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ABSTRACT

Alzheimer’s disease (AD) alters Electroencephalogram (EEG) through slowed os-
cillations and diminished neural drive, yet most AD-EEG pipelines are black-box
classifiers, lacking a unifying mathematical account of how both neural activ-
ity and its interaction dynamics evolve over time. We introduce BayesENDS, a
Bayesian electrophysiological neural dynamical system that explores the possibil-
ity of incorporating neuron spiking mechanisms into a Bayesian neural dynami-
cal system. By introducing a differentiable leaky-integrate-and-fire (dLIF) prior,
BayesENDS is capable of inferring population events and interaction dynamics
directly from EEG—without spike or interaction annotations. The dLIF prior en-
codes membrane dynamics, rate/refractory constraints, and physiologically plau-
sible frequency ranges, improving identifiability while yielding biologically plau-
sible, subject-level biomarkers alongside AD predictions. Across synthetic event-
sequence benchmarks and real AD EEG datasets, BayesENDS delivers superior
performance to state-of-the-art baseline methods.

1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with growing global impact.
Electroencephalography (EEG) provides a non-invasive, low-cost window into brain function and
consistently shows oscillatory slowing in AD—power increases in delta/theta and decreases in al-
pha/beta—together with alterations in large-scale interactions and synchrony (Jeong, 2004; Dauwels
et al., 2010; Babiloni et al., 2021). While deep learning has advanced EEG-based AD assessment,
most pipelines remain black-box classifiers (Ieracitano et al., 2020; Pineda et al., 2019; Vicchietti
et al., 2023; Tawhid et al., 2025) optimized for accuracy from hand-crafted or learned features,
offering limited insight into how neural activity and interaction dynamics co-evolve over time (Eht-
eshamzad et al., 2024; Acharya et al., 2025; Wang et al., 2024b; Klepl et al., 2024).

Two technical obstacles motivate a unifying, electrophysiology-aware dynamical framework.
First, scalp EEG is a noisy, frequency-dependent linear mixture of mesoscopic sources; re-
covering latent neuron population activity is an ill-posed inverse problem sensitive to mod-
eling choices (Michel & Brunet, 2019; Michel et al., 2004). Second, interaction met-
rics face interpretational pitfalls (volume conduction, common input, SNR differences) and
can yield inconsistent estimates across analysis pipelines unless dynamics and biophysi-
cal constraints are handled explicitly (Bastos & Schoffelen, 2016; Mahjoory et al., 2017).

EEGNetRaw EEG 
Signals

ENDS

dLIF Prior Event–Relational Graph Prior

AD FTD HC

Classifier

Embedding Predictions

BayesENDS

Figure 1: Overview of the BayesENDS pipeline

We address these gaps with BayesENDS, a
Bayesian electrophysiological neural dynami-
cal system that infers event-driven latent dy-
namics and a conditional interaction graph
directly from multichannel EEG. Concretely,
BayesENDS (a) represents per-channel activity
with an Event Posterior Differential Equation
(EPDE) whose solution yields expected next-
event times; (b) samples inter-event intervals via a
Mean–Evolving Lognormal Process (MELP),
where the EPDE outputs parameterize the means
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of a log-normal mixture with reparameterized
sampling; (c) imposes an electrophysiology-informed differentiable leaky–integrate–and–fire
(dLIF) prior that encodes leak, refractory/rate constraints, and plausible frequency ranges; and
(d) infers a directed event–relational graph (ERG) by mapping cross-channel event lags through a
smooth nonlinearity into edge weights. The entire model is trained end-to-end under a variational
inference framework; our analysis provides a tractable IVP-based bound for the event–prior KL
under the dLIF rate and establishes ERG stability to lag noise.

Major Contributions:

• A unified Bayesian neural dynamical system that infers latent events and event–relational
graph dynamics directly from EEG without spike or edge annotations.

• An electrophysiology-informed dLIF prior integrated into training, providing biophysical
rate and refractory constraints.

• Theory establishing a computationally tractable IVP-based upper bound for the learning
objective and a stability bound for BayesENDS’s inferred graph dynamics.

• Empirical evidence showing: (i) accurate recovery of latent event and graph dynamics that
improve understanding of AD; and (ii) superior performance over strong baselines on both
synthetic benchmarks and real AD EEG datasets.

2 RELATED WORK

Most AD–EEG studies cast diagnosis as supervised classification over hand-crafted spec-
tral/connectivity features or learned representations, achieving strong performance but offering lim-
ited mechanistic insight into how timing and interactions co-evolve. Recent Scientific Reports pa-
pers exemplify this trend: comprehensive pipelines comparing computational methods for AD clas-
sification, and multi-stage classification across the AD spectrum during memory-encoding versus
rest (with higher accuracy during task-evoked states) (Vicchietti et al., 2023; Kim et al., 2024). Ear-
lier machine-learning work integrates engineered EEG features (often spectral/topographic) within
multimodal classifiers for dementia discrimination (Ieracitano et al., 2020). Recent large-scale
and representation-learning approaches for AD–EEG continue this predominantly discriminative
perspective: LEAD builds a foundation model for AD detection from multi-dataset EEG (Wang
et al., 2025), COMET introduces hierarchical contrastive learning for medical time series includ-
ing AD–EEG (Wang et al., 2023), Medformer employs multi-granularity Transformer patching for
disease classification with AD cohorts (Wang et al., 2024a), and manifold-based vector-field model-
ing reconstructs high-density AD–EEG dynamics from low-density recordings (Peach et al., 2023).
In contrast, our approach models latent event dynamics and a conditional interaction graph jointly,
providing a generative account of how event timing and cross-channel lags give rise to predictive
structure in EEG.

3 PROBLEM FORMULATION

We study unsupervised latent–event and relation discovery in multichannel time series with
sequence-level labels. Given a dataset D = {(X(n), Y (n))}Nn=1 with X(n) = {x(n)c }Cc=1 (e.g.,
multichannel EEG) and labels Y (n) ∈ Y (e.g., AD vs. control), and no supervision on per-channel
events or inter-channel relations, the objective is to infer (i) channel-wise latent event dynamics
and (ii) a (possibly time-varying) relational/graphical structure among channels. For each chan-

nel c ∈ {1, . . . , C} and sequence n, let T (n)
c = {t(n)c,k}

K(n)
c

k=1 denote the (unknown) latent event

times, where t(n)c,k is the k-th event time on channel c in sequence n, and K(n)
c is the (latent) num-

ber of events on that channel. Let p(n)(t) = {p(n)c (t)}Cc=1 denote the corresponding posterior
event-time distributions. The relational structure is represented as a graph process G(n)(t) with ad-
jacency A(n)(t) ∈ RC×C . We aim to recover {p(n)(t)}Nn=1 and the conditional graph dynamics
P
(
G(n)(·) | p(n)(·)

)
from {X(n)}Nn=1, while using

(
p(n)(·), G(n)(·)

)
as inputs to a downstream

predictor for Y (n); importantly, Y (n) does not supervise the latent events or relations directly.

2
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The interaction strength between channels is modeled as a function of the temporal co-occurrence
and ordering of inferred events. This assumption is grounded in neurobiological mechanisms of
spike-timing-dependent plasticity (STDP), where near-coincident pre- and post-synaptic spikes mod-
ulate synaptic efficacy, forming the basis for capturing dynamic interactions between different neural
regions(Bi & Poo, 1998; Feldman, 2012).

4 BAYESIAN NEURAL DYNAMICAL SYSTEM

4.1 OVERVIEW

We introduce BayesENDS, a Bayesian neural dynamical system for multichannel sequences that
represents each channel with a latent event process and couples channels through a conditional
event–relational graph (ERG) driven by the timing and ordering of inferred events. This design
is motivated by settings where the clinically relevant signal resides in when events occur and how
they align across channels. In EEG for Alzheimer’s disease, for instance, oscillatory slowing and
disrupted coordination suggest that event timing and cross-channel alignment are predictive, while
neurobiological plasticity links near-coincident spikes to stronger coupling.

At a high level, BayesENDS consists of three interacting components. First, an event posterior
differential equation (EPDE) summarizes per-channel event dynamics by producing posterior distri-
butions over latent event times {T (n)

c } given the observed multichannel sequence X(n). Second, a
mean–evolving lognormal mechanism (MELP) uses EPDE outputs as mean parameters to generate
stochastic inter-event timing between successive latent event times t(n)c,k , ensuring positive and flex-
ible (potentially multimodal) timing statistics. Third, an event–relational graph G(n)(t) is inferred
from event co-occurrence and cross-channel lags derived from T (n), via an STDP-shaped mapping
that encodes how the timing of events on one channel modulates effective coupling to others.

For each labeled sequence (X(n), Y (n)), the triple (X(n), T (n), G(n)) is passed to a decoder
pθ
(
Y (n) | X(n), T (n), G(n)

)
for downstream prediction (e.g., AD vs. control). Training is end-

to-end via variational learning that jointly optimizes the EPDE and MELP while learning ERG
dynamics under weak regularization; further details are given in the learning subsection.

4.2 LEARNING

We train BayesENDS end-to-end through variational inference by minimizing the negative evidence
lower bound (ELBO). For labeled data {(X(n), Y (n))}Nn=1, let T (n) collect all latent event times
{T (n)

c }Cc=1 and let τ (n) collect the corresponding inter-event intervals {τ (n)c,k }. The EPDE induces
an approximate posterior qϕ

(
T (n) | X(n)

)
, the MELP defines qϕ

(
τ (n) | X(n)

)
, and the decoder

is pθ
(
Y (n) | X(n), T (n), G(n)

)
, where G(n) is the ERG associated with X(n) and η denotes ERG

parameters.

We write the ELBO as

LELBO(θ, ϕ, η) =

N∑
n=1

Eqϕ

[
log pθ

(
Y (n) | X(n), T (n), G(n)

)]
(1)

− KL
(n)
T − KL(n)

τ (2)

+ βR(n)
ERG + λLIFR(n)

LIF, (3)

where KL
(n)
T := KL

(
qϕ(T

(n) | X(n)) ∥ pdLIF(T )
)

compares the EPDE-induced path law to the
electrophysiology-informed event prior pdLIF(T ), and KL(n)

τ := KL
(
qϕ(τ

(n) | X(n)) ∥ p0(τ)
)

pe-
nalizes deviation from a lognormal(-mixture) prior over inter-event intervals. The term R(n)

LIF softly
enforces leaky–integrate–and–fire consistency on differentiable rate proxies read out from the EPDE
state, with weight λLIF ≥ 0. The term R(n)

ERG is a weak, observable-based regularizer that nudges
ERG edges toward experimental statistics computed fromX(n) (e.g., correlation-based summaries),
with strength β≥0.

3
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Challenges. Three technical issues arise in optimizing equation 3. First, KL
(n)
T involves path

measures induced by a differential equation and is intractable in closed form (it integrates over an
infinite-dimensional trajectory); we therefore replace it with a tractable integral–rate surrogate that
depends only on the dLIF rate r(t), with a formal bound given in the Theory subsection. Second,
enforcing a LIF prior directly is difficult because the spike function in LIF is non-differentiable,
which prevents straightforward use in gradient-based training; instead we introduce differentiable
rate proxies and constrain them to follow dLIF laws via R(n)

LIF. Third, ERG learning lacks ground-
truth edges; to avoid over-constraining the graph, we only use the weak regularizer R(n)

ERG to bias
edge strengths toward experimental observables, leaving the fine-grained graph structure to be driven
by event lags inferred from the EPDE–MELP posterior.

4.3 PRIOR: ELECTROPHYSIOLOGY–INFORMED DLIF PRIOR

We place a biophysical prior on latent event timing by instantiating each channel’s latent
events T

(n)
c = {t(n)c,k} as a renewal process whose hazard is derived from a differentiable

leaky–integrate–and–fire (dLIF) abstraction (Burkitt, 2006). For channel c, the (rescaled) membrane
potential evolves as

d

dt
uc(t) = bc(t)− uc(t), bc(t) > 1, (4)

where bc(t) is an effective (learned) input drive. Given this membrane dynamics, the implied instan-
taneous firing rate is

rc(t) =
[
− log

(
1− 1/bc(t)

)]−1

. (5)

This rate induces a dLIF inter-event time density

pdLIF,c(t) = rc(t) exp
(
−
∫ t

0

rc(s) ds
)
, (6)

and the resulting dLIF prior for channel c is the renewal law pdLIF(T
(n)
c ) with hazard rc(t). We

parameterize bc(t) by a bounded neural mapping from learned embeddings, for example

bc(t) = 1 + softplus
(
gξ(z

(n)
c (t))

)
, (7)

where z(n)c (t) denotes features derived from X(n). This construction guarantees bc(t) > 1 and
thus rc(t) > 0. Absolute and refractory effects are incorporated through a smooth gating factor
α
(n)
c (t) ∈ (0, 1] constructed from recent events in T (n)

c , using rc(t) = α
(n)
c (t) rc(t) to suppress

implausible near–back–to–back spikes.

Because the hard spike nonlinearity is non–differentiable, we regularize rates rather than spikes.
Concretely, the learning objective includes a dLIF consistency term

RLIF =
∑
c

∫ S

0

(
r̂(n)c (t)− rc(t)

)2
dt, (8)

where r̂(n)c (t) is a differentiable rate proxy read from the EPDE state for sequence n over a time
horizon [0, S]. This encourages the learned rates to follow dLIF membrane dynamics without in-
voking non–differentiable spike functions (Neftci et al., 2019). The variational KL between the
EPDE–induced path law qϕ

(
T

(n)
c | X(n)

)
and pdLIF(T

(n)
c ) is intractable in general; in the Theory

subsection we replace it by a tractable integral–rate bound that depends on rc(t), yielding a stable
surrogate for training while preserving the biophysical semantics of the prior.

4.4 POSTERIOR: EVENT POSTERIOR DIFFERENTIAL EQUATION (EPDE)

For each sequence (X(n), Y (n)) and channel c, let q(n)c

(
t | x(n)c

)
denote the density of the next event

time given the observed channel signal x(n)c . If t̃(n)c,k−1 denotes the previous (predicted) event time
on that channel, the expected next event time is

t̃
(n)
c,k =

∫ ∞

t̃
(n)
c,k−1

t q(n)c

(
t | x(n)c

)
dt. (9)

4
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To express this update via an initial value problem (IVP), we introduce an auxiliary function Φ
(n)
c (t)

whose derivative accumulates the contribution of q(n)c :(
Φ(n)

c

)′
(t) = − t q(n)c

(
t | x(n)c

)
. (10)

Its initial value encodes the full expectation under q(n)c :

Φ(n)
c (0) =

∫ ∞

0

t q(n)c

(
t | x(n)c

)
dt. (11)

With this definition, the expected next event time in equation 9 can be written as the IVP solution
evaluated at the previous event time:

t̃
(n)
c,k = Φ(n)

c

(
t̃
(n)
c,k−1

)
. (12)

Directly solving equation 10–12 and computing Φ
(n)
c (0) is intractable, so we approximate this map-

ping with a differentiable neural surrogate that updates the predicted next event time:

t̃
(n)
c,k = fθΦ

(
t̃
(n)
c,k−1, x

(n)
c

)
, (13)

implemented to ensure t̃(n)c,k > t̃
(n)
c,k−1, so that latent events remain strictly ordered in time.

Consequently, differentiating the ideal Φ(n)
c (t) with respect to t yields an event-time posterior of the

form

q(n)c

(
t | x(n)c

)
= −

(
Φ

(n)
c

)′
(t)

t
, (14)

which we approximate with the EPDE parameterization. Across channels, the family {q(n)c (t |
x
(n)
c )}Cc=1 provides a parametric approximation to the event-time posteriors {p(n)c (t)}Cc=1 introduced

in the problem formulation, and jointly defines the EPDE-induced posterior qϕ
(
T (n) | X(n)

)
over

latent event times T (n) = {T (n)
c }Cc=1 used in the variational objective. The predicted next-event

times t̃(n)c,k then serve as mean parameters for the mean–evolving lognormal mechanism (MELP)
that models stochastic variability in event timing, as detailed in the next subsection.

4.5 SAMPLING: MEAN–EVOLVING LOGNORMAL PROCESS (MELP)

For each sequence X(n) and channel c, given the previous event time t̃(n)c,i−1, the EPDE produces a

K-dimensional vector of candidate mean intervals τ̃
(n)
c =

(
τ̃
(n)
c,1 , . . . , τ̃

(n)
c,K

)
∈ RK

+ , together with

mixture weights w
(n)
c =

(
w

(n)
c,1 , . . . , w

(n)
c,K

)
∈ ∆K−1 and scales s

(n)
c =

(
s
(n)
c,1 , . . . , s

(n)
c,K

)
∈ RK

+ .

MELP draws the inter–event interval τ (n)c,i from a lognormal mixture:

p
(
τ
(n)
c,i | t̃

(n)
c,i−1, X

(n)
)

=

K∑
j=1

w
(n)
c,j LogN

(
τ
(n)
c,i ; µ

(n)
c,j , (s

(n)
c,j )

2
)
, (15)

where LogN(·;µ, s2) denotes a lognormal density with log-mean µ and log-variance s2.

For each component j, we choose µ(n)
c,j as a function of τ̃ (n)c,j and s(n)c,j so that the mean of the cor-

responding lognormal distribution matches the EPDE-predicted interval τ̃ (n)c,j . This ties the mixture

components’ average inter-event times directly to the EPDE outputs, while the scales s(n)c,j control
uncertainty around these means.

Sampling from MELP is reparameterized to keep gradients pathwise:

k ∼ Cat
(
w(n)

c

)
, ε ∼ N (0, 1), (16)

τ
(n)
c,i = exp

(
µ
(n)
c,k + s

(n)
c,k ε

)
, t

(n)
c,i = t

(n)
c,i−1 + τ

(n)
c,i . (17)

During training we use a differentiable variant of equation 16 (e.g., Gumbel–Softmax) and take hard
samples at test time. MELP guarantees positive inter-event intervals, captures multimodal timing
statistics, and yields closed-form component-wise KL terms against a lognormal(-mixture) prior in
the learning objective. Moreover, the mixture expectation E[τ (n)c,i ] =

∑K
j=1 w

(n)
c,j τ̃

(n)
c,j is available in

closed form and is used in downstream computations such as computing ERG lags.

5
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Table 1: Toy dataset results by frequency band. CS: Cosine Similarity, IoU: Intersection-over-Union.

Frequency Band (Hz) Model CS Median Rate 95% CI IoU

[5, 10] NODE 0.951 1.000 [1.000, 1.000] 0.000
[5, 10] ODE-RNN 0.951 1.000 [1.000, 1.000] 0.000
[5, 10] STRODE 0.967 0.340 [0.269, 0.410] 0.000
[5, 10] BayesENDS (Ours) 0.983 7.532 [4.300, 14.867] 0.473

[10, 15] NODE 0.951 1.000 [1.000, 1.000] 0.000
[10, 15] ODE-RNN 0.951 1.000 [1.000, 1.000] 0.000
[10, 15] STRODE 0.964 0.251 [0.153, 0.348] 0.000
[10, 15] BayesENDS (Ours) 0.982 12.503 [7.587, 24.918] 0.289

[15, 20] NODE 0.951 1.000 [1.000, 1.000] 0.000
[15, 20] ODE-RNN 0.951 1.000 [1.000, 1.000] 0.000
[15, 20] STRODE 0.961 0.532 [0.369, 0.695] 0.000
[15, 20] BayesENDS (Ours) 0.976 18.843 [10.465, 35.244] 0.202

4.6 EVENT–RELATIONAL GRAPH (ERG)

We weakly bias Ā(n) toward observable statistics computed from X(n) (e.g., Pearson correlations
s
(n)
ij between channels i and j) via a simple Fisher–z alignment. We map both the observed and

ERG-implied correlations into z-space:

z
obs,(n)
ij = atanh

(
s
(n)
ij

)
, z

pred,(n)
ij = atanh

(
2Ā

(n)
ij − 1

)
, (18)

and define the ERG regularizer as

R(n)
ERG =

∑
i<j

[(
z
obs,(n)
ij − zpred,(n)ij

)2
2σ2

+
1

2
log σ2

]
, (19)

where σ > 0 is a (fixed or globally learned) scale parameter controlling the strength of the alignment.
This regularizer (weighted by β in the learning objective) encourages consistency between ERG-
implied connectivity and experimental statistics, while still allowing the detailed edge structure to
be driven primarily by event lags inferred from the EPDE–MELP posterior. The implementation
details and additional theoretical results are provided in Appendix G and B, respectively.

5 EXPERIMENTS

In our experimental evaluations, we rigorously assessed the performance of BayesENDS across syn-
thetic benchmarks and real Alzheimer’s disease (AD) EEG datasets. First, we validated BayesENDS
using synthetic event-sequence data, demonstrating its effectiveness in accurately inferring latent
event dynamics compared to baseline neural ODE models. Subsequently, we conducted compre-
hensive experiments on two diverse EEG datasets (AD cohorts A and B), covering Alzheimer’s
disease, frontotemporal dementia, mild cognitive impairment, and healthy controls.

5.1 TOY DATASET

The toy dataset experiments evaluated how well BayesENDS and baseline neural ODE methods
(NODE (Chen et al., 2018), ODE-RNN (Habiba & Pearlmutter, 2020), and STRODE (Huang et al.,
2021)) recover latent event dynamics across distinct frequency bands ([5–10], [10–15], and [15–20]
Hz). As summarized in Table 1, baseline methods achieved strong cosine similarity (CS) scores
across all frequency bands, reflecting good sequence-level prediction performance. However, their
intersection-over-union (IoU) scores were uniformly zero, indicating a fundamental limitation in
capturing the latent event structure. This outcome highlights the common issue with purely data-
driven neural approaches: despite excellent predictive accuracy, they often fail to recover the under-
lying generative mechanisms of data.

In contrast, BayesENDS maintained similarly high CS scores while notably achieving meaningful
IoU values (e.g., 0.473 at [5–10] Hz, 0.289 at [10–15] Hz, and 0.202 at [15–20] Hz). These non-
zero IoU scores demonstrate that BayesENDS successfully captures latent structures consistent with

6
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Table 2: Results on Alzheimer’s EEG datasets.

Model Dataset AD cohort A Dataset AD cohort B
Accuracy (%) F1 (%) Accuracy (%) F1 (%)

EEGNet 68.10 66.49 71.37 60.85
LCADNet 70.52 68.12 72.44 49.38
LSTM 70.52 68.24 77.89 61.35
ATCNet 64.71 60.98 71.09 50.92
ADFormer 69.35 65.28 82.38 63.89
LEAD 72.68 69.98 80.00 62.21
BayesENDS 75.03 72.69 89.82 64.87

Table 3: Ablation of spike-informed and connectome priors in BayesENDS on Alzheimer’s EEG
Datasets. Accuracy and F1 (%) reported as mean ± s.d. across runs.

Dataset Variant Accuracy (%) F1 (%)

AD cohort A

No prior 70.52 ± 11.83 65.46 ± 13.10
dLIF prior 73.92 ± 9.84 71.41 ± 10.72
ERG prior 72.75 ± 6.63 70.35 ± 7.91
Dual priors 75.03 ± 8.29 72.69 ± 8.16

AD cohort B

No prior 83.22 ± 15.10 60.72 ± 12.37
dLIF prior 87.98 ± 8.09 62.95 ± 9.24
ERG prior 86.20 ± 9.96 65.63 ± 9.17
Dual priors 89.82 ± 8.39 64.87 ± 10.67

the generative process, particularly emphasizing the method’s ability to infer interpretable and bio-
logically plausible event dynamics. Moreover, the predicted event rates from BayesENDS showed
wider but informative uncertainty intervals, aligning closely with the true frequency band intervals.
Such uncertainty quantification highlights BayesENDS’ capacity to provide both accurate and inter-
pretable latent dynamics in noisy and ambiguous settings. Additional data generation protocol are
provided in Appendix F.

5.2 ALZHEIMER’S DISEASE EEG DATASET

We extensively evaluated BayesENDS on two diverse EEG datasets covering Alzheimer’s disease
(AD), frontotemporal dementia (FTD), mild cognitive impairment (MCI), and healthy controls, as
shown in Tabel 2. Across both datasets, BayesENDS outperformed state-of-the-art baselines such
as CNNs, RNNs, and transformers. In Dataset AD cohort A, BayesENDS showed a clear ability
to distinguish AD, FTD, and healthy participants, with consistently lower performance variabil-
ity across runs. This stability highlights its effectiveness in capturing subtle neural dynamics de-
spite EEG heterogeneity. In the more unbalanced Dataset AD cohort B, where distinctions between
moderate AD, MCI, and healthy controls are subtler, BayesENDS still achieved the highest diag-
nostic accuracy. While some baselines showed significant performance fluctuations, BayesENDS
remained robust, balancing sensitivity and specificity—demonstrating resilience to noise and distri-
bution shifts common in real-world EEG data. Overall, BayesENDS effectively extracts clinically
meaningful biomarkers from EEG, confirming its practical potential for accurate, interpretable AD
diagnostics. Additional dataset descriptions, baseline methods, and experimental setup are presented
in Appendix F.

5.3 ABLATION STUDIES

We ablated BayesENDS to assess each prior’s impact on accuracy and interpretability (Table 3).
On AD Cohort A, the no-prior baseline is moderate; adding the dLIF prior boosts accuracy, while
the ERG prior improves accuracy, and F1 via inter-channel modeling. Combining both yields the
best scores. On AD Cohort B, the pattern holds with larger gains: the dLIF prior gives the biggest
accuracy lift under subtler classes, and the ERG prior raises F1. Their combination again performs
best. Overall, each prior helps, and together they provide robust predictions on realistic EEG.

7
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6 VISUALIZATIONS

Our visualizations emphasized BayesENDS’ explainability. Specifically, we showcased the inferred
frequency distributions from the dLIF prior across critical EEG channels, clearly linking decreased
oscillatory frequency to increased disease severity. Additionally, the inferred event-relational graphs
revealed meaningful connectivity patterns that align with known neurophysiological changes in de-
mentia. Lastly, boundary time prediction comparisons highlighted BayesENDS’ precision in tempo-
ral modeling compared to baseline methods, underscoring its superior capability to capture accurate
event timings.

6.1 DLIF INFERRED FREQUENCY VISUALIZATION

To further explore and validate the interpretability of the latent neural dynamics captured by
BayesENDS, we visualized the inferred frequency distributions derived from the differentiable
leaky-integrate-and-fire (dLIF) prior across several key EEG channels associated with Alzheimer’s
disease progression, including channels F3, O2, Pz, and T3. Figure 2a exemplifies the frequency
distributions at channel F3 for the Alzheimer’s disease (AD), mild cognitive impairment (MCI), and
healthy control (HC) groups. The distributions clearly illustrate a trend of decreasing frequency
with increasing disease severity. Specifically, healthy controls exhibit the highest central frequency,
indicating typical neural oscillatory activity. Subjects with MCI show slightly reduced frequency
values, signifying the onset of neural slowing, while the AD group displays the lowest central fre-
quencies, reflecting significant neural slowing commonly observed in Alzheimer’s pathology. This
consistent pattern across multiple critical EEG channels underscores the physiological relevance of
BayesENDS’ latent dynamics. The clear association between disease severity and decreased oscilla-
tory frequency validates the biological interpretability of our model, highlighting its potential utility
for understanding Alzheimer’s disease progression and supporting clinical decision-making.
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(a) Channel F3
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(b) Channel O2
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Figure 2: Kernel density estimates of the inferred dLIF frequency distributions across Alzheimer’s
disease (AD), mild cognitive impairment (MCI), and healthy control (HC) groups for EEG channels
F3, O2, Pz, and T3. The clear trend of decreasing central frequency with increasing disease severity
illustrates the physiological relevance and interpretability of the BayesENDS model’s inferred latent
neural dynamics.
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(a) BayesENDS
(HC)

(b) Pearson
(HC)

(c) BayesENDS
(FTD)

(d) Pearson
(FTD)

(e) BayesENDS
(AD)

(f) Pearson
(AD)

Figure 3: Comparison of EEG connectivity graphs inferred by BayesENDS versus Pear-
son correlation-based priors across healthy controls (HC), frontotemporal dementia (FTD), and
Alzheimer’s disease (AD) groups.

6.2 GRAPH CONNECTIVITY VISUALIZATION

We also visualized BayesENDS’ inferred event-relational graphs (ERGs) against Pearson
correlation-based connectivity graphs (Figure 3). Chord diagrams revealed distinct connectivity pat-
terns across healthy controls (HC), FTD, and AD groups. BayesENDS’ ERGs captured biologically
plausible trends: HC showed dense, robust connectivity, while FTD and AD exhibited progressively
sparser and weaker links. These patterns aligned with Pearson-derived graphs, validating the ERG’s
effectiveness. The coherence underscores ERG’s ability to reflect dementia-related network degra-
dation, strengthening model interpretability and clinical relevance.

6.3 BOUNDARY TIME PREDICTION VISUALIZATION

Figure 4 visually compares the predicted versus ground-truth boundary times for STRODE and
BayesENDS across three distinct frequency bands ([5–10 Hz], [10–15 Hz], and [15–20 Hz]).
STRODE demonstrates noticeable deviations from the ideal diagonal alignment, suggesting chal-
lenges in accurately recovering true boundary timings, particularly at higher frequency bands.
In contrast, BayesENDS consistently maintains a tighter diagonal alignment across all frequency
ranges, indicating superior accuracy and robustness in capturing underlying temporal structures.
This visualization clearly illustrates BayesENDS’ effectiveness in accurately inferring latent event
boundaries in the toy dataset, reinforcing its suitability for precise temporal modeling in EEG data.
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Figure 4: Predicted vs. ground-truth boundary times across frequency bands ([5–10], [10–15],
[15–20] Hz): STRODE vs. BayesENDS.

7 CONCLUSION

We presented BayesENDS, a Bayesian electrophysiological neural dynamical system that infers
latent event dynamics and a conditional event–relational graph directly from multichannel EEG.
By coupling an Event Posterior Differential Equation (EPDE) with a Mean–Evolving Lognor-
mal Process (MELP) and an electrophysiology-informed dLIF prior, the model yields identifiable,
physiology-aware latents and supports end-to-end prediction. Our theory provides a tractable IVP-
based upper bound for the event–prior KL and establishes stability of the inferred graph to lag noise,
while experiments on synthetic and AD EEG data demonstrate superior accuracy and interpretable
biomarkers.
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B THEORY

Lemma 1 (Shift–stability of IVPs (Huang et al., 2021)). Let e > 0 and U ⊂ Rn be open. Let
f1, f2 : [a−2e, a)→ Rn be continuously differentiable with ∥f ′1∥ ≤M for someM > 0. Consider

y′1(t) = f1(t), y1(a− e) = x1, y′2(t) = f2(t) = f1(t− e), y2(a− e) = x2.

Then, as e→ 0+,
lim

e→0+

(
lim
t↗a
∥y1(t)− y2(t)∥

)
≤ lim

e→0+
∥x1 − x2∥.

Theorem 2 (IVP–based upper bound for the event–prior KL under dLIF rates). Let q(t) be a strictly
positive, integrable density on [0, S] (0 < S ≤ ∞). Let the electrophysiology–informed prior be

pr(t) = r(t) exp
(
−
∫ t

0

r(u) du
)
,

where r : [0, S] → [a, b] ⊂ (0,∞) is measurable with 0 < a ≤ b < ∞. Define the change of
variables m = −e−t ∈ [−e−S ,−1) and M = − log(−m) = t. Set

g(m) := −q(M)

mM
log

q(M)

M r(M) e−
∫ M
0

r(u) du
, G′(m) = g(m), G(−e−S) = 0. (20)

Then

KL
(
q ∥ pr

)
=

∫ S

0

q(t) log
q(t)

r(t)e−
∫ t
0
r
dt = lim

ε↓0
G(−ε), (21)

and for any ε ∈ (0, e−S),

KL
(
q ∥ pr

)
≤ G(−ε) +

∣∣G(−2ε)−G(−ε) ∣∣ =: Uε, (22)

with Uε → KL(q∥pr) as ε ↓ 0.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

In training we evaluate the KL term using the computable bound Uε from Eq. 22 (fixed small ε and
an ODE solver for Eq. (20)).

We then analyze how entry–wise perturbations of lags affect the learned ERG when the edge map
is exponential. For channels i ̸= j and time t, let the noise–free lag be ∆tij(t;T ) and the perturbed
lag be ∆̃tij(t;T ) = ∆tij(t;T )+ ξij(t;T ). Define the edge map ϕα(x) = exp(−α|x|) ∈ [0, 1] with
slope parameter α > 0 and the (noise–free and perturbed) edges

eij(t;T ) = ϕα(∆tij(t;T )), ẽij(t;T ) = ϕα(∆̃tij(t;T )).

The decoder uses the Monte–Carlo, time–averaged adjacencies

Āij =
1

MS

M∑
m=1

S∑
s=1

eij(tm;T (s)), ˜̄Aij =
1

MS

M∑
m=1

S∑
s=1

ẽij(tm;T (s)).

Theorem 3 (Entry–wise and matrix stability). The exponential edge map is globally α–Lipschitz:
for all x, y ∈ R, ∣∣ϕα(x)− ϕα(y)∣∣ ≤ α |x− y|. (23)

Consequently, for any (i, j, t, T ),∣∣ẽij(t;T )− eij(t;T )∣∣ ≤ α |ξij(t;T )|. (24)

Averaging over time and Monte–Carlo samples yields the entry–wise bound

∣∣ ˜̄Aij − Āij

∣∣ ≤ α |ξij |, |ξij | :=
1

MS

M∑
m=1

S∑
s=1

|ξij(tm;T (s))|, (25)

and the matrix (Frobenius–norm) bound

∥ ˜̄A− Ā∥F ≤ α

MS

M∑
m=1

S∑
s=1

∥Ξ(m,s)∥F, Ξ(m,s) :=
[
ξij(tm;T (s))

]
i̸=j

, (26)

hence ∥ ˜̄A− Ā∥F ≤ α ∥Ξ∥F with ∥Ξ∥F the average Frobenius norm of lag–noise matrices.
Corollary 4 (Deterministic and probabilistic perturbation bounds). (i) (Uniformly bounded noise).
If |ξij(t;T )| ≤ ε∞ almost surely, then∣∣ ˜̄Aij − Āij

∣∣ ≤ α ε∞, ∥ ˜̄A− Ā∥F ≤ α ε∞ √
C(C − 1). (27)

(ii) (Sub–Gaussian noise). Suppose {ξij(tm;T (s))}m,s are i.i.d., mean–zero, sub–Gaussian with

proxy σ2 (i.e., Eeλξ ≤ exp(λ2σ2/2)). Then each difference ∆ij :=
˜̄Aij− Āij is sub–Gaussian with

proxy α2σ2/(MS) and

P(|∆ij | ≥ τ) ≤ 2 exp
(
− MS τ2

2α2σ2

)
. (28)

If, in addition, ξ ∼ N (0, σ2), then

E
[
|∆ij |

]
≤ ασ

√
2

π
, E

[
∥ ˜̄A− Ā∥F] ≤ ασ√ 2

π

√
C(C − 1). (29)

Implication. Small perturbations in EPDE/MELP lags translate linearly (in α) to entry–wise
changes in the ERG, and averaging over samples/time further contracts the perturbation. Thus the
ERG is provably stable to modest timing noise, with explicit constants controlled by the edge map
slope α and the noise magnitude.

C PROOF OF THEOREM 2

Proof. By definition,

KL(q∥pr) =
∫ S

0

q(t) log
q(t)

r(t)e−
∫ t
0
r
dt.
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Using m = −e−t, we have t = − log(−m) =M and dt = − 1
m dm. Hence

KL(q∥pr) =
∫ 0

−e−S

q(M)

M
log

q(M)

Mr(M)e−
∫ M
0

r

(
− 1

m

)
dm =

∫ 0

−e−S

g(m) dm.

This improper integral equals limε↓0
∫ −ε

−e−S g(m) dm = limε↓0G(−ε), proving Eq. (21). Since
r(t) ∈ [a, b] and q is integrable, g is locally integrable near m = 0−. Split the integral at −ε and at
−2ε:∫ 0

−e−S

g =

∫ −ε

−e−S

g+

∫ 0

−ε

g ≤ G(−ε)+
∣∣∣ ∫ 0

−ε

g
∣∣∣ ≤ G(−ε)+∣∣∣ ∫ −ε

−2ε

g
∣∣∣ = G(−ε)+|G(−2ε)−G(−ε)|,

which yields Eq. (22). The last inequality uses Lemma 1 (applied to the IVPs G′
1(m) = g(m)

and G′
2(m) = g(m) shifted by ε) to control the tail near the singular endpoint and the fact that

r is bounded in [a, b], ensuring g remains controlled as m → 0−. As ε ↓ 0, the tail vanishes by
dominated convergence, hence Uε → KL(q∥pr).

D PROOF OF THEOREM 3

Proof. (Lipschitzness). The absolute value is 1–Lipschitz: ||x| − |y|| ≤ |x − y|. The function
u 7→ e−αu on u ≥ 0 has derivative |−αe−αu| ≤ α, hence it is α–Lipschitz on R≥0. By composition
of Lipschitz maps,

|ϕα(x)− ϕα(y)| =
∣∣e−α|x| − e−α|y|∣∣ ≤ α ∣∣|x| − |y|∣∣ ≤ α |x− y|,

establishing Eq. (23). Taking y = x+ ξ gives Eq. (24).

(Averaging). Using linearity of the average and triangle inequality,∣∣ ˜̄Aij−Āij

∣∣ = ∣∣∣ 1

MS

∑
m,s

(
ẽij(tm;T (s))−eij(tm;T (s))

)∣∣∣ ≤ 1

MS

∑
m,s

∣∣ẽij−eij∣∣ ≤ α

MS

∑
m,s

|ξij(tm;T (s))|,

which is Eq. (25).

(Matrix bound). Define ∆(m,s) := [ẽij(tm;T (s))−eij(tm;T (s))]i̸=j , so ˜̄A−Ā = 1
MS

∑
m,s ∆

(m,s).
By the triangle inequality of the Frobenius norm,

∥ ˜̄A− Ā∥F ≤ 1

MS

∑
m,s

∥∆(m,s)∥F.

Entry–wise inequality Eq. 24 implies ∥∆(m,s)∥F ≤ α ∥Ξ(m,s)∥F, giving Eq. (26).

E PROOF OF COROLLARY 4

Proof. (i) From Eq. (25), |ξij | ≤ ε∞, giving the entry–wise claim. For the matrix bound,
∥Ξ(m,s)∥F ≤ ε∞

√
C(C − 1) for every (m, s); apply Eq. (26).

(ii) For each fixed (i, j), define i.i.d. variables Ym,s := ẽij(tm;T (s)) − eij(tm;T (s)). By Eq.
(24), Ym,s is an α–Lipschitz transform of ξij(tm;T (s)), hence Ym,s is sub–Gaussian with proxy
α2σ2 (standard Lipschitz preservation of the ψ2–norm). Then ∆ij = (MS)−1

∑
m,s Ym,s is

sub–Gaussian with proxy α2σ2/(MS), yielding Eq. (28) via the Chernoff bound.

For the Gaussian–mean bound, use |Ym,s| ≤ α |ξij(tm;T (s))| and linearity:

E|∆ij | ≤
α

MS

∑
m,s

E|ξ| = αE|ξ| = ασ
√

2
π ,

where the last equality is the mean absolute value of a zero–mean Gaussian. Summing the en-
try–wise bounds in quadrature gives the Frobenius expectation in Eq. (29).
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F ADDITIONAL EXPERIMENTAL DETAILS

F.1 ALZHEIMER’S DISEASE EEG BASELINE METHODS

To rigorously evaluate our proposed method, we benchmarked it against several representative deep
learning approaches commonly utilized for EEG analysis. These baselines include convolutional,
recurrent, attention-based, and transformer-based models, each demonstrating distinct strengths for
capturing various aspects of EEG signal patterns.

EEGNet (Lawhern et al., 2018) is a compact convolutional neural network initially developed for
EEG-based brain–computer interfaces. It integrates depthwise and separable convolutions to ef-
fectively capture temporal, spatial, and frequency-specific characteristics in EEG data, making it a
well-recognized lightweight yet powerful model in EEG classification tasks.

LCADNet (Kachare et al., 2024) is specifically tailored for Alzheimer’s disease detection from EEG
data. Utilizing optimized convolutional structures designed for computational efficiency without
sacrificing discriminative power, LCADNet achieves competitive performance in resource-limited
environments, making it a strong baseline for EEG-based AD diagnosis.

LSTM (Zhang & Yao, 2021) embodies recurrent neural networks tailored for modeling temporal
dependencies inherent in EEG signals. By maintaining and updating hidden states across sequences,
LSTMs effectively capture long-term dynamics and temporal correlations, making them naturally
suitable for sequential EEG analyses.

ATCNet (Altaheri et al., 2022) employs a physics-informed architecture combining temporal con-
volutions with attention mechanisms. Originally proposed for motor imagery EEG classification,
it effectively captures both local temporal details and global dependencies, showcasing adaptability
across various EEG applications.

ADformer (Wang et al., 2024b) is a multi-granularity transformer specifically crafted for
Alzheimer’s disease evaluation using EEG signals. It utilizes multi-scale attention mechanisms
to concurrently model fine-grained and coarse-grained temporal information, setting a high-
performance standard in EEG-based AD diagnostics.

LEAD (Wang et al., 2025) exemplifies the recent advancement toward large-scale foundation mod-
els in EEG analysis. Pre-trained extensively on vast EEG datasets and fine-tuned for Alzheimer’s
disease detection, LEAD leverages transfer learning to provide robust, generalizable EEG represen-
tations, establishing a new benchmark in EEG-based clinical assessments.

F.2 DATASET DESCRIPTIONS

F.2.1 TOY DATASET AND DATA GENERATION

Frequency bands and sampling. To systematically evaluate our model’s ability to capture latent
event dynamics, we constructed synthetic datasets with clearly defined frequency bands. We gener-
ated latent event rates λ from truncated normal distributions centered at the midpoint of each target
frequency band: low band [5–10 Hz] with λ ∼ TruncNormal(µ = 7.5, σ = 1.0; [5, 10]), middle
band [10–15 Hz] with λ ∼ TruncNormal(µ = 12.5, σ = 1.0; [10, 15]), and high band [15–20 Hz]
with λ ∼ TruncNormal(µ = 17.5, σ = 1.0; [15, 20]). This design ensures concentrated event-rate
distributions within each band while avoiding frequencies outside the desired range.

Data scale and splitting strategy. For each frequency band, we independently generated three
data splits: a training set with 150 distinct event rates, each having 50 sequences (7,500 sequences
total); a validation set with 25 new event rates and 50 sequences per rate (1,250 sequences total); and
a test set with an additional 25 new event rates, again with 50 sequences per rate (1,250 sequences
total). Importantly, no overlap of event rates occurs across training, validation, and test splits to
ensure proper evaluation of model generalization.

Sequence generation. Each synthetic sequence comprises 20 observations, constructed by sam-
pling inter-event times ∆ti from an exponential distribution with parameter λ. The event timestamps
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ti are obtained cumulatively by ti =
∑i

j=1 ∆tj . Observations yi are subsequently generated using
the relationship:

yi = sin(ti) + ηi, ηi ∼ N (0, σ2
η),

where the default noise level is ση = 0.07. Additional sensitivity analyses varied ση within
{0.05, 0.10, 0.15} to assess model robustness.

Evaluation methodology. Model performance was comprehensively evaluated using three crite-
ria: (1) classification score (CS) assessing sequence-level predictive accuracy, (2) uncertainty cali-
bration, quantified through the median and 95% confidence interval of the estimated event rate λ̂,
obtained via nonparametric resampling within each frequency band, and (3) structural fidelity, mea-
sured using intersection-over-union (IoU) between the predicted latent structure and the ground-truth
event patterns.

F.2.2 ALZHEIMER’S DISEASE EEG DATASET

Dataset AD Cohort A (Miltiadous et al., 2024) consists of resting-state, eyes-closed EEG record-
ings from a total of 88 participants, categorized into 36 individuals diagnosed with Alzheimer’s dis-
ease (AD), 23 patients with frontotemporal dementia (FTD), and 29 healthy control subjects (HC).
The EEG data were collected using 19 electrodes arranged according to the international 10–20
placement system. The recordings have a sampling rate of 500 Hz and an average duration ranging
from approximately 12 to 14 minutes per subject. Provided in adherence to the Brain Imaging Data
Structure (BIDS) standard, the dataset includes both raw and preprocessed EEG signals, enabling
robust comparative analysis across different dementia subtypes.

Dataset AD Cohort B (Sadegh-Zadeh et al., 2023) includes resting-state EEG data from 168 partic-
ipants, segmented into 59 moderate Alzheimer’s disease patients (AD), 7 individuals diagnosed with
mild cognitive impairment (MCI), and 102 healthy controls (HC). EEG recordings were acquired
using the standardized 10–20 electrode placement system, with data presented in MATLAB (.mat)
format. Accompanying the EEG data are Mini-Mental State Examination (MMSE) scores, provid-
ing cognitive assessments for participants. This dataset is particularly tailored for the distinction
of AD from MCI, thus serving as a valuable resource for investigations aimed at early Alzheimer’s
disease diagnosis.

F.3 EXPERIMENTAL SETUP

We evaluate BayesENDS under a five–fold cross–subject protocol to ensure that generalization is
assessed on previously unseen participants rather than unseen windows from the same individuals.
For each cohort, subjects are partitioned into five disjoint folds with stratification at the subject
level so that the class proportions of Alzheimer’s disease, frontotemporal dementia/mild cognitive
impairment, and healthy controls are approximately preserved in every split. In each round, four
folds are used for training, and one for testing; the roles of the folds are rotated until every fold
serves exactly once in the held–out test set.

EEG is segmented into non–overlapping two–second windows (1,000 samples at 500 Hz) per subject
and channel, followed by channel–wise z–normalization computed within the training portion of the
active fold and then applied to validation and test windows of that fold.

Evaluation is conducted at subject levels. Subject–level predictions aggregate a subject’s windows
by majority vote over window–wise labels. We report accuracy, macro–F1, and summarize perfor-
mance as the mean and standard deviation across the five test folds.

G ARCHITECTURES AND TRAINING DETAILS

This section gives a concise description of the components used in BayesENDS and the training
protocol.
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G.1 INPUT, PREPROCESSING, AND WINDOWING

EEG is segmented into non–overlapping windows and z–scored channel–wise using statistics com-
puted on the training split of each fold. In our AD experiments we use 2,s windows from 500,Hz
recordings (T=1000) and C=19 electrodes (10–20 layout). Other datasets can adjust C and T
without changing the architecture.

G.2 ENCODER

The encoder follows the temporal–spatial factorization popular in EEGNet, with a mild max–norm
constraint on spatial depthwise kernels for stability on EEG.

• Block 1 (temporal→ spatial). Depthwise temporal convolution→ BatchNorm→ ELU;
then depthwise spatial convolution across electrodes→ BatchNorm→ ELU; time average
pooling; dropout (0.1).

• Block 2 (depthwise–separable temporal). Depthwise temporal convolution → Batch-
Norm → ELU; pointwise mixing → BatchNorm → ELU; time average pooling; dropout
(0.1).

• Two branches. (a) A flattened main feature vector is used by the classifier; (b) a temporally
downsampled, per–electrode feature map feeds the EPDE/MELP/dLIF block.

G.3 EPDE + MELP + DLIF COUPLING (LATENT EVENT DYNAMICS)

Given the encoder’s per–electrode temporal features, the EPDE produces a differentiable posterior
over next–event times. We parameterize a small MLP per channel to output mixture parameters for
the MELP (lognormal mixture; K=3 components). Sampling is reparameterized during training;
at test time we use mixture expectations. A compact hidden state is evolved with an explicit–Euler
solver to obtain a denoised per–electrode trajectory used downstream. A rate proxy read from the
EPDE is softly aligned with the dLIF prior via an L2 rate consistency term with refractory gating
and a plausible alpha/theta–to–beta frequency range.

G.4 EVENT–RELATIONAL GRAPH (ERG) AND GCN

From posterior samples of event times, cross–channel lags are mapped through a smooth
STDP–shaped nonlinearity to edge scores in [0, 1], then averaged over time/samples to produce a
symmetric adjacency. A weak Fisher–z alignment term biases edges toward observable correlations
computed from the raw EEG without enforcing them. A single GCN layer converts per–channel
temporal descriptors into compact node embeddings that are flattened for fusion.

G.5 CLASSIFIER AND FUSION

We concatenate the encoder’s main vector with the flattened GCN features and apply a two–layer
MLP followed by a linear layer and Softmax over classes. No attention or recurrence is used at this
stage; temporal information is already summarized by EPDE/MELP and the encoder.

G.6 OPTIMIZATION AND PROTOCOL

• Loss. Cross–entropy for labels plus small auxiliary terms: EPDE/MELP reconstruc-
tion/regularizers, dLIF rate consistency, ERG Fisher–z, and the IVP–KL surrogate. We
use modest default weights and found them robust across cohorts.

• Training. Adam (lr 5×10−4, weight decay 10−4), batch size 1024, gradient–norm clipping
at 1.0, 30 epochs. Learning rate is halved if validation AUC does not improve for 15 epochs;
the best AUC checkpoint is kept.

• Evaluation. Five–fold cross–subject splits; subject–level predictions from window proba-
bilities via majority vote (or simple averaging).
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G.7 SHAPES SUMMARY

Below we list only input/output sizes and activations for clarity; L=250 denotes the temporal length
after the first time–pooling stage.

Module Input Output Activation

Input window RB×1×19×1000 – –
Encoder (temporal branch) RB×1×19×1000 RB×19×L (L = 250) ELU
Encoder (main branch, flattened) RB×1×19×1000 RB×1178 ELU
EPDE/MELP/dLIF block RB×19×L RB×19×L ELU (MLPs), Tanh (ODE)
ERG adjacency lags from EPDE/MELP RB×19×19 exp kernel
GCN node embeddings RB×19×L, adjacency RB×19×64 ReLU
Flattened graph features RB×19×64 RB×1216 –
Fusion vector concat(main, graph) RB×2394 –
Classifier logits RB×2394 RB×|Y| ReLU (hidden), Softmax (out)

G.8 PSEUDOCODE SUMMARIES

Algorithm 1 MELP Sampling (per electrode and time proxy)

Require: Mixture weights w ∈ ∆K−1, means µ ∈ RK , standard deviations σ ∈ RK
+

Ensure: Inter-event interval τ ∈ R+

1: Sample component k ∼ Categorical(w)
2: Sample noise ϵ ∼ N (0, 1)
3: τ ← exp

(
µk + σk · ϵ

)
4: return τ

Algorithm 2 Neural ODE evolution over [ts, te] with S Euler sub-steps

Require: Features ξ, projection map proj(·), decoder decode(·), vector field f(·), residual weight
α > 0, sub-steps S ∈ N, interval [ts, te]

Ensure: Decoded trajectory ẑ ∈ R⌊T/4⌋

1: y0 ← proj(ξ)
2: ∆t← (te − ts)/S
3: for m = 0, 1, . . . , S − 1 do
4: ym+1 ← ym +∆t ·

(
f(ym) + α ym

)
5: end for
6: ẑ ← decode(yS)
7: return ẑ
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Algorithm 3 Graph weights from zt

Require: Per-electrode trajectories zt ∈ RN×L with L = ⌊T/4⌋; scale γ > 0; kernel mode
mode ∈ {exp,gauss,inv1}

Ensure: Symmetric adjacency W ∈ RN×N with zero diagonal
1: ∀c ∈ {1, . . . , N} : sc ← 1

L

∑L
t=1 zt(c, t)

2: for i = 1, . . . , N do
3: for j = 1, . . . , N do
4: if i = j then
5: Wij ← 0
6: else
7: ∆← |si − sj |
8: Wij ← exp(−γ∆)
9: end if

10: end for
11: end for
12: W ← 1

2 (W +W⊤) ▷ Enforce symmetry
13: return W

Algorithm 4 BayesENDS: Training and Inference

Require: Dataset D = {(X,Y )}, electrodes C, window length T , MELP comps K, ODE substeps
S

Require: Loss weights λaux, λspk, λgraph, λLIF; LR η
Ensure: Trained params Θ; predictor BayesENDS(·)

1: Initialize encoder ψ, EPDE+MELP ϕ, dLIF head ξ, ERG+GCN ηg , classifier θ; Adam(η)
2: for epoch = 1..E do
3: for mini-batch (X,Y )∼D do
4: Preprocess: channel-wise z-score per window
5: Encoder (ψ): main vec ∈ RB×dmain , temp feat ∈ RB×C×1×L, L = ⌊T/4⌋
6: EPDE+MELP+ODE:

For c = 1..C: EPDE⇒ mixture (wc,µc,σc); sample τ = exp(µc,k + σc,kε), accumulate
events {Tc}; ODE evolve with S Euler steps⇒ trajectory zc,:

7: Stack Z ∈ RB×C×L; keep event lags for ERG
8: dLIF prior: compute rc(t) from Z with refractory gate; rate proxy r̂c(t)
9: Regularizers: RLIF =

∑
c

∫
(r̂c − rc)2; KLT =

∑
c Uε(qc∥pdLIF) (IVP–KL bound)

10: ERG from event lags: eij(t) = exp(−α|∆t̃ij(t)|), average⇒ Ā

11: Fisher–z alignment: RERG =
∑

i<j

[
(zobsij − z

pred
ij )2/(2σ2

ij) +
1
2 log σ

2
ij

]
12: GCN on (Ā, Z): G ∈ RB×(C·dg); Fuse H = [main vec;G]
13: Classifier: logits ℓ = MLP(H), p = softmax(ℓ)
14: Loss: L = CE(p, Y )+λauxLSTRODE+λspkLspk+λgraphRERG+λLIFRLIF+KLT

15: Backprop; clip ∥∇∥≤1; Adam step on Θ
16: end for
17: end for

18: Inference on window X:
19: Preprocess→ Encoder; EPDE gives MELP expectations→ events {Tc}; ODE→ Z; build Ā;

GCN→ G; fuse→ H; output p and ŷ = argmax p
20: Subject aggregation: majority vote⇒ ŷsubj
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