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Abstract
We present Mechanistic PDE Networks – a model
for discovery of governing partial differential
equations from data. Mechanistic PDE Net-
works represent spatiotemporal data as space-
time dependent linear partial differential equa-
tions in neural network hidden representations.
The represented PDEs are then solved and de-
coded for specific tasks. The learned PDE rep-
resentations naturally express the spatiotempo-
ral dynamics in data in neural network hidden
space, enabling increased power for dynamical
modeling. Solving the PDE representations in a
compute and memory-efficient way, however, is a
significant challenge. We develop a native, GPU-
capable, parallel, sparse, and differentiable multi-
grid solver specialized for linear partial differen-
tial equations that acts as a module in Mechanistic
PDE Networks. Leveraging the PDE solver, we
propose a discovery architecture that can discover
nonlinear PDEs in complex settings while also be-
ing robust to noise. We validate PDE discovery on
a number of PDEs, including reaction-diffusion
and Navier-Stokes equations. Source code will be
made available at: https://github.com/
alpz/mech-nn-discovery-pde

1. Introduction
Partial differential equations (PDEs) enjoy widespread use
as interpretable, analytical models of spatio-temporal dy-
namics in all areas of science (Temam, 2024; Turing, 1952).
The development of PDE models still, however, is largely a
manual task that is performed by domain experts examining
experimental data. The modern explosion of experimental
and simulation data has underscored the need for data-driven
machine learning models for discovery of governing equa-

1Institute of Science and Technology, Klosterneuburg, Aus-
tria 2Informatics Institute, University of Amsterdam, Amster-
dam, The Netherlands. Correspondence to: Adeel Pervez
<Adeel.Pervez@ist.ac.at>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

tions (Brunton et al., 2020). In spite of progress (Brunton
et al., 2016; Raissi et al., 2019; d’Ascoli et al., 2023), the
development of machine learning discovery models that
are flexible, handle complex nonlinear data and account for
missing physics, while being robust to noise and missing
data, is very much an open problem.

A recent discovery architecture for ordinary differential
equations (ODEs) was demonstrated by Mechanistic Neural
Networks (MechNN) (Pervez et al., 2024), enabling a flexi-
ble and expressive network design for modeling explicit, in-
terpretable nonlinear ODEs. MechNNs embed a specialized,
parallel ODE solver in the network, allowing explicit differ-
ential equation representations in neural networks, which
can be employed for ODE discovery and prediction, both
relevant in applications including general time series and
numerical simulations (Pervez et al., 2024) and in climate
science (Chen et al., 2025; Yao et al., 2024).

In this paper we focus on governing equation discovery and
demonstrate Mechanistic Neural Networks for discovery
of partial differential equations from data. We develop a
PDE solver, NeuRLP-PDE, for parallel native differentiable
solution of linear partial differential equations over multiple
spatial dimensions (in addition to the time dimension). In
contrast to ODEs, scaling is significantly more difficult in
PDE solving, with memory requirements increasing expo-
nentially with dimension and quickly becoming excessive
even for mid-sized grids. With NeuRLP-PDE, sparse com-
putation in all phases of the PDE solver ensures that the
memory requirement of the solver over batches of PDEs
remains limited for sizeable grids. We build the solver using
constrained optimization and a sparse multigrid precondi-
tioned iterative linear solver (Saad, 2003) for solving the
large and sparse linear systems that appear in the constrained
optimization. The NeuRLP-PDE solver is then incorporated
into the PDE discovery architecture enabling the learning
of governing PDEs directly from data.

The MechNN-PDE discovery architecture couples the
NeuRLP-PDE solver with deep neural networks that pa-
rameterize partial differential equations. Two natural con-
straints on discovered differential equations are that they
should be 1) simple: i.e., built from elementary functions
and 2) concise: containing as few terms as possible. The
MechNN-PDE architecture enables simplicity and concise-
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ness by building PDE expressions using a family of elemen-
tary basis functions, each with a learnable parameter. Since
elementary functions are restrictive, for expressive model-
ing the basis functions inputs are parameterized by neural
networks. The built PDE is then solved by NeuRLP-PDE
to obtain the solution u. Loss terms ensure consistency so
that the parameterized basis functions equal the true basis
functions at convergence. A sparsity loss ensures that the
discovered expressions are concise and the entire pipeline is
optimized by gradient descent.

The proposed synthesis of neural networks and PDEs for
discovery has the following advantages.

• Derivatives never have to be directly on data and are
only computed internally by the solver.

• PDEs can contain arbitrary differentiable functions,
going beyond generalized linear functions.

• Numerical solving together with neural networks pro-
vide robustness to noise and missing data.

• Memory-efficient batch-parallel PDE solving on GPU
with a sparse multigrid-preconditioned iterative solver.

2. Mechanistic PDE Networks
A Mechanistic PDE Network consists of a mechanis-
tic encoder, fEnc, a differentiable solver, NeuRLP-PDE,
specialized for linear PDEs, and an optional decoder,
fDec. The input to the encoder are spatio-temporal data
over time and one or more spatial dimensions, denoted
udata(t, x1, x2, . . . , xnd

). Given input udata the mechanistic
encoder produces a set, of predefined size neq , of linear par-
tial differential equations which we denote as {Pui

}i∈[neq ]

(using the notation [n] := {1, . . . , n}). Each Pui is a linear
PDE for a spatio-temporal function ui(t, x1, x2, . . .).

All functions ui are defined over a domain D which we as-
sume to be a Cartesian grid, i.e., D = T ×X1×X2 . . .Xnd

,
where T , Xi are intervals. For conciseness we collect
the partial derivative indices appearing in PDE Pui

into
a multi-index set denoted M. As an example M =
{t, x1, x2, x1x2}, {um}m∈M denotes the set of partial
derivatives {ut, ux1 , ux2 , ux1x2}. We also use the empty
index ϕ for u, i.e., uϕ := u. For simplicity of exposition
we assume a set with a single PDE denoted Pu for a func-
tion u(t, x) over a spatial dimensions x := (x1, . . . , xnd

)
with t ∈ [0, tf ] and xi ∈ [0, xi,f ].

With these simplifications Pu has the following general
form:

Pu :
∑

m∈M
cm(t, x;udata)um = b(t, x;udata), (1)

where M is a multi-index set, um are partial derivatives and
cm, b are time-space varying coefficients over D. Given a

set B of boundary coordinates we complete the PDE spec-
ification by specifying the initial and boundary conditions
with a function ω defined over B as

u(i) = ω(i), ∀i ∈ B,
In general mechanistic PDE networks allow flexibility in the
specification of initial and boundary conditions which may
be of the Dirichlet (i.e., boundary conditions on u), Neu-
mann (i.e., boundary conditions on partial derivatives) or
mixed types and may be arbitrary linear constraints (subject
to well-posedness). The time and space varying coefficients
allow the PDE representations of mechanistic PDE networks
to be very expressive and allow for modeling of complex
dynamical phenomena. In this paper we assume that PDE
representations are well-posed and that the PDEs together
with the boundary conditions have a unique solution.

Discretization. To implement the PDE in a neural network
we discretize the rectangular domain D over time and space.
We assume one time and one spatial dimension. A given
time interval [0, tf ] is discretized into nt intervals [ti, ti+1]
with step size sti = ti+1 − ti. Similarly a spatial interval
[0, xi,f ] is discretized into nxi

intervals [xi,k, xi,k+1] with
steps sxi,k

.

All functions cm, b, ω produced by the mechanistic encoder
are now assumed to be defined over the discretized spatio-
temporal grid. With mechanistic networks the steps sizes
can also learned and are then produced by the mechanistic
encoder. All together the mechanistic encoder parameterizes
the PDE by producing the coefficients, boundary parameters
and the step sizes defined over the spatio-temporal grid for
a given multi-index set M.

[{cm}m∈M, b, ω, {sti}, {sxi}] = fEnc(udata) (2)

Next the generated PDE is fed to the NeuRLP-PDE solver
which produces the solution and all partial derivatives spec-
ified in M as {um}m∈M. The output of the solver is fed
to a task-specific decoder or directly used in a loss. All
aspects of the PDE model in equation 1 including coeffi-
cients, initial and boundary conditions and step sizes are
differentiable.

Nonlinear PDEs. The PDE representations generated by
MechNN-PDE are linear, time-space varying. However, the
model is not restricted to learning linear PDEs. Nonlinear
PDEs can be represented by using nonlinear basis functions,
either directly over the input data udata or by learning non-
linear functions of u. We illustrate this further in the section
on discovery.

3. Linear PDE Solving With Differentiable
Optimization

The workhorse of mechanistic PDE networks is NeuRLP-
PDE – a specialized, parallel and differentiable solver for
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linear PDEs. NeuRLP-PDE solves linear PDEs, with par-
tial derivatives of arbitrary order, over a discretized spatio-
temporal grid by reducing PDE solution to a relaxed differ-
entiable constrained optimization (Young, 1961).

Briefly, the constrained problem specifies that 1) the dis-
cretized PDE holds over all points of the grid, 2) that the
initial or boundary conditions hold and 3) that the computed
solution is a smooth function over the grid, and the objec-
tive is to minimize approximation error. We then solve a
relaxation of the optimization problem so that we can dif-
ferentiate through the PDE solution to the PDE data using
techniques from differentiable optimization.

To fully specify the constrained optimization, we specify the
optimization variables and constraints. We consider the dis-
cretized Cartesian grid with t and x discretization {ti}i∈[nt],
{xj}j∈[nx]. Let I and B denote the set of grid and boundary
indices, respectively. We also use the shorthand nextc(i)
and prevc(i) where i ∈ I and c is a dimension for the next
and previous adjacent grid points to point i for coordinate c.

Variables. We are given a multi-index set M with ϕ ∈
M. We create variables uϕ,i, i ∈ I for the solution u at
each grid point. We also create variables for each partial
derivative for each i ∈ I, obtaining variables denoted ut,i

and uxx,i for partial derivatives ut and uxx and similarly for
all other partial derivatives from M. We denote the number
of optimization variables by nv .

The solver has three types of constraints: equation, smooth-
ness and initial and boundary constraints.

Equation constraints specify that the left and right hand
sides of the given PDE are equal over all grid points.∑

m∈M
cm,ium,i = bi, ∀i ∈ I (3)

Initial and boundary constraints are specified for points in B,
where the form of the constraint can depend on the problem.
Here we give Dirichlet-type conditions which specify the
values of u at points in B.

uϕ,i = ωi, ∀i ∈ B (4)

We use central difference constraints to compute partial
derivatives. We illustrate for a 3 point central difference
approximation for a second order partial derivative ut, with
derivative multi-index m.

s2tum,i = uprev(i) − 2ui + unext(i) ∀i ∈ I \ B (5)
In practice we use 5 point central differences and use for-
ward, backward finite differences at the edges of the grid.

Forward and backward smoothness constraints specify that
the solution u is smooth over the grid in each dimension
in both directions. This is achieved by computing a 1D
Taylor expansion at each grid point for each dimension and
approximating the u value at the next and previous adjacent

grids point for that dimension. The constraint specifies that
the Taylor approximation and the solution variables at the
next point should be close. We illustrate with a second-order
Taylor approximation over the t dimension.

uϕ,i + stum1,i +
1

2
s2tum2,i = unextt(i) (6)

uϕ,i − stum1,i +
1

2
s2tum2,i = uprevt(i), (7)

where m1,m2 are multi-indices corresponding to the first
and second partial derivatives of t.

We collect the variables um,i, m ∈ M, i ∈ I into a vector
z. We can then write the constraints in matrix form as

Az = d, (8)
with A ∈ Rnc×nv being the coefficient matrix with nc

constraints, and d is the vector of constant coefficients.

We can solve eq (8) in a least squares sense by solving the
corresponding normal equations.

A⊺Az = A⊺d. (9)
Solving these equations gives a solution z of the optimiza-
tion problem and thus of the PDE. However, we also require
the dual variables for the differentiating through the least
squares optimization. For this we consider the following
saddle-point formulation of least squares (Saad, 2003).[

I A
A⊺ 0

] [
λ∗

z∗

]
=

[
d
0

]
(10)

where λ are the dual variables. This formulation can also
be seen as the KKT constraints of the convex quadratic pro-
gramming formulation of least-squares. Given the saddle-
point formulation we can apply techniques from differen-
tiable optimization for differentiating through the solution of
constrained optimization problems (Amos & Kolter, 2017).

Forward pass. In the forward pass we solve the normal
equations and compute the dual variables from 10 to obtain
z∗ and λ∗.

Backward pass. Give scalar loss l we consider the gradient,
gz := ∂z∗ l, relative to z∗. We require the gradient of l
relative to the matrix A and vector d which contain the
optimization data. Following Amos & Kolter (2017), we can
achieve this by solving the following saddle-point system:[

I A
A⊺ 0

] [
dλ
dz

]
=

[
0

−gz

]
(11)

The gradient of the loss l relative to A and d is ∂Al =
dλz

∗⊺ + λ∗d⊺z and ∂dl = −dλ (Amos & Kolter, 2017).

Scaling PDE Solving. The linear systems in equations (10),
(11), (9) can become very large with increasing dimension
of the PDEs resulting in very large grids over which the
PDE is defined. As an example, for a PDE defined over
32x32 grids we have 5120 variables and 9212 constraints,
requiring 377 MB of double precision dense storage. How-
ever for 32x32x32 (220k variables and 420k constraints)
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we would need 780GB and for 64x64x64 we would need
50k GB. For such large grids the linear systems cannot be
solved by dense methods. For the experiments we solve 1D
PDEs with a dense solver since the memory requirement is
reasonably bounded for small grids and batch sizes. How-
ever, for 2D or higher PDEs with midsize grids (say, 32 to
64 per dimension), the memory required for dense solvers
is too great for GPU storage. The matrices, however, are
highly sparse with 99.9% zero values for a 32x32 matrix and
99.999% zeros for a 64x64x64 matrix. For such problems
we develop a multigrid preconditioner for use with a sparse
iterative solver.

3.1. An Iterative Sparse Multigrid Solver

To make PDE solving feasible for more than two dimensions
(including time) and for large grids, we build an iterative
sparse solver for solving the normal equations. We use the
FGMRES linear solver, the flexible variant of the Krylov-
subspace linear solver GMRES (Saad & Schultz, 1986), as
the base linear solver. As is well-known from numerical
linear algebra, standalone iterative solvers can lead to poor
solutions for complex problems and require precondition-
ing for accurate solution. General purpose preconditioning
methods such as incomplete LU or Cholesky factorization
are not feasible for the large systems we encounter due to
their high memory use and lack of GPU implementations.
Instead, we build a multigrid V-cycle preconditioner for
FGMRES. We briefly describe the multigrid V-cycle here
and in Algorithm 1 in the appendix. More details on the
multigrid methods and sparse iterative solvers can be found
in Saad (2003) and Briggs et al. (2000).

Multigrid V-cycle. The multigrid V-cycle approach solves
a linear system for a PDE on a succession of fine to coarse
grids. Given a square linear system Mx = b with solution
x∗ and current solution x0 we can compute the error as
ϵ = x∗−x0 and residual as r0 = b−Mx0. We note that we
can rewrite the linear system as Mϵ0 = r0, where we wish
to solve for the error ϵ0. Given an estimate for ϵ0 we can
add it to x0 to obtain an improved solution. Next we assume
that we have a sequence of ng successive coarse-grained
versions of M (with the dimension of Mi+1, being, say, half
the dimension of Mi) given as M1 = M,M2, . . . ,Mng

.

In the first half of the V-cycle, at the kth grid the linear
system Mkϵk = rk is partially solved by taking a few steps
of a simple iterative relaxation method such as the Jacobi
or Gauss-Seidel method, i.e., ϵk := relax(Mk, rk). Next
the new residual r′k := rk −Mkϵk in the linear system at
grid k is computed and transferred to the next coarser grid
k+1 by a restriction operator designed for grid transfer, i.e.,
rk+1 := restrict(r′k). The linear system at the coarsest
grid ng is small and we solve for the exact error ϵng

for the
given residual rng

.

PDE Expression

Figure 1. PDE expression building and discovery architecture. The
expression is ut = ũϵũx with parameter ϵ as the exponent.

In the second half of the V-cycle the error at grid k is
transferred to the next finer grid k − 1, starting from the
coarsest grid, by a prolongation operator, i.e., ϵ̃k−1 =
prolong(ϵk). The prolonged error is added to the er-
ror at the finer grid, to obtain the new error at grid k − 1,
i.e, ϵk−1 := ϵk−1 + ϵ̃k−1. The error is smoothed by re-
laxation ϵk−1 := relax(Mk−1, ϵk−1, rk−1) The V-cycle
ends when we return to the finest grid and we improve the
solution x0 by adding the estimated error, i.e, x0 := x0+ϵ1.

In our solver we use the multigrid V-cycle as a precondi-
tioner for FGMRES, which we found led to more accurate
solutions compared with conjugate gradient methods and
standalone V-cycle. We use Gauss-Seidel as the relaxation
method and linear interpolation as the restriction and pro-
longation methods. To construct coarse grid matrices we
use grid sizes with powers of 2 and successively halve each
dimension whlist simultaneously doubling the step size in
each dimension. We use size 8 for each dimension for the
coarsest grid. The PDE coefficients and boundary condi-
tions are coarsened by linear interpolation and the multigrid
preconditioned FGMRES is applied to the matrix A⊺A from
the normal equations.

The resulting iterative solver is entirely sparse and batch-
parallel on GPU for a batch of PDEs and is useful for higher
dimensional PDEs where GPU memory cannot hold the full
dense constraint matrices.

4. Mechanistic Networks for PDE Discovery
The goal of discovery is to find the equations govern-
ing spatio-temporal data representing some physical phe-
nomenon. The result of governing equation discovery is a
set of partial differential equations that, ideally, completely
describe the given data. Further restrictions may be added
to the form of the discovered equations so that the equations
may be interpreted by human scientists. One such restric-
tion is that the resulting equations should be composed only
of simple functions. Another natural restriction is that the
equations should concise, or sparse, with as few terms as
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possible (Brunton et al., 2016).

In this section we present a Mechanistic PDE Network dis-
covery architecture that allows discovery of simple and
concise governing partial differential equations from spatio-
temporal data. With Mechanistic PDE Networks the PDE
representations can contain arbitrary differentiable expres-
sions over inputs parameterized by neural networks as in
Figure 1. This allows the design to model complex nonlin-
ear PDE expressions, going beyond linear combinations of
fixed basis functions.

4.1. Discovery Model

Given spatio-temporal data udata(t, x), where we assume
two dimensions for simplicity, the discovery method gener-
ates a parameterized PDE expression along with initial and
boundary conditions. Pu := Pu(u, ut, ux, utt, utx, utt; Θ).
In general the form of the PDE may include arbitrary differ-
entiable functions of any complexity, such as deep neural
networks. However to satisfy the twin goals of simplicity
and conciseness we restrict the allowed forms of the expres-
sions appearing in PDEs to simple tree structures where each
node is an elementary function with some weighting param-
eter. One common example of a tree expression structure in
PDE modeling is a finite set of simple basis functions such
as polynomials of a fixed maximum degree. Mechanistic net-
works, however, are not constrained to linear combinations
of fixed basis functions and can represent more complex
expressions by combining the data u and its derivatives with
parameters in a differentiable way (Figure 1).

Once the form of the expression is specified the aim of the
discovery procedure is to find the appropriate parameters
of the PDE expression given data. One could also imagine
learning the structure of the expression itself; however, that
is not a direction we take, and in this paper, we use fixed
forms of PDE expressions.

Parameterized PDE Expressions. Given the restriction of
conciseness, there must only be a small number of expres-
sion parameters that describe complex data. Furthermore,
the initial values of these parameters might be far from
the true parameters. If the PDE solution corresponding to
the initial parameters is far from the true udata the iterative
learning can become brittle and non-smooth due the small
number of parameters available to the optimization process.

To make the learning smoother and more flexible, we pa-
rameterize the input to the PDE expression with a neural
network. We do this by transforming the data udata to
ũ = NN(udata) with a neural network and compute the
expression on the transformed data ũ instead of udata. This
allows the learning to adapt both parameters and basis input
to get to the target solution, leading to a more flexible learn-
ing procedure. A further advantage of parameterizing the

expression input is to make it robust to noise in the input
data. To ensure that the final learned equation is correct for
u, we also add a loss term loss(u, ũ) so that ũ is close to u
at convergence.

Discovery Example. As an informative example, we il-
lustrate the discovery method for Burger’s equation: ut =
uux + 0.1uxx, where the diffusion term, uxx, has the fixed
coefficient 0.1. Given udata, we first compute a transfor-
mation ũ = NN(udata). Choosing degree two polynomials
as the expression functions we obtain the coefficients for
ux and uxx respectively as p1(ũ) = θ0 + θ1ũ + θ2ũ

2 and
p2(ũ) = ϕ0 + ϕ1ũ + ϕ2ũ

2, with θi and ϕi as learnable
parameters. Choosing second order spatial and first order
temporal derivatives we get a PDE expression of the form

ut = p1(ũ; θ)ux + p2(ũ;ϕ)uxx. (12)
The true equation corresponds to the case where θ1 = 1,
ϕ0 = 0.1 and the remaining parameters are 0. The ini-
tial and boundary conditions are obtained from ũ. In
each iteration we solve Equation 12 using the NeuRLP-
PDE solver obtaining solution u. We then compute the
loss as a sum of the losses (either L1 or L2) between
udata, u and u, ũ. We also include an L1 loss over the
parameters for sparsity. The total loss is computed as
l(udata, u, ũ, θ, ϕ) = loss(udata, u) + loss(u, ũ) + l1(θ, ϕ).

The loss is iteratively minimized with gradient descent. Fi-
nally a concise PDE is generated by thresholding the param-
eters, with the ones below the threshold set to 0.

5. Related Work
The synthesis of machine learning and differential equations
has been treated in a few different ways in the field. A major
line of work approaches the problem from a machine learn-
ing perspective with supervised or unsupervised learning for
partial differential equations (Li et al., 2020; Brandstetter
et al., 2022). Another line of work in machine learning
for scientific application aims at a synthesis of differential
equation models with a network-in-solver approach by em-
bedding neural networks in classical solvers (Chen et al.,
2018; Rackauckas et al., 2020) enabling access to high qual-
ity numerical solvers in the context of machine learning.
Physics-informed networks use a physics-aware loss to su-
pervise network training (Raissi, 2018; Raissi et al., 2019).
Mechanistic neural networks conversely are a solver-in-
network approach that attempts to balance classical solvers
and neural networks by combining restricted ODEs (Pervez
et al., 2024; Chen et al., 2025) (and now PDEs), that allow-
ing faster solving, with neural network learning together
with techniques for handling nonlinear equations.

As an application of the synthesis of ML and differential
equations various data driven techniques for discovering
governing equations have been explored for ODEs such as

5



Mechanistic PDE Networks for Discovery of Governing Equations

SINDy (Brunton et al., 2016), SINDy-PI (Kaheman et al.,
2020) and PDEs including PDEFIND (Rudy et al., 2017)
and weak forms (Reinbold et al., 2020; Messenger & Bortz,
2021) extending the SINDy framework. Physics informed
networks (Raissi et al., 2019; Raissi, 2018) have also been
used for inverse problems but unlike UDEs (Rackauckas
et al., 2020) and SINDy do not handle unknown physics.
PDE-LEARN (Stephany & Earls, 2024) combines features
of physics informed networks and basis libraries for PDE
discovery. MechNNs (Pervez et al., 2024) build a discovery
model for ODEs which we enhance and develop PDE mod-
els that handle nonlinear equations and unknown dynamics.

6. Experiments
We demonstrate PDE discovery on a number of PDEs in two
and three dimensions (including time), including complex
dynamical data from the 2D Navier Stokes and reaction
diffusion PDEs. We examine the robustness of the method
to noise. We also consider PDE parameter discovery in the
case where the PDE cannot be expressed as a linear combina-
tion of fixed basis functions. Table 1 lists the PDEs that we
use to demonstrate our method, including their general form.

Robustness to Noisy Data. We test discovery in noisy
settings by adding Gaussian noise of variance σ2 to the data.
The noise standard deviation σ is chosen to be a ratio σNR of
the data root mean squared value i.e., σ := σNR||U ||RMS ,
where U denotes the dataset and σNR ∈ [0, 1] is the noise
ratio (Messenger & Bortz, 2021). In the experiments, we
report the noise level as a percentage as σNR.100% noise.

Evaluation Metrics. We use two metrics for evaluating
the quality of the discovered equation. The true positiv-
ity ratio is defined as TPR = TP

TP+FN+FP (Lagergren et al.,
2020) and measures how many terms have been correctly
identified. We measure the maximum relative error of the
true coefficients as E∞(ξ) = maxj:ξ̂∗j !=0

|ξj−ξ̂∗j |
|ξj | , with ξ, ξ̂

being the discovered and true coefficients (Messenger &
Bortz, 2021). E∞(ξ) serves as the measure of accuracy of
discovered coefficients.

Datasets, experiments, baselines. We perform experiments

Figure 2. Inviscid Burger’s Equation (discontinuous shocks are
visible) (left) and the vorticity field data ∇× U from an incom-
pressible Navier-Stokes equation.

Table 1. PDEs for Discovery
Name Expression

Diffusion ut = νuxx

Viscous Burger’s ut + uux = νuxx

Inviscid Burger’s ut + uux = 0
Porous Medium ut = ∇2(um)
Ginzburg-Landau ∂tA = A+∇2A− (1 + iβ)|A|2A
Navier-Stokes ∂tU + U · ∇+∇p = ν∇2U

Figure 3. Easy case, showing Ai (left) and harder, showing the
norm |A|2 (right) at a single time-step for reaction-diffusion data.

on a number of 1D and 2D (in space) PDEs chosen to cover
a range of complexity. For the 1D equation, we demonstrate
discovery with the diffusion equation and Burger’s equation
(both viscous and inviscid (i.e., without viscosity)). The in-
viscid Burger’s equation is known to develop shocks, which
appear as a discontinuity in wave propagation. We show that
our proposed method can perform discovery in the presence
of this form of discontinuity. The porous medium equation
is a nonlinear equation that cannot be written in the form
of linear combinations of fixed basis functions because of
a real exponent. We show how the mechanistic network
framework easily extends to such cases while many other
methods cannot.

For 2D PDEs, we work with reaction-diffusion and
incompressible Navier-Stokes equations. Ginzburg-Landau
reaction-diffusion equations are frequently employed for
modeling biological pattern development. We demonstrate
discovery in two settings: 1) a relatively easy spiral dataset
with a single spiral and 2) a harder setting with significantly
more complex patterns where the baseline methods fail to
recover the equations even in the absence of noise. We also
demonstrate discovery for an incompressible Navier-Stokes
example with a small viscosity term (Harpole et al., 2019).
We set the viscosity term ν to 0.001 and show that our
method is able to recover the equation while the baselines
cannot. For baselines, we compare with PDEFIND (Rudy
et al., 2017) and WeakSINDy (Reinbold et al., 2020), with
implementations by de Silva et al. (2020), which are known
to be robust to noise in many settings. We especially focus
on comparing the robustness under noise of our method
with the baselines.
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Figure 4. TPR for easy (left) and harder (right) reaction-diffusion
experiments with varying amounts of noise.
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Figure 5. Log E∞ errors for the easy (left) and harder (right)
reaction-diffusion experiment with varying amounts of noise.

6.1. Solver Unit Test

First, we verify that our solver is capable of solving some
given linear PDEs. We test on the 2D Laplace PDE,
∇2u = 0 on 32x32, 64x64, and 128x128 grids using the
multigrid solver. We compare against a reference finite-
difference implementation from the py-pde (PyPde) pack-
age with sinusoidal boundary conditions obtaining L2 errors
of orders 10−1, 5× 10−2 and 10−2, respectively, showing
the errors decreasing with increasing resolution. This simple
evaluation shows that our solver is indeed capable of solving
these equations to an accuracy comparable with traditional
libraries while also being able to parallelize solving multiple
equations on GPUs.

6.2. PDE Discovery

In this section, we demonstrate PDE discovery for equations
in one and two spatial dimensions in addition to time.

2D PDEs. For two dimensional PDEs, we test on Ginzburg-
Landau reaction diffusion equations and the incompressible
Navier-Stokes equations. For 2D PDEs the PDEs are a set
of coupled equations. For ease of training we demonstrate
discovery on one equation from each of the coupled PDEs.

2D Reaction-Diffusion Equations. The Ginzburg-Landau
reaction-diffusion equations are shown in Table 1 in com-
plex form in the variable A. For ease, we write the complex
equations as a system of two equations, where we take the
first equation in our experiments.

Ar
t = D1∇2 +Ar(1− |A|2) + |A|2βAi (13)

Ai
t = D2∇2 +Ai(1− |A|2)− |A|2βAr, (14)

where Ar and Ai are the real and imaginary parts of A and
|A|2 = Ar2 +Ai2 and D1, D2, β are parameters.
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Figure 6. TPR and E∞ error for the Navier-Stokes dataset.

Easy Case. For the reaction-diffusion equations, we first test
on an easy dataset with a single spiral pattern for which the
baselines also perform well (Reinbold et al., 2020). For this
example, the spatial domain has a length of 20 with equal
spatial step sizes and a spatial resolution of 64x64 in the x
and y dimensions. For time we use 128 time steps with a
step size of 0.05. An example of the data at a single time
step is shown in Figure 6 (left). The data was generated by
a spectral method following the implementation in de Silva
et al. (2020), setting D1 = D2 = 0.1 and β = 1.

A Harder Case. For reaction diffusion equations we also
test on a more difficult dataset with more complex patterns,
for which the baselines are unable to discover the correct
equations even on noise-free data. The dataset has a spatial
resolution of 256x256 over a Cartesian domain of size 10
with equal step size. The data was generated by using the
Basilisk solver (Kenneally et al., 2020) starting from a ran-
dom initial condition and running with a maximum time step
size of 0.05. We set D1 = D2 = 1 and β = 1.5. We take
only 128 time steps from the data for training. An example
of the data at a single time step is shown in Figure 6 (right).

Training Data and Parameterization. We use the same
training setup for both kinds of reaction-diffusion examples.
For our model, the training data is mini-batched with a
mini-batch size of 8. Each data example in the minibatch
is of size 32x32x32, where the first dimension is time. The
data is parameterized by 10-layer 2D ResNets, where we
consider the time dimension as a batch dimension. The data
consists of two scalar fields Ar, Ai, which are separately
parameterized by neural networks before being used to build
the PDE expression as ũ = NN(Ar) and ṽ = NN(Ai).

PDE Expression. The PDE expression model uses third
degree polynomial functions built from the parameterized
inputs ũ, ṽ and second order derivatives in x and y. We
use four separate polynomial expressions in the PDE: one
serving as the coefficients of the u term, another two for the
uxx and uyy terms, and one as the right hand side b. The
polynomial basis parameters for discovery are computed by
a two-layer MLP with a learnable input, which we find to
improve training over a flat parameter vector. The boundary
conditions are learned Dirichlet boundary conditions and
are simply chosen to be the boundaries of ũ. Given the PDE
expression and the boundary conditions, the PDE expression
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is fed to the solver to get solution u.

Loss. The final loss is an L1 loss, which we find improves
discovery. The loss is composed of four terms. The first is
a loss l1(u,Ar), minimizing the loss between solution and
data. The other two terms are losses for the parameteriza-
tions ũ and ṽ as l2(ũ, u) and l3(ṽ, A

i). Since we only solve
one equation at a time, we do not have a learned solution
to the second coupled equation and ṽ minimizes the loss
directly with the data Ai. The final term in the loss is a spar-
sity term, also L1 for the basis polynomial parameters. We
use a weight of 10−4 for the sparsity term. In particular, we
note that we do not threshold the parameters or repeat the op-
timization in our experiments with thresholded parameters,
using only a single training cycle. Repeating the optimiza-
tion can and does improve the accuracy of the learned co-
efficients, but also increases training time, which is why we
do not repeat the optimization for the results in this paper.

The model is trained with Adam with a learning rate of 10−5,
which we fix for all experiments. We do not use learning
rate scheduling for the experiments for simplicity and use a
fixed learning rate throughout. We repeat the training with
up to 80% noise added to Ar and Ai.

Results. The TPR results are shown in Figure 4 and the E∞
errors are shown in Figure 5 for the various quantities of
noise for both the easy and hard experiments for MechNN-
PDE, WeakSINDy and PDEFIND. For clean data in the
easy example, we see that all methods recover the non-zeros
terms with a TPR of 1 with small error in the coefficients.

Upon increasing noise levels, we find that PDEFIND wors-
ens the most, and the TPR drops significantly to 0-0.2 for the
easy case while the error becomes very large. WeakSINDy
performs much better with noise on the easy dataset, and
MechNN-PDE and WeakSINDy have similar TPR and error
with noise except for 80% noise, where WeakSINDy has
better error for similar TPR as MechNN-PDE.

For the harder case, neither PDEFIND nor WeakSINDy is
able to find any significant non-zeros terms even with clean
data. The TPR seems to increase later on for PDEFIND,
however, this is spurious due to the large error as seen in
the plots. WeakSINDy also performs no better than random
in this setting. MechNN-PDE, however, is able to maintain
high TPR with noise for up to 40% noise, with the TPR drop-
ping to 0.6 at 80% noise, showing consistent performance
in TPR and error with noise.

Incompressible Navier-Stokes. We use the first component
of the velocity U1 from the coupled equations for discovery
given as U1t+U ·∇U1+px = ν∇2U1, where the pressure
gradient ∇p is given. We use a similar setup for the
reaction-diffusion equations, except that we use degree 1
polynomials. We include interaction terms with the first
derivatives. We use a small viscosity ν = 0.001 for the data

(Figure 2). A comparison of the results with WeakSINDy
is shown in 6, where WeakSINDy is unable to discover the
system. For MechNN-PDE, the TPR is still lower than 1
with low noise. On inspection of the coefficients, it appears
that this is due to the presence of zero terms with small
coefficients that are of the order of the viscosity which
appears as false positives, even though the viscosity and
non-zeros terms are accurately recovered.

1D PDEs. We demonstrate discovery on the 1D diffusion
equation and inviscid and viscous Burger’s equations. We
use degree 4 polynomials for the coefficients of the ux and
uxx terms. For all cases in the noise-free case the method
discovers the true equation. For Burger’s equation we exper-
iment with noisy data and compare with WeakSINDy and
find both methods to be on-par with each other. The results
for the are shown in Figure 7 and Appendix A.
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Figure 7. TPR and error for viscous Burger’s equation. Comparing
with WeakSINDy

6.2.1. DISCOVERY BEYOND GENERALIZED LINEAR

MechNN-PDE can represent complex differentiable expres-
sion in PDEs, going beyond expressions representable as
linear combinations of fixed basis functions. We demon-
strate with the task of parameter discovering for the Porous
Medium equation for which the expression cannot be writ-
ten as a linear combination of fixed basis functions. The
porous medium equation is given as ut = ∇2(um),m > 0,
and we want to recover the parameter m given data. We
set m = 2.675 in the data and do not use any other basis
functions. We note that m is a positive real value which
precludes fixed polynomial basis functions. The task is to
discover the exponent of u. We build the PDE expression
with an exponent for the parameterized data ũ. For this
example we also parameterize the gradient with a neural net-
work. With clean data we recover the coefficient 2.64±0.03
close the true value of 2.675.

6.3. Multigrid Hyperparameters, Time, Memory

We show the effect of varying hyperparameters of the multi-
grid algorithm on solving the Laplace equation (Figures
8, 9, 10 in Appendix C). The hyperparameters varied are
the number of FGMRES iterations for two resolutions, the
number of V-cycles and the number of Gauss Seidel steps.
We measure relative error and show decreasing error with
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the number of iterations.

In Figure 11 (Appendix C) we show the time and memory
used in solving the Laplace equation with varying resolu-
tions.

7. Conclusion
This paper presents a new method for discovering governing
PDEs from data. We build specialized multigrid parallel
and differentiable solver for solving PDEs in batch which is
then incorporated in a discovery architecture. Experiments
show that the method can discover complex equations from
data while being robust to noise and expands the class of
PDEs that can be modeled by machine learning methods.

Limitations. Scalability is a main limitation of grid-based
PDE methods and one way forward might be to explore a
combination of grid-based and mesh-free techniques. An-
other shortcoming is that the method sometimes sacrifices
accuracy for speed. This could be resolved by better multi-
grid solvers and faster GPU implementations. Finally, we
do not consider the identifiability of the PDEs being discov-
ered and the conditions under which discovery is possible.
Extending the analysis of Yao et al. (2024) to PDEs would
be an interesting starting point.
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A. 1D PDE Experiments
We test discovery on clean data on the diffusion equation with a diffusion coefficient of 0.01. We obtain a TPR of 1 and E∞
value of 0.224. We show results for the viscous and inviscid Burger’s equations in Figure 7 and Table 2, comparing with
WeakSINDy. We find both methods to perform similarly on this problem.

Table 2. Inviscid Burger’s Equation for clean and 10% noisy data.

MechNN-PDE WeakSINDy

Noise TRP E∞ TRP E∞

0 1 0.043 1 0.001
10 1 0.0020 1 0.012

B. Multigrid V-cycle Algorithm
Algorithm 1 shows the multigrid V-cycle (see Saad (2003)) that we use to precondition the FGMRES algorithm. We use
Gauss-Seidel as the relaxation method and linear interpolation as the restriction and prolongation operators.

Algorithm 1 V-cycle
Require: relax, restrict, prolong operators
Input: Mi, xi, bi; i ∈ [m]
xi = relax(Ai, xi, bi)
ri = bi −Aixi

ri+1 = restrict(ri)
if m == i+ 1 then

Solve Amδm = rm
else
δi = V-cycle(Ai+1, 0, ri+1)

end if
δi = prolong(δi+1)
xi = xi + δi
xi = relax(Ai, xi, bi)
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C. Multigrid Hyperparameters and Memory
We show the effect of varying hyperparameters of the multigrid algorithm on solving the Laplace equation (Figures 8, 9, 10).
The hyperparameters varied are the number of FGMRES iterations, the number of V-cycles and the number of Gauss Seidel
steps.

In Figure 11 we show the time and memory used in solving the Laplace equation with varying resolutions.
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Figure 8. Relative error in linear system solving versus number
of FGMRES iterations. The number of FGMRES restarts is
fixed to 20. The number of preconditioning V-cycles is set to
1. Showing results for solving Laplace equation on 32x32 and
64x64 grids.
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Figure 9. Relative error in linear system solving versus number
of preconditioning V-cycles with FGMRES. The number of
FGMRES restarts is fixed to 20 with 40 iterations. Showing
results for solving Laplace equation on a 32x32 grid.
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Figure 10. Relative error in linear system solving versus num-
ber of Gauss-Seidel cycles per preconditioning V-cycle with
FGMRES. The number of FGMRES restarts is fixed to 20
with 40 iterations with 1 V-cycle per preconditioning V-cycle.
Showing results for solving Laplace equation on a 32x32 grid.

Figure 11. Time and GPU Memory usage for solving 2D
Laplace equation for a batch size of 32 with multigrid pre-
conditioned FGMRES.

Grid Memory (GB) Time (seconds)

32x32 1.6 6.16
64x64 4.63 13.9
128x128 16.7 33.9
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