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ABSTRACT

We propose a novel data driven approach to neural architectures based on infor-
mation flows in a Neural Connectivity Graph (NCG). This technique gives rise to
a category of neural networks that we call “Free Networks”, characterized entirely
by the edges of an acyclic uni-directional graph. Furthermore, we design a unique,
data-informed methodology to systematically prune and augment connections in
the proposed architecture during training. We show that any layered feed forward
architecture is a subset of the class of Free Networks. Therefore, we propose that
our method can produce a class of neural graphs that is a superset of any exist-
ing feed-forward networks. Moreover, we analytically examine the expressivity
of FreeNets with respect to specific function classes. Our analysis guarantees that
FreeNets with k neurons can exactly represent any polynomial of degree k. We
perform extensive experiments on this new architecture, to visualize the evolu-
tion of the neural topology over real world datasets, and showcase its performance
alongside comparable baselines.

1 INTRODUCTION

Augmenting edges using the neural 
coactivation matrix (NCAM)

Inputs

Outputs

If two neurons 
are co-activating, 
we connect 
them to provide 
shorter 
information 
flow paths

Figure 1: Connecting neurons that
capture the same information frees
up the path of their co-activation to
learn other information.

We posit that conceptualizing a network purely as a layered
sequence of neurons is rather constrictive over the search
space of all neural architectures. For example, neurons over a
single layer may have interconnections. Such a constraint is
not necessitated by the functional structure of feed-forward
and back-propagation. For these, the only requirement is
the existence of an acyclic computation graph, which is the
same as the existence of a topological order (not necessarily
unique) amongst the neurons in the network (Rigo, 2016). In
order to use remove such a constraint over neural connections
we propose a novel layer-free graph over neurons — an ar-
chitecture that we call FREENETS.

To initialize the FreeNet architecture, we start with a single
parameter: the neuron count within the network. Given such
an input, the system yields an initialization characterized by
dense interconnections amongst these neurons, adhering to
a logical computational sequence. Such a computation se-
quence is provided by a natural topological ordering amongst
the graph nodes. Indeed, the existence of a partial order (a
topological order) amongst the nodes in a graph is sufficient
to fulfill the acyclicity constraint (Bolte & Pauwels, 2020).
This acyclicity, when maintained among the graph nodes, satisfies the essential prerequisites for ex-
ecuting mathematical operations over the network consistently, including back-propagation, which
is governed by the chain rule (Dong et al., 2022; Savine, 2019; Schulman et al., 2015). We illustrate
such a graph in the Figure 3.

Although this initialization provides a favorable starting point for learning the neural topology, an
effective algorithm is requisite to evolve it further. For this we seek an associative learning strategy
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Inputs Outputs

A Two Layer view of the FreeNets Architecture

(a) Consider a FREENETS initialization with k neu-
rons. Such an initialization may be viewed as a 2 layer
neural network which is fully connected to the inputs
and outputs

A Deep Layer view of the same 
Freenets Architecture

Inputs

Outputs

(b) The FREENETS architecture may also be viewed
as consisting of k layers, where there are k neuronal
compositions before we get to the outputs. This al-
lows for a much richer function space for the outputs.

Figure 2: Different views of the FREENETS architecture, which is the initialization for our proposed
Neural Architecture search method.

from neuroscience called Hebbian learning (Wang & Orchard, 2017; Bi & Poo, 2001). Simply put,
the Hebb’s law states that “Neurons that fire together, wire together”.

This suggests firstly that neuronal connections in the brain are not static (unlike in traditional neural
networks), and further, that augmenting neuronal connections based on data may be effective. While
this provides us with a motivation for adding edges within the neural topology from the neuroscience
perspective, one may also view it from the lens of information flow. For two neurons from distinct
layers exhibiting a strong activation correlation, information is relayed between them through some
(potentially long) path within the neural network. Directly connecting these neurons could maintain
their activation patterns, thereby liberating preceding neurons in the pathway to assimilate alter-
native patterns. While such edge additions resemble residual or skip connections, they have not
been systematically explored. Analogously, studies on neuroplasticity in children indicate an initial
abundance of neural synapses that diminish over time (Mundkur, 2005). This suggests the presence
of numerous non-beneficial neuronal connections that may be transmitting spurious or non-helpful
information – underscoring the need for a systematic pruning approach.

The neuron activation patterns, as studied by Maini et al. (2023) suggests an interplay between data,
weights and neural architecture. Furthermore, several recent works have studied the dynamics of
how training impacts activation of neurons in a network (Stephenson et al., 2021; Baldock et al.,
2021; Jiang et al., 2020; Feldman & Zhang, 2020). However, these investigations have predomi-
nantly focused on individual neurons rather than information flow. This suggests a potential need to
examine the connectivity edges within a neural graph, rather than merely the vertices. To discern the
influence of neuronal edges on a network’s information flow, we propose an examination of pairwise
activation patterns.

For a specified network topology with associated weights, an example might either activate a neuron
or leave it dormant. This suggests the representation of an example in the form of a boolean vector
within the neural activation domain, denoted as ai for example i. We can study neural co-activations
for this example i through the rank-1 matrix ai · ai

⊤. Analogously, we can construct such matrices
for the entire dataset and study the co-activation patterns. Such patterns can tell us where to augment
edges between neurons in the network topology, in a manner similar to hebbian learning. Further,
by studying ai · ai

⊤, we can understand when to prune neuronal edges in the connectivity graph.

In summary, we suggest an approach to learn data-dependent neural architectures that encompasses
existing neural topologies. We start with simple neurons as building blocks, and iteratively learn a
computation graph over these neurons to construct a neural network predictor function. We now lay
out the main contributions of this work.
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1.1 OUR CONTRIBUTIONS

The main contributions in the paper are as follows: 1. We propose a novel, learnable Neural net-
work architecture that we call FREENETS. The architecture learning is based on Hebbian learning
principle from neuroscience that says neurons that fire together wire together. 2. The FREENETS
framework is capable of learning any feed-forward structure conforming to an acyclic computation
graph. Hence, we prove that our approach encompasses the capabilities of conventional feedforward
architectures. 3. Our network learns the topology and correspondingly, weights for the topology in a
manner similar to alternating minimization. 4. The updates that we perform on the neural topology
are not necessarily local. Hence, unlike other neural architecture optimization methods that search
over neighbours for a suitable update, it is possible for us to move out of local minima through
non-local updates. 5. We prove the existence of a class of functions, specifically polynomials of de-
gree k, that can be exactly represented by the FREENETS architecture using k neurons. This result
provides insight into the expressive power of FREENETS with respect to certain function classes.

2 RELATED WORK

NAS Methods: Neural Architecture Search (NAS) has emerged as a important framework in the
realm of neural architecture design. Several approaches to NAS use RL-based methodologies (You
et al., 2020; Zoph et al., 2018; Zhong et al., 2018; Zoph & Le, 2016), including Q-learning (Wu
& Jain, 2021), Monte Carlo tree search (Wang et al., 2020), and inverse reinforcement learning
(Guo et al., 2019). Liu et al. (2018) introduced differentiable methods for NAS, which has been
successfully employed by various others including Wu et al. (2019); Li et al. (2020); Shu et al.
(2022); Wang et al. (2021). Some of these methods also consider pruning (Ding et al., 2022).

Such differential methods entail some computational overhead, and several strategies have been pro-
posed to mitigate these, such as parameter sharing (Pham et al., 2018), predicting accuracy without
training (Mellor et al., 2021), by analyzing the spectrum of the neural tangent kernel (Chen et al.,
2021), accuracy proxies (Abdelfattah et al., 2021), and neural architecture transfer (Lu et al., 2021).

Though gradient-based techniques are prevalent in architecture search, evolutionary network design
presents an alternative and historical paradigm in this domain (Stanley & Miikkulainen, 2002). Sev-
eral recent works have successfully deployed evolutionary strategies including (Real et al., 2017;
2019; Xie & Yuille, 2017). Some noteworthy evolutionary strategies include predictor assisted
strategies Peng et al. (2022) covariance based strategies (Sinha & Chen, 2023) and biologically
inspired strategies (Amato et al., 2019).

NAS Search Space: A neural architecture can be conceptualized as a macro structure, underpinned
by a leitmotif of cells. Many NAS studies, such as Liu et al. (2018); Zoph et al. (2018); Elsken
et al. (2019); Cai et al. (2018), have employed a search space centered around cell design. Liu et al.
(2017) consider the search space to be the macro-architecture over these cells. Some studies, like
(Gao et al., 2019), focus on task-specific architectures such as graph neural networks.

Our work focuses on the macro architecture over neurons, which are the motifs we consider, and is
task-agnostic.

Learning Dynamics in neural networks: The learning dynamics of neural networks and their
interplay with data has been considered in several recent works on model interpretability, including
on the long tail of data (Feldman, 2020; Feldman & Zhang, 2020), on the learnability of examples
(Frankle et al., 2020) and on the simplicity bias (Shah et al., 2020) of neural networks. Localization
of memory in neural architectures has been studied by (Baldock et al., 2021; Stephenson et al.,
2021). On the other hand, Maini et al. (2023) propose than memorization of examples by neural
networks can not be localized to a few layers, but is often determined by a small set of neurons that
may be distributed across layers. Sinitsin et al. (2020) consider modifications to the architecture in
order to improve long tail efficiency.

3 METHODOLOGY
In this section, we describe the method through which FREENETS is initialized and evolves.

The FREENETS architecture is a dense computation graph over the input. We ensure no cycles by
requiring that the initial adjacency matrix for this graph be lower triangular. Note that we do not
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allow for cycles or self-loops, and hence the diagonal entries of such an adjacency matrix are 0.
In fact, we will show that the FREENETS architecture is the most complex function one can learn
with k neurons (or k computational nodes). This is a good initialization from which to learn about
inter-neuronal interactions as every neuron is free to interact with every other neuron (through the
weights) for all points in the dataset.

3.1 MOTIVATION FOR THE FREENETS ARCHITECTURE

Neural Connectivity Graph (NCG) 
for initialization of FreeNets

Neurons

0  0  0  0 

0 

0  0  0 

0  0  0 0  0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1  1 

Figure 3: The adjacency matrix for
FREENETS initialization is lower
triangular, dense and cycle-free.

Traditional architectures have prematurely optimized for the
number of weights in the network by handcrafting layer-
design. Popular architectures use decreasing layer widths as
we move from the inputs to the outputs. Other architectures
use an encoder-decoder model which encodes the inputs into
a smaller representation space, before decoding these into an
output. But we argue that such connections are pre-mature
before looking at the data. Indeed, synaptic plasticity is high-
est at birth and decreases with time Cutler & Mattson (2006).
Yet, cognitive function goes up with time, as the same neu-
rons evolve to a sparser connectivity. This neuroscience mo-
tivation indicates that beyond requiring a robust initialization,
there is also a need for an effective data-dependent learning
method to evolve the neuronal topology.

We study this question in the next three sub-sections.

3.2 “NEURONS THAT
ACTIVATE TOGETHER, SHOULD BE WIRED TOGETHER”

While Hebbian learning emphasizes enhancing neuronal connection weights based on synchronous
activations, contemporary neural models predominantly rely on backpropagation for weight adjust-
ment. We suggest that both the perspectives are pertinent, but pertain to distinct variables. A neural
function encompasses two discrete variable sets: the edges spanning the neurons and the associated
weights for the selected edges. Back propagation helps to optimize the set of weights associated
with a chosen set of edges in a neural topology. On the other hand, Hebbian learning may be used
to adjust this edge set. Indeed, one may seek to optimize over these two distinct objectives, in a
manner similar to alternating minimization.

We introduce here the notation of a neural connectivity graph NCG, which specifies the edge set
between k neurons in the network as a binary adjacency matrix. Note that NCG ∈ {0, 1}k×k.

We can also look at augmenting interneuronal connections from an information flow perspective.
Consider two neurons in far away layers that are disconnected, but are firing together for certain
examples: see Figure 1. There exists some path where information is flowing to both of these
neurons (for the said examples). Such a path may be long, and may employ many other neurons.
By directly connecting the neuron that is computed first to the later neuron, we may shorten the
information flow path. Further, we may use the earlier path to capture other information, thereby
expanding the information capacity of the network.

3.3 PRUNING NEURONAL CONNECTIONS

While we have looked at interneuronal edge augmentation through hebbian learning, we might ask:
“is there any way to prune edges in the NCG”? Consider neurons that are mostly inactive together.
Such neurons may co-activate for a small set of examples, and then the information may be passed
deeper into the network. But for this small subset of examples, one may argue that since they have
already been identified (by the first neuron), this information can be directly passed to the deeper
layers, or to the outputs. Such a method suggests that depth in a network is valuable, and hence it
should be used for examples occurring more commonly. Sparse examples may simply be memorised
by early neurons (and passed to outputs). Hence we suggest that neurons that are jointly inactive but
share an edge between them, should have the edge pruned.

Now we look at how to construct statistics regarding such co-activation in the next subsection.
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Neuron 1
Activation

Neuron 2
Activation

1 − 2
Connectivity

Update to
Perform Explanation

0 0 0 Do not augment They are not connected and not firing together,
so nothing to do

0 0 1 Prune 1 − 2 edge Both are inactive neurons. In the backward pass, the weight
cannot be updated. Hence prune.

0 1 0 Do not augment Need not connect. Neuron 2 is being activated by other
neurons.

0 1 1 Do not prune Weights can be updated on back-prop.

1 0 0 Do not augment Neuron 1 may be activating other neurons. Further, an added
edge-weight may not be updated during back-propagation.

1 0 1 Do not prune They are connected, and not firing together. Yet the first
neuron may be inactivating the second neuron.

1 1 0 Add 1 − 2 edge We can add an edge to shorten the information flow path.
1 1 1 Do not prune They are connected and firing together, so nothing to do.

Table 1: Summary of NCG updates based on NCAM and NCIM. Assume that neuron 1 comes before
neuron 2 in the forward computation graph.

3.4 CONSTRUCTION OF THE NEURAL CO-ACTIVATION AND CO-INACTIVATION MATRICES

We introduce some notation that will aid in understanding the construction of the neural co-activation
matrix NCAM, and neural co-inactivation matrix NCIM. Let the data D to the neural network come
in the form of samples from a space X × Y , such that D := {(x1, y1), . . . , (xn, yn)} where each
(xi, yi) ∈ X × Y . Let us consider a neural graph G consisting of k neurons and ℓ edges, with
number of weights ℓ. Let NNG : X → Y be the estimator of the function mapping X and Y . NNG is
parameterized with ℓ weights {w1, . . . , wℓ} where wi ∈ R for all i ∈ [ℓ].

Let w∗ = argminw∈Rℓ ∥y − NNG(x)∥22 be the optimal set of weights. Now we can define NN∗
G as

the neural function parameterized by an optimal set of weights. Call NA∗ : X → {0, 1}k the neural
activation function, where NA∗ is a function of NNG and w∗. For ease of notation, we assume we are
always working with w∗ and write NA to be the neural activation function.

Now we do a forward pass over the data and record activations of the k neurons. Let S ∈
{0, 1}k×n := {NA∗(xi) for all xi ∈ D}. Now we are ready to define the NCAM matrix as
NCAM := 1/n · S · S⊤. Note that the computation of NCAM can be parallelized over the exam-
ples as follows. We note: NCAM = 1/n ·

∑
i∈[n] NA(xi) · NA(xi)

⊤. Analogously, if S := ¬S, then

NCIM := 1/n·S·S⊤
. Therefore, NCIM = 1/n·

∑
i∈[n] NA(xi)·NA(xi)

⊤
where NA(xi) := ¬NA(xi).

Now that we have recorded the neural co-activations, we are in a position to consider what updates
to make to the neural connectivity graph NCG based on these. We can threshold the NCAM and NCIM
values at a certain preset values. For each (i, j) pair of neurons we define them to be co-activating
if NCAM(i, j) > 1 − ε. Similarly, they are said to be jointly inactive if NCIM(i, j) > 1 − ε. Based
on these values, we propose an update table to the neural connectivity graph in Table 1. In a matrix
form, these may be written as Aug := (NCAM > 1− ε)∧¬G and Prune := (NCIM > 1− ε)∧G,
where Aug,Prune are the augmenting and pruning indicator matrices respectively. This defines
our update equation to be G′ = (G ∧ ¬Prune) ∨ (Aug ∧ ¬Prune). We expand this reasoning
into the Algorithms below.

4 ALGORITHM AND THEORY

We now propose the algorithms pertaining to FREENETS. Algorithm 1, takes as input a dataset D
and a certain number of neurons k. It calls Algorithm 2 for updates to the neural connectivity graph.

4.1 MAIN THEOREM

We now state a theorem regarding the expressive power of FREENETS.

Theorem 1. Let D ⊆ R be a compact domain, and let Pk denote the set of all univariate polyno-
mials of degree at most k over D. Then the FREENETS architecture with k neurons and a squared
ReLU activation function σ(x) = (max{0, x})2 can exactly represent any polynomial p ∈ Pk over
D.
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Algorithm 1 Find best FREENETS architecture using data
1: Input:

(1) Data D := {(x1, y1), . . . , (xn, yn)} where each (xi, yi) ∈ X × Y .
(2) Number of neurons: k.

2: Initialize G := FREENETS(k) for k neurons
3: while G does not converge do
4: G := FREEEVOLVE(D,G)
5: end while
6: return G

Proof. Our goal is to show that any polynomial p(x) of degree at most k can be exactly represented
by an FREENETS network with k neurons using the squared ReLU activation function.

CONSTRUCTION: Consider the polynomial p(x) =
∑k

d=0 adx
d.

We will construct neurons that compute monomials xd for d = 1, 2, . . . , k and then combine them
linearly to form p(x).

GENERATING MONOMIALS: We assume x ≥ 0 for all x ∈ D (if not, we can shift x appropriately
using the biases). The squared ReLU activation function is defined as σ(x) = x2 for x ≥ 0 and zero
otherwise. Let h0 = x. We will construct neurons h1, h2, . . . , hk such that hd = x2d .

Base Case: For d = 1, h1 = σ(h0) = σ(x) = x2.

Inductive Step: Assume hd−1 = x2d−1

. Then,

hd = σ(hd−1) = σ(x2d−1

) =
(
x2d−1

)2

= x2d .

Thus, we can generate monomials whose degrees are powers of 2 up to 2k.

GENERATING INTERMEDIATE DEGREES: To obtain monomials of degrees that are not powers of
2, we can utilize linear combinations of previously computed monomials. Since we can add outputs
of neurons (due to the fully connected nature of FREENETS), we can exploit the binomial expansion:

σ(ahi + bhj) = (ahi + bhj)
2
= a2h2

i + 2abhihj + b2h2
j .

By appropriately choosing coefficients a and b, we can produce cross terms hihj , which correspond
to monomials of degrees deg(hi) + deg(hj).

CONSTRUCTING THE POLYNOMIAL: Once all monomials up to degree k are generated, the output
layer combines them linearly to form p(x):

y =

k∑
d=1

vdhd + c,

where vd are the coefficients adjusted to match ad in p(x), and c = a0 is the constant term.
CONCLUSION: Therefore, the FREENETS network with k neurons can represent any polynomial
p(x) of degree at most k exactly over D.

We now make a simple claim regarding pruning and augmentation in the network.

Claim 4.1. Consider any consistent1 neural topology over n neurons. Let G be the neural graph
corresponding to this architecture. Further, let Hn to be class of neural topologies over n neurons
reachable by Algorithm 1 for some dataset. Then G ∈ Hn.

6



Algorithm 2 FREEEVOLVE: Update Algorithm for FREENETS using Neural Coactivations
1: Input:

(1) Data D := {(x1, y1), . . . , (xn, yn)} where each (xi, yi) ∈ X × Y .
(2) A neural topology G consisting of k neurons and ℓ edges.

2: Train the weights of edges in G until convergence.
i.e. Let w∗ = argminw∈Rℓ ∥y − NNG(x)∥22 where NNG : X → Y is the neural network function over G.
Call NA : X → {0, 1}k the Neural activation function, where NA is a function of NNG and w∗.

3: Do a forward pass over the data and record activations of the k neurons.
Let S ∈ {0, 1}k×n := {NA(xi) for all xi ∈ D}

4: Compute NCAM := 1
n
S · S⊤ and NCIM := 1

n
S · S⊤

where S := ¬S.
These are easily computed as NCAM = 1

n

∑
i∈[n] NA(xi) · NA(xi)

⊤ and

NCIM = 1
n

∑
i∈[n] NA(xi) · NA(xi)

⊤
where NA(xi) := ¬NA(xi)

5: Compute the augmenting and pruning matrices.
Aug := (NCAM > 1− ε) ∧ ¬G
Prune := (NCIM > 1− ε) ∧ G

6: Update the graph G.
G′ = (G ∧ ¬Prune) ∨ (Aug ∧ ¬Prune)

7: return G′

The proof of this claim lies in the fact that every neural architecture is a subset of the edges in
FREENETS: See Figure 3. This shows that any layered feed-forward architecture is reachable by
Algorithm 1 starting from FREENETS. This leads us to the question of what we can say about the
fixed points of the algorithm. We now show some properties of this fixed point.

Theorem 2. Let G∗ = ⟨{1, . . . , n},E⟩ be the output of Algorithm 1 where E is the set of edges in
G∗. Then Aug ∧ ¬Prune ⊆ E

Proof Sketch. The proof of this claim lies in the characterization of the fixed point. If there are any
edges in Aug ∧ ¬Prune, then such edges are added to G∗, and hence the graph is updated by
Algorithm 2. Therefore at convergence, Aug ∧ ¬Prune is a sub-graph of G∗.

5 EXPERIMENTS

Datasets and Models: We perform experiments on 3 Image Classification datasets, MNIST (Deng,
2012), FashionMNIST (Xiao et al., 2017) and a truncated version of Extended-MNIST (Cohen
et al., 2017). We convert the images into pixel vectors to train the proposed architecture as well
as the baselines. To evaluate FREENETS, we compare them with fully connected neural networks
(FCNNs). For a model with k neurons, we map the data to k dimensions using a fully connected
layer. In case of FREENETS, we have interneuronal connections as given by the neural connectivity
graph. Finally we convert these k activations, to the class probabilities using a fully connected layer.
To ensure fair comparison between FREENETS and FCNN, we add extra neurons to FCNN if the
number of parameters defer substantially.

Model and Training setup: The FREENETS architectures consists of 3 essential components: an
encoder – which is a linear map, the FREENET connections, and a decoder – also a linear map. The
encoder maps the input to the FREENET and the decoder maps the FREENET activations into the
output logits. The weights and the neural connectivity graph help us compute the activation values of
the FREENET for any given input. We use these activation values to calculate S in the FREEEVOLVE
algorithm and modify the architecture. The activations are then decoded, again using a linear map,
to generate class probabilities. To allow efficient modification of architecture, we store the weights
of all connections during training, and mask the weights that are pruned at a particular step. During
inference, we propose to store only the weights required for the computation, thereby reducing the
FLOPS for computation.

All weight matrices were initialized with a Xavier Initializer (Glorot & Bengio, 2010) while the
biases were drawn from a uniform distribution with fixed support.

1a consistent neural topology which is causal and allows backpropagation, has an acyclic computation graph
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Figure 4: Variation of Validation accuracy on FashionMNIST for architectures with (i) 40 Neurons (ii) 90
Neurons. The Training curve of FREEEVOLVE approximately stays above the FCNN curve.

Model Training In the Figure 4, we compare the proposed architecture with FCNNs in terms of
training convergence. We generally find the best FREENETS outperform the best FCNN for the same
number of neurons, thereby suggesting the superior connectivity of neurons in our architecture.

Variation of Accuracy and number of neurons Figure 5 plots the accuracy with number of neurons
in the network for two tasks, viz. FashionMNIST and MNIST. We observe that for FashionMNIST
dataset, the performance gap between FREENETS and FCNN increases by adding more neurons to
the model. We observe that for neural networks with sufficient representational capactiy, the MNIST
dataset is straightforward to process. Hence, different approaches converge to similaries accuracies
on this task. Consequently, we can observe our model improvements more distinctly on the harder
datasets – viz. FashionMNIST and EMNIST.
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Figure 5: Variation of Accuracy with Number of neurons for (i) FashionMNIST (ii) MNIST

Evolution of Neural co-activations during Training: To examine the evolution of different com-
ponents of the algorithm, we study the variation of number of weights pruned and augmented
with the number of training steps. The plot in Figure 6, clearly suggests the convergence of the
FREEEVOLVE algorithm. We observe that at the start of the training, a significant portion of model
weights are pruned. To offset that effect, the augmenting matrix acts after the pruning step to correct
the model. Both these matrices, complement each other, in order to find the optimal architecture for
FREENETS. Near the end of training – when the model has converged – the pruning and augmenting
matrices stop influencing the NCG and hence no more weights are added or removed. At this point,
the model can be optimized (for optimal weights) through gradient based algorithms.
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Dataset Model 30 35 40 45 50 60 70 80 90 100

MNIST FREEEVOLVE 95.63 96.03 96.37 96.51 96.65 96.92 97.26 97.25 97.4 97.34
FCNN 95.74 95.72 96.14 96.26 96.54 97.07 97.02 97.2 97.23 97.34

FMNIST FREEEVOLVE 87.59 87.1 87.92 87.81 88.07 88.74 88.66 89.2 88.95 88.89
FCNN 86.94 86.87 87.15 87.24 87.5 87.75 87.96 88.38 88.14 88.23

EMNIST FREEEVOLVE 78.77 80.75 81.52 81.38 82.58 83.33 84.27 84.23 85.29 85.51
FCNN 78.55 79.97 80.63 81.92 81.7 82.63 84.07 84.12 84.6 84.98

Table 2: In the above table, we detail the accuracy of various models with the number of neurons in
the model, segmented across the three datasets.

Figure 6: Per-iteration Prune(Green)/Add(Orange) weight count for the model with 30 Neurons (left) and 100
neurons (right).

Prune Matrix and Augment Matrix As the algorithm progresses, we expect the values of the
pruning and addition matrices to evolve to higher values. To experimentally verify this hypothesis,
we run our training at ε = 0.25 and find the kernel density estimates (KDE) for the NCG matrix,
and how they evolve. Our plot in Figure 7 suggests a significant shift in kernel density to higher
values in the matrices through the neural connectivity evolution as given in Algorithm 1.
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Figure 7: KDE Plots of Prune and Augment matrices at the start and end of the training schedule. The values
of the Prune matrix reduce, which implies that the constraints posed by the FREEEVOLVE algorithm are more
easily satisfied as the training progresses. The same can be concluded about the Augment matrix

Through this experiment, we are able to conclude that the model is able to adapt to the pruning and
augmenting of connections, thereby producing the activations to satisfy our co-activation threshold,
ε. The prune matrix, consists of pairs of neurons that are jointly inactive, and the augment matrix
consists of pairs that are co-activating. By observing that the average density in the prune matrix
is shifting (sharply) towards the left, and the density in the add matrix is moving towards higher
values, we suggest that the evolution of FREENETS successfully enhances the information flow in
the network.
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6 CONCLUSION AND FUTURE WORK

In summary, we have proposed a neural architecture search method that we initialize through a
graph over individual neurons. The neural architecture evolves through the method of Neural Co-
Activation and Neural Co-inactivation (NCAM and NCIM respectively), which we use to augment
and prune neuronal edges. Our method can achieve non-local updates to the neural architecture,
which may help it to evade local minima. We contend that our framework embodies a macro neural
architecture search approach, which may be adaptable to include convolutional cells or RNN blocks
based on task requirements. Thus, we assert that the FREENETS framework offers the versatility to
accommodate a diverse range of neural functionalities in a neuron efficient manner.
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Figure 8: Number of connections i.e. weights in the network at the start and end of training steps for various
Neuron sizes (i) FashionMNIST (ii) MNIST

A COMPARISON OF INITIAL AND FINAL NUMBER OF WEIGHTS WITH
NUMBER OF NEURONS

In this section, we analyze the evolution of neural connections during training by comparing the
number of connections between neurons at the beginning and end of the training process for varying
neuron sizes. The plots in Figure 8 illustrate this comparison for two datasets: FashionMNIST and
MNIST.

The graphs show that as the number of neurons increases, there is a corresponding increase in the
total number of connections in the network. Initially, all connections are established, represented by
the green curve (Initial Weights), which denotes the total number of weights before training begins.
During training, the network undergoes structural changes where some connections are pruned,
particularly those deemed less significant for the model’s performance. This pruning process leads
to the final state, represented by the orange curve (Final Weights), which shows a reduction in the
total number of active connections.

The consistent gap between the initial and final weight curves suggests that pruning is an inherent
aspect of the training dynamics, especially as the model grows in complexity with larger neuron
sizes. This pruning helps in reducing model complexity, potentially leading to improved generaliza-
tion and reduced computational costs without significantly compromising performance. The larger
the network, the more potential there is for pruning, as seen by the increasing distance between the
initial and final weight counts at higher neuron sizes.
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Figure 9: Number of connections i.e. weights in the network with training steps for (i) 100 Neurons (ii) 70
Neurons (iii) 30 Neurons
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B COMPARISON OF INITIAL AND FINAL NUMBER OF WEIGHTS WITH
NUMBER OF TRAINING STEPS

Figure 9 illustrates the impact of the FREEEVOLVE algorithm on the FREENETS architecture across
different neuron sizes (100, 70, and 30 neurons). The plots compare the number of active connec-
tions between neurons throughout the training steps with the maximum possible connections within
the network. At the beginning of the training, there is a noticeable drop in the number of active
connections. This initial reduction can be attributed to overpruning caused by spurious activations,
which occur due to the limited representation of the dataset in the early training phase. As the train-
ing progresses, the activations become a better indicator of the samples in the dataset, leading to
stabilization in the number of active connections, as shown by the green curves.

The stabilization phase reflects the FREEEVOLVE algorithm’s capacity to adapt more accurately to
the dataset as a whole, fine-tuning the network architecture based on activations which are data
driven. Relatively larger models, such as the ones with 100 neurons, experience a more substan-
tial initial pruning but gradually stabilize, showcasing the adaptive nature of FREEEVOLVE. These
observations highlight the algorithm’s effectiveness in dynamically pruning unnecessary connec-
tions while maintaining those that contribute significantly to the model’s performance, making the
FREENETS architecture more efficient and robust over time.

14


	Introduction
	Our Contributions

	Related Work
	Methodology
	Motivation for the FreeNets architecture
	``Neurons that activate together, should be wired together''
	Pruning Neuronal Connections
	Construction of the Neural Co-activation and co-inactivation matrices

	Algorithm and Theory
	Main Theorem

	Experiments
	Conclusion and Future Work
	Comparison of Initial and Final number of Weights with number of neurons
	Comparison of Initial and Final number of Weights with number of training steps

