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ABSTRACT

Offline reinforcement learning enables policy learning solely from fixed datasets,
without costly or risky environment interactions, making it highly valuable for
real-world applications. While Transformer-based approaches have recently
demonstrated strong sequence modeling capabilities, they typically learn from
complete trajectories conditioned on final returns. To mitigate this limitation,
we propose the Peak-Return Greedy Slicing (PRGS) framework, which explic-
itly partitions trajectories at the timestep level and emphasizes high-quality sub-
trajectories. PRGS first leverages an MMD-based return estimator to characterize
the distribution of future returns for state-action pairs, yielding optimistic return
estimates. It then performs greedy slicing to extract high-quality subtrajectories
for training. During evaluation, an adaptive history truncation mechanism is in-
troduced to align the inference process with the training procedure. Extensive
experiments across multiple benchmark datasets indicate that PRGS significantly
improves the performance of Transformer-based offline reinforcement learning
methods by effectively enhancing their ability to exploit and recombine valuable
subtrajectories.

1 INTRODUCTION

In practice, offline reinforcement learning (RL) (Levine et al., 2020), which learns policies purely
from fixed datasets without environment interaction, has garnered significant attention in recent
years. Unlike online RL, offline RL eliminates the need for costly or potentially risky interactions
with the environment, making it particularly valuable in domains such as autonomous driving (Lin
et al., 2024), robotics (Kumar et al., 2023), and recommender systems (Xin et al., 2022). With
advances in sequence modeling, Transformer-based offline RL (Chen et al., 2021; Janner et al.,
2021) has gained increasing traction. Leveraging the Transformer’s strength in modeling long-range
dependencies and its expressive power (Vaswani et al., 2017), recent methods have achieved sub-
stantial improvements on several benchmark datasets, presenting a novel paradigm for the progress
of offline reinforcement learning.

However, existing Transformer-based offline RL methods remain limited in effectively stitching to-
gether high-quality segments from different trajectories (Brandfonbrener et al., 2022). The stitching
capability refers to the algorithm’s ability to identify and recombine superior trajectory fragments,
thereby enabling policy learning that outperforms what can be achieved from any single existing
trajectory. Although some prior works have explored trajectory resampling (Li et al., 2024; Lee
et al., 2024), value-based guidance (Yamagata et al., 2023; Pei et al., 2025; Wang et al., 2024), or
conditional modeling (Zhang et al., 2024; Kim et al., 2024; Wu et al., 2023) to mitigate this issue,
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their effectiveness is constrained by the coarse granularity of trajectory-level processing. As a result,
these methods often struggle to handle data with uneven quality and fall short of fully leveraging the
power of the Transformer.
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Subtrajectories

Split Point

Figure 1: Illustration of tra-
jectory slicing with an appro-
priate split point.

It is worth noting that humans, when learning to make decisions,
do not evaluate an experience solely based on its final outcome.
Instead, they tend to distinguish good subtrajectories and bad sub-
trajectories within long trajectories. As illustrated in Figure 1, even
if a trajectory leads to a suboptimal outcome overall, it may still
contain locally high-value experiences. Current Transformer-based
methods generally derive insights from complete trajectories, fo-
cusing exclusively on their final returns. In contrast, humans se-
lectively retain valuable subtrajectories and enhance learning effi-
ciency by composing new experiences through stitching (Schank &
Abelson, 2013; Nakahashi et al., 2016; Dennett, 1989; Schachner &
Carey, 2013). This capability of subtrajectory selection is notably
absent in Transformer-based offline RL methods, primarily because
identifying appropriate split points within a trajectory is often challenging.

Inspired by this observation, we propose the Peak-Return Greedy Slicing (PRGS) framework to en-
hance the performance of Transformer-based offline RL methods by enabling them to identify and
focus on high-quality experience subtrajectories. Concretely, we first train a return estimator based
on Maximum Mean Discrepancy (MMD) (Smola et al., 2006), which approximates the distribution
of potential future returns for each state-action pair under optimistic assumptions. Leveraging this
estimator, PRGS infers the initial-to-go return for each state along a trajectory and recursively seg-
ments the entire trajectory into multiple subtrajectories. Positions with peak return are identified
as split points. This fine-grained slicing at the timestep level allows PRGS to effectively preserve
valuable experience segments and stitch them. Finally, to ensure consistency in history length be-
tween training and evaluation, we introduce an adaptive mechanism that truncates the input history
dynamically during evaluation. To evaluate the effectiveness of PRGS, we integrate it into several
Transformer-based offline RL algorithms and conduct comprehensive experiments across a variety
of benchmark domains. Experimental results demonstrate that PRGS may be seamlessly integrated
into existing frameworks and consistently yields an average performance improvement of 15.8%
over the original baselines across diverse tasks.

2 PRELIMINARY

2.1 OFFLINE REINFORCEMENT LEARNING

In offline RL, an agent is trained solely on a static dataset D = {τ}. Each trajectory τ = {(s, a, r)}
consists of state s ∈ S, action a ∈ A, and reward r ∈ R at each time step. The objective is to learn a
policy π : S → A that maximizes the expected discounted return J(π) = Eτ∼π[

∑∞
t=0 γ

trt], where
γ ∈ (0, 1] is the discount factor. In contrast to online RL (Sutton & Barto, 2018), the key challenge
in offline RL is that the policy must be optimized solely based on the historical dataset D, without
access to additional interactions with the environment.

2.2 TRANSFORMER-BASED OFFLINE RL METHODS

In recent years, the Transformer architecture (Vaswani et al., 2017) has been increasingly applied to
offline reinforcement learning, primarily by treating a trajectory τ = {(st, at, rt)}Kt=0 as a sequential
input and representing its elements as unified tokens (Janner et al., 2021; Chen et al., 2021; Wu et al.,
2023; Wang et al., 2024). Specifically, the state st, action at, and returnGt =

∑K
i=t γ

iri are embed-
ded into a shared representation space, thereby enabling the model to capture long-range dependen-
cies within the trajectory. Almost all Transformer-based offline RL methods, such as Transformer-
based Behavior Cloning (BC) and Decision Transformer (DT) (Chen et al., 2021), share a unified
training objective, which can be formulated as:

L(θ) = −Eτ∼D

K∑
t=0

log πθ(at | τ≤t), (1)
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where πθ denotes a Transformer-parameterized policy conditioned on the trajectory prefix τ≤t =
{τi}ti=0. In Transformer-based BC, the prefix τ≤t consists of only (si, ai) pairs. While in DT, it
additionally incorporates the return-to-go token Gi, resulting in τ≤t = {(Gi, si, ai)}ti=0. Gt mainly
serves as a conditioning signal that guides the policy towards trajectories with higher expected re-
turns. For continuous action spaces, the loss in Eq.(1) is equivalent to the mean squared error (Wang
& Bovik, 2009), while for discrete action spaces, it corresponds to the cross-entropy loss (Mao
et al., 2023). This unified tokenization and sequential modeling paradigm allows Transformer-based
offline RL methods to accommodate diverse task formulations within a shared framework and has
demonstrated strong modeling performance across various benchmark domains. Unlike traditional
offline RL that depends on value-based or policy optimization objectives, Transformer-based meth-
ods learn policies purely through sequence modeling.

3 METHODOLOGY

In this paper, we propose the Peak-Return Greedy Slicing (PRGS) framework, which comprises
three fundamental components: (I) a return estimator based on Maximum Mean Discrepancy
(MMD) that evaluates the potential return distribution for each state-action pair within a trajec-
tory; (II) a subtrajectory slicing strategy that greedily divides trajectories using an optimistically
biased initial return estimate, with the resulting subtrajectories used for policy training; and (III) an
adaptive history truncation mechanism employed during policy evaluation and execution, which dy-
namically determines whether to retain or discard historical information by comparing changes in the
estimated value. The following sections provide a comprehensive description of each component.

3.1 MMD-BASED RETURN ESTIMATOR

To assess the potential value of each state-action pair within a trajectory at a finer level of gran-
ularity, we introduce an MMD-based return estimator. Maximum Mean Discrepancy (MMD) is a
widely used metric for measuring the distance between distributions (Smola et al., 2006). It quan-
tifies the difference between two distributions X and Y in the Reproducing Kernel Hilbert Space
(RKHS) (Berlinet & Thomas-Agnan, 2004) and is defined as:

MMD2(X,Y ) = Ex,x′∼X [k(x, x′)] + Ey,y′∼Y [k(y, y′)]− 2Ex∼X,y∼Y [k(x, y)], (2)

MMD-based
Estimator
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+
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Reward

Figure 2: Illustration of MMD-
based optimistic return estimation.

where k(·, ·) denotes a kernel function. In practice, MMD en-
ables the estimation of distributional differences using a finite
set of sampled data, and has thus been extensively applied in
tasks involving distribution fitting and alignment. In RL, value
functions are often treated as distributions (Bellemare et al.,
2017; Dabney et al., 2018; Jullien et al., 2025), since a single
state-action pair can yield diverse future returns. Traditional
quantile regression (Jurevckova, 2006) captures this distribu-
tional nature by learning a fixed set of quantile points. In con-
trast, MMD offers a non-parametric alternative for aligning
distributions, allowing the return distribution of state-action
pairs to be learned directly, rather than merely predicting an
expected value. This approach captures uncertainty and the
potential variability of state-action pairs more comprehensively, thereby improving the expressive-
ness and robustness of value estimation.

Motivated by previous research (Nguyen-Tang et al., 2021), we develop an MMD-based return es-
timator. Given a single-step state st and its corresponding action at, the estimator takes (st, at) as
input and produces a set of N scalar samples:

Zψ(st, at) = {z1, z2, . . . , zN}, zi ∈ R, (3)

where ψ denotes the model parameters. This set approximates the return distribution conditioned on
the given state-action pair, rather than providing a singular estimate. Moreover, unlike estimation
methods that condition on entire trajectories, this design reduces the influence of irrelevant historical
context. It focuses on evaluating all possible intrinsic values of the current state–action pair.
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Figure 3: Illustration of the proposed greedy subtrajectory slicing mechanism. Given an offline
trajectory, we compute the optimistic return R̂t0 at each time step and identify the peak point t∗ as
the split point for subtrajectory slicing. The selected subtrajectory is used for training while the
remaining part is recursively sliced until all time steps are covered.

To train the estimator, we minimize the MMD loss between the predicted distribution Zψ(st, at)
and the target distribution Z target(st, at) = {z′1, z′2, . . . , z′N}, as shown in Eq.(2):

LMMD =
1

N2

N∑
i=1

N∑
j=1

k(zi, zj) +
1

N2

N∑
i=1

N∑
j=1

k(z′i, z
′
j)−

2

N2

N∑
i=1

N∑
j=1

k(zi, z
′
j). (4)

The target distribution Z target is computed based on the temporal difference target:

Z target(st, at) = rt + γZψ−(st+1, at+1),

where ψ− denotes the target network with delayed updates. For simplicity, we adopt a kernel
function based on the squared Euclidean distance (Eyster & White, 1973), defined as k(x, y) =
−∥x − y∥2. By minimizing the MMD loss above, the estimator is encouraged to learn a stable
representation of the value distribution, which serves as a reliable guidance signal for subsequent
subtrajectory slicing.

3.2 GREEDY SUBTRAJECTORY SLICING

The greedy subtrajectory slicing module constitutes the core of PRGS. For clarity, we provide a de-
tailed exposition of this module by dividing it into three sequential components: estimation, slicing,
and training.

Estimation. Given an offline trajectory τ = {(st, at, rt)}Kt=0 of length K, we commence by
applying the MMD-based return estimator introduced in the previous section to estimate the fu-
ture return distribution for each state-action pair (st, at) along the trajectory. To enable consistent
comparison across different timesteps, we then derive scalar scores with optimistic bias from the
estimated return distributions. According to Eq.(3), the estimator generates N particles at each
timestep t, representing an approximate distribution of returns starting from (st, at). To derive an
optimistic scalar estimate, the particles are sorted in descending order:

zt,(1) ≥ zt,(2) ≥ · · · ≥ zt,(N).

The value function approximation is then defined as the mean of the top-n particles:

Q̃
(n)
t (st, at) =

1

n

n∑
i=1

zt,(i), (5)

where n ∈ {1, . . . , N} is a tunable hyperparameter. Smaller values of n yield estimates closer
to the upper quantiles of the distribution, resulting in a more optimistic evaluation, while larger
values lead to more conservative estimates. Intuitively, Q̃(n)

t captures the potential upper-bound
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return by focusing on the most favorable outcomes, thereby preventing suboptimal realizations from
disproportionately degrading the evaluation of specific subtrajectories.

According to Eq.(C.2), Q̃(n)
t denotes an optimistic estimate of the return starting from timestep t.

To ensure comparability across different timesteps, we map this quantity to the perspective of the
trajectory’s starting point (s0, a0) by incorporating the cumulative realized reward obtained before
t, as shown in Figure 2. Formally, we define the aligned optimistic return from the start as:

R̂ t
0 =

t−1∑
i=0

γiri + Q̃
(n)
t .

In this way, R̂t0 denotes the optimistic total return the agent would receive by following the observed
trajectory up to step t and then executed action at at state st. This alignment brings the potential
returns at different timesteps onto a unified scale, enabling consistent comparison and supporting
the subsequent greedy segmentation of subtrajectories.

Slicing. For the definition of R̂ t
0 , if there exists a timestep t∗ ∈ [0,K] such that R̂ t∗

0 =

max0≤t≤K R̂
t
0 , then the subtrajectory τ0:t∗ = {(s0, a0, r0), . . . , (st∗ , at∗ , rt∗)} is identified as the

optimal subtrajectory within the trajectory. In other words, learning from this segment is expected
to yield a nearly optimal return. Any trajectory segment occurring after the timestep t∗ degrades the
estimation of R̂t0, resulting in a suboptimal return value. Based on this observation, we implement
a greedy slicing strategy: for each complete trajectory, we select τ0:t∗ corresponding to the peak
optimistic return R̂ t∗

0 , and use it as a training sample for the Transformer model. Accordingly, t∗
serves as the split point.

Training. During training, only the timesteps within τ0:t∗ are retained, while the other steps are
masked and excluded from the loss computation. Following Eq.(1), we obtain the modified loss
function as:

L1(θ) = −Eτ∼D

t∗∑
t=0

log πθ(at | τ0:t∗),

where 0 and t∗ denote the starting and ending timesteps of the selected subtrajectory, respectively.

Then, the selected subtrajectory τ0:t∗ is labeled as used, and the remaining unused portion τt∗+1:K =
{(st∗+1, at∗+1, rt∗+1), . . . , (sK , aK , rK)} is recursively segmented using the same greedy strategy.
In the m-th recursion step, a new split point is identified to extract a high-quality subtrajectory, and
the corresponding loss valueLm is calculated. This process continues until all timesteps are covered,
resulting in a complete decomposition of the original trajectory into a set of disjoint subtrajectories,
as illustrated in Figure 3. The overall optimization objective for a training iteration is defined as the
weighted sum of the losses across all extracted subtrajectories:

Ltotal =

M∑
m=1

λm−1Lm,

where M denotes the number of resulting subtrajectories, which dynamically varies depending on
the specific input trajectory. λ ∈ [0, 1] denotes a weighting coefficient, indicating that the contri-
bution of Lm diminishes as m increases. In particular, when λ = 0, only the first subtrajectory is
considered, whereas λ = 1 indicates that all subtrajectories are treated uniformly during training.
This design aligns with the objective of guiding PRGS to focus more on subtrajectories associated
with higher values of R̂0. Meanwhile, this recursive slicing framework ensures that every timestep
contributes to training.

3.3 ADAPTIVE HISTORY TRUNCATION IN EVALUATION

During the training phase, PRGS applies greedy segmentation to divide the entire trajectory into
multiple subtrajectories and trains on each independently. This design makes the initial state of
each subtrajectory critical for subsequent decision-making, while the preceding historical context
is not explicitly incorporated into training. Consequently, unconditionally retaining all historical
information during evaluation introduces a mismatch between training and evaluation, potentially
degrading policy performance.
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To mitigate this inconsistency, PRGS adopts an adaptive history truncation mechanism during eval-
uation. At each timestep t (t ≥ 1), the return estimator provides an optimistic evaluation of the
current state, which is then compared with the estimate from the previous step to determine whether
the historical trajectory should be retained. First, we define the state value estimate at time step t as:

Vt(st) = Q̃
(n)
t−1(st−1, at−1), t ≥ 1,

where Q̃
(n)
t−1 denotes an optimistic return based on Eq.(C.2). In the evaluation phase, PRGS

compares the estimated value of the current state against that of the preceding step: ∆Vt =
Vt(st)− Vt−1(st−1). If ∆Vt > 0, it suggests that the current state holds greater potential for return
than the previous one, implying that the preceding trajectory no longer contributes valuable infor-
mation for future decisions. In such cases, PRGS discards the historical trajectory and retains only
the current state as the new starting point, from which subsequent decisions are derived. Formally,
the history update mechanism during evaluation can be written as:

Ht =

{
{st}, if ∆Vt > 0,

Ht−1 ∪ {st}, otherwise,
(6)

where Ht denotes the retained trajectory at timestep t. This adaptive history truncation strategy
ensures consistency between training and evaluation. While training relies on subtrajectories start-
ing from intermediate states, the evaluation phase can also dynamically reset the history based on
the return estimator, thereby mitigating the impact of irrelevant or low-quality past information on
current decision-making.

In summary, the PRGS framework systematically enhances the ability of Transformer-based of-
fline RL through three tightly integrated modules. The MMD-based return estimator provides op-
timistic value estimates for single state-action pairs, while greedy slicing identifies and prioritizes
high-return subtrajectories for training. During evaluation, adaptive truncation dynamically discards
irrelevant history to align inference with training-time segmentation. Together, these components
enable timestep-level subtrajectory selection and composition, offering a concise and effective way
to improve the stitching ability of Transformer-based offline RL. The implementation details and
algorithmic description of PRGS can be found in Appendix A.

4 RELATED WORK

4.1 OFFLINE REINFORCEMENT LEARNING

Besides the Transformer-based approaches discussed in this paper, several other representative meth-
ods have also been developed in offline RL. One prominent line of work involves policy constraint
methods, such as BCQ (Fujimoto et al., 2019) and BRAC (Wu et al., 2019), which mitigate the bias
introduced by out-of-distribution (OOD) (Mao et al., 2024b) actions by constraining the learned
policy to remain close to the behavior policy during updates. Another class of methods focuses
on advantage weighting and value function regression. For instance, CQL (Kumar et al., 2020)
imposes a conservative penalty on the Q-function to prevent overestimation of OOD actions. At
the same time, IQL (Kostrikov et al., 2022) leverages expectile regression to stabilize the learning
dynamics. With the development of sequence modeling techniques, researchers have introduced
Diffusion Models (Ho et al., 2020) as a more scalable tool for policy representation and planning.
Typical representatives include Diffuser (Janner et al., 2022) and DD (Ajay et al., 2023). In addition,
EDP (Kang et al., 2023) and DiffuserLite (Dong et al., 2024) optimize the training and inference effi-
ciency of diffusion-based policies. This series of works demonstrates the great potential of diffusion
architectures in Offline RL, bringing a new generative model paradigm to offline decision-making.

4.2 STITCHING IN TRANSFORMER-BASED OFFLINE RL METHODS

Although Transformer-based approaches have shown strong modeling capabilities in offline RL,
they still face limitations in stitching together high-value segments from different parts of trajecto-
ries. Several recent works have explored ways to improve this ability. For instance, TT (Janner et al.,
2021) incorporates discretization and dynamic programming into trajectory modeling, enabling the
model to utilize planning mechanisms for more effective trajectory recombination. Methods such
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as RCSL (Srivastava et al., 2019; Schmidhuber, 2019), QDT (Yamagata et al., 2023), CGDT (Wang
et al., 2024), and QT (Hu et al., 2024) integrate value estimation into sequential modeling, allowing
value-guided composition of trajectory segments. EDT (Wu et al., 2023) estimates the value of past
observations and adaptively determines the effective context length based on the estimated utility.
Meanwhile, DoC (Yang et al., 2023) takes an alternative approach by learning latent representations
of future trajectories and conditioning the policy model on these representations to guide behavior
adjustment. And Sun & Wu (2023) propose using reward machines to structure offline data, enabling
strong policies to be learned from less but higher-quality data in complex tasks.

The above methods have demonstrated effectiveness in improving trajectory stitching. Nevertheless,
they lack a fine-grained perspective to explicitly distinguish between high-quality and low-quality
subtrajectories within a trajectory. Most approaches operate at the trajectory level or rely on implicit
latent representations, without mechanisms to explicitly identify high-quality subtrajectories at the
timestep level. To mitigate this constraint, we present an interpretable mechanism that identifies
split points and directly selects informative subtrajectories from a given trajectory. It is compatible
with various Transformer-based offline RL algorithms and significantly improves their stitching
performance.

5 EXPERIMENT

This section empirically evaluates the effectiveness and advantages of PRGS through a series of sys-
tematic experiments. The evaluation includes four main components: (I) integrating PRGS into sev-
eral representative Transformer-based offline RL algorithms and assessing its overall performance
across several benchmark datasets; (II) performing ablation studies to investigate the contributions
of individual components and hyperparameters, including the number of particles n in the MMD-
based estimator and the adaptive history pruning mechanism; (III) verifying the efficacy of segmen-
tation at the timestep level by comparing it with conventional trajectory-level filtering methods; (IV)
finally, providing visualizations to illustrate the inner workings of PRGS to facilitate understanding
of its impact on the training.

5.1 OVERALL PERFORMANCE

We conduct experiments on various representative offline RL benchmarks to thoroughly assess the
effectiveness of PRGS. The baselines are grouped into three categories: (1) classical offline RL al-
gorithms, including CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), BEAR (Kumar et al.,
2019), and TD3+BC (Fujimoto & Gu, 2021); (2) recent approaches emphasizing stitching capabil-
ity, such as QDT (Yamagata et al., 2023), CGDT (Wang et al., 2024), and EDT (Wu et al., 2023);
and (3) Transformer-based methods like BC, DT, and PDiT (Mao et al., 2024a). PDiT establishes a
framework with enhanced representational capacity while still adhering to Eq.(1), and is therefore
adopted as an important baseline in this paper. To demonstrate the effectiveness of the proposed
framework, we construct Transformer-based offline RL variants augmented with PRGS, denoted by
appending PRGS as a suffix. The evaluation spans diverse domains, including standard continuous
control tasks from the D4RL benchmark (Fu et al., 2020), natural language and multi-step reason-
ing tasks in BabyAI (Chevalier-Boisvert et al., 2019), and auction-style decision-making tasks in
AuctionNet (Su et al., 2024). These benchmarks cover both continuous and discrete action spaces,
allowing for a more comprehensive comparison. For stitching-focused methods, we restrict the eval-
uation to scenarios where such capabilities are particularly relevant. In the experimental results, the
arrows denote the performance difference between the PRGS algorithm and the baseline algorithm.
All experiments are based on publicly available and reproducible implementations, with detailed
hyperparameter settings and dataset configurations provided in Appendix A and B. Furthermore,
additional experimental results and a more detailed analysis are presented in Appendix C.

The experimental results on the D4RL benchmark (see Table 1) show that the proposed PRGS
framework consistently achieves superior performance across a wide range of tasks. For Gym tasks,
traditional offline RL algorithms such as CQL and IQL perform reasonably well on medium or expert
datasets, but exhibit a notable drop in performance on medium-replay datasets. In contrast, meth-
ods enhanced with PRGS demonstrate significantly improved stability and higher average returns.
For instance, DT-PRGS shows substantial gains over vanilla DT on medium-replay datasets. In the
Adroit and Kitchen domains, PRGS excels on several challenging human demonstration datasets
(including pen-human and hammer-human), outperforming existing baselines and demonstrating
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Table 1: Offline RL methods on D4RL benchmarks.
Scenarios CQL IQL BEAR TD3+BC BC BC-PRGS DT DT-PRGS PDiT PDiT-PRGS

Gym
Tasks

halfcheetah-medium-expert 91.6 86.7 53.4 90.7 86.2±9.4 88.8±2.9 91.7±0.3 93.1±0.4 73.0±4.3 85.1±2.8
hopper-medium-expert 105.4 91.5 96.3 98 67.5±13.1 71.5±10.0 109.8±0.5 111.2±0.3 111.4±0.1 111.3±0.1
walker2d-medium-expert 108.8 109.6 40.1 110.1 108.7±0.3 108.8±0.1 108.9±0.1 109.6±0.4 108.8±0.4 106.6±1.6
halfcheetah-medium 49.2 47.4 41.7 48.4 40.5±0.1 40.7±0.3 40.0±0.1 41.8±0.5 42.8±2.3 39.9±0.1
hopper-medium 69.4 66.3 52.1 59.3 59.9±1.5 62.4±5.7 63.6±2.6 93.1±2.7 68.2±2.4 92.4±2.0
walker2d-medium 83.0 78.3 59.1 83.7 78.8±1.1 77.8±2.6 78.1±1.5 78.5±0.9 77.6±0.6 77.9±2.2
halfcheetah-medium-replay 45.5 44.2 38.6 44.6 35.8±0.7 37.9±0.7 35.0±1.0 39.9±0.3 40.8±2.3 34.5±0.4
hopper-medium-replay 95.0 94.7 33.7 60.9 48.0±28.2 50.5±23.0 78.7±0.3 98.1±1.7 89.6±2.7 95.4±1.6
walker2d-medium-replay 77.2 73.9 19.2 81.8 57.5±3.3 70.8±4.3 71.5±1.7 81.1±0.8 74.1±0.6 78.2±4.1

Average 80.6 77.0 48.2 75.3 64.8 67.7 ↑2.9 75.3 82.9 ↑7.6 76.3 80.1 ↑3.8

Adroit
Tasks

pen-human 37.5 71.5 −1.0 −3.9 109.9±7.6 118.5±2.8 83.6±7.2 119.9±6.9 97.7±3.9 116.6±5.0
hammer-human 4.4 1.4 0.3 1.0 2.5±0.8 7.2±4.3 3.0±0.8 4.4±2.0 3.7±1.7 5.8±3.6
door-human 9.9 4.3 −0.3 −0.3 14.5±1.9 13.5±3.3 22.7±4.4 7.8±1.6 14.1±4.6 8.8±5.3
pen-cloned 39.2 37.3 26.5 5.1 77.8±12.3 69.1±5.9 60.3±8.7 69.3±6.3 91.4±14.0 80.6±16.0
hammer-cloned 2.1 2.1 0.3 0.3 2.6±2.4 2.0±1.7 1.6±0.4 4.3±2.2 3.8±1.9 6.7±0.0
door-cloned 0.4 1.6 −0.1 −0.3 1.6±1.0 0.3±0.3 14.3±1.7 5.3±1.8 9.5±2.3 7.4±0.5

Average 15.6 19.7 4.3 0.3 34.8 35.1 ↑0.3 30.9 35.2 ↑4.3 36.7 37.7 ↑1.0

Kitchen
Tasks

kitchen-complete 43.8 62.5 0.0 0.0 48.3±3.8 70.8±2.9 40.3±5.3 71.7±2.9 27.5±0.2 31.7±6.3
kitchen-partial 49.8 46.3 13.1 0.0 52.5±12.5 50.0±4.3 59.9±4.2 59.2±8.0 43.3±8.0 50.8±2.9

Average 46.8 54.4 6.6 0.0 50.4 60.4 ↑10.0 50.1 65.5 ↑15.4 35.4 41.3 ↑5.9

Maze2D
Tasks

maze2d-umaze 94.7 42.1 65.7 14.8 16.4±4.7 33.9±11.5 60.3±7.7 82.4±1.1 73.2±11.6 82.3±5.0
maze2d-medium 41.8 34.9 25.0 62.1 20.1±8.4 19.3±1.8 37.0±8.3 90.4±6.8 51.2±4.9 86.5±15.2
maze2d-large 49.6 61.7 81.0 88.6 10.3±8.6 9.3±1.7 25.4±4.9 127.5±36.2 40.0±10.2 106.6±20.4

Average 62.0 46.2 57.2 55.2 15.6 20.8 ↑5.2 40.9 100.1 ↑59.2 54.8 91.8 ↑37.0

AntMaze
Tasks

antmaze-umaze 74.0 87.5 73.0 78.6 82.3±3.2 83.7±10.0 67.0±1.7 96.3±1.5 89.3±4.9 71.0±13.0
antmaze-umaze-diverse 84.0 62.2 61.0 71.4 81.7±9.5 83.0±1.0 63.0±4.6 80.3±3.8 60.3±6.1 66.3±9.0
antmaze-medium-diverse 53.7 70.0 8.0 3.0 2.0±1.0 2.0±1.0 2.7±1.2 1.3±0.6 3.3±5.8 0.0±0.0
antmaze-large-diverse 14.9 47.5 0.0 0.0 0.0±0.0 0.0±0.0 1.0±1.0 16.7±7.8 1.7±1.5 11.0±3.0

Average 56.7 66.8 57.2 38.3 41.5 42.2 ↑0.7 33.4 48.7 ↑15.3 38.7 37.1 ↓1.6

strong robustness to sparse rewards and noisy trajectories. On Maze2D and AntMaze tasks, which
involve long-horizon planning and trajectory stitching, PRGS again shows effectiveness. Notably,
DT-PRGS achieves a score of 127.5 on maze2d-large, outperforming all compared methods. Over-
all, the PRGS family consistently matches or exceeds the best-performing baselines across diverse
settings. These findings validate the effectiveness of the proposed explicit subtrajectory segmenta-
tion mechanism in improving the performance of Transformer-based offline RL.

The results on Gym medium and medium-replay tasks are reported in Table 2. Overall, the DT-based
PRGS method consistently outperforms other variants. In particular, on the hopper-medium-replay
and walker2d-medium-replay tasks, PRGS achieves significantly better performance than CGDT,
demonstrating its ability to better capture critical subtrajectories in environments with complex dy-
namics and long-term dependencies. On average, PRGS ranks first among the five methods, achiev-
ing a 10.9-point improvement over vanilla DT. These results indicate that PRGS effectively enhances
performance, especially excelling in scenarios where replay data is noisy and cross-trajectory recom-
position is required.

To highlight the practical utility of the proposed algorithm, we further evaluate various baselines
and their PRGS-enhanced variants on the AuctionNet benchmark. As shown in Table 3, PRGS
consistently improves the performance scores of the original algorithms in the advertising bidding
scenario, with particularly notable gains for BC. This may be attributed to the relatively simple
mechanism of BC, which offers greater potential for performance enhancement on AuctionNet.

Finally, in the BabyAI benchmark, we evaluate multiple tasks of varying difficulties. The PDiT
method, which employs a multi-layer Transformer architecture, achieves strong performance in this
domain. Table 4 reports the results of several Transformer-based offline RL methods alongside their
PRGS variants. Across almost all tasks, the PRGS variants consistently outperform the original
algorithms, with particularly notable gains on the more challenging tasks.

5.2 ABLATION STUDIES

To further disentangle the contribution of each proposed mechanism, extensive ablation studies were
conducted. The particle number n was first examined to assess the influence of optimistically biased
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Table 2: Results on Gym medium and
medium-replay tasks.

Gym Tasks DT QDT EDT CGDT PRGS

halfcheetah-medium 40.0 42.2 42.5 43.0 41.8±0.5
hopper-medium 63.6 65.3 63.5 96.9 93.1±2.7
walker2d-medium 78.1 70.1 72.8 79.1 78.5±0.9
halfcheetah-medium-replay 35.0 35.7 37.8 40.4 39.9±0.3
hopper-medium-replay 78.7 55.3 89.0 93.4 98.1±1.7
walker2d-medium-replay 71.5 59.1 74.8 78.1 81.1±0.8

Average 61.2 54.6 63.4 71.8 72.1 ↑10.9

Table 3: Performance comparison in different periods
on AuctionNet.

Period BC BC-PRGS DT DT-PRGS PDiT PDiT-PRGS

P14 284.9±31.4 300.1±12.9 282.0±14.4 297.0±15.5 301.4±11.0 304.1±9.0
P15 296.8±17.4 306.6±13.9 290.9±11.2 293.4±21.1 285.1±14.7 294.2±10.8
P16 265.6±21.2 274.5±13.8 270.2±8.9 278.5±12.9 254.4±27.1 265.2±17.1
P17 294.9±29.6 302.6±17.6 285.3±14.2 303.2±22.5 303.8±10.6 294.7±16.5
P18 219.3±19.9 231.2±20.4 216.5±11.1 225.4±19.0 233.4±19.2 236.6±15.2
P19 286.4±16.0 292.2±16.2 285.4±13.5 284.9±12.7 285.3±13.7 283.2±12.7
P20 241.6±13.6 245.7±8.4 241.0±9.9 232.5±11.6 239.7±18.8 241.2±11.5

Average 269.9 279.0 ↑9.1 267.3 273.6 ↑6.3 271.9 274.2 ↑2.3

Table 4: Results on BabyAI tasks.
Scenarios BC BC-PRGS DT DT-PRGS PDiT PDiT-PRGS

GoToRedBall 87.9±1.7 89.6±5.3 90.7±2.2 91.6±1.6 99.2±0.1 98.9±0.1
GoToLocal 77.2±0.1 83.0±6.0 81.4±1.7 82.5±3.6 94.4±1.8 95.1±0.4
GoToSeq 34.4±4.0 38.7±1.3 38.8±1.8 39.4±1.0 35.5±1.1 38.7±3.4
PutNextLocal 17.5±3.6 19.0±1.7 13.1±1.6 17.1±4.7 29.9±2.9 32.7±5.1
UnlockLocalDist 59.1±3.6 59.5±3.6 59.7±1.9 61.8±0.7 72.3±4.7 81.5±7.0
BossLevel 36.3±3.2 42.2±2.9 42.0±1.4 43.2±5.3 46.4±4.3 48.3±3.8

Average 52.1 55.3 ↑3.2 54.3 55.9 ↑1.6 63.0 65.9 ↑2.9
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Figure 4: Ablation studies.

estimates, and the necessity of the adaptive history truncation mechanism as an alignment strategy
during evaluation was also investigated.

Experiments on the Maze2D dataset provide the ablation results summarized in Figure 4. When
the particle number n is very small, the results are suboptimal, likely because the MMD-based
estimator generates outlier estimates that impair accuracy. When n is excessively large, the method
degenerates into a standard value estimator, losing its optimistic bias and resulting in degraded
performance. On the other hand, the variant denoted as PRGS w/o AHT, which excludes the adaptive
history truncation mechanism, shows a clear performance drop, indicating that the adaptive history
truncation mechanism plays a crucial role in maintaining alignment between training and evaluation.
Additional ablation results about the coefficient λ are reported in Appendix C.

5.3 EFFECTIVENESS OF TIMESTEP LEVEL SUBTRAJECTORY SLICING

To validate that the performance improvement achieved by PRGS arises from its explicit timestep-
level subdivision rather than merely filtering trajectories for training, we evaluate several PRGS
variants and compare them with results obtained from training on Maze2D datasets filtered to retain
only a small fraction of high-quality trajectories.

BC DT PDiT
Methods
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Vanilla Top 10% Top 20% PRGS

Figure 5: Results of different trajec-
tory selection strategies.

Experimental results in Figure 5 demonstrate that timestep-
level subtrajectory slicing significantly enhances the perfor-
mance of various baseline methods. In particular, models
trained on the top 10% or 20% of trajectories do not neces-
sarily outperform the original algorithms, a phenomenon es-
pecially evident in BC. By contrast, PRGS consistently sur-
passes other slicing strategies across all three base models,
confirming the effectiveness and generality of timestep-level
subtrajectory slicing in improving policy learning. These findings suggest that finer-grained subtra-
jectory selection enables more stable and efficient training across diverse offline RL frameworks.

5.4 VISUALIZATION

In this section, we present a visual analysis of trajectory data in maze2d-medium. Figure 6(a) shows
that the raw trajectories span most of the maze, yet the majority fail to reach or approach the target
(marked by a red star). In Figure 6(b), trajectory points are color-coded by their return-to-go (Rtg),
with brighter colors corresponding to higher cumulative returns; this highlights that high-return re-
gions are concentrated around the target. Figure 6(c) illustrates the estimates of Q̃ for state–action
pairs obtained from the MMD-based estimator. While the overall trend aligns with the distribution
of return-to-go, it additionally distinguishes value variations in distant regions, suggesting that the
method captures local values more effectively and yields more optimistic estimates. Finally, Fig-
ure 6(d) depicts the first subtrajectory selected by PRGS during the slicing process. PRGS consis-
tently favors subtrajectories that include high-value regions while discarding low-quality segments
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that drift away from the target, thereby showing its ability to automatically extract the most infor-
mative portions of complex trajectory sets for learning.

(a) Trajectories. (b) Rtg visualization. (c) Q̃ estimation. (d) Subtrajectories.

Figure 6: Visualization of trajectory data in maze2d-medium.

6 CONCLUSION

This paper introduces Peak-Return Greedy Slicing (PRGS), which integrates an MMD-based return
estimator, a greedy subtrajectory slicing strategy, and an adaptive history truncation mechanism
to explicitly select high-quality subtrajectories at the timestep level. This approach substantially
improves the compositional capability of Transformer-based offline RL. Experimental results on
multiple benchmark tasks validate the effectiveness of PRGS, highlighting its potential as a concise
and efficient framework and suggesting promising directions for extensions to more complex
environments. And extending this work to non-transformer-based methods is a interesting direction.

REPRODUCIBILITY STATEMENT

We make every effort to ensure the reproducibility of our work. The paper provides a complete
description of the proposed PRGS framework in Section 3, including algorithmic details and train-
ing objectives. All experimental settings, benchmark descriptions, and evaluation metrics are re-
ported in Section 5, with additional hyperparameter details and implementation notes included in
Appendix A. The datasets employed (D4RL, AuctionNet, BabyAI) are publicly accessible, and
we describe the preprocessing steps in Appendix B. An link to the source code is provided at
https://github.com/deligentfool/PRGS, and the code is also available in the supple-
mentary material together with instructions for running the experiments.
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A IMPLEMENTATION DETAILS

A.1 ALGORITHMIC DESCRIPTION

The algorithm for PRGS are summarized in Algorithm 1. The code for PRGS can be found in the
supplementary material.

Algorithm 1: Peak-Return Greedy Slicing (PRGS)
Input: Offline dataset D = {τ}; Return estimator Zψ; Target estimator Zψ− ;

Transformer-based policy πθ; Discount factor γ; Number of particles N ; Number of
Chosen top particles n; Coefficient λ

1 Training Phase:
2 for each trajectory τ = {(st, at, rt)}Kt=0 ∈ D do
3 Sample particles Z and target particles Z target

4 Compute MMD loss and update parameters ψ of the estimator
5 Periodically update target estimator Zψ− ← Zψ
6 Initialize unused timestep set U ← {0, . . . ,K}
7 while U is not empty do
8 Ltotal ← 0
9 t⋆prev ← 0

10 m← 1
11 for t ∈ U do
12 Obtain N particles: Zψ(st, at) = {zt,1, . . . , zt,N}
13 Sort in descending order to get zt,(1) ≥ · · · ≥ zt,(N)

14 Compute optimistic value: Q̃(n)
t ← 1

n

∑n
i=1 zt,(i)

15 Compute aligned optimistic return: R̂ t
0 ←

∑t−1
k=0 γ

krk + Q̃
(n)
t

16 t⋆ ← argmax
t∈U

R̂ t
0

17 Select subtrajectory τt⋆prev:t
⋆ and mask all other steps

18 Compute loss Lm via a masked Transformer forward pass
19 Mark {t⋆prev, . . . , t

⋆} as used and set U ← U \ {0, . . . , t⋆}
20 t⋆prev ← t⋆ + 1

21 Ltotal ← Ltotal + λm−1Lm
22 m← m+ 1

23 Update the parameters θ of the policy

24 Evaluation Phase:
25 for each rollout episode do
26 Initialize history H ← ∅
27 for each step t do
28 if t > 0 then
29 Estimate value Vt(st)← Q̃

(n)
t (st−1, at−1)

30 if Vt(st) > Vt−1(st−1) then
31 Discard history: H ← {(st, at)}

32 Predict next action at ∼ πθ(H)
33 Append (st, at) to H

A.2 HYPERPARAMETERS

Hyperparameters were based on the implementation of Decision Transformer and are listed in Ta-
ble 5. Most shared hyperparameters were used without extensive tuning. All experiments in this
paper are run on Nvidia GeForce RTX 3090 graphics cards and Intel(R) Xeon(R) Platinum 8280
CPU.
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Table 5: Hyperparameters used in experiments.

Hyperparameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Activation function ReLU
Positional encoding No for D4RL and BabyAI, Yes for AuctionNet
Batch size 64
Context length K 20
Dropout 0.1
Learning rate 1e-4
Grad norm clip 0.25
Weight decay 1e-4
Learning rate warmup linear warmup for 10000 training steps
Training epochs 10
Eval episodes 32
Discount factor γ 1

Number of particles N 128
Number of Chosen top particles n 8
Coefficient λ 0.7
Target update period for MMD-based estimator every 50 training steps

A.3 NOTIONS

For clarity and to ensure consistent notation, this paper adopts a set of symbols throughout the train-
ing and evaluation processes. The primary notations and their definitions are presented in Table 6.

Table 6: Summary of the main notations.

Notation Description

D Offline dataset containing trajectories τ .
τ = {(st, at, rt)}Kt=0 A trajectory with states, actions, and rewards of length K.
st, at, rt State, action, and reward at time step t.
Zψ(st, at) Return estimator output for state–action pair (st, at), represented as N

particles.
ψ Parameters of the return estimator Zψ .
ψ− Parameters of the target return estimator Zψ− .
zt,(i) The i-th sampled particle from Zψ(st, at).
Gt Return-to-go at step t.
Q̃

(n)
t Optimistic value of (st, at) computed by averaging top-n particles.

R̂ t
0 Aligned optimistic return from the trajectory starting point to step t.

t⋆ The peak step where R̂ t
0 achieves its maximum.

τt1:t2 Subtrajectory sliced from step t1 to t2.
U Set of unused timesteps during greedy slicing.
πθ Transformer-based policy parameterized by θ.
LMMD MMD loss for training the return estimator.
Lm Training loss computed from the m-th selected subtrajectory.
Ltotal Total loss aggregated from all subtrajectory losses.
γ Discount factor in Bellman updates.
N Number of particles sampled by return estimator.
n Number of top particles used for optimistic return computation.
λ Coefficient for weighting successive subtrajectory losses.
H Retained history during evaluation.
Vt(st) Estimated optimistic value of current state at time step t.
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B EXPERIMENT DETAILS

B.1 INTRODUCTION FOR BENCHMARKS

This study evaluates the proposed method on multiple standard benchmark tasks, covering continu-
ous control, auction bidding, and instruction-driven navigation and manipulation. Screenshots of all
tasks are provided in Figure 7.

AntMaze & Maze2D Mujoco

Kitchen Adroit

(a) D4RL.

Bidding 
Agents

② Bidding ③ Exposure

Ad 
Slots

① Goal ④ Evaluation
Conversion

Expected 
CPA

Budget ……

AD1

AD2

AD3

……

Advertiser

Conversion 
Rate

CPA

Cost …… User

… …

(b) AuctionNet. (c) BabyAI.

Figure 7: Screenshots of different benchmarks.

D4RL. D4RL (Datasets for Deep Data-Driven Reinforcement Learning) is a widely used bench-
mark suite for offline reinforcement learning. It includes a variety of continuous control environ-
ments, such as MuJoCo and Adroit control tasks (hopper, walker2d, halfcheetah, etc.), AntMaze and
Maze2D navigation tasks, as well as Kitchen compositional manipulation tasks. A key feature of
D4RL is its provision of diverse datasets collected from expert, random, and medium-performance
policies, enabling comprehensive evaluation of offline reinforcement learning algorithms under
varying data quality conditions.

AuctionNet. AuctionNet simulates online advertising bidding, with data derived from large-scale
auction logs. The bidding process is formulated as a reinforcement learning problem, where the
agent’s actions correspond to bid decisions, and the reward function is defined in terms of conver-
sion rates and budget constraints. AuctionNet is commonly employed to investigate policy learning
under limited budgets, providing a testbed for assessing the adaptability and robustness of offline
reinforcement learning algorithms in real-world industrial applications.

BabyAI. BabyAI is an interactive grid-world environment designed to evaluate agents in navigation
and manipulation tasks driven by natural language instructions. The environment is partially observ-
able and provides a wide range of subtasks (e.g., picking up, placing, opening doors), which can be
composed into more complex tasks. Its trajectory data includes state observations, actions, and lan-
guage instructions, supporting research on the generalization ability of reinforcement learning and
sequence modeling methods conditioned on instructions.

B.2 EXPERIMENTAL SETUP

In the D4RL environment, we employ the normalized score as the primary evaluation metric to en-
able direct comparison with prior work. For AuctionNet, the evaluation focuses on cumulative con-
version profit and budget compliance. We utilize the Alibaba simulation dataset from the NeurIPS
2024 competition (Xu et al., 2024), spanning 21 periods (7–27), each comprising over 500,000 im-
pression opportunities and 48 auction steps, with each impression involving 48 bidding agents. The
dataset contains more than 500 million records, including predicted conversion values, bid informa-
tion, auction details, and impression outcomes. To ensure fair evaluation, data from periods 7–13
are used for training, while periods 14–20 are reserved for testing. For BabyAI, we adopt success
rate as the evaluation metric to assess the agent’s ability to execute tasks under natural language
instructions. The offline dataset is constructed using heuristic sampling, with 2000 trajectories gen-
erated for each scenario to evaluate instruction execution and generalization capability. All reported
results are averaged over three independent runs with standard deviations to mitigate the randomness
introduced by different seeds.
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C ADDITIONAL RESULTS

C.1 ADDITIONAL VISUALIZATION

The additional visualizations in Maze2D are shown in Figure 8 and Figure 9. In the maze-large
environment, the original dataset comprises numerous trajectories spanning the entire map, with
a substantial proportion failing to reach the goal. This leads to a mixture of high- and low-quality
segments. Visualization of the return-to-go reveals that only trajectories approaching the goal
exhibit high returns, whereas those farther away predominantly correspond to low-return regions.
The MMD-based value estimator produces results that align with the overall trend of return-to-go
but further distinguishes local value variations even in trajectories that do not directly reach the
goal, thereby offering more fine-grained value signals. Leveraging these estimations, the PRGS
sub-trajectory slicing mechanism prioritizes segments containing high-value regions, effectively
discarding uninformative trajectories from exploration and substantially improving the quality of
training data.

By contrast, the maze-umaze environment has a simpler structure, where trajectories are concen-
trated in the U-shaped corridor, and most of them cover areas near the goal, yielding overall higher-
quality data. Visualizations of return-to-go and the estimator demonstrate a clearer return gradient
in this environment, with estimated values strongly correlated with spatial positions. In such cases,
although PRGS subtrajectory slicing introduces less dramatic changes than in maze-large, it still
ensures that training emphasizes critical high-value segments, thereby reinforcing the model’s ex-
ploitation of key states while maintaining stability.

This comparison demonstrates that PRGS provides powerful filtering and segment selection in
complex environments, while in simpler environments it functions as a stable value-alignment
mechanism.

(a) Trajectories. (b) Rtg visualization. (c) Q̃ estimation. (d) Subtrajectories.

Figure 8: Visualization of trajectory data in maze-large.

(a) Trajectories. (b) Rtg visualization. (c) Q̃ estimation. (d) Subtrajectories.

Figure 9: Visualization of trajectory data in maze-umaze.

Within the hopper-medium environment, we perform t-SNE (van der Maaten & Hinton, 2008) em-
bedding and visualization of trajectory data to compare the distributions of return-to-go G and the
MMD-based Q̃ estimates. As illustrated in Figure 10(a), the visualization of return-to-go reveals
the diversity of trajectory quality in the dataset, where the point colors vary continuously from low
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values (purple) to high values (yellow), indicating a substantial mixture of high- and low-return
samples within the same embedding space. In Figure 10(b), the Q̃-based estimates follow a similar
overall trend to return-to-go but delineate local structures more clearly: certain boundary regions
are estimated as high-value, whereas these regions are less evident in the return-to-go visualization.

(a) Rtg visualization. (b) Q̃ estimation.
Figure 10: Visualization of t-SNE embedding trajectory
data in hopper-medium. Compared to the Rtg visualization,
the Q̃ estimation highlights more pronounced color differ-
ences in the middle region.

This suggests that Q̃ can recognize
and emphasize potential high-quality
state–action pairs in the modeling
process, even when their actual
returns in the raw data are obscured
by noise or suboptimal trajectories.

Overall, these findings demonstrate
that the MMD-based return estimator
in the hopper-medium task not only
captures the global value trends of
trajectories but also identifies local
value differences at a finer granular-
ity, thereby providing more discrimi-
native criteria for subsequent subtra-
jectory slicing and high-quality expe-
rience selection.

C.2 ADDITIONAL ABLATION STUDY

To investigate the influence of λ, which controls the weighting of successive subtrajectories, we
conducted experiments in hopper-medium and maze2d-large, as shown in Figure 11. The results
indicate that the optimal value of λ varies across different scenarios and algorithms, highlighting its
sensitivity to task characteristics. For example, in hopper-medium (Figure 11(a)), λ = 0.7 yields the
best performance for DT; while for BC, λ = 0.3 leads to the most significant improvement. Never-
theless, to better demonstrate the robustness of PRGS, we did not perform task-specific fine-tuning
of λ, but instead adopted a unified setting throughout all experiments. It is also noteworthy that
when λ = 0, meaning that only the first sliced subtrajectory is considered, the method still achieves
competitive performance, especially in maze2d-large. This observation further validates the key
insight that explicit slicing of trajectories at the timestep level is both meaningful and beneficial.
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Figure 11: Influence of the λ for PRGS.
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Figure 12: Ablation of the MMD re-
turn estimator.

We additionally conduct ablations focusing on the MMD-
based return estimator. As shown in Figure 12, the full
PRGS consistently achieves the best performance on both
hopper tasks, whereas removing the optimistic MMD esti-
mator (w/o Optimistic) or replacing it with conventional
Q-learning (w/ Q-loss) leads to substantial performance
drops. Without the top-n particle selection, the return es-
timates become overly conservative, weakening the ability
to identify high-quality trajectory segments; replacing the

20



Published as a conference paper at ICLR 2026

estimator with Q-learning further amplifies offline Q-value bias and significantly harms sequence
modeling stability. These results demonstrate that the optimistic MMD return estimator is an essen-
tial component of PRGS, enabling more reliable identification of high-value behavioral patterns and
ultimately improving slicing quality and overall performance.
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(a) Hopper-medium.
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(b) Hopper-medium-replay.

Figure 13: Bias (related to overestimation) comparison.

To evaluate whether the optimistic MMD-based return estimator leads to significant overestimation
issues, we tested above three variants. The bias is calculated as the difference between the estimated
return and the true return:

Bias = E[Q̃t −Gt],

where Q̃t is the estimated return andGt is the true return. As shown in Figure 13, the PRGS method
does not exhibit noticeable overestimation and maintains a stable bias throughout training, compared
to the other two variants. Empirically, a properly chosen target update period for the MMD-based
estimator keeps the distributional estimates stable.

C.3 ADDITIONAL ANALYSIS
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(a) Maze2d-large.
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(b) Hammer-cloned.
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(c) Hopper-medium-replay.
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(d) Kitchen-complete.

Figure 14: Distributions of first subtrajectory lengths across different environments. The histograms
(blue bars, left axis) show the frequency of the first subtrajectory lengths, while the orange curves
(right axis) depict the smoothed empirical cumulative distribution functions (ECDFs).

Figure 14 reports the empirical distribution of the length of the first subtrajectory selected by PRGS
across different benchmark environments. For each environment, about 2000 trajectories of length
20 are randomly sampled. The blue histograms denote the frequency of occurrence, while the or-
ange curves represent the empirical cumulative distribution function (ECDF). The results show that
in most environments the first subtrajectory length is concentrated in a relatively short range. For
instance, in hammer-cloned and kitchen-complete the proportion of length-1 subtrajectories dom-
inates, whereas maze2d-large and hopper-medium-replay exhibit a more dispersed distribution.
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Overall, short subtrajectories account for a large proportion across tasks, indicating that the ini-
tial slicing step tends to yield short segments. The variation across environments can be attributed
to the inherent trajectory characteristics: in tasks with frequent high-reward signals or strong local
cues, the first peak is often reached quickly, while in long-horizon navigation or locomotion tasks
the return peaks tend to appear later, leading to longer subtrajectory slices.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of peak-return points per trajectory

0

500

1000

1500

Fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

(a) Hopper-expert.
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(b) Hopper-medium-expert.
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(c) Hopper-medium-replay.
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(d) Hopper-medium.
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(e) Hopper-random.

Figure 15: Distribution of peak-return points per trajectory across different hopper datasets. The
number of peak-return points varies significantly.

Similarly, we also analyzed the number of peak-return points. As shown in Figure 15, the number
of peak-return points per trajectory varies significantly across different Hopper datasets. For the
hopper-expert and hopper-medium-expert datasets, most trajectories have only a few peak-return
points, typically around 1 or 2, indicating that in these high-quality expert datasets, the return values
tend to peak at relatively fewer points during the trajectory. In contrast, the hopper-medium-replay
and hopper-medium datasets exhibit a greater number of peak-return points, with hopper-medium-
replay showing a more diverse distribution of peak points across trajectories. Finally, in the hopper-
random dataset, almost all trajectories have peak-return points concentrated at 1 or 2, with most
trajectories peaking early, reflecting the relatively low quality of this dataset.

These results suggest that the quality and complexity of the dataset significantly affect the num-
ber and distribution of peak-return points in trajectories. High-quality datasets like Hopper-expert
tend to generate peaks at fewer points, while lower-quality datasets like Hopper-random show more
frequent early peaks.

C.4 ADDITIONAL RESULTS

As shown in Table 7, we also assess PRGS on narrow-coverage datasets such as random and expert.
Since these datasets provide limited actionable coverage, with random datasets containing very few
high-quality segments and expert datasets containing almost no low-quality segments to remove, the
potential benefits of slicing are naturally constrained. Nevertheless, PRGS still achieves small but
consistent improvements under these restricted conditions, indicating its ability to adapt to different
levels of dataset coverage.

22



Published as a conference paper at ICLR 2026

Table 7: Performance comparison on narrow-coverage Gym tasks.
Task BC BC-PRGS DT DT-PRGS PDiT PDiT-PRGS

halfcheetah-random −2.4±0.0 −2.4±0.0 −2.4±0.0 −2.4±0.0 −2.4±0.0 −2.4±0.0
hopper-random 5.5±2.6 9.3±0.5 6.7±3.0 8.1±1.3 7.6±0.6 7.6±0.8
walker2d-random 1.1±0.3 5.9±1.8 5.5±0.2 6.4±0.7 6.4±0.8 6.3±0.6
halfcheetah-expert 92.4±0.5 93.2±0.1 91.9±0.1 93.6±0.3 90.4±1.1 93.2±1.0
hopper-expert 111.6±0.2 111.8±0.1 111.9±0.3 111.8±0.4 111.6±0.2 111.5±0.4
walker2d-expert 109.3±0.3 109.2±0.2 109.4±0.0 109.2±0.1 110.3±0.8 109.1±1.1
Average 52.9 54.5 ↑1.6 53.8 54.5 ↑0.7 54.0 54.2 ↑0.2

To further examine the consistency between PRGS and actual task achievement, we additionally
report a success metric for Maze2D, defined as the number of times the agent enters a target-near
region within a specified distance at any frame. This metric measures the success count within few
episodes rather than a success rate, and a single episode may contain multiple successes. As shown
in Table 8, this success measure closely mirrors the return-based improvements across all methods,
indicating that PRGS does not introduce ambiguity even when subtrajectories originate from failed
or partially successful trajectories. Notably, PRGS selects subtrajectories based on optimistic return
rather than instantaneous rewards; since return reflects the expected cumulative outcome toward the
end of the episode, it naturally aligns with this success-count metric, which is consistent with our
empirical observations.

Table 8: Success count comparison within few episodes on Maze2D tasks.
Task BC BC-PRGS DT DT-PRGS PDiT PDiT-PRGS

maze2d-umaze 36.7±3.8 57.9±8.3 76.8±8.3 92.1±4.8 83.5±9.4 90.8±7.2
maze2d-medium 48.8±11.1 45.1±3.2 81.6±5.3 188.4±6.9 97.0±2.7 166.5±11.6
maze2d-large 20.1±14.5 24.8±2.0 64.2±6.4 221.3±16.7 87.2±4.9 183.9±10.1
Average 35.2 42.6 ↑7.4 74.2 167.3 ↑93.1 89.2 147.1 ↑57.9

C.5 FAILURE MODE ANALYSIS: LIMITED TRAJECTORY COVERAGE

In addition to the main experiments, we analyze a key failure mode of PRGS that arises when the
dataset lacks sufficient actionable structure. As shown in Table 7, we evaluate PRGS on narrow-
coverage datasets such as random and expert settings, particularly in expert datasets. These datasets
expose PRGS to two extreme conditions:

Random datasets: Only a few isolated high-return segments exist, and most trajectories contain no
meaningful long-horizon structure.

Expert datasets: Trajectories are already near-optimal, and contain almost no low-quality segments.

Under both conditions, the potential benefit of slicing is naturally constrained. Since PRGS relies
on identifying high-value transitions and separating them from low-quality ones, limited structure
reduces the number of actionable peak-return points and, consequently, the effectiveness of the
slicing procedure.

In these narrow-coverage regimes, PRGS behaves similarly to baseline methods: the lack of usable
structure prevents the construction of meaningful composite trajectories, and the method is unable
to perform effective stitching.

D COMPUTATIONAL OVERHEAD

As shown in Table 9, the computational overhead of PRGS comes primarily from the MMD-based
return estimator, whose matrix operations introduce moderate additional memory usage during train-
ing. The greedy slicing procedure also slightly reduces training speed, although it is applied only
during training and has no effect on inference. In our profiling, PRGS lowers training throughput by
about 16% and increases memory usage by roughly 89%, while maintaining nearly identical infer-
ence cost. These overheads are acceptable given the consistent performance improvement brought
by PRGS, and they mainly reflect the finer-grained value estimation and data selection that underpin
its effectiveness.
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Table 9: Computational overhead of PRGS during training and evaluation.

Method Training Throughput (↑) Memory (↓) Relative Gain (↑)
DT 1× 1× 1×
PRGS (training) 0.84× 1.89× 1.15×PRGS (evaluation) 0.99× 1.08×

E LLM USAGE

Large Language Models (LLMs) were used only as an assistive tool for grammar and language
polishing of the manuscript. They did not contribute to research ideation, methodology design,
experimental implementation, analysis, or conclusions.
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