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ABSTRACT

Alzheimer’s disease (AD) alters Electroencephalogram (EEG) through slowed os-
cillations and diminished neural drive, yet most AD-EEG pipelines are black-box
classifiers, lacking a unifying mathematical account of how both neural activ-
ity and its interaction dynamics evolve over time. We introduce BayesENDS, a
Bayesian electrophysiological neural dynamical system that explores the possibil-
ity of incorporating neuron spiking mechanisms into a Bayesian neural dynami-
cal system. By introducing a differentiable leaky-integrate-and-fire (dLIF) prior,
BayesENDS is capable of inferring population events and interaction dynamics
directly from EEG—without spike or interaction annotations. The dLIF prior en-
codes membrane dynamics, rate/refractory constraints, and physiologically plau-
sible frequency ranges, improving identifiability while yielding biologically plau-
sible, subject-level biomarkers alongside AD predictions. Across synthetic event-
sequence benchmarks and real AD EEG datasets, BayesENDS delivers superior
performance to state-of-the-art baseline methods.

1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with growing global impact.
Electroencephalography (EEG) provides a non-invasive, low-cost window into brain function and
consistently shows oscillatory slowing in AD—power increases in delta/theta and decreases in al-
pha/beta—together with alterations in large-scale interactions and synchrony (Jeong, 2004; Dauwels
et al., 2010; Babiloni et al., 2021). While deep learning has advanced EEG-based AD assessment,
most pipelines remain black-box classifiers (Ieracitano et al., 2020; Pineda et al., 2019; Vicchietti
et al., 2023; Tawhid et al., 2025) optimized for accuracy from hand-crafted or learned features,
offering limited insight into how neural activity and interaction dynamics co-evolve over time (Eht-
eshamzad et al., 2024; Acharya et al., 2025; Wang et al., 2024; Klepl et al., 2024).

Two technical obstacles motivate a unifying, electrophysiology-aware dynamical framework. First,
scalp EEG is a noisy, frequency-dependent linear mixture of mesoscopic sources; recovering la-
tent population activity is an ill-posed inverse problem sensitive to modeling choices (Michel &
Brunet, 2019; Michel et al., 2004). Second, interaction metrics face interpretational pitfalls (volume
conduction, common input, SNR differences) and can yield inconsistent estimates across analysis
pipelines unless dynamics and biophysical constraints are handled explicitly (Bastos & Schoffelen,
2016; Mahjoory et al., 2017).

We address these gaps with BayesENDS, a Bayesian electrophysiological neural dynamical sys-
tem that learns event-driven latent dynamics and a conditional interaction graph directly from mul-
tichannel EEG. Methodologically, BayesENDS (a) represents per-channel activity with an Event
Posterior Differential Equation (EPDE) whose solution yields expected next-event times; (b)
samples inter-event intervals via a Mean–Evolving Lognormal Process (MELP), where the EPDE
outputs parameterize the means of a log-normal mixture with reparameterized sampling; (c) im-
poses an electrophysiology-informed differentiable leaky–integrate–and–fire (dLIF) prior that
encodes leak, refractory/rate constraints, and plausible frequency ranges; and (d) infers a directed
event–relational graph (ERG) by mapping cross-channel event lags through a smooth nonlinear-
ity into edge weights. The entire model is trained end-to-end with a compact variational objective;
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Figure 1: Overview of the BayesENDS pipeline illustrating the integration of raw EEG sig-
nals, EEGNet embeddings, the differentiable leaky-integrate-and-fire (dLIF) prior, and the event-
relational graph (ERG) prior to generate clinically interpretable predictions for Alzheimer’s Disease
(AD), Frontotemporal Dementia (FTD), and Healthy Controls (HC).

our analysis provides a tractable IVP-based bound for the event–prior KL under the dLIF rate and
establishes ERG stability to lag noise.

Major Contributions:

• A unified Bayesian neural dynamical system that infers latent events and event–relational
graph dynamics directly from EEG without spike or edge annotations.

• An electrophysiology-informed dLIF prior integrated into training, providing biophysical
rate and refractory constraints.

• Theory establishing a computationally tractable IVP-based upper bound for the learning
objective and a stability bound for BayesENDS’s inferred graph dynamics.

• Empirical evidence showing: (i) accurate recovery of latent event and graph dynamics that
improve understanding of AD; and (ii) superior performance over strong baselines on both
synthetic benchmarks and real AD EEG datasets.

2 RELATED WORK

Most AD–EEG studies cast diagnosis as supervised classification over hand-crafted spec-
tral/connectivity features or learned representations, achieving strong performance but offering lim-
ited mechanistic insight into how timing and interactions co-evolve. Recent Scientific Reports pa-
pers exemplify this trend: comprehensive pipelines comparing computational methods for AD clas-
sification, and multi-stage classification across the AD spectrum during memory-encoding versus
rest (with higher accuracy during task-evoked states) (Vicchietti et al., 2023; Kim et al., 2024). Ear-
lier machine-learning work integrates engineered EEG features (often spectral/topographic) within
multimodal classifiers for dementia discrimination (Ieracitano et al., 2020). In contrast, our approach
models latent event dynamics and a conditional interaction graph jointly, providing a generative ac-
count of how event timing and cross-channel lags give rise to predictive structure in EEG.

3 PROBLEM FORMULATION

We study unsupervised latent–event and relation discovery in multichannel time series for labeled
sequences. Given D = {(X(n), Y (n))}Nn=1 with X(n) = {x(n)c }Cc=1 (e.g., multichannel EEG) and
labels Y (n) ∈ Y (e.g., AD vs. control), and no supervision on per-channel events or inter-channel
relations, the objective is to infer (i) channel-wise latent event dynamics and (ii) a (possibly time-
varying) relational/graphical structure among channels. For each channel c, let T (n)

c = {t(n)c,k}
denote latent event times and let p(n)(t) = {p(n)c (t)}Cc=1 denote the corresponding posterior event-
time distributions; the relational structure is represented as a graph process G(n)(t) with adjacency
A(n)(t) ∈ RC×C . We aim to recover {p(n)(t)}Nn=1 and P

(
G(n)(·) | p(n)(·)

)
from {X(n)}Nn=1,

2
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while using
(
p(n)(·), G(n)(·)

)
as inputs to a downstream predictor for Y (n); importantly, Y (n) does

not supervise the latent events or relations directly. Interaction strength is modeled as a function
of the temporal co-occurrence and ordering of inferred events—an assumption grounded in neuro-
biological spike-timing–dependent plasticity (STDP) mechanisms (near-coincident pre/post spikes
modulate synaptic efficacy) (Bi & Poo, 1998; Feldman, 2012).

4 BAYESIAN NEURAL DYNAMICAL SYSTEM

4.1 OVERVIEW

We introduce a Bayesian neural dynamical system for multichannel sequences that represents each
channel with a latent event process and couples channels through a conditional event–relational
graph (ERG) driven by the timing and ordering of inferred events. This design is motivated by
settings where the clinical signal resides in when events and how they align across channels, for
example, in EEG for Alzheimer’s disease, oscillatory slowing and disrupted coordination suggest
that event timing and cross-channel alignment are predictive, while neurobiological plasticity links
near-coincident spikes to stronger coupling. Concretely, the dynamics of events is summarized
by an event posterior differential equation (EPDE) whose read-out parameterizes the means of
a mean-evolving lognormal process (MELP) for reparameterized sampling. The ERG G(t) is
inferred from event co-occurrence and lags via an STDP-shaped mapping and, together with T and
the observed X , is passed to a decoder pθ

(
Y | X,T,G

)
for downstream prediction. Training is

end-to-end via variational learning that jointly optimizes EPDE and MELP; details follow in the
learning subsection.

4.2 LEARNING

We train end-to-end with a variational objective that jointly optimizes the Event Posterior Dif-
ferential Equation (EPDE) and the Mean–Evolving Lognormal Process (MELP), while inferring
an event–relational graph (ERG) without graph annotations; a weak observable-based regularizer
is weighted by β ≥ 0 (details in the ERG subsection). For labeled data {(X(n), Y (n))}Nn=1,
with EPDE-induced qϕ(T

(n) | X(n)), MELP posterior qϕ(τ (n) | X(n)), and decoder pθ
(
Y (n) |

X(n), T (n), G(n)
)
, we maximize

LELBO(θ, ϕ, η) =

N∑
n=1

Eqϕ

[
log pθ

(
Y (n) | X(n), T (n), G(n)

)]
(1)

− KL
(n)
T − KL(n)

τ (2)

+ βR(n)
ERG + λLIFR(n)

LIF. (3)

Here KL
(n)
T := KL

(
qϕ(T

(n) | X(n)) ∥ pdLIF(T )
)

compares the EPDE path law to the
electrophysiology-informed event prior pdLIF(T ); KL(n)

τ :=KL
(
qϕ(τ

(n) | X(n)) ∥ p0(τ)
)

measures
divergence to a lognormal(-mixture) prior; R(n)

LIF softly enforces leaky–integrate–and–fire consis-
tency on learned rate proxies with weight λLIF≥0.

Challenges. (i) KL
(n)
T involves path measures induced by a differential equation and is intractable

in closed form (the integral over an infinite-dimensional trajectory); we use a tractable integral–rate
surrogate that depends on the dLIF rate r(t) (formal bound in the Theory subsection). (ii) Enforcing
the LIF prior is nontrivial because the spike function in LIF is non-differentiable, which hinders
direct incorporation into neural training; we therefore replace hard spikes with differentiable rate
proxies and constrain them to follow dLIF laws via R(n)

LIF. (iii) ERG learning lacks ground-truth
edges; we include only a light, observable-based regularizerR(n)

ERG to bias edges toward experimen-
tal statistics, deferring full details to the ERG subsection.

4.3 PRIOR: ELECTROPHYSIOLOGY–INFORMED DLIF PRIOR

We place a biophysical prior on event timing by instantiating each channel’s latent events as a re-
newal process whose hazard is derived from a differentiable leaky–integrate–and–fire (dLIF) ab-
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straction (Burkitt, 2006). Let the (rescaled) membrane potential evolve as

d

dt
uc(t) = bc(t)− uc(t), bc(t) > 1,

where bc(t) is an effective drive. The implied instantaneous firing rate is

rc(t) =
[
− log

(
1− 1/bc(t)

)]−1

, pdLIF(t) = rc(t) exp
(
−
∫ t

0

rc(s) ds
)
,

and the dLIF event prior for channel c is the renewal law pdLIF(Tc) with hazard rc(t). We pa-
rameterize bc(t) by a bounded neural mapping from embeddings (optionally graph–aware), e.g.
bc(t) = 1 + softplus

(
gξ(zc(t))

)
, ensuring bc(t)> 1 and thus rc(t)> 0. Absolute/refractory effects

are incorporated through a smooth gating factor αc(t) ∈ (0, 1] (constructed from recent events),
using rc(t)← αc(t) rc(t) to suppress implausible near–back–to–back spikes.

Because the hard spike nonlinearity is non–differentiable, we regularize rates rather than spikes.
Concretely, the learning objective includes a dLIF consistency term

RLIF =
∑
c

∫ S

0

(
r̂c(t)− rc(t)

)2
dt,

where r̂c(t) is a differentiable rate proxy read from the EPDE state; this enforces LIF laws without
invoking non–differentiable spike functions (Neftci et al., 2019). The variational KL between the
EPDE–induced path law qϕ(Tc | X) and pdLIF(Tc) is intractable in general; in the Theory subsection
we replace it by a tractable integral–rate bound that depends on rc(t), yielding a stable surrogate for
training while preserving the biophysical semantics of the prior.

4.4 POSTERIOR: EVENT POSTERIOR DIFFERENTIAL EQUATION (EPDE)

For each channel i, let qi(t | xi) denote the density of the next event time given the observed
sequence xi. The expected next event after t̃i−1 is

t̃i =

∫ ∞

t̃i−1

t qi(t | xi) dt. (4)

This induces the IVP

Φ′
i(t) = − t qi(t | xi), Φi(0) =

∫ ∞

0

t qi(t | xi) dt, t̃i = Φi(t̃i−1). (5)

Since Φi(0) is intractable, we approximate the solution with a differentiable neural surrogate

t̃i = fθΦ
(
t̃i−1, xi

)
, (6)

implemented to ensure t̃i > t̃i−1. Differentiating the surrogate Φi(t) gives the approximate event-
time posterior used in training:

qi(t | xi) = −Φ′
i(t)

t
. (7)

The predicted t̃i (or its increment) will be used as the mean parameter for the Mean–Evolving
Lognormal Process (MELP); details follow next.

4.5 SAMPLING: MEAN–EVOLVING LOGNORMAL PROCESS (MELP)

Given the previous event time t̃c,i−1 on channel c, the EPDE provides a K-dimensional vector of
means τ̃c = (τ̃c,1, . . . , τ̃c,K)∈RK

+ together with mixture weights wc = (wc,1, . . . , wc,K)∈∆K−1

and scales sc = (sc,1, . . . , sc,K)∈RK
+ . MELP draws the inter–event interval τc,i from a lognormal

mixture whose component means are tied to the EPDE outputs:

p(τc,i | t̃c,i−1, X) =

K∑
j=1

wc,j LogN
(
τc,i; µc,j , s

2
c,j

)
, (8)

µc,j = log τ̃c,j − 1
2s

2
c,j =⇒ ELogN(µc,j ,s2c,j)

[τ ] = τ̃c,j . (9)

4
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Sampling is reparameterized to keep gradients pathwise:
k ∼ Cat(wc), ε ∼ N (0, 1), (10)

τc,i = exp
(
µc,k + sc,k ε

)
, tc,i = tc,i−1 + τc,i. (11)

During training we use a differentiable variant of Eq. (10) (e.g., Gumbel–Softmax) and take hard
samples at test time. MELP guarantees positivity, captures multimodal timing statistics, and pro-
vides closed-form component-wise KL terms against a lognormal(-mixture) prior used in the learn-
ing objective; the mixture expectation E[τc,i] =

∑
j wc,j τ̃c,j is also available in closed form for

downstream computations (e.g., ERG lags).

4.6 EVENT–RELATIONAL GRAPH (ERG)

We infer a time–varying graph G(t) from temporal lags between channels, conditioned on the
EPDE/MELP posterior. For channels i, j and a latent event realization T ∼qϕ(T | X), let ∆t̃ij(t;T )
be the lag between their most recent events up to t. A smooth non–linear map φη : R→ [0, 1] con-
verts this lag to an edge score

eij(t;T ) = φη

(
∆t̃ij(t;T )

)
∈ [0, 1]. (12)

We approximate the conditional edge weight via Monte Carlo with S posterior samples,

Āij(t) =
1

S

S∑
s=1

φη

(
∆t̃

(s)
ij (t)

)
, (13)

Because no edge annotations are available, we bias Ā toward observable statistics computed from
X (e.g., Pearson correlations of attributes of interest) via a Fisher–z alignment:

zobsij = atanh
(
sij

)
, ρij = 2Āij − 1, zpredij = atanh(ρij), (14)

RERG =
∑
i<j

[
(zobsij − z

pred
ij )2

2σ2
ij

+ 1
2 log σ

2
ij

]
, σij = ε+ softplus

(
MLP(z⋆i∥z⋆j )

)
, (15)

where z⋆i are time–pooled node features and ε> 0. This regularizer (weighted by β in the learning
objective) encourages consistency with experimental observables while leaving edge strengths to be
determined purely by data-driven event lags.

4.7 THEORY

Lemma 1 (Shift–stability of IVPs (Huang et al., 2021)). Let e > 0 and U ⊂ Rn be open. Let
f1, f2 : [a−2e, a)→ Rn be continuously differentiable with ∥f ′1∥ ≤M for someM > 0. Consider

y′1(t) = f1(t), y1(a− e) = x1, y′2(t) = f2(t) = f1(t− e), y2(a− e) = x2.

Then, as e→ 0+,
lim

e→0+

(
lim
t↗a
∥y1(t)− y2(t)∥

)
≤ lim

e→0+
∥x1 − x2∥.

Theorem 2 (IVP–based upper bound for the event–prior KL under dLIF rates). Let q(t) be a strictly
positive, integrable density on [0, S] (0 < S ≤ ∞). Let the electrophysiology–informed prior be

pr(t) = r(t) exp
(
−
∫ t

0

r(u) du
)
,

where r : [0, S] → [a, b] ⊂ (0,∞) is measurable with 0 < a ≤ b < ∞. Define the change of
variables m = −e−t ∈ [−e−S ,−1) and M = − log(−m) = t. Set

g(m) := −q(M)

mM
log

q(M)

M r(M) e−
∫ M
0

r(u) du
, G′(m) = g(m), G(−e−S) = 0. (16)

Then

KL
(
q ∥ pr

)
=

∫ S

0

q(t) log
q(t)

r(t)e−
∫ t
0
r
dt = lim

ε↓0
G(−ε), (17)

and for any ε ∈ (0, e−S),

KL
(
q ∥ pr

)
≤ G(−ε) +

∣∣G(−2ε)−G(−ε) ∣∣ =: Uε, (18)

with Uε → KL(q∥pr) as ε ↓ 0.

5
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In training we evaluate the KL term using the computable bound Uε from Eq. 18 (fixed small ε and
an ODE solver for Eq. (16)).

We then analyze how entry–wise perturbations of lags affect the learned ERG when the edge map
is exponential. For channels i ̸= j and time t, let the noise–free lag be ∆tij(t;T ) and the perturbed
lag be ∆̃tij(t;T ) = ∆tij(t;T )+ ξij(t;T ). Define the edge map ϕα(x) = exp(−α|x|) ∈ [0, 1] with
slope parameter α > 0 and the (noise–free and perturbed) edges

eij(t;T ) = ϕα(∆tij(t;T )), ẽij(t;T ) = ϕα(∆̃tij(t;T )).

The decoder uses the Monte–Carlo, time–averaged adjacencies

Āij =
1

MS

M∑
m=1

S∑
s=1

eij(tm;T (s)), ˜̄Aij =
1

MS

M∑
m=1

S∑
s=1

ẽij(tm;T (s)).

Theorem 3 (Entry–wise and matrix stability). The exponential edge map is globally α–Lipschitz:
for all x, y ∈ R, ∣∣ϕα(x)− ϕα(y)∣∣ ≤ α |x− y|. (19)

Consequently, for any (i, j, t, T ),∣∣ẽij(t;T )− eij(t;T )∣∣ ≤ α |ξij(t;T )|. (20)

Averaging over time and Monte–Carlo samples yields the entry–wise bound

∣∣ ˜̄Aij − Āij

∣∣ ≤ α |ξij |, |ξij | :=
1

MS

M∑
m=1

S∑
s=1

|ξij(tm;T (s))|, (21)

and the matrix (Frobenius–norm) bound

∥ ˜̄A− Ā∥F ≤ α

MS

M∑
m=1

S∑
s=1

∥Ξ(m,s)∥F, Ξ(m,s) :=
[
ξij(tm;T (s))

]
i̸=j

, (22)

hence ∥ ˜̄A− Ā∥F ≤ α ∥Ξ∥F with ∥Ξ∥F the average Frobenius norm of lag–noise matrices.
Corollary 4 (Deterministic and probabilistic perturbation bounds). (i) (Uniformly bounded noise).
If |ξij(t;T )| ≤ ε∞ almost surely, then∣∣ ˜̄Aij − Āij

∣∣ ≤ α ε∞, ∥ ˜̄A− Ā∥F ≤ α ε∞ √
C(C − 1). (23)

(ii) (Sub–Gaussian noise). Suppose {ξij(tm;T (s))}m,s are i.i.d., mean–zero, sub–Gaussian with

proxy σ2 (i.e., Eeλξ ≤ exp(λ2σ2/2)). Then each difference ∆ij :=
˜̄Aij− Āij is sub–Gaussian with

proxy α2σ2/(MS) and

P(|∆ij | ≥ τ) ≤ 2 exp
(
− MS τ2

2α2σ2

)
. (24)

If, in addition, ξ ∼ N (0, σ2), then

E
[
|∆ij |

]
≤ ασ

√
2

π
, E

[
∥ ˜̄A− Ā∥F] ≤ ασ√ 2

π

√
C(C − 1). (25)

Implication. Small perturbations in EPDE/MELP lags translate linearly (in α) to entry–wise
changes in the ERG, and averaging over samples/time further contracts the perturbation. Thus the
ERG is provably stable to modest timing noise, with explicit constants controlled by the edge map
slope α and the noise magnitude.

5 EXPERIMENTS

5.1 ALZHEIMER’S DISEASE EEG DATASET EXPERIMENTS

We extensively evaluated BayesENDS on two diverse EEG datasets covering Alzheimer’s disease
(AD), frontotemporal dementia (FTD), mild cognitive impairment (MCI), and healthy controls.

6
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Table 1: Results on Alzheimer’s EEG datasets.

Model Dataset AD cohort A Dataset AD cohort B
Accuracy (%) F1 (%) Accuracy (%) F1 (%)

EEGNet 68.10 66.49 71.37 60.85
LCADNet 70.52 68.12 72.44 49.38
LSTM 70.52 68.24 77.89 61.35
ATCNet 64.71 60.98 71.09 50.92
ADFormer 69.35 65.28 82.38 63.89
LEAD 72.68 69.98 80.00 62.21
BayesENDS 75.03 72.69 89.82 64.87

Table 2: Ablation of spike-informed and connectome priors in BayesENDS on Alzheimer’s EEG
Datasets. Accuracy and F1 (%) reported as mean ± s.d. across runs.

Dataset Variant Accuracy (%) F1 (%)

AD cohort A

No prior 70.52 ± 11.83 65.46 ± 13.10
dLIF prior 73.92 ± 9.84 71.41 ± 10.72
ERG prior 72.75 ± 6.63 70.35 ± 7.91
Dual priors 75.03 ± 8.29 72.69 ± 8.16

AD cohort B

No prior 83.22 ± 15.10 60.72 ± 12.37
dLIF prior 87.98 ± 8.09 62.95 ± 9.24
ERG prior 86.20 ± 9.96 65.63 ± 9.17
Dual priors 89.82 ± 8.39 64.87 ± 10.67

Across both datasets, BayesENDS outperformed state-of-the-art baselines such as CNNs, RNNs,
and transformers. In Dataset AD cohort A, BayesENDS showed a clear ability to distinguish AD,
FTD, and healthy participants, with consistently lower performance variability across runs. This
stability highlights its effectiveness in capturing subtle neural dynamics despite EEG heterogene-
ity. In the more unbalanced Dataset AD cohort B, where distinctions between moderate AD, MCI,
and healthy controls are subtler, BayesENDS still achieved the highest diagnostic accuracy. While
some baselines showed significant performance fluctuations, BayesENDS remained robust, balanc-
ing sensitivity and specificity—demonstrating resilience to noise and distribution shifts common in
real-world EEG data. Overall, BayesENDS effectively extracts clinically meaningful biomarkers
from EEG, confirming its practical potential for accurate, interpretable AD diagnostics.

5.2 ABLATION STUDIES

We ablated BayesENDS to assess each prior’s impact on accuracy and interpretability (Table 2). On
AD Cohort A, the no-prior baseline is moderate; adding the dLIF (spiking) prior boosts accuracy
and AUC, while the ERG (graph) prior improves accuracy, F1, and AUC via inter-channel modeling.
Combining both yields the best scores. On AD Cohort B, the pattern holds with larger gains: the
spiking prior gives the biggest accuracy lift under subtler classes, and the graph prior raises F1/AUC.
Their combination again performs best. Overall, each prior helps, and together they provide robust,
interpretable predictions on realistic EEG.

6 VISUALIZATION AND INTERPRETABILITY ANALYSIS

6.1 BOUNDARY TIME PREDICTION VISUALIZATION

Figure 4 visually compares the predicted versus ground-truth boundary times for STRODE and
BayesENDS across three distinct frequency bands ([5–10 Hz], [10–15 Hz], and [15–20 Hz]).
STRODE demonstrates noticeable deviations from the ideal diagonal alignment, suggesting chal-
lenges in accurately recovering true boundary timings, particularly at higher frequency bands.
In contrast, BayesENDS consistently maintains a tighter diagonal alignment across all frequency
ranges, indicating superior accuracy and robustness in capturing underlying temporal structures.

7
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Figure 2: Kernel density estimates of the inferred dLIF frequency distributions across Alzheimer’s
disease (AD), mild cognitive impairment (MCI), and healthy control (HC) groups for EEG channels
F3, O2, Pz, and T3. The clear trend of decreasing central frequency with increasing disease severity
illustrates the physiological relevance and interpretability of the BayesENDS model’s inferred latent
neural dynamics.

This visualization clearly illustrates BayesENDS’ effectiveness in accurately inferring latent event
boundaries in the toy dataset, reinforcing its suitability for precise temporal modeling in EEG data.

6.2 DLIF INFERRED FREQUENCY VISUALIZATION

To further explore and validate the interpretability of the latent neural dynamics captured by
BayesENDS, we visualized the inferred frequency distributions derived from the differentiable
leaky-integrate-and-fire (dLIF) prior across several key EEG channels associated with Alzheimer’s
disease progression, including channels F3, O2, Pz, and T3. Figure 2a exemplifies the frequency
distributions at channel F3 for the Alzheimer’s disease (AD), mild cognitive impairment (MCI), and
healthy control (HC) groups. The distributions clearly illustrate a trend of decreasing frequency
with increasing disease severity. Specifically, healthy controls exhibit the highest central frequency,
indicating typical neural oscillatory activity. Subjects with MCI show slightly reduced frequency
values, signifying the onset of neural slowing, while the AD group displays the lowest central fre-
quencies, reflecting significant neural slowing commonly observed in Alzheimer’s pathology. This
consistent pattern across multiple critical EEG channels underscores the physiological relevance of
BayesENDS’ latent dynamics. The clear association between disease severity and decreased oscilla-
tory frequency validates the biological interpretability of our model, highlighting its potential utility
for understanding Alzheimer’s disease progression and supporting clinical decision-making.
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(a) BayesENDS (HC) (b) BayesENDS (FTD) (c) BayesENDS (AD)

(d) BayesENDS ERG inferred graphs

(e) Pearson (HC) (f) Pearson (FTD) (g) Pearson (AD)

(h) Pearson-based prior graphs

Figure 3: Comparison of EEG connectivity graphs inferred by BayesENDS versus Pear-
son correlation-based priors across healthy controls (HC), frontotemporal dementia (FTD), and
Alzheimer’s disease (AD) groups.

6.3 GRAPH CONNECTIVITY VISUALIZATION

We also visualized BayesENDS’ inferred event-relational graphs (ERGs) against Pearson
correlation-based connectivity graphs (Figure 3). Chord diagrams revealed distinct connectivity pat-
terns across healthy controls (HC), FTD, and AD groups. BayesENDS’ ERGs captured biologically
plausible trends: HC showed dense, robust connectivity, while FTD and AD exhibited progressively
sparser and weaker links. These patterns aligned with Pearson-derived graphs, validating the ERG’s
effectiveness. The coherence underscores ERG’s ability to reflect dementia-related network degra-
dation, strengthening model interpretability and clinical relevance.

7 CONCLUSION

We presented BayesENDS, a Bayesian electrophysiological neural dynamical system that infers
latent event dynamics and a conditional event–relational graph directly from multichannel EEG.
By coupling an Event Posterior Differential Equation (EPDE) with a Mean–Evolving Lognor-
mal Process (MELP) and an electrophysiology-informed dLIF prior, the model yields identifiable,
physiology-aware latents and supports end-to-end prediction. Our theory provides a tractable IVP-
based upper bound for the event–prior KL and establishes stability of the inferred graph to lag noise,
while experiments on synthetic and AD EEG data demonstrate superior accuracy and interpretable
biomarkers.
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B PROOF OF THEOREM 2

Proof. By definition,

KL(q∥pr) =
∫ S

0

q(t) log
q(t)

r(t)e−
∫ t
0
r
dt.

Using m = −e−t, we have t = − log(−m) =M and dt = − 1
m dm. Hence

KL(q∥pr) =
∫ 0

−e−S

q(M)

M
log

q(M)

Mr(M)e−
∫ M
0

r

(
− 1

m

)
dm =

∫ 0

−e−S

g(m) dm.

This improper integral equals limε↓0
∫ −ε

−e−S g(m) dm = limε↓0G(−ε), proving Eq. (17). Since
r(t) ∈ [a, b] and q is integrable, g is locally integrable near m = 0−. Split the integral at −ε and at
−2ε:∫ 0

−e−S

g =

∫ −ε

−e−S

g+

∫ 0

−ε

g ≤ G(−ε)+
∣∣∣ ∫ 0

−ε

g
∣∣∣ ≤ G(−ε)+∣∣∣ ∫ −ε

−2ε

g
∣∣∣ = G(−ε)+|G(−2ε)−G(−ε)|,

which yields Eq. (18). The last inequality uses Lemma 1 (applied to the IVPs G′
1(m) = g(m)

and G′
2(m) = g(m) shifted by ε) to control the tail near the singular endpoint and the fact that

r is bounded in [a, b], ensuring g remains controlled as m → 0−. As ε ↓ 0, the tail vanishes by
dominated convergence, hence Uε → KL(q∥pr).

C PROOF OF THEOREM 3

Proof. (Lipschitzness). The absolute value is 1–Lipschitz: ||x| − |y|| ≤ |x − y|. The function
u 7→ e−αu on u ≥ 0 has derivative |−αe−αu| ≤ α, hence it is α–Lipschitz on R≥0. By composition
of Lipschitz maps,

|ϕα(x)− ϕα(y)| =
∣∣e−α|x| − e−α|y|∣∣ ≤ α ∣∣|x| − |y|∣∣ ≤ α |x− y|,

establishing Eq. (19). Taking y = x+ ξ gives Eq. (20).

(Averaging). Using linearity of the average and triangle inequality,∣∣ ˜̄Aij−Āij

∣∣ = ∣∣∣ 1

MS

∑
m,s

(
ẽij(tm;T (s))−eij(tm;T (s))

)∣∣∣ ≤ 1

MS

∑
m,s

∣∣ẽij−eij∣∣ ≤ α

MS

∑
m,s

|ξij(tm;T (s))|,

which is Eq. (21).
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(Matrix bound). Define ∆(m,s) := [ẽij(tm;T (s))−eij(tm;T (s))]i̸=j , so ˜̄A−Ā = 1
MS

∑
m,s ∆

(m,s).
By the triangle inequality of the Frobenius norm,

∥ ˜̄A− Ā∥F ≤ 1

MS

∑
m,s

∥∆(m,s)∥F.

Entry–wise inequality Eq. 20 implies ∥∆(m,s)∥F ≤ α ∥Ξ(m,s)∥F, giving Eq. (22).

D PROOF OF COROLLARY 4

Proof. (i) From Eq. (21), |ξij | ≤ ε∞, giving the entry–wise claim. For the matrix bound,
∥Ξ(m,s)∥F ≤ ε∞

√
C(C − 1) for every (m, s); apply Eq. (22).

(ii) For each fixed (i, j), define i.i.d. variables Ym,s := ẽij(tm;T (s)) − eij(tm;T (s)). By Eq.
(20), Ym,s is an α–Lipschitz transform of ξij(tm;T (s)), hence Ym,s is sub–Gaussian with proxy
α2σ2 (standard Lipschitz preservation of the ψ2–norm). Then ∆ij = (MS)−1

∑
m,s Ym,s is

sub–Gaussian with proxy α2σ2/(MS), yielding Eq. (24) via the Chernoff bound.

For the Gaussian–mean bound, use |Ym,s| ≤ α |ξij(tm;T (s))| and linearity:

E|∆ij | ≤
α

MS

∑
m,s

E|ξ| = αE|ξ| = ασ
√

2
π ,

where the last equality is the mean absolute value of a zero–mean Gaussian. Summing the en-
try–wise bounds in quadrature gives the Frobenius expectation in Eq. (25).

E ALZHEIMER’S DISEASE EEG BASELINE METHODS

To rigorously evaluate our proposed method, we benchmarked it against several representative deep
learning approaches commonly utilized for EEG analysis. These baselines include convolutional,
recurrent, attention-based, and transformer-based models, each demonstrating distinct strengths for
capturing various aspects of EEG signal patterns.

EEGNet (Lawhern et al., 2018) is a compact convolutional neural network initially developed for
EEG-based brain–computer interfaces. It integrates depthwise and separable convolutions to ef-
fectively capture temporal, spatial, and frequency-specific characteristics in EEG data, making it a
well-recognized lightweight yet powerful model in EEG classification tasks.

LCADNet (Kachare et al., 2024) is specifically tailored for Alzheimer’s disease detection from EEG
data. Utilizing optimized convolutional structures designed for computational efficiency without
sacrificing discriminative power, LCADNet achieves competitive performance in resource-limited
environments, making it a strong baseline for EEG-based AD diagnosis.

LSTM (Zhang & Yao, 2021) embodies recurrent neural networks tailored for modeling temporal
dependencies inherent in EEG signals. By maintaining and updating hidden states across sequences,
LSTMs effectively capture long-term dynamics and temporal correlations, making them naturally
suitable for sequential EEG analyses.

ATCNet (Altaheri et al., 2022) employs a physics-informed architecture combining temporal con-
volutions with attention mechanisms. Originally proposed for motor imagery EEG classification,
it effectively captures both local temporal details and global dependencies, showcasing adaptability
across various EEG applications.

ADformer (Wang et al., 2024) is a multi-granularity transformer specifically crafted for Alzheimer’s
disease evaluation using EEG signals. It utilizes multi-scale attention mechanisms to concurrently
model fine-grained and coarse-grained temporal information, setting a high-performance standard
in EEG-based AD diagnostics.

LEAD (Wang et al., 2025) exemplifies the recent advancement toward large-scale foundation mod-
els in EEG analysis. Pre-trained extensively on vast EEG datasets and fine-tuned for Alzheimer’s
disease detection, LEAD leverages transfer learning to provide robust, generalizable EEG represen-
tations, establishing a new benchmark in EEG-based clinical assessments.
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E.1 DATASETS

E.1.1 TOY DATASET AND DATA GENERATION

Frequency bands and sampling. To systematically evaluate our model’s ability to capture latent
event dynamics, we constructed synthetic datasets with clearly defined frequency bands. We gener-
ated latent event rates λ from truncated normal distributions centered at the midpoint of each target
frequency band: low band [5–10 Hz] with λ ∼ TruncNormal(µ = 7.5, σ = 1.0; [5, 10]), middle
band [10–15 Hz] with λ ∼ TruncNormal(µ = 12.5, σ = 1.0; [10, 15]), and high band [15–20 Hz]
with λ ∼ TruncNormal(µ = 17.5, σ = 1.0; [15, 20]). This design ensures concentrated event-rate
distributions within each band while avoiding frequencies outside the desired range.

Data scale and splitting strategy. For each frequency band, we independently generated three
data splits: a training set with 150 distinct event rates, each having 50 sequences (7,500 sequences
total); a validation set with 25 new event rates and 50 sequences per rate (1,250 sequences total); and
a test set with an additional 25 new event rates, again with 50 sequences per rate (1,250 sequences
total). Importantly, no overlap of event rates occurs across training, validation, and test splits to
ensure proper evaluation of model generalization.

Sequence generation. Each synthetic sequence comprises 20 observations, constructed by sam-
pling inter-event times ∆ti from an exponential distribution with parameter λ. The event timestamps
ti are obtained cumulatively by ti =

∑i
j=1 ∆tj . Observations yi are subsequently generated using

the relationship:

yi = sin(ti) + ηi, ηi ∼ N (0, σ2
η),

where the default noise level is ση = 0.07. Additional sensitivity analyses varied ση within
{0.05, 0.10, 0.15} to assess model robustness.

Evaluation methodology. Model performance was comprehensively evaluated using three crite-
ria: (1) classification score (CS) assessing sequence-level predictive accuracy, (2) uncertainty cali-
bration, quantified through the median and 95% confidence interval of the estimated event rate λ̂,
obtained via nonparametric resampling within each frequency band, and (3) structural fidelity, mea-
sured using intersection-over-union (IoU) between the predicted latent structure and the ground-truth
event patterns.

E.1.2 ALZHEIMER’S DISEASE EEG DATASET

Dataset AD Cohort A (Miltiadous et al., 2024) consists of resting-state, eyes-closed EEG record-
ings from a total of 88 participants, categorized into 36 individuals diagnosed with Alzheimer’s dis-
ease (AD), 23 patients with frontotemporal dementia (FTD), and 29 healthy control subjects (HC).
The EEG data were collected using 19 electrodes arranged according to the international 10–20
placement system. The recordings have a sampling rate of 500 Hz and an average duration ranging
from approximately 12 to 14 minutes per subject. Provided in adherence to the Brain Imaging Data
Structure (BIDS) standard, the dataset includes both raw and preprocessed EEG signals, enabling
robust comparative analysis across different dementia subtypes.

Dataset AD Cohort B (Sadegh-Zadeh et al., 2023) includes resting-state EEG data from 168 partic-
ipants, segmented into 59 moderate Alzheimer’s disease patients (AD), 7 individuals diagnosed with
mild cognitive impairment (MCI), and 102 healthy controls (HC). EEG recordings were acquired
using the standardized 10–20 electrode placement system, with data presented in MATLAB (.mat)
format. Accompanying the EEG data are Mini-Mental State Examination (MMSE) scores, provid-
ing cognitive assessments for participants. This dataset is particularly tailored for the distinction
of AD from MCI, thus serving as a valuable resource for investigations aimed at early Alzheimer’s
disease diagnosis.
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(d) BayesENDS, [5-10]
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(e) BayesENDS, [10-15]
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(f) BayesENDS, [15-20]

Figure 4: Predicted vs. ground-truth boundary times across frequency bands ([5–10], [10–15],
[15–20] Hz): STRODE vs. BayesENDS.

E.2 TOY DATASET EXPERIMENTS

The toy dataset experiments evaluated how well BayesENDS and baseline neural ODE methods
(NODE (Chen et al., 2018), ODE-RNN (Habiba & Pearlmutter, 2020), and STROD (Huang et al.,
2021)) recover latent event dynamics across distinct frequency bands ([5–10], [10–15], and [15–20]
Hz). As summarized in Table 3, baseline methods achieved strong cosine similarity (CS) scores
across all frequency bands, reflecting good sequence-level prediction performance. However, their
intersection-over-union (IoU) scores were uniformly zero, indicating a fundamental limitation in
capturing the latent event structure. This outcome highlights the common issue with purely data-
driven neural approaches: despite excellent predictive accuracy, they often fail to recover the under-
lying generative mechanisms of data.

In contrast, BayesENDS maintained similarly high CS scores while notably achieving meaning-
ful IoU values (e.g., 0.473 at [5–10] Hz, 0.289 at [10–15] Hz, and 0.202 at [15–20] Hz). These
non-zero IoU scores demonstrate that BayesENDS successfully captures latent structures consis-
tent with the generative process, particularly emphasizing the method’s ability to infer interpretable
and biologically plausible event dynamics. Moreover, the predicted event rates from BayesENDS
showed wider but informative uncertainty intervals, aligning closely with the true frequency band
intervals. Such uncertainty quantification highlights BayesENDS’ capacity to provide both accurate
and interpretable latent dynamics in noisy and ambiguous settings.

E.3 FIGURES FOR ALBATION EXPERIMENTS
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Table 3: Toy dataset results by frequency band. CS: Cosine Similarity, IoU: Intersection-over-Union.

Frequency Band (Hz) Model CS Median Rate 95% CI IoU

[5, 10] NODE 0.951 1.000 [1.000, 1.000] 0.000
[5, 10] ODE-RNN 0.951 1.000 [1.000, 1.000] 0.000
[5, 10] STRODE 0.967 0.340 [0.269, 0.410] 0.000
[5, 10] BayesENDS (Ours) 0.983 7.532 [4.300, 14.867] 0.473

[10, 15] NODE 0.951 1.000 [1.000, 1.000] 0.000
[10, 15] ODE-RNN 0.951 1.000 [1.000, 1.000] 0.000
[10, 15] STRODE 0.964 0.251 [0.153, 0.348] 0.000
[10, 15] BayesENDS (Ours) 0.982 12.503 [7.587, 24.918] 0.289

[15, 20] NODE 0.951 1.000 [1.000, 1.000] 0.000
[15, 20] ODE-RNN 0.951 1.000 [1.000, 1.000] 0.000
[15, 20] STRODE 0.961 0.532 [0.369, 0.695] 0.000
[15, 20] BayesENDS (Ours) 0.976 18.843 [10.465, 35.244] 0.202
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