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ABSTRACT

Self-supervised learning (SSL) has demonstrated strong generalization abilities
across diverse downstream tasks. However, it is difficult for SSL to accurately
gather samples of the same category and separate samples of different categories
in the training stage. In this paper, we present a novel approach of generating
pseudo-labels for augmented samples to regulate their feature-space relationships.
To align the pseudo-label space with the ground-truth label space, we propose an
instance-level pseudo-label generation mechanism. Building upon our observa-
tions that pseudo-labels can encompass unbounded label noise and that learning
remains robust to such noise in the early stages of training, we propose Precise Ad-
justment Regularization (PAR) for precise dynamic relationship mining. Finally,
we propose a PAR-based bi-level optimization learning mechanism mechanism
(PBOLM) to promote high-quality representations in SSL. Theoretically, from a
data generation perspective, we demonstrate that the proposed PBOLM is more
conducive to extracting critical generative factors in data generation. Empirically,
based on various downstream tasks, we demonstrate that PBOLM can be consid-
ered a plug-and-play module to enhance the performance of SSL methods.

1 INTRODUCTION

Unsupervised representation learning is a significant research area in machine learning. One recent
breakthrough is self-supervised learning (SSL), which has demonstrated impressive performance
in various computer vision tasks, including classification, object detection or segmentation, and
transfer learning (Jaiswal et al., 2020; Si et al., 2022; Radford et al., 2021). A characteristic of SSL is
its instance-based learning mechanism, which treats each sample as an independent class. This also
enables SSL to extract semantic information directly from the data, which can then be transferred
effectively to diverse downstream tasks. Unless specified otherwise, SSL in this paper refers to both
contrastive and non-contrastive learning methods related to data augmentation invariance.

An essential concern in SSL is that it faces significant challenges during the training process due to
the inherent absence of labeled information. This limitation has a direct impact on their capacity to
accurately model the dynamic relationships that exist among augmented samples. Specifically, SSL
predominantly concentrates on aggregating augmented samples originating from the same ances-
tral source, inadvertently neglecting the aggregation of augmented samples derived from ancestor
samples that share identical labels. Furthermore, SSL tends to confine itself to imposing prior knowl-
edge on the overall data distribution, inadvertently overlooking the crucial concept that augmented
samples resulting from ancestor samples with different labels should ideally exhibit a tendency to
diverge or move apart from each other.

To tackle the problem outlined above, we propose to generate pseudo-labels to guide the learning
of SSL. Nonetheless, this strategy has not been easy either. Firstly, achieving precise aggregation
and separation for different augmented samples requires prior knowledge of the sample label space.
However, due to the unknown nature of labels during the training phase, directly acquiring labels
through clustering can result in an uncontrollable and incorrect number of classes. Therefore, align-
ing the pseudo-label space with the true label space poses a critical challenge. Secondly, even if
the first challenge is effectively addressed, the acquired pseudo-labels may still contain label noise.
Training models directly with noisy labels can significantly degrade the model’s ability to general-
ize. Consequently, robust learning strategies under label noise become a pivotal challenge. Lastly,

1



Under review as a conference paper at ICLR 2024

even if we achieve perfect robust learning based on pseudo-labels, integrating this with SSL methods
remains a significant challenge, because the ultimate goal is to employ pseudo-labels to fine-tune
SSL methods, enabling precise clustering of similar samples and separation of dissimilar ones.

In this paper, we first propose an instance-level pseudo-label generation mechanism that effectively
controls dynamic relationships between augmented and anchor samples, mitigating label space in-
consistencies. Then, we prove that pseudo-labels generated by our mechanism are unbounded, and
we demonstrate that even in this setting, the learning model has an aptitude for accurately capturing
dynamic changes in the early stages of training. Thus, we propose a novel approach known as Pre-
cise Adjustment Regularization (PAR), which leverages early training properties for precise dynamic
relationship mining among training samples. Finally, we propose a PAR-based bi-level optimization
learning mechanism (PBOLM)) that harnesses pseudo-label learning to enhance the quality of SSL
representations. We explain why PBOLM can restore generalization from the Perspective of data
generation. We also validate the effectiveness of PBOLM through extensive experiments.

The main contributions of this paper are as follows: (1) We propose an instance-level pseudo-label
generation mechanism that ensures the generated pseudo-label space aligns with the ground-truth
label space. Furthermore, we establish that these pseudo-labels contain unbounded label noise; (2)
We provide evidence that learning with unbounded pseudo-labels exhibits robustness during the
early stages of training. To capitalize on this insight, we propose Precise Adjustment Regularization
(PAR) as a means to enhance learning with unbounded pseudo-labels; (3) We present PBOLM, a
framework designed to augment SSL methods by improving their ability to aggregate similar data
points and separate dissimilar ones during the training process. (4) Theoretical analysis from a data
generation perspective demonstrates that PBOLM can effectively capture additional data generation
factors, leading to improved generalization. We empirically validate the efficacy of PBOLM across
a diverse set of downstream tasks, showcasing its practical utility.

2 RELATED WORK

Learning Method. SimCLR (Chen et al., 2020a) is the first widely used CL method that achieves
comparable performance to supervised learning. However, SimCLR requires large training batches
and high computational resources. MoCo (He et al., 2020; Chen et al., 2020b; 2021b) addresses this
issue by using dynamic memory allocation. MetAug (Li et al., 2022) generates hard positive sam-
ples to reduce the negative sample redundancy. Some methods avoid negative samples altogether,
such as BYOL (Grill et al., 2020), W-MSE Ermolov et al. (2021), Simsiam Chen & He (2021),
and Barlow Twins Zbontar et al. (2021). However, these methods ignore the intrinsic structure of
the data distribution. SwAV (Caron et al., 2020) and PCL (Li et al., 2020) exploit the clustering
structures embedded in the data distribution. LMCL (Chen et al., 2021a) mines the large margin be-
tween positive and negative samples. CL can be seen as an instance-based learning paradigm, which
limits its ability to capture the relationship between different instances. ReSSL (Zheng et al., 2021;
Tomasev et al., 2022) measures the similarity of the data distribution based on two augmented sam-
ples. Unlike these methods, our proposed PBOLM achieves precise aggregation and separation of
dynamic relationships among samples by employing a self-generation approach for pseudo-labels.

Theoretical Analysis. Arora et al. (2019) provide the first generalization bound for contrastive
learning based on the Rademacher complexity. Wang & Isola (2020) analyze the contrastive learning
from the perspective of alignment and uniformity on the hypersphere. Zimmermann et al. (2021b)
reveal a fundamental connection between contrastive learning, generative modeling, and nonlinear
independent component analysis. Wang & Isola (2020) show that the temperature parameter controls
the alignment and uniformity of the learned features in the feature space. Von Kügelgen et al. (2021);
Qiang et al. (2022) understand the contrastive learning from causal analysis, such as intervention
and counterfactual. Ash et al. (2021) report that the performance of a representation learned via
contrastive learning can degrade with the number of negative samples. However, Awasthi et al.
(2022); Nozawa & Sato (2021) argue that a larger number of negative samples do not necessarily
harm contrastive learning. This paper also provides a theoretical analysis of the effectiveness of the
proposed method from the perspective of data generation. Liu et al. (2020) has studied the early-
time training phenomenon in bounded label noise scenarios and proposes a method to exploit the
use of bounded noisy labels. In this paper, we extend the bounded setting to unbounded setting, and
we are the first to address this problem in SSL scenario.
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3 PRELIMINARIES

Self-Supervised Learning (SSL) (Chen et al., 2020a; Wang & Isola, 2020) aims to learn a feature
extractor f that maps the original input samples from their raw space into a feature space. These
features are further projected from the feature space into an embedding space through the use of a
projection head, represented as fph. The training data is organized as a mini-batch denoted as Xtr =
{xi}Ni=1, where xi represents the i-th sample, and N is the total number of samples. Stochastic
data augmentation techniques, such as random cropping, are applied to transform each sample xi

into two augmented views, labeled as x1
i and x2

i . Consequently, this results in the creation of an
augmented dataset, denoted as Xaug

tr = {x1
i , x

2
i }Ni=1. Alternatively, this can be expressed as Xaug

tr =
{iXaug

tr }2i=1, where iXaug
tr = {xi

j}Nj=1. Note that the samples in Xtr serve as the ancestors of
those in Xaug

tr . Then, we calculate the feature representations as follows: zji = fph(f(x
j
i )), where

i ∈ {1, ..., N} and j ∈ {1, 2}. Additionally, SSL methods usually normalize these feature vectors
as zji = zji /||z

j
i ||2, ensuring that they have a unit Euclidean norm.

The prevailing SSL methods are typically structured around two fundamental components: align-
ment and constraint. The alignment component’s objective is to maximize the similarity between
the features extracted from different augmented samples that share a common ancestor. Conversely,
the constraint component introduces additional prior knowledge, governing various aspects of the
data distribution, parameter updates, and feature representations during the training process. Conse-
quently, SSL methods can be unified under a common framework, as expressed below:

min
f,fph

Lalign(X
aug
tr , f, fph) + Lprior(X

aug
tr , f, fph) (1)

where Lalign and Lprior denote the alignment and constraint losses, respectively. In the subsequent
paragraph, we revisit three prominent SSL methods within the framework defined by Equation (1).

SimCLR (Chen et al., 2020a) operates as an instance-based learning method, wherein each sample
during training is assigned a unique class. Notably, SimCLR, as elucidated in Theorem 1 of (Wang &
Isola, 2020), enforces a constraint on the data distribution, ensuring it remains uniform. BYOL (Grill
et al., 2020) is a SSL method that adopts a distinctive approach by disregarding the use of negative
samples. Instead, BYOL introduces constraints on the gradient backpropagation process, which are
tailored to the characteristics of the training data. Barlow Twins (Zbontar et al., 2021) presents
a unique SSL method that deviates from the conventional reliance on negative samples, gradient
stopping mechanisms, or the utilization of asymmetric networks. Instead, Barlow Twins enforces
constraints on the feature representation by promoting the decorrelation of its vector components.

4 MOTIVATION AND IN-DEPTH ANALYSIS

4.1 PROBLEM FORMULATION

We start by motivating our method before explaining its details in Section 5. Equation (1) highlights
a fundamental challenge: SSL methods encounter difficulties during training due to the absence of
labeled information. This limitation hampers their ability to accurately model the dynamic rela-
tionships among augmented samples. For instance, SSL primarily focuses on the aggregation of
augmented samples from the same ancestral source but overlooks the aggregation of augmented
samples derived from ancestor samples with identical labels. Concurrently, SSL confines itself to
imposing prior knowledge on the overall data distribution while neglecting the crucial notion that
augmented samples resulting from ancestor samples with different labels should ideally exhibit a
tendency to move apart from one another. One feasible solution to address the aforementioned
challenges is as follows: initially, generating a pseudo-label for each augmented sample and then
utilizing these pseudo-labels to guide feature representation learning.

4.2 LABEL SPACE INCONSISTENCY

A significant challenge in generating a pseudo-label lies in ensuring that the pseudo-label space
aligns with the true label space. This challenge arises due to the unknown number of classes in the
training data, making the direct application of clustering algorithms to create pseudo-labels prob-
lematic. Notably, SSL constitutes an instance-level representation learning paradigm. During SSL
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training, an augmented sample is regarded as an anchor point, while another augmented sample
sharing the same ancestor is treated as a positive sample relative to the anchor point. The remain-
ing augmented samples are designated as negative samples in relation to the anchor point. SSL’s
objective is to cluster positive samples with anchor points while constraining the entire data distri-
bution to satisfy a given prior. This SSL learning paradigm offers valuable insights for designing
a pseudo-label generation mechanism. It suggests the creation of an instance-level pseudo-label
generation mechanism that not only considers another augmented sample with the same ancestor
as a positive sample but also incorporates augmented samples from different ancestors exhibiting
notably high similarity above a specified threshold as positive samples. All remaining samples can
be categorized as negative samples. An advantage of this approach is that, even though the gen-
erated pseudo-labels may not be entirely accurate, they guarantee complete alignment between the
pseudo-label space and the true label space.

We present a specific method for generating pseudo-labels. Drawing inspiration from BYOL, it
becomes evident that iteratively leveraging the output of an online network related to one augmented
sample to predict the output of the target network related to another augmented sample is a potent
strategy. In this context, the output of the target network effectively serves as labels for the online
network’s outputs. Consequently, we propose the use of feature representations obtained from the
target network’s output to generate pseudo-labels: for each anchor sample, samples exhibiting a
similarity greater than τ are assigned a positive class label, while those falling below this threshold
receive a negative class label. Furthermore, the online network can update its parameters through
standard gradient backpropagation, while the parameters of the target network can be updated using
the same moving average technique as employed in BYOL.

4.3 UNBOUNDED PSEUDO-LABEL NOISE

Then, we illustrate that the label noise in the generated noise label is unbounded, that is, the misla-
beling rate for an augmented image can approach 1, e.g., ∃A ⊂ Xaug

tr , ∀xj
i ∈ A, Pr[Y = b|Y =

a, xj
i ] → 1, where a, b ∈ {+1,−1}. We begin with a two-component Multivariate Gaussian mixture

distribution with an equal prior scenario. Without loss of generality, we denote positive-class sam-
ples and negative-class samples as Gaussian distributions with mean µ1 and µ2, both having variance
σ2Id, where Id ∈ Rd×d. To simulate label learning based on pseudo-labels, we set up the following
scenario: initially, we have a prior mixture distribution, e.g., N (µ1, σ

2Id) for positive-class samples
and N (µ2, σ

2Id) for negative-class samples. We train a classifier based on this mixture distribution
to assign pseudo-labels to each target sample accordingly. Subsequently, considering the similarity
between the target network and the online network, we assume that the distribution of target data
experiences a mean shift compared to the prior distribution, while the variance remains unchanged.
For instance, N (µ1 +∆, σ2Id) for positive-class samples and N (µ2 +∆, σ2Id) for negative-class
samples, where ∆ represents the shift between the two distributions. It is worth noting that the mag-
nitude of the shift is closely related to the complexity of the mixture distribution (Stojanov et al.,
2021; Zhao et al., 2019). Specifically, ∆ is positively correlated with the vector µ2 − µ1. Thus, we
establish the following relationship characterizing label noise’s characteristics:
Theorem 4.1. Assume that ∆ is positively correlated with the vector µ2−µ1, e.g., ∆T(µ2−µ1) > 0.
For a sample x in the target data distribution with y as the ground-truth label, we can obtain:

Pr[fcl(x) ̸= y] =
1

2
Φ(−δ1

σ
) +

1

2
Φ(−δ2

σ
) (2)

where fcl be the optimal classifier trained by prior distribution, δ1 = ||µ2−µ1

2 − c||sign(µ2−µ1

2 − c),

δ2 = µ2−µ1

2 + c, c = a(µ2 − µ1), a = ∆T(µ2−µ1)
||µ2−µ1||2 is the magnitude of distribution shift, and Φ is

the standard normal cumulative distribution function. Meanwhile, if x ∈ U, we have:

Pr[fcl(x) ̸= y] ≥ 1− δ (3)

where δ ∈ (0, 1) and U = {x : ||x − µ1 − ∆|| ≤ (dσ−2σ log 1−δ
δ )

2
√
d

} ∩ {x : xT1d >
(dσ+2µT

1 1d)
2 }.

Also, if a > log 1−δ
δ /d, U is non-empty.

The proof is provided in the Appendix. Theorem 4.1 demonstrates that: (1) the mislabeling rate
increases as the magnitude of the distribution shift increases; (2) the label noise generated by fcl
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becomes unbounded for any x ∈ U. In practical scenarios, the region U is never empty, especially
when fcl and feature extractor f are trained on high-dimensional data, where d ≫ 1. Consequently,
it becomes relatively straightforward to satisfy α → 0. Moreover, the probability measure on U
increases as the magnitude of a grows. This signifies that a greater number of data points start to
gain unbounded noisy labels. When meeting the unbounded label noise, we can derive the following
Lemma to illustrate that many existing methods designed to handle label noise (Ghosh et al., 2017;
Wang et al., 2019; Ma et al., 2020; Englesson & Azizpour, 2021) have failed to exhibit robustness.

Lemma 4.1. Assume that the loss of a classifier fcl under the clean label y scenario be denoted
as R(fcl, y) = Ex,yL(fcl(x), y), and the loss under unbounded noisy label y′ scenario be denoted
as R(fcl, y

′) = Ex,y‘L(fcl(x), y′). Then the global minimizer f∗
cl of R(fcl, y) disagrees with the

global minimizer f∗
cl of R(fcl, y

′) with a high probability at least 1− δ.

The proof is provided in the Appendix. Note that the L(·) in the above Lemma refer to the noise-
robust loss in Wang et al. (2019); Ghosh et al. (2017); Englesson & Azizpour (2021); Ma et al.
(2020). At the same time, we need to point out that when the label noise follows the bounded
assumption, e.g., Pr[Y = b|Y = a, xj

i ] ≤ m, where a, b ∈ {+1,−1} and 0 ≤ m < 1, the
methods discussed in the mentioned literature are noise tolerant, e.g., the minimizer h̃⋆ converges to
the minimizer f∗

cl of R(fcl, y) converges to the minimizer f∗
cl of R(fcl, y

′) with a high probability.

4.4 INTRIGUING PROPERTY FOR LEARNING WITH UNBOUNDED NOISE LABEL

Another key challenge in the pseudo-label generation approach lies in accurately learning the dy-
namic relationships of aggregation and separation among augmented samples, particularly when
dealing with unbounded, noisy pseudo-labels. To address this challenge systematically, we first
present an intriguing property for learning with the unbounded noise label.

Based on the proposed instance-level pseudo-label generation mechanism, which is presented in
Subsection 4.2, we consider a process in which all training samples are initially fed into the target
network to obtain their feature representations. Then, based on anchor points, we can model the
distribution of positive-class samples as a Gaussian distribution with a mean equal to the anchor
sample and a covariance matrix denoted by σ2Id, thus, we have N (µ, σ2Id), where ||µ|| = 1 denotes
the normalized anchor representation. Finally, we can assign pseudo-labels to the sample x based on
β(x) = sign(1{xTµ > r} − 0.5), where r > 0 is the hyper-parameter. For example, if β(x) > 0,
then x is labeled as positive, otherwise, x is labeled as negative.

As we delve into the dynamic process of learning with unbounded pseudo-labels, we unearth an
intriguing phenomenon. Specifically, the training dynamics of the classifier exhibit a preference
for fitting clean samples. Consequently, the classifier demonstrates higher prediction accuracy for
mislabeled samples during the early training stages. These training characteristics can be highly
advantageous, especially in pseudo-label learning scenarios with unbounded label noise.

Given the unbounded label noise data {xi, ỹi}2ni=1, where ỹi denotes the noisy label, we can model
the training dynamics of gradient descent on the online network f with the following objective:

ft+1 = ft − η∇fL(ft)

s.t.L(ft) = 1
n

2n∑
i=1

2n∑
j=1,j ̸=i

log(1 + exp(−ỹjft(µi)
T
ft(xj)))

(4)

where η is the learning rate and µi is the representation of the anchor sample. Then, we use the
following theorem to build the connection between the prediction accuracy for mislabeled samples
at an early-training time T .

Theorem 4.2. Let B = {x : ỹ ̸= y} represent a set of mislabeled samples. We define κ(B; f) as
the prediction accuracy calculated using ground-truth labels and the labels predicted by a classifier
with parameter f for mislabeled samples. If, at most, half of the samples are mislabeled (r < 1),
then there exists a specific time point T and a constant c0 > 0 such that for any 0 < σ < c0 and
as n approaches infinity, with probability 1− op(1): κ(B; fT ) ≥ 1− exp{−ςg(σ)2}, where ς > 0

is a constant, g(σ) = (
√
2πF[ 1−r√

2σ
] + 2σ exp(− (r−1)2

2σ2 ))/(2
√
2π(1 + 2σ)σ) > 0 is a monotone

decreasing function that g(σ) → ∞ as σ → 0, and F[x] = 2√
π

∫ x

0
e−t2dt.
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The proof is provided in the Appendix. Theorem 4.2 establishes that at a specific time point T ,
the f trained using the gradient descent algorithm can offer accurate predictions for mislabeled
samples. This accuracy is lower bounded by a function related to the variance of clusters σ. As
σ → 0, the predictions for all mislabeled samples converge to their ground-truth labels, denoted as
κ(B; fT ) → 1. However, as the classifier undergoes extended training, it gradually memorizes the
mislabeled data. Consequently, the predictions for mislabeled samples deviate from their ground-
truth labels and align with their incorrect labels instead. Drawing from these insights, it becomes
evident that the memorization of mislabeled data can be mitigated by utilizing their predicted labels
during the early stages of training.

Building upon the characteristics we have uncovered during the learning process, we propose the fol-
lowing learning objectives, called Precise Adjustment Regularization (PAR), to address unbounded
label noise in pseudo-labels:

LPAR(f) =
1

n

2n∑
i=1

2n∑
j=1,j ̸=i

log(1− ỹjLa(f)) (5)

where La(f)=(out(f), 1 − out(f)), out(f) = f(µi)
Tf(xj)/

∑2n
j=1,j ̸=i f(µi)

T
f(xj), and ỹj ∈

{(1, 0), (0, 1)}. Equation (5) encourages model predictions to stick to the early-time predictions
for x. Also, we overload f(µi)

T
f(xj)/

∑2n
j=1,j ̸=i f(µi)

T
f(xj) to be the probabilistic output for

the sample xj related to the anchor µi, and ỹj(t) = βỹj(t − 1) + (1 − β)out(ft) is the moving
average prediction for x, where β is a hyperparameter. To see how PAR prevents the model from
memorizing the label noise, we calculate the gradient of Equation (5) with respect to out(ft):

∂LPAR(ft)

∂out(ft)
= −

2n∑
i=1

2n∑
j=1,j ̸=i

ỹj(t)

1− ỹj(t)
T
out(ft)

(6)

It’s important to note that minimizing Equation (5) encourages out(ft) to closely align with ỹj(t).
When ỹj(t) aligns better with out(ft), the gradient’s magnitude increases, causing the gradient for
aligning out(ft) with ỹj(t) to dominate over the gradients for other loss terms that align out(ft)
with noisy labels. As training progresses, the moving averaged predictions ỹj(t) for target samples
gradually approach their ground-truth labels until time T . Consequently, Equation (5) serves the
crucial purpose of preventing the model from memorizing label noise. It achieves this by compelling
the model’s predictions to remain close to these moving averaged predictions ỹj(t), which are highly
likely to represent ground-truth labels.

5 METHODOLOGY

In this section, we propose a novel mechanism called PAR-based bi-level optimization learning
mechanism (PBOLM) to induce better representation learning through SSL. We also analyze the
proposed method from the point of view of data generation and prove its effectiveness.

5.1 PAR-BASED BI-LEVEL OPTIMIZATION LEARNING MECHANISM

PBOLM consists of two modules: the SSL module and the pseudo-label learning (PLL) module.
The SSL module comprises an online network f (feature extractor) and a projection head fph. The
PLL module is the implementation of the instance-level pseudo-label generation mechanism and
consists of a target network (another feature extractor) ft and a projection head f t

ph. Given the
training dataset Xaug

tr = {x1
i , x

2
i }Ni=1, we first input them into ft and f t

ph to obtain the embeddings,
e.g., zji = fph(f

t
t (x

j
i )) and zji = zji /||z

j
i ||2. Then, given an anchor, the PLL module assigns

pseudo-labels to all samples in the training set except for the anchor based on the similarity between
the anchor and the sample embeddings. Specifically, if the anchor is denoted as zji , and if β(x) =
sign(1{zTzji > r} − 0 > 0, it assigns the labels (1, 0) to z; otherwise, it assigns the labels (0, 1)
to z, where z ∈ {z1i , z2i }Ni=1 and z ̸= zji . The updates of ft and f t

ph are consistent with the target
network update method in BYOL. Once we obtain a series of pseudo-labels for each anchor, we
proceed with SSL methods.
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Drawing inspiration from BYOL, a well-designed target network can induce better learning in the
online network. Motivated by this, we propose utilizing PBOLM to induce better learning in SSL.
Given the pseudo-labels generated by the PLL module, PBOLM learns f and fph as follows:

min
f,fph

Lalign(X
aug
tr , f, fph) + Lprior(X

aug
tr , f, fph)

s.t. min
f,fph

LPAR(fph · f) (7)

where fph · f = fph(f(·)). The optimization process of Equation (7) can be divided into two steps.
In the first step, we obtain ft and f t

ph by:

ft = ft−1 − η∇fLPAR(f
t−1
ph · ft−1), f

t
ph = f t−1

ph − η∇fLPAR(f
t−1
ph · ft−1) (8)

where η is the learning rate, f0 = f , and f0
ph = fph. In the second step, we update f and fph by:

f = f − η∇fLssl(f
t
ph, ft), fph = fph − η∇fLssl(f

t
ph · ft)

s.t. Lssl(f
t
ph, ft) = Lalign(X

aug
tr , f t

ph, ft) + Lprior(X
aug
tr , f t

ph, ft)
(9)

Upon closer examination of Equation (7) from a more granular perspective, it can be observed that
ft, f t

ph is obtained by minimizing LPAR(fph ·f). Therefore, ft and f t
ph have already distilled the dy-

namic information from unbounded noisy labels. The second optimization step can be understood as
follows: The alterations of f and fph lead to the corresponding changes in ft and f t

ph, consequently
impacting the overall value of the Lssl(f

t
ph, ft). It’s essential to note that Lssl(f

t
ph, ft) can only

reach its minimum when ft and f t
ph attain an appropriate value. Hence, minimizing Lssl(f

t
ph, ft)

is built upon the foundation of ft and f t
ph. In the end, we can understand Equation (7) from two

levels. The first level (constraint condition) aims to use unbounded noisy labels to accurately learn
the dynamic relationships of aggregation and separation among augmented samples. The second
level (objective function) further restricts the first level, aiming to constrain its behavior, that is, it
should be able to facilitate a further reduction in the loss of SSL methods, thereby promoting better
learning in SSL methods.

5.2 THEORETICAL ANALYSIS FROM A DATA GENERATION PERSPECTIVE

This subsection is presented based on SimCLR. According to nonlinear ICA (Hyvrinen & Pajunen,
1999; Zimmermann et al., 2021a; Hyvarinen & Morioka, 2017), we assume that the observations
x → X are generated by an invertible (i.e., injective) generative process g : Z → X , where
X ⊆ RK is the space of observations and Z ⊆ RN with N ≤ K denotes the space of latent factors.
Influenced by the commonly used feature normalization in SimCLR, we further assume that Z is
the unit hypersphere SN−1. Additionally, we assume that the ground-truth marginal distribution of
the latents of the generative process is uniform and that the conditional distribution (under which
positive pairs have high density) is a von Mises-Fisher (vMF) distribution:

p(z) = |Z|−1
, p(z|z̃) = C−1

p ekz
Tz̃, Cp =

∫
ekz

Tz̃dz̃ = const, x = g(z), x̃ = g(z̃) (10)

where k is a hyper-parameter. From the perspective of nonlinear ICA, we are interested in un-
derstanding how the representations f(x) which minimize the contrastive loss are related to the
ground-truth source signals z. To study this relationship, we focus on the map h = f · g between
the recovered source signals h(z) and the true source signals z. Then, we have:

Theorem 5.1. Assume Z is the unit hypersphere SN−1 and Equation (10) is true. Let g be injective
and h be differentiable. Given an anchor z in Xaug

tr , if we can model P (·|z) correctly, f is differen-
tiable and minimizes the contrastive loss as defined in SimCLR, we can obtain that when N → ∞,
h = f · g is linear, i.e., f recovers the latent sources up to an orthogonal linear transformation and
a constant scaling factor.

PBOLM generates pseudo-labels for each augmented sample and utilizes these pseudo-labels to
guide SSL in better capturing the aggregation and separation relationships among the data points.
Therefore, compared to SimCLR, PBOLM is better at accurately modeling P (·|z) given the anchor
z. In other words, PBOLM can recover the latent sources more than SimCLR.

7
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Table 1: Classification accuracy for small, medium, and large datasets. The backbone is ResNet-18
for the first four datasets and ResNet-50 for the last two datasets.

Methods CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet ImageNet-100 ImageNet
linear 5-nn linear 5-nn linear 5-nn linear 5-nn top-1 top-5 top-1 top-5

SimCLR Chen et al. (2020a) 91.80 88.42 66.83 56.57 90.51 85.68 48.82 32.86 70.15 89.75 69.32 89.15
BYOL Grill et al. (2020) 91.73 89.26 66.60 56.82 91.86 88.61 51.01 36.14 74.89 92.83 74.31 91.62
BarlowTwins Zbontar et al. (2021) 90.88 88.78 66.67 56.39 90.71 86.31 49.74 33.61 72.88 90.99 73.22 91.01
SimSiam Chen & He (2021) 91.51 89.31 66.73 56.87 91.92 88.54 50.92 35.98 74.78 92.84 71.33 -
W-MSE Ermolov et al. (2021) 91.99 89.87 67.64 56.45 91.65 88.49 49.22 35.44 75.33 92.78 72.56 -
SwAV Caron et al. (2020) 90.17 86.45 65.23 54.77 89.12 84.12 47.13 31.07 75.77 92.86 75.30 -
SSL-HSIC Li et al. (2021) 91.95 89.91 67.22 57.01 92.06 88.87 51.42 36.03 74.77 92.56 72.13 90.33
VICReg Bardes et al. (2022) 91.08 88.93 66.91 56.47 91.11 86.24 50.17 34.24 74.88 92.84 - -

SimCLR* 92.03 89.14 66.95 56.95 90.71 85.88 49.18 33.12 70.47 89.89 70.01 89.24
BYOL* 91.89 90.02 66.91 56.92 91.93 88.81 51.17 36.22 74.92 92.91 74.53 91.22
Barlow Twins* 90.91 88.88 66.94 56.57 90.97 86.61 50.06 34.01 72.92 91.21 73.68 91.25

SimCLR + PBOLM 92.95 90.34 67.99 57.35 92.89 87.99 51.21 36.42 73.89 91.97 73.99 91.96
BYOL + PBOLM 92.99 90.95 67.91 57.41 93.99 89.99 52.61 37.71 75.99 93.99 75.99 92.99
Barlow Twins + PBOLM 92.64 90.81 67.46 56.99 93.35 88.71 51.94 36.55 74.95 92.34 74.94 91.99

Table 2: Semi-supervised classification. We
finetune the pre-trained model using 1% and
10% training samples of ImageNet.

Methods Epochs 1% 10%
top-1 top-5 top-1 top-5

SimCLR 1000 48.3 75.5 65.6 87.8
BYOL 1000 53.2 78.4 68.8 89.1
SwAV 1000 53.9 78.5 70.2 89.9
BarlowTwins 1000 54.9 79.4 69.6 89.1

SimCLR + PBOLM 1000 53.7 78.3 68.4 89.1
BYOL + PBOLM 1000 55.9 78.8 70.1 89.9
Barlow Twins + PBOLM 1000 56.9 78.9 71.1 90.1

Table 3: The results of transfer learning on ob-
ject detection and instance segmentation with
C4-backbone as the feature extractor.

Methods Object Det. Instance Seg.
AP AP50 AP75 AP AP50 AP75

SimCLR 37.9 57.7 40.9 33.2 54.6 35.3
SwAV 37.6 57.6 40.2 33.0 54.2 35.1
BYOL 37.9 57.8 40.9 33.1 54.3 35.0
SimSiam 37.9 57.5 40.9 33.3 54.2 35.2
BarlowTwins 39.2 59.0 42.5 34.2 56.0 36.5

SimCLR + PBOLM 39.3 59.9 42.7 35.1 56.2 37.7
BYOL + PBOLM 40.7 59.6 43.2 35.9 56.7 36.5
Barlow Twins + PBOLM 39.6 60.1 43.7 35.5 57.0 38.1

6 EXPERIMENTS

6.1 EVALUATION ON BENCHMARK DATASET

Benchmark Dataset. For classification task, we evaluate PBOLM on six image datasets, including
CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009), STL-10 dataset (Coates et al., 2011),
Tiny ImageNet dataset (Le & Yang, 2015), ImageNet-100 dataset (Tian et al., 2020), and ImageNet
dataset (Krizhevsky et al., 2012). For transfer learning task, we validate PBOLM on the instance
segmentation and object detection tasks on the COCO (Lin et al., 2014) dataset.

Unsupervised Learning. Experiments follow the most common evaluation protocol for self-
supervised learning. A Stochastic Gradient Descent (SGD) with a momentum of 0.9 to minimize
our objective functions, the linear classifier is trained for 500 epochs with a mini-batch of 256. The
initial learning rate is set to 10−2, which decays to 5×10−6 until the training is completed. Results.
Table 1 shows the results of the linear classifier and 5-nn classifier on four small-scale datasets, e.g.,
CIFAR-10, CIFAR-100, STL-10, and Tiny Imagenet datasets, the top-1 and top-5 classification ac-
curacy on a medium-scale dataset, and the top-1 and top-5 classification accuracy on a larger-scale
dataset, e.g., the ImageNet dataset. We can observe that the classification accuracy of the proposed
PBOLM outperforms other state-of-the-art methods. We observe that the results of PBOLM outper-
form other methods by a relative margin. Therefore, we can obtain that PBOLM is effective.

Semi-Supervised Learning. Experiments follow the most common evaluation protocol for semi-
supervised learning Zbontar et al. (2021). We sample 1% or 10% of the training datasets as the
labeled data in a class-balanced way. We fine-tune the models on these two subsets for 50 epochs
with a classifier learning rate 1.0 (0.1), and backbone learning rate 0.0001 (0.01) for the 1% (10%)
subset. Results. Table 2 reports the classification results obtained on the ImageNet compared with
existing methods using two pre-trained models with 1000 epochs. From the results, we can observe
that the classification accuracy of the proposed PBOLM outperforms other state-of-the-art methods
by more than 1%. These results demonstrate the effectiveness of the proposed method.

Transfer Learning. Experiments follow the common setting for transfer learning used by existing
methods(Zbontar et al., 2021; Grill et al., 2020). We evaluate PBOLM on object detection and
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Figure 1: Based on CIFAR-100 and STL-10 datasets, (a) and (b) show the variation curves of testing
accuracy and loss magnitude. (c) shows the impact of the hyperparameter t on SimCLR + PBOLM.

instance segmentation tasks on COCO (Lin et al., 2014) datasets. We use Mask R-CNN(He et al.,
2017) with a 1× schedule and the same backbone as Faster R-CNN. Results. We report the results
of our proposed method compared with baseline methods in Table 3, showing that the proposed
method brings performance improvements on different downstream tasks.

6.2 ABLATION STUDY

PBOLM is trained with a bi-level optimization mechanism. An inherent challenge is whether it is
feasible to directly train PBOLM with objective LSSL+LPAR. To address this question, we directly
optimize the SSL method based on the objective LSSL + LPAR, and we use ∗ denote this kind of
trained SSL method, e.g., SimCLR*. The final results are summarized in Table 1. We can observe
that the test accuracy of SSL methods with ∗ surpasses that of directly training the SSL method,
yet it falls short of the test accuracy achieved by the + PBOLM approach. This suggests that PAR
is effective both in a direct training manner and a bi-level training manner. Also, one possible
reason for PBOLM performance being superior to ∗ performance could be attributed to the bi-level
optimization mechanism that can promote better learning of SSL methods.

We have conducted experiments using the CIFAR-100 and STL-10 datasets, tracking the changes
in contrastive loss and test accuracy during the training process for both SimCLR and Sim-
CLR+PBOLM. The results are depicted in Figure 1. It is evident from the training phase that Sim-
CLR+PBOLM exhibits a significantly faster convergence rate than SimCLR, as observed in both
loss values and training accuracy. One possible explanation for this phenomenon is that the pro-
posed PAR encourages the feature extractor to learn a better initialization of parameters, which sub-
sequently accelerates model convergence and enhances its performance during contrastive learning.
This also validates the effectiveness of the PAR-based bi-level optimization learning mechanism.

From Equation 8, we can deduce that the first step of PBOLM training requires updating for t
times. As per Theorem 4.2, an appropriate choice of t can enable PAR to learn accurately even
under unbounded noisy labels. However, exceeding a certain time limit, PAR starts overfitting the
noisy labels, thereby reducing the model’s generalization. To explore the impact of t, we conducted
experiments using the CIFAR-100 and STL-10 datasets, considering different values of t from the
set 1, 3, 5, 7, 9. The results are presented in Figure 6, showing that an appropriate choice of t does
influence the model’s final performance. This also validates the correctness of Theorem 4.2.

7 CONCLUSIONS

This paper primarily addresses the limitation in SSL methods, which struggle to model the dynamic
relationships where similar augmented samples should cluster together and dissimilar ones should
separate. To tackle this, we propose an instance-level pseudo-label generation mechanism. Then,
PAR is proposed to accurately learn the aggregation and separation relationships among different
augmented samples using pseudo-labels. Subsequently, we present PBOLM, which incorporates
PAR into the SSL training process. Finally, we offer a theoretical perspective on data generation
to show that PBOLM can learn comprehensive data generation factors and validate its effectiveness
through various downstream tasks.
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A PROOFS FOR THEOREM 4.1

Proof. The Bayes classifier fS predicts x to the first component when

log
Pr[y = 1|X = x]

Pr[y = −1|X = x]
> 0. (11)

Given by N (µ1, σ
2Id) and N (µ2, σ

2Id), respectively. Based on Bayes’ rule, Eq. (11) equals to:

log
Pr[X = x|y = 1]

Pr[X = x|y = −1]
> 0 (12)

Then, we can obtain:

hS(x) = log
Pr[X = x|y = 1]

Pr[X = x|y = −1]
=

x⊤(µ1 − µ2)

σ2
− ∥µ1∥2 − ∥µ2∥2

2σ2
. (13)

When ∆ = 0, the mislabeling rate related to the Bayes error is given by:

Pr
(x,y)

[fS(x) ̸= y] =
1

2
Pr

x∼N (µ1,σ2Id)
[hS(x) < 0|y = 1] +

1

2
Pr

x∼N (µ2,σ2Id)
[hS(x) > 0|y = −1] (14)

Then, we have:

Pr
(x,y)

[fS(x) ̸= y] = Φ(−||µ2 − µ1||
2σ

). (15)

Consider the case when ∆ ̸= 0. The distributions of the first and the second component are N (µ1+
∆, σ2Id) and N (µ2 + ∆, σ2Id), respectively. We project ∆ onto the vector µ2 − µ1 to get the
component of ∆ that is perpendicular to the hyperplane, which is given by:

c = (µ2 − µ1)
∆⊤(µ2 − µ1)

||µ2 − µ1||2
. (16)

Note that the results also hold for the case where ∆ is negatively correlated to µ2 − µ1. The whole
proof can be obtained by following the very similar proof steps for the positively correlated case.

The mislabeling rate of the optimal classifier fS on target data is:

Pr
(x,y)

[fS(x) ̸= y] =
1

2
Pr

N (µ1+∆,σ2Id)
[hS(x) < 0|y = 1]+

1

2
Pr

N (µ2+∆,σ2Id)
[hS(x) > 0|y = −1] (17)

Then, we have:

Pr
(x,y)

[fS(x) ̸= y] =
1

2
Φ(−d1

σ
) +

1

2
Φ(−d2

σ
). (18)

Without loss of generality, we choose to assume µ2 = µ1 + σ1d as the convenient way to present
our results.

Let fT be the optimal Bayes classifier for the target data. The equation hT (x0) = 0 implies that

Pr
(x,y)∼DT

[y = 1|X = x0] = Pr
(x,y)∼DT

[y = −1|X = x0].

Note that x0 is on the affine hyperplane z where hT (z) = 0. Any data points on this hyperplane will
have the equal probabilities to be correctly classified. We start from this hyperplane and calculate
another point x1, where Pr(x,y)∼DT

[y = 1|X = x1] is at least 1−δ
δ Pr(x,y)∼DT

[y = −1|X = x1].
Thus, for any points that are mislabeled and far away from x1 will result in Pr(x,y)∼DT

[y = 1|X =
x1] ≥ 1−δ. We first aim to find such a data point x1. Let x1 = x0−m0σ1d, where m0 is the scalar
measures the distance between the point x1 to the hyperplane z. We need to find m0 such that

PT (x1|y = 1)

PT (x1|y = −1)
≥1− δ, (19)
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Then, we get m0 ≥ (log 1−δ
δ )/d. Since the isotropic Gaussian random vectors has the rotationally

symmetric property, we can transform the integration of multivariate normal distribution to standard
normal distribution with different intervals of integration.

The region R1 is valid when data dimension d is large. This is realistic in practice. Since neural
networks are usually dealing with high-dimension data, for example d ≫ (1), the region R1 is valid.

We take the intersection of R1 and R2, all data points from this intersection are (1) having at least
1−δ probability coming from the first component, and (2) being classified to the second component.
Formally, for (x, y) ∼ DT , if x ∈ R1

⋂
R2, then

Pr[fS(x) ̸= y] ≥ 1− δ, (20)

Since x1 is chosen from R1, to verify that R1

⋂
R2 is non-empty, we only need to verify that x1

also belongs to R2.

x1 ∈ R2 if and only if:

x⊤
1 1d >

σd+ 2µ⊤
1 1d

2

(µ1 + c+
σ

2
1d −m0σ1d)

⊤1d >
σd+ 2µ⊤

1 1d

2

(µ1 + ασ1d +
σ

2
1d −m0σ1d)

⊤1d >
σd+ 2µ⊤

1 1d

2
(α−m0)σd >0,

Therefore, if α > m0 ≥ (log 1−δ
δ )/d, R1

⋂
R2 is non-empty.

Next, we show Pr(x,y)∼DT
[x ∈ R] increases as α increases.

Let event A0 be a set of x such that they are mislabeled by fS (i.e. fS(x) ̸= y). Let event A1 be a
set of x such that they are from the first component but are mislabeled to the second component with
a probability Pr[fS(x ̸= y)] < 1− δ. Let event A2 be a set of x such that they are from the second
component but are mislabeled to the first component with a probability Pr[fS(x ̸= y)] < 1 − δ.
Thus

Pr
(x,y)∼DT

[x ∈ R] = Pr
(x,y)∼DT

[A0]− Pr
(x,y)∼DT

[A1]− Pr
(x,y)∼DT

[A2] (21)

Let event A3 be a set of x such that they are from the first component such that Pr[fS(x ̸= y)] <
1− δ or Pr[fS(x = y)] < 1− δ. Let event A4 be a set of x such that they are from the second com-
ponent but are mislabeled to the first component. So when α increases, Pr(x,y)∼N (µ2+∆,σ2Id)[A4]
decreases.

Since A1 ⊆ A3 and A2A4, the probability measure on R is given by:

Pr
(x,y)∼DT

[x ∈ R] = Pr
(x,y)∼DT

[A0]− Pr
(x,y)∼DT

[A1]− Pr
(x,y)∼DT

[A2]

≥ Pr
(x,y)∼DT

[A0]− Pr
(x,y)∼DT

[A3]− Pr
(x,y)∼DT

[A4], (22)

where the first term is the mislabeling rate that increases as α increases; the second term is a constant;
the third term decreases as as α increases. The equality in Eq. (22) holds when α → ∞. There-
fore, when the magnitude of the domain shift α increases, the lower bound of Pr(x,y)∼DT

[x ∈ R]
increases, which forces more points to break the conventional LLN assumption.

B PROOFS FOR LEMMA 4.1

Proof. Let ηyk(x) be the Pr[Ỹ = k|Y = y,X = x] probability of observing a noisy label k given
the ground-truth label y and a sample x. Let ηy(x) =

∑
k ̸=y ηyk(x).

To let ℓLLN(h̃
⋆(x), k) ≥ ℓLLN(h

⋆(x), k) holds for all inputs x, previous studies assume the bounded
label noise, which is given by

1− ηy(x)− ηyk(x) > 0 ∀x s.t. P (X = x) > 0. (23)
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For random label noise which assumes that the mislabeling probability from the ground-truth label
to any other label is the same for all inputs, i.e. ηji(x) = a0 ∀i ̸= j, where a0 is a constant. Let
η = (K − 1)a0, then Eq. (23) is degraded to

1− η − η

K − 1
> 0

1 >
K

K − 1
η

η < 1− 1

K
.

This bounded assumption is commonly assumed by Wang et al. (2019) (Theorem 1 in Ghosh et al.
(2017), Theorem 1 in Wang et al. (2019), Lemma 1 in Ma et al. (2020) and Theorem 1 in Englesson
& Azizpour (2021)).

For class-conditional label noise, which assumes the ηji(x1) = ηji(x2) for any inputs x1 and x2.
Let ηji(x) = ηji, Then the bounded assumption Eq. (23) is degraded to

ηyk < 1− ηy.

This bounded assumption is also commonly assumed, and it can be found in Theorem 2 in Ghosh
et al. (2017), Theorem 1 in Wang et al. (2019), 2 in Ma et al. (2020) and Theorem 2 in Englesson &
Azizpour (2021).

However, in SFDA, we proved that the following event B holds with a probability at least 1− δ:

1− ηy(x)− ηyk(x) < 0 ∀x ∈ R. (24)

Given the result in Eq. (24), we have

ℓLLN(h̃
⋆(x), k) ≤ ℓLLN(h

⋆(x), k).

When the event B holds, the condition ℓLLN(h̃
⋆(x), k) ≤ ℓLLN(h

⋆(x), k) holds.

Note that only ℓLLN(h̃
⋆(x), k) ≥ ℓLLN(h

⋆(x), k) means pk(x) = 0 for k ̸= y and py(x) = 1 for
k ̸= y. It means that the optimal classifier h̃⋆ from noisy data can make correct predictions on any
inputs, which is consistent with the optimal classifier h⋆ obtained from clean data.

As for the condition ℓLLN(h̃
⋆(x), k) ≤ ℓLLN(h

⋆(x), k), we can get pk(x) = 1 for a k ̸= y, which
means that the optimal classifier h̃⋆ from noisy data cannot make correct predictions on samples
x ∈ R. To verify this, we use the robust loss function RCE ℓRCE as an example, and it can be easily
generalized to other robust los functions mentioned above. Based on the definition of the RCE loss
(Wang et al., 2019), we have

ℓRCE(h̃
⋆(x), k) =CRCE(1− pk(x))

ℓRCE(h
⋆(x), k) =CRCE,

where CRCE > 0 is a constant. The above equations show that any 0 ≤ pk(x) ≤ 1 can make the
condition ℓLLN(h̃

⋆(x), k) ≤ ℓLLN(h
⋆(x), k) hold. Meanwhile, h̃⋆ is the global minimizer of the risk

over the noisy data, which makes h̃⋆ memorize the noisy dataset.

Therefore, h̃⋆ makes incorrect predictions for x ∈ R such that pk(x) = 1 for a k ̸= y, and h⋆ is the
global optimal over clean data, which gives correct predictions for x ∈ R such that pk(x) = 1 for a
k = y. That completes the proof as h⋆ makes different predictions on x ∈ R compared to h̃⋆.

C PROOFS FOR THEOREM 4.2

Proof. To begin with, we show the first part. Let samples xi = yi(µ−σzi), where z ∼ N (0, Id).
Then we will show that −µ⊤∇θL(θt) is lower bounded by a positive number.

Since xi is sampled from standard normal distribution, 1
n

∑n
i=1 ỹiµ

⊤xi has limited variance. By
the law of large number, 1

n

∑n
i=1 ỹiµ

⊤xi converges in probability to its mean.
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Note that x|y = 1 is a Gaussian random vector with independent entries, we have x⊤µ
d
= w + 1,

where w ∼ N (0, σ2). Note that r < 1, which means that most half of samples are mislabeled.

Now we deal with the in Eq. (??).

1

2n
|µ⊤( n∑

i=1

tanh(θ⊤t xi)
)
| = 1

2n
|q⊤p|

≤ 1

2n
qp, (25)

q = (µ⊤x1,µ
⊤x2, . . . ,µ

⊤xn) ∈ Rn, and p = (tanh(θ⊤t x1), tanh(θ
⊤
t x2), . . . , tanh(θ

⊤
t xn)) ∈

Rn.

By triangle inequality of the norm,

q = q− 1+ 1 ≤ q− 1+ 1 =
√
n+ q− 1,

where q− 1 is a random vector with Gaussian coordinates. By Lemma ??,

q− 1/σ ≤ 2σ
√
n (26)

with probability 1− δ when n ≥ c1 log 1/δ, where c1 is a constant.

On the other hand,

p− tanh(θ⊤t µ)1n + tanh(θ⊤t µ)1n ≤tanh(θ⊤t µ)1n + p− tanh(θ⊤t µ)1n

≤tanh(θ⊤t µ)1n + θtq− 1

=tanh(θ⊤t µ)
√
n+ 2σ

√
nθt, (27)

Then we take Eq. (25) and Eq.(27) together, we can obtain:

−∇θL(θt)⊤µ ≥ 1

2
Erf[

1− r√
2σ

] +
σ√
2π

exp
(
− (r − 1)2

2σ2

)
− σ(tanh(θ⊤t µ) + 2σθt) (28)

By Lemma 8 from Liu et al. (2020), we have supθ∈Rd ∇θL(θ) ≤ 1 + 2σ. Therefore, Eq. (28) can
be rewritten as:

−∇θL(θt)⊤µ
∇θL(θt)

≥
Erf[ 1−r√

2σ
] + 2 σ√

2π
exp

(
− (r−1)2

2σ2

)
1 + 2σ

− σ(tanh(θ⊤t µ) + 2σθt)

1 + 2σ

≥ b0
1 + 2σ

− σ(tanh(θ⊤t µ) + 2σθt)

1 + 2σ
, (29)

where we let b0 = 1
2Erf[

1−r√
2σ

] + σ√
2π

exp
(
− (r−1)2

2σ2

)
.

Then we prove −∇θL(θt)
⊤µ

∇θL(θt)
≥ 1

10
b0

1+2σ by mathematical induction, which can help us get rid of the
dependence on θt for the lower bound in Eq. (29).

For t = 0, the inequality holds trivially. By the gradient descent algorithm, θt+1 =

−η
∑t

i=0 ∇θL(θi), where −µ⊤∇θL(θi)/∇θL(θi) ≥ 1
10

b0
1+2σ .

θ⊤t+1µ

θt+1
≥
−η

∑t
i=0 µ

⊤∇θL(θi)
η
∑t

i=0 ∇θL(θi)

≥
1
10

b0
1+2σ (

∑t
i=0 ∇θL(θi))∑t

i=0 ∇θL(θi)

≥ 1

10

b0
1 + 2σ
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As t+ 1 < T , we have θt+1 ≤ 10 1+2σ
b0

θ⊤t+1µ ≤ 1+2σ
b0

. Taking it into Eq. (29), we have

−∇θL(θt)⊤µ
∇θL(θt)

≥ b0
1 + 2σ

−
σ(0.1 + 1+2σ

b0
)

1 + 2σ

To show −∇θL(θt)
⊤µ

∇θL(θt)
is lower bounded by 1

10
b0

1+2σ , we need to have

h(σ) =
9

10

b0
1 + 2σ

− σ(0.1 +
1 + 2σ

b0
) > 0

It is straightforward to verify that h(σ = 0) > 0 and it can be verified that when 0 < σ < c0, we
have h′(σ) > 0. Therefore, for 0 < σ < c0 and any t < T − 1

−∇θL(θt)⊤µ
∇θL(θt)

≥ 1

10

b0
1 + 2σ

Hence by gradient descent algorithm θT = −η
∑T−1

i=0 ∇θL(θi) and the same proof above, we have

θ⊤T µ

θT
≥ 1

10

b0
1 + 2σ

(30)

For the second part: the prediction accuracy on mislabeled sample set B converges in probability
to its mean. Therefore, the expectation of the prediction accuracy on mislabeled samples is given by

[1{sign(θ⊤T x) = y}] =[1{sign(yθ⊤T (µ− σz)) = y}]
=[1{sign(θ⊤T (µ− σz)) = 1}]
=Pr[σθ⊤T z > θ⊤T µ] (31)

Note that z is a standard Gaussian vector, θ⊤T z is distributed as N (0, θT
2) Thus, Eq. (31) is equiva-

lent to Φ(
θ⊤
T µ
σθT

).

By the inequality 1− Φ(x) ≤ exp{−x2/2} for x > 0, then we have

Φ(
θ⊤T µ

σθT
) ≥ 1− exp{−

(
θ⊤
T µ
σθT

)2

2
} ≥ 1− exp{− 1

200

( b0
(1 + 2σ)σ

)2}
We denote g(σ) by:

g(σ) =
Erf[ 1−r√

2σ
]

2(1 + 2σ)σ
+

exp (− (r−1)2

2σ2 )
√
2π(1 + 2σ)

,

where g(σ) > 0 for any σ > 0. Note that g(σ) → ∞ when σ → 0, and g(σ) is monotone decreasing
as σ increases since g′(σ) < 0 for σ > 0.

D PROOFS FOR THEOREM 5.1

Proof. The cross-entropy between the conditional distributions p and qh is given by

E
z∼p(z)

[H(p(·|z), qh(·|z))] (32)

= E
z∼p(z)

[
E

z̃∼p(z̃|z)
[− log qh(z̃|z)]

]
(33)

= E
z̃,z∼p(z̃,z)

[
−1

τ
h(z̃)⊤h(z) + logCh(z)

]
(34)

=− 1

τ
E

z̃,z∼p(z̃,z)

[
h(z̃)⊤h(z)

]
+ E

z∼p(z)
[logCh(z)] . (35)
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Using the definition of Ch, we obtain

=− 1

τ
E

z̃,z∼p(z̃,z)

[
h(z̃)⊤h(z)

]
(36)

+ E
z∼p(z)

[
log

∫
Z
eh(z̃)

⊤h(z)/τ
.

]
. (37)

By assumption the marginal distribution is uniform, i.e., p(z) = |Z|−1. We expand by |Z||Z|−1

and estimate the integral by sampling from p(z) = |Z|−1, yielding

=− 1

τ
E

z̃,z∼p(z̃,z)

[
h(z̃)⊤h(z)

]
(38)

+ E
z∼p(z)

[
log |Z| E

z̃∼p(z̃)

[
eh(z̃)

⊤h(z)/τ
]]

(39)

=− 1

τ
E

z̃,z∼p(z̃,z)

[
h(z̃)⊤h(z)

]
(40)

+ E
z∼p(z)

[
log E

z̃∼p(z̃)

[
eh(z̃)

⊤h(z)/τ
]]

+ log |Z|. (41)

By inserting the definition h = f ◦ g,

=− 1

τ
E

z̃,z∼p(z̃,z)

[
(f ◦ g)(z̃)⊤(f ◦ g)(z)

]
(42)

+ E
z∼p(z)

[
log E

z̃∼p(z̃)

[
e(f◦g)(z̃)

⊤(f◦g)(z)/τ
]]

(43)

+ log |Z|, (44)
(45)

By assumption, qh(z̃|z) is powerful enough to match p(z̃|z) for the correct choice of h — in par-
ticular, for h(z) =

√
τκz. The global minimum of the cross-entropy between two distributions is

reached if they match by value and have the same support. Thus, this means

p(z̃|z) = qh(z̃|z). (46)

This expression also holds true for z̃ = z; additionally using that h maps from a unit hypersphere to
one with radius

√
τκ yields

p(z|z) = qh(z|z) (47)

⇔ C−1
p eκz

⊤z = Ch(z)
−1eh(z)

⊤h(z)/τ (48)

⇔ C−1
p eκ = Ch(z)

−1eκ (49)

⇔ Cp = Ch. (50)

As the normalization constants are identical we get for all z, z̃ ∈ Z

eκz
⊤z̃ = eh(z)

⊤h(z̃) ⇔ κz⊤z̃ = h(z)⊤h(z̃). (51)

First, we begin with the case r = 1. As h maintains the dot product we have:

∀z, z̃ ∈ Z : z⊤z̃ = h(z)⊤h(z̃). (52)

We consider the partial derivative w.r.t. z and obtain:

∀z, z̃ ∈ Z : z̃ = J⊤
h (z)h(z̃). (53)

Taking the partial derivative w.r.t. z̃ yields

∀z, z̃ ∈ Z : I = J⊤
h (z)Jh(z̃). (54)
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We can now conclude

∀z, z̃ ∈ Z : Jh(z̃)
−1 = J⊤

h (z). (55)

which implies a constant Jacobian matrix Jh(z) = Jh as the identity holds on all points in Z , and
further that the Jacobian Jh is orthogonal. Hence, ∀z ∈ Z : h(z) = Jhz is an orthogonal linear
transformation.

Finally, for r ̸= 1 we can leverage the previous result by introducing h′(z) := h(z)/r. For h′ the
previous argument holds, implying that h′ is an orthogonal transformation. Therefore, the restriction
of h to Z is an orthogonal linear transformation scaled by r2.

Thus, f recovers the latent sources up to orthogonal linear transformations, concluding the proof.
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