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Abstract

Argument Mining (AM) involves the automatic
identification of argument structure in natural
language. Traditional AM methods rely on
micro-structural features derived from the in-
ternal properties of individual Argumentative
Discourse Units (ADUs). However, argument
structure is shaped by a macro-structure cap-
turing the functional interdependence among
ADUs. This macro-structure consists of seg-
ments, where each segment contains ADUs
that fulfill specific roles to maintain coher-
ence within the segment (local coherence) and
across segments (global coherence). This pa-
per presents an approach that models macro-
structure, capturing both local and global co-
herence to identify argument structures. Exper-
iments on heterogeneous datasets demonstrate
superior performance in both in-dataset and
cross-dataset evaluations. The cross-dataset
evaluation shows that macro-structure enhances
transferability to unseen datasets.

1 Introduction

Argument Mining (AM), a Natural Language
Processing (NLP) task, involves identifying and
analysing argument structures within natural lan-
guage (Persing and Ng, 2016; Stab and Gurevych,
2017; Eger et al., 2017; Potash et al., 2016;
Lawrence and Reed, 2020). It involves argument
component segmentation (ACS), argument compo-
nent type classification (ACTC), argument relation
(AR) identification (ARI), and AR type classifi-
cation (ARTC) (Peldszus and Stede, 2015a; Eger
et al., 2017; Lawrence and Reed, 2020). This study
focuses on ACTC, ARI, and ARTC.

The identification of argument structures re-
quires modeling the roles of ADUs and ARs as
functions of a global structure, governing coherent
arrangement of these components to fulfill the over-
arching Discourse Purpose (DP) (Grosz and Sidner,
1986; Freeman, 2011). The global structure is de-
composed into local structures, each aligned with a

specific Discourse Segment Purpose (DSP). These
localized structures ensure segment-level coher-
ence by organizing ADUs and ARs into functional
units, much like how words combine into phrases
to convey meaning (Grosz and Sidner, 1986). For
instance, Figure 1 illustrates four localized struc-
tures in a COVID-19 contact tracing argument: (1)
the effectiveness of South Korea’s contact tracing,
(2) government preparedness, (3) non-app-based
tracing, and (4) advancements in testing. In each
local structure, the ADUs fulfill the DSP of that
segment. For example, the ADUs in segment (3)
address the DSP of non-app-based tracing.

The arrangement of ADUs and the ARs within
the local structures is shaped by the intentions of
the arguer and the sequential ordering of ADUs
ensuring a natural flow for maintaining coherence
(Travis, 1984; Freeman, 2011; Wang et al., 2019;
Kazemnejad et al., 2024). The intentional struc-
ture captures the logical flow of ADUs and can
extend beyond immediate proximity to connect
ADUs based on their underlying roles and contribu-
tions to the DSP of the argument segment (Grosz
and Sidner, 1986; Freeman, 2011). Figure 1 illus-
trates this interplay, showing sequential progres-
sions reflecting the natural flow of the argument
(e.g., ADU1 — ADU2 — ADU3 — ADU4 —
ADUS) alongside logical relationships transcend-
ing proximity (e.g., A14 — A17, A13 — A19, or
A20 — A23). This underscores the importance of
modeling macro-structure, which governs the in-
tentional and the sequential flow of ADUs and their
ARs. Additional examples of such local structures
are presented in Figure 2, with further details on
the macro-structure provided in Appendix C.

However, most previous works focus on features
derived from the internal structure of ADUs, often
referred to as the micro-structure (Freeman, 2011),
while overlooking the broader macro-structure.
They frame AM tasks as either dependency pars-
ing (Peldszus and Stede, 2015b), sequence tag-
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Figure 1: An example of the argument structure decomposed into four local structures (1 to 4). It shows how
ADUs and AR are shaped by the intentional structure, where consecutive ADUs may span different segments,
and non-consecutive ADUs can share the same segment. The argument is taken from QT?30, illustrating a dialog
between two participants, highlighted in light blue and yellow (Hautli-Janisz et al., 2022).

ging (Eger et al., 2017), or sequence classification
(Reimers et al., 2019; Ruiz-Dolz et al., 2021), con-
centrating primarily on isolated ADU pairs. End-
to-end AM approaches model dependencies be-
tween tasks, employing various techniques, includ-
ing biaffine operations for learning non-tree AM
structures (Morio et al., 2020), a transition-based
model for constructing both tree and non-tree ar-
gument graphs (Bao et al., 2021), and positional
encodings in generative AM frameworks to miti-
gate order biases (Bao et al., 2022). Position-aware
discourse self-attention has also been utilized for
identifying discourse elements (Song et al., 2020).
While some of these works focus on capturing de-
pendencies between tasks and others incorporate
positional information, they fail to address the crit-
ical aspect of modeling macro-structures encoding
coherence, which often remains implicit. To our
knowledge, no AM work has proposed a unified
architecture that models coherence by integrating
macro-structure encoding logical and sequential
ADU flows at local and global levels, while anchor-
ing AM tasks to this coherence.

In this study, we propose CU-MAM: Coherence-
Driven Unified Macro-Structures for Argument
Mining, an approach that anchors ACTC, ARI, and
ARTC tasks to a unified macro-structure. Given a
pair of ADUs and the entire argument as context,
the model predicts the types of the ADUs and the
AR between them, contextualized within the rele-
vant local and global structures. This is achieved
through a multi-task learning that jointly model
auxiliary tasks for classifying graph edges into the
relevant local or global. An argument is repre-
sented as a graph, with ADUs as nodes and ARs as
edges, capturing the complete argument structure.
A self-attention layer attends to the graph’s nodes

and edges to encode the local and global struc-
tures relevant to the ADU pair under consideration.
To contextualise ADU type and AR predictions
within the macro-structural context, the output of
this layer is fused with the ADU-pair representa-
tion via a cross-attention mechanism. Additionally,
the sequential flow of the argument is modeled
by incorporating ADU-level positional encodings
into the ADU embeddings. These positional en-
codings are derived from the order of ADUs and
discourse participant transitions (e.g., proponent-
opponent shifts) (Freeman, 2011; Budzynska and
Reed, 2011).

This paper makes the following contributions:
(a) We propose a macro-structure to capture the co-
herent arrangement of ADUs. (b) We introduce an
architecture combining a graph-based neural model
with dual attention mechanism to capture the lo-
cal and global argument structures. A multi-task
learning framework is used for anchoring ACTC,
ARI, ARTC to these macro-structures. (c) We
achieve state-of-the-art (SOTA) results across mul-
tiple datasets, including a cross-dataset evaluation
where previous SOTA models struggled to surpass
random chance.

2 Related Work

2.1 Argument Mining

Argument Mining has been studied through diverse
paradigms, emphasizing the micro-structure of ar-
guments. One common approach frames AM as
a dependency parsing task (Peldszus and Stede,
2015b), leveraging discourse parsing techniques
(Muller et al., 2012). Peldszus and Stede (2016) ex-
tend this by mapping Rhetorical Structure Theory
(RST) trees (Taboada and Mann, 2006) to argument
structures using sub-graph matching and evidence



graph models. Other works model AM as token-
based sequence tagging (Eger et al., 2017), clas-
sifying tokens into argument components and AR
types using the BIO tagging scheme. Gemechu and
Reed (2019) decompose ADUs into fine-grained
components, predicting ARs based on their interac-
tions. Recent studies fine-tune pre-trained language
models (LMs), employing sequence-pair classifica-
tion setups (Reimers et al., 2019; Ruiz-Dolz et al.,
2021). These configurations primarily focus on
the internal structure of ADUs, akin to the “logical
form” central to deductive logic, while neglecting
the broader macro-structure. Freeman (Freeman,
2011) refers to this as the “micro-structure”.

Efforts toward end-to-end AM have largely
focused on leveraging task interdependencies.
Pipeline architectures train independent models for
sub-tasks, integrating global constraints through
Integer Linear Programming (ILP) (Persing and
Ng, 2016; Stab and Gurevych, 2017). Neural ap-
proaches adopt joint multi-task setups to model
interdependencies across tasks (Eger et al., 2017).
Morio et al. (2022) introduce a cross-corpus train-
ing strategy, while Bao et al. (2022) propose a
generative framework incorporating constrained
pointer mechanisms and reconstructed positional
encodings into an end-to-end AM setup. Despite
these advancements, these methods emphasize task-
level dependencies, offering limited or no explicit
modeling of the macro-structure.

2.2 Structural Encoding in Language Models

Recent advancements in LMs have improved the
capacity to encode long texts and represent docu-
ment structures (He et al., 2024; Cao and Wang,
2022; Liu et al., 2022; Bai et al., 2021; Zaheer et al.,
2020; Beltagy et al., 2020). For instance, He et al.
(2024) and Cao and Wang (2022) utilise section
structures to encode document hierarchies, while
Liu et al. (2022) employs hierarchical sparse at-
tention and specialised tokens to capture local and
global information within a document. Similarly,
Bai et al. (2021) use positional encoding at various
linguistic segments to capture hierarchies. Belt-
agy et al. (2020) introduces Longformer, which
combines local windowed attention with global
for long-document. Zaheer et al. (2020) propose
BigBird, a model leveraging sparse attention mech-
anisms that integrate global, local, and random
attention patterns to handle extended sequences.
Although these models provide avenues for en-
coding macro-structures, their effectiveness in ad-

dressing the unique challenges of argumentation’s
macro-structure remains limited. Fine-tuning these
models on Argument Mining (AM) tasks yields
suboptimal performance compared to our macro-
structure-aware architecture (see Section 4.5 for
empirical comparisons). This limitation primar-
ily stems from their reliance on generic struc-
tural patterns, which fail to capture the distinct
characteristics of argumentation—such as logical
relationships, argumentative flows, and the nu-
anced interplay between ADUs. This underscores
the need for architectures that explicitly encode
argumentation-specific macro-structures, moving
beyond the generic positional and hierarchical en-
codings commonly employed in existing LMs.

3 Method
3.1 Data

Heterogeneous datasets encompassing various do-
mains and genres are utilised, including stu-
dent persuasive essay corpora (AAEC) (Stab
and Gurevych, 2017), Consumer Debt Collec-
tion Practices (CDCP) (Park and Cardie, 2018),
the US 2016 presidential debate corpus (US16)
(Visser et al., 2019), and a corpus of argument
and conflict in broadcast debate (QT30) (Hautli-
Janisz et al., 2022). The AAEC and CDCP, are
monolingual, while the US2026 and QT30 are
dialogical. The datasets CDCP, AAE, QT30,
and US16 employ different annotation standards
for ADUs and ARs. CDCP defines five ADU
types—Reference, Fact, Testimony, Value, and Pol-
icy—and two AR types—Reason and Evidence.
AAE uses three ADU types—MajorClaim, Claim,
and Premise—and four AR types—Support, At-
tack, For, and Against. In the QT30 and US16
datasets, ADUs are not explicitly labeled; instead,
their types are inferred from the direction of the
ARSs (premise to conclusion), resulting in two ADU
types: Premise and Conclusion.

3.1.1 Global Structure

The global structure consists of all valid ARs within
the argument structure, which are essential for
achieving the DP. These valid ARs represent a sub-
set of the possible permutations of connections
between the ADUs in the argument.

3.1.2 Local Structure

An argument structure is represented as graphs
where ADUs and ARs serve as nodes connected
by edges. Local Structure identification involves



Data No_arg No_ADU No_AR No_LOC Dist_ARs
AAEC 402 6089 5338 3.3 2.6
US16 499 8610 3772 5.1 3.2
QT30 724 11266 3314 7 4.8
CDCP 731 4779 1353 5.6 34

Table 1: Summary of dataset showing the number of
arguments (No_arg), the average number of ADUs
within each argument (No_ADU), the number of sup-
port (No_RA), attack (No_CA), the average number of
local structures (No_LOC), and distance between ADUs
involving AR (Dist_ARs).

both upward and downward traversals of the graph
from each AR node. The upward traversal identi-
fies chains of ADUs leading to the AR, capturing
the local structure that establishes its context. The
downward traversal, on the other hand, traces the
chain of ADUs following the AR, ensuring the con-
tinuity of the argument segment. The beginning
of a local structure is identified by a node with
no inward connections (start ADU), marking the
segment’s starting point, while its end is defined
by a node without successors (end ADU), indicat-
ing the segment’s conclusion. In cases where the
start ADU involves multiple downward chains (di-
vergent structures), all such chains are included.
Furthermore, every sub-graph—whether serial, di-
vergent, convergent, or linked—between the start
and end ADUs is incorporated to ensure a complete
and coherent segment (see Appendix D for details).

To evaluate the correctness of local structures,
two annotators assessed each as either correct or
incorrect, yielding a binary evaluation. The inter-
annotator agreement, measured with the Kappa
statistic, was 0.78, indicating substantial agreement.
Table 1 provides a summary of the dataset statistics.
Of the argument structures, 73% involve more than
one local structure, with 67% containing 2 to 7
local structures. Additionally, 64% of ARs occur
between ADUs 1 to 5 positions apart, and 17%
involve ADUs within a distance of 1.

3.2 Model

This section provides an overview of the task defi-
nition, model architecture, and baseline configura-
tions used in the experiment.

3.2.1 Task Definition
Given an argument A comprising a sequence of
ADUs and a specific ADU pair (ADU;, ADU;),

the model’s primary task is to predict the types
of ADU;, ADUj, and the AR between them, one

pair at a time, within the context of the argument’s
macro-structure. To achieve this, the model is
trained on auxiliary tasks that predict local and
global structures, anchoring the primary task to
these macro-structures in a multi-task setting. Dur-
ing inference, only the primary task is used. See
Section A.2 for input details.

3.2.2 Architecture

The model consists of five key components: (A)
Unified ADU Representation, which combines
ADU embeddings with positional information; (B)
Argument Structure Encoder, which employs a
graph network where ADUs are nodes and ARs
between them are edges, capturing the full argu-
ment structure; (C) ADU-Pair Encoder, which en-
codes the specific pair of ADUs under considera-
tion; (D) Macro-Attention Layer, which attends to
the graph’s nodes and edges to capture the ADUs
and ARs that constitute the local and global struc-
tures relevant to the ADU pair; and (E) Classifica-
tion Layers, which predict ADU types, ARs, and
classify graph edges as local, global, or none, in a
multi-task setting. Further details of these compo-
nents are provided in the following sections.

(A) Unified ADU Representation

The representation of each ADU is derived by
combining the ADU embedding from a pre-
trained with two types of ADU-level positional
embeddings for capturing sequential argument
flow.  Formally, given an argument A =
{ADU,, ADUs,...,ADU,}, the unified repre-
sentation of ADUJ is:

ADU, = ADU; ¢ O, ¢ P; (1

where ADU; is the ADU embedding obtained by
mean pooling over token embeddings from the LM,
yielding a fixed-size vector of dimension d. O; is
the order-based positional embedding indicating
the ADU’s sequential index, and P; is the partic-
ipant transition embedding, capturing participant
shifts in multi-participant dialogues, with all ADUs
assigned the same index in monologues. We exper-
iment with sine-cosine-based absolute positional
encodings (Vaswani et al., 2017) and relative posi-
tional embeddings (Shaw et al., 2018). Absolute
positional embeddings are added to the ADU em-
bedding, while relative embeddings are incorpo-
rated during attention computation. See Section
B.2 for details.



(B) Argument Structure Encoder

A Graph Neural Network (GNN) (Brody et al.,
2021) is employed to represent the argument struc-
ture as a graph G = (V, E), where vertices V' =
{v1,v9,...,v,} correspond to ADUs, and edges
E C V x V represent ARs between ADUs. The
GNN captures relationships between ADUs and
encodes the overall argument structure, facilitating
the prediction of both local and global structures
relevant to a given ADU pair. The graph is con-
structed using the unified embeddings of ADUs
obtained from Equation 1. At each layer of the
GNN, the hidden state of node v is updated based
on the feature information from its neighboring
nodes as follows:

h(*) =0 (W, + >~ Wihl | (2

ueN (v)
where hq(,k) represents the hidden state of node
v at layer k, and NV (v) denotes the neighboring
ADUs connected to node v. Each edge (i,7) € E,
representing an AR between ADUs v; and vy, is
encoded as a concatenation of their respective node
embeddings.

(C) ADU-Pair Encoder

Encodes the relationship between the pair of ADUs
(ADU;, ADU;) under consideration. A feedfor-
ward layer is applied to the unified embeddings of
ADU; and ADU;  to capture their interaction.

(D) Macro-Attention Layer

Self-attention with two heads attends to the argu-
ment graph from step B, learning the local and
global structures relevant to the ADU pair in step
C. The attention mechanism is applied to the edge
embeddings from the graph network to capture re-
lationships between edges. The outputs from both
self-attention heads are summed, passed through
a fully connected layer, and used to classify the
edges into their respective macro-structural cate-
gories (see Section 3.2.2).

To contextualise the ADU type and AR predic-
tions within the broader macro-structural context,
the output of the self-attention layer (which en-
codes the local and global structures from Step D)
is fused with the ADU-pair representation from
Step C using a cross-attention layer. The query
(Q.) is derived from the ADU-pair encoder output,
while the key (Kgeif.atn) and value (Vg ann) are

projections of the self-attention layer’s output. The
final representation of the ADU pair, denoted as
R ADU-pair» 1s obtained by adding the cross-attention
output to the original ADU-pair encoder output.
This final representation combining both the struc-
tural context and the ADU pair representation is
used to predict both the ADU types and the ARs
between them as described below.

(E) Classification Layers

Linear classifiers are used for predicting the types
of the ADU pair and AR between them, using the
contextualised ADU-pair, Rapu.-pair- We jointly
model ARI and ARTC, as in (Bao et al., 2021),
while also modeling ARI independently for com-
parison with studies that treat them separately. The
relevant local and global structures are learned
through predicting the entire graph edges from step
B into local and global. This is achieved through
a multi-task setup that treats the structure predic-
tion as an auxiliary tasks. The model trains on the
loss function combines task-specific losses and a
regularization term:

L=Lo+Li+ Lo+ L3+ Ly,

where Lo, L1, Lo, and L3 represent the losses for
ADU type prediction, AR classification, global-
structure prediction, and local-structure prediction,
respectively. L4 serves as the regularization term.
Since the number of non-AR edges is significantly
higher than AR edges, L9 is computed only for AR
edges, excluding non-AR edges. For L3, we disre-
gard both non-AR edges and AR edges outside the
local structure. However, this approach may cause
the model to overfit to AR edges. To mitigate this,
the regularization term (L4) is introduced, which
uses edge distance editing to penalize deviations
from the gold argument structure for both AR and
non-AR edges.

3.2.3 Baselines

We establish two baselines using pre-trained LMs:
RoBERTa (Liu et al., 2019), reportedly achieving
strong performance in AM tasks, and BigBird (Za-
heer et al., 2020), for its architectural advantage
for capturing long-range dependencies and global
context. The first baseline, Vanilla Sequence-Pair
Classification (V-SeqCls), fine-tunes the models on
concatenated ADU pairs. The second, Vanilla Ar-
gument Context (V-ArgC), incorporates the entire
argument as context alongside ADU pairs, allowing
a direct comparison to CU-MAM. Since both LMs



LLM Model ACTC ARI ARTC
AAEC CDCP US16 QT30 | AAEC CDCP US16 QT30 | AAEC CDCP US16 QT30
RoBERTa V-SeqCls 69.4 71.6 69.7 71.1 56.6 62.1 725 717 50.1 14.2 67.1 68.3
V-ArgC 66.4 73.3 650 664 54.4 59.2 68.5 69.4 49.3 13.4 648 673
CU-MAM™ | 775 83.1 759 755 68.1 70.4 787  T71.1 58.1 30.6 75.8  76.6
BigBird V-SeqCls 69.2 774 684 703 57.8 64.3 69.2  71.1 50.1 15.2 674 682
V-ArgC 70.7 78.3 703 716 60.9 64.8 742  74.1 494 16.7 68.9  68.4
CU-MAM™ | 77.2 84.6 754  76.8 70.4 72.3 80.7 784 58.4 314 76.6 752

Table 2: In-dataset evaluation performance of CU-MAM and baselines.

are also utilised in CU-MAM to generate ADU
embeddings, evaluating them as standalone base-
lines and within the CU-MAM framework ensures
comprehensive and robust comparisons. BigBird,
in particular, serves as a strong baseline due to
its architecture for modeling global context (see
Appendix A.3 for more details).

4 Experiment

4.1 Training setup

The models are trained for six epochs with a batch
size of 16. Optimization is performed using the
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 2 x 10~°. The primary tasks em-
ploy categorical cross-entropy loss, while binary
cross-entropy loss is used for the auxiliary tasks
predicting the graph edges. Results are averaged
over three runs with different random seeds to en-
sure robustness. Additional details on the experi-
mental setup are provided in Appendix A. The code
and dataset used in this work are publicly available
at https://github.com/ANONYMOUS (link redacted for
anonymity).

4.2 Implementation Details

For the AAEC and CDCP datasets, we use the
provided training and test data, with 10% of the
training set randomly sampled as the validation
set. For US16 and QT30, we split the datasets
into 70% training, 20% testing, and 10% valida-
tion. For AAEC, results are primarily reported at
the essay level. Additionally, two paragraph-level
results are included for comparison with related
work. The AAEC-P+ merges the Claim:Against
and Claim:For labels into a single Claim label,
while AAEC-P uses the original annotations. For
cross-dataset evaluations, we use AAEC-P" since
US16 and QT30 do not include Major Claim as
an argument component type. Similarly, we merge
’For’ and ’Against’ into Support and Attack, re-
spectively in the AAEC, while the ’Rephrase’ ARs

in QT30 and US16 are merged with "Inference"”
(Support) relation.

ADU embeddings in the CU-MAM configura-
tions are derived from RoBERTa and BigBird to
evaluate the robustness of CU-MAM across differ-
ent LMs.

4.3 Evaluation Setup

The models are evaluated using two setups: In-
Dataset Evaluation (ID) and Cross-Dataset Eval-
uation (CD). For ID, the models are trained and
evaluated on the same dataset using the provided
training-test split. In CD, the models are trained on
one dataset and evaluated on the remaining n — 1
datasets to assess their performance on unseen data.
CDCP is excluded from the CD setup due to dif-
ferences in ADU and AR type annotations. Across
both setups, average macro F-scores (F) are re-
ported for the test dataset. In addition to the aver-
age macro score, we report the F1 score for each
AC and AR type for the ACTS, ARI, and ARTC
tasks for comparison with related works.

4.4 Comparison Systems

CU-MAM is benchmarked against related works,
including Bao et al. (2021), Morio et al. (2020),
Ruiz-Dolz et al. (2021), Gemechu and Reed (2019),
(Potash et al., 2017), (Kikteva et al., 2023) and
GPT-40 (OpenAl, 2023). GPT-4o is evaluated us-
ing few-shot prompting, the detail is provided in
Section B.3. We also make indirect comparisons
with Eger et al. (2017), Morio et al. (2022), and
Bao et al. (2022), which combine argument com-
ponent segmentation with ACT, ARI, and ARTC
as end-to-am AM setup.

4.5 Results

Tables 3 and 2 compare the performance of CU-
MAM, baseline systems, and related approaches
across the datasets in both evaluation setups. The
main results are reported for the CU-MAM config-
uration utilising relative positional encoding (CU-
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LIM Model ACTC ARI ARTC
AAEC US16 QT30 | AAEC US16 QT30 | AAEC US16 QT30
RoBERTa V-SeqCls 52.1 554 489 462 482 4738 389 451 444
V-ArgC 47.5 524  48.6 389 469 475 369 442 416
CU-MAM™ | 64.6 66.1  66.4 56.2 62.0 605 50.9 585 3580
BigBird V-SeqCls 55.5 514 502 439 53.6 543 406 454 453
V-ArgC 56.6 535 555 47.3 56.7 565 436 465 471
CU-MAM™ | 65.7 674  66.3 57.7 66.0 64.5 51.8 61.1  60.5
Table 3: Cross-dataset evaluation performance of CU-MAM and baselines.
MAM™), as it consistently outperforms the con- Dataset Model o e L
figuration with absolute positional encoding. The AApcE  Feeretal 2017) 62 - - - s
. . . Morio et al. (2022 X - - - 54, -
results in Tables 3 and 2 clearly highlight the effec- CU-MA;VI“'( - ;g.g 772 626 704 :.0.; 58.6
tivene.ss of incorporating macro—strugural features, .., Eiif;“.l'.ff%f% Y
as evidenced by the performance improvements Morlo et al (2022) i e sa e
across all three tasks in both the ID and CD set- = " roashetar. o) - 849 08 767 - -
tings. pams ey o
CU-MAM™ 88.7 87.1 754 854 731 827
In-Dataset (ID) Evaluation cpcp BM‘:)neJ :::.(12(312))22) ;g 023 402 zltgjfl’ 204
Bao et al. (2021) - 825 373 67.8 - -
In the ID evaluations, CU-MAM consistently out- Morio et al. (2020) S 79 30 - - -
R CU-MAM™ 834 84.6 448 723 45.1 314
performs baseline methods that rely solely on fine- Uste RuizDolzetal. 2021) - - T T
tuning pre-trained language models, showing sig- contan IO e s ser s 766
nificant improvements across all evaluated tasks. Qryp  Kiktevaetal 2023) - - - - - 560
CU-MAM"™ 75.8 76.8 62.5 784 718 752

For ACTC, CU-MAM achieves an average im-
provement of 6.6% over V-SeqCls and 8% over
V-ArgC. In the case of ARI, the average gains
are 8.9% and 9%, respectively. Similarly, for
ARTC, CU-MAM demonstrates gains of 10.9%
over Vanilla-S and 11.3% over Vanilla-C. These
averages for CU-MAM and baseline methods are
computed across BigBird and RoBERTa configura-
tions. These results underscore CU-MAM’s ability
to effectively leverage macro-structural dependen-
cies, leading to substantial performance improve-
ments when compared to traditional fine-tuning
approaches.

Cross-Dataset (CD) Evaluation

As shown in Table 3, CU-MAM demonstrates
strong generalisation performance in CD evalua-
tions. For ACTC, CU-MAM achieves improve-
ments of 13.8% over V-SeqCls and 15.2% over
V-ArgC. For ARI, the gains are 12.4% and 12.1%,
respectively. Similarly, for ARTC, CU-MAM de-
livers improvements of 13.5% and 14.4%. Notably,
CU-MAM consistently surpasses baseline methods,
often achieving cross-dataset performance that is
comparable to in-dataset evaluations. For instance,
when trained on the QT30 dataset and evaluated
on the US16 dataset, the BigBird-based CU-MAM

Table 4: Performance of CU-MAM against comparison
approaches.

model matches the performance of models trained
and tested on the same dataset. In contrast, baseline
models show near-random performance, highlight-
ing CU-MAM'’s robust ability to transfer knowl-
edge across different datasets.

CU-MAM outperforms all comparison systems,
including the indirect comparison approaches that
combine argument segmentation with ACT, ARI,
and ARTC identification. The indirect compar-
isons, should be interpreted cautiously due to dif-
ferences in task setups. In both ID and CD, the
BigBird-based CU-MAM configurations outper-
form the RoOBERTa-based configurations, suggest-
ing BigBird’s strength in capturing global contexts.

4.6 Error Analysis

We analyse the error types observed in CU-MAM
versus the baseline, categorising them into "Jump-
to-Conclusion", "Reversed Connection" Error or
"Incorrect Connection" Error (see examples in Ap-
pendix 3). The "Jump-to-Conclusion" Error occurs,
when an ADU A is incorrectly linked directly to



ADU (' without passing through the intermediary
ADU B, while the "Reversed Connection" Error
occurs when an AR is reversed (when the direction
of the relation is wrong), and "Incorrect Connec-
tion" Error occurs when ARs are incorrectly es-
tablished between unrelated ADUs. The analysis
of 50 argument maps shows that 61% of the base-
line’s misclassifications occur within the same local
structure, whereas only 12% of CU-MAM’s mis-
classifications are within the same local structure,
resulting in a 77.4% reduction in errors. Jump-
to-Conclusion errors are reduced significantly in
CU-MAM, accounting for 16% of errors compared
to 56% in the baseline. Furthermore, CU-MAM
reduces errors related to "Reversed Connection" by
32%.

4.7 Ablation study

Config ACTC ARTC

ID CD | ID CD
Baseline 72.1 537 50.5 44.7
CU-MAML 767 63.5| 587 54.5
CU-MAMTC 748 60.5 | 56.2 52.1
CU-MAMTL+G 785 66.5| 603 57.8

Table 5: Average F1-scores of baseline, CU-MAM with
local structure only, global structure only, and their com-
bination on ACTC and ARTC in both ID and CD evalu-
ation setups.

The impact of each macro-structural feature is
analysed using the BigBird configuration with rela-
tive positional encoding, which achieves the high-
est performance. Performance gain is calculated as
the difference in average F1-scores between CU-
MAM and the baselines V-SeqCls and V-ArgC.

Local vs. Global Structure Prediction: Table 5
shows that local structure prediction (1) outper-
forms global structure prediction (T¢) across all
metrics. Combining both (t£* &) achieves the
best performance, highlighting their complemen-
tary benefits.

Aucxiliary Task vs. Attention Layer: Further-
more, we compare the effect of local and global
structure prediction as an auxiliary task (Aux™),
without the attention layer, and the use of the at-
tention layer only (Att*) without the auxiliary task,
specifically for the ARTC task. We use a fully con-
nected feedforward network instead of the attention
layer with the same parameter count for a fair com-
parison. As shown in Table 6, both the auxiliary

Model | Configuration | ACTC-ID | ACTC-CD | ARTC-ID | ARTC-CD

CU-MAM Aux* 75.2 64.2 60.1 53.1
CU-MAM Attn* 73.5 59.8 56.5 50.8

Table 6: Ablation study comparing CU-MAM configu-
rations on ACTC and ARTC tasks. ID and CD denote
in-domain and cross-domain performance, respectively.

task (A"*1) and the attention layer (A™+) improve
performance, with the auxiliary task yielding bet-
ter results. Their combination achieves the high-
est performance, highlighting their complementary
strengths.

Config Monologue Dialogue
Full (Abs) 433 74.4
Full (Rel) 44.5 76.1
P (Abs) 42.1 71.3
P (Rel) 424 71.6
O™ (Abs) 43.1 72.4
O™ (Rel) 44.3 72.7

Table 7: Average F-1 scores for CU-MAM configura-
tions using absolute (Abs) and relative (Rel) positional
embeddings on monological and dialogical datasets in
the ID evaluation setup for ARTC.

Positional Encoding: As shown in Table 7, we
evaluate the performance of order embedding (O)
and participant transition embedding (P) with abso-
lute (Abs) and relative (Rel) positional encodings.
On average, relative positional encoding outper-
forms absolute encoding across both dialogical and
monological datasets. The fusion of O and P con-
sistently yields the best results, with O driving
stronger improvements, particularly in the dialog-
ical dataset, while P provides no improvement in
the monological dataset.

5 Conclusion

This work introduces CU-MAM, the first approach
to modeling AM tasks as a function of macro-
structure to capture coherence. By leveraging
structural representations, it models logical and
sequential argument flow, capturing local and
global dependencies. CU-MAM achieves signifi-
cant performance gains over baselines and compar-
ison approaches, setting new SOTA results across
datasets. Its exceptional cross-dataset adaptability
overcomes domain adaptation challenges, where
existing SOTA models often fail, highlighting its
ability to generalise across diverse argumentation
structures.



Limitations

Despite its merits, the CU-MAM approach has the
following limitations:

Limited Applicability to Other NLP Tasks:
The participants transitions features and local-
structure encoding are specifically designed for ar-
gumentation tasks. As such, their applicability to
other NLP tasks that do not involve argumentative
structures is limited.

Pre-Training Objectives Not Addressed: Al-
though the evaluation focuses on fine-tuning for
leveraging macro-structural features, it does not
address the training objectives that could be em-
ployed during the pre-training phase of LLMs to
better integrate these features.

Interpretability and Explainability: The expla-
nations for the model’s performance are based on
empirical results, ablation studies, and error analy-
sis. While these analyses are valuable, additional
techniques such as attention mechanism analysis
could provide a more comprehensive understand-
ing of model behavior.
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A Experiment Setup

A.1 Training Procedure

Hyper-parameters: We employ Adam optimisa-
tion (Kingma and Ba, 2014) to minimise the cost
function, using a learning rate of 2 x 10~° and
categorical cross-entropy loss and a batch size of
16.

Gradient Clipping: To prevent exploding
gradients during training, we applied gradient
clipping. We used a maximum gradient norm
(max_grad_norm) parameter to determine the
threshold for gradient clipping.

Warm-up and Learning Rate Schedule: We
employ a linear warm-up strategy for the learning
rate. The number of warm-up steps is set to 10%
of the total training steps. Following the warm-up
phase, the learning rate schedule is determined by
a lambda function. This function linearly increases
the learning rate during the warm-up phase and
decreases it linearly thereafter.

A.2 Input Setup

Except the V-SeqClas configurations, the entire
argument along with the pair of ADUs is provided
to the model.

The Input Format:“{Argument} [EG]
{premise} [SEP] {conclusion}”, where Argument
= {ADUI1 [SEP] ADU2 [SEP] ... ADUn}, with n
representing the number of ADUs in the argument.

Extracting Relevant Argument: When the
entire argument exceeds the maximum sequence
length allowed by the underlying LM, a relevant
span of the argument is extracted that includes both
the premise and conclusion while staying within
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the length limit. This process is carried out as fol-
lows:

1. Length Calculation: The argument, premise,
and conclusion are tokenized using the
model’s tokenizer. The total length is then
calculated by summing the tokens for the
premise, conclusion, argument, and special
tokens ([CLS] and [SEP]).

2. Span Selection:

* If the total length is within the model’s
maximum sequence limit, the entire ar-
gument is concatenated with the premise
and conclusion.

* If the total length exceeds the limit:

— The positions of the premise and con-

clusion within the argument are iden-
tified, and a span is selected that in-
cludes both, along with additional
surrounding context, ensuring the to-
tal length fits within the limit.
If including the span involving both
the premise and conclusion exceed
the maximum limit, start with the
premise, expand the span towards the
conclusion until the size constraint is
met, and append the conclusion to
the argument span.

Maximum Number of ADUs in an Argument:
We set the maximum number of ADUs to 128 for
computational efficiency.

A.3 Base LM

Both for the baselines and the CU-MAM configura-
tions, we utilise the HuggingFace implementation
of RoBERTa!, BigBird 2. In the baseline setup
(both with and without argument context), we fine-
tune the models based on the output of the [CLS]
token from the final output layer.

B CU-MAM Architecture

B.1 ADU Embedding

We utilise pre-trained LMs (Liu et al., 2019; Rad-
ford et al., 2019; Zhang et al., 2020) to obtain con-
textualised token embeddings H € R™*¢ for the
entire input where n is the input length and d is

1https: //huggingface.co/docs/transformers/en/
model_doc/roberta

2https: //huggingface.co/docs/transformers/en/
model_doc/big_bird


https://huggingface.co/docs/transformers/en/model_doc/roberta
https://huggingface.co/docs/transformers/en/model_doc/roberta
https://huggingface.co/docs/transformers/en/model_doc/big_bird
https://huggingface.co/docs/transformers/en/model_doc/big_bird

the hidden size of the model. ADUs are identified
within the sequence using the special separator to-
ken ([SEP]). To obtain embeddings for each ADU,
we apply mean pooling over the token embeddings
within each ADU. Let H; € R!"*¢ represent the
token embeddings for the i-th ADU, where [; is
the length of the i-th ADU. The ADU embedding
ADU; € R%is computed as:

l.
1 3
ADU; = ;:1 H,

The resulting set of ADU embeddings forms a
matrix A € R™*% where m is the number of
ADUs.

B.2 Positional Encoding

We experiment with both fixed and relative posi-
tional embeddings. For absolute positional embed-
dings, we employ the sinusoidal position signal,
following the approach introduced by the Trans-
former model (Vaswani et al., 2017). For relative
positional embeddings, we adopt the method pro-
posed by Shaw et al. (2018), which encodes the
relative distances between ADU in the argument,
ai; = e;j_;, where e represents the learnable em-
beddings and j — 7 indicates the relative distance
between ADU j and ADU i. We leverage dual
positional embeddings to incorporate the two types
of positional information: the index representing
the order of each ADUs within the argument (ADU
order embedding) and the participant transition em-
bedding. Both approaches are further explained
below.

participant transition

Absolute Positional Encoding. The embedding
of an ADU, denoted as ADU,, is enhanced with
absolute positional information by incorporating
both order embeddings and participant transition
embeddings. This process involves the following
steps:

1. Sinusoidal Function for Embeddings: Con-
sistent with the approach used in standard
Transformers, sinusoidal functions are em-
ployed to generate embeddings for argument
flow (T;) based on both ADU order (O;) and
proponent-opponent transitions (P;):

T o index
(index,2i) — Sin m

index
T(inde,2i+1) = €08 100002/ dmodet
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where index denotes the position of the ADU
and dpoqer 18 the dimensionality of the model.
This method applies to both ADU order and
participant transition embeddings, providing a
unified approach for incorporating positional
information.

Each ADU is represented by fusing its ADU
embedding (ADU;), order embedding (O;),
and participant transition embedding (P;)
to form a unified representation of ADU
(ADU,,) . A matrix A,ps of size n X d is

formed, where n is the number of ADUs in the
argument and d is the embedding dimension:

ADU;, ;** = ADU; + O; + P,

. Relative Positional Encoding. The attention

mechanism adjusts the attention scores A; ;
to integrate relative distances on the fly:

T
in

Vi

ADU;, ;" = softmax ( + R, + REJ)

where Q, K, and V are the query, key, and
value matrices, respectively, derived from the
ADUs embeddings. jo represents the em-
beddings of the relative order information and
is given by, R% = WO(pos; — posj).WO
is the learnable weight matrix for ADU posi-
tions, and O; and O are the index reflecting
the order of the ADUs ¢ and j within the ar-
gument. RE ; represents the relative embed-
dings for participant transition and is given
by, Rg = WP(P; — P;).WP is the learnable
weight matrix for turn number, and P; and P;
are the transition numbers of ADUs ¢ and j
within the argument.

B.3 GPT for AR Prediction

B.3.1 Experimental Settings

We utilise the chat completion configuration
of GPT-4o0 for the three tasks.

(a) Configurations: We use GPT-40 and
set a maximum token limit of 2048, a
temperature of 0.7, a top-p probability of
0.9.

(b) Prompts Strategy: We employ few-shot
prompts, where specific examples are
provided as part of the instruction. We



create prompt templates that include in-
structions and two examples randomly
selected from a list of examples. An
example of a prompt tamplate for the
ARTC task is shown below.

You are a 3-class classifier model tasked

with assigning a label to the argument
relation between two argument units
(argument 1 and argument 2).

Classify the following pair of arguments,

argument 1: {ADU_1}

argument 2: {ADU_2},

into:

"support” (if argument 1 supports
argument 2),

"contradict” (if argument 1 attacks
argument 2),

and "None" (if no argument relation exists

between argument 1 and argument 2).
Please enter:

1 - for support,

2 - for contradict,

@ - for None relation.

Examples from each argument
relation types are provided below:

Example 1: the argument relation between
the argument "people feel, when they have

been voicing opinions on different
matters, that they have been not
listened to”, and

the argument "people feel that they have
been treated disrespectfully on all
sides of the different arguments and
disputes going on"

is support, and hence prediction label is 1.
Example 2: The argument relation between

"there would be no non-tariff barriers
with the deal done with the EU"” and
the argument "there are lots of
non-tariff barriers

with the deal done with the EU"

is contradiction, and

hence prediction label is 2.

Note: We use the actual examples to show sup-
port and contradiction relations, which should
be a placeholder variable in the final prompt
template.
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C Macro-Structure

An argument is a coherent arrangement of ut-
terances organised in a specific order (Grosz
and Sidner, 1986; Toulmin, 1958; Freeman,
2011). Freeman (2011) propose a framework
describing how these utterances collectively
contribute to natural language argumentation,
particularly focusing on their supportive roles
and structural patterns, termed as “macro-
structure”. This framework encompasses tech-
niques such as divergent, convergent, linked,
and serial reasoning, which illustrate how rea-
sons combine to support conclusions. It un-
derscores the significance of understanding
the entire sequence of ideas within an argu-
ment, including claims, challenges, responses,
and counter-responses, to establish coherent
structure.

Coherence within discourse can be viewed at
two levels: local coherence and global co-
herence. Local coherence refers to coherence
among the utterances in a segment of an argu-
ment, while global coherence refers to the co-
herence spanning segments (Grosz and Sidner,
1986; Grosz et al., 1995). Grosz and Sidner
argue that the coherence depends on the in-
tentional structure of discourse addressed via
the overall DP and DSP (Grosz and Sidner,
1986; Grosz et al., 1995). These intentions
are reflective of the speaker’s goals, akin to
Gricean conversational implicatures (Grice,
1975). In a multi-party discourse, the DSP for
a given segment aligns with the intention of
the conversational participant initiating that
segment (Lochbaum, 1994). Freeman (2011)
models these interactions as the interplay be-
tween the proponents and opponents, showing
how proponents assert and address opponents’
challenges, forming a chain of reasoning and
highlighting the importance of tracing these
transitions for understanding the argument.

IAT (Budzynska and Reed, 2011) offers a
framework representing how argument struc-
ture is linked to the intentional structure and
the dynamics within dialogue structure. In
essence, IAT offers a macro-structural anal-
ysis by representing the intentional structure
and illocutionary dynamics within argumenta-
tive discourse, by linking dialogical moves
to their communicative intentions and illo-



Algorithm 1 Extract Local-Structures from Argument Map

Require: Argument map represented as nodes and edges, with each node categorised as ADU, and AR
Ensure: List of local-structures
Initialise an empty list to store local-structures: local_structures
Identify nodes corresponding to AR Nodes in the argument map
for each ADU Node in the argument map do
Perform an upward traversal to identify the chain of ADUs leading to the AR
Perform a downward traversal to identify the chain of ADUs following the AR Node
Mark the start of each local-structure in the upward traversal by identifying nodes without inward
connections
Mark the end of each local-structure in the downward traversal by identifying nodes without
successors
Include all chains of ADUs between the start and end node
Add the identified local-structure to local_structures
end for
return [ocal_structures

cutionary forces. For example, Figure (1b)
illustrates participant interactions alongside
argument structures, showcasing diverse dia-
logue moves such as “Asserting”, “Arguing”,
“Questioning”, “Illocuting”, and “Restating”
(Budzynska and Reed, 2011). Annotated cor-
pora, such as the corpus of US presidential
debate 2016 (Visser et al., 2019) annotated
following such framework, exemplify how
dialogical interactions unfold as a series of
moves, each mapped to a structural element
within the argument graph. Although these dy-
namics are common in dialogue, similar con-
ceptualisations apply to monologue, where
a speaker delivers multiple utterances to an
audience (Grosz et al., 1995).

D Local Structures Extraction from
Argument Map

We navigate through argument following an
upward traversal to identify the chain of
ADUs leading to the AR node and a down-
ward traversal to identify the chain of ADUs
following the AR node. The algorithm marks
the end of each local-structure in the upward
traversal by identifying nodes without inward
connections and in the downward traversal
by identifying nodes without successors. It
includes all chains of ADUs that end at the
same node to form the local-structure.

Local-structures are segments of the argument
map that represent coherent chains of ADUs
leading to and following an AR. We present
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Algorithm 1 to outline the procedure for ex-
tracting local-structures from a global argu-
ment map. The algorithm takes as input the
argument map represented as nodes and edges,
where each node represents ADUs and the
ARs. The relations between ADUs are pre-
sented based on the edges between the ADU
and AR nodes.

The algorithm generates a comprehensive list
of local-structures that are pertinent to the re-
spective ARs within the overarching argument
map. Each of these local-structures is identi-
fied and cataloged according to their relevance
to specific AR in the argument map. For il-
lustrative purposes, Figure 2 presents several
examples showcasing argument maps that fea-
ture multiple local-structures. In these exam-
ples, the local-structures are annotated with
numerical labels. Each number used for anno-
tation corresponds to a distinct local-structure.
ARs that share the same numerical label are
part of the same local-structure.

E Error Analysis

Figure 3 presents an example of an argument
map generated by the baseline model. In
this map, argument relations are labeled with
numbers, and incorrect AR predictions are
highlighted with an (x) symbol. The figure
provides a visual representation of the errors
made by the baseline model, allowing for a
clearer understanding of the error types in AR
predictions.
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Figure 2: An example of argument structures involving multiple segments. ADUs are logically interconnected via
AR to form coherent argument structure. Figure (a) and (b) are taken from AAEC, while (c) and (d) are taken from
QT30. As can be seen from the figure, (a) and (b) forms one complete graph while (c) and (d) are scattered into
multiple disconnected graphs forming islands of argument segments.

15



. p X
itis well known and clinically

proven that smoking is extremely
hazardous to the smoker and others
‘who have been exposed to the fume
over a period of time

Default Inference

Recent death statistic released by
the Malaysian Ministry of Health
shows that the top killer was lung

related diseases caused by smoking

Default Inference

Default Inference Default Inference

Alarge proportion of death involved
second hand smoker particularly young
children and pregnant women who were
vulnerable to these lethal diseases

the number of fatality can be
significantly reduced if a total ban
on public smoking is implemented

Default Inference

o X

Default Inference

Defautt Inference

the move will do more good by looking
at the quality of health and image of
anation in long run

Default Inference

Figure 3: Example of error analysis. The argument map displays relations with arbitrary numbering, where incorrect
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