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Abstract

A natural way of estimating heteroscedastic label noise in regression is to model the observed
(potentially noisy) target as a sample from a normal distribution, whose parameters can
be learned by minimizing the negative log-likelihood. This formulation has desirable loss
attenuation properties, as it reduces the contribution of high-error examples. Intuitively, this
behavior can improve robustness against label noise by reducing overfitting. We propose
an extension of this simple and probabilistic approach to classification that has the same
desirable loss attenuation properties. Furthermore, we discuss and address some practical
challenges of this extension. We evaluate the effectiveness of the method by measuring
its robustness against label noise in classification. We perform enlightening experiments
exploring the inner workings of the method, including sensitivity to hyperparameters, ablation
studies, and other insightful analyses.

1 Introduction

Supervised learning relies on datasets with input-label pairs, in which some labels are likely to be wrong,
e.g., due to annotation mistakes in a classification problem or measurement devices’ precision in a regression
problem. Even the systematically annotated datasets, like ImageNet, contain noisy labels (Beyer et al., 2020).
It is, therefore, crucial to be able to effectively handle label noise.

Heteroscedastic Noise in Regression: A Motivation. A natural way to deal with mislabeled examples
in regression is to model the observed target (y) as the true target (µ) with additive noise (ϵ) (Nix & Weigend,
1994; Kendall & Gal, 2017; Lakshminarayanan et al., 2017):

y(x) = µ(x) + ϵ(x). (1)

Assuming a normally-distributed ϵ with zero mean and variance σ2, the likelihood of the observed target
becomes p(y|x, µ, σ2) = N (y; µ(x), σ2(x)). Then, neural networks can be used to estimate the input-
dependent parameters of the distribution: µ(x) ≈ µθ(x), σ2(x) ≈ σ2

θ(x). The parameters of the neural
network, θ, are typically learned via some type of maximum likelihood estimation with N data samples:

arg max
θ

−
N∑

i=1

(yi − µθ(xi))2

2σ2
θ(xi)

+ 1
2 log σ2

θ(xi) + const (2)

This loss is of an interesting form: a label-dependent loss (mean square error) divided by the noise variance
σ2 and a regularizing term for σ2 (log-partition). Hence, σ2 acts as an inverse importance weight of the mean
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squared error loss. For example, for high-residual examples, the penalty of the mean squared error loss can
be reduced by increasing σ2, leading to higher freedom for µθ to deviate from y.

We aim to obtain an analogously simple loss function to attenuate erroneous labels for classification tasks.

Heteroscedastic Noise in Classification with Attenuation. Kendall & Gal (2017) argued such a loss
attenuation property is desirable for classification, and proposed to learn the mean and covariance of a normal
distribution over the pre-softmax logits by maximizing a categorical likelihood. This results in a form of loss
attenuation, but interestingly not the same as in regression.

Contributions. The main contributions of our work are1:

• We propose a natural extension of the above regression noise model to classification and show that it
leads to the target following a Logistic-Normal distribution (Atchison & Shen, 1980); see Section 2.2.

• We propose using the Logistic-Normal likelihood in a maximum a posteriori estimation setting and
show its negative log-likelihood has the same desirable loss attenuation properties as in the regression
case, e.g., reducing the contribution of high-residual examples; see Sections 2.3 & 2.4. Furthermore,
we address implementation challenges and propose practically important techniques; see Section 3.

• We empirically study the proposed loss on several datasets with synthetic and natural noise, where
we show improved robustness to label noise compared to recent works; see Section 5.

2 Method

Our goal is to extend the simple and probabilistic loss attenuation approach from regression to classification.
Here, we give a high-level overview of the problem and describe the main idea of our method. We give
important details of our approach in Section 3.

2.1 Background and Problem

In this section, we define label noise, identify its source, and highlight the challenges it poses for deep learning.

Dataset Generation. In classification, we consider a dataset as samples from an unknown joint distribution:
D = {xi, yi}N

i=1, (xi, yi) ∼ p(x, y) = p(y|x)p(x). The generation process can be interpreted as, first,
sampling the input, and then the label: (i) xi ∼ p(x), (ii) yi ∼ p(y|xi). This is, in fact, how many multiclass
datasets are constructed, i.e., first collecting a large set of inputs and then, automatically or manually,
annotating each input with a single output label.

Noisy Labels. The label yi can be seen as a categorical distribution via one-hot encoding, δc, which is equal
to one in component c, and zero otherwise. As yi is a single sample from p(y|xi), we see p̃(y|xi) = δyi as a
crude estimate of the true label distribution p(y|xi). Occasionally, sampling p(y|x) gives an unlikely sample y,
e.g., when probable errors are made in the annotation, causing a large difference between p(y|x) and p̃(y|x).
We aim to model this label noise (difference between p(y|x) and p̃(y|x)) in the pre-softmax logit space.

Learning with Label Noise. Specifically, we are interested in a probabilistic model with parameterized
output distribution pθ(y|x) and aim to optimize θ so that the prediction is close to the true distribution,
pθ(y|xi) ≈ p(y|xi), using only the (noisy) training data (xi, p̃(y|xi)). Although we see both pθ(y|x) and
p̃(y|x)) as approximations of p(y|x), note that they differ in that the former is predicted, and the latter is
directly determined by the given label. The challenge of learning from noisy labels with deep networks is their
susceptibility to overfitting to p̃(y|xi) = δyi

, for which we propose the following method and noise model.

2.2 Modelling Label Noise with Logistic-Normal Likelihoods

The core idea of our work is: Given an invertible mapping from logit space to the probability simplex, we can
define a regression noise model in logit space and use the map to get a noise model for classification. Here,
we go over the map (softmax centered), the noise model, and the corresponding classification likelihood.

1Our code is available at: https://github.com/ErikEnglesson/Logistic-Normal
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Figure 1: Logit Space and Probability Simplex Equivalence. An example showing how a normal
distribution in R2 corresponds to a Logistic-Normal distribution in ∆̊2, when using the softmax centered
function as the bijective transformation.

Softmax Centered. The softmax function S(z) = S([z1, . . . , zK ]) = [ez1 , . . . , ezK ]/
∑K

i=1 ezi is a
map from logit space RK to the probability simplex of K classes ∆K−1. This map is not invertible,
as S(z) = S(z + c) for any c in RK where all components of c are equal. An alternative is the bijec-
tive softmax centered function SC(z) = S([z1, . . . , zK−1, 0]) from RK−1 to the interior of the simplex,
∆̊K−1 = {p ∈ ∆K−1 | pi > 0, ∀ i ∈ {1, 2, . . . , K}}, with inverse S−1

C (q) = log ([ q1
qK

, q2
qK

, . . . , qK−1
qK

]).

Noise Model. Consider a multivariate version of Equation 1 where y(x), µ(x), ϵ(x) ∈ RK−1 are vectors in
logit space. We can apply the softmax-centered transformation to this noise model to get a label noise model
for classification:

SC(y(x)) = SC(µ(x) + ϵ(x)). (3)

With a deterministic ϵ, analogous to regression, we model the noisy label distribution p̃(y|x) = SC(y(x))
as the true label distribution p(y|x) = SC(µ(x)) with additive noise ϵ(x) in logit space2. Hereafter, we
occasionally omit the dependence of variables y, µ, Σ to x for notational convenience.

Likelihood Function. Assuming a normally distributed ϵ(x) in Equation 3 with zero mean and covariance
Σ(x), the likelihood of the observed target p̃(y|x) is:

1∏K
k=1 p̃k(y|x)

1
|(2π)K−1Σ| 1

2
e− 1

2 (S−1
C

(p̃(y|x))−µ)T Σ−1(S−1
C

(p̃(y|x))−µ). (4)

As now µ(x) + ϵ(x) is a Gaussian random variable, transforming it with the softmax bijection leads to
a transformed random variable with a density proportional to N (S−1

C (q); µ, Σ) for q ∈ ∆̊K−1 (derivation
in Appendix B.1). Importantly, this corresponds to a well-studied probability density function, called
Logistic-Normal distribution (Atchison & Shen, 1980), which is defined for categorical distributions in ∆̊K−1.

As the map is bijective, this model gives rise to dual interpretations: (i) a regression problem with Gaussian
likelihoods with targets, S−1

C (p̃(y|x)), in logit space, or (ii) a classification problem with Logistic-Normal
likelihoods with targets, p̃(y|x), in the probability simplex. This duality is visualized in Figure 1.

2.3 Estimation with Logistic-Normal Likelihoods

We use deep networks with parameters θ to predict true logit vectors µi ≈ µθ(xi) and per-example
(heteroscedastic) noise covariance matrices Σi ≈ Σθ(xi). We use separate linear layers for µ and Σ that share
the same backbone. The network parameters are found by minimizing the following negative log-likelihood of

2Regarding p̃(y|x) = SC(y(x)), note that p̃(y|x) = δy ∈ ∆K−1 corresponds to a corner of the probability simplex, and is
therefore not in the co-domain of the softmax centered function. We solve this issue by slightly diffusing it with label smoothing:
p̃(y|xi) ≜ (1 − t)δyi + tu ∈ ∆̊K−1, where t > 0, and δy and u are the delta and uniform distributions over K classes,
respectively. We use t = 0.01 in all our experiments, except for a sensitivity analysis in Appendix G.1.
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the dataset (inputs xi and observed targets S−1
C (p̃(y|xi)) = yi) in addition to the negative log-prior over θ:

1
2

N∑
i=1

(yi − µi)T Σ−1
i (yi − µi) + log |Σi| + const. (5)

As the first factor in Equation 4 is independent of θ, it is part of the constant term. Our goal was to find a
classification loss with similar loss attenuation to the loss for regression. We see that our loss in Equation 5 is
almost identical to a multivariate version of the regression loss in Equation 2. Hence, the loss has the same
attenuation effect: It can be decreased by learning Σi such that (yi – µi)T Σ−1

i (yi – µi) is smaller than
(yi – µi)T (yi – µi), leading to higher freedom for µi to deviate from yi as the penalty is reduced.

We now established the capability for Logistic-Normal likelihood to attenuate high-residual samples and
potentially predict their correct mean. Next, we do a gradient analysis whereby we show how such behavior
is in fact encouraged when learning with gradient-following methods. In Section 5, we empirically verify the
realization of such effect not only through the final performance on noisy training data but also with targeted
analyses of the training behavior.

2.4 Loss Attenuation: A Gradient Perspective

Let L be the negative log-likelihoods in Equation 5, then the gradients w.r.t. µ of example j are:

∂L
∂µj

= −Σ−1
j (yj − µj). (6)

This reveals an interesting form where the gradients are related to the difference between the target logit (yj)
and the predicted mean (µj), and this difference is scaled by the inverse covariance matrix (Σ−1

j ). This scaling
is a major difference compared to the gradients of the negative log-likelihood of a categorical distribution
(CE) w.r.t. its logits: −(δyj

− S(zj)), where zj is the logits and S(·) is the standard softmax function.

To better understand what per-example Σ matrices the network tries to predict, we look at the optimal
covariance matrix, i.e., when ∂L

∂Σj
= 0 (details in Appendix B.2):

Σopt
j = (yj − µj)(yj − µj)T . (7)

The geometric interpretation is that the optimal density is a thin hyperellipsoid with its center on µ and
highest variance in the direction of the noisy target y, see Figure 1 left.

Plugging the optimal covariance matrix from Equation 7 in Equation 6, we get (details in Appendix B.3):

∂L
∂µj

∣∣∣∣
Σopt

j

= − (yj − µj)
||(yj − µj)||22

. (8)

That is, for a given µj , the corresponding optimal covariance matrix divides the difference between the label
and the logits by its squared l2-norm, which is exactly the loss attenuation property of our method. Clearly,
the role of Σ(x) is to increase and decrease the gradients for low- and high-residual examples, respectively.

As gradients are not affected by constants, and as the LN and multivariate normal likelihoods are the same
up to constants, the gradients here also apply to the regression case. This reflects the analogy of LN for
classification, with the loss-attenuating properties of the regression case, that we were after in this work.

3 Important Details

While the essence of our proposed noise model and the induced likelihood function are simple at the high
level, it involves important details that we discuss in this section.
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Figure 2: Controlling Loss Attenuation with λ. In higher dimensions, λ is necessary to ensure invertibility
of Σ, but it is also a way to control the loss attenuation for low residual examples. We plot the loss (left)
and gradients w.r.t. µ (right) with the optimal obtainable σ (binary classification) against varying residuals.
Clearly, the value of λ determines the residual threshold for where loss attenuation starts. We have loss
attenuation when the residual is larger than λ, resulting in a loss of one and a gradient of −1/(y − µ), and
otherwise the loss is the mean-squared error loss divided by λ2.

3.1 Estimating Per-Example Covariance Matrices

Note that the output covariance matrix Σ(x) has O(K2) parameters, needs to be symmetric and semi-positive
definite. Next, to feasibly predict Σ(x) for a large number of classes, we make use of the analysis for the
optimal Σ(x) to propose a structured reparametrization requiring only O(K) parameters.

Parametrization of Σ. Hinging on the rank deficiency of the optimal covariance matrix, we parametrize it
as Σθ(x) = Σ

1
2
θ (x)Σ

1
2
θ (x)T where:

Σ
1
2
θ (x) = cθ(x)cθ(x)T + λI, (9)

with cθ(x) ∈ RK−1, and a hyperparameter λ ∈ R>0. Note that such decomposition reduces the parametriza-
tion to a rank-1 matrix, cθ(x)cθ(x)T and a positive scalar, λ. Therefore, it gains computational efficiency by
acknowledging the singular structure of Σopt while crucially remaining full rank for numerical stability 3.

λ and Loss Attenuation. Interestingly, λ affects the loss beyond stability. Considering a binary classification
for simplicity, with λ = 0, the optimal variance per-example is a scalar σopt

i = (yi − µi)2. Using the
optimal variances in the label-dependent term of the loss in Equation 5 results in each term being 1, as
(yi − µi)2/σopt

i = (yi − µi)2/(yi − µi)2 = 1. Furthermore, the gradients for µi in Equation 8 become
∂L
∂µi

|σopt = −(yi − µi)/σopt
i = −(yi − µi)/(yi − µi)2 = −1/(yi − µi). This, again, clearly shows the loss

attenuation properties of the LN likelihood, i.e., it increases and reduces the contribution of low and high
residual examples, respectively.

How does λ affect this behaviour? It acts as a threshold (on residuals) for where loss attenuation occurs.
To see this, we note that the minimum value for any σθ is λ2, as σθ = σ

1
2
θ σ

1
2
θ , and the minimum value for

σ
1
2
θ is λ, due to the parametrization in Equation 9. Thus, as σopt

i cannot be smaller than λ2, the desired
σopt

i = (yi − µi)2 is unattainable when (yi − µi)2 < λ2. Instead, the optimization gets as close as possible,
resulting in σopt

i = λ2 (details in Appendix B.4). In general, we have σopt
i = max (λ2, (yi − µi)2). Therefore,

when (yi − µi)2 ≤ λ2, the label-dependent loss becomes (yi − µi)2/σopt
i = (yi − µi)2/λ2, and the gradients

become −(yi − µi)/σopt
i = −(yi − µi)/λ2. We show the effect of the loss attenuation threshold λ in Figure 2.

3Simple and efficient implementations of normal distributions with low-rank covariance matrices can be done in, e.g., the
distribution packages of TensorFlow (Dillon et al., 2017) and PyTorch.
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3.2 The Softmax Centered Function

Softmax-Centered with Temperature Sτ
C. We incorporate a temperature τ in the softmax-centered

function by seeing it as a bijective scale function:

Sτ
C(z) = SC ◦ Scale1/τ (z) = SC(z/τ), (10)

(Sτ
C)−1(q) = Scale−1

1/τ ◦ S−1
C (q) = τS−1

C (q), (11)

where z ∈ RK−1 and q ∈ ∆̊K−1. By introducing temperature in the softmax centered bijection, the target
logit in the log-likelihood of Equation 5 changes from yi to τyi, i.e., τ controls the magnitude of the target
logit vector. We believe this has two major effects on learning: i) a low τ moves the target logit closer to the
origin, making it easier for the network to match µ to it. Conversely, a large τ imposes a challenge as the
network must output µ with large magnitudes, which it is penalized from doing by the log prior (weight decay).
ii) The chosen τ controls the range of residuals in the mean squared error loss. To illustrate, consider a sample
with a noisy target logit τyi, for which the network predicts the true target µ = τy = τS−1

C ((1 − t)δj + tu)
with yi ̸= j. Then the negative log-likelihood for this example with an identity covariance is:

(τyi − µθ(xi))T (τyi − µθ(xi))
= (τyi − τy)T (τyi − τy) (12)
= τ2(yi − y)T (yi − y) = τ2C

where C = (yi − y)T (yi − y) is the loss without temperature scaling. Hence, the temperature determines
how much the mean squared error part of the loss penalizes deviations from the observed target. In this
work, we treat the temperature τ as a hyperparameter.

Softmax Centered with a Dummy Class. An issue with the softmax centered function is that it treats the
last class differently from the rest. To see this, we look at the target logits (y) for target categoricals (SC(y))
for different classes (y), for details see Appendix B.5. If y is not the last class, then y is zero in all components
except for component y where it is a constant (C) that depends on the number of classes K. However, if y
is the last class, then all components of y are −C. See Figure 1 (left) where y1 = [C, 0], y2 = [0, C] and
y3 = [−C, −C]. This becomes a bigger problem for large K, as the squared l2-norm for an observed target
logit is (K − 1)C2 for the last class, and C2 otherwise.

As it is only the last class that is treated differently, we mitigate this by introducing a dummy class. We
make SC(y) be in ∆̊K by having the delta and uniform distribution be over K + 1 classes, and the network
therefore has to output mean and covariance in RK and RK×K , respectively. Then, all the K first classes
that we care about are treated equally.

3.3 Predictions on Unseen Data

With our noise model in Equation 3, we relate the observed noisy target with the true target via an additive
normally-distributed noise in the logit space. For unseen data x∗, however, we would like to predict the true
target, not the noisy target, and, therefore, we use SC(µθ(x∗)) instead, i.e., setting ϵ(x∗) = 0. This means
that we can discard the network’s head predicting Σ after training.

4 Related Work

Heteroscedastic Noise Estimation. Nix & Weigend (1994) tackle the problem of input-dependent noise,
for regression, in a maximum likelihood estimation framework. They assume additive Gaussian label noise and
optimize two different networks to predict the mean and the variance of the output distributions. Kendall &
Gal (2017) importantly note that such a framework provides a model with the capacity to effectively attenuate
the loss induced by samples which are hard to model (Equation 2) and thus renders it possibly robust to
label noise. Furthermore, they argue that such attenuation properties are also desirable in classification and
propose a method termed Heteroscedastic Classification NNs (Het). They place a normal distribution over
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the logits to model heteroscedastic noise, which is then marginalized out to obtain a categorical distribution:
Eϵ(xi)∼N (0,Σθ(xi))[S(µθ(xi) + ϵ(xi))] (13)

where µ ∈ RK , and Σ ∈ RK×K is a diagonal covariance matrix, both predicted by a neural network, and S
is the standard softmax. The negative log-likelihood of this categorical distribution is then used as the loss.
Collier et al. (2020) extended this by tempering the softmax (Het-τ), and evaluated the robustness of the
method to label noise. In another work, Collier et al. (2021) proposed an efficient low-rank parameterization
for the covariance matrices (Het-τ -Σfull), which is similar to ours in Equation 9. To better understand these
works, we analyze the gradients w.r.t. µ for sample i with label yi = c (derivation in Appendix B.6):

−
(

δc − Eϵ

[
S(µi + ϵ) S(µi + ϵ)c

Eϵ[S(µi + ϵ)c]

])
(14)

Comparing the expectation in Equation 14 with the expectation in Equation 13, we see it is modified by
a scalar factor to increase the contribution of each sampled categorical distribution S(µi + ϵ) that has a
high confidence in the given class, S(µi + ϵ)c. Clearly, this is doing loss attenuation as the network could
learn to add noise to increase the confidence in the given class, making the expected categorical be closer to
the target one-hot distribution. However, the loss attenuation of this method is different from the one in
maximum likelihood estimation with Normal (regression) and Logistic-Normal (classification) likelihoods, see
Section 2.4. We empirically compare Logistic Normal with all the variants in this line of work.

Loss Correction. Closest to our work, are the loss correction methods that estimate the true categorical
distribution and transform it to the observed noisy one (Sukhbaatar et al., 2014; Patrini et al., 2017):
p̃(y|x) = T p(y|x), where T is a matrix with elements Tij estimating the probability that the noisy class is j,
given that the true class is i. This is clearly related to our noise model, as we transform the true categorical
to the noisy one by adding noise in logit space. Importantly, we estimate a per-example covariance matrix,
while these works estimate a single matrix T per dataset.

Loss Reweighting. These methods propose to weight the per-example losses to reduce the contribution of
noisy examples. These weights can be estimated through density estimation (Liu & Tao, 2015), or predicted
by the same network (Wang et al., 2017; Thulasidasan et al., 2019), another network (Jiang et al., 2018), or
via meta-learning (Ren et al., 2018). These methods need to avoid the trivial solution of all weights being 0,
which is typically done by engineering an extra regularization term. Our method’s loss attenuation is a form of
reweighting. However, in contrast, we naturally extend a classic noise model that leads to a likelihood, which
combined with a standard MAP estimation framework, directly leads to our loss with inherent regularization.
This makes our design choices more interpretable and more conducive to further extensions.

Memorization Effects. These methods rely on the observation that neural networks learn easy (correctly
labeled) examples first (Arpit et al., 2017). Examples with small loss can therefore be assumed to be correctly
labeled and selected for learning. Some notable methods making use of this are: MentorNet (Jiang et al., 2018)
with predefined curriculums, the Co-teaching methods (Han et al., 2018; Yu et al., 2019), and DivideMix Li
et al. (2020a). Incorporating similar small-loss tricks in our method could further improve robustness.

Robust Loss Functions. Ghosh et al. (2017) proved that, for certain (symmetric) loss functions, the
globally optimal classifier is the same when trained with noise-free data as when trained with symmetric or
asymmetric noise, under certain assumptions. Based on this theory, several new loss functions have been
proposed (Zhang & Sabuncu, 2018; Ma et al., 2020; Englesson & Azizpour, 2021) and even extensions of
the theory (Zhou et al., 2021). These theoretical works are commendable, however, most assume access to
unlimited data, which makes it unclear how the results translate to standard finite classification datasets.

Regularization. Several standard regularization methods have also been studied when training with label
noise, e.g., label smoothing (Lukasik et al., 2020), dropout (Rusiecki, 2020; Goel & Chen, 2021), and early
stopping (Li et al., 2020b; Bai et al., 2021). Furthermore, some methods regularize the predictions of the
network to be consistent with predictions from earlier in training (Liu et al., 2020; Laine & Aila, 2017), while
others add noise to the gradients, e.g., by adding noise to the one-hot labels (Chen et al., 2020). Although
many of these methods only implicitly tackle the underlying problem of label noise via standard regularization
techniques, they show impressive empirical robustness. We believe that targeted methods like ours that
explicitly tackles the problem could be naturally combined with these methods.
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(a) CE (b) LN (c) CE (d) LN

Figure 3: Synthetic Datasets. To gain insights into the behavioral differences between our method (LN)
and the cross-entropy (CE) loss, we study two binary datasets: the Two Moons dataset (left), and a dataset
of two circles of different sizes (right). The color indicates the probability of the blue triangle class. Training
with CE makes the network fit all the examples, resulting in a complex decision boundary. In contrast, the
loss attenuation of our method reduces the need to fit all examples, leading to a smooth decision boundary.

5 Results

Here, we empirically verify that our theoretically motivated method demonstrates robustness to label noise.
We describe the common training setup (Section 5.1) and the baselines (Section 5.2) and present results on
synthetic datasets (Section 5.3), synthetic label noise (Section 5.4), and natural label noise (Section 5.5).
Finally, we conduct additional insightful experiments studying different aspects of our method (Section 5.6).

5.1 Experimental Setup

We implement our method and the baselines in the same code base and compare on the following datasets:
Two Moons & Circles, MNIST (Deng, 2012), CIFAR-10 & CIFAR-100 (Krizhevsky et al., 2009), CIFAR-10N
& CIFAR-100N (Wei et al., 2022), and Clothing1M (Xiao et al., 2015). For all methods, and on all datasets,
we search for method-specific hyperparameters based on noisy validation accuracy at the end of training. We
report the mean and standard deviation of the test accuracy at the end of training for five different random
seeds with the optimal hyperparameters. The seeds affect the network initialization, data loaders, and the
generation of the synthetic label noise. For details about the experimental setup, see Appendix C.

5.2 Baselines

In addition to the standard cross-entropy (CE) loss, we compare our method with methods sharing the same
motivation and goal in having a method that deals with heteroscedastic label noise similar to the probabilistic
method for regression: Het (Kendall & Gal, 2017), Hetτ (Collier et al., 2020), and Hetτ

Σfull
(Collier et al.,

2021). Our method and these baselines model the pre-softmax logit vector as being normally distributed
and use deep neural networks to output the mean and covariance of this distribution. We also compare with
the loss correction method Forward (Patrini et al., 2017), and label smoothing (LS) regularization (Lukasik
et al., 2020). Additionally, for completeness, we consider more distant baselines: Generalized Cross Entropy
(GCE) (Zhang & Sabuncu, 2018), and Noise Against Noise (NAN) (Chen et al., 2020).

5.3 Synthetic Datasets: Two Moon & Circles

In Figure 3, we compare the behavior of our method (LN) with the cross entropy (CE) loss on two synthetic
binary classification datasets: a dataset where the classes correspond to two half moons, and another with
two circles of different radii. We find that training with the CE loss makes the network classify almost
all examples according to their observed targets, resulting in a complex decision boundary that does not
generalize well. In contrast, the network trained with the log-likelihood of the Logistic-Normal distribution
has a smoother decision boundary, as the network is not classifying some examples as their given targets.
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Table 1: Synthetic Noise on MNIST, CIFAR-10 and CIFAR-100. We implement our method and all
baselines in the same shared code based and do a search for the best hyperparameters on a noisy validation
set for all methods. We report the mean and standard deviation of the test accuracy from five runs with
different random seeds. Our method (LN) shows strong performance compared to baselines, especially on the
predictable asymmetric noise, and the challenging CIFAR-100 dataset.

Method No Noise Symmetric Noise Rate Asymmetric Noise Rate

0% 20% 40% 60% 20% 30% 40%

M
N

IS
T

CE 99.27 ± 0.07 88.41 ± 0.34 70.67 ± 1.30 51.04 ± 1.19 91.09 ± 0.79 86.31 ± 1.25 80.31 ± 1.81
GCE 99.22 ± 0.06 98.85 ± 0.18 98.60 ± 0.11 97.45 ± 0.31 98.52 ± 0.31 86.36 ± 0.86 79.81 ± 1.46
NAN 98.44 ± 0.24 97.51 ± 0.37 90.03 ± 0.95 74.00 ± 2.92 96.46 ± 2.23 95.43 ± 1.09 88.95 ± 1.63
Forward 99.27 ± 0.03 87.46 ± 0.70 69.96 ± 2.10 50.43 ± 1.43 91.95 ± 0.40 86.31 ± 0.43 80.97 ± 1.23
LS 99.35 ± 0.06 89.92 ± 0.85 69.07 ± 0.93 47.77 ± 2.00 92.06 ± 0.95 86.50 ± 0.44 80.00 ± 0.93
Het 99.28 ± 0.05 87.09 ± 0.70 70.30 ± 1.10 50.57 ± 1.02 91.12 ± 1.29 86.35 ± 0.62 80.04 ± 0.87
Hetτ 99.25 ± 0.07 88.10 ± 0.70 70.19 ± 1.58 51.95 ± 1.13 91.13 ± 1.25 85.95 ± 0.69 81.37 ± 1.14
Hetτ

Σfull
99.25 ± 0.15 89.16 ± 0.44 70.34 ± 1.20 50.89 ± 1.79 91.06 ± 0.24 86.25 ± 0.88 79.93 ± 0.44

LN 99.38 ± 0.06 98.53 ± 0.27 97.21 ± 0.38 90.93 ± 2.29 99.19 ± 0.10 99.01 ± 0.19 96.54 ± 1.20

C
IF

A
R

-1
0

CE 90.67 ± 0.80 73.54 ± 1.01 56.56 ± 1.44 39.44 ± 1.87 81.35 ± 1.26 76.01 ± 2.67 71.89 ± 1.67
GCE 90.83 ± 0.44 87.55 ± 0.41 84.72 ± 0.82 64.28 ± 1.42 85.68 ± 0.69 83.97 ± 0.52 72.90 ± 1.61
NAN 89.61 ± 0.93 83.86 ± 1.03 79.80 ± 0.59 73.58 ± 0.41 84.32 ± 1.05 76.79 ± 2.28 72.90 ± 1.92
Forward 90.69 ± 0.38 74.39 ± 1.49 59.60 ± 1.40 40.06 ± 2.16 82.10 ± 1.09 77.02 ± 2.38 72.77 ± 1.43
LS 89.78 ± 0.39 79.09 ± 0.96 64.27 ± 1.50 43.57 ± 3.13 81.99 ± 1.22 76.49 ± 1.17 71.66 ± 1.78
Het 90.41 ± 0.69 74.67 ± 1.06 58.53 ± 1.96 39.51 ± 2.53 81.72 ± 1.65 76.97 ± 1.17 72.88 ± 1.53
Hetτ 91.18 ± 0.41 76.90 ± 1.79 63.55 ± 2.27 44.73 ± 1.67 81.40 ± 0.96 77.41 ± 2.53 72.53 ± 1.83
Hetτ

Σfull
90.82 ± 0.42 77.16 ± 0.94 62.85 ± 1.88 44.20 ± 3.05 81.55 ± 0.80 77.05 ± 0.33 72.69 ± 0.89

LN 90.17 ± 0.55 86.13 ± 1.03 81.37 ± 1.97 76.08 ± 0.63 87.64 ± 0.78 86.91 ± 1.03 82.18 ± 1.30

C
IF

A
R

-1
00

CE 64.87 ± 0.88 47.39 ± 0.43 33.62 ± 0.79 20.04 ± 0.58 50.98 ± 0.88 44.04 ± 0.73 36.95 ± 0.58
GCE 64.33 ± 0.83 61.67 ± 0.67 53.96 ± 1.40 42.85 ± 0.79 59.63 ± 1.28 49.21 ± 0.53 36.78 ± 0.50
NAN 64.25 ± 0.64 56.93 ± 0.77 50.03 ± 0.62 40.45 ± 0.41 56.40 ± 1.07 52.78 ± 0.85 40.59 ± 0.84
Forward 64.33 ± 0.73 47.90 ± 0.93 32.28 ± 1.10 20.00 ± 0.75 50.82 ± 0.57 43.87 ± 0.47 37.02 ± 0.72
LS 65.39 ± 0.40 57.08 ± 0.70 44.03 ± 1.20 26.13 ± 1.45 55.47 ± 0.76 44.70 ± 0.73 38.56 ± 0.66
Het 64.48 ± 0.31 48.40 ± 1.32 34.26 ± 0.37 20.33 ± 0.31 51.44 ± 1.15 45.09 ± 0.40 37.43 ± 0.66
Hetτ 64.20 ± 0.37 54.17 ± 0.79 42.03 ± 0.84 22.33 ± 0.57 59.89 ± 0.54 53.75 ± 1.08 41.14 ± 0.98
Hetτ

Σfull
65.18 ± 0.90 54.83 ± 0.46 41.49 ± 1.53 22.42 ± 0.95 61.29 ± 0.46 56.44 ± 0.53 45.75 ± 1.02

LN 64.88 ± 0.98 60.58 ± 1.07 55.55 ± 1.30 46.43 ± 1.15 64.31 ± 0.98 64.07 ± 0.77 61.20 ± 1.22

5.4 Synthetic Noise

Noise types. Here, we study our method on two types of synthetic class-dependent label noise (asymmetric
and symmetric). For each training sample, there is a risk (according to the noise rate) that its label
is randomly re-sampled from a uniform distribution over the classes (symmetric noise) or changed to
another, often perceptually similar, class (asymmetric). The asymmetric noise changes the labels as follows:
MNIST: 7 → 1, 2 → 7, 5 ↔ 6, 3 → 8, CIFAR-10: bird → airplane, cat ↔ dog, deer → horse,
CIFAR-100: cyclically to the next class, e.g., 1 → 2 and 99 → 0.

Results. Table 1 shows the results using symmetric and asymmetric label noise. Compared to the most
related works (Forward and Het methods), we find that the test accuracy of our method is degraded the
least for all noise types and rates. Out of the more general set of baselines, we find that the robust GCE loss
performs remarkably well on symmetric noise. Our method shows largest improvements in robustness for the
more challenging CIFAR-100 dataset, as well as for asymmetric noise. For example, on CIFAR-100 with 40%
asymmetric noise, our method achieves a mean test error of ∼61% compared to ∼46% of the best baseline.
We find that the generalization of the networks trained with our method is barely affected when increasing
asymmetric noise rates from 20% to 30% on all datasets. This is likely due to the predictable structure of the
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Table 2: Natural Noise: CIFAR-10N, CIFAR-100N, and Clothing1M. For all methods, we search
for method-specific hyperparameters based on a noisy validation set and report the mean and standard
deviation for the best setting. Our method performs as well as other baselines, or is a close second to the
robust GCE (Zhang & Sabuncu, 2018) loss.

Method CIFAR-10N CIFAR-100N Clothing1M

Random 1 Random 2 Random 3 Aggregate Worst

CE 77.75 ± 0.74 75.52 ± 1.08 76.25 ± 1.26 83.59 ± 0.98 59.01 ± 0.98 42.75 ± 0.93 71.04 ± 0.15
GCE 85.66 ± 0.73 85.58 ± 0.65 84.78 ± 0.62 86.66 ± 0.68 77.48 ± 1.22 48.81 ± 0.46 71.95 ± 0.21
NAN 81.85 ± 1.13 83.40 ± 0.84 82.77 ± 0.78 85.53 ± 0.83 75.47 ± 0.76 50.00 ± 0.72 71.50 ± 0.41
Forward 77.97 ± 0.80 77.13 ± 0.74 77.51 ± 1.21 83.58 ± 1.50 58.91 ± 0.57 42.53 ± 0.41 70.75 ± 0.25
LS 80.07 ± 0.82 79.81 ± 0.62 79.41 ± 0.68 85.08 ± 0.54 63.07 ± 1.93 45.98 ± 1.44 72.04 ± 0.42
Het 76.38 ± 0.97 75.85 ± 1.45 76.18 ± 1.60 83.87 ± 1.02 58.86 ± 1.27 42.90 ± 0.48 70.87 ± 0.38
Hetτ 78.83 ± 1.65 78.29 ± 1.61 78.27 ± 0.86 84.34 ± 0.48 62.01 ± 2.03 45.82 ± 0.53 72.24 ± 0.30
Hetτ

Σfull
78.87 ± 0.47 76.24 ± 0.96 77.68 ± 1.93 84.45 ± 0.57 63.27 ± 2.62 45.58 ± 0.80 72.41 ± 0.15

LN 83.70 ± 0.80 83.65 ± 0.82 84.07 ± 0.71 85.35 ± 1.33 74.31 ± 1.08 50.37 ± 0.50 72.03 ± 0.52

asymmetric noise, which could also explain why our method fall behind the robust GCE loss on symmetric
noise. The predictability of the noise is important, as we use a neural network to predict the noise variance
of the LN likelihood. As the optimal Σ in Equation 7 depend on the residual, which in turn depend on the
label, the network needs to predict the noisy label for the mislabeled examples. However, for uniform noise,
the labels are inherently unpredictable, and therefore the network has to resort to memorization.

5.5 Natural Noise

Datasets. Synthetic label noise is excellent for studying robustness to noise under controlled noise rates.
However, this comes at the cost of the structure of the noise (class-dependent) potentially being different from
what one would observe in practice (input-dependent), e.g., due to mistakes in the annotation process. In this
section, we study the robustness of our method on natural noise by using the recently proposed CIFAR-N
datasets (Wei et al., 2022) and Clothing1M (Xiao et al., 2015), see Appendix D for more information.

Results. Table 2 shows the test accuracy of our method on naturally noisy datasets. Compared to the most
relevant baselines (Forward and Het methods), we find that networks trained with our method generalize
better on the CIFAR-N datasets, and as good as Hetτ and Hetτ

Σfull
on Clothing1M. For the more general set

of baselines, NAN, and especially GCE, have strong performance in this setting.
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Figure 4: The Evolution of Validation and Training Accuracy. We plot the noise-free validation
accuracy and noisy training accuracy of Hetτ

Σfull
(left) and our method (right) on varying symmetric noise

rates during training on CIFAR-10. We report the training accuracy of noise-free (full) and noisy (dashed)
examples separately. We observe that the generalization degrades (a) for networks trained with Hetτ

Σfull
as it

fits the noisy examples (b). Our method results in better generalization (c) and is more robust against fitting
the noisy examples of the training set (d).
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Figure 5: Sensitivity to Hy-
perparameters. The mean
and standard deviation of test
accuracy for various hyperpa-
rameters on CIFAR-10 with
40% symmetric noise. A too
small τ leads to overfitting to
noise, while a too large τ and
λ leads to slow convergence.
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Figure 6: Histogram of Residuals. We train two LN networks with
different covariance matrices: Σtrain = I, and Σtrain = Σθ. At the end
of training, we calculate the distributions of the label-dependent term of
the loss, (y − µ)T Σ−1

eval(y − µ), on the CIFAR-10 training set with 20%
asymmetric noise. We use Σtrain = Σeval = I (left), and for the network
with Σtrain = Σθ, we use Σeval = I (middle), and Σeval = Σθ (right). We
find that µ fits less of the noisy examples when learning Σ (cf. left and
middle), and that Σθ increases and decreases the contribution of low- and
high-residual examples, respectively (cf. middle and right).

5.6 Empirical Study of LN

How does the accuracy evolve during training? Figure 4 shows the clean validation and noisy training
accuracy (for clean and noisy examples separately) on CIFAR-10 with symmetric noise for various noise rates
for Hetτ

Σfull
and our method. The generalization of networks trained with Hetτ

Σfull
improves early in training,

and degrades when the networks start fitting the noisy examples. In contrast, we find that networks trained
with LN fit significantly fewer noisy examples and thus show a smaller decrease in generalization.

How sensitive is LN to hyperparameters? See Figure 5. A small τ makes the network overfit, likely due
to the target logit being close to the origin (Equation 11), thus easy to fit. A large τ with a small λ leads to slow
convergence, likely due to some clean examples being loss attenuated as τ increases residuals (Equation 12),
making examples more likely to be above the loss attenuation threshold, see last paragraph in Section 3.1.

How is Σθ(x) affecting the network? In Figure 6, a network trained with an identity matrix has, as
expected, more noisy examples with lower residuals (left), compared to the network that learns the covariance
matrix (middle). Interestingly, the residuals in the middle figure are bimodal, which we believe is due to
some clean examples being below the learnable loss attenuation threshold (Section 3.1) and some above.
Comparing Figure 6 middle and right, we find that Σθ is increasing the residuals of some clean examples,
while also reducing the residuals of noisy ones mixed with some (hard) clean samples. These results are for
the CIFAR-10 training set with 20% asymmetric noise, see Appendix G.3 for more noise types.

How important is learning a full Σθ(x)? In Table 3, we train with LN on CIFAR-10N (noise type
"worst") and CIFAR-100N with different per-example covariance matrices: I (Identity), σ2I (Isotropic),
diag([σ2

1 , . . . , σ2
K ]) (Diag), and the parametrization in Equation 9 (Full). We observe that using an identity

matrix generalizes significantly worse than all the other learnable ones, highlighting the importance of loss
attenuation. Furthermore, we find our proposed parametrization (Full) to significantly outperform the rest.

Table 3: Ablation Study. We analyze the effect of learning Σ, different parameterizations, and the dummy
class. Learning a full Σ performs the best, and the dummy class is crucial for datasets with many classes.

Σ Dummy Class CIFAR-10N CIFAR-100N

Identity ✓ 65.64 ± 1.53 47.69 ± 1.46
Isotropic ✓ 71.12 ± 1.85 46.44 ± 0.67
Diagonal ✓ 69.87 ± 1.11 46.98 ± 0.89
Full ✓ 74.31 ± 1.08 50.37 ± 0.50
Full ✗ 74.72 ± 1.14 26.31 ± 1.43
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How important is the dummy class? Our analysis in Section 3.2 highlighted that the softmax centered
treated the last class differently, and that this difference increased with the number of classes. In Table 3, we
evaluate the importance of our solution (dummy class) to this problem. As expected, on CIFAR-10, it makes
no significant difference, however, on CIFAR-100 with its many more classes, it becomes crucial.

6 Limitations and Future Work

Interleaved in the previous sections, we have addressed or discussed limitations of our work, e.g., asymmetry of
softmax centered → dummy class, full covariance matrices do not scale to high number of classes → low-rank
approximation, the Logistic-Normal distribution is not defined on the borders of the probability simplex →
label smoothing. Although our method is conceptually simple, these minor designs to make the extension work
in practice are not surprising to us. We believe it could explain why such natural extension from regression
has not happened before despite the establishment of the regression approach and the more practicality and
wide applicability of the classification settings, especially for modern deep networks. Furthermore, in Section
5.4, we discuss the limitation of using neural networks to predict the noise variance in the LN likelihood. We
believe an interesting future direction is improving this estimation. Next, we discuss more future work.

Soft Labels. We model the observed target as the softmax of a logit vector, SC(y). However, this leads
to a limitation that the target cannot be on the borders of the probability simplex. We proposed label
smoothing as a simple solution for this issue. However, as future work, there are many other interesting
possibilities of obtaining a soft label, e.g., using the categorical prediction of another network, as in Knowledge
Distillation (Hinton et al., 2014), or temporal ensembling (Laine & Aila, 2017), etc.

Neural Network Point Estimates. We assume the observed target logit can be modelled as the true
target with additive noise in logit space: y = µ + ϵ, ϵ ∼ N (0, Σ). That is, we explain the residual y − µ, as
zero-mean normally distributed noise ϵ. Hence, high-residual examples will be attenuated. In this work, as µ
and Σ are unknown, we estimate them with a neural network. Therefore, a limitation of our work is that if
estimates of µ are poor, then we will incorrectly model the residual as noise, which could lead to e.g., slower
convergence. To improve these estimates, we believe exciting directions for future work are to extend our
method to incorporate epistemic uncertainty and/or distance awareness, which has been done for the most
related work to us (Het) by Kendall & Gal (2017) and Fortuin et al. (2022), respectively.

Gaussian Process Classification. Due to the duality between the logit space and the probability
simplex, see Figure 1, we can interpret our method as: i) converting the classification labels to regression
labels (S−1

C (p̃(y|xi))), ii) training a regression neural network with a Gaussian likelihood loss, and iii)
making classification predictions on unseen examples by turning the regression predictions (µ) to categorical
distributions (SC(µ)) via the softmax centered bijection. Gaussian Processes (GPs) for classification typically
use the categorical likelihood, which requires approximate methods to find the approximate posterior predictive
distributions. However, given the interpretation of our method above, we can get closed-form predictive
posterior distributions even in classification. Similarly to above, the procedure would be: i) turn a classification
dataset into a regression dataset using the softmax centered bijection, ii) train a regression GP on this
dataset, iii) get closed-form posterior predictive distributions (Normal distributions) from the GP, and finally
transform these predictions to classification predictions (Logistic-Normal distributions) by applying the
softmax centered function. We expect this method to be much faster than the approximate methods, and it
would be interesting to compare the quality of the predictions, especially in settings with label noise.

7 Conclusion

The goal of this work was to extend the simple and probabilistic approach of doing loss attenuation in
regression to classification. We successfully achieved this by proposing a noise model that lead to the
Logistic-Normal distribution. We proposed to learn the parameters of the distribution with neural networks
through maximum likelihood estimation and formally presented the loss attenuation effects obtained when
optimizing such models. Finally, we empirically verified that LN is effectively robust to label noise. As our
method has the same loss attenuation as in the regression case, it can serve as a simple alternative to the
methods of Kendall & Gal (2017); Collier et al. (2020; 2021).
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A Appendix

In the Appendix, we provide derivations of important theoretical results (Section B), describe details regarding
hyperparameters (Section C) and the natural datasets (Section D). Furthermore, we provide implementation
details of the method (Section E), discuss additional related work (Section F) and present additional
experiments (Section G).

B Derivations

B.1 The Probability Density Function of a Logistic-Normal Distribution

Assume Y ∼ N (µ, Σ) for some µ ∈ RK−1,Σ ∈ R(K−1)×(K−1) and S = SC(Y), then the probability density
function (pdf) of S can be written as fS(s) = abs(|J(s)|) · fY(S−1

C (s)). In which, |J(s)|, the determinant of
the Jacobian of S−1

C (s) = (log sk

sK
)k∈NK−1 is given by Dillon et al. (2017)

|J(s)| = |D−1 + 1
sK

|

= |D−1 +
D−1s−KsT

−KD−1

sK
|

= |D−1 +
D−1s−KsT

−KD−1

1 − sT
−KD−1s−K

| (15)

=
(
|D − s−KsT

−K |
)−1

=
(
|D|(1 − sT

−KD−1s−K)
)−1

=
(

K∏
k=1

sk

)−1

where D = diag(s−K) and s−K = (sk)k∈NK−1 . The first equality is obtained by computing derivatives
while sK = 1 −

∑K−1
k=1 sk, the fourth equality is based on the Sherman–Morrison identity Sherman &

Morrison (1950) and the fifth equality holds based on the matrix determinant lemma Harville (1998). As
fS(s) = abs(|J(s)|) · fY(S−1

C (s)), the pdf of the Logistic-Normal distribution is

fS(s) = 1∏K
k=1 sk

1
|(2π)K−1Σ| 1

2
e− 1

2 rT Σ−1r = 1∏K
k=1 SC(y)k

1
|(2π)K−1Σ| 1

2
e− 1

2 rT Σ−1r (16)

where r = S−1
C (s) − µ = y − µ.

B.2 Optimal Covariance Matrix

We want to show that the optimal Σ matrix for example j is: Σopt
j = (yj − µj)(yj − µj)T = rjrT

j . First, we
note that the gradients of the negative log likelihood in Equation 5 with respect to Σj is:

∂L
∂Σj

= 1
2

N∑
i=1

rT
i Σ−1

i ri + log |Σi|
∂Σj

= 1
2

rT
j Σ−1

j rj + log |Σj |
∂Σj

as all other terms of the loss are unaffected by Σj and are therefore zero. Computing the gradients with
respect to Σj while applying two identities ∂

∂Σ log |Σ| = Σ−1 and ∂
∂Σ rT Σ−1r = −Σ−1rrT Σ−1 (see Petersen

et al. (2008) Equations 57 and 63), we have

∂

∂Σ [rT
j Σ−1

j rj + log |Σj |] = −Σ−1
j rjrT

j Σ−1
j + Σ−1

j (17)
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where the latter identity being justified by properties of symmetry and trace of matrices as follows

∂

∂ΣrT Σ−1r = ∂

∂Σ tr[rrT Σ−1] = −(Σ−1rrT Σ−1)T = −Σ−1rrT Σ−1 (18)

Setting the term in the right-hand side of Equation 17 to zero then left and right multiplying by Σj , yields
the maximizer of the likelihood Σopt

j = rjrT
j .

B.3 Gradients for the Mean with Optimal Covariance

The optimal covariance Σopt
j = (yj − µj)(yj − µj)T = rjrT

j is rank 1 and is therefore not invertible. However,
for an invertible Σj , we have

∂L
∂µj

= −Σ−1
j rj ⇔ Σj

∂L
∂µj

= −ΣjΣ−1
j rj = rj (19)

This is a linear system of the form Ax = b, which can be solved with exact (or approximate) methods. If we
assume Σopt is invertible (in practice this is done by adding a diagonal matrix), and solve the linear system
with A = Σopt

j instead, one solution is ∂L
∂µj

= rj

||rj ||2
2

as rj is an eigenvector of Σopt
j with eigenvalue ||rj ||22:

Σopt
j rj = (rjrT

j )rj = rj(rT
j rj) = ||rj ||22rj (20)

Side-note: In practice, this is not how the gradients are computed. Typically the label-dependent part of
the loss is computed with a similar rewrite as above, i.e., rjΣ−1r = rj(Σ \ r) where Σ \ r is the (exact or
approximate) solution to the linear system Σx = r, which we then do backpropagation through. This is
more numerically stable than calculating the inverse and multiplying it with rj .

B.4 The Effect of Lambda on the Optimal Variance

In this section, we provide derivations for the behavior in Figure 2. Our goal is to show how λ affects the
optimally learned σ2. First, we note that Equation 5 for binary classification becomes

L = 1
2

N∑
i=1

(yi − µi)2

σ2
i

+ log σ2
i + C (21)

and we want to look at L
∂σ2

i
= 0 for a particular example i. To simplify notation, we let σ2

i = σ2, yi = y, and
µi = µ and let r = y − µ denote the residual. With this notation, the gradient of the loss with respect to σ2

for example i is

∂

∂σ2 [ r2

2σ2 + 1
2 log σ2] = − r2

2σ4 + 1
2σ2 = σ2 − r2

2σ4 (22)

Solving for when the gradient is zero, gives σ2
opt = r2. However, as our predicted variance is σ2

θ =
(c2

θ + λ)(c2
θ + λ) = c4

θ + 2λc2
θ + λ2, it cannot be smaller than λ2, and therefore σ2

opt is not always obtainable.
If r ≥ λ then σ2

opt is obtainable with c2
θ = r − λ. This corresponds to when the loss is one in Figure 2.

However, the optimal variance is not obtainable if, r < λ, as it implies c2
θ < 0, which is impossible. To better

understand what the network does in this case, we look at the gradient of the loss with respect to cθ

∂

∂cθ
[ r2

2σ2
θ

+ 1
2 log σ2

θ] = ∂

∂σ2
θ

[ r2

2σ2
θ

+ 1
2 log σ2

θ]∂σ2
θ

∂cθ
= (σ2

θ − r2)(4c3
θ + 4λcθ)

σ4
θ

(23)

where the first equality follows from the chain rule. Hence, in the case that σ2
θ ≥ λ2 > r2, the numerator of

the gradient can only be zero if cθ is zero, making σ2
θ = λ2. This corresponds to the (scaled) squared error

behavior for small residuals (r2 < λ2) in Figure 2.
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B.5 Target Logits

From Section 2.2, the target categorical for y = i is:

S(y) = ((1 − t)δi + tu)j =
{

t/K i ̸= j
(1−t)K+t

K i = j
(24)

and S−1
C (p) = log ([p1, . . . , pK−1]/pK). Hence, if i ̸= K, then the observed target logit is:

y = S−1
C (SC(y)) = S−1

C ((1 − t)δi + tu)j =
{

0 i ̸= j

C i = j
(25)

as log ( t
K / t

K ) = log 1 = 0 and where C = log (1−t)K+t
t . If i = K, then we have for all j:

y = S−1
C ((1 − t)δi + tu)j = −C. (26)

B.6 Gradients for the Heteroscedasitc NN methods

In Heteroscedasitc NN methods, the prediction is the mean of M samples ȳc = 1
M

∑M
m=1 ym

c , in which we
define ym

c = ezc+ϵm

/Σm
K and Σm

K =
∑K

k=1 ezk+ϵm . Therefore, the gradient of softmax output w.r.t logits is
given by:
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i ym
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Using the last equation, we can compute the derivatives of the log-likelihood with respect to logits as follows:

∂

∂zj

K∑
i=1

ti log( 1
M

M∑
m=1

ym
i ) =

K∑
i=1

ti

∂
∂zj

∑M
m=1 ym

i∑M
m=1 ym

i

=
K∑

i=1
ti

∑M
m=1 ym

i

(
δij − ym

j

)∑M
m=1 ym

i

= −
K∑

i ̸=j

ti

∑M
m=1 ym

i ym
j∑M

m=1 ym
i

+ tj

(
1 −

∑M
m=1(ym

j )2∑M
m=1 ym

j

)

=tj −
K∑
i

ti

∑M
m=1 ym

i ym
j∑M

m=1 ym
i

18



Published in Transactions on Machine Learning Research (08/2023)

Assuming a label t = δc is given, we can rewrite the above equation in a simpler form:

∂

∂zj

K∑
i=1

ti log( 1
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ym
i ) =tj −
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ti
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i
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c ym
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m=1 ym
c

=tj − 1
M

M∑
m=1

ym
j
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1
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c

The derivatives of the log-likelihood, in vector notation, are given by:

∂

∂z

[
tT · log( 1

M

M∑
m=1

ym)
]

=δc − 1
M

M∑
m=1

ym ym
c

1
M

∑M
m=1 ym

c

=δc − 1
M

M∑
m=1

S(z + ϵm) S(z + ϵm)c

1
M

∑M
m=1 S(z + ϵm)c

C Hyperparameters

C.1 Method-independent Hyperparameters

All methods are implemented in the same code base, using the same network architectures, optimizers,
hyperparameter searches, etc. We use a learning rate of 0.0001 for synthetic datasets, 0.001 for MNIST and
Clothing1M, and 0.01 for the CIFAR datasets. We show that our method performs well under different
optimizers by using gradient descent for the synthetic datasets, Adam for MNIST (batch size 256), and SGD
with Nesterov momentum of 0.9 for Clothing1M (batch size 32) and the CIFAR datasets (batch size 128).
We use a weight decay of 1e-3 and 5e-4 for Clothing1M and the CIFAR datasets, respectively, but no such
regularization for the other datasets. We use an MLP with two hidden layers with 2000 hidden units for
the synthetic datasets, a convolutional network (LeNet-5) for MNIST, and residual networks for the CIFAR
datasets (WideResNet-28-2) and Clothing1M (ImageNet pre-trained ResNet-50). We train for 2000, 100, 10,
and 300 epochs for the synthetic datasets, MNIST, Clothing1M, and CIFAR, respectively. We use 10% of the
training set of MNIST and CIFAR as a noisy validation set.

C.2 Method-dependent Hyperparameter Search

In this section, we go over our thorough hyperparameter search we did for the results in Tables 1 and 2.
For each method, we search for method-specific hyperparameters for each noise rate and noise type per
dataset. For Het-τ and Het-τ -Σfull, we search for temperatures in [0.1, 0.5, 1.0, 10.0, 20.0], while Het-τ -Σfull
also searches over R of the covariance matrix in [1, 2, 4]. We choose the range of values to search over is based
on the original papers. Our method searches over temperatures and λs in [0.1, 0.5, 1.0] for MNIST, but λs
in [0.5, 1.0] for the CIFAR datasets and Clothing1M. We treat the label smoothing parameter t for LN as
fixed, and set it to 0.01 in all experiments. For GCE, we search over q in [0.1, 0.3, 0.5, 0.7, 0.9]. For NAN, the
search is over σ in [0.1, 0.2, 0.5, 0.75, 1.0]. For LS, we search for values in [0.1, 0.3, 0.5, 0.7, 0.9]. All searches
are done with a single seed, and the hyperparameters with the highest noisy validation accuracy at the end
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Figure 7: Loss Attenuation: The Effect of the Covariance Matrix. For a network trained on MNIST
with 40% symmetric noise, we show the distribution of the label-dependent term of the loss with (left) and
without (right) the scaling of the covariance matrix for clean and noisy examples separately. The x-axis
correspond to the log-scaled loss. We find that the covariance matrix increases the loss of clean examples and
reduces the loss of noisy examples.

of training are used to train four more networks with different seeds. The hyperparameters used for different
noise rates, noise types, and datasets are shown in Tables 5, and 6.

D Natural Datasets

The CIFAR-10N dataset has five new sets of labels for the CIFAR-10 training set, which was generated by
having each training image labeled by three different humans. Naturally, this gives rise to three different
labeled sets (Random 1-3). The fourth set is generated through majority voting, where ties are broken at
random (Aggregate). Finally, the last set of labels (Worst) was created by randomly picking one of the labels
that are different from the original training label, if no such a label exists then the original is used. The noisy
labels are 18%, 9%, and 40% of all labels for Random, Aggregate and Worst, respectively. CIFAR-100N was
created similarly, but with a single human annotator per image, resulting in a noise rate of 40%. Clothing1M
is a dataset of one million images of clothes from 14 different classes, automatically labeled based on captions.
As there is a large imbalance between the classes, we follow the balancing strategy of Li et al. (2020a). We
use the provided validation and test sets. The noise rate is estimated to be 38%.

E Implementation Details

We implement our method using the TensorFlow Probability Dillon et al. (2017) library. The Logistic-Normal
distribution is implemented as a transformed distribution (the TransformedDistribution class) comprised
of a distribution and a transform. For the distribution, we use a multivariate normal distribution (the
MultivariateNormalDiagPlusLowRank class). For the transform, we combine a softmax centered and a scale
(for temperature) bijector using the Chain bijector class. Conveniently, the loss can then be implemented by
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using the built-in method (log_prob) of the transformed distribution class to calculate the logarithm of the
pdf.

F Connections to Additional Related Work

F.1 Relationship with Calibration Methods

Both calibration methods and our method are interested in capturing a true probability distribution p(y|x)
and in that sense some standard calibration techniques, such as temperature scaling, might be applicable for
both. However, there are two key fundamental differences:

• Probabilistic noise models are interested in obtaining the true probability distribution of sampled
data (only dependent on data and irrespective of the machine learning method). Calibration methods
are by definition tied to a machine learning method and want their probabilistic output to be a true
reflection of the “probability of correctness” (only dependent on the machine learning method and
irrespective of the data). This can be seen, for instance, by considering that a model that always
outputs the uniform distribution is calibrated but minimally accurate.

• Calibration is for unseen (test) data, while noise models are typically for the training data. As such,
many calibration methods are often applied as a post hoc approach, tuning calibration metrics on
unseen (calibration) data, and then evaluated on unseen (test) data. Furthermore, as the temperature
scaling is typically done after training, it has no effect on the training dynamics, while the temperature
we use directly affects the observed target locations (see first paragraph in Section 3.2). As noise
models, such as ours, are primarily concerned with modelling of the training data, the full distributions
(that includes variance due to label noise) can in fact be discarded at test time, see Section 3.3.

F.2 Relationship with Linear Regression

There is a close relationship between our work and (Multinomial) logistic regression. In fact, what we do
with the Logistic-Normal distribution can be seen as a generalization of doing logistic regression as a set of
binary regressions, where the generalization is to incorporate label noise. That is,

Logistic regression : SC(y) = SC(Wx) (27)
Our case : SC(y) = SC(Wx + ϵ) ⇔ SC(y) ∼ LN (Wx, Σ), ϵ ∼ N (0, Σ) (28)

where W are the parameters of the single linear layer. In the logistic regression case, we have no noise, and
the resulting likelihood is a categorical distribution. However, in our case, due to the noise being normally
distributed, the resulting likelihood is a Logistic-Normal distribution, which is a distribution over categorical
distributions. This makes it possible for us to explain differences between potentially noisy labels p̃(y|x),
with our approximation of the true categorical distribution pθ(y|x) as label noise, akin to the regression case.

F.3 Relationship with Linear Discriminant Analysis

We see standard LDA as a fundamentally different method as it puts an explicit distribution on the samples
belonging to each class, which we do not.

To simplify the analysis, let’s consider a fixed mapping from the input space x to logit space, i.e., LDA
operates on h(x) instead of x, and LN has µ(x) = h(x), and let’s call these the “features”.

LDA assumes that the features of all examples of a particular class are samples from the same normal
distribution. The variance of the features of examples of the same class, could be interpreted as per-class label
noise. Hence, we expect LDA to not be robust to input/feature/heteroscedastic noise, as a single example
with a noisy label, could dramatically affect the learnt location for the distribution for that class.

In LN, we have fixed positions for where the class clusters should be, i.e., the target logit locations. LN
assumes each feature corresponds to the true logit position for that example, and the difference between
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Figure 8: Effect of Label Smoothing on Robustness of LN. The mean and standard deviation of test
accuracy for various label smoothing parameters t on CIFAR-10 with 40% symmetric noise. For small λ2,
label smoothing has little effect on robustness. Interestingly, for λ2 = 1 the networks overfit to the noisy
labels more for increasing t values instead of improving robustness.

the feature and observed target location is due to normally distributed label noise. Hence, we treat each
observed target as a sample from a normal distribution centered on its corresponding feature. If we think of
the features of all examples of a particular class, as we did for LDA, then some might form a cluster around
the given target logits, while some features might be closer to other target logit locations. Consider such a
feature that is far away from the observed (noisy) target logit location. Our method would then have a large
variance to make the target logit more likely, while still keeping the correct feature location the same.

To summarize, LDA estimates per-class normal distributions such that the features of the examples of the
corresponding class distribution are likely samples. In contrast, LN estimates per-example normal distributions
(up to constants) centered on each feature, such that the corresponding target logit is a likely sample. We
expect LDA to not be robust against noisy labels, as a single example with a noisy label could completely
shift the location of the per-class distribution for that particular noisy label. Our model is affected less, as
noisy examples could still have the correct location, while having a larger variance instead. Furthermore, at
test time, our method predicts per-example distributions, while LDA evaluates the per-class distributions for
each input.

G Additional Experiments

If not otherwise stated, all the results in the tables in this section reports the mean and standard deviation
for the test accuracy over five runs with different seeds.

G.1 On the Robustness of the Logistic-Normal Likelihood Due to Label Smoothing

As the Logistic-Normal distribution is not defined on the border of the probability simplex, we proposed to
use label smoothing to solve this issue. Interestingly, Lukasik et al. (2020) showed that label smoothing itself
helps with robustness against label noise. Therefore, a natural question is how important label smoothing is
for the robustness of our method. In Figure 8, we show the mean and standard deviation of test accuracy for
various settings of the label smoothing parameter t (defined in Section 2.2) for our method trained on 40%
symmetric noise on CIFAR-10. We find that for λ2 of 0.1 and 0.25, the label smoothing parameters have
little effect on the test accuracy, suggesting that label smoothing is not having a big effect on the robustness
of our method. Interestingly, for λ2 = 1, increasing t degrades the test accuracy instead of improving it. We
believe this is similar to the temperature, that a too high value for t makes most of the residuals be below the
loss attenuation threshold and therefore the loss behaves like a standard mean squared error loss and overfits.
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Table 4: Calibration on the CIFAR-10N Training Set. CIFAR-10N provides three labels per training
example, which we see as three samples from the true p(y|x). Instead of measuring calibration with a single
(potentially noisy label), we propose to measure calibration on the training set by taking the average negative
log-likelihood (NLL) of each of the provided labels. We observe that LN has significantly lower average NLL
and is therefore better calibrated.

Method NLL

Het-τ -Σfull 1.66 ± 0.03
CE 1.60 ± 0.01
GCE 1.58 ± 0.04
NAN 1.54 ± 0.05
LN 1.18 ± 0.01

G.2 Training Set Calibration

Calibration metrics are typically used as scalar surrogates to measure the difference between the true p(y|x)
and the prediction pθ(y|x) on unseen data. This is typically done using, p̃(y|x) as we don’t usually have
access to p(y|x). However, interestingly, as CIFAR-N provides three labels from human annotators per image
in the CIFAR-10 dataset, we can see these as three samples from p(y|x) and have a better estimate of the
true label via:

p(y|x) = lim
M→∞

1
M

M∑
m=1

onehot(y(m)) ≈ 1
3(onehot(y(1)) + onehot(y(2)) + onehot(y(3)) = p̃(y|x) (29)

where y(m) ∼ p(y|x). Hence, we propose to measure the training set calibration of models trained on the
CIFAR-10 dataset (no added noise), by evaluating the standard negative log-likelihood of the predicted
categorical distribution using the three labels provided by CIFAR-N. More specifically, the per-example NLL
is calculated as 1

3 (− log pθ(y = y(1)|x) − log pθ(y = y(2)|x) − log pθ(y = y(3)|x)), and all per-example NLLs
of the training set are then averaged. See the table below for the results, which is the mean and standard
deviation of the five networks of models trained with no synthetically added label noise in Table 1.

As with the standard NLL calibration metrics, lower values indicate the model has put more confidence into
these classes, which is therefore desired. From the results in Table 4, we find that our method has significantly
lower NLL on the training set than the other methods.

G.3 Residual Histograms

In this section, we show similar histograms as in Figure 6, but for more noise types: symmetric noise and
aggregate, random 2, and worst from CIFAR-10N. The setup is the same, to train two networks by minimizing
the negative log-likelihood of Logistic-Normal likelihoods with different covariance matrices (Σtrain) and
evaluate the label-dependent term of Equation 5, with either Σeval equal to I or Σθ at the end of training.
See Figure 7. Comparing Σtrain = Σeval = I (top row) with Σtrain = Σθ, Σeval = I (middle row) that
the former reduces the residuals of more of the noisy examples than the latter, which indices learning Σ is
more robust. Furthermore, comparing Σtrain = Σθ, Σeval = I (middle row) with Σtrain = Σθ, Σeval = Σθ

(bottom row), we find that Σθ increases the loss for some clean examples and reduces the loss of high-residual
examples, both clean and noisy ones.
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Table 5: Hyperparameters used for Synthetic Noise on MNIST and CIFAR datasets. A
hyperparameter search over method-specific hyperparameters is done, and the best values are shown here.
For Het-τ , we report the temperature, for Het-τ -Σfull the temperature and the number of factors (R), for
GCE q, for NAN σ, for LS t, and for LN the temperature (τ) and λ.

Dataset Method No Noise Symmetric Noise Rate Asymmetric Noise Rate

0% 20% 40% 60% 20% 30% 40%

MNIST
Het-τ 0.5 0.1 20 10 0.5 0.5 0.1
Het-τ -Σfull [1.0, 1] [0.1, 4] [0.1, 4] [10, 4] [10, 2] [0.5, 1] [10, 1]
NAN 0.2 1.0 1.0 1.0 1.0 0.75 1.0
GCE 0.3 0.7 0.9 0.9 0.7 0.5 0.3
LS 0.5 0.3 0.9 0.9 0.1 0.5 0.7
LN [1.0, 1.0] [1.0, 1.0] [1.0, 0.5] [0.5, 0.1] [0.5, 0.1] [0.5, 0.1] [0.5, 0.1]

CIFAR-10
Het-τ 0.5 10 20 10 10 10 20
Het-τ -Σfull [0.5, 4] [20, 4] [20, 1] [10, 2] [20, 2] [0.1, 2] [0.5, 2]
NAN 0.2 0.5 0.75 0.75 0.5 0.1 0.2
GCE 0.1 0.9 0.9 0.9 0.9 0.9 0.1
LS 0.7 0.9 0.9 0.9 0.5 0.3 0.9
LN [0.1, 0.5] [0.5, 0.5] [1.0, 0.5] [1.0, 0.5] [0.5, 0.5] [0.5, 0.5] [0.5, 0.5]

CIFAR-100
Het-τ 20 20 10 10 20 20 10
Het-τ -Σfull [0.5, 4] [10, 4] [10, 4] [10, 1] [20, 2] [20, 1] [20, 1]
NAN 0.1 0.2 0.2 0.2 0.1 0.2 0.1
GCE 0.5 0.5 0.5 0.5 0.7 0.7 0.5
LS 0.1 0.9 0.7 0.7 0.9 0.7 0.9
LN [0.1, 0.5] [1.0, 0.5] [1.0, 0.5] [1.0, 0.5] [0.5, 0.5] [0.5, 1.0] [0.5, 1.0]

Table 6: Hyperparameters used for Natural Noise A hyperparameter search over method-specific
hyperparameters is done, and the best values are shown here. For Het-τ , we report the temperature, for
Het-τ -Σfull the temperature and the number of factors (R), for GCE q, for NAN σ, for LS t, and for LN the
temperature (τ) and λ.

Method CIFAR-10N CIFAR-100N Clothing1M

Random 1 Random 2 Random 3 Aggregate Worst

Het-τ 10 20 20 0.5 20 20 0.1
Het-τ -Σfull [10, 4] [0.1, 1] [20, 1] [20, 1] [10, 4] [10, 1] [0.1, 1]
NAN 0.75 0.5 0.5 0.5 0.75 0.2 0.2
GCE 0.9 0.7 0.9 0.5 0.9 0.5 0.9
LS 0.5 0.9 0.5 0.9 0.7 0.9 0.5
LN [0.5, 0.5] [1.0, 0.5] [0.5, 0.5] [1.0, 1.0] [0.5, 0.5] [0.5, 0.5] [1.0, 1.0]
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