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Abstract

This paper investigates the application of transformers to medical image retrieval. Al-
though various methods have been attempted in this domain, transformers have not been
extensively explored. Leveraging vision transformers, we consider co-attention between
image tokens. Two main aspects are investigated: the analysis of various architectures and
parameters for transformers and the evaluation of explanation techniques. Specifically, we
employ contrastive learning to retrieve attention-based images that consider the relation-
ships between query and database images. Our experiments on diverse medical datasets,
such as ISIC 2017, COVID-19 chest X-ray, and Kvasir, using multiple transformer archi-
tectures, demonstrate superior performance compared to convolution-based methods and
transformers using cross-entropy losses. Further, we conducted a quantitative evaluation
of various state-of-the-art explanation techniques using insertion-deletion metrics, in addi-
tion to basic qualitative assessments. Among these methods, Transformer Input Sampling
(TIS) stands out, showcasing superior performance and enhancing interpretability, thus
distinguishing it from black-box models.

Keywords: Content-based medical Image Retrieval, Vision Transformers, Deep Learning,
Contrastive Learning, Explainable AI.

1. Introduction

Over the past decade, the intersection of medical imaging and deep learning has witnessed
significant advancements, addressing challenges in managing vast datasets, as highlighted
by Hwang et al. (Hwang et al., 2012). Content-based medical image retrieval (MIR)
has emerged as a crucial tool, aiding clinicians in recognizing related medical images and
recalling prior cases during diagnosis (Agrawal et al., 2022). Traditionally, MIR has heav-
ily relied on convolutional neural networks (CNNs), as evidenced by (Shetty et al., 2023)
and (Qayyum et al., 2017). Despite their effectiveness in feature extraction and similarity
identification, they pose challenges due to their inability to effectively capture long-range
dependencies and the lack of interpretability, known as the “black-box” problem (Hu et al.,
2022).

Our work addresses these challenges in medical image retrieval by adopting Vision Trans-
formers (ViTs) (Dosovitskiy et al., 2021). ViTs, as explored in (El-Nouby et al., 2021), offer
superior performance, excelling at capturing long-range dependencies and relationships be-
tween distant image regions through their multi-head attention mechanism (Zuo et al.,
2022). Inspired by (El-Nouby et al., 2021) work we experiment with Vision Transform-
ers employing contrastive learning and regularization, comparing their performance with
convolutional baselines using both cross-entropy loss and contrastive loss under similar set-
tings and also vision Transformers with cross-entropy loss. Our findings demonstrate the
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superiority of Vision Transformers over these baselines for all datasets. Recognizing the sig-
nificance of model explainability in clinical applications, We apply various state-of-the-art
eXplainable AI (XAI) techniques tailored to Vision Transformers. Beyond simple qualita-
tive comparisons, we conduct quantitative evaluations of saliency maps using insertion and
deletion methods.
The primary contributions of our work are as follows:

• We provide a systematic analysis of vision transformer architectures (Section 4.2)
and hyperparameters/variants (Section 4.3). Our findings consistently highlight the
superiority of transformers with contrastive loss over convolutional baselines. These
also outperform vision transformers and convolution baselines using cross-entropy loss
across all datasets.

• Analysis of various state-of-the-art explanation techniques for Vision Transformers
(Section 4.4). We quantitatively evaluate the resulting saliency maps using insertion
and deletion methods.

2. Related Works

Content-based Medical Image Retrieval (MIR) plays a crucial role in enhancing diagnostic
reliability for radiologists by retrieving pertinent medical cases that resemble a provided
image. The early MIR methods relied on basic features and struggled to capture intricate
relationships within medical images. The “semantic gap” between features and actual
content led to inaccurate retrieval (Xuan et al., 1995) (Zhang et al., 2008). Convolutional
neural networks (CNNs) revolutionized MIR and bridged the semantic gap by surpassing
hand-crafted techniques (Sklan et al., 2015).

In the context of COVID, Kvasir, and ISIC datasets, studies (Tschandl et al., 2019),
(Shetty et al., 2023), and (Agrawal et al., 2022) leveraged pre-trained CNN architectures
like ResNet, VGG, Densenet for medical image retrieval. Recently,(Ahmed et al., 2023) pro-
posed a novel relative difference-based similarity measure (RDBSM) for improved retrieval.
Further, (Öztürk et al., 2023) have introduced an opponent class adaptive margin (OCAM)
loss for S-bit hash code generation in image retrieval. CNN-based architectures have been
extensively employed in the majority of studies published in the literature. However, the
limitations of CNNs in capturing long-range dependencies prompted the exploration of vi-
sion transformers (ViTs) (El-Nouby et al., 2021). Inspired by the capabilities of ViT in
general computer vision, we employ them with contrastive loss and differential entropy
regularization for the task of medical image retrieval.

Few recent studies have explored various ViT-based approaches for Medical Image Re-
trieval. (Trinh and Nguyen, 2021) present a Mixer-MLP-based MIR for endoscopic images.
(Thakrar et al., 2023) use a modified ViT for content-based image retrieval in chest X-rays,
employing binary cross entropy and L1 loss for training. (Gupta et al., 2023) propose dense-
link-search for efficient nearest neighbours in medical image retrieval. (Manzari et al., 2023)
have introduced MedViT, a hybrid model combining ViTs and CNNs for Medical Image
Classification. However, these methods may lack interpretability, acting as black boxes in
decision-making processes. (Hu et al., 2022) address interpretability concerns with their
X-MIR method for CNNs, employing deep metric learning and similarity-based saliency
maps for visual explanations of retrieved images. In our work, we undertake a benchmark-
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ing study to analyse the various architectures and loss-functions and further analyse the
interpretability of these methods.

Explaining Vision Transformers (ViTs) presents challenges, as traditional attention
weight-based methods designed for CNNs are inadequate due to the distinctive nature of
ViTs with multiple attention heads and encoder blocks (Serrano and Smith, 2019) (Stassin
et al., 2023). To address this, various ViT-specific explainability methods are explored.
Attention Rollout (Abnar and Zuidema, 2020), Chefer 2 (Chefer et al., 2021), Transition
Attention Maps(TAMS) (Yuan et al., 2021), Bidirectional Transformers (BT) (Chen et al.,
2022), ViT-CX (Xie et al., 2022), and Transformer Input Sampling (TiS) (Englebert et al.,
2023) contribute uniquely to understanding ViT decision-making, providing insights into
attention, gradients, and perturbation-based explanations.

3. Method

3.1. Transformers

Figure 1: Transfomer model with Contrastive loss and Regularization for Medical Image
Retrieval on COVID Dataset

The vision transformer (ViT), introduced by (Dosovitskiy et al., 2021), introduced tok-
enization of image patches for transformers, by transforming input images into a sequence
of 2D patches (e.g., 16x16). These patches undergo a learnable linear projection, resulting
in token embeddings. A special learnable [CLS] token is added at the sequence’s beginning
and serves as a global representation. The transformer encoder block consists of L layers,
each of which is composed of two sub-layers: a multi-headed self attention (MSA) layer and
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a multi-layer perceptron (MLP) layer. The resulting global representation, derived from
the [CLS] token output, is used for subsequent processing.

As shown in Figure 1, we use transformers for content-based MIR.

In the training phase, we start with the pre-trained Vision Transformer (ViT) model and
then fine-tuned for each dataset with metric learning, specifically employing a contrastive
loss. Through this process, the model acquires feature embeddings i.e the cls token acts as
the global image descriptor. The process maps similar images into a common feature space
and cosine similarity is used to retrieve the closest images. A cross-batch memory(Wang and
Isola, 2020) is used along with differential entropy regularization. The use of cross-batch
memory enables to reduce the dependency on mini-batch for obtaining informative negative
pairs. Using a cross-batch memory we are now able to increase the number of hard negatives
without incurring significant computational overhead. In the testing phase, we deploy the
trained ViT model to generate feature embeddings for each query image in a separate test
dataset. These embeddings are then utilized to rank database images, enabling efficient
medical image retrieval. Following this, performance metrics such as precision, recall, and
F1 score are calculated to assess the efficacy of the retrieval process.

In our study, we explore three model variants: MIRDeiT small, MIRViT small, and
MIRViT base. MIRDeiT small adopts the DeiT small (Embedding length is 384)(Touvron
et al., 2021) architecture with a 16x16 patch size and an image size of 224x224 pixels.
Similarly, MIRViT small follows the ViT small architecture (Dosovitskiy et al., 2021) with
matching patch and image dimensions (Embedding length is 384). In contrast, MIRViT base
is based on the larger ViT base architecture (Embedding length is 768). All these models
and the CNN models used for comparison are imported from the timm PyTorch library. The
total loss (L) used for training is a combination of the contrastive loss and the differential
entropy regularization given as: L = Lcontr + λLKoLeo

The contrastive loss (Lcontr) encourages similarity among samples with the same label
and dissimilarity among samples with different labels. Mathematically, it is expressed as:

Lcontr =
1

N

N∑
i

 ∑
j:yi=yj

[
1− zTi zj

]
+

∑
j:yi ̸=yj

[
zTi zj − β

]
Here, zi represents the l2-normalized embedding vector of sample i, N is the total number of
samples, and yi is the label of sample i. The margin β prevents the training signal from being
dominated by easy negatives. Only negative pairs with a similarity higher than a constant
margin β contribute to the loss. The representations zi are assumed to be l2-normalized,
making the inner product equivalent to cosine similarity.

Simultaneously, LKoLeo is the differential entropy loss. It serves as a regularizer (Sablay-
rolles et al., 2018) and is based on the (Kozachenko and Leonenko, 1987) differential entropy
estimator. It prevents representations of different samples from being close by increasing
their distance from positive examples and hard negatives. Mathematically, LKoLeo aims to
maximize the distance between each point and its nearest neighbor:

LKoLeo = − 1

N

N∑
i=1

log(ρi)
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Here, ρi represents the minimum distance between the embedding vector zi and any other
embedding vector zj (where j ̸= i). The regularization term is then used with a weighting
coefficient λ.

During testing, each image in the test dataset, as depicted in Figure 1, acts as a query,
with the top k retrievals extracted for each query. The learned embedding network processes
input images, denoted as x, producing embedding feature vectors z(x). This process applies
to both query images (q) and retrieved images (r), resulting in feature vectors zq and
zr, respectively. To rank the retrieved images, a similarity score s between zq and zr is
computed using cosine similarity: s(zq, zr) =

zq·zr
∥zq∥∥zr∥ . Standard image retrieval metrics,

such as mean average precision (mAP), mean precision (mP@K), and Recall (R@K), are
calculated for evaluation.

3.2. Explainability Methods

While vision transformers (ViTs) employ attention mechanisms, relying solely on raw atten-
tion is considered insufficient for comprehensive explanations. This raw attention overlooks
the value component and emphasizes the query and key elements (Jain and Wallace, 2019;
Serrano and Smith, 2019), This has led to the development of methods specifically made
for ViTs. For instance, attention rollout (Abnar and Zuidema, 2020) combines attention
heads and an identity matrix for residual connections. Chefer 2 (Chefer et al., 2021) offers
a generic explanation method for transformers, using gradients and identity matrices for
attention score computation. TAMs (Yuan et al., 2021) model representation evolution as a
Markov chain, yielding class-specific explanations with integrated gradients. Bidirectional
Transformer (BT) involves element-wise multiplication of Reasoning Feedback and Atten-
tion Perception (Chen et al., 2022), providing saliency maps for token (BT-T) and head
(BT-H). ViT-CX (Xie et al., 2022) avoids direct dependence on attention weights, using
perturbation masks derived from patch embeddings. Transformer Input Sampling (TiS)
(Englebert et al., 2023) instead masks tokens before their introduction into a transformer,
improving interpretability and reducing the number of tokens. We have compared a num-
ber of the above explainability methods to obtain explainable medical image retrieval and
provide results for the same in section 4.4.

4. Results & Discussions

4.1. Datasets

In our comprehensive study, we utilize three datasets for medical image analysis. The
curated COVID-19 Chest X-Ray Dataset (Sait et al., 2020) includes 1281 COVID-19 X-
rays, 3270 Normal X-rays, and 4657 pneumonia X-rays (viral and bacterial). Our focus is
on overall pneumonia classification. The ISIC Skin Lesion Dataset (Codella et al., 2018)
comprises images of benign nevi, seborrheic keratosis, and melanoma (non-cancerous and
malignant). This dataset has 2,750 images. The Kvasir-V2 dataset (Pogorelov et al., 2017)
contains 8,000 annotated endoscopy images, categorized into eight classes by experienced
endoscopists based on anatomical landmarks, pathological findings, or specific endoscopic
procedures.

4.2. Evaluation of Architectures

We adopted the same training details as outlined in (El-Nouby et al., 2021), the optimization
of these models employs the AdamW optimizer with a learning rate of 3 × 10−5, weight
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decay of 5 × 10−4, and for 10k iterations. Contrastive loss margin (β) is set to 0.5. In
the absence of regularization (λ = 0) and with differential entropy regularization, different
variants of λ (λ = 0.3, 0.7) are employed. Standard data augmentation techniques are
applied, including resizing images to 256× 256, random cropping to 224× 224, and random
horizontal flipping. The dynamic offline memory queue aligns with the dataset’s size. In
the case of cross-entropy, similar optimizer and iteration settings were used, applying basic
cross-entropy loss for classification.

In our diverse evaluation across ISIC, COVID, and Kvasir datasets, as detailed in Ta-
ble 1, we tested traditional CNNs (Densenet121, Resnet50), various vision transformers
(DeiT small, ViT small, MedViT), and the MIRViT variants. MIRViT small consistently
outperforms CNNs, other vision transformers, and even MedViT(CNN-Transformer Hybrid)
in medical image retrieval, demonstrating its efficacy.

In Table 1, to maintain conciseness, the results for ISIC are derived from λ = 0.3 for
MIRViT small and λ = 0 for MIRDeiT small, while for Kvasir and COVID, MIRViT small
is based on λ = 0.7 and MIRDeiT small is based on λ = 0.3 and λ = 0.7 respectively.The
above results are based on three experimental runs. The complete set of results of the model
combinations are provided in Figure 2.

Table 1: Medical Image retrieval results
Dataset Model Loss R@1 R@5 R@10 mAP mP@1 mP@5 mP@10

ISIC

Densenet121

Contra
stive

64.50 92.50 95.67 58.38±0.01 64.50 62.37 62.57
Resnet50 65.33 92.33 97.00 57.72±0.02 65.33 65.13 63.90
MIRViT small 74.17 88.17 91.33 70.96±0.01 74.17 73.80 73.72
MIRDeiT small 71.83 89.5 94.67 68.44±0.02 71.83 71.07 71.55
MedViT S 59.00 90.00 97.17 51.10±0.01 59.00 55.93 54.65
DeiT small

Cross
Entropy

71.33 90.50 95.17 63.32±0.02 71.33 70.87 70.10
ViT small 69.00 90.50 95.83 60.11±0.0 69.00 65.67 64.57
Densenet121 60.50 91.00 96.17 58.80±0.01 60.50 60.87 60.18
Resnet50 67.33 90.50 97.17 53.99±0.01 67.33 64.73 63.15

COVID

Densenet121

Contra
stive

96.20 98.8 99.19 94.62±0.01 96.20 95.87 95.73
Resnet50 94.24 98.53 99.02 91.33±0.01 94.24 93.86 93.91
MIRViT small 97.72 98.26 98.53 96.96±0.01 97.72 97.52 97.51
MIRDeiT small 96.80 98.37 98.80 96.48±0.02 96.80 96.74 96.65
MedViT L 89.95 98.04 98.75 83.29±0.01 89.95 89.57 89.24
DeiT small

Cross
Entropy

95.11 98.53 98.86 92.93±0.01 95.11 94.89 94.65
ViT small 93.05 97.94 98.59 93.24±0.01 93.05 93.44 93.30
Densenet121 87.72 97.07 98.59 80.38±0.01 87.72 87.19 86.69
Resnet50 92.07 97.66 98.59 82.35±0.02 92.07 90.87 90.20

Kvasir

Densenet121

Contra
stive

88.83 97.58 98.25 83.89±0.01 88.83 88.98 88.69
Resnet50 90.42 97.46 98.67 84.85±0.02 90.42 89.75 89.63
MIRViT small 93.33 96.92 97.54 90.16±0.01 93.33 92.87 92.84
MIRDeiT small 92.21 96.92 97.96 90.11±0.01 92.21 92.50 92.53
MedViT T 68.33 95.29 98.50 51.41±0.01 68.33 64.65 62.82
DeiT small

Cross
Entropy

91.46 97.38 98.25 88.15±0.02 91.46 91.62 91.39
ViT small 86.50 96.71 98.00 79.33±0.01 86.50 86.59 86.24
Densenet121 56.71 89.08 95.21 26.23±0.01 56.71 52.62 50.28
Resnet50 66.96 92.17 95.88 40.59±0.01 66.96 63.74 61.42

MIRViT small’s superiority is evident, for example for the ISIC dataset, achieving higher
recall and a significant 13.24% increase in mAP compared to Resnet50. It also outshines
vision transformers trained with cross-entropy loss, emphasizing its precision in top-k sce-
narios, with a notable 7.64% surge in mAP compared to DeiT small. Similarly, across the
COVID and Kvasir datasets, MIRViT small outperforms convolution-based methods and
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transformers using cross-entropy losses, showcasing versatility in diverse medical imaging
contexts. MedViT, while excelling in classification, lags in retrieval. In summary, vision
transformers, especially MIRViT small, exhibit good potential in medical image retrieval.
Their consistent superiority in recall, precision, and mAP underscores their effectiveness.
Use of contrastive loss, with or without differential entropy regularization is beneficial.

4.3. Evaluation of Hyperparameters and Transformer Variants

The assessment of image retrieval results in Figure 2 consistently shows the dominance of
MIRViT small over MIRDeiT small and MIRViT base across diverse datasets, including
ISIC, COVID, and Kvasir. In the ISIC dataset, MIRViT small consistently outperforms
other configurations, delivering optimal performance at λ = 0.3. For the COVID and Kvasir
datasets, MIRViT small at λ = 0.7 achieves the highest mAP, closely followed by λ = 0.3
with a small difference. Notably, MIRViT base does not emerge as the top performer for
all datasets, indicating that a 384 embedding length performs well for retrieval on these
medical datasets.In conclusion, MIRViT small with λ = 0.3 emerges as an optimal choice
for medical image retrieval tasks.

Figure 2: mAP Values for Different Datasets and Model Variants

4.4. Evaluation of Image Retrieval Explanations:

To assess visual explanations, we employ insertion and deletion casual metrics in image re-
trieval, gauging how well the generated explanations capture the causes behind predictions.
We measure changes in image similarity as a result of changes to the retrieved image. The
insertion metric measures increased image similarity by starting with a blurred version of
the original retrieved image and gradually revealing pixels from highest to lowest relevance.
Conversely, the deletion metric assesses the decline in image similarity we gradually mask
out pixels on the retrieved image with a constant gray value from highest relevance to lowest
based on the computed saliency map. We then compute the similarity score s between the
query image q and perturbed versions of the retrieved image r̂ (either in the form of insertion
onto a blurred image or deletion using a constant gray value) s(zq, zr̂) = (max(0,

zq·zr̂
∥zq∥∥zr̂∥)).
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To rectify non-negative outputs, all similarity values are adjusted to a minimum of zero. The
area under the curve (AUC) is used to measure the effectiveness of saliency maps. Higher
AUC values are preferred for insertion, and lower AUC values are desirable for deletion.

We implemented all explainability methods using the same hyperparameters as in (En-
glebert et al., 2023). In the saliency maps, vibrant (red) regions signify the primary focus,
while cooler (blue) areas have less impact. The maps are rescaled using bilinear interpola-
tion to align with the input image resolution.

Chefer2 and TIS consistently emerge as strong performers Table 2, shows top-tier scores
across datasets and metrics. However, the qualitative evaluation through visual explanation
maps shown in Figure 3 suggests that TIS is qualitatively better. On the other hand,

Table 2: AUC values for insertion and deletion metrics on MIRViT small with various ex-
planation techniques

Dataset Metric bth btt chefer2 rollout tam tis vitcx

ISIC
Insertion 0.79 0.79 0.79 0.78 0.79 0.78 0.72
Deletion 0.46 0.43 0.41 0.45 0.44 0.41 0.53

COVID
Insertion 0.67 0.66 0.70 0.69 0.66 0.67 0.62
Deletion 0.45 0.47 0.42 0.44 0.47 0.46 0.51

Kvasir
Insertion 0.72 0.72 0.74 0.74 0.71 0.72 0.68
Deletion 0.46 0.46 0.40 0.42 0.48 0.42 0.49

Rollout, while maintaining competitive AUC values, displays a tendency towards higher
deletion scores and falls short in delivering detailed visual explanations. Other methods in
the comparison, such as BTT, BTH, VitCX, and TAM, exhibit inconsistency, excelling in
one metric while lagging in another. For detailed results please refer to Appendix A.

Figure 3: MIRViT small top-3 Retreivals and Explanation maps on all Datasets

5. Conclusion

In conclusion, our study presents an analysis of various architectures and parameters for
transformers, along with the evaluation of explanation techniques. MIRViT small emerges as
the top-performing model across varied datasets ISIC, COVID, and Kvasir. Our exploration
of loss functions underscores the limitations of simple cross-entropy and the effectiveness of
the contrastive approach. Further, our analysis of state-of-the-art eXplainable AI methods
suggests Transformer Input Sampling (TIS) as being better. In future, we intend to further
explore various advances for these algorithms for the medical image retrieval task.
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Appendix A.

The Figure 4 visually demonstrates the intermediate steps of the Insertion-Deletion metrics
using the TIS explainability method on the MIRViT small model. The deletion process
is performed on a Kvasir image, while the insertion process is applied to a COVID chest
X-ray image. Both processes effectively highlight the evolving significance of pixels in the
explanation sequences. The value p represents the distance between the query image and

Figure 4: TIS Insertion & Deletion Steps

the intermediate perturbed versions of the retrieved image. As anticipated, the p value
decreases during deletion as pixels are gradually removed and increases during insertion
with the progressive addition of pixels. The area under the curve for these graphs (AUC)
serves as the quantitative measure of the effectiveness of the saliency maps.

In Figure 5, we present top-3 retrievals using various explainability techniques for the
ISIC dataset. Subfigure a) illustrates a query image with accurate retrievals (indicated by a
green border). Saliency maps distinctly concentrate on lesion regions, providing meaningful
insights. On the other hand, Subfigure b) showcases two incorrect retrievals (marked with
a red border), where the saliency maps tend to focus on areas around the lesion rather
than precisely on the lesion itself. In the first incorrect retrieval, TIS exhibits a focus
on some scale at the bottom of the image, while in the subsequent incorrect retrieval, it
predominantly concentrates around the lesion, focusing on non-lesion regions.

Additionally, Figure 6 displays an example query image alongside its top-3 retrievals
for the COVID and Kvasir datasets, where TIS explanations are visually better than other
methods. Figure 7 further illustrates TIS explanation maps for the top-3 retrievals, each
representing one example image per class, demonstrating the effectiveness of saliency maps
in highlighting relevant regions.
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Figure 5: Top-3 Retrieval Explanations for Two Images from ISIC Dataset Using Different
Explanation Methods.
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Figure 6: Top-3 Retrieval Explanations for One Example Image from COVID and Kvasir
Using Different Explanation Methods.
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Figure 7: Top-3 Retrieval Explanations for an Example Image from Each of the 8 Classes
in Kvasir using TIS.
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Table 3: Model and the Number of Learnable Parameters

Model # Parameters

MedViT small (CNN-Transformer Hybrid) 31.14M

MedViT base (CNN-Transformer Hybrid) 44.41M

MedViT large (CNN-Transformer Hybrid) 57.68M

ResNet50 23.51M

DenseNet121 6.95M

MIRViT small 21.67M

MIRViT base 85.80M

MIRDeiT small 21.67M

As can be observed from the table 3, the MIRViT small and MIRDeiT small have fewer
parameters than ResNet50 and have improved performance. DenseNet model is more com-
pact, but in general, the parameter settings for other small and base models are comparable.
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