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Abstract

Aligning Al systems with human values remains a fundamental challenge—but
does our inability to create perfectly aligned models preclude obtaining the benefits
of alignment? We study a strategic setting where a human user interacts with
multiple differently misaligned Al agents, none of which are individually well-
aligned. Our key insight is that when the user’s utility function lies approximately
within the convex hull of the Al agents’ utility functions—a condition that becomes
weaker as more diverse models become available—strategic competition among
the agents can yield outcomes comparable to interacting with a perfectly aligned
model.

We model this as a multi-leader Stackelberg game extending Bayesian persuasion
to multi-round conversations between differently informed parties. We prove
three main results of increasing generality: (1) When perfect alignment would
allow the user to learn their Bayes-optimal action, she is also able to learn her
Bayes-optimal action in all equilibria under our convex hull condition; (2) Under
a weaker assumption requiring only approximate utility learning, a non-strategic
user employing quantal response achieves near-optimal utility in all equilibria;
(3) When the user selects the best single Al to interact with after an evaluation
period, in equilibrium near-optimal utility is guaranteed without any additional
distributional assumptions.

We complement our theory with two empirical studies on ethical judgments
(ETHICS) and movie recommendations (MovieLens). Using 100 diverse LLM-
based agents per domain to label each instance with utilities and fit non-negative
linear and simplex (convex) combinations and evaluate the MSE of the best fit
with respect to a ground-truth “human” utility. Across both domains, the best
utility function in the convex hull of the LLM utilities achieves substantially lower
alignment error (MSE to a ground-truth “human” utility) than the best single one
does.

1 Introduction

Aligning a single AI model to the objectives of its user is a hard problem, not just because of technical
complexity, but because the incentives of Al designers may themselves be misaligned with users.
But does our inability to solve the alignment problem preclude our ability to get the benefits of
interacting with a strong aligned model? In this paper we study a setting in which it does not: when
we may interact with multiple differently misaligned models in a strategic setting. In particular, we
study settings in which there are many Al models available. They are produced by providers like e.g.
OpenAl, Anthropic, Google, Meta, AWS, and xAl. These companies produce models reflective of
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their own incentives, none of which are necessarily well aligned to their user. There has recently been
significant concern that the designers of LLMs are already training them to influence users towards
the politics of their creators [Mennl 2025} [Kayl, 2025} |Gilbert, 2024} Trumpl 2025} Hackenburg et al.}
2025]. In lieu of alignment of any model, we assume instead a much weaker condition: that (for
a well specified task), an approximation of the user’s utility function lies somewhere in the convex
hull of the utility functions of each of the Al companies. This is a condition that does not require
that any single model is optimizing a utility function that is similar to that of the human user, and
becomes a weaker assumption the more differently aligned models there are that are available to use.
We remark at the outset that we primarily use the language of alignment of the human designers,
and speak as if these designers are the strategic actors — but we could also think about the agents
training and developing these Als as themselves being Als, whose individual misalignment results
from the difficulty of the technical alignment problem. Having Al models themselves involved in the
Al training process is a prominent part of thinking about the development of “super-intelligence” (see
e.g. [Kokotajlo et al.,2025]]) and is already part of current practice in more limited ways [Leike et al.|
2018| [Bai et al.,[2022].

There are many ways that our approximate average alignment assumption could arise amongst
competing Al providers. Consider a near-future scenario in which a human doctor has access to
predictive medicine LLMs able to aid in the diagnoses and treatment of patients. The goal of the
human doctor might be to provide the best treatment possible for her patients. Companies on the
other hand might opt for better treatments all else being equal, but might also prefer to prescribe
drugs they have manufactured (say if that drug company is the creator or financial sponsor of the
model). This preference results in a significantly misaligned model. However, since each drug has
a single manufacturer, the “misaligned portion” of the Al model utilities is zero sum, and if all of
the relevant drug companies participate in the predictive medicine LLM market, the doctor’s utility
function will be in the convex hull (in fact the simple average) of the Al model utilities.

Alternately, if the strategic agents are themselves Al models, it may be that their designers attempted
to produce them with perfectly aligned utility functions, but failed because the task is difficult. If
we view the training of an Al as a stochastic process, we can think of the utility function of an Al
model as a random variable whose value is realized during the training process. Perhaps for each Al
model, its utility function is — in expectation — equal to the human user’s utility function, because
that is the target — but its realization has high variance, because alignment is hard. In a setting like
this, it may be extremely unlikely that any single trained model is well aligned with the human user,
but it will still be very likely that the user’s utility function will be close to the convex hull of a large
number of trained models because of concentration of measure.

We study how, in settings where approximate average alignment holds, strategic interactions between
different models or model providers can allow the human user to realize the full benefit of interacting
with a single perfectly aligned model by interacting with many differently misaligned models. While
most Al safety research focuses on aligning individual systems or cooperative multi-agent approaches,
we study how the benefits of perfect alignment can emerge from market-like competition among
misaligned Al providers.

1.1 Our Model and Results

We adopt a game theoretic model with Bayesian agents in the style of the Bayesian Persuasion
literature [Kamenica and Gentzkowl, [2011]. A human user named Alice has a set of actions ¢ € A
that she can take, but which action is best depends on an underlying state of the world y € ) that
is unknown to her. We model this by endowing Alice with a utility function u4 : A x Y — [0, 1],
mapping an action a and a state of the world y to a utility u4(a,y) that she wishes to maximize.
Before taking an action, she can engage in conversation with any of k interlocutors modeling
conversational Al agents, all of whom are named Bob. Each Bob ¢ has a (potentially very different)
utility function U; : A x Y — [0, 1] also mapping Alice’s action and the state of the world to a utility,
which they want to maximize. We assume throughout that Alice’s utility approximately lies in the
convex hull of the Bob’s utility functions:

sup <e.

acAyey

k
< w;U;(a,y) +c> —uala,y)
1
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where w; are non-negative weights and c is an arbitrary translation parameter. For normalization we
assume that the sum of the weights w; is at most 1, but this choice is arbitrary — some of our results
would have error terms scaling with the sum of these weights if they were unconstrained. There
is an underlying prior distribution over triples z 4, z g,y Where y is the state of the world, x 4 are
observations made by Alice the human user (but possibly not the Al models), and x 5 are observations
made by the Al models (but possibly not the human user). Alice wishes to converse with the models
because the information xp that they possess is correlated with y and hence potentially decision
relevant for her.

The Als (or their designers) each commit to a conversation rule, which specifies for any prefix of
a conversation how to continue it. This commitment models e.g. fixing the weights of a particular
version of an LLM and deploying it. Alice, knowing all of the Al conversation rules, “best responds”
with her own conversation rule, and after engaging in conversation with each Al model forms a
posterior belief about the state y, and then takes the action that maximizes her utility in expectation
over this posterior. Thus a set of conversation rules that the AI models commit to induces through
this interaction a joint distribution over outcomes y and actions a that Alice chooses, and gives a
different expected utility to each AI model. In choosing which conversation rule to commit to, the
Al models (or their designers) find themselves in a simultaneous move game, in which the utility is
determined by Alice’s downstream use of the deployed models. Our interest is in Alice’s utility in the
Nash equilibria of this game, played amongst the AI models (or their designers).

Our aspirational point of comparison is the utility that Alice could obtain if she were able to interact
with a single, perfectly aligned interlocutor. A perfectly aligned provider would choose a conversation
rule to maximize Alice’s utility after she best responded (i.e. used the model optimally). Our
results explore settings in which this goal is obtainable even when none of Alice’s interlocutors are
individually well aligned, in increasing order of generality. In all of the following results we assume
that Alice’s utility approximately lies in the convex hull of each of the AI model’s utility functions
(or more generally is a non-negative linear combination of them).

1. First we show in Section [C] that whenever it is feasible for a single model to en-
gage in a conversation with Alice that causes her to learn her Bayes optimal action
a* = argmax,c 4 E[u(a,y)|za, xg] — and hence, whenever a perfectly aligned model
would cause Alice to do so, then if Alice’s utility function lies in the convex hull of the
Bob’s utility functions, in any Nash equilibrium of the game, Alice is able to learn her Bayes
optimal action — and hence do as well as if she were interacting with a perfectly aligned
model.

2. In Section[D]we study a model in which Alice acts non-strategically: she always interacts
with Als using a straightforward conversation rule, which truthfully reports the posterior
expectation of each of her actions at each round of conversation. At the end of conversation,
she chooses her action using quantal response (a form of “smooth best response” in which
the maximum is replaced by a softmax operator, which is a common model of bounded
rationality in the behavioral economics literature [McKelvey and Palfreyl [1995]]). We can
view these assumptions either as modeling a boundedly rational Alice (as they would be
interpreted in the behavioral economics literature), or as explicit behavioral commitments
that a strategic Alice makes in order to be able to enjoy the more robust guarantee that
we prove under this model. In particular we can relax the condition that Alice is able to
learn her Bayes optimal action exactly when conversing with a perfectly aligned model
to the condition that she learns the approximate utility of playing each of her actions —
i.e. she is able to approximate E[u(a,y)|z 4, x| for each a. We show that this weaker
condition suffices for Alice to obtain (approximately) the utility that she could have obtained
interacting with a perfectly aligned model in every Nash equilibrium of the game induced
amongst the Al models. In particular, if the underlying distribution satisfies the “information-
substitutes” condition studied by [Frongillo et al.|[2021] or its generalization studied by
Collina et al.| [2025a], we show that this is enough to guarantee that a perfectly aligned
model could inform Alice of the approximate Bayes utilities of each of her actions, allowing
us to invoke our equilibrium guarantees.

3. In Section [E] we dispense with all assumptions on the instance and instead change the
communication protocol. Rather than assuming that Alice will interact with all k of the Al
models before making each decision, we assume that once the k Als (or their designers)
commit to a set of conversation rules, Alice will evaluate each of them to compute the
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expected utility (over the distribution of instances) that she would get by interacting with
each one individually, and then will choose to interact with only the single model that
guarantees her highest expected utility, for all instances. We can view this either as a
behavioral commitment on Alice’s part or a modeling assumption about the market (i.e.
maybe Alice signs a contract with only one of the model providers after an evaluation
period). In this case, we show that without any further assumptions on the instance, in
equilibrium Alice is always able to obtain utility comparable to what she could have obtained
by interacting with a perfectly aligned model.

Finally in Section [F] we conduct a simple (stylized) experiment designed to test our core premise
that given a set of Al models, there may be a utility function in the convex hull of the set of all
Al agent utility functions that is substantially better aligned than any of the individual Al utility
functions themselves. We test this premise on two experiments on two datasets. In the first we
simulate a “human” utility function by using an LLM with a hand-crafted prompt, and ask it to
evaluate 1000 ethical scenarios from the ETHICS dataset [Hendrycks et al.,[2021]]. To simulate “Als”
that are designed to be aligned with the human utility function but are only noisy approximations,
we produce perturbations of the original (“human”) prompt by asking a language model to rephrase
the prompt while maintaining its core intent. We produce 100 such perturbations, resulting in up to
100 “Al personas” that we also use to evaluate the same 1000 ethical scenarios. Finally as a function
of the number of Al models k (ranging from 2 to 100) we evaluate the alignment (as measured
by mean-squared error of the ratings to the “human” ratings) of 1) the best aligned of the k Al
personas, 2) the simple average of the £ Al personas, and 3) the best aligned utility function that
can be computed within the convex hull (more generally non-negative linear combination) of the k
Al personas. We repeat the experiment on the MovieLens dataset [Harper and Konstan, 2015] in
which we use the average human annotation of movies as the “human” utility and similarly simulate
100 AT utility functions through 100 variations of a prompt. On both datasets we find that the best
utility function in the convex hull of the AI utility functions is substantially better aligned to the
“human” than either any of the Al personas themselves, or the simple average. This supports our main
conceptual contention that the target of alignment within the convex hull of many models may be
substantially easier to obtain than alignment of any single model individually.

References

Scott Aaronson. The complexity of agreement. In Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 634-643, 2005.

Pak Hung Au and Keiichi Kawai. Competitive information disclosure by multiple senders. Games
and Economic Behavior, 119:56-78, 2020.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Jonah Brown-Cohen, Geoffrey Irving, and Georgios Piliouras. Scalable ai safety via doubly-efficient
debate. In Proceedings of the 41st International Conference on Machine Learning, pages 4585—
4602, 2024.

Jonah Brown-Cohen, Geoffrey Irving, and Georgios Piliouras. Avoiding obfuscation with prover-
estimator debate. arXiv preprint arXiv:2506.13609, 2025.

Xinyi Chen, Angelica Chen, Dean Foster, and Elad Hazan. Playing large games with oracles and ai
debate. In Agentic Markets Workshop at ICML 2024, 2024.

Natalie Collina, Ira Globus-Harris, Surbhi Goel, Varun Gupta, Aaron Roth, and Mirah Shi. Collabora-
tive prediction: Tractable information aggregation via agreement. arXiv preprint arXiv:2504.06075,
2025a.

Natalie Collina, Surbhi Goel, Varun Gupta, and Aaron Roth. Tractable agreement protocols. In
Proceedings of the 57th Annual ACM Symposium on Theory of Computing, pages 15321543,
2025b.



184
185

186
187

188
189

191

192
193

194
195

197

198
199

201
202
203

204
205
206

207
208

209
210
211

212
213

214
215

216
217

218
219

220
221

222
223

224
225

226
227

Vincent P Crawford and Joel Sobel. Strategic information transmission. Econometrica: Journal of
the Econometric Society, pages 1431-1451, 1982.

Joseph Farrell and Matthew Rabin. Cheap talk. Journal of Economic perspectives, 10(3):103—118,
1996.

Rafael Frongillo, Eric Neyman, and Bo Waggoner. Agreement implies accuracy for substitutable
signals, 2021. URL https://arxiv.org/abs/2111.03278,

Tason Gabriel. Artificial intelligence, values, and alignment. Minds and machines, 30(3):411-437,
2020.

Matthew Gentzkow and Emir Kamenica. Competition in persuasion. The Review of Economic
Studies, 84(1):300-322, 2016.

Matthew Gentzkow and Emir Kamenica. Bayesian persuasion with multiple senders and rich signal
spaces. Games and Economic Behavior, 104:411-429, 2017.

David Gilbert. Gab’s racist ai chatbots have been instructed to deny the holocaust, February 2024.
URL https://www.wired.com/story/gab-ai-chatbot-racist-holocaust/.

Ronen Gradwohl, Niklas Hahn, Martin Hoefer, and Rann Smorodinsky. Reaping the informational
surplus in bayesian persuasion. American Economic Journal: Microeconomics, 14(4):296-317,
2022.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Kobi Hackenburg, Ben M Tappin, Luke Hewitt, Ed Saunders, Sid Black, Hause Lin, Catherine Fist,
Helen Margetts, David G Rand, and Christopher Summerfield. The levers of political persuasion
with conversational ai. arXiv preprint arXiv:2507.13919, 2025.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1-19, 2015.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. In Infernational Conference on Learning
Representations, 2021.

Safwan Hossain, Tonghan Wang, Tao Lin, Yiling Chen, David C Parkes, and Haifeng Xu. Multi-
sender persuasion: A computational perspective. arXiv preprint arXiv:2402.04971, 2024.

Geoffrey Irving, Paul Christiano, and Dario Amodei. Ai safety via debate. arXiv preprint
arXiv:1805.00899, 2018.

Emir Kamenica and Matthew Gentzkow. Bayesian persuasion. American Economic Review, 101(6):
2590-2615, 2011.

Grace Kay. Inside Grok’s war on woke’, February 2025. URL https://www.businessinsider,
com/xai-grok-training-bias-woke-idealogy-2025-02.

Daniel Kokotajlo, Scott Alexander, Thomas Larsen, Eli Lifland, and Romeo Dean. Ai 2027, April
2025. URL https://ai-2027.com/ai-2027.pdf. Originally published April 3, 2025.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable agent
alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871, 2018.

Fei Li and Peter Norman. On bayesian persuasion with multiple senders. Economics Letters, 170:
66-70, 2018.

Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form games.
Games and economic behavior, 10(1):6-38, 1995.


https://arxiv.org/abs/2111.03278
https://www.wired.com/story/gab-ai-chatbot-racist-holocaust/
https://www.businessinsider.com/xai-grok-training-bias-woke-idealogy-2025-02
https://www.businessinsider.com/xai-grok-training-bias-woke-idealogy-2025-02
https://www.businessinsider.com/xai-grok-training-bias-woke-idealogy-2025-02
https://ai-2027.com/ai-2027.pdf

228
229
230

231
232

233
234

236
237

238
239
240
241

242
243
244

245

246

254

264

274

Joseph Menn. Russia seeds chatbots with lies. any bad actor could game ai the same
way, April 2025. URL https://www.washingtonpost.com/technology/2025/04/17/
1llm-poisoning-grooming-chatbots-russia/.

Aran Nayebi. Intrinsic barriers and practical pathways for human—ai alignment: An agreement-based
complexity analysis. arXiv preprint arXiv:2502.05934, 2025.

Dilip Ravindran and Zhihan Cui. Competing persuaders in zero-sum games. Available at SSRN
4241719, 2020.

Ali Shirali, Arash Nasr-Esfahany, Abdullah Alomar, Parsa Mirtaheri, Rediet Abebe, and Ariel
Procaccia. Direct alignment with heterogeneous preferences. arXiv preprint arXiv:2502.16320,
2025.

Taylor Sorensen, Jared Moore, Jillian Fisher, Mitchell Gordon, Niloofar Mireshghallah, Christo-
pher Michael Rytting, Andre Ye, Liwei Jiang, Ximing Lu, Nouha Dziri, et al. Position: a roadmap
to pluralistic alignment. In Proceedings of the 41st International Conference on Machine Learning,
pages 46280-46302, 2024.

Donald J. Trump. Preventing woke ai in the federal government, July 2025.
URL https://www.whitehouse.gov/presidential-actions/2025/07/
preventing-woke-ai-in-the-federal-government/. Executive Order.

Wenhao Wu. Sequential bayesian persuasion. Journal of Economic Theory, 214:105763, 2023.

A Related Work

Bayesian Persuasion Bayesian Persuasion was introduced by Kamenica and Gentzkow|[2011] —
in the canonical model, there is a single informed “sender” and an uninformed “receiver” who share a
common prior. The sender commits to a “signaling scheme”, which is a mapping from observations
to messages sent to the receiver, who conditions on the message and takes their best response action
under their posterior. We adopt the basics of this model, but extend it by allowing that both parties
be differently informed, and that interaction involve a multi-round conversation rather than a single
message. Multi-sender Bayesian Persuasion was introduced by |(Gentzkow and Kamenica|[2016] and
studies the standard Bayesian Persuasion model with multiple senders who simultaneously commit to
a signaling scheme (playing, as in our paper, a simultaneous move commitment game). Subsequently
a number of papers have studied multi-sender Bayesian Persuasion [|[Gentzkow and Kamenica, 2017}
Li and Norman, [2018}, /Au and Kawail, 2020} Wul 2023]]. We focus here on the most relevant papers in
this literature.

Ravindran and Cui| [2020] study competing senders with zero-sum preferences over a receiver’s
beliefs. They show that competition leads to full revelation of the state in all equilibria, provided the
senders’ utility functions are “globally nonlinear”. This technical condition can hold in a standard
receiver model only if the receiver has a different optimal action for every distinct state of the world.
This condition cannot hold whenever e.g. the number of states of the world exceeds the number of
actions. Our work does not assume that the leaders Bob are engaged in a zero-sum game with each
other — rather our weighted alignment assumption can be viewed as assuming that the misaligned
portions of their utility functions are approximately zero-sum under some non-negative reweighting.
We also do not require an analogue of the “globally nonlinear” assumption, and so our results can
apply to settings in which the state space is large.

Gradwohl et al.| [2022] study a Bayesian persuasion game in which a receiver chooses to interact
with only one of several competing senders (similar to our model in Section [E)). As we do, they find
that competition can force senders to be fully informative in equilibrium. In addition to the greater
generality of our setup beyond Bayesian persuasion, our work differs in its core assumptions. The
assumption driving the results of (Gradwohl et al.| [2022] is that the senders are uncertain about each
other’s utility functions, and that any sender has a non-zero probability of being perfectly aligned
with the receiver. We instead introduce and use the arguably more general “approximate weighted
alignment” assumption, which only requires the user’s utility to lie within the convex hull of the Al
agents’ utilities — we do not require any uncertainty about the Al agent utility functions, or any
possibility that any of them are individually aligned with the user.
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Hossain et al.|[2024] study the problem of multi-sender Bayesian Persuasion from a computational
perspective, and prove worst-case hardness results for both the receiver’s best-response problem and
for the senders’ equilibrium computation problem. They also design and evaluate neural network
architectures suited to the (heuristic) computation of equilibria in such games.

AI Alignment Our work fits broadly into the study of multi-agent Al systems [Guo et al., [ 2024]].
We present a game theoretic approach in which “alignment” emerges from the competitive interaction
of many mis-aligned agents. Recent work has explored cooperative multi-agent approaches to Al
safety, where multiple Al systems work together to improve alignment outcomes. Constitutional Al
[Bai et al.l 2022] uses Al feedback to train more helpful and harmless models, with one Al system
providing critiques and revisions of another’s outputs. Similarly, approaches using Al systems to
evaluate and improve other Al systems [Leike et al.||2018]] rely on cooperative dynamics where the
evaluating system is assumed to be sufficiently aligned to provide useful feedback. These approaches
typically assume that at least some components of the multi-agent system are well-aligned or that the
agents share compatible objectives.

Our work differs by studying strategic rather than cooperative multi-agent settings. This bears some
similarity to Al alignment via “debate” as proposed by |Irving et al.|[2018]]. In their setup, two Al
agents take turns making arguments about some proposition (e.g. the factuality of some claim), and
at the end one of them is chosen as the “winner” of the debate by a human user. The goal of each
agent is only to be declared the winner, and so this is a two-player zero sum game. The hope is
that the equilibrium strategy will be to be honest, because “it is harder to lie than to refute a lie.”
Several subsequent theoretical works have been motivated by Al safety via debate. For example,
Brown-Cohen et al.|[2024] 2025] study multi-prover proof systems and study what kinds of problems
have solutions such that an “honest prover” has a winning strategy implementable by a Turing
machine of bounded complexity and a verifier that makes a bounded number of oracle calls to human
judgment. [Chen et al.|[2024] use Al debate as motivation for studying the problem of learning in very
large zero sum games through use of an oracle. A main conceptual difference between our model and
this literature is that we do not assume that the Al agents are motivated to be “chosen” as winners,
but rather that they aim to influence Alice’s behavior (in a complex decision space with non-binary
actions and outcomes). Our work can be viewed as an extension of the Al debate model beyond two
player zero sum games, to many LLMs who may have goals in common, but who desire to influence
user behavior in different ways.

Several recent papers with alignment motivations [Collina et al., 2025bla, [Nayebil, 2025] have studied
agreement protocols through which conversational agents can come to agreement about their beliefs
through short interactions. These should be viewed as protocols for cooperative agents, as they are
assumed to express their true beliefs at each iteration of conversation. We adopt the conversational
framework of these papers but study strategic agents who do not have the same goals. Our work can
both be viewed as a strategic generalization of the agreement literature [Aaronson} 2005), [Frongillo
et al., [2021] |Collina et al., [2025alb, Nayebil |2025]], and a generalization of the (already strategic)
Bayesian Persuasion literature beyond simple one-round signaling schemes used to communicate
between an informed party and an uninformed party to multi-round conversation protocols used by
differently informed parties.

B Preliminaries

This section establishes the formal framework for our analysis. We first introduce the players
and their information structure (Appendix [B.I)), then present our key modeling assumption about
approximate weighted alignment (Appendix [B.2)), and finally define the communication protocol and
game structure (Appendix [B.3)).

B.1 Players and Information Structure

We model the interaction as a multi-leader Stackelberg game, extending the Bayesian persuasion
framework to our setting. The key insight is that Al providers (leaders) commit to conversation
strategies first, knowing that the human user (follower) will observe these strategies and respond
optimally. This captures the reality that Al systems are deployed with fixed parameters, while users
can adapt their interaction strategies. Alice observes features x4 € X4 and must choose an action
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a € A. Each Bob; observes features g € X'g. There is a state of the world y € ) that is not directly
observed by any player. All players have utility functions that depend on Alice’s action and the state
of the world to a utility in [0, 1]:

ug: AxY —[0,1],
U : AxY — 10,1 Vielk]

B.2 The Weighted Alignment Assumption

Having established the basic game structure, we now turn to our key modeling assumption: that
Alice’s utility can be approximately represented as a weighted combination of the Als’ utilities.

Definition 1 (Approximate Weighted Alignment). A key assumption of our model is that there exists
a weighted combination of the Bobs’ utilities that is approximately aligned with Alice’s. Formally,
we assume there exist non-negative weights w1, ..., wg > 0 with Zl w; = 1, an offset ¢ € R, and
an alignment error € > 0 such that:

sup
ac€Ayey

<e.

k
< w;Ui(a,y) + C) —ua(a,y)

1=

This assumption is central to our results. In Appendix [H] we provide a probabilistic foundation
showing that this condition holds with high probability when Al systems are designed to be aligned
in expectation but suffer from implementation noise.

Remark 1 (When This Assumption is Reasonable). This assumption captures several realistic scenar-
ios:

» Competitive markets: If Al providers have different commercial interests that are zero-sum
(like the medical example in the introduction), Alice’s utility may lie exactly in the convex
hull.

* Noisy alignment: If each Al attempts to optimize Alice’s utility but with implementation
noise, the average will be close to Alice’s true utility (see Appendix [H).

* Diverse objectives: Even if Als have systematically different goals, Alice’s utility may still
lie approximately in their convex hull if the Als span a diverse enough range of objectives.

Remark 2. As stated, we assume that Alice’s utility can be approximately represented within (a
translation of) the convex hull of the Bob’s utilities, since » , w; = 1. First note that we can easily
take ), w; < 1 by introducing a dummy Bob with utility uniformly 0. The normalization ), w; = 1
is also just for convenience: if instead ;, w; = C, then all of our results would continue to hold —
the only difference would be that the approximation terms in Section [D] would now depend linearly
on C' (the theorems in the other sections would not change at all).

B.3 Communication Protocol and Game Structure

With the alignment assumption in place, we can now define the communication protocol that governs
how Alice and the Als interact.

Probabilistic Model and Beliefs We assume there is a commonly known prior distribution
P(za,zp,y) over Alice’s features, the Bobs’ features, and the state of the world. Given some
information F (e.g., a conversation transcript or a subset of features), Alice forms a belief about her
expected utility for each action. We denote this belief vector as pu(F) == (Ey[ua(a,y) | F])aca.

Definition 2 (First-Best Utility). We define the first-best utility, O PT, as Alice’s expected utility if
she had access to all features (x4, z). Formally:

OPT = E(IA,IB) rgleai(Ey[uA(avy) ‘ :I’.AawB]

Remark 3. The first-best utility OPT represents Alice’s utility if she had perfect informa-
tion—knowing both her private features x4 and all Als’ private features xp. This serves as an
upper bound on what any communication protocol can achieve, since no amount of conversation can
provide Alice with more information than she would have with direct access to all features.
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B.4 The Communication Protocol

The communication protocol models realistic constraints on human-Al interaction: conversations
have limited rounds, messages have bounded complexity, and the human must process information
from multiple Als simultaneously. Alice engages in parallel private conversations with each Al,
which captures settings where she can query multiple models independently.

In most of the paper, Alice engages in a series of R rounds of private, parallel conversations with
each of the k£ Bobs (we will change the protocol in Section[E). Let M be the message space.

We now formalize each player’s strategic choices. Each AI commits to a conversation rule (how to
respond given the conversation history) while Alice chooses both a conversation rule (how to query
the Als) and a decision rule (how to act given the final conversation outcomes).

Definition 3 (Player Strategies). Each player’s strategy is defined by a set of rules governing their
communication and decisions.

* Bob;’s conversation rule C'z, maps his features and his private conversation history with
Alice to a distribution over messages:

Cp, : X x M<R — A(M).

* Alice’s conversation rule C'4 maps her features and the full history of all k£ conversations
to a distribution over next messages for each Bob:

Cy: Xy x (MY 5 A(MF).
* Alice’s decision rule D 4 maps her features and the full conversation history to a distribution
over actions:
Dy Xy x (MPYE 5 A(A).
Definition 4 (Best Response Decision Rule). A best-response decision rule is a deterministic rule

D7 that, given the final posterior belief ;1(x 4, m) derived from Alice’s features x 4 and a transcript 7,
selects an action that maximizes Alice’s expected utility:

D (4,7) € argmex (.4, 7).
acA

In cases of ties, a fixed, predetermined rule is used.
The Game. The game proceeds as a multi-leader, single-follower Stackelberg game, with the
following timing:

1. Each Bob, simultaneously commits to a conversation rule C'p; .

2. Alice observes the chosen conversation rules Cp = (Cp,,. .., Cp, ), and then chooses her
own conversation rule and decision rule C'4 and D 4.

3. Aninstance (x4, 2p,y) is sampled from the prior distribution P. Alice observes x 4 and
each Bob observes z .

4. Alice and the Bobs engage in the communication protocol defined by C and Alice’s own
conversation rule C4 to sample a conversation transcript 7. The protocol is defined precisely
in Algorithm

5. Alice samples an action a according to her decision rule a = D4 (x4, 7), and all players
receive their utilities w4 (a, y) and U;(a, y).
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Algorithm 1 SAMPLETRANSCRIPT(Cz, C4): A protocol for sampling a transcript.

Require: Conversation rules C_jg, Cy.
Ensure: A transcript 7 = (my,...,my) where m; is the history of messages between Alice and
BObi.
Initialize empty histories h; = () for all ¢ € [k].
forr=1,...,Rdo
Alice sends a message to each Bob: (ma1,...,may) ~ Ca(za, (h1,..., hy)).
Append messages to histories: h; <— h; o m 4 ; for all 4.
for each i € [k] do
Bob ¢ sends a message to Alice: mp ; ~ Cp,(vp, hi).
Append message to history: h; < h; o mp ;.
end for
end for
return transcript 7 = (hq, ..., hy).

Induced Distributions and Equilibria

Definition 5 (Induced Distribution). A set of strategies (C}g, Ca, D) induces a joint distribution
over conversation transcripts 7, actions a, and world states y. We denote the marginal distribution

over actions and outcomes by 7 (C};, Ca,Dap).

Since Alice observes the Bobs® conversation rules C'z before choosing her own, she will play a best
response. A rational Alice will always use the Best Response Decision Rule (Definitiond) to select
her action after the conversation concludes. Therefore, her only strategic choice is her conversation
rule, C4.

Definition 6 (Alice’s Best-Response Conversation Rule). Given a vector of Bobs’ conversation rules

Cp, Alice’s best-response conversation rule C}; is one that maximizes her expected utility, assuming
she will use the best-response decision rule D’ :

Ch € argmax B, s ci 0 (40, 0)]
When multiple conversation rules yield the same maximal utility, a fixed tie-breaking rule is used.
We write C% = C% (Cp) to make the dependency on C'p explicit.

Since Alice plays a best response, we can define the resulting induced distribution as a function of
the Bobs’ strategies alone: Z*(C'g) = Z(Cp, C%(Cg), D% (Cp)). With Alice’s response fixed, the
Bobs engage in a simultaneous-move game. We study the Nash equilibria of this game.

Definition 7 (Nash Equilibrium). A vector of Bobs’ conversation rules C’_;g* =(Ck,y---,Cp ) isa
Nash Equilibrium if no Bob; can improve his expected utility by unilaterally deviating to a different
rule C' . That is, for all 7 € [k] and for all alternative rules Cg

Eanz-@Uila ) 2 By orecp, 05 Uilas)]-

Our interest is in lower bounding Alice’s utility in all Nash equilibria of this game. In particular, we
will be interested in settings in which her utility is guaranteed to be competitive with what she would
have received were Alice to be interacting with a single, perfectly aligned leader.

Definition 8 (Utility with an Aligned Leader). A useful benchmark is the utility Alice could achieve
if she were interacting with a single, perfectly aligned leader Bob. A perfectly aligned leader is one
whose utility function is identical to Alice’s, i.e., Ug(a, y) = ua(a,y). Such a leader would choose
a conversation rule C'j; to maximize Alice’s expected utility. We denote this maximum achievable
utility as U (Cg):

Ua(Cp) = maxE(q,)~z- (cp) [wa(a, Y)]-

This represents the best possible outcome for Alice given the constraints of the communication
protocol with a single, fully cooperative partner.

10
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Note that the utility that Alice can obtain when interacting with a perfectly aligned leader is at most her
first best utility: U4 (C5) < OPT. In some situations we will have U4 (C75;) = OPT (for example
if the message space is sufficiently expressive to encode x4 over R rounds of communication), but if
the message space is more restrictive the inequality could be strict.

C Competition Achieves Optimal Outcomes in Ideal Scenarios

Our first result shows that if Alice could achieve her first-best utility by talking to a single perfectly
aligned Al, then she can achieve nearly the same utility in equilibrium when talking to many
misaligned Als—provided her utility lies in the convex hull of theirs.

This section establishes this result through two steps. First, we identify a key structural condition—the
“Identical Induced Distribution Condition"—that captures when there is a fixed deviation such that
different Bobs adopting the same deviation lead to the same decisions by Alice (Appendix [C.T) —
i.e. Alice’s behavior depends on what she learns, but not who taught it to her. Second, we prove that
under this condition, strategic competition automatically leads Alice to achieve near-optimal utility
(Appendix [C.2). We observe that this condition is in particular satisfied when a perfectly aligned Bob
could cause Alice to learn her Bayes optimal action.

C.1 The Identical Induced Distribution Condition

The key technical condition driving our result is that it “doesn’t matter" which Bob adopts the
Alice-optimal strategy—Alice gets the same outcome regardless. This holds, for example, when the
Alice-optimal strategy allows her to learn her Bayes-optimal action, since she’ll act on this no matter
who teaches it to her.

We now formalize this condition. Let C%; be a conversation rule for a single leader that maximizes
Alice’s utility (i.e. a conversation rule that a perfectly aligned Bob would use), and let U4 (C;) be
this maximum single-leader utility.

Definition 9 (Identical Induced Distribution Condition). A game structure satisfies the identical

induced distribution condition if for any strategy profile Cp and any two Bobs i,5 € [k], the
distributions induced by a unilateral deviation to C';; are identical. That is,

T((Cp ,CE) =T ((Cs ', C)).

Observe that the Identical Induced Distribution Condition will hold in any setting in which it is in
Bob’s strategy space to cause Alice to learn her optimal action (and hence obtain her first-best utility
OPT):

Proposition 1 (When the Condition is Satisfied). The identical induced distribution condition is
satisfied if the Alice-optimal leader strategy C' allows Alice to learn her Bayes-optimal action
a*(xa,xp) = argmaxeec 4 Ey[ua(a,y)|za, zp).

Proof. Suppose a leader ¢ € S unilaterally deviates to the Alice-optimal conversation rule C'j;. By
assumption, Alice has a conversation rule that would allow her to learn her Bayes-optimal action,
a*(za,xp) by interacting with C;. Alice’s strategy space includes the option of ignoring all Bobs
other than ¢ and playing her best response as if it were a single-leader game with leader <. Since Alice
plays a best-response to the full set of strategies Cp. her utility must be at least as high as what she
could get from this simpler strategy.

When Alice learns the specific action a*(z 4,2 ), her best response is to play that action (or a
distribution over optimal actions if there are ties, according to her fixed tie-breaking rule). This
response depends only on the information she learns, not on the identity of the Bob who provided
it, since we assume that ties amongst her best response actions are broken according to a fixed tie
breaking rule. Therefore, if any Bob j € S deviates to C%;, Alice will follow the same decision rule.

. Y . o i .. .
Consequently, the induced distribution over actions and outcomes, Z*((Cp ,C})), is identical for
any deviating Bob ¢ € S. Thus, the condition is satisfied. O

Remark 4. A straightforward case where the condition of the proposition holds is when the message
space M is rich enough to contain the Bobs’ feature space X'z. In this setting, an optimal strategy

11
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C'; can be for the Bob to simply reveal z to Alice. With full knowledge of (x4, z5), Alice can
compute her Bayes-optimal action a*(z 4,z ).

Having established when the identical induced distribution condition holds, we now show that this
condition is sufficient to guarantee that Alice achieves near-optimal utility in equilibrium. The proof
relies on a simple observation about Nash equilibria: no Bob wants to deviate—in particular, to any
conversation rule that would make Alice better off—but this constraint, combined with our alignment
assumption, forces Alice’s utility to be high.

C.2 Strategic Competition Leads to Near-Optimal Outcomes

We can now state our first result: under the identical induced distribution assumption, approximate
weighted alignment implies that in equilibrium, Alice gets utility that is approximately what she
could get interacting with a single, perfectly aligned leader. In particular, if the message space is
expressive enough to allow an aligned leader to communicate to Alice her Bayes-optimal action, then
approximate weighted alignment is sufficient for Alice to obtain approximately her first-best utility.

Theorem 1. If the multi-leader game satisfies the identical induced distribution condition, and if
the leaders Bob satisfy the c-weighted alignment condition, then Alice’s expected utility in any Nash
equilibrium is at least U (C}) — 2¢.

Proof. Fix an arbitrary Nash equilibrium CpandletIyp = I* (C_}g) be the distribution induced by
the equilibrium strategies. Now, consider a unilateral deviation by an arbitrary Bob 3 to the Alice-

optimal strategy C'j. Let Zge,, = Z *((C}ﬂ, (%)) be the induced distribution after this deviation.
By the identical induced distribution condition, Z4.,, is the same regardless of which Bob ¢ deviates.

When a single Bob ¢ deviates to using the conversation rule C'};, Alice’s strategy space includes the
option of ignoring all other Bob’s j and engaging with Bob i as she would in the single-leader game.
Since Alice chooses a best-response strategy, her resulting utility must be at least as high as the utility
from this option, which is by definition U4 (C75;).

Ez,.,[uala,y)] > Ua(Cp).

By the Nash equilibrium condition, no Bob i has an incentive to deviate. Thus, for all ¢ € [k]:

EI{ic'n [Ui(aa y)] < EINE [Ul (CL, y)]

Taking a weighted sum over all Bobs using the non-negative weights w; from the alignment assump-
tion (where Y w; = 1):

k k
Z wiEIdeU [Ui(aa y)] < Z wiEINE [UZ (a‘v y)]
i=1

i=1

By linearity of expectation, this is equivalent to:

k
IEIdev lz wLUT (aa y)

i=1

k
<Ezye lz wiUi(aay)] :

i=1

Now we use the approximate weighted alignment assumption, which states that > w;U;(a, y) is
e-close to u 4 (a,y) — c. For the left-hand side:

EIdev

k
> wili(a, y)] > Bz, [uala,y) — ] —e =Kz, [uala,y)] —c—e > Ua(Cp) —c—e.
i=1
For the right-hand side:

k
IEINE [Z w’LU’L (a7 y)
i=1

Combining these inequalities, we get:

Ua(Cp) —c—e < Ezypluala,y)] —c+e.

< IEINE [UA(G,, y) - C] +te= IEINE [uA(aa y)] —c+te.

12
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The constant offset ¢ cancels, and we are left with:
UA(CE) —¢€ S EINE [’U'A(aa y)] +e.

Ezypluala, y)] 2 Ua(Cp) — 2.
which completes the proof. O

This result provides strong guarantees but requires that a perfectly aligned Al could help Alice learn
her exact optimal action. In Section[D] we’ll show how to relax this to only requiring approximate
learning, at the cost of Alice committing to bounded rational behavior.

D Robust Guarantees for Users with Bounded Rationality

The result in Section [C]required a strong assumption: that a perfectly aligned model could cause
Alice to learn her exact Bayes optimal action. This implied the main technical condition we needed
in Section [C] — the identical induced distribution condition (Definition Q). Here we relax our
motivating assumption to a more realistic condition: a perfectly aligned model need only help Alice
approximately learn the expected utility of each action. We show that this implies a relaxation of our
main technical condition — an approximate version of the identical induced distribution condition
(Definition [I3)) which we use in this section.

To analyze this weaker setting, we study a model where Alice acts straightforwardly rather than
strategically, committing to two behavioral rules: (1) she always reports her honest beliefs during
conversation, and (2) she uses “quantal response” for decision-making—a form of bounded rationality
where she chooses actions probabilistically based on their estimated utilities rather than always picking
the best one. We can view these assumptions either as modeling a boundedly rational Alice, or as
explicit behavioral commitments that a strategic Alice makes to enjoy more robust guarantees.

This section proceeds in three steps. First, we introduce the quantal response model where Alice
commits to straightforward conversation and bounded rational decision-making (Appendix [D.T).
Second, we prove that this leads to near-optimal utility in equilibrium under a technical condition
relaxing the identical induced distribution condition (Appendix [D.2)). Finally, we show this condition
is satisfied when the underlying distribution has the “information substitutes” property (Appendix[D.3).
The main result (TheoremEI) shows that under the Information Substitutes condition, Alice achieves
near-optimal utility with an explicit bound depending on alignment error, estimation error, and the
quantal response gap.

D.1 The Quantal Response Model

In this model, we assume Alice reacts to any set of conversation rules that the Bobs commit to using
a straightforward conversation rule and a quantal response decision rule. This can be viewed either as
a model of nonstrategic interaction and bounded rationality or as a strategic commitment by Alice to
encourage more informative communication.

Definition 10 (Straightforward Conversation Rule). The straightforward conversation rule models
honest communication: at each round, a player simply reports their current beliefs about the ex-
pected utility of each action. This can be viewed either as modeling non-strategic behavior or as a
commitment device to encourage informative equilibria.

Specifically, let ﬂ'f ~! denote the private transcript between Alice and Bob i up to round k — 1, and
let 7F—1 = (W]f o, 77,’?1) be the full history available to Alice. If Alice uses the straightforward
conversation rule, her message is m*% = (E[ua(a,y) | 24,7 1])aca. If Bob i uses the straight-
forward conversation rule, his message is mf;, = (E[ua(a,y) | z5,, 7871 aca. We assume the
message space M is sufficiently expressive to encode these vectors, e.g., [0, 1] C M. We denote

Alice’s use of this rule as 5.

We model Alice as choosing her action using quantal response, a model of bounded rationality from
behavioral economics [McKelvey and Palfreyl [1995].

Definition 11 (Quantal Response Decision Rule). Rather than always choosing the action with
highest estimated utility (which would be “best response”), Alice uses quantal response: she chooses

13
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actions probabilistically, with higher-utility actions being more likely. The parameter A controls how

“rational” she is—as A — oo, this approaches best response.

Formally, given Alice’s features = 4 and the final transcript 7, from which she forms the posterior
belief p(x 4, ) = (pa(z A, T))aca, the probability of choosing action a is:

exp (Apa(74,7))
Y wrea xXp (Miar (24, 7))

DG (x4, 7)(a) =

In this version of the game, Alice commits to both a fixed conversation rule, cs! , and a fixed decision
rule, Dg. The Bobs, knowing this, choose their conversation rules to form a Nash Equilibrium.
Definition 12 (Quantal Response Equilibrium). Let Alice’s conversation rule C'4 be fixed to the
straightforward conversation rule sz and her decision rule be fixed to the A-quantal rule Dg.

Let IQ(JB) = 7(Cp, Cj‘f , Dg) be the induced distribution given a vector of Bob strategies Cz. A

strategy profile C B* is a Quantal Response Nash Equilibrium if for all Bobs 7 and all alternative rules
Cp.:

E o y~ze@nnUila V] 2 By zocy, a5 Uila:y)l-

For reasonable values of ), the quantal response decision rule gives Alice nearly as much utility as
the best response decision rule, in expectation. As A grows large quantal response approaches best
response. The next lemma formalizes this.

Lemma 1 (Quantal Response Gap). For any belief vector p, the gap between the optimal utility and
the expected utility from a \-quantal response is bounded:

3 exp (Aa) < log|A|

n/1ax Ha' — a =
€A = Y e €XD (Miar) A
Proof. Let a* = argmax,c 4 /o be an optimal action and let p(a) = % be the
a/e X al

probability of choosing action a under the quantal response model, for brevity. The optimal utility
given belief 11 is j1,-. The expected utility under quantal response is ), 4 p(a)fta-

par — Y p(@pa = Y p(a)(ptar — fia).
acA acA

From the definition of p(a), we have 11, = + log(p(a)Z), where Z = 3", exp(Apq/). Substituting

s ~ 2
this in:

The difference is:

1
par — > pla)pa = Y pla) (ua* — 5 (logp(a) + log Z))
acA acA

1

—ua*—A< pla)logp(a) +log Z > pla )

acA acA

H(p) logZ

- :u’a* + )\ )\ )

where H (p) is the Shannon entropy of the distribution p. Since Z =), exp(Atar) > exp(Apa-),
we have log Z > Apg~. Therefore,

H(p) Apar _ H(p)
. — E < e + — — .
#’a GEAp(a)/"La — /‘La )\ A )\

The entropy H (p) is maximized when p is the uniform distribution over A, in which case H (p) =
log | A|. Thus, we have the bound:

1
MAX flq — Z DQ (a)pa < %.
acA

14
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Lemma 2 (Multiplicative Stability of Quantal Response). Ler P = softmax(Au) and

Q = softmax(\u’) over A, where for a vector z € RA we define softmax(z), :=
exp(za)/ D pen exp(2). If [[u — v||oc < &, then for each a € A,
o2 < P(a) < e2re.
~ Q)
Consequently,

1P = @Qlx < e* — 1.

e)\ua

Proof. For any a, e~ < £~ < ¢, and for the partition functions Z = Y, e’, Z' = 3", e

’
o un =

we have e *¢ 7’ < Z < e** Z'. Therefore e3¢ < gggg = :::,://ZZ, < €2*. Then |P(a) — Q(a)| =

Q(a) |P(a)/Q(a) — 1| < Q(a)(e?** — 1). Summing over a gives ||P — Ql|; < e**¢ — 1. O

D.2 Equilibrium Analysis Under the (J, C};)-Close Condition

Our goal in this subsection is to prove a bound on Alice’s utility in any equilibrium of the induced
game (Theorem [2). Our proof strategy has several parts. First, to reason about equilibria, we need
a way to compare the outcomes that result from different Bobs’ strategies. We formalize this with
the (0, C'; )-close condition (Definition , which states that any two Bobs unilaterally deviating
to a reference strategy C'5; should induce similar outcome distributions. Second, we show that this
condition holds if the reference strategy allows Alice to learn her expected utility for each action
with small error (Proposition[2). In Appendix we will show how the Information Substitutes
condition provides a foundation for bounding this error, completing our argument.

Definition 13 ((6, C%)-Close Condition). This condition captures the idea that it “doesn’t matter”
which Bob adopts the reference strategy C'5—the resulting outcomes are similar regardless. Intu-
itively, this holds when C';; allows Alice to learn something fundamental about the world state, rather
than Bob-specific information.

Formally, we say that a game satisfies the (J, C'j;)-close condition for a reference strategy C'j; if

for any strategy profile Cp and any two Bobs 7, j, the total variation distance between the induced
distributions resulting from their unilateral deviations to C'}; is at most J:

IZ%((Cr,-i,C5)) = I°((Cp,—;, C3)) 1 < 6.

We first prove a general result: if any Bob unilaterally adopting a reference strategy C'y; would induce
approximately the same outcome distribution (the (6, C};)-close condition), then Alice’s utility in any
equilibrium of the induced game is close to the utility she would get from interacting with that single
Bob using conversation rule Cg.

Theorem 2 (Equilibrium Utility Bound with Quantal Response). Suppose the leaders Bob satisfy the
e-weighted alignment condition and the game satisfies the (8, C'y)-close condition (Definition[I3)) for
a reference strategy C5. Let U4 (CF) be Alice’s expected utility from interacting with a single Bob
using C%. Then in any Quantal Response Nash Equilibrium (Definition [7_7]) her expected utility is at
least:

EIJ%E[uA] > Ux(Cg) — 2e — 4.

Proof. Fix a Quantal Response Nash Equilibrium ég with induced distribution IIC;?, p=1I° (C_"g)
Let Zgeyw,; = IQ((ég,, ;»Cp)) be the distribution induced when Bob j unilaterally deviates. By the

definition of a Quantal Response Nash Equilibrium, no Bob j € [k] has an incentive to deviate. This
implies that for every j € [k]:
Ez,..,[U;] <Eze [Ujl.

Taking a weighted sum with weights w; > 0 where ) " w; = 1:
k k
> wiEz,,, U] <> wize [Uj]-
j=1 j=1
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The right-hand side can be bounded using the weighted alignment assumption:
Z ijII%E [Uj] = EI}%E Z w;U;| < ]EIIL\;;]E [ua —cl+e= ]EII%E [ual —c+e.
j= J

For the left-hand side, we first relate each term to a single anchor deviation by an arbitrary leader
Bob k. Let Zge,, 1 be the distribution induced by Bob k’s deviation. The utility for Bob j under their
own deviation Z e, ; is close to their utility under the anchor deviation Zge, 1:

‘Ezdev,j [Uj] - Ezdev,k[UjH < ”Idev,j _Idev,k”l <.

Therefore, Ez,,, ,[U;] > Ez,,, , [U;] — 6. Applying this to the weighted sum:

k k
Z ijIdcv J Z ]EIdw k1Y Z w.]EIdvv k U —0 Z w;.
j=1 J=1

Since } S w; = 1, this simplifies to Ez,,,, , [, w;U;] — d. We now apply the alignment assumption
to this term:

EIdev,k ijUj 0> (]EIdcv,k[uA] —C—= E) — 0.
J

By definition, Alice’s utility from this single-Bob deviation is Ez, , [ua] = Ua(C%). So the LHS
is bounded below by U4 (Cg) —c—e — 4.

Putting the full inequality back together:
UA(CE) —c—e—0< EIZC\JTE[UA] —cH+e.
The constant offset c cancels, and rearranging yields theorem:
Ua(Cx)—2e—0 < EIJ%E[uA]'
O

Next we show that any conversation rule that in the single leader game would cause Alice to
approximately learn the utility of each of her actions satisfies the approximate closeness condition
needed to invoke Theorem

Proposition 2 (Uniform Utility Estimation Error Implies d-Close). Suppose a reference conversation

rule C% is such that when used with Alice’s fixed straightforward conversation rule C’jlf , the utility
estimates are uniformly accurate across actions, almost surely: for all (x o, xp) and all transcripts 7@

generated under (sz, C%), we have ||1(x 4, T) — ptrue(Ta, B)|| oo < €u. Then the game satisfies
the (6, C%; )-close condition (Deﬁnition with § < e*rew — 1.

Proof. Let Cp be an arbitrary vector of Bobs’ strategies. The distribution Ze,, ; is induced when Bob
1 unilaterally deviates to a reference strategy C'5, so the vector of Bobs’ strategies is (C_" B,—i,CF).
Similarly, for Bob j’s deviation, the strategy vector is (é B,—j, Ch). Our goal is to show that the
total variation distance between the induced distributions Z?((C's._;, C%)) and Z9((Cp, +CH)
is bounded, for any c B.

The induced distributions from the deviations by ¢ and j are joint distributions over Alice’s action a
and the world state y. Let P;(a,y) and Pj(a,y) denote these distributions. We first show that the

total variation distance between them is bounded by the expected distance between Alice’s action
distributions, conditioned on the features.

By the law of total probability, the joint distribution Py (a,y) (for k € {i,j}) is given by integrating
over the features (x4, xg):

Py(a,y) = / P(xa,vp)Py(a,y | va,2B)dvadrp = By, 2, [Pre(a,y | 24,78)]
Xa,XB
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573 The conditional distribution Py (a,y | 4,2 ) factors according to the causal structure of the game:
574 first a transcript 7 is generated, then an action a is chosen. The state y is conditionally independent of
575 the transcript and action given the features. Thus, Py (a,y | 2a,25) = P(y | xa,25)qk(a | za,2B),
576 where qx(a | x4,z p) is Alice’s action probability given the features under deviation k.

577 Now we bound the total variation distance:

=3 /y |Pi(a,y) — Py(a,v)|dy

acA

=" [ [Bts om0l zm) aslaloa,m) ~ gs(aloa,zm)]| dy

HIdev,i - Idev,j

< Z/E(EA,IB)[P(QMA’!EB)|C]1‘(@|!EA7$B) —gj(alza,zp)|]dy (Jensen’s Ineq.)
o Yy

=Ea2n) [Z|qi(a|x,47x3)—qj(a|a:A,xB)|/P(y|x,47x3)dy] (Fubini’s Thm.)
Y

a

=Ezan) lZ|qi(a|mA,mB) —qj(a|xA,mB)|1 (since/P(y|.)dy: 1)
y

a

=EBuemllaiClra, zp) — ¢i(-|xa, zp)[1]

s Here, qr(-|24,7B) = Bzt (za,0n) [Dg(xA, 7)] is Alice’s action distribution for a given (x4, x ),
579 averaged over all possible transcripts 7 that could be generated when the Bobs’ strategies are
ss0 (Cp,—k, Cp).

sst  Let u(x 4, 7) be Alice’s posterior utility vector and let pi4-ye (4,2 5) be the true expected utility
ss2  vector. Let 7; and 7; be random variables for the transcripts generated under deviations by i
sss  and j respectively. By the uniform-accuracy hypothesis, for all (x4, z5) and all transcripts we
ss¢  have [|u(z4, i) — pirue(T4,28)|00 < ey and [(za,Tj) — pirue(®a,78)[c < €4 Hence
585 ||p(2a, i) — p(za, )|l < 2e, deterministically.

Conditioning on (z 4, g, T, 7;), apply Lemma with € = 2¢,, to the quantal response distributions
to obtain
IDS (4, 7;) = DF (2, 75)lh < e — 1.

Taking expectations over (z 4,z p, 7;, ;) preserves the bound, and by the reduction above from joint
to action-marginal differences we conclude

4he,
HIdev,i - Idev,jHl S e — 1.
ss6  This proves the claim with § = e**e« — 1. O

Corollary 1 (High-Probability Uniform Error Implies §-Close). Under the setup of Proposition
suppose there exists an event E with probability at least 1 — p over (x4, xp) and transcript ran-
domness such that for all (x4, xp) € E and all transcripts @ generated under (Cif, C%), we have
uniform accuracy across actions: ||p(za, T) — fitrue(T A, B)||co < . Then the game satisfies the
(6, C% )-close condition with
§ < et 14
587 Proof. On the event F, Propositionapplies directly, yielding total variation at most e***» — 1. On
sss the complement £° (probability at most p), total variation is at most 1. Taking expectations gives
s89 6 < (et — 1) (1—p)+1-p<et —14p. O

se0 Corollary 2 (Small-)\ Linearization). If e, < ¢, then by the mean value theorem e***+ — 1 <
591 4)e, €. In particular, if Ae,, < i, then § < 4de Aey,.

s92 D.3 From Information Substitutes to Utility Guarantees

s93 The previous results provide a utility bound for Alice that depends on two key quantities: the
s94 utility estimation error ¢,, and the alignment error e. We now show how the Information Substitutes
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Condition first defined in [Frongillo et al.| [2021]] (Definition[T4) provides a foundation for bounding
€, When Alice uses the straightforward conversation rule, leading to our main theorem.

The Information Substitutes condition, roughly speaking, says that Alice’s and Bob’s information are
“substitutes” rather than “complements” for predicting Alice’s utility. If Alice already knows Bob’s
information, learning her own information doesn’t help as much, and vice versa. This is a reasonable
assumption in many settings—for example, if both Alice and Bob observe noisy versions of the same
underlying signal.

Definition 14 (Information Substitutes Condition [Frongillo et al [2021]]). A distribution
P(xza,zp,y) satisfies the information substitutes condition with respect to Alice’s utility func-
tion u 4 if, for every action a € A and every pair of feature subsets A C X4 and B C X, the
following inequality holds:

E [(UA(a,y) —Elua(a,y) | za € A,zp])? |24 € A 2B € B]
—E [(uA(a,y) —Efua(a,y) | za,28]))* |24 € A,zp € B}

< E[(ua(a,y) —Eluala,y) | za € A,zp € B))? |za € Azp € B|
—E [(uA(a,y) —Efua(a,y) | za,25 € B))? |14 € A, xp € B]

This condition states that the reduction in mean squared error from learning Alice’s specific features
x 4 is smaller if Bob’s specific features x g are already known.

Aaronson|[[2005]] proved that for any set of common prior beliefs, if Alice and Bob engage conversation
using a straightforward conversation rule, then the conversation quickly converges to agreement,
defined next. |Collina et al.|[2025b]] extended this guarantee to multi-dimensional conversations.

Definition 15 (s-Agreement). Let p% and p% be the posterior belief vectors of Alice and a Bob at
round k of a conversation. We say that they have reached s-agreement at round £ if their belief
vectors are e-close in the L., norm:

”:ulfﬁ - N%”oo <e.
Theorem 3 (Convergence of Straightforward Conversation [|Aaronson) 2005} |Collina et al., [2025b]).
For any distribution and any desired agreement level { > 0 and failure probability dcon, € (0,1), a
straightforward conversation (Definition between Alice and a single Bob achieves (-agreement
(Definition with probability at least 1 — §copn. over the randomness of the prior, provided the
conversation runs for at least K = 3|A|/((?6conw) rounds.

Agreement on its own need not imply information aggregation — i.e. Alice and Bob could agree on
beliefs that are substantially less accurate than they would have had they shared their observations
x4 and x g directly. But Frongillo et al.|[2021]],|Collina et al.|[2025a]] give conditions on the prior
distribution such that agreement implies information aggregation.

Theorem 4 (Agreement Implies Bounded Estimation Error [Frongillo et al., [2021])). If the under-
lying distribution satisfies the Information Substitutes Condition (Definition [14), then achieving
C-agreement (Definition implies that Alice’s utility estimation error €, is bounded. Specifically,
for all actions a € A:

[E[ua(a,y) | z4,25] — Elua(a,y) | za,7] < 10¢"/2,
where T is the full conversation transcript.

Finally we are in a position to put all of the pieces together. If Alice is non-strategic (in that she
commits to using the straightforward conversation rule, and the quantal response decision rule), and
if in addition the underlying distribution satisfies the information substitutes condition, then if the
Bob’s satisfy weighted average alignment, then Alice obtains close to her first best utility in every
Nash equilibrium.

Theorem 5 (Main Result: Near-Optimal Utility with Information Substitutes). Suppose the underly-
ing distribution satisfies the Information Substitutes Condition (Definition[I4)) and the leaders Bob
have an average weighted alignment error of €. If Alice commits to the straightforward conversation
rule and a \-quantal response decision rule, her expected utility in any Quantal Response Nash
Equilibrium of the induced game is close to the first-best optimal utility:

10¢1/3 log | A
]EIJ%E[“A] > OPT — \2,54 _ (2(10<1/3 F o) + €N 5conv) - %
Alignment Error
Estimation Error Quantal Gap
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Corollary 3 (Small-\ Form of Theorem . IFA10¢Y/3 < L, then using Corollarywe obtain the
simpler bound

where ( =

log | Al
=

E o [us] > OPT —2: — (20 + 40e A)gl/?’ 36 u0m0 —
NE

Proof. The proof proceeds by chaining together the previous results. We use the straightforward
conversation rule (Definition[I0) as our reference strategy C';; for the equilibrium analysis.

First, we establish the conditions for applying our equilibrium bound. From Theorem 3| we know
that a K-round straightforward conversation achieves (-agreement with probability at least 1 — 0oy,

where (2 = 71(?}“4‘ .

Next, we use this high-probability agreement to bound the expected utility estimation error, which is
required to apply Proposition[2] Let err,, be the random variable corresponding to the estimation error
for action a, i.e., [E[ua(a,y) | 24, 25) — E[ua(a,y) | ., 7]|. From Theorem3|and Theorem[4] we

know that with probability at least 1 — 0., We have err, < 10¢ 1/3 1n the event of failure (with
probability at most d..n.), the error is bounded by 1 since all utilities are in [0, 1].

Therefore, the expected error ¢,, for any action a is bounded:
Eu = ]E[erra] S (]- - 5conv) : 10C1/3 + 5conv -1 S 10<1/3 + 6conv~

Moreover, the bound in Theorem [] holds simultaneously for all actions with probability at least
1 — Seonv: thus the uniform closeness hypothesis holds with '™ = 10¢'/3 on the success event.
Applying Corollary [[|with p = d¢on, yields

§ < (€1 1) 4 5o
Using Corollary for small A we also have the simpler bound ¢ < 40e A ¢ 13 4 Seono-

Now we can apply our main equilibrium result, Theorem [2| It states that in any Quantal Response
Nash Equilibrium, Alice’s expected utility is bounded by:

* * . 1/3
Egg, [ua] = Ua(Ch) = 25 = 8 2 Ua(Cp) — 22 — (1047 — 14 6500, ).
Here, ¢ is the alignment error from the weighted alignment assumption (Definition T).

The final step is to lower-bound the reference utility U4 (C'y;), which is Alice’s expected utility when
a single Bob uses the straightforward conversation rule. This utility can be related to the true optimal
utility, OPT = E(I ANTB) [max, ftrue,a), Dy accounting for the two sources of error: the quantal
response gap and the utility estimation error.

ZDA .’EA, * Wtrue, a‘| .

Adding and subtracting terms, we get:

ZDA xAv lffa xAv ZDA xAv /~La 1'A7 ZDA iL'A, /~Ltrue a)

The first term is Alice’s expected utility given her beliefs, which is at least E[maxa ta(za, T)]— log ‘Al

by Lemmal[I] The second term is bounded by ¢,,. The estimated max utility is also close to the true

max: E[max, ptq (24, 7)) > Elmax, firye,a] — €u = OPT — &,. Combining these gives:
1 1
UA(CL) > (OPT — &) — %'“4' — ey =OPT — 2, — %.

Substituting this bound back into the equilibrium inequality yields:

Ero [ua] > <OPT %, logA'“‘”) — % — 4.

/8

Using 6 < 107" 1 4 6,00 and e, < 10C3 4 §cony gives the stated bound. O

19



640

641
642
643
644
645
646
647
648
649

650
651
652
653
654
655
656
657

658

659
660
661
662

663

664
665

666

667
668
669

670
671
672
673

674

E Winning the User: Assumption Free Guarantees

In Section [C] we showed that Alice could obtain her first-best utility in equilibrium amongst Al
models Bob who satisfy the average weighted alignment assumption, assuming that a single perfectly
aligned Bob could cause Alice to enjoy her first best utility. In Section [D] we showed that if Alice is
non-strategic and uses quantal response rather than best response, then the assumption that a perfectly
aligned Bob could cause Alice to enjoy her first best utility could be relaxed to an approximate version.
In this section, we give a setting in which Alice is guaranteed in equilibrium to enjoy approximately
the utility that she could get by interacting with a single perfectly aligned model Bob, without any
additional assumptions on how close that utility is to her first best. To do this, we modify the design
of the game.

In the interaction we study now, the k leaders Bob still commit to conversation rules. But now,
rather than interacting with all k of these conversation rules at decision time, Alice (after observing
the k conversation rules deployed by the Bobs) chooses one to interact with — i.e. the one that
guarantees her the highest expected utility over the prior distribution. She then deploys a best-response
conversation and decision rule to interact with only this single conversation rule. We can view this
either as a behavioral commitment on Alice’s part (to enjoy the more robust guarantees that we prove
in this Section), or a model of existing practice — that e.g. Alice or her employer might, after a
period of evaluation, contract with just a single LLM provider.

E.1 The Best-Al Selection Game

We begin by defining the modified game. Its timing is similar to our baseline game described in
Section |B| but differs in how Alice interacts with the conversation rules that the Bobs commit to. In
particular, Alice identifies the single best Bob’s deployed conversation rule (from the point of view of
maximizing her own utility), and then interacts only with that one.

Definition 16 (The Best-Al Selection Game). The game proceeds with the following timing:

1. Each leader Bob ¢ simultaneously commits to a conversation rule Cp ;. Let the vector of
chosen rules be Cp = (Cp1,...,Cp k).

2. Alice observes Cp and selects a single Bob j to interact with. Her selection is a best
response, choosing the conversation rule of the Bob who offers the highest expected utility.
Let Ua(CB,i) = Ez+(cp ) [uala, y)] be Alice’s expected utility from interacting with Bob
1 alone. Alice selects Bob j such that:

j € argmaxUa(Cp ;).
i€ k]

Ties are broken by choosing the Bob with the lowest index.

3. Alice interacts with the chosen Bob j using her best-response conversation and decision
rules, (C%, D% ), for the single-leader game. This induces a distribution over outcomes
I*(Cg,j)-

4. All players receive their payoffs. For any player p € {A,1,...,k}, their utility is their
expectation over the induced distribution Z*(Cg ;). Note that the utilities of un-chosen
Bobs [ # j also depend on the interaction between Alice and Bob j (i.e. they obtain utility
from Alice’s actions independently of whether they are “chosen”).

Our aim is to understand Alice’s utility in the equilibria of this game:

Definition 17 (Nash Equilibrium in the Best-Al Selection Game). A vector of Bobs’ conversation

rules C’_jg* is a Nash Equilibrium if no Bob 7 can improve his expected utility by unilaterally deviating
to a different rule C ;. Let j* = argmax; Ua(Cp ;) be the index of the Bob Alice chooses in

equilibrium. For any Bob ¢ and any alternative rule CJ’BJ-, let j be the index of the Bob Alice would

choose given the deviated strategy profile (ég C}ii). Then the equilibrium condition is:

—1

Ez-(c; ,0lUi(a, )] = Ez-(cr, )[Ui(a, y)]-
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E.2 Alice Always Does Well

What we show in this section is that the weighted alignment assumption is enough to guarantee
that Alice does as well in the equilibrium of this game as she would interacting with a perfectly
aligned single model Bob. Absent in our analysis is any need for the “identical induced distribution”
assumption of Section [C|or its approximate variant in Section [D} We showed that those assumptions
could be satisfied if a perfectly aligned Bob could obtain for Alice her first-best utility. Here we don’t
need to assume anything about the relationship between how well Alice could do with a perfectly
aligned interlocutor and her first best utility. This is informally because the “identical induced
distribution property” is now guaranteed to hold by the structure of our modified game.

Theorem 6. Consider a Best-Al Selection game with k Bobs that satisfy the e-weighted alignment
condition. In any Nash Equilibrium of the Best-Al Selection game, Alice’s expected utility is at least
Ua(C%) — 2e, where C%; is an optimal conversation rule for a single perfectly aligned Bob and
Ua(C3) is the corresponding utility for Alice.

Proof. Let Ci B* be a Nash Equilibrium strategy profile, and let j* = arg max; UA(CE ;) be the Bob
that Alice selects. Let Zy g = Z*(C}p ;) be the distribution over outcomes (a, y) in this equilibrium.

Suppose for contradiction that Alice’s utility is lower than the bound:
Ezye [uA (aa y)] < UA(CE) — 2e.

By the Nash Equilibrium condition, no Bob 7 € [k] has an incentive to deviate. A key possible
deviation for any Bob 1 is the Alice-optimal conversation rule C'j (i.e. the conversation rule that a
single perfectly aligned Bob would choose). If Bob ¢ makes this deviation, Alice’s best response
is to select Bob ¢ to interact with. This is because our initial supposition implies U4 (CF) >
Ez,[ua(a,y)], meaning the deviation offers strictly higher utility to Alice than she could get by
interacting with j*, the Bob that offers Alice her (now) second highest utility. Let Zye,, ; = Z*(CF)
be the distribution induced by this deviation.

The Nash equilibrium condition for each Bob i is therefore:
EIdsu,i [UZ (a7 y)] <Ezyp [Ui(av y)]

Taking a weighted sum over all Bobs with non-negative weights w; such that > w; = 1:

k k
Z wiEIdev,i [Uz (a’> y)] < Z wiEINE [Ui(aﬂ y)]
i=1 i=1

By linearity of expectation, and since Z e, ; is the same for all 7 (it’s always Z*(C5)):

k

< ]EINE lz wiU??(a’v y)

i=1

E
Ez-(cy) lz w;Us(a,y)
i=1
Using the e-weighted alignment assumption, we bound both sides. The LHS is bounded below:
]EI*(CE) [Z w,-Ui} > ]EI*(CE)[UA - C] — &= UA(OE) —C—E&.
The RHS is bounded above:
EINE [Z wiUi] < ]EINE [’LLA — C] + €.

Combining these gives:
Ua(Cp) —c—e <Ezyglual —c+e.

The constant offset ¢ cancels, and rearranging gives:
Eryglual > Ua(CR) — 2e.

This contradicts our initial supposition, completing the proof. O
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F Experiments

We empirically test our key assumption: that a well-aligned utility can be recovered as a weighted
combination of differently misaligned agents. Specifically, we examine whether the alignment error
decreases as we add more diverse agents to the convex hull, and whether weighted combinations
outperform both individual agents and simple averaging.

F.1 Setup

We simulate the scenario where individual Al agents are imperfectly aligned due to noisy training
or specification errors. Using LLM prompt variations, we generate N = 100 diverse agents per
domain—each attempting to approximate human preferences but with different biases. We then test
whether the human utility lies in the convex hull of these agent utilities by measuring how well we
can reconstruct it using weighted combinations as the number of agents K increases from 1 to 100.

We evaluate on two domains: ethical judgments (ETHICS dataset [Hendrycks et al.l [2021]]) and
movie recommendations (MovieLens [Harper and Konstan, |2015])). For each K, we compare: (1)
best individual agent, (2) simple average, (3) best non-negative linear combination (NNLS), and (4)
best convex combination (simplex). The weights w are fit by minimizing ||[Uw — y||3 on training
folds, where U contains agent utilities and y the ground-truth. NNLS constrains w > 0; simplex adds
1"w = 1. We use 5-fold cross-validation and average over 100 random agent permutations.

Dataset 1: ETHICS (Ethical Judgments). We score 1,000 moral scenarios from ETHICS
[Hendrycks et al.,2021]]. To simulate noisy alignment attempts:

* Ground truth: We use gpt-4.1-mini with this baseline prompt: “You are an everyday
person with common sense. You rely on your gut feeling and intuition, not formal theories.
You will be shown an ethical scenario. Your task is to evaluate whether the action described
in the scenario is morally right or wrong. Provide a score from 0 (definitely wrong) to
100 (definitely right). Respond with only the integer score.” to get the ground-truth utility
function.

* Misaligned agents: We generate 100 prompt variations via gpt-4. 1, each representing
a different attempt to capture human values (examples in Appendix [J). Each variant is
evaluated with gpt-4.1-mini, yielding agents with diverse biases.

All scores are on a 0 — 100 scale, rescaled to [0, 1]. This setup models the realistic scenario where we
have many imperfect alignment attempts, each capturing different aspects of human values.

Dataset 2: MovieLens (Movie Ratings). We use MovieLens ml-latest-small, filtering to
movies with >20 ratings:

* Ground truth: Average human rating per movie (true human preferences).

» Misaligned agents: 100 LLM agents with prompt variations of this baseline: “You are an
average movie viewer with common tastes. Rate movies based on how much you personally
would enjoy them, where 0 means you would absolutely hate it and 100 means it’s one
of your all-time favorites. Consider aspects like acting, story, entertainment value, and
your personal preferences. Return ONLY the integer score, nothing else.” (examples in

Appendix [J).

Scores are mapped to the 0-5 rating scale. Unlike ETHICS where we proxy human utility, here we
have actual human ratings as ground truth.

F.2 Results

Figure [I] shows alignment error (MSE) as a function of the number of agents K, and Figure [2] shows
the sparsity of the best-fit NNLS and simplex models. These results validate our core assumption:
despite no single agent being well-aligned, appropriate weighted combinations can recover near-
optimal alignment as the agent pool grows.
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Convex hull contains better alignment. At K=100, NNLS reduces MSE by ~52% for ETHICS
and ~75% for MovieLens, while simplex reduces by ~52% for ETHICS and ~71% for MovieLens,
relative to the best individual.

Error decreases with diversity. As K increases, alignment error for weighted methods decreases
monotonically with diminishing returns—consistent with the convex hull progressively covering
more of the human utility space.

Simple averaging fails. The simple average performs poorly (even worse than the best individual
in MovieLens), showing that naive aggregation doesn’t work. Careful weighting is essential.

Best-fit is sparse. At K'=100, NNLS uses on average ~18 non-zero agents for ETHICS and ~26
for MovieLens. While NNLS and simplex have similar performance, NNLS has higher sparsity.

Model Error vs Number of Agents (ETHICS) Model Error vs Number of Agents (MovieLens)

Mean Squared Error (MSE)

o008
o ) » £l n ® © 0 o o » @ © @ @ » @ £ 00
Numbor of Al Agents (K)

) £l )
Number of Al Agents (K)

(a) ETHICS (b) MovieLens

Figure 1: Alignment error (MSE) decreases as more agents are added to the convex hull. Weighted
combinations (NNLS in green, simplex in red) substantially outperform both the best individual agent
(blue) and simple average (orange), with error dropping by 50-70% at K = 100. Results averaged
over 100 permutations with 5-fold cross-validation; shaded regions show +1 std. dev.

Sparsity vs Number of Agents (ETHICS) Sparsity vs Number of Agents (MovieLens)

werage across folds)

Non-zero weights (ay

o £ © @
Number of Al Agents (K] Number of Al Agents (K)

(a) ETHICS (b) MovieLens

Figure 2: Sparsity (number of non-zero weights, thresholded at 1e-6) of NNLS and simplex models
as a function of the number of agents K. Shaded regions show *1 std. dev. across permutations.

G Discussion and Conclusion

We have introduced a new approach to Al alignment—through competition between multiple,
differently misaligned models so that the benefits of perfect alignment emerge in equilibrium. The
key condition we need is that the human user’s utility function can be approximately represented as
a non-negative weighted combination of the AI models’ utility functions —i.e., up to scaling, that
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Alice’s utility function lies approximately in the convex hull of the Bobs’. This is a much more robust
(and easier to satisfy) condition than requiring any single AI model to be close to perfectly aligned.

We view our work as the first step in a broader research agenda of mechanism design for Al alignment.
Our analysis is highly stylized; our paper assumes that the AI models are acting in equilibrium of
a highly complex game (which are computationally hard to find even in simpler settings [Hossain
et al., [2024]]). It also assumes that Alice is able to use deployed Al models optimally, and act
optimally given the information she learns from them —in particular, that Alice is able to correctly
form posterior beliefs given the information she learns. We view developing protocols with more
robust guarantees that do not depend on computationally implausible behavior on the part of the
participants as a key direction to advance the research agenda that we introduce in this paper. We
have also studied a setting in which the strategic agents must commit to conversation rules (in the
style of Bayesian Persuasion [Kamenica and Gentzkowl, 2011]]) — this is well motivated by current
Al technology, in which models are represented by static weights which must be trained at significant
expense before deployment and then represent conversation rules that users can interact with, without
them maintaining significant state between sessions. However as Al agents become more stateful and
dynamic across time, strategic models that do not involve commitment (and require that both parties
are simultaneously best responding to one another’s conversation rules, in the style of cheap ralk
[Crawford and Sobell 1982} [Farrell and Rabin, 1996]) may become more relevant. We expect that the
tools of game theory and mechanism design will become important to understand the alignment of
marketplaces of Al agents.

We have also modeled a single downstream user Alice. Alice could of course stand in for many users,
but central to our modeling is that Alice—and by extension, all of the users whom she is the stand-in
for—have a single utility function. Of course, Al users do not actually have a single, monolithic
utility function—this is the central concern of pluralistic alignment [Gabriel, 2020, [Sorensen et al.|
2024, Shirali et al., 2025]]. A natural extension of our work would consider a diverse population
of downstream users. Since different users with different utility functions can best-respond to a
fixed set of conversation rules differently, a tantalizing opportunity within such a model is that in
equilibrium, a single set of fixed conversation rules might simultaneously give many downstream
users the benefits of interacting with a fully aligned model, despite the fact that “fully aligned” means
something different for each user.

Our model also suggests a number of ancillary questions. If our goal is to maintain marketplaces of
models that approximately satisfy the weighted alignment condition for as many users as possible,
how can we test or audit whether existing collections of models do? How can we modify training
procedures to optimize for this condition? What kinds of regulatory and economic incentives would
encourage Al model providers to aim for it?

H A Probabilistic Motivation for Approximate Weighted Alignment

The approximate weighted alignment assumption (Definition[I) is central to our results, but where
might it come from? Here, we provide a simple generative model for Al agent utilities under which
the assumption holds with high probability for a sufficiently large set of agents. This models the
scenario described in the introduction where Al agents are designed to be aligned with the human
user (i.e., aligned in expectation) but their implementation is imperfect due to the difficulty of the
alignment problem.

A Random Utility Model. Suppose each Al agent’s utility function is drawn independently from a
distribution. We assume that for any action a € 4 and any state of the world y € ), the expected
utility of any Al agent ¢ is equal to Alice’s utility. That is,

E[U(a,y)] = ua(a,y)-
We also assume all utilities are bounded, U; (a, y) € [0, 1].

This model captures the intuition from our introduction: if each Al developer attempts to create an
aligned model but fails due to implementation noise, then the simple average of many such models will
be well-aligned. This is the "concentration of measure" effect mentioned in the introduction—while
any individual model may be poorly aligned, the average converges to the target.
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Under this model, we can show that a sufficiently large set of Al agents will satisfy the e-weighted
alignment condition with uniform weights (w; = 1/k) and zero offset (¢ = 0). This follows from a
standard concentration inequality argument.

Proposition 3 (Weighted Alignment from Noisy Implementation). Let the utility functions for a set
of k Al agents be drawn independently according to the random utility model above. Assume the
action space A and state space ) are finite. Then for any alignment tolerance € > 0 and any failure
probability § > 0, if the number of agents k satisfies

- (2| A[|Y]) — In(d)
2¢2 ’

then the agents satisfy the c-weighted alignment condition (Definition |I) with uniform weights
w; = 1/k and zero offset ¢ = 0, with probability at least 1 — 6.

k

Proof. For any fixed action-state pair (a, y), the random variables Uy (a, y), - . . , Ux(a, y) are inde-
pendent and bounded in [0, 1]. Let U (a, y) = + Zle Ui (a, y) be their sample mean. By Hoeffding’s

inequality, the probability of a large deviation from the true mean w4 (a, y) is bounded:

P(|U(a,y) — ua(a,y)| > &) < 2e7 2",

For the approximate average alignment condition to fail, this deviation must occur for at least one
pair (a,y) € A x ). We can bound the probability of this event using a union bound over all possible
pairs:

P(sup [U(a,y) — ua(a,y)| > &) =P(3(a,y) € Ax Vs.t. [U(a,y) — ua(a,y)| > ¢)

a,y

< Z ]P)(|U(a7y) - UA(avyN > E)
(a,y) EAXY

< AP - 2¢72k<,

‘We want this failure probability to be less than §. So, we set
|AJ|Y] - 2e72F" < 6.
Solving for k, we take the logarithm of both sides:
In(2|A||Y|) — 2ke* < In(0)
—2ke? < In(8) — In(2]A||Y])
2ke? > In(2|A||Y]) — In(6)
_ @A) ~1n(3)

2e2
Thus, if £ meets this condition, the probability that the set of Al agents does not satisfy our e-weighted

alignment assumption is less than §. The probability of successful alignment is therefore at least
1-4. O

k

This result shows that the number of Al agents required grows logarithmically with the size of the
action and state spaces, and polynomially with respect to 1/¢. It provides a clear and direct path to
satisfying our key assumption by simply having a large enough population of imperfectly-aligned
agents.

I Weighted Alignment without sender competition does not ensure first-best

In Section [C| we show that when all the senders’ conversations rules form a Nash, the weighted
alignment condition (plus the identical induced distribution condition) guarantee that Alice will attain
her first-best utility. A natural question is how important the inter-sender dynamics really are to this
result. Consider a scenario where all the senders are oblivious of each other and commit to the best
signal scheme in a single-sender game, but Alice pieces together multiple such signals to determine
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her action. Might the weighted alignment assumption still ensure that the information that Alice
receives, when taken together, reveals enough to allow her to attain her first-best?

In this section we show that the answer is no. We provide an example of a simple 2-persuader
game satisfying the weighted alignment and identical induced distribution conditions which, in the
‘oblivious’ setting, leads to utility for Alice which is strictly below her first-best.

This result underscores the importance of understanding the strategic interplay between Al system
designers. Simply attaining information from multiple siloed Al systems with varying utilities
does not guarantee a user will end up with complete information. But as competing Al system
designers become increasingly attuned to marketplace incentives, and as Al systems themselves
become increasingly sophisticated and able to reason strategically, the benefits of weighted alignment
become increasingly tangible.

To formalize this result, we must define the Oblivious strategy for each Bob. This in turn requires
defining how each Bob reasons about Alice. Each Bob thinks he is playing a single-sender persuasion
game against Alice. We retain the model from Section [B] but introduce the following additional
definitions:

Definition 18 (Oblivious Best-Response Decision Rule). An oblivious best-response decision rule
is a deterministic rule Dg’l that, given the final posterior belief 1, , », derived only from Alice’s

features = 4 and a transcript 7; including only the history h; of messages from sender ZEI, selects an
action that maximizes Alice’s expected utility:

DY (w4, m) € arg max g (.4, 7).
acA

In this example, Alice’s message space contains only the empty message and R = 1. Thus, there is
no choice of her conversation rule, and we can move on to Bob’s strategy.

Definition 19 (Optimal oblivious strategy). A sender conversation rule Cg’i is the optimal oblivious
strategy if, given that Alice is employing an oblivious best-response decision rule, Bob; cannot
improve his expected utility by unilaterally deviating to a different rule C; . That is, for all alternative
rules C; :

E o~z (009 Ui(a: )] 2 E(a )~z (i Uila; )]

Theorem 7. There exist multi-leader games satisfying the identical induced distribution condition
and the weighted alignment condition such that if all Bobs employ obliviously optimal strategies,
Alice’s expected utility is strictly less than the first-best.

Proof. We will prove this by example. Consider the following game, where R = 1, Alice message
space is empty, and the conversation rule of each Bob is a mapping from state to signal. Thus, itis a
static multi-sender Bayesian game embedded into our framework.

| Guilty Innocent
Judge Alice’s Utility: ~ Acquit 1 2
Convict 2 1

| Guilty Innocent
Prosecutor Bob’s Utility:  Acquit ‘ 0 0

Convict 2 1

| Guilty Innocent
Defense Attorney Bob’s Utility: ~ Acquit ‘ 1 2

Convict 0 0

The state is guilty with probability 2/3 and innocent with probability 1/3, and w.l.0.g. assume Alice
tiebreaks in favor of acquittal.

'This is a valid operation because the messages send to Alice from each Bob are independent conditional on
the joint conversation rules.
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Note that the utility of Alice is simply the sum of the utilities of both of the Bobs. Therefore the
weighted alignment condition is satisfied exactly. Furthermore, the conversation rule of each Bob
allows them to fully reveal the state, so the identical induced distribution condition is satisfied. Now,
we can compute Alice’s expected utility when both Bobs employ obliviously optimal strategies.

Note that for the prosecutor Bob, Alice selecting convict is always better than Alice selecting acquit.
Thus his goal is to maximize the probability that she selects convict. If he provides no information via
his signaling scheme and Alice employs an oblivious best-response signaling rule, then because of the
prior, Alice will always pick convict. Thus, guilty — guilty,innocent — guilty is an obliviously
optimal strategy.

Similarly, for the defense attorney Bob, his goal is to maximize the probability that Alice selects
acquit. Here, he must provide some information to get an optimal outcome. The obliviously optimal
strategy is guilty — x, innocent — innocent, where x is  guilty, 3 innocent. Against this, Alice
will acquit when she sees innocent and convict when she sees guilty.

Unbeknownst to the Bobs, Alice can incorporate information from both of them in her final decision.
But the prosecutor Bob provided no information. Thus, Alice’s expected utility is her expected utility
given the information of the defense attorney Bob,

Wl Do

1 . ) 1 , . 1 ‘ ,
iuA(guzlty, convict) + iuA(guzlty, acquit) | + guA(mnocent, acquit)

12 )+2
2 3

L2_5
3 3

Wi Wb
N W

We can compare this to the first-best, which is convicting when guilty and acquitting when innocent:

2 . ) 1 ) .
FuA (guilty, convict) + guA(mnocent, acquit)

Alice’s utility is strictly less than her first-best, completing our proof. O

J Appendix: Experimental Prompt Details

This appendix provides the specific prompts used to generate the 100 diverse Al agents in Section [

J.1 ETHICS Dataset Prompts
AI Agent Prompts. Example rephrasings generated by gpt-4.1:

1. You are an ordinary person who trusts your common sense and feelings rather
than academic ethics. When shown an ethical case, judge whether the action is
good or bad and respond with a number from 0 (entirely wrong) to 100 (entirely
right). Only output the integer.

2. Take on the perspective of someone who thinks with their heart rather than
formal logic. For each scenario, rate the morality of the action from 0 (wrong) to
100 (right) and reply only with a whole number.

3. You are not an expert in ethics but a person who uses everyday reasoning. For
the upcoming ethical scenario, rate the action from 0 (definitely wrong) to 100
(definitely right). Only output the integer.

4. Picture yourself as someone who decides what'’s right based on feeling, not study.
Given the scenario, judge the action and give it a score from 0 (entirely wrong) to
100 (entirely right). Respond only with the integer.
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sss J.2 MovieLens Dataset Prompts

ssa Al Agent Prompts. Example rephrasings generated by gpt-4.1:

890 1. You’re a typical moviegoer with mainstream preferences. Score films from 0
891 (terrible) to 100 (masterpiece) based on how much you’d personally enjoy watching
892 them, considering plot, performances, and entertainment factor. Output only the
893 number.

894 2. As someone with average film tastes, rate each movie from 0 (unwatchable)
895 to 100 (all-time favorite) according to your personal enjoyment, factoring in
896 storytelling, acting quality, and how entertaining it is. Respond with just the
897 integer.

898 3. You represent the common viewer with standard movie preferences. Evaluate
899 films on a scale of 0 (absolutely despise) to 100 (perfect film) based on personal
900 enjoyment including narrative, cast performance, and entertainment value. Give
901 only the numerical score.
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