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ABSTRACT

We are motivated by the goal of generalist robots that can complete a wide range
of tasks across many environments. Critical to this is the robot’s ability to acquire
some metric of task success or reward, which is necessary for reinforcement
learning, planning, or knowing when to ask for help. For a general-purpose robot
operating in the real world, this reward function must also be able to generalize
broadly across environments, tasks, and objects, while depending only on on-board
sensor observations (e.g. RGB images). While deep learning on large and diverse
datasets has shown promise as a path towards such generalization in computer
vision and natural language, collecting high quality datasets of robotic interaction at
scale remains an open challenge. In contrast, “in-the-wild” videos of humans (e.g.
YouTube) contain an extensive collection of people doing interesting tasks across
a diverse range of settings. In this work, we propose a simple approach, Domain-
agnostic Video Discriminator (DVD), that learns multitask reward functions by
training a discriminator to classify whether two videos are performing the same
task, and can generalize by virtue of learning from a small amount of robot data
with a broad dataset of human videos. We find that by leveraging diverse human
datasets, this reward function (a) can generalize zero shot to unseen environments,
(b) generalize zero shot to unseen tasks, and (c) can be combined with visual model
predictive control to solve robotic manipulation tasks on a real WidowX200 robot
in an unseen environment from a single human demo.

1 INTRODUCTION

Despite recent progress in robotic learning on tasks ranging from grasping (Kalashnikov et al.,
2018) to in-hand manipulation (OpenAI et al., 2019), the long-standing goal of the “generalist robot”
that can complete many tasks across environments and objects has remained out of reach. While
there are numerous challenges to overcome in achieving this goal, one critical aspect of learning
general purpose robotic policies is the ability to learn general purpose reward functions. Such reward
functions are necessary for the robot to determine its own proficiency at the specified task from its
on-board sensor observations (e.g. RGB camera images). Moreover, unless these reward functions
themselves can generalize across varying environments and tasks, an agent cannot hope to use them
to learn generalizable multi-task policies.

While prior works in computer vision and NLP (Deng et al., 2009; Devlin et al., 2019; Brown et al.,
2020) have shown notable generalization via large and diverse datasets, translating these successes to
robotic learning has remained challenging, partially due to the dearth of broad, high-quality robotic
interaction data. Motivated by this, a number of recent works have taken important steps towards
the collection of large and diverse datasets of robotic interaction (Mandlekar et al., 2018; Gupta
et al., 2018; Dasari et al., 2019; Young et al., 2020) and have shown some promise in enabling
generalization (Dasari et al., 2019). At the same time, collecting such interaction data on real robots
at a large scale remains challenging for a number of reasons, such as needing to balance data quality
with scalability, and maintaining safety without strong dependence on human supervision and resets.
Alternatively, YouTube and similar sources contain enormous amounts of “in-the-wild” visual data of
humans interacting in diverse environments. Robots that could learn reward functions from such data
have the potential to be able to generalize broadly due to the breadth of experience in this widely
available data source.
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Of course, using such “in-the-wild” data of humans to enable better robotic learning comes with
a myriad of challenges. First, such data often will have tremendous domain shift from the robot’s
observation space, in both the morphology of the agent and the visual appearance of the scene (e.g.
see Figure 1). Furthermore, the human’s action space in these “in-the-wild” videos is often quite
different from the robot’s action space, and as a result there may not always be a clear mapping
between human and robot behavior. Lastly, in practice these videos will often be low quality, noisy,
and may have an extremely diverse set of viewpoints or backgrounds. Critically however, this data is
plentiful, and already exists and is easily accessible through websites like YouTube or in pre-collected
academic datasets like the Something-Something data set (Goyal et al., 2017), allowing them to
be incorporated into the robot learning process with little additional supervision cost or collection
overhead.

”In-the-wild” Human Videos
Many Environments, Many Tasks

Robot Videos
One Environment, Few Tasks

DVD Reward 
Function

DVD Reward 
Function

TestingHuman Demo

Task Completion

Unseen Environment
Unseen Task

Training

Figure 1: Reward Learning and Planning from
In-The-Wild Human Videos. During training
(top), the agent learns a reward function from
a small set of robot videos in one environment,
and a large set of in-the-wild human videos span-
ning many tasks and environments. At test time
(bottom), the learned reward function is condi-
tioned upon a task specification (a human video of
the desired task), and produces a reward function
which the robot can use to plan actions or learn a
policy. Furthermore, by virtue of training on di-
verse human data, this reward function is able to
generalize to unseen environments and tasks.

Given the extremely diverse and noisy nature of “in-
the-wild” human videos (See Figure 1), how might
one actually learn reward functions from them? The
key idea behind our approach is to train a classifier to
predict whether two videos are completing the same
task or not. By leveraging the activity labels which
come with many human video datasets as supervi-
sion, along with a small amount of robot demos, we
can train this model to capture the functional similar-
ity between videos from drastically different visual
domains. This approach, which we call a Domain-
agnostic Video Discriminator (DVD), is simple and
therefore can be readily scaled to large and diverse
datasets, including heterogeneous datasets with both
people and robots and without any dependence on a
one-to-one mapping between the robot and human
data. Once trained, DVD can condition upon a human
video as a demonstration, and the robots behavior as
the other video, and outputs a score which is an ef-
fective measure of task success and reward.

The core contribution of this work is a simple tech-
nique for learning multi-task reward functions from a
mix of robot and in-the-wild human videos, that can
then be used to provide a robot with a reward that
measures the functional similarity between its behav-
ior and that of a human demonstrator. We find that
this reward function is able to handle the diversity of
human videos found in the Something-Something-
V2 (Goyal et al., 2017) dataset, and can be used
in conjunction with visual model predictive control
(VMPC) to solve tasks. Most notably, we find that by training on diverse human videos (even
from unrelated tasks), our learned reward function is able to more effectively generalize to unseen
environments and unseen tasks than when only using robot data, yielding a 15-20% improvement in
downstream task success. Lastly, we evaluate our method on a real WidowX200 robot, and find that
it enables zero shot generalization to an unseen task in an unseen environment given only a single
human demonstration.

2 RELATED WORK

2.1 ROBOTIC LEARNING FROM HUMAN VIDEOS

Our approach is certainly not the first to study using such in-the-wild human videos. Works which
have used object trackers (Yang et al., 2015), simulation (Petrík et al., 2020), and sub-task discovery
(Goo and Niekum, 2019) have also been applied on in-the-wild video datasets like YouCook (Das
et al., 2013), Something-Something (Goyal et al., 2017), and ActivityNet (Fabian Caba Heilbron and
Niebles, 2015). Learning from such in-the-wild videos has also shown promise as an approach for
navigation (Chang et al., 2020). Most related to our work is Concept2Robot (Shao et al., 2020) which
also studies learning robotic reward functions from in-the-wild human videos from the Something-
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Something dataset (Goyal et al., 2017), specifically by using a pretrained video classifier as a reward
function for robotic RL. Unlike Concept2Robot, our method learns a single reward function that is
conditioned on a human video demo, and thus can be used to generalize to new tasks. Furthermore,
in Section 4.4 we empirically compare our approach to Concept2Robot and find that our proposed
approach provides a more effective reward for generalizing to unseen environments. See Appendix A
for a detailed discussion of related work.

3 LEARNING GENERALIZABLE REWARD FUNCTIONS WITH
DOMAIN-AGNOSTIC VIDEO DISCRIMINATORS

In this section, we formalize our problem statement and introduce Domain-agnostic Video Discrimi-
nators (DVD), a simple approach for learning multi-task reward functions that leverage in-the-wild
human videos to generalize to unseen environments and tasks.

3.1 PROBLEM STATEMENT

In our problem setting, we consider a robot that aims to complete K tasks {Ti}Ki=1, each of which has
some underlying task reward functionRi. As a result, for any given task i, our robotic agent operates
in a Markov decision process (MDP)Mr

i , consisting of the tuple (S,Ar, pr,Ri) where S is the state
space, Ar is the robot’s action space, pr(st+1|st, at) is the robot environment’s stochastic dynamics,
andRi indicates the reward for task Ti. Additionally, for each task Ti, we consider a human operating
in a human MDP Mh

i , consisting of the tuple (S,Ah, ph,Ri) where S is the state space, Ah is
the human’s action space, ph(st+1|st, at) is the human environment’s stochastic dynamics, andRi
indicates the reward for task Ti. Note that the human and robot MDPs for task i share a state space S
and a reward functionRi, but may have different action spaces and transition dynamics.

We assume that the task reward functions Ri are unobserved, and need to be inferred through
demonstrations of each task. Our goal then is to learn a parametrized model which estimates the
underlying reward function for each task, conditioned on a task-specifying video. Concretely, we aim
to learn a reward function that for all i approximatesRi(st:t+H) withRθ(st:t+H , di) where di is a
video demonstration solving task Ti, and the learned reward function is parametrized by θ.

For training the reward function Rθ, we assume access to a dataset Dh = {DhTi}
N
i=1 of videos of

humans doing N < K tasks {Ti}Ni=1. There are no visual constraints on the viewpoints, backgrounds
or quality of this dataset, and the dataset does not need to be balanced by task. We are also given a
limited datasetDr = {DrTi}

M
i=1 of videos of robot doingM tasks {Ti}Mi=1 where {Ti}Mi=1 ⊂ {Ti}Ni=1,

and so M ≤ N . Both datasets are partitioned by task. As much more human data is readily available,
we have many more human video demonstrations than robot video demonstrations per task and often
many more tasks that have human videos but not robot videos, in which case M << N . Each video d
in either dataset simply consists of a sequence of image observations (s1, ..., std), which have varying
lengths, and we do not require any low-dimensional state information. Importantly, the reward is
inferred only through observations and does not assume any access to actions from either the human
or robot data, and we do not make any assumptions on the visual similarity between the human and
robot data. As a result, there can be a large domain shift between the two datasets.

During evaluation, the robot is tasked with inferring the rewardRθ based on a new demo di specifying
a task Ti. The goal is for this reward to be effective for solving a task Ti. Furthermore, we aim to learn
Rθ in a way such that it can generalize to unseen tasks Tnew 6∈ {Ti}Ni=1 given a task demonstration
dnew.

3.2 LEARNING THE REWARD FUNCTION

How exactly do we go about learning Rθ? Our key idea is that we can learn Rθ that captures
functional task progress by training a classifier which takes as input two video demos di from Ti and
dj from Tj , and predicting if i = j. Both videos can come from either Dh or Dr, and labels can be
easily acquired since we know which demos di correspond to which tasks Ti (See Figure 2).

Concretely, we define our reward function

Rθ(st:t+H , di) = fsim((fenc(di), fenc(st:t+H)); θ) (1)

where h = fenc(d) is a pretrained video encoder and fsim(hi, hj , θ) is a fully connected neural
network parametrized by θ trained to predict if video encodings hi and hj are completing the same
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task. To train fsim, we sample batches of videos (di, d∗i , dj) from Dh ∪ Dr, where di and d∗i are
both labelled as completing the same task Ti, and dj is completing a different task Tj . We encode
these videos using a neural network video encoder fenc into a latent space, and then train fsim as a
binary classifier with the encodings for the pair (di, d∗i ) concatenated and labeled as positive and the
encodings for the pair (di, dj) concatenated and labeled as negative (See Figure 7 in Appendix B.2
for details). In this way, the output of fsim represents a “similarity score” that indicates how similar
task-wise the two input videos are. More formally, fsim is trained to minimize the following objective,
which is the average cross-entropy loss over video pairs in the distribution of the training data P :

J (di, d∗i , dj , fsim) = EP [log(fsim(fenc(di), fenc(d
∗
i )))+

log(1− fsim(fenc(di), fenc(dj)))].
(2)

The video encoder for fenc is the same as the one used in Shao et al. (2020). It is pretrained on
the entire Sth Sth V2 dataset and not modified during training. The discriminator fsim is randomly
initialized.

DVD

“Closing Something” = 
“Closing Something” 

Label = 1

DVD

“Pushing Something Away” ≠
“Closing Something” 

Label = 0

DVD

“Pushing Something Away” = 
“Pushing Something Away”

Label = 1

Figure 2: Training DVD. DVD is trained to predict if two videos
are completeing the same task or not. By leveraging task labels
from in-the-wild human video datasets and a small number of robot
demos, DVD learns to look at a video of a human doing a task and
a robot doing a task, and predict when they are doing the same
task (left, middle). Additionally, DVD is trained on pairs of human
videos which may have significant visual differences, but may still
be doing the same task (right). By training on these visually diverse
examples, DVD is forced to learn the functional similarity between
the videos.

Since in-the-wild human videos are
so diverse and are so visually differ-
ent from the robot environment, a
large challenge lies in bridging the do-
main gap between the range of human
video environments and the robot en-
vironment. The similarity discrimina-
tor must learn to distinguish various
tasks in the robot environment and as-
sociate them with actions in human
videos, as a human video demonstra-
tion will be given at planning time in
the second stage. Because the train-
ing dataset contains many more hu-
man videos than robot videos, in or-
der to leverage the limited amount of
robot data, the batches sampled are
roughly balanced between robot and
human videos: each of (di, d∗i , dj) are
selected to be a robot demonstration with 0.5 probability, resulting in roughly 25% robot-robot or
human-human (di, d

∗
i ) or (di, dj) pairs and 50% human-robot pairs.

3.3 ONE-SHOT PLANNING WITH VISUAL MPC

Once we’ve trained the reward function Rθ how do we use it to select actions which will successfully
complete a task? We take a visual model predictive control (VMPC) approach, where we first
condition Rθ on a human demonstration video of the desired task, then use it as a planning cost to
select actions using a learned visual dynamics model, as shown in Figure 3. Concretely, we leverage
our trained similarity discriminator fsim to specify a reward functionR(st:t+H , di) for task Ti. Given
any human video demonstration di of the task, we would like our robotic agent to take actions that
lead to states st:t+H that are completing the same task.

First, we train an action-conditioned visual dynamics model pφ(st+1:t+H |st, at:t+H) using a state
of the art video prediction framework SV2P Babaeizadeh et al. (2018), where the states are images.
DVD then uses the cross-entropy method (CEM) Rubinstein and Kroese (2013) using this dynamics
model pφ to choose actions that maximize similarity with the given demonstration. More specifically,
for each iteration of CEM, at an input image st, we first sample G action trajectories of length H
and roll out G corresponding predicted trajectories {st+1:t+H}g using pφ. We then use the video
encoder fenc to encode the demonstration di and each predicted trajectory st+1:t+H , concatenate the
encodings, and feed into fsim, resulting in G similarity scores corresponding to the task-similarity
between di and each predicted image trajectory. The action trajectory corresponding to the image
sequence with the highest similarity score is then chosen and executed in order to complete the task.
The full algorithm with both stages is laid out in Algorithm 1.
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Current State

Human Demo: Close the drawer

Visual 
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Sampled Future Trajectories
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Final Task Execution

Figure 3: Planning with DVD. To use DVD to select actions, we perform visual model predictive control
(VMPC) with a learned visual dynamics model. Specifically, we sample many action sequences from an action
distribution and feed each through our visual dynamics model to get many “imagined” future trajectories. For
each trajectory, we feed the predicted visual sequence into DVD along with the human provided demonstration
video, which specifies the task. DVD scores each trajectory by its functional similarity to the human demo video,
ans teps the highest scored action sequence in the environment to complete the task.

4 EXPERIMENTS

In our experiments, we aim to study how effectively our method DVD can leverage diverse human
data, and to what extent doing so enables generalization to unseen environments and tasks. Concretely,
we study the following experimental questions:

1. By leveraging human videos is DVD able to more effectively generalize across environ-
ments?

2. By leveraging human videos is DVD able to more effectively generalize across tasks?

3. Does DVD enable robots to generalize from a single human demonstration more effectively
than prior work?

4. Does DVD enable robotic imitation from a few human videos on a real robot?

In the following sections, we first describe our experimental domains and comparisons and then
investigate each of the above questions.

4.1 EXPERIMENTAL SET-UP

Train Env Train Env Rearranged

Test Env 1 Test Env 2 Test Env 3

Test Env

Train Env

Simulation Envs WidowX200 Envs

Train Env Train Env Rearranged

Test Env 1 Test Env 2 Test Env 3

Test Env

Train Env

Simulation Envs WidowX200 Envs

Train Env Train Env Rearranged

Test Env 1 Test Env 2 Test Env 3

Test Env

Train Env

Simulation Envs WidowX200 EnvsSimulation Envs

Train Env RearrangedTrain Env

Test Env 1 Test Env 2 Test Env 3

WidowX200 Envs

Train Env

Test Env

Figure 4: Environment Domains. We consider various simulated
tabletop environments that have a drawer, a faucet, and a coffee
cup/coffee machine, as well as a real robot environment with a
tissue box, stuffed animal, and either a file cabinet or a toy kitchen
set. In the simulation experiments, half of the robot demonstrations
that are used for training come from the train env and the other half
from the rearranged train env.

Environments For our first 3 exper-
imental questions, we utilize a Mu-
JoCo Todorov et al. (2012) simulated
tabletop environment which consists
of a Sawyer robot arm interacting
with a drawer, a faucet, and a coffee
cup/coffee machine. We study 4 vari-
ants of this environment to study envi-
ronment generalization, each of which
is progressively more difficult, shown
in Figure 4. These include an origi-
nal variant (Train Env), from which
we have task demos, as well as a vari-
ant with changed colors (Test Env 1),
changed colors and viewpoint (Test
Env 2), and changed colors, view-

point, and object arrangement (Test Env 3). Additionally, we study experimental question 4 on
a real robot setup using a WidowX200 robot, in which the training environment includes a file cabinet,
a tissue box, and a stuffed animal, and the test environment involves a toy kitchen set.
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Tasks We evaluate our method on three target tasks in simulation. These tasks are (a) closing an
open drawer, (b) turning the faucet right, and (c) pushing the cup away from the camera to a coffee
machine. Each task is specified by an unseen human video performing the task in a different domain
(See Figure 8 in Appendix D). On the real robot, we evaluate on the following two tasks: (1) Closing
a toy kitchen door, and (2) Pushing a tissue box to the left.

Training Data We assume access to human demonstration data for some tasks, as well as small
amounts of robot demonstrations for some subset of these tasks. For human demonstration data, we
use the Sth Sth V2 dataset Goyal et al. (2017), which contains 220,837 total videos and 174 total
classes, each with humans performing a different basic action with a wide variety of different objects
in various environments. Depending on the experiment, we choose videos from up to 15 different
human tasks for training DVD, where each task has from 853-3170 videos (See Appendix for details).
For our simulated robot demonstration data, we assume 120 video demonstrations of 3 tasks in the
training environment only (See Figure 4). Additionally, we ablate the number of robot demonstrations
needed in Section D.2.

4.2 EXPERIMENT 1: ENVIRONMENT GENERALIZATION

In our first experiment, we aim to study how varying the amount of human data used for training
impacts the reward function’s ability to generalize across environments. To do so, we train DVD on
robot videos of the 3 target tasks from the training environment, as well as varying amounts of human
data, and measure task performance across unseen environments. One of our core hypotheses is that
the use of diverse human data can improve the robot’s ability to generalize to new environments. To
test this hypothesis, we compare training DVD on only the robot videos (Robot Only), to training
DVD on a mix of the robot videos and human videos from K tasks (Robot + K Human Tasks).
Note that the first 3 human tasks included are for the same 3 target tasks in the robot videos, and
thus K > 3 implies using human videos for completely unrelated tasks to the target tasks. All
success rates are determined by running visual model predictive control1 using the learned reward as
described in Section 3.3 conditioned on a human demo of the task, except for (Robot Only (Robot
Demo)) which receives the privileged information of a robot demo as a fairer comparison, since this
reward function has never seen any human videos.

Figure 5: Effect of Human Data on Environment
Generalization. We compare DVD’s performance on
seen and unseen environments when trained on only
robot videos compared to varying number of human
videos. We see that training with human videos provides
significantly improved performance over only training
on robot videos, and that DVD is generally robust to the
number of different human video tasks used. Success
rates computed over 3 seeds of 100 trials.

In Figure 5 we report the success rate using each
reward function, computed over 3 randomized
sets of 100 trials. Our first key observation is
that training with human videos significantly im-
proves environment generalization performance
over using only robot videos (20% on average),
even when the robot only comparison gets the
privileged information of a robot demonstration.
Interestingly, this performance improvement ex-
ists even in the training environment, suggesting
that not only does the diversity of the human
videos improve unseen environment generaliza-
tion, but it also improves robustness on the seen
environments. Second, we observe that on av-
erage, including human videos for 3 unrelated
human tasks can improve performance. Lastly,
we see that adding several (6 or 9) unrelated
tasks worth of human videos slightly hurts per-
formance, as it can make learning the reward
function more challenging. However, it still
performs significantly better than not using hu-
man videos, suggesting that in general reward
function performance is robust to the particular
human videos or tasks used. Qualitatively, in

Figure 8 in Appendix D, we observe that DVD gives high similarity scores to trajectories that are

1Note that while the unseen environment is totally unseen to the reward function, we do assume access to a
trained visual dynamics model in the unseen environment for planning.
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Method Close drawer Move faucet to right Push cup away from the camera Average

Random 20.00 (3.00) 9.00 (1.73) 32.33 (8.08) 20.44 (2.78)
Behavioral Cloning Policy 0.00 (0.00) 45.33 (38.84) 1.00 (0.00) 15.44 (12.95)

Concept2Robot 174-way classifier NA NA NA NA
DVD-Robot Only (Human Demo) 67.33 (4.51) 1.00 (1.00) 29.67 (0.58) 32.67 (1.53)
DVD-Robot Only (Robot Demo) 29.33 (14.99) 23.67 (1.53) 28.33 (0.58) 27.11 (5.23)

DVD-Robot + 3 Human Tasks 66.33 (6.03) 19.33 (0.58) 40.00 (6.93) 41.89 (3.10)
DVD-Robot + 6 Human Tasks 59.00 (5.29) 17.00 (7.94) 56.33 (11.06) 44.11 (1.39)
DVD-Robot + 9 Human Tasks 57.67 (0.58) 52.67 (1.15) 55.00 (5.57) 55.11 (2.04)
DVD-Robot + 12 Human Tasks 31.67 (9.02) 49.00 (6.24) 57.33 (2.08) 46.00 (2.60)

Table 1: Task generalization results in the original environment. DVD trained with human videos
performs significantly better on average than with only robot videos, a baseline behavioral cloning
policy, and random.

completing the task specified by the human video demo and low scores to trajectories that have less
relevant behavior.

4.3 EXPERIMENT 2: TASK GENERALIZATION

In our second experiment, we study how including human data for training affects the reward
function’s ability to generalize to new tasks. In this case we do not train on any (human or robot)
data from the target tasks, and instead train DVD on robot videos of the 3 different tasks from the
training environment, namely 1) opening the drawer, 2) moving something from right to left, 3) does
not move any objects, as well as varying amounts of human data. Similar to our previous experiment,
we compare training on only the robot videos (Robot Only), to training on a mix of the robot videos
and human videos from K tasks (Robot + K Human Tasks), conditioned on a human demo of the
unseen task. As before, Robot Only (Robot Demo) receives the privileged information of a robot
demo for the target task as a fairer comparison, since the reward function is not trained on any human
videos.

In Table 1, we report the success rate using DVD with varying amounts of human data, computed
over 3 randomized sets of 100 trials. Similar to the conclusions of the environment generalization
experiment, first we find that training with human videos significantly improves task generalization
performance over using only robot videos (roughly 10% on average), even with the robot only
comparison conditioned on a robot demonstration. Given a human video demonstration, Robot Only
does well at closing the drawer, but is completely unable to move the faucet to the right, suggesting
that it is by default moving to the same area of the environment no matter the task specified by
the conditioning demonstration and is unable to actually distinguish tasks. This is not surprising
considering the reward function is not trained on any human videos. Second, we observe that on
average, including human videos for 6 unrelated human tasks can significantly improve performance,
leading to more than a 20% gap over just training with robot videos, suggesting that training with
human videos from more unrelated tasks is particularly helpful for task generalization.

4.4 EXPERIMENT 3: PRIOR WORK COMPARISON

In this experiment, we study how effective DVD is compared to other techniques for learning from
in-the-wild human videos.

Comparisons. The most related work is Concept2Robot Shao et al. (2020), which uses a pretrained
174-way video classifier on only the Sth Sth V2 dataset (no robot videos) as a reward. Since this
method is not naturally conducive to one-shot imitation from a video demonstration, during planning
we follow the method used in the original paper and take the classification score for the target task
from the predicted robot video as the reward (instead of conditioning on a human video). The only
change to the method used in the original paper is instead of open-loop trajectory generator, we use
the same visual MPC approach to selecting actions as DVD for a fair comparison of the learned
reward function. In addition, we also compare to a demo-conditioned behavioral cloning method,
similar to the first part of the method used in MILI Singh et al. (2020). We train this baseline using
behavior cloning on the 120 robot demonstrations and their actions for 3 tasks conditioned on the
combined on a video demo of the task from either a robot or a human. We also include a comparison
to a random policy.

In Figure 6 we compare DVD with 6 human videos to these baselines on the environment generaliza-
tion experiment presented in Section 4.2. Across all environments, DVD performs significantly better
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than all three comparisons on the target tasks, and 20% better on average than the best-performing
other method. Nevertheless, Concept2Robot and the behavioral cloning policy still do perform
significantly better than random. When examining the performance of the behavioral cloning baseline
on each individual task, we see that in each environment, the policy learned ignores the conditioning
demo and mimics one trajectory for one of the target tasks, doing well for that task but not for either
of the other two. This is likely the case because the human videos are so diverse that behavior cloning
is unable to extract the necessary task information from the demonstration.

Figure 6: Environment Generalization Prior Work
Comparison. Compared to Concept2Robot, the most
relevant work leveraging “in-the-wild” human videos,
as well as a baseline behavioral cloning policy and a
random policy, DVD performs significantly better across
all environments, and over 20% better on average.

In Table 1, we make the same comparison, now
on the experiment of task generalization pre-
sented in Section 4.3. Since Concept2Robot is
not demo-conditioned and is already trained on
all 174 possible human video tasks in the Sth Sth
V2 dataset, there is no natural method for testing
generalization to an unseen task specified by a
human video. We see that DVD outperforms
both other baselines by over 30%, as the behav-
ioral cloning method ignores the conditioning
demonstration.

4.5 EXPERIMENT
4: REAL ROBOT EFFICACY

To answer our last main experimental question,
in Table 2, we study how DVD with human data
enables better environment and task generaliza-
tion on a real WidowX200 robot. We train DVD
with varying amounts of human videos as well
as 80 robot demonstrations from an original train env for the two tasks of 1) Closing a file cabinet and
2) Moving a tissue box to the right. We then evaluate DVD’s environment generalization capabilities
in a new environment with the task of closing a toy kitchen door. We also evaluate in a combined
environment and task generalization setting on an unseen task of moving the tissue box to the left in
the new environment, with DVD having not been trained on any videos (human or robot) of moving
objects to the left. We also compare to a random policy and Concept2Robot for the environment
generalization setting. For all settings, we report the success rate out of 20 trials.

Method (Out of 20 Trials) Test Env Test Env +
Unseen Task

Random 5 5
Concept2Robot 174-way classifier 4 NA

Robot Only (Human Demo) 5 6
Robot Only (Robot Demo) 5 8

Robot + 2 Human Tasks 7 7
Robot + 6 Human Tasks 13 14
Robot + 9 Human Tasks 9 11
Robot + 12 Human Tasks 10 9

Table 2: Env and task generalization results on a
real robot. We report successes out of 20 trials on a
WidowX200 in an unseen environment on two different
tasks, one on closing a toy kitchen door and another on
moving a tissue box to the left. On both, DVD performs
significantly better when trained with human videos than
with only robot demonstrations.

In both settings, DVD trained with human
videos succeeds much more often when lever-
aging the diverse human dataset than when re-
lying only on robot videos. In particular, DVD
with 6 tasks worth of human videos as well as
robot demonstrations for 2 of those tasks suc-
ceeds over 65-70% of the time whereas robot
only succeeds at most 40% of the time. While
adding additional human videos makes learning
DVD more challenging, the performance still
outweighs not adding any human videos. We
also see in Figure 9 in Appendix D that DVD
captures the functional aspect of the specified task.

5 LIMITATIONS

We have presented an approach, domain-agnostic video discriminator (DVD), that leverages the
diversity in “in-the-wild” human videos to learn generalizable robotic reward functions. While our
experiments demonstrate that training with a large, diverse dataset of human videos can significantly
improve one-shot imitation performance to unseen tasks and in unseen environments, there are
many limitations and directions for future work. First, our method focuses on learning reward
functions, so it does not learn a generalizable policy directly. Second, we assume access to some
robot demonstrations in a training environment, task labels for all training data, and a video prediction
model in test environment for planning. Lastly, the learned tasks are still coarse, and we have not
extended the method to more fine-grained tasks.
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A EXTENDED RELATED WORK

A.1 REWARD LEARNING

The problem of learning reward functions from demonstrations of tasks, also known as inverse
reinforcement learning or inverse optimal control Abbeel and Ng (2004), has a rich literature of prior
work Ratliff et al. (2006); Ziebart et al. (2008); Wulfmeier et al. (2016); Finn et al. (2016); Fu et al.
(2018a). A number of recent works have generalized this setting beyond full demonstrations to the
case where humans provide only desired outcomes or goals Fu et al. (2018b); Singh et al. (2019).
Furthermore, both techniques have been shown to be effective for learning manipulation tasks on
real robots in challenging high dimensional settings Finn et al. (2016); Singh et al. (2019); Zhu et al.
(2020). Unlike the majority of these works, which study single task reinforcement learning problems
in a single fixed MDP, the focus of this work is in learning generalizable multitask reward functions
for visual robotic manipulation that can produce rewards for different tasks by conditioning on a
single video of a human completing the task.

A.2 ROBOTIC LEARNING FROM HUMAN VIDEOS

In addition to the works on robot learning from human videos that were mentioned in Section 2, there
are other works that have studied learning robotic behavior from human videos. One approach to
this problem is to explicitly perform some form of object or hand tracking in human videos, which
can then be translated into a sequence of robotic actions or motion primitives for task execution Lee
et al. (2013); Yang et al. (2015); Nguyen et al. (2018); Lee and Ryoo (2017); Rothfuss et al. (2018).
Unlike these works which hand design the mapping from a human sequence to robot behaviors, we
aim to implicitly learn the functional similarity between human and robot videos through data.

More recently, a range of techniques have been proposed for end-to-end learning from human videos.
One such approach is to learn to translate human demos or goals to the robot perspective directly
through pixel based translation with paired Liu et al. (2018); Sharma et al. (2019) or unpaired Smith
et al. (2020) data. Other works attempt to infer actions, rewards, or state-values of human videos
and use them for learning predictive models Schmeckpeper et al. (2020b) or RL Schmeckpeper et al.
(2020a); Edwards and Isbell (2019). Learning keypoint Xiong et al. (2021); Das et al. (2021) or
object/task centric representations from videos Sermanet et al. (2018); Scalise et al. (2019); Pirk
et al. (2019) is another promising strategy to learning rewards and representations between domains.
Simulation has also been leveraged as supervision to learn such representations Petrík et al. (2020) or
to produce human data using domain randomization Bonardi et al. (2020). Finally, meta-learing Yu
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et al. (2018) and subtask discovery Sermanet et al. (2017); Goo and Niekum (2019) have also been
explored as techniques for acquiring robot rewards or demos from human videos. In contrast to the
majority of these works, which usually study a small set of human videos in a similar domain as the
robot, we explicitly focus on the setting of “in-the-wild” human videos, specifically large and diverse
sets of crowd-sourced videos from the real world, and contain many different individuals, viewpoints,
backgrounds, objects, and tasks.

A.3 ROBOTIC LEARNING FROM LARGE DATASETS

Much like our work, a number of prior works have studied the problem of general purpose robotic
agents, and learning from large and diverse data as a means to accomplishing this goal Finn and
Levine (2017); Pinto and Gupta (2016); Zeng et al. (2018); Ebert et al. (2018); Gupta et al. (2018);
Kalashnikov et al. (2018); Dasari et al. (2019); Cabi et al. (2019). These works have largely studied
the problem of collecting large and diverse robotic datasets in scalable ways Mandlekar et al. (2018);
Gupta et al. (2018); Dasari et al. (2019); Young et al. (2020); Chen et al. (2021) as well as techniques
for learning general purpose policies from this style of data in an offline Ebert et al. (2018); Cabi
et al. (2019) or online Pinto and Gupta (2016); Nair et al. (2018); Kalashnikov et al. (2018) fashion.
While our motivation of achieving generalization through learning from diverse data heavily overlaps
with the above works, our approach fundamentally differs in that it aims to sidestep the challenges
associated with collecting diverse robotic data by instead leveraging easier to collect human data
sources for accomplishing the same goal.

B ADDITIONAL METHOD DETAILS

B.1 DOMAIN-AGNOSTIC VIDEO DISCRIMINATOR (DVD) PSEUDOCODE

We provide pseudocode of our method in Algorithm 1.

Algorithm 1 DOMAIN-AGNOSTIC VIDEO DISCRIMINATOR (DVD)

1: // Training DVD
2: Require: Dh human demonstration data for N tasks {Tn}
3: Require: Dr robot demonstration data for M tasks {Tm} ⊆ {Tn}
4: Require: Pre-trained video encoder fenc
5: Randomly initialize similarity discriminator fsim
6: while training do
7: Sample anchor video di ∈ Dh ∪ Dr
8: Sample positive video d∗i ∈ {DhTi} ∪ {D

r
Ti} \ di

9: Sample negative video dj ∈ {DhTj} ∪ {D
r
Tj}∀j 6= i

10: Update fsim with di, d∗i , dj according to Eq. 2
11: // Planning Conditioned on Video Demo
12: Require: Pre-trained video encoder fenc & video prediction model p
13: Require: Trained similarity discriminator fsim
14: Require: Human video demo di for task Ti
15: for trials 1, ..., n do
16: Sample {a1:G1:H} & get predictions {s̃g1:H} ∼ {pφ(s0, a

g
1:H)}

17: CalculateRgθ = fsim(fenc(s̃
g
1:H), fenc(di); θ)

18: Step a∗1:H which maximizes correspondingRg

B.2 ARCHITECTURE DETAILS

In Figure 7, we detail the model architecture used for DVD.

C TRAINING DETAILS

C.1 DATASET DETAILS

Depending on the experiment, we choose videos from up to 15 different human tasks for training
DVD, where each task has from 853-3170 videos 1) Closing sth, 2) Moving sth away from camera,
3) Moving sth towards camera, 4) Opening sth, 5) Push left to right, 6) Push right to left, 7) Poking
sth so lightly it doesn’t move, 8) Moving sth down, 9) Moving sth up, 10) Pulling sth from left to
right, 11) Pulling sth from right to left, 12) Pushing sth with sth, 13) Moving sth closer to sth, 14)
Plugging sth into sth, and 15) Pushing sth so that it slightly moves.
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Figure 7: DVD Architecture. We use the same video encoder architecture as Shao et al. (2020). For each 3D
convolution layer, the number of filters is denoted, and all kernels are 3× 3× 3 except for the first, which is
3× 5× 5. All conv layers have stride 1 in the temporal dimension, and conv layers 1, 3, 6, 9 and 11 have stride
2 in the spatial dimensions, the others having stride 1. All conv layers are followed by a BatchNorm3D layer
and all layers except the last FC are followed by a ReLU activation.

C.2 EXPERIMENTAL DETAILS

Domains: For the simulation domains, we use a Mujoco simulation built off the Meta-World
environments Yu et al. (2020). In simulation, the state space is the space of RGB image observations
with size [180, 120, 3]. We use a continuous action space over the linear and angular velocity of
the robot’s gripper and a discrete action space over the gripper open/close action, for a total of five
dimensions. For the robot domain, we consider a real WidowX200 robot interacting with a file
cabinet, a tissue box, a stuffed animal, and a toy kitchen set. The state space is the space of RGB
image observations with size [120, 120, 3], and the action space consists of the continuous linear
velocity of the robot’s gripper in the x and z directions as well as the gripper’s y-position, for a total
of three dimensions.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 QUALITATIVE RESULTS

In Figures 8 and 9, we provide examples of predicted trajectories and their similarity scores with
a human video demonstration given by DVD. We see that DVD highly ranks trajectories that are
completing the same task as demonstrated in the given human video.

D.2 ABLATION ON AMOUNT OF ROBOT DATA FOR TRAINING

In our main experiments, we use 120 robot demonstrations per task in the simulated environments and
80 per task in the real robot environment. While this is a manageable number of robot demonstrations,
it would be better to rely on fewer demonstrations. Hence, to better understand the role of robot
demonstrations for DVD, we ablate on the number of robot demonstrations used during training and
evaluate in the environment generalization setting.

In Figure 10, we see that the performance of DVD decreases by only a small margin when using
as few as 20 robot demonstrations per task. By leveraging the diversity in the human data, DVD
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Figure 8: Example Rankings During Planning. Examples of predicted trajectories that are ranked high and
low for the tasks of closing the drawer in test env 1 and moving the faucet to the right in the test env 3. DVD gives
high similarity scores to trajectories that complete the same task specified by the human video and low scores
to trajectories that do not, despite the large visual domain shift between the given videos and the simulation
environments.
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Figure 9: Rankings on the real robot. Examples of predicted trajectories on the WidowX200 that are ranked
high and low for the task of closing an unseen toy kitchen door. DVD gives the predicted trajectory where the
door is closed a high similarity score and the predicted trajectory where the door stays open a low similarity
score.
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Figure 10: Ablation on Amount of Robot Data Used for Training. While using 120 robot demonstrations
per task slightly benefits performance over using only 20 or 40, DVD still performs comparably with fewer robot
demos.
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is still able to complete tasks in challenging, unseen environments with little reliance on training
environment robot data, which may allow more scalable training of tasks.
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