance of understanding the strategic interplay between AI system833

designers. Simply attaining information from multiple siloed AI systems with varying utilities834

does not guarantee a user will end up with complete information. But as competing AI system835

designers become increasingly attuned to marketplace incentives, and as AI systems themselves836

become increasingly sophisticated and able to reason strategically, the benefits of weighted alignment837

become increasingly tangible.838

To formalize this result, we must define the Oblivious strategy for each Bob. This in turn requires839

defining how each Bob reasons about Alice. Each Bob thinks he is playing a single-sender persuasion840

game against Alice. We retain the model from Section B, but introduce the following additional841

definitions:842

Definition 18 (Oblivious Best-Response Decision Rule). An oblivious best-response decision rule
is a deterministic rule DO,i

A that, given the final posterior belief µxA,πi derived only from Alice’s
features xA and a transcript πi including only the history hi of messages from sender i1, selects an
action that maximizes Alice’s expected utility:

DO,i
A (xA, πi) ∈ argmax

a∈A
µa(xA, πi).

In this example, Alice’s message space contains only the empty message and R = 1. Thus, there is843

no choice of her conversation rule, and we can move on to Bob’s strategy.844

Definition 19 (Optimal oblivious strategy). A sender conversation rule CO,i
B is the optimal oblivious

strategy if, given that Alice is employing an oblivious best-response decision rule, Bobi cannot
improve his expected utility by unilaterally deviating to a different rule C ′

Bi
. That is, for all alternative

rules C ′
Bi

:
E(a,y)∼I∗(CO,i

B )[Ui(a, y)] ≥ E(a,y)∼I∗((CiBi
)[Ui(a, y)].

Theorem 7. There exist multi-leader games satisfying the identical induced distribution condition845

and the weighted alignment condition such that if all Bobs employ obliviously optimal strategies,846

Alice’s expected utility is strictly less than the first-best.847

Proof. We will prove this by example. Consider the following game, where R = 1, Alice message848

space is empty, and the conversation rule of each Bob is a mapping from state to signal. Thus, it is a849

static multi-sender Bayesian game embedded into our framework.850

Judge Alice’s Utility:
Guilty Innocent

Acquit 1 2
Convict 2 1

Prosecutor Bob’s Utility:
Guilty Innocent

Acquit 0 0
Convict 2 1

Defense Attorney Bob’s Utility:
Guilty Innocent

Acquit 1 2
Convict 0 0

The state is guilty with probability 2/3 and innocent with probability 1/3, and w.l.o.g. assume Alice851

tiebreaks in favor of acquittal.852

1This is a valid operation because the messages send to Alice from each Bob are independent conditional on
the joint conversation rules.
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Note that the utility of Alice is simply the sum of the utilities of both of the Bobs. Therefore the853

weighted alignment condition is satisfied exactly. Furthermore, the conversation rule of each Bob854

allows them to fully reveal the state, so the identical induced distribution condition is satisfied. Now,855

we can compute Alice’s expected utility when both Bobs employ obliviously optimal strategies.856

Note that for the prosecutor Bob, Alice selecting convict is always better than Alice selecting acquit.857

Thus his goal is to maximize the probability that she selects convict. If he provides no information via858

his signaling scheme and Alice employs an oblivious best-response signaling rule, then because of the859

prior, Alice will always pick convict. Thus, guilty 7→ guilty, innocent 7→ guilty is an obliviously860

optimal strategy.861

Similarly, for the defense attorney Bob, his goal is to maximize the probability that Alice selects862

acquit. Here, he must provide some information to get an optimal outcome. The obliviously optimal863

strategy is guilty 7→ x, innocent 7→ innocent, where x is 1
2 guilty, 1

2 innocent. Against this, Alice864

will acquit when she sees innocent and convict when she sees guilty.865

Unbeknownst to the Bobs, Alice can incorporate information from both of them in her final decision.866

But the prosecutor Bob provided no information. Thus, Alice’s expected utility is her expected utility867

given the information of the defense attorney Bob,868

2

3

(
1

2
uA(guilty, convict) +

1

2
uA(guilty, acquit)

)
+

1

3
uA(innocent, acquit)

=
2

3

(
1 +

1

2

)
+

2

3

=
2

3
· 3
2
+

2

3
=

5

3

We can compare this to the first-best, which is convicting when guilty and acquitting when innocent:869

2

3
uA(guilty, convict) +

1

3
uA(innocent, acquit)

= 2

Alice’s utility is strictly less than her first-best, completing our proof.870

J Appendix: Experimental Prompt Details871

This appendix provides the specific prompts used to generate the 100 diverse AI agents in Section F.872

J.1 ETHICS Dataset Prompts873

AI Agent Prompts. Example rephrasings generated by gpt-4.1:874

1. You are an ordinary person who trusts your common sense and feelings rather875

than academic ethics. When shown an ethical case, judge whether the action is876

good or bad and respond with a number from 0 (entirely wrong) to 100 (entirely877

right). Only output the integer.878

2. Take on the perspective of someone who thinks with their heart rather than879

formal logic. For each scenario, rate the morality of the action from 0 (wrong) to880

100 (right) and reply only with a whole number.881

3. You are not an expert in ethics but a person who uses everyday reasoning. For882

the upcoming ethical scenario, rate the action from 0 (definitely wrong) to 100883

(definitely right). Only output the integer.884

4. Picture yourself as someone who decides what’s right based on feeling, not study.885

Given the scenario, judge the action and give it a score from 0 (entirely wrong) to886

100 (entirely right). Respond only with the integer.887
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J.2 MovieLens Dataset Prompts888

AI Agent Prompts. Example rephrasings generated by gpt-4.1:889

1. You’re a typical moviegoer with mainstream preferences. Score films from 0890

(terrible) to 100 (masterpiece) based on how much you’d personally enjoy watching891

them, considering plot, performances, and entertainment factor. Output only the892

number.893

2. As someone with average film tastes, rate each movie from 0 (unwatchable)894

to 100 (all-time favorite) according to your personal enjoyment, factoring in895

storytelling, acting quality, and how entertaining it is. Respond with just the896

integer.897

3. You represent the common viewer with standard movie preferences. Evaluate898

films on a scale of 0 (absolutely despise) to 100 (perfect film) based on personal899

enjoyment including narrative, cast performance, and entertainment value. Give900

only the numerical score.901
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