
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVOLARENA: AN EVOLVING ARENA FOR MULTI-TURN
REASONING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in LLMs have shown promising results in complex reasoning tasks.
However, current evaluations predominantly focus on single-turn reasoning scenar-
ios, leaving interactive tasks largely unexplored. We attribute it to the absence of
comprehensive datasets and scalable automatic evaluation protocols. To fill these
gaps, we present EvolArena, an Evolving Arena for LLMs’ multi-turn reasoning
evaluation. Comprising 4 classes, 40 tasks, and 3600 instances, EvolArena covers
diverse reasoning capabilities, fine-grained difficulty granularity, and necessitates
multi-turn interactions with the environments. Moreover, EvolArena features fully-
automated framework spanning both dataset constructions and model evaluations,
which enables scalable assessment without human interventions. Experiments re-
veal that even the cutting-edge reasoning models fall short of multi-turn, interactive
reasoning tasks. And the further analysis upon these results brings valuable insights
for future research in interactive AI systems.

1 INTRODUCTION

With the emergence of reasoning-enhanced Large Language Models (LLMs), such as o1 (Jaech et al.,
2024) and R1 (DeepSeek-AI et al., 2025), significant progress has been made in complex reasoning
tasks (Wei et al., 2022; Luo et al., 2024; Ye et al., 2025; Lightman et al., 2024). However, most
current evaluations focus on single-turn reasoning in domains like mathematics (Cobbe et al., 2021;
Hendrycks et al., 2021), commonsense (Talmor et al., 2019; Zellers et al., 2019), logic reasoning (Han
et al., 2024; Team et al., 2025b), and code generation (Jain et al., 2025; Chen et al., 2021), which
do not reflect the interactive and iterative nature of real-world problem-solving. But multi-turn
reasoning is essential for practical reasoning performance. It enables long-term planning, allows for
feedback acquisition and reuse, and supports gradual problem solving through iterative refinement. A
key question thus arises: Can frontier LLMs maintain effective reasoning capabilities in dynamic,
multi-turn environments?

To answer this question, we require a rigorous evaluation framework that captures the dynamic and
iterative nature of reasoning. However, as summarized in Table 1, existing approaches fall short
of providing a comprehensive solution. Static benchmarks like CodeElo (Quan et al., 2025) and
LiveCodeBench Pro (Zheng et al., 2025) predominantly focus on single-turn generation, neglecting
the essential capabilities of dynamic state tracking. While real-world agent benchmarks such as
AgentBench (Liu et al., 2024) and AgentBoard (Chang et al., 2024) introduce interactivity, they
largely assess application-specific skills (e.g., web browsing) within noisy environments and rely
on fixed datasets that are susceptible to contamination and saturation. Similarly, benchmarks from
the AI planning community (e.g., ACPBench (Kokel et al., 2025)) often frame reasoning as static
question-answering rather than long-horizon exploration. Furthermore, interactive frameworks like
MT-Bench (Zheng et al., 2023) and GameArena (Hu et al., 2025) are limited by subjective scoring
(e.g., LLM-as-a-Judge) or scalability bottlenecks due to human involvement. These limitations
highlight the urgent need for a fully automated, deterministic, and evolvable framework dedicated to
evaluating pure multi-turn logical reasoning.

To bridge these gaps, we propose a novel multi-turn automated reasoning evaluation framework
designed to more accurately evaluate LLMs’ comprehensive capabilities in interactive environments.
The development of such a benchmark presents two primary challenges: (1) designing effective and
diverse multi-turn tasks that can measure the multi-dimensional reasoning capabilities of models and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Category Benchmarks Dynamic Interaction Deterministic Eval. Parametric Gen. Abstract Logic

Static Evaluation CodeElo (Quan et al., 2025) ✓
LiveCodeBench Pro (Zheng et al., 2025) ✓

Real-world Agent AgentBench (Liu et al., 2024) ✓ ✓
AgentBoard (Chang et al., 2024) ✓ ✓

AI Planning
TRAC (He et al., 2023) ✓ ✓
ACPBench (Kokel et al., 2025) ✓ ✓
ActionReasoningBench (Handa et al., 2025) ✓ ✓

Interactive/Game
MT-Bench (Zheng et al., 2023) ✓
GameArena (Hu et al., 2025) ✓
SPIN-Bench (Yao et al., 2025) ✓

Ours EvolArena ✓ ✓ ✓ ✓

Table 1: Comparison of EvolArena with representative benchmarks. EvolArena uniquely combines
dynamic multi-turn interaction with infinite parametric generation in a deterministic environ-
ment, while focusing on abstract logical reasoning.

(2) establishing an evolving and automated interactive evaluation framework to facilitate scaling and
avoid saturation after model advancement (Perlitz et al., 2024).

To address the first challenge, we focus on constructing tasks that inherently require multi-turn
reasoning, where each interaction step introduces new constraints or information that necessitates
iterative refinement of the model’s reasoning process. To achieve this, we manually collect and vali-
date a set of highly reasoning-intensive tasks from various sources for systematically evaluating four
fine-grained reasoning abilities: Inductive, Abductive, Deductive, and Planning Reasoning (Seel,
2011; Huang & Chang, 2023). Then for each task, we design a structured problem template that
explicitly defines interactive rules, format requirements, and example interactions demonstrating
valid exchanges. Through these templates, models are required to engage in active reasoning, gather
environmental feedback, and iteratively refine their reasoning process in order to accomplish the
given reasoning objective.

As for the second challenge, to enable scalable automated evaluation, we implement three components
- Generator, Monitor, and Evaluator, to construct an automated interactive evaluation framework.
The generator transforms each problem template into tasks of distinct difficulty levels while ensuring
solution feasibility through carefully controlled complexity parameters. With the generator, we
can smoothly control the difficulty of reasoning as models’ performance improves. The rule-based
monitor processes model queries through a two-stage validation system: it first checks query format
compliance, then provides rule-specific feedback for valid queries while monitoring whether the
given reasoning objectives are achieved. The evaluator assesses completed dialogues across multiple
dimensions to provide a comprehensive evaluation of models’ sustained reasoning capabilities.

Building upon these design principles, we present EvolArena, an evolving evaluation framework that
encompasses 40 distinct reasoning tasks designed to assess four reasoning abilities, with each task
calibrated across three difficulty levels. Through extensive empirical evaluation of 20 reasoning and
non-reasoning models, our analysis reveals that o3-mini demonstrates superior overall performance.
Our key findings indicate: (1) As the reasoning difficulty increases, even current frontier models
struggle significantly. (2) As the number of reasoning steps increases, the advantage of o3-mini over
other models becomes more pronounced, which indicates a potential optimization direction for the
open-source community. (3) Reasoning ability is not directly correlated with reasoning efficiency;
o3-mini often requires more reasoning steps compared to QwQ-32B and R1 on questions where all
three models arrive at correct answers.

In summary, our main contributions are as follows:

• We introduce a high-quality benchmark specifically designed to assess models’ reasoning capabili-
ties in multi-turn interactive scenarios.

• We propose an automated framework for evolving multi-turn evaluation, capable of producing
problems with tunable complexity. This enables the benchmark to evolve alongside advances in
model capabilities.

• Our empirical findings reveal several critical limitations of current models in multi-turn reasoning
settings, offering valuable insights for future research directions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Data Collection Data Classification Dataset Construction Interactive Evaluation

CodeForces

Public Websites

Prior Knowledge

Predefined
categories

Recheck

Information Probing
-Inductive Reasoning

Dynamic Adaptation.
 -Abductive Reasoning

State Operation
-Deductive Reasoning

Strategic Gaming
-Planning Reasoning

Generator

Monitor

Evaluator

ü 40 Types of Problems
ü 3 Difficulty Levels

ü Format Feedback
ü Query Feedback
ü Termination Check

ü Accuracy
ü Efficiency
ü Invalid Rate
ü Pattern Analysis

Find the Impostors:

Find the impostors among 6 players. You
can ask about 3 players at a time: "1"
means more impostors, "0" means fewer.
Find all impostor numbers to win.

1 2 3 4 5 6

Alright, I'm ready. My Query: 1,2,3

1
1 2 3

More Impostors

This means there are more impostors in
players 1,2,3...My Query: 2,3,5

0 Less Impostors
2 3 5

This means players 5 is not an impostor...
My Answer: 2,5,6

Correct!
2 5 6

Figure 1: This figure represents the complete framework of our arena, from construction to evaluation.
It includes four modules: data collection, data classification, dataset construction, and interactive
evaluation. After the dataset is built, the evaluation system can perform automated multi-round
interactive evaluations and automatically increase the difficulty of the problems.

2 OVERVIEW

In this section, we first propose our automated interactive framework that simulates real-world
reasoning scenarios. At its core, the framework enables a model to engage in multiple turns of
interaction1 while maintaining consistent reasoning progress toward solving a given task. Formally,
our framework consists of three essential components, including generator, monitor and evaluator,
which can work together to create a controlled and automated evaluation environment:

Generator (P) creates interactive problems with controlled difficulty levels and corresponding
reasoning objectives. Formally defined as p, s = P (t, n, gn), where p represents the generated
problem, s defines the reasoning objective, t specifies the problem template, n determines the
complexity level, and gn encodes the corresponding problem parameters. We carefully design t with
explicit interaction rules, format requirements and example interactions for each task.

Monitor (M) generates feedback and determines termination based on the model’s query, acting as
a deterministic, rule-based environment. The monitoring process can be formalized as: (mi, si) =
M(t, qi, si−1, s, I), where si−1 and si denote the conversation states at turns i− 1 and i respectively,
and mi represents the generated feedback for query qi based on template t. The interaction terminates
when either the target state si = s is achieved or the maximum turn limit I is reached. For each query,
M first validates the legality of the query format, then determines whether the current conversation
should be terminated, and finally inputs mi as the response to the model.
Evaluator (E) assesses multi-turn interactions across multiple dimensions. Formally, e =
E(t, {(q1,m1), ..., (qT ,mT)}), where T denotes the total turns and e encompasses a range of metrics
of accuracy, efficiency, invalid rate, and pattern analysis. Specifically,

• Accuracy (Acc) measures the proportion of successfully completed tasks. A task is considered
successful if and only if its final state sT matches the task’s reasoning objective s. Formally,
Acc = SC

C , where C is the total number of tasks and SC is the number of successful tasks.
• Efficiency (Eff) evaluates relative solution efficiency by comparing turn counts on commonly

solved tasks between model pairs. For two models A and B, let CAB denote their set of commonly

solved tasks. The efficiency score of model A over B is computed as: EffA,B =
∑

c∈CAB
I(T c

A<T c
B)

|CAB | ,
where T c

A and T c
B represent the turn counts for task c by models A and B respectively, and I(·) is

an indicator function that equals 1 when the condition is true and 0 otherwise.
• Invalid Rate (IR) assesses the proportion of interactions containing invalid operations among all

interaction conversations. This metric not only measures the model’s ability to follow instructions
but also reflects its fundamental reasoning capability to infer valid operations from the current
environment. Formally, IR = NV

N , where NV is the number of interactions with invalid operations
and N is the total number of interactions.

1Our tasks involve multi-turn interactions for successful completion. See Appendix D for details.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Information Probing Dynamic Adaptation

State Operation Strategic Gaming

Find the Impostors
ü Interaction Rules:
Find the impostors among n players. The number of impostors is between
3/n and 2/3n. You can ask about 3 players at a time: "1" means more
impostors, "0" means fewer. Find all impostor numbers to win.
ü Format Requirements:
1. Ask about three players: "My Query: a,b,c"
2. Submit final answer: "My Answer: x1,x2,... xk "
ü Example Interactions: (Answer: 1,2,3,4)
You: "My Query: 1,2,3 " <-> Me: "1"(means more impostors in this group)
You: "My Query: 3,4,5 " <-> Me: "1"(means more crewmates in this group)
You: "My Answer: 1,2,3,4 " <-> Me: "Correct "
 Ready to start? Make your first query!

Difficulty Level: Easy: n=6, Medium: n=9, Hard: n=12

Password Breaker
ü Interaction Rules:
The password is a number between m and m+n (inclusive). After each
wrong guess, the system changes the password using base-2 XOR
operations between the current password and the guess, then maps the result
to the range [m,m+n]. You need to obtain the current correct password.
ü Format Requirements:
"My guess: X" (where X is a number between m and m+n)
ü Example Interactions: (Answer: 2)
You: "My Guess: 3" <-> Me: "Incorrect "(new password = 2 XOR 3 = 1)
You: "My Guess: 5" <-> Me: "Incorrect "(new password = 5 XOR 1 = 4)
You: "My Guess: 4" <-> Me: "Correct "
 Ready to start? Make your first query!

Difficulty Level: Easy: n=10, Medium: n=20, Hard: n=30

Maze Navigation
ü Interaction Rules:
Navigate through a n x n maze from (1,1) to finish point (x,y). The grid
contains normal cells ("."), finish cell ("F"), and dangerous cells ("*").
Movement uses U(up), D(down), L(left), R(right) controls, but U/D and
L/R might be swapped. Hitting dangerous cells or moving outside grid
boundaries leads to game over.
ü Format Requirements:
"My Move: X" (where X is one of U, D, L, R)
ü Example Interactions:
You: "My Move: R" <-> Me: "1 2"(new position coordinates)
 Ready to start? Make your first move!

Difficulty Level: Easy: n=4 Medium: n=5, Hard: n=6

Knight Battle
ü Interaction Rules:
Play as White Knight on n x n chessboard, starting at (x,y) against Black
Knight at (p,q). Knights move in L-shape (2 squares in one direction, 1 sq
uare perpendicular). Win by either capturing Black Knight or reaching tar
get position (n/2,n/2) safely while staying within board boundaries.
ü Format Requirements:
"My Move: x y" (new position coordinates)
ü Example Interactions:
You: "My Move: 4 4" <-> Me: "6 3"(Black Knight's move)
You: "My Move: 5 6" <-> Me: "5 1"(Black Knight's move)
 Ready to start? Make your first move!

Difficulty Level: Easy: n=6 Medium: n=8, Hard: n=16

Figure 2: This figure illustrates examples of our four task types. Each task includes interaction rules,
query format requirements, and example interactions, with three levels of input difficulty.

• Pattern Analysis (PA) examines the model’s reasoning patterns across four categories: Associate
(associating with the original problem), Verify (reflecting and verifying the reasoning process),
Plan (strategically planning subsequent interactions) and Feedback (utilizing previous feedback for
reasoning). We analyze the occurrence count of each pattern in each interactive turn and calculate
PAJ = 1∑C

c=1 Tc

∑C
c=1

∑Tc

i=1 r
J
c,i, where Tc denotes the number of interaction turns for task c, and

rJc,i represents the occurrence count of pattern J in the i-th turn of task c.

Through these components, our framework uses the Generator to create problems, facilitates interac-
tions between the Monitor and models, and ultimately employs the Evaluator to measure performance.

3 BENCHMARK CONSTRUCTION

In this section, we first introduce the task classification (§3.1), and then explain how we construct each
problem (§3.2), finally we briefly discuss how the interactive evaluation occurs (§3.3) in Figure 1.

3.1 DATA CLASSIFICATION

To construct our dataset, we first collect seed tasks from various websites234. To facilitate a systematic
analysis of models’ reasoning capabilities, we categorize the public seed tasks into four predefined
classes as follows using GPT-4o, with subsequent human validation ensuring classification accuracy.
While successful task completion generally requires a combination of various reasoning skills, each
predefined class is specifically designed to evaluate distinct aspects of reasoning capabilities.
• Information Probing (IP): It involves discovering hidden but fixed information. As shown in

Figure 2, in “Find the Impostors”, models determine the complete role distribution by querying
about different group compositions, with the monitor revealing each group’s majority type as clues.
In this task, models should progressively eliminate distractors to reach the answer.

2https://codeforces.com/
3https://www.nytimes.com/
4Statistics and utilization of raw data are detailed in Appendix E.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Dynamic Adaptation (DA): Unlike “Information Probing” where answers remain static, this
type involves answers that evolve according to deterministic transformation rules. As exemplified
in “Password Breaker”, each incorrect query triggers specific password modifications based on
predefined mechanisms. Success in this type requires models to accurately understand and apply
transformation rules to make informed and targeted queries.

• State Operation (SO): This category introduces hidden mechanics, distinguishing it from the
previous two categories. For example, in “Maze Navigation”, models are required to guide an
agent to a target location under an initially unknown control system. Success requires models to
rationally analyze the current situation and infer the hidden mechanism through appropriate actions,
then proceed with subsequent operations based on this understanding.

• Strategic Gaming (SG): It features adversarial two-player environments where task outcomes
depend on the dynamic interaction between model actions and system responses5. Taking “Knight
Battle” as an instance, models should strategically outpace the system to complete objectives,
requiring both competitive awareness and efficient execution.

By leveraging four distinct task categories, we comprehensively assess LLMs’ multi-turn reasoning
capabilities. Specifically, our framework focuses on the following essential types of reasoning.

• Inductive Reasoning: This involves forming general conclusions by identifying patterns from
specific observations (Han et al., 2022; Misra et al., 2022; Yang et al., 2024b). For example,
in “Find the Imposters” of “Information Probing”, models need to gather evidence by querying
different group configurations, observe the majority role types within each group, and synthesize
these observations to infer the complete role distribution.

• Abductive Reasoning: This is the process of inferring the most plausible explanation from limited
or incomplete evidence (Seel, 2011; Jung et al., 2022). In “Dynamic Adaptation”, where the correct
answer evolves according to predefined rules, models require to infer the current state of the target
answer based on a limited number of interactions.

• Deductive Reasoning: This refers to deriving specific conclusions through the application of known
rules or logical implications (Creswell et al., 2023; Saparov & He, 2023). In “State Operation”, for
instance, models should first infer hidden mechanisms from rule-based environmental feedback
and then apply those rules to perform correct reasoning.

• Planning: Success in our tasks crucially depends on multi-step planning capabilities (Valmeekam
et al., 2023; Huang et al., 2022; Ajay et al., 2023). This is particularly evident in “Strategic Gaming”,
where models should construct action sequences by anticipating future states and considering both
their moves and potential opponent responses.

3.2 DATASET CONSTRUCTION

After obtaining the categorized seed task sets, we select 10 representative tasks for each of the four
categories, yielding a total of 40 tasks that exhibit diverse interaction patterns and rule structures as
detailed in Appendix. Then, we manually convert the seed tasks into structured problem templates.
Based on these templates, we develop problem generators with three difficulty levels: “easy”,
“medium”, and “hard”. Each level corresponds to different values of n, the parameter that determines
the task complexity. We further implement monitors tailored to each task’s interactive rules, enabling
the system to extract model queries, provide real-time feedback, and detect conversation termination.
For evaluation purposes, we design task-specific evaluators that assess performance based on the
complete conversation history, employing metrics aligned with each task’s reasoning objective.

To calibrate difficulty levels, we evaluate task solvability using o3-mini across 10 problems for each n,
iteratively refining until difficulty gradient exhibits meaningful progression and reasonable feasibility.

Finally, we generate a comprehensive dataset comprising 30 distinct problems per difficulty level for
each of 40 tasks, resulting in a total of 3,600 evaluation instances. This structure enables robust and
fine-grained assessment of model performance across varying complexity levels.

5Our experimental results show that models struggle to achieve high accuracy even in simple scenarios with
random system actions, leading us to adopt random system responses as our evaluation baseline.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 INTERACTIVE EVALUATION

As shown in Figure 2, the interaction process begins with the generator providing the problem to
the tested model while passing reasoning objective to the monitor. Upon receiving the problem, the
model generates response which is then sent to the monitor. The monitor extracts query from the
response, computes appropriate feedback, and returns it to the model. Based on the feedback, the
model adjusts its reasoning and continues responding. This iterative cycle repeats until the monitor
detects conversation termination conditions. Finally, the evaluator receives the complete conversation
history and analyzes it using various metrics.

To illustrate this process, let’s consider “Find the Impostors”. The generator first creates problems
across three difficulty levels by varying the parameter n. Along with each problem, it generates
reasoning objective in the form of binary sequences of length n, where 0 denotes impostors and 1
represents non-impostors (e.g., “000011” for n = 6).

During the interaction, the monitor validates model responses against two specific patterns: “My
Query: a, b, c” and “My Answer: x1, x2, ..., xk”. Any response not matching these patterns is rejected.
For valid queries in the format “My Query: a, b, c”, the monitor returns “1” if the specified positions
contain more impostors according to the answer sequence, and “0” otherwise. When the model
submits a final answer, the monitor responds with either “Correct” or “Incorrect” and terminates the
conversation if correct. Additionally, the monitor enforces a maximum round limit.

Upon conversation completion, the evaluator processes the entire dialogue history, determining
accuracy based on whether the final response received a “Correct” feedback, and calculates other
metrics as defined in Section 2.

The difficulty calibration process begins with initial testing using n = 6, 7, 8, generating 10 problems
with their reasoning objectives per difficulty level. When these values fail to produce sufficient
performance gradients, the generator iteratively tests different values until finding suitable ones (e.g.,
n = 6, 9, 12). Once appropriate difficulty parameters are established, we proceed with large-scale
evaluation, generating 30 problems per difficulty level and testing them across all models.

4 EXPERIMENT

In this section, we conduct extensive experiments to evaluate various LLMs on EvolArena, guided by
the following research questions: - RQ1: How do current LLMs perform overall on our benchmark?
- RQ2: How does those LLMs performance vary under increasing reasoning turns? - RQ3: Does
superior performance equate to greater efficiency in the number of interactions? - RQ4: How do the
LLMs’ instruction following abilities and basic reasoning capabilities under multi-turn scenarios? -
RQ5: Which reasoning patterns are relatively more important in multi-turn reasoning scenarios?

4.1 EXPERIMENT SETUP

Model Selection We evaluate both reasoning-enhanced LLMs and non-reasoning LLMs in our
experiments. Among the reasoning-enhanced models, we include o3-mini (Jaech et al., 2024),
DeepSeek-R1 (DeepSeek-AI et al., 2025), QwQ-32B (Team, 2024), and DeepSeek-R1-Distilled
Series (DeepSeek-AI et al., 2025). For non-reasoning models, we select GPT-4o (Hurst et al., 2024),
Qwen-Max (Yang et al., 2024a), Gemma-3 (Team et al., 2025a), Qwen2.5 (Yang et al., 2024a),
Llama-3.1 (Grattafiori et al., 2024), and Mistral Series (AI, 2025). This diverse selection of both
open-source and closed-source models ensures comprehensive coverage of current LLM capabilities
in multi-turn reasoning scenarios. 6 7

4.2 MAIN PERFORMANCE (RQ1)

We first present the overall results of models on four reasoning tasks of our datasets in Table 2. From
the results, we can observe the following conclusions:

• Impact of Task Difficulties: Across all models, performance decreases progressively from “easy”
to “medium” to “hard”. This demonstrates the rationality of our dataset’s difficulty stratification.

6For all models, we limit the maximum number of turns to 15 due to the consideration in Appendix F.
7See Appendix G for the detailed experimental settings.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

IP DA SO SG AVG

Model E M H E M H E M H E M H E M H

Reasoning Model
o3-mini 60.33 41.56 28.22 40.33 24.18 17.13 38.61 27.00 20.22 85.00 74.44 59.17 56.07 41.80 31.19
R1 39.22 25.00 11.11 34.58 23.11 15.22 47.67 38.56 32.78 73.00 62.67 57.67 48.62 37.33 29.19
QwQ-32B 53.56 28.22 19.00 38.33 20.44 12.00 36.67 29.89 25.33 70.00 56.33 46.00 49.64 33.72 25.58
R1-Distill-Llama-70B 33.78 13.11 6.33 25.50 11.00 5.67 15.56 10.78 7.89 61.11 44.17 28.89 33.99 19.76 12.19
R1-Distill-Qwen-32B 26.78 10.11 3.22 10.50 3.22 1.67 7.11 4.22 3.11 39.44 24.44 15.28 20.96 10.50 5.82
R1-Distill-Qwen-7B 3.89 2.33 1.11 0.44 0.00 0.00 0.67 1.11 0.22 3.67 2.67 1.00 2.17 1.53 0.58
R1-Distill-Qwen-1.5B 0.67 0.78 0.33 0.00 1.00 0.11 0.00 0.00 0.00 0.67 0.67 0.00 0.33 0.61 0.11

Non-Reasoning Model
GPT-4o 29.11 10.56 6.89 22.92 11.56 7.00 19.73 15.11 11.56 42.22 30.56 22.78 28.50 16.94 12.06
Qwen-Max 33.89 11.56 7.33 27.42 17.67 8.11 20.15 13.67 10.78 49.17 33.61 22.50 32.66 19.13 12.18
gemma-3-27b-IT 31.00 9.78 9.67 18.92 9.67 6.33 16.00 10.00 5.67 16.89 4.72 5.15 20.70 8.54 6.70
gemma-3-12b-IT 24.78 8.33 4.56 15.03 8.44 5.89 12.22 4.56 3.56 12.61 9.17 5.17 16.16 7.63 4.79
gemma-3-4b-IT 11.44 4.56 2.44 8.61 6.00 4.11 9.00 4.22 2.89 10.67 2.33 0.67 9.93 4.28 2.53
Qwen2.5-72B-IT 38.22 20.00 10.89 23.22 12.44 6.33 14.78 11.00 7.89 41.50 32.78 26.67 29.43 19.06 12.94
Qwen2.5-32B-IT 33.44 14.67 12.44 19.69 12.89 6.22 23.67 17.67 14.44 42.00 25.00 19.76 29.70 17.56 13.22
Qwen2.5-7B-IT 27.44 11.44 3.67 18.33 9.33 6.22 9.67 6.00 4.89 22.67 10.00 8.33 19.53 9.19 5.78
Qwen2.5-1.5B-IT 2.22 0.11 0.22 6.44 4.33 0.78 9.44 0.89 1.33 17.67 14.67 12.00 8.94 5.00 3.58
Llama-3.1-70B-IT 40.11 21.22 11.89 23.81 12.00 6.78 16.78 11.44 8.78 36.50 25.33 20.72 29.30 17.50 12.04
Llama-3.1-8B-IT 22.67 10.00 4.89 13.58 5.78 4.67 12.56 5.33 3.78 11.00 5.67 3.00 14.95 6.69 4.08
Mistral-Small-24B-IT-2501 18.67 7.78 4.56 17.92 6.22 5.00 19.56 10.00 6.78 25.56 12.83 12.28 20.42 9.21 7.15
Ministral-8B-IT-2410 8.89 4.22 2.00 13.69 5.67 5.11 16.67 11.56 4.33 21.33 5.33 8.67 15.15 6.69 5.03

AVG 27.01 12.39 12.77 18.96 10.25 6.22 17.32 11.65 8.81 34.13 23.87 18.78 24.36 14.63 10.34

Table 2: Model Accuracy on EvolArena. IT: Instruction-based models. IP: Information Probing.
DA: Dynamic Adaptation. SO: State Operation. SG: Strategic Gaming. E / M / H: Easy / Medium
/ Hard. The best results (column-wise) for reasoning and non-reasoning models are highlighted in
purple and red , respectively. Their second-best results are shown in bold. Table 7 shows accuracy

with 95% confidence intervals.

• Comparison Between Reasoning and Non-Reasoning Models: When comparing state-of-the-art
reasoning models (e.g., o1, R1) with non-reasoning models, it is evident that reasoning models sig-
nificantly outperform their non-reasoning counterparts. Notably, even smaller-parameter reasoning
models (e.g., QwQ-32B) surpass the strongest non-reasoning models within the same series (e.g.,
Qwen-Max). This highlights the necessity of enhancing reasoning capabilities in model design.

• Comparison Between Non-Reasoning Models and its Distilled Versions: Comparing the non-
reasoning and reasoning-specific version (e.g., R1-Distill) of the same model series shows nearly
equivalent performance. While R1-Distill excels in math and code-related tasks, it fails to generalize
effectively on our OOD tasks. This indicates that merely applying SFT distillation is insufficient to
generalize reasoning, underscoring the necessity of reinforcement learning (Kirk et al., 2024).

• Task-Specific Observations: A closer inspection of individual tasks reveals that while o3-mini
consistently outperforms other models, particularly in IP and SG, its performance is similarly
to QwQ-32B and R1 in DA and SO. The distinction of the two categories lies in the nature of
environmental feedback: in DA and SO tasks, the feedback is less straightforward, requiring models
to first correctly interpret the feedback before proceeding with their reasoning. This additional
interpretation and reasoning may deviate significantly from training distribution.

• Performance of Small Models: Models with fewer than 7B parameters achieve almost no mean-
ingful scores, further emphasizing the difficulty of our benchmark. Consequently, in subsequent
analyses, we will focus on models with 32B or more parameters.

4.3 TURN ANALYSIS (RQ2)

In this section, we analyze how the number of interaction turns affects model performance. Figure 3
illustrates the accuracy of five representative models across various tasks and difficulty levels, with
different numbers of interaction turns. Our analysis focuses on four key perspectives:

• Task-Specific Analysis: IP benefits the most from increased interaction turns. In contrast, for DA
and SO, additional turns do not always lead to significant performance gains. This suggests that
even current reasoning models are primarily strong in direct reasoning based on inductive inference,
but still weak in deductive and abductive reasoning, which rely on premise assumptions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 7 9 11 13 15
Turns

0.0

0.5

1.0

Ac
cu

ra
cy

Information Probing - Easy

5 7 9 11 13 15
Turns

0.0

0.5

1.0

Ac
cu

ra
cy

Information Probing - Medium

5 7 9 11 13 15
Turns

0.0

0.5

1.0

Ac
cu

ra
cy

Information Probing - Hard

5 7 9 11 13 15
Turns

0.00

0.25

0.50

Ac
cu

ra
cy

Dynamic Adaption - Easy

5 7 9 11 13 15
Turns

0.00

0.25

0.50

Ac
cu

ra
cy

Dynamic Adaption - Medium

5 7 9 11 13 15
Turns

0.00

0.25

0.50

Ac
cu

ra
cy

Dynamic Adaption - Hard

5 7 9 11 13 15
Turns

0.00

0.25

0.50

Ac
cu

ra
cy

State Operation - Easy

5 7 9 11 13 15
Turns

0.00

0.25

0.50

Ac
cu

ra
cy

State Operation - Medium

5 7 9 11 13 15
Turns

0.00

0.25

0.50

Ac
cu

ra
cy

State Operation - Hard

o3-mini DeepSeek-R1 QwQ-32B GPT-4o Qwen-Max

Figure 3: Model accuracy v.s. interaction turns across different tasks and difficulty levels.

0 25 50 75 100
Percentage (%)

R1
vs o3-mini

R1
vs QwQ-32B

QwQ-32B
vs o3-mini

53.8% 22.7% 23.5%

44.8% 22.4% 32.9%

50.5% 20.9% 28.5%

Infomation Probing

0 25 50 75 100
Percentage (%)

63.9% 8.2% 27.8%

55.7% 11.3% 33.0%

50.5% 20.6% 28.9%

Dynamic Adaption

0 25 50 75 100
Percentage (%)

25.0% 57.9% 17.1%

27.7% 55.7% 16.6%

21.8% 54.7% 23.5%

State Operation

0 25 50 75 100
Percentage (%)

33.8% 45.7% 20.5%

22.2% 50.7% 27.1%

38.1% 43.4% 18.5%

Stragetic Gaming

Less Tie More

Figure 4: Efficiency comparison of interaction turns between models on correctly-answered problems.
For each pair (A vs B), A is labeled as Less if it requires fewer turns than B, and More otherwise. A
higher proportion of Less indicates superior efficiency in problem-solving. And Table 5 shows the
specific average number of rounds of each model.

• Reasoning vs. Non-Reasoning Models: Overall, the accuracy improvement of non-reasoning
models with increasing turns is significantly lower than that of reasoning models. This indirectly
suggests that non-reasoning models are less effective in utilizing feedback in multi-turn dialogues.

• Comparison among Reasoning Models: We find that o3-mini does not have a clear advantage
across arbitrary numbers of turns, especially when the number of reasoning turns is small (e.g., 5).
However, as the number of turns increases, o3-mini demonstrates the most significant improvement
in accuracy, particularly in IP. This further underscores o3-mini’s strong abilities in leveraging and
integrating historical interaction information over multiple turns.

4.4 EFFICIENCY ANALYSIS (RQ3)

To further analyze the relationship between performance and efficiency, we conduct an analysis of
three reasoning models.8 Specifically, we select a random sample of 100 problems that are correctly
answered by all three models for each task type. We then compare the number of interaction turns
required by each model pair to success, and calculate their efficiency scores defined in Section 2.

As shown in Figure 4.3, surprisingly, among the three models, o3-mini, which demonstrates the best
performance, is relatively the least efficient, while R1 achieves the highest efficiency. This suggests
that higher performance does not necessarily translate to better efficiency in terms of interaction
turns. Combined with the conclusions in Section 4.2, the superior performance of o3-mini does
not necessarily lie in its efficient reasoning. Instead, it may be more adept at long-term planning
compared to others, making reasonable use of feedback in each turn to tackle more complex tasks.

4.5 INVALID OPERATION ANALYSIS (RQ4)

To better understand the poor performance of current LLMs on our benchmark, we conduct a manual
review of model responses. Our analysis reveals that beyond limitations in long-term reasoning

8A more detailed analysis is provided in Appendix J.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

o3-mini

DeepSeek-R1

QwQ-32B

R1-Disti
ll-L

lama-70B

R1-Disti
ll-Q

wen-32B

R1-Disti
ll-Q

wen-7B

R1-Disti
ll-Q

wen-1.5B
GPT-4

o

Qwen-Max

gemma-3-27b-IT

gemma-3-12b-IT

gemma-3-4b-IT

Qwen2.5-72B-IT

Qwen2.5-32B-IT

Qwen2.5-7B-IT

Qwen2.5-1.5B-IT

Meta-Llama-3.1-70B-IT

Meta-Llama-3.1-8B-IT

Mistr
al-Small-2

4B-IT-
2501

Ministr
al-8B-IT-

2410
0

10

25

50

100

In
va

lid
 R

at
e

(%
)

5
10
15

Figure 5: Invalid rate across evaluated models. Larger rate indicates weaker instruction-following
and reasoning capabilities.

IP DA SA SG

Model Ass. Ver. Pla. Fee. Ass. Ver. Pla. Fee. Ass. Ver. Pla. Fee. Ass. Ver. Pla. Fee.
QwQ-32B 11.1 6.9 2.3 7.2 11.6 7.7 2.7 6.2 10.0 5.2 3.9 5.5 8.7 5.4 4.1 3.1
Deepseek-R1 10.6 6.6 2.2 5.2 11.1 7.0 2.3 4.1 9.9 5.3 3.8 3.7 7.0 4.1 3.1 1.9
R1-Distill-Qwen-32B 7.6 2.7 2.7 3.0 8.7 3.3 3.8 3.0 8.2 2.9 3.5 4.3 8.1 2.8 4.0 2.9

Table 3: Pattern analysis on EvolArena. Ass.: Associate. Ver.: Verify. Pla.: Plan. Fee.: Feedback.

ability, a significant factor is the presence of “Invalid Operations” even in the best-performing models.
These invalid operations fall into two categories: instruction-following failures where models fail
to format queries according to format requirements, and operational failures where models cannot
perform legitimate operations (e.g., making out-of-bounds moves in “KnightBattle”), which often
requires basic reasoning capabilities. As shown in Figure 5, we can lead to the following conclusions:

• Overall, smaller models exhibit higher “Invalid Rate” (IR), particularly 1.5B-sized models which
struggle with basic operation validity, reflecting their limited instruction-following capabilities.

• Surprisingly, distilled models show higher IR than their original versions, suggesting that while
distillation may enhance reasoning, it potentially compromises stability in multi-turn interactions.

• Comparing state-of-the-art reasoning models with non-reasoning models, the former exhibit lower
IR, further confirming the superior capabilities of reasoning models in multi-turn scenarios.

4.6 REASONING PATTERN ANALYSIS (RQ5)

To gain deeper insights into the reasoning capabilities of models on our benchmark, we conduct a
reasoning pattern analysis on three open-source reasoning models. Specifically, using Qwen2.5-72B
as the analyzer, we measure the average per-turn frequency of four reasoning patterns: original
problem recall (Associate), error checking (Verify), strategic planning (Plan), and feedback analysis
(Feedback). The results are summarized in Table 3, from which we draw the following conclusions:
• Stronger reasoning models QwQ-32B and R1 demonstrate superior capabilities in “Associate”,

“Verify”, and “Feedback” compared to R1-Distill-32B, indicating these three abilities are crucial
for multi-turn reasoning. Enhancement of these capabilities could potentially yield improvement.

• Although planning is essential for multi-turn tasks, the three models show similar planning frequen-
cies across most tasks. However, SG exhibits notably higher planning frequency, suggesting that
competitive scenarios inherently demand stronger strategic planning capabilities.

5 RELATED WORK

Static Evaluation of Reasoning. Early benchmarks for math (e.g., GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021)) and code (e.g., HumanEval (Chen et al., 2021), MBPP (Austin
et al., 2021)) rely on static, single-turn evaluation. However, these face severe data contamination and
saturation risks. Studies like Performative Thinking (Palod et al., 2025) suggest that long-CoT traces
in static tasks often reflect pattern matching rather than genuine reasoning. Even recent initiatives
like CodeElo (Quan et al., 2025) and LiveCodeBench Pro (Zheng et al., 2025) remain focused on the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

final product of single-turn generation, neglecting the dynamic correction and state tracking inherent
in the reasoning process.

Real-world Agent Benchmarks. Benchmarks like AgentBench (Liu et al., 2024) and Agent-
Board (Chang et al., 2024) evaluate task execution in complex, noisy environments (e.g., OS and
Web). Unlike these application-focused benchmarks, EvolArena operates within closed, deterministic
environments to isolate intrinsic logical capabilities—specifically induction, deduction, and plan-
ning—from tool usage or environmental noise. Furthermore, while AgentBoard (Chang et al., 2024)
relies on costly human annotation, EvolArena achieves fully automated assessment via procedural
generators.

Benchmarks for Reasoning about Actions and Planning. The AI planning community proposes
PDDL-based benchmarks like TRAC (He et al., 2023), ACPBench (Kokel et al., 2025), and Ac-
tionReasoningBench (Handa et al., 2025) to test formal understanding of actions. However, these
are predominantly static question-answering tasks lacking long-horizon exploration. In contrast,
EvolArena does not require mastering formal planning semantics. Instead, it compels models to
operate in partially observable environments through dynamic multi-turn interaction, progressively
uncovering information to construct solutions, which better mirrors general reasoning processes.

Interactive and Game-based Benchmarks. Existing interactive benchmarks have limitations:
MT-Bench (Zheng et al., 2023) relies on subjective scoring, GameArena (Hu et al., 2025) is limited
by scale, and SPIN-Bench (Yao et al., 2025) focuses on social multi-agent settings. Conversely,
EvolArena targets single-agent logical reasoning against an environment. Critically, EvolArena
features “Evolvability”: driven by parametric generators capable of producing infinite instances, it
addresses the data contamination and overfitting issues inherent in fixed datasets.

6 CONCLUSION

In this paper, we present EvolArena, an evolving arena for evaluating LLMs’ multi-turn reasoning
capabilities. The benchmark comprises 40 diverse tasks across four reasoning categories with ad-
justable difficulty levels, supported by an evolving evaluation framework. Our extensive experiments
reveal both strengths and limitations of current LLMs in interactive reasoning, providing valuable
insights for future research in LLM evaluation.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we submit data and code in the supplementary material.
This includes the dataset and the source code for our automated evaluation framework (Generator,
Monitor, and Evaluator). The 40 tasks in EvolArena are constructed from publicly available seeds.
32 tasks originate from algorithmic problems on Codeforces (mean difficulty rating: 2453), and 8
are adapted from logic puzzles on the New York Times website. Each seed problem was manually
transformed into a novel interactive task by designing specific interaction rules and standardized
templates. Our publicly released code will include the generators developed for each task, which can
deterministically produce the 3,600 evaluation instances used in this paper, as well as new instances
with varying difficulty levels. Our evaluation environment is deterministic; for a given model and
input, the interaction process and outcome are fixed. All experiments were conducted using the
default inference parameters for each model (e.g., temperature=0.6, top-p=0.95 for R1) to ensure our
results reflect the models’ standard configurations. The complete experimental settings are provided
in Appendix G.

ETHICS STATEMENT

The research presented in this paper was conducted with a commitment to ethical standards and
responsible scientific practice. All tasks are derived from publicly available data sources: algorithmic
competition problems from Codeforces and logic puzzles from the New York Times website. No
private, sensitive, or personally identifiable information was used in the construction of this bench-
mark. The adaptation process focused on transforming the logic of these public problems into novel,
interactive formats. The primary goal of this work is to advance the scientific understanding of the

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

reasoning capabilities of LLMs in multi-turn, interactive scenarios. EvolArena is intended to serve as
a diagnostic tool for researchers and developers to identify strengths and weaknesses in AI reasoning,
thereby fostering progress in the field.

REFERENCES

Mistral AI. https://mistral.ai/news/mistral-small-3. Hugging Face, 2025.

Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi S. Jaakkola, Joshua B.
Tenenbaum, Leslie Pack Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional foun-
dation models for hierarchical planning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=dyXNh5HLq3.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
agents. Advances in neural information processing systems, 37:74325–74362, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
3Pf3Wg6o-A4.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping
Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948.
URL https://doi.org/10.48550/arXiv.2501.12948.

11

https://openreview.net/forum?id=dyXNh5HLq3
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://doi.org/10.48550/arXiv.2501.12948

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alexander Wardle-Solano, Hannah
Szabó, Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor,
Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri, Wojciech
Kryscinski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex
Ying, Arman Cohan, and Dragomir Radev. FOLIO: natural language reasoning with first-order
logic. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL,
USA, November 12-16, 2024, pp. 22017–22031. Association for Computational Linguistics, 2024.
URL https://aclanthology.org/2024.emnlp-main.1229.

Simon Jerome Han, Keith James Ransom, Andrew Perfors, and Charles Kemp. Human-like property
induction is a challenge for large language models. In Jennifer Culbertson, Hugh Rabagliati,
Verónica C. Ramenzoni, and Andrew Perfors (eds.), Proceedings of the 44th Annual Meeting of
the Cognitive Science Society, CogSci 2022, Toronto, ON, Canada, July 27-30, 2022. cognitive-
sciencesociety.org, 2022. URL https://escholarship.org/uc/item/3w84q1s1.

Divij Handa, Pavel Dolin, Shrinidhi Kumbhar, Tran Cao Son, and Chitta Baral. Actionreasoningbench:
Reasoning about actions with and without ramification constraints. In ICLR, 2025. URL https:
//openreview.net/forum?id=NUD03NBDOE.

Weinan He, Canming Huang, Zhanhao Xiao, and Yongmei Liu. Exploring the capacity of pretrained
language models for reasoning about actions and change. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4629–
4643, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Lanxiang Hu, Qiyu Li, Anze Xie, Nan Jiang, Ion Stoica, Haojian Jin, and Hao Zhang. Gamearena:
Evaluating LLM reasoning through live computer games. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
SeQ8l8xo1r.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association
for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 1049–1065.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.67.
URL https://doi.org/10.18653/v1/2023.findings-acl.67.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pp. 9118–9147. PMLR, 2022. URL
https://proceedings.mlr.press/v162/huang22a.html.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex
Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali,
Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya Kumar,
Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew
Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, An-
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital
Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben

12

https://aclanthology.org/2024.emnlp-main.1229
https://escholarship.org/uc/item/3w84q1s1
https://openreview.net/forum?id=NUD03NBDOE
https://openreview.net/forum?id=NUD03NBDOE
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=SeQ8l8xo1r
https://openreview.net/forum?id=SeQ8l8xo1r
https://doi.org/10.18653/v1/2023.findings-acl.67
https://proceedings.mlr.press/v162/huang22a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler,
Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright
Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright, Cary Bassin, Cary Hudson,
Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea
Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian
Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer,
Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, and Dane
Sherburn. Gpt-4o system card. CoRR, abs/2410.21276, 2024. doi: 10.48550/ARXIV.2410.21276.
URL https://doi.org/10.48550/arXiv.2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, An-
drey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen,
Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan
Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely,
David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Ed-
mund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan
Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Fran-
cis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas
Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao
Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung,
Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya. Ope-
nai o1 system card. CoRR, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720. URL
https://doi.org/10.48550/arXiv.2412.16720.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free eval-
uation of large language models for code. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=chfJJYC3iL.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras, and
Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pp. 1266–1279. Association for Computational Linguistics,
2022. doi: 10.18653/V1/2022.EMNLP-MAIN.82. URL https://doi.org/10.18653/
v1/2022.emnlp-main.82.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of RLHF on LLM generalisation
and diversity. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=PXD3FAVHJT.

Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. Acpbench: Reasoning about
action, change, and planning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 26559–26568, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. In ICLR, 2024.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language

13

https://doi.org/10.48550/arXiv.2410.21276
https://doi.org/10.48550/arXiv.2412.16720
https://openreview.net/forum?id=chfJJYC3iL
https://doi.org/10.18653/v1/2022.emnlp-main.82
https://doi.org/10.18653/v1/2022.emnlp-main.82
https://openreview.net/forum?id=PXD3FAVHJT
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

models by automated process supervision. CoRR, abs/2406.06592, 2024. doi: 10.48550/ARXIV.
2406.06592. URL https://doi.org/10.48550/arXiv.2406.06592.

Kanishka Misra, Julia Rayz, and Allyson Ettinger. A property induction framework for neural
language models. In Jennifer Culbertson, Hugh Rabagliati, Verónica C. Ramenzoni, and Andrew
Perfors (eds.), Proceedings of the 44th Annual Meeting of the Cognitive Science Society, CogSci
2022, Toronto, ON, Canada, July 27-30, 2022. cognitivesciencesociety.org, 2022. URL https:
//escholarship.org/uc/item/6170h6nj.

Vardhan Palod, Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Performative
thinking? the brittle correlation between cot length and problem complexity. arXiv preprint
arXiv:2509.07339, 2025.

Yotam Perlitz, Ariel Gera, Ofir Arviv, Asaf Yehudai, Elron Bandel, Eyal Shnarch, Michal Shmueli-
Scheuer, and Leshem Choshen. Benchmark agreement testing done right: A guide for LLM
benchmark evaluation. CoRR, abs/2407.13696, 2024. doi: 10.48550/ARXIV.2407.13696. URL
https://doi.org/10.48550/arXiv.2407.13696.

Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren,
Bofei Gao, Yibo Miao, Yunlong Feng, et al. Codeelo: Benchmarking competition-level code
generation of llms with human-comparable elo ratings. arXiv preprint arXiv:2501.01257, 2025.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=qFVVBzXxR2V.

Norbert M Seel. Encyclopedia of the Sciences of Learning. Springer Science & Business Media,
2011.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4149–
4158. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1421. URL
https://doi.org/10.18653/v1/n19-1421.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025a.

M.-A-P. Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, Kang Zhu, Minghao
Liu, Yiming Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixin Deng, Shian Jia, Sichao
Jiang, Yiyan Liao, Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, Dehua Ma, Yuansheng
Ni, Haoran Que, Qiyao Wang, Zhoufutu Wen, Siwei Wu, Tianshun Xing, Ming Xu, Zhenzhu
Yang, Zekun Moore Wang, Jun Zhou, Yuelin Bai, Xingyuan Bu, Chenglin Cai, Liang Chen, Yifan
Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun Huang, Yaoru Li, Yizhe
Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Tianyang Pang,
Zhongyuan Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Shanghaoran Quan, Yizhou Tan, Zili
Wang, Chenqing Wang, Hao Wang, Yiya Wang, Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin Yuan,
Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jinyang Zhang, Xiyue Zhang, Xingjian Zhang, Yue
Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun Li, Dayiheng Liu,
Qian Liu, Tianyu Liu, Shiwen Ni, Junran Peng, Yujia Qin, Wenbo Su, Guoyin Wang, Shi Wang,
Jian Yang, Min Yang, Meng Cao, Xiang Yue, Zhaoxiang Zhang, Wangchunshu Zhou, Jiaheng
Liu, Qunshu Lin, Wenhao Huang, and Ge Zhang. Supergpqa: Scaling LLM evaluation across 285
graduate disciplines. CoRR, abs/2502.14739, 2025b. doi: 10.48550/ARXIV.2502.14739. URL
https://doi.org/10.48550/arXiv.2502.14739.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. Hugging Face, 2024.

14

https://doi.org/10.48550/arXiv.2406.06592
https://escholarship.org/uc/item/6170h6nj
https://escholarship.org/uc/item/6170h6nj
https://doi.org/10.48550/arXiv.2407.13696
https://openreview.net/forum?id=qFVVBzXxR2V
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.48550/arXiv.2502.14739

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models - a critical investigation. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=X6dEqXIsEW.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
guage models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115,
2024a. doi: 10.48550/ARXIV.2412.15115. URL https://doi.org/10.48550/arXiv.
2412.15115.

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik Cambria, Xiaodong Liu, Jianfeng Gao, and
Furu Wei. Language models as inductive reasoners. In Yvette Graham and Matthew Purver (eds.),
Proceedings of the 18th Conference of the European Chapter of the Association for Computational
Linguistics, EACL 2024 - Volume 1: Long Papers, St. Julian’s, Malta, March 17-22, 2024, pp.
209–225. Association for Computational Linguistics, 2024b. URL https://aclanthology.
org/2024.eacl-long.13.

Jianzhu Yao, Kevin Wang, Ryan Hsieh, Haisu Zhou, Tianqing Zou, Zerui Cheng, Zhangyang Wang,
and Pramod Viswanath. Spin-bench: How well do llms plan strategically and reason socially?
arXiv preprint arXiv:2503.12349, 2025.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
Tn5B6Udq3E.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Màrquez
(eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4791–4800.
Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL https:
//doi.org/10.18653/v1/p19-1472.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlao.

Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
Stanley Wei, Hangyi Hao, Jianzhu Yao, Peiyao Sheng, Zixuan Wang, Wenhao Chai, Aleksandra
Korolova, Peter Henderson, Sanjeev Arora, Pramod Viswanath, Jingbo Shang, and Saining Xie.
Livecodebench pro: How do olympiad medalists judge LLMs in competitive programming? In
The Thirty-ninth Annual Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2025. URL https://openreview.net/forum?id=U5RIVFtat1.

15

https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2412.15115
https://aclanthology.org/2024.eacl-long.13
https://aclanthology.org/2024.eacl-long.13
https://openreview.net/forum?id=Tn5B6Udq3E
https://openreview.net/forum?id=Tn5B6Udq3E
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=U5RIVFtat1

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A STATEMENT ON THE USE OF LLMS

LLMs are the primary subject of the research presented in this paper. Our work is focused on the
development of a benchmark (EvolArena) to evaluate the multi-turn reasoning capabilities of various
LLMs. While LLMs are the object of our study, we clarify that they were not used as a significant
tool for research ideation or for the writing of this manuscript. The authors of this paper take full
responsibility for the contents of this work, including all claims made.

B MULTI-TURN REASONING FORMULATION

Let fθ denote a LLM engaged in interactive reasoning. The model generates a sequence of queries
{qi}ni=1 through iterative interaction turns. At each turn i, the model’s query generation process can
be formulated as:

qi = fθ(Ci) = fθ(p,Hi−1) (1)

where Ci represents the complete context at turn i, p is the initial problem specification, Hi−1 =
{(qj ,mj)}i−1

j=1 denotes the interaction history, qj and mj are previous queries and their corresponding
feedback.

This formulation captures how the model leverages both the original problem and accumulated
evidence from previous interactions to inform its next query decision.

C EXTENDED DISCUSSION ON EVOLVING NATURE

In this section, we elaborate on the future potential of the “Evolving” mechanism within EvolArena.
While our current experiments demonstrate procedural extensibility and parameterized difficulty
scaling, we emphasize that the architecture of EvolArena—specifically the parameterized Generator
and the deterministic Monitor—serves as the necessary infrastructure to realize advanced forms of
adaptability. We detail this potential across three progressive levels:

C.1 AUTOMATED CURRICULUM LEARNING (FROM ASSESSMENT TO TRAINING)

This represents the most direct future application of the “Evolving” nature: transforming EvolArena
from an examination venue into a gymnasium for RL training.

• Problem: One of the major challenges in training reasoning agents is reward sparsity. If
tasks are too difficult, the model rarely succeeds and learns nothing; if tasks are too easy, the
learning is inefficient.

• Solution: Our framework addresses this by providing the three essential components of an
RL environment:

1. Environment: 40 diverse tasks provide a rich training ground.
2. Reward: The Monitor provides immediate, deterministic feedback (Success, Failure,

Invalid), serving as a perfect reward signal.
3. Curriculum: The Generator provides a tunable knob for difficulty (parameter n) that

can be adjusted smoothly.

• Implementation: An external “Curriculum Controller” can be constructed to observe the
model’s win rate at current difficulty n. If the win rate > 90%, the controller calls the
Generator to increase difficulty to n+ 1; if < 10%, it decreases to n− 1. This ensures the
model always trains within its zone of proximal development, maximizing training efficiency
and the upper bound of reasoning capabilities.

C.2 HIGH-RESOLUTION ADAPTIVE EVALUATION

Beyond training, the concept of adapting to the agent’s capabilities is equally critical for evaluation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Problem: Static, one-size-fits-all benchmarks often suffer from low resolution. They
struggle to differentiate subtle differences between two strong models (e.g., o3-mini vs. R1)
that both solve “Hard” tasks, or distinguish between two weak models that both fail.

• Solution: Our evolving architecture supports model-contingent evaluation.
• Implementation: Instead of testing on fixed levels (e.g., n = 6, 9, 12), the Evaluator can

dynamically adjust n:
– For a smaller model (e.g., 7B), the Evaluator starts at n = 4 and incrementally increases

difficulty until identifying the model’s capability inflection point (e.g., failure at n = 7).
– For a strong model (e.g., o3-mini), the Evaluator starts at n = 12 and evolves upward

to n = 13, 14, 15..., probing its true capability ceiling.
• Value: This yields a high-resolution capability score (e.g., o3-mini achieves capability level
n = 15 on Task X), which is crucial for precisely measuring incremental model progress.

C.3 ADVERSARIAL & STRATEGIC EVOLUTION

This represents the frontier of the “Evolving” concept: the evolution of the benchmark itself.

• Problem: Models may overfit or game a benchmark by learning specific task heuristics
rather than general reasoning abilities.

• Solution: Our Generator is controlled not only by the difficulty parameter n but also by
problem parameters gn (e.g., specific configurations).

• Implementation: We envision an “Adversarial Generator” that analyzes the failure logs
of a specific model (e.g., o3-mini) to identify specific strategic blind spots (e.g., consistent
failure in specific opening configurations of Knight Battle). The Generator then evolves to
specifically produce more of these instances that effectively counter the model’s current
strategy.

• Value: This facilitates a true co-evolutionary paradigm: as models evolve stronger capa-
bilities, the benchmark evolves more challenging problems. This allows EvolArena to
continuously expose the frontier defects of SOTA models.

In conclusion, while our current work demonstrates the initial stage of “Evolving” capabilities (i.e.,
procedural generation and parameterized scaling), the Generator-Monitor architecture constitutes
the core innovation. It not only solves the saturation crisis of current static benchmarks but, more
importantly, provides the viable technical foundation for true evolution—encompassing automated
curriculum learning, adaptive evaluation, and adversarial evolution. We have expanded the definition
of “Evolving” in this work from simple parameterized scaling to serving as the infrastructure for
adaptive assessment, training, and adversarial evolution.

D THE INHERENT NECESSITY OF MULTI-TURN INTERACTION OF OUR TASKS

A foundational design principle of EvolArena is that all 40 tasks mechanically enforce multi-turn
interaction and cannot be successfully completed in a single turn. We contend that a core component
of advanced reasoning involves a LLM’s ability to continuously interact with an environment to gather
information, verify hypotheses, and dynamically adjust its strategy. Our benchmark is specifically
engineered to evaluate this fundamental capability.

The design across all tasks is centered on an essential probe-observe-deduce loop, where a model
must first execute an exploratory action, then process the environment’s feedback, and only then can
it deduce the underlying rules or state required for effective planning. This principle makes multi-turn
engagement an inescapable necessity for success. This design philosophy is consistently applied
across our four task categories, as detailed below and verifiable in the task prompts in Appendix N.

D.1 INFORMATION PROBING AND DYNAMIC ADAPTATION

For tasks within these categories, the possibility of a single-turn solution is statistically infinitesimal.
The core mechanic is built upon an iterative feedback loop where the model must make a series of

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

queries to incrementally narrow down the solution space. A prime example is the “Word Guessing”
task; in the easy mode, the probability of correctly guessing a four-letter word in one attempt is
approximately (1/26)4 ≈ 0.000002188. Success is therefore contingent on the model’s ability
to process feedback over multiple turns—such as “Correct letter in correct position” or “Correct
letter but in wrong position”—to logically deduce the answer. The low accuracy scores achieved
by most models further validate this design, as only those with strong iterative multi-turn reasoning
capabilities, like o3-mini, demonstrate an ability to improve their chances of success.

D.2 STATE OPERATION

The design philosophy for all tasks in this category is centered on incomplete information, making
multi-turn interaction a prerequisite for understanding the environment. In tasks like “Maze Nav-
igation,” the system’s rules are deliberately obscured; for instance, the model is not informed if
directional controls like “up/down” and “left/right” are swapped. The model is thus forced to engage
in an exploratory phase over several turns, experimenting with actions and observing outcomes to
deduce the full set of hidden mechanics before a successful path can be planned and executed. This
requirement for empirical discovery through interaction is a consistent feature across all tasks in this
category.

D.3 STRATEGIC GAMING

In our strategic gaming scenarios, the task Generator is programmatically designed to ensure that a
one-move victory is impossible for either side. This guarantees that a strategic, multi-turn engagement
unfolds from the start. For example, in the “Knight Battle” task, the initial board positions for the
player’s White Knight and the system’s Black Knight are algorithmically set to prevent a capture or
a target-reaching move on the first turn. This forces the model to engage in a sustained exchange,
requiring it to plan several steps ahead while anticipating and reacting to the opponent’s moves over
multiple rounds.

E RAW DATA STATISTICS AND UTILIZATION

The initial seeds for the 40 tasks in EvolArena were sourced from two public websites.

• Codeforces: 32 tasks originate from algorithmic competition problems on Codeforces.
These problems have official difficulty ratings ranging from 1700 to 3500, with a mean
rating of 2453.13. This range signifies a high degree of difficulty, presenting a significant
challenge even for expert human programmers and ensuring the rigorous nature of our
benchmark.

• New York Times: The remaining 8 tasks are adapted from popular logic puzzles published
on the New York Times website.

It is crucial to note that we did not use these seed problems in their original, static form. Instead,
each seed was manually and meticulously adapted into a novel, interactive task requiring multi-turn
engagement. This comprehensive adaptation process involved three key steps:

1. Designing Interaction Rules: We deliberately designed a new set of interaction rules
for each original problem to transform it into a dynamic task that necessitates multi-turn
interaction for its solution.

2. Creating Question Templates: We manually created standardized question templates
for every task. These templates include a clear description of the interaction rules, strict
input/output format requirements, and illustrative examples of the interaction flow.

3. Developing Generators: Based on these structured templates, we developed corresponding
generators. These generators are capable of automatically producing numerous instances
of each task at varying difficulty levels, all of which can be evaluated by our automated
framework.

This structured process clarifies how we utilized existing data sources to construct the novel, interac-
tive challenges within EvolArena.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F DISCUSSION ON THE UPPER LIMIT OF ROUNDS

Evaluating Reasoning Efficiency. Setting an upper limit on interaction turns is a core element of
our evaluation philosophy, not merely a consideration of cost. We believe that efficient reasoning is a
key marker of advanced intelligence. Many real-world scenarios require problem-solving that is not
only correct but also completed within a finite number of steps. Therefore, by setting a cap, EvolArena
evaluates a model’s ability to solve problems efficiently under resource constraints, compelling it to
seek more concise and direct reasoning paths rather than engaging in endless trial and error.

Empirical Justification for the 15-Turn Cap. Regarding the sensitivity to the specific 15-turn
limit, our experimental results provide strong support. The analysis presented in Figure 3 of our paper
shows that for many tasks, performance gains tend to plateau around the 10-turn mark. This suggests
that the 15-turn limit provides sufficient exploratory space for models in most cases. Furthermore, we
observe a practical engineering constraint: beyond 15 turns, the accumulated conversation history
often causes models to exceed their maximum context length, which can lead to truncated outputs
that compromise the validity of the evaluation.

F.1 PRACTICAL CONSIDERATIONS AND TRADE-OFFS.

Finally, we acknowledge that this cap is also influenced by practical computational costs and repre-
sents a trade-off between evaluating efficiency and exploring the absolute limits of performance. This
limit may pose a challenge for “slow-thinking” models that require longer reasoning chains to arrive
at a solution.

G DETAILED EXPERIMENTAL SETTINGS

G.1 DATASET AND SAMPLE SIZE

The performance metrics reported in Table 2 represent the average performance over 300 distinct
samples for each of the four task categories: Information Probing, Dynamic Adaptation, State Opera-
tion, and Strategic Gaming. This sample set consists of 10 unique tasks within each category, where
each task comprises 30 distinct problem instances (10 tasks × 30 questions/task = 300 samples).
This scale provides a statistically robust foundation for our performance analysis.

G.2 EVALUATION SETTING AND RATIONALE

Our benchmark is intentionally designed for a zero-shot interactive setting, with the crucial clarifica-
tion that each task prompt includes a built-in, one-shot demonstration. As illustrated in Figure 2, the
“Example Interactions” section within each prompt provides an in-context example of a successful
dialogue. This example effectively serves as a single “shot” to guide the model on the required
interaction format and rules.

We deliberately opted against a traditional few-shot evaluation for two primary reasons stemming
from the multi-turn nature of our benchmark:

• Context Length Limitations: In multi-turn tasks, the accumulated conversation history
occupies a significant portion of the context window. Adding multiple, complete dialogue
examples for a few-shot setup would risk exceeding the context length limits of many
models, making a fair and practical evaluation challenging.

• Multi-Turn Evaluation Paradigm: Unlike static, single-turn tasks, multi-turn interactive
benchmarks like MT-Bench typically focus more on a model’s performance in a dynamic,
continuous dialogue rather than employing traditional few-shot configurations.

Therefore, our “zero-shot with a built-in demonstration” approach is a deliberate design choice
tailored to the unique challenges of evaluating multi-turn reasoning.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G.3 INFERENCE PARAMETERS

For all experiments, we utilize the default inference parameters for each model as recommended
upon their public release. This approach ensures a fair and representative evaluation that aligns with
best practices. For instance, we evaluate the R1 model using a temperature of 0.6 and a top-p value
of 0.95.

G.4 EVALUATION METRICS AND STABILITY

We report pass@1 for our main results. Given that our evaluation environment is deterministic, the
interaction process and outcome are fixed for any given model and input, which makes pass@1 a direct
and reliable metric. To investigate potential performance variance while managing computational
costs, we conduct supplementary pass@16 experiments on the R1 model across four representative
tasks. The results, presented in Table 4, demonstrate minimal performance variance, which reinforces
the stability and reliability of our evaluation framework.

Category IP (%) DA (%) SO (%) SG (%)
Difficulty E M H E M H E M H E M H
Std. Dev. 0.25 0.81 0.31 0.35 0.97 1.04 0.26 0.59 0.60 0.24 0.67 0.55

Table 4: Performance variance (standard deviation in %) for R1 on pass@16 experiments across four
task categories (E: Easy, M: Medium, H: Hard).

H LIMITATIONS AND FUTURE WORK

Our work provides a robust framework for evaluating multi-turn reasoning; however, it is essential to
acknowledge its limitations and outline directions for future research.

Closed-World Design and External Validity. EvolArena operates as a closed-world system with
highly structured environments and deterministic rules. This design contrasts sharply with ambiguous,
open-world problems that are characterized by incomplete information. We made this trade-off to
achieve full automation, objectivity, and reproducibility in our evaluations. Consequently, strong
performance on EvolArena indicates proficiency in structured reasoning but is not a direct measure
of a model’s ability to generalize to unstructured, real-world applications. Performance should be
viewed as a necessary, but not sufficient, condition for general reasoning ability.

Risk of Overfitting and Responsible Interpretation. There is a risk that models could achieve high
scores by “gaming” the benchmark—learning techniques specific to its tasks rather than developing
general-purpose reasoning skills. While the diversity of 40 tasks across four categories mitigates this
risk by requiring a broad set of skills, the fundamental possibility remains. Therefore, EvolArena
should be used as a diagnostic tool rather than a definitive measure of general intelligence. Optimizing
solely for this benchmark may create excellent puzzle solvers instead of true general reasoners.

Interaction Modality. Another limitation is the structured, non-natural language interaction format
of EvolArena. This design was a deliberate choice to isolate and measure a model’s core logical
reasoning capabilities, separate from the complexities of natural language processing. The trade-off
is that our benchmark currently cannot assess a model’s ability to reason within a natural language
dialogue, which is a crucial skill for many real-world applications.

Future Work. To address these limitations, our future work will focus on bridging the gap between
our benchmark and real-world complexity. Key directions include: (1) Extending the framework to
support and evaluate reasoning within natural language interactions. (2) Introducing more complex
adversarial strategies to further challenge the models. (3) Utilizing EvolArena as a reinforcement
learning environment to train more powerful and generalizable reasoning agents.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

I BROADER IMPACT

Our work on evaluating LLMs’ strategic reasoning through interactive tasks has implications beyond
just testing model capabilities. The evaluation framework provides an engaging and intuitive way to
understand how language models approach complex decision-making tasks. This could help bridge
the gap between technical AI research and public understanding, as this work offers a familiar context
for demonstrating both the capabilities and limitations of current AI systems. Additionally, the
insights gained from observing how models handle strategic planning and adaptation in interactive
environments could inform the development of more effective AI assistants for everyday problem-
solving tasks. We believe our approach of using structured tasks for evaluation could inspire similar
frameworks in other domains where step-by-step reasoning and strategic thinking are important.

J EFFICIENCY ANALYSIS

We evaluate model efficiency from two distinct perspectives: strategic efficiency, which measures the
number of interactions required to find a solution, and computational efficiency, which measures the
token cost of those interactions.

J.1 NUMBER OF INTERACTION TURNS

Our initial analysis used pairwise comparison win rates to intuitively demonstrate direct competition
between top models on identical problems. However, a more direct metric for strategic efficiency is
the average number of turns a model takes to correctly solve a problem. We present these statistics
in Table 5. These results align with the conclusions in body text: although o3-mini demonstrates
the strongest overall performance in terms of accuracy, it typically requires more turns to arrive at a
solution, making it the least strategically efficient among the top models.

Model IP DA SO SG AVG
E M H E M H E M H E M H

o3-mini 8.25 10.18 8.64 10.45 9.35 9.41 7.03 9.41 9.62 3.52 5.80 8.21 8.97
R1 5.38 6.84 6.25 5.29 5.60 6.26 5.43 5.59 7.13 4.13 6.05 8.13 6.94
QwQ-32B 7.57 5.77 5.79 7.50 7.22 6.55 4.25 3.29 3.49 3.29 5.70 7.64 5.87

Table 5: Average number of interaction turns on correctly solved problems.

J.2 TOKEN CONSUMPTION

To provide a more complete picture, we also analyze the computational efficiency by measuring
the average token consumption. Table 6 shows a comparison between R1 and QwQ-32B. The
data indicates that R1 is not only more strategically efficient (fewer turns) but is also significantly
more computationally efficient (lower token consumption) than QwQ-32B in most categories. This
dual-dimensional analysis provides a more comprehensive and nuanced view of model efficiency,
reinforcing body text’s conclusions.

Category A >= B (%) A <= B (%) A = B (%)
IP 45.13 54.87 0.00
DA 35.05 64.95 0.00
SO 62.13 37.87 0.00
SG 31.13 68.87 0.00

Table 6: Token Consumption Comparison: R1 vs. QwQ-32B. A represents R1, and B represents
QwQ-32B.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

K HUMAN PERFORMANCE BASELINE

Providing a human baseline is crucial for calibrating the difficulty of our benchmark. To offer this
perspective, we clarify that the majority of our seed tasks originate from the competitive programming
platform Codeforces. The problems we selected have established human difficulty ratings on this
platform, with a mean rating of 2453, a minimum of 1700, and a maximum of 3500. On Codeforces, a
rating of approximately 2400 corresponds to the “Master” tier, indicating that these tasks are designed
to be challenging even for highly skilled human experts. Therefore, these ratings serve as a strong
proxy for expert human performance and confirm that EvolArena is calibrated to assess reasoning on
tasks of significant difficulty.

L IMPLEMENTATION DETAILS OF EVOLARENA

To ensure full technical transparency and reproducibility, we provide the detailed algorithmic im-
plementation of our automated framework. This section covers the main interaction loop and the
specific logic for the Generator, Monitor, and Evaluator across representative tasks from each of the
four reasoning categories.

L.1 MAIN EVALUATION LOOP

The core of EvolArena is an automated pipeline that manages the interaction between the Large
Language Model (LLM) and the environment. Algorithm 1 outlines the process implemented in our
evaluation script.

Algorithm 1 EvolArena Main Evaluation Loop
Require: Model M , Task Template T , Difficulty Parameter n, Max Rounds K

1: Initialization:
2: (p, s)← Generator(T, n) ▷ Generate problem instance p and reasoning objective s
3: H ← [] ▷ Initialize conversation history
4: State← InitialState(p)
5: Round← 1
6: while Round ≤ K and ¬IsTerminated(State) do
7: Prompt← ConstructPrompt(p,H)
8: Response←M(Prompt) ▷ Get model output
9: Query ← Parse(Response)

10: (Feedback, State)← Monitor(T,Query, State, s) ▷ Update state & get feedback
11: H.append(User : Query,System : Feedback)
12: Round← Round+ 1
13: end while
14: Result← Evaluator(H, s) ▷ Compute Accuracy, Efficiency, etc.
15: return Result

L.2 TASK-SPECIFIC IMPLEMENTATION DETAILS

We provide the detailed implementation logic for the Generator, Monitor, and Evaluator across repre-
sentative tasks. These components ensure that the generated problems are solvable, the interactions
are deterministic, and the evaluations are rigorous.

L.2.1 INFORMATION PROBING: FIND THE IMPOSTORS

Generator:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

IP DA SO SG AVG

Model E M H E M H E M H E M H E M H

Reasoning Model

o3-mini 60.33 41.56 28.22 40.33 24.18 17.13 38.61 27.00 20.22 85.00 74.44 59.17 56.07 41.80 31.19

(±3.06) (±3.22) (±2.94) (±3.24) (±2.80) (±2.46) (±3.17) (±2.90) (±2.63) (±3.71) (±4.41) (±4.82) (±3.30) (±3.33) (±3.21)

R1 39.22 25.00 11.11 34.58 23.11 15.22 47.67 38.56 32.78 73.00 62.67 57.67 48.62 37.33 29.19

(±3.12) (±2.83) (±2.05) (±3.13) (±2.76) (±2.35) (±3.26) (±3.18) (±3.07) (±5.03) (±5.48) (±5.60) (±3.64) (±3.56) (±3.27)

QwQ-32B 53.56 28.22 19.00 38.33 20.44 12.00 36.67 29.89 25.33 70.00 56.33 46.00 49.64 33.72 25.58

(±2.21) (±1.50) (±1.13) (±2.05) (±1.25) (±1.09) (±2.16) (±1.57) (±1.69) (±4.09) (±3.14) (±2.77) (±2.63) (±1.87) (±1.67)

R1-Distill-Llama-70B 33.78 13.11 6.33 25.50 11.00 5.67 15.56 10.78 7.89 61.11 44.17 28.89 33.99 19.76 12.19

(±3.09) (±2.21) (±1.59) (±2.89) (±2.05) (±1.51) (±2.37) (±2.03) (±1.76) (±5.04) (±5.14) (±4.69) (±3.35) (±2.86) (±2.39)

R1-Distill-Qwen-32B 26.78 10.11 3.22 10.50 3.22 1.67 7.11 4.22 3.11 39.44 24.44 15.28 20.96 10.50 5.82

(±2.89) (±1.97) (±1.15) (±2.04) (±1.15) (±0.84) (±1.68) (±1.31) (±1.13) (±5.06) (±4.45) (±3.72) (±2.92) (±2.22) (±1.71)

R1-Distill-Qwen-7B 3.89 2.33 1.11 0.44 0.00 0.00 0.67 1.11 0.22 3.67 2.67 1.00 2.17 1.53 0.58

(±1.26) (±0.99) (±0.69) (±0.44) (±0.00) (±0.00) (±0.53) (±0.69) (±0.31) (±2.13) (±1.83) (±1.13) (±1.09) (±0.88) (±0.53)

R1-Distill-Qwen-1.5B 0.67 0.78 0.33 0.00 1.00 0.11 0.00 0.00 0.00 0.67 0.67 0.00 0.33 0.61 0.11

(±0.50) (±0.57) (±0.38) (±0.00) (±0.65) (±0.22) (±0.00) (±0.00) (±0.00) (±0.92) (±0.92) (±0.00) (±0.36) (±0.54) (±0.15)

Non-Reasoning Model

GPT-4o 29.11 10.56 6.89 22.92 11.56 7.00 19.73 15.11 11.56 42.22 30.56 22.78 28.50 16.94 12.06

(±2.90) (±2.01) (±1.66) (±2.78) (±2.09) (±1.67) (±2.60) (±2.34) (±2.09) (±5.11) (±4.77) (±4.34) (±3.35) (±2.80) (±2.44)

Qwen-Max 33.89 11.56 7.33 27.42 17.67 8.11 20.15 13.67 10.78 49.17 33.61 22.50 32.66 19.13 12.18

(±3.01) (±2.09) (±1.70) (±2.95) (±2.49) (±1.78) (±2.62) (±2.25) (±2.03) (±5.17) (±4.89) (±4.32) (±3.44) (±2.93) (±2.46)

gemma-3-27b-IT 31.00 9.78 9.67 18.92 9.67 6.33 16.00 10.00 5.67 16.89 4.72 5.15 20.70 8.54 6.70

(±3.02) (±1.94) (±1.93) (±2.59) (±1.93) (±1.59) (±2.40) (±1.96) (±1.51) (±3.77) (±2.19) (±2.49) (±2.95) (±2.01) (±1.88)

gemma-3-12b-IT 24.78 8.33 4.56 15.03 8.44 5.89 12.22 4.56 3.56 12.61 9.17 5.17 16.16 7.63 4.79

(±2.82) (±1.81) (±1.36) (±2.36) (±1.82) (±1.54) (±2.14) (±1.36) (±1.21) (±3.48) (±3.04) (±2.62) (±2.70) (±2.01) (±1.68)

gemma-3-4b-IT 11.44 4.56 2.44 8.61 6.00 4.11 9.00 4.22 2.89 10.67 2.33 0.67 9.93 4.28 2.53

(±2.08) (±1.36) (±1.01) (±1.86) (±1.55) (±1.30) (±1.87) (±1.31) (±1.09) (±3.50) (±1.71) (±0.92) (±2.33) (±1.48) (±1.08)

Qwen2.5-72B-IT 38.22 20.00 10.89 23.22 12.44 6.33 14.78 11.00 7.89 41.50 32.78 26.67 29.43 19.06 12.94

(±3.18) (±2.61) (±2.04) (±2.78) (±2.16) (±1.59) (±2.32) (±2.05) (±1.76) (±4.85) (±4.65) (±4.41) (±3.28) (±2.87) (±2.45)

Qwen2.5-32B-IT 33.44 14.67 12.44 19.69 12.89 6.22 23.67 17.67 14.44 42.00 25.00 19.76 29.70 17.56 13.22

(±3.08) (±2.31) (±2.16) (±2.63) (±2.19) (±1.58) (±2.78) (±2.49) (±2.30) (±4.85) (±4.91) (±4.20) (±3.34) (±2.98) (±2.56)

Qwen2.5-7B-IT 27.44 11.44 3.67 18.33 9.33 6.22 9.67 6.00 4.89 22.67 10.00 8.33 19.53 9.19 5.78

(±2.92) (±2.08) (±1.23) (±2.58) (±1.90) (±1.58) (±1.93) (±1.55) (±1.41) (±4.75) (±3.40) (±3.13) (±3.05) (±2.23) (±1.84)

Qwen2.5-1.5B-IT 2.22 0.11 0.22 6.44 4.33 0.78 9.44 0.89 1.33 17.67 14.67 12.00 8.94 5.00 3.58

(±0.96) (±0.22) (±0.31) (±1.64) (±1.33) (±0.57) (±1.91) (±0.61) (±0.75) (±4.32) (±4.01) (±3.68) (±2.21) (±1.54) (±1.33)

Llama-3.1-70B-IT 40.11 21.22 11.89 23.81 12.00 6.78 16.78 11.44 8.78 36.50 25.33 20.72 29.30 17.50 12.04

(±3.20) (±2.67) (±2.12) (±2.82) (±2.12) (±1.64) (±2.44) (±2.08) (±1.85) (±4.76) (±4.36) (±4.14) (±3.31) (±2.81) (±2.44)

Llama-3.1-8B-IT 22.67 10.00 4.89 13.58 5.78 4.67 12.56 5.33 3.78 11.00 5.67 3.00 14.95 6.69 4.08

(±2.74) (±1.96) (±1.41) (±2.28) (±1.53) (±1.38) (±2.17) (±1.47) (±1.25) (±3.55) (±2.62) (±1.93) (±2.69) (±1.90) (±1.49)

Mistral-Small-24B-IT-2501 18.67 7.78 4.56 17.92 6.22 5.00 19.56 10.00 6.78 25.56 12.83 12.28 20.42 9.21 7.15

(±2.55) (±1.75) (±1.36) (±2.53) (±1.58) (±1.42) (±2.59) (±1.96) (±1.64) (±4.38) (±3.53) (±3.57) (±3.01) (±2.21) (±2.00)

Ministral-8B-IT-2410 8.89 4.22 2.00 13.69 5.67 5.11 16.67 11.56 4.33 21.33 5.33 8.67 15.15 6.69 5.03

(±1.86) (±1.31) (±0.92) (±2.28) (±1.51) (±1.44) (±2.44) (±2.09) (±1.33) (±4.64) (±2.55) (±3.19) (±2.81) (±1.87) (±1.72)

AVG 27.01 12.39 12.77 18.96 10.25 6.22 17.32 11.65 8.81 34.13 23.87 18.78 24.36 14.63 10.34

(±2.63) (±1.87) (±1.50) (±2.37) (±1.73) (±1.38) (±2.23) (±1.82) (±1.55) (±4.21) (±3.55) (±3.15) (±2.86) (±2.24) (±1.90)

Table 7: Model Accuracy with 95% confidence intervals on EvolArena.

Algorithm 2 Generator for Find the Impostors
Require: Total players N , Existing Answers Set D
1: loop
2: A← RandomBinaryString(N) ▷ 0: Impostor, 1: Crewmate
3: Zeros← Count(A, ’0’)
4: ▷ Constraint: Impostors between N/3 and 2N/3
5: if N/3 ≤ Zeros ≤ 2N/3 and A /∈ D then
6: D.add(A)
7: return A
8: end if
9: end loop

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Monitor:

Algorithm 3 Monitor for Find the Impostors
Require: User Input I , Hidden Sequence A
1: Regex (Query): r"My Query:\s*(\d+),(\d+),(\d+)"
2: Regex (Answer): r"My Answer:\s*((?:\d+,)*\d+)"
3: if I matches Query format with indices P = {p1, p2, p3} then
4: ImpostorCount←

∑
p∈P (1 if A[p] == ’0’ else 0)

5: if ImpostorCount > 3− ImpostorCount then
6: return "0" ▷ Majority are impostors
7: else
8: return "1" ▷ Majority are crewmates
9: end if

10: else if I matches Answer format with indices G then
11: PredictedA← IndicesToBinary(G)
12: if PredictedA == A then
13: return "1"
14: else
15: return "0"
16: end if
17: else
18: return "Invalid", "-1"
19: end if

Evaluator:

Algorithm 4 Evaluator for Find the Impostors
Require: Interaction History H , Ground Truth Sequence A
1: Initialize Metrics:
2: Success← False
3: TurnCount← Length(H)
4: InvalidCount← 0
5: Patterns← {Associate : 0,Verify : 0, Plan : 0, Feedback : 0}
6: for each turn t in H do
7: Feedback ← H[t].SystemOutput
8: Thought← H[t].ModelThought
9: ▷ 1. Metric: Invalid Rate (Instruction Following)

10: if Feedback == "-1" ∨ Feedback == "Invalid Format" then
11: InvalidCount← InvalidCount+ 1
12: end if
13: ▷ 2. Metric: Pattern Analysis (Cognitive Process)
14: Patterns← Patterns+ LLM_Pattern_Analyzer(Thought)
15: ▷ 3. Metric: Accuracy (Final Outcome)
16: if t == TurnCount then
17: Query ← H[t].UserQuery
18: if Query starts with "My Answer:" then
19: SubmittedIndices← ParseAnswer(Query)
20: TrueIndices← GetIndicesOfZeros(A)
21: if SubmittedIndices == TrueIndices then
22: Success← True
23: end if
24: end if
25: end if
26: end for
27: InvalidRate← InvalidCount/TurnCount
28: return {Success, TurnCount, InvalidRate, Patterns}

L.2.2 DYNAMIC ADAPTATION: PASSWORD BREAKER

Generator:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 5 Generator for Password Breaker
Require: Base k, Group Index i
1: Min← i× 10 + 1
2: Max←Min+ 9
3: Pcurr ← RandomInteger(Min,Max)
4: return Pcurr,Min,Max

Monitor:

Algorithm 6 Monitor for Password Breaker
Require: Input I , Password P , Base k, Range [Min,Max]
1: Regex: r"My Guess:\s*(\d+)"
2: if I matches Regex with guess G then
3: if G < Min ∨ G > Max then
4: return "Invalid"
5: end if
6: if G == P then
7: return "Correct"
8: else
9: DP ← ToBaseK(P, k)

10: DG ← ToBaseK(G, k)
11: Dnew ← []
12: for j ← 0 to max(len(DP), len(DG)) do
13: digit← (DP [j] +DG[j]) (mod k)
14: Dnew.append(digit)
15: end for
16: V al← FromBaseK(Dnew, k)
17: P ← (V al (mod (Max−Min+ 1))) +Min ▷ Update Hidden State
18: return "Incorrect"
19: end if
20: else
21: return "Invalid"
22: end if

Evaluator:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Algorithm 7 Evaluator for Password Breaker
Require: Interaction History H
1: Initialize Metrics:
2: Success← False
3: SolvedAtTurn← None
4: InvalidCount← 0
5: Patterns← {Assoc : 0,Ver : 0, Plan : 0, Feed : 0}
6: for t← 1 to Length(H) do
7: Feedback ← H[t].SystemOutput
8: ▷ Check for Invalid Rate
9: if Feedback == "Invalid" then

10: InvalidCount← InvalidCount+ 1
11: end if
12: ▷ Run Pattern Analysis
13: Patterns← Patterns+ LLM_Pattern_Analyzer(H[t].Thought)
14: ▷ Check for Success (Can happen at any turn)
15: if Feedback == "Correct" then
16: Success← True
17: SolvedAtTurn← t
18: break ▷ Stop counting turns after success for Efficiency
19: end if
20: end for
21: Efficiency ← SolvedAtTurn if Success else Length(H)
22: InvalidRate← InvalidCount/Length(H)
23: return {Success, Efficiency, InvalidRate, Patterns}

L.2.3 STATE OPERATION: MAZE NAVIGATION

Generator:

Algorithm 8 Generator for Maze Navigation
Require: Grid Size N ×M
1: Grid← Initialize(N,M, ’.’), Start← (0, 0)
2: loop
3: F ← RandomPos(N,M)
4: if F ̸= Start then Grid[F]← ’F’; break
5: end if
6: end loop
7: for k ← 1 to N ×M//3 do
8: P ← RandomPos(N,M)
9: if Grid[P] == ’.’ then

10: Grid[P]← ’*’; V alid← DFS_CheckPath(Start, F,Grid)
11: if ¬V alid then Grid[P]← ’.’
12: end if
13: end if
14: end for
15: SUD, SLR ← RandomBool(),RandomBool()
16: return (Grid, SUD, SLR)

Monitor:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 9 Monitor for Maze Navigation
Require: User Input I , Current Pos P , Grid G, Swap Flags SLR, SUD

1: Regex: r"My Move:\s*([UDLR])"
2: if I matches Regex with direction D then
3: ▷ Apply Control Swaps
4: if SLR and D ∈ {L,R} then
5: D ← Flip(D)
6: end if
7: if SUD and D ∈ {U,D} then
8: D ← Flip(D)
9: end if

10: Pnew ← P + Delta(D)
11: ▷ Check Boundaries
12: if ¬InGrid(Pnew) then
13: Pnew ← P
14: end if
15: Cell← G[Pnew]
16: if Cell ==′ ∗′ then
17: return "My Move: D", "-1 -1 You lose!"
18: else if Cell ==′ F ′ then
19: return "My Move: D", "Pnew.x Pnew.y You win!"
20: else
21: P ← Pnew ▷ Update Agent Position
22: return "My Move: D", "Pnew.x Pnew.y"
23: end if
24: else
25: return "Invalid", "Invalid format"
26: end if

Evaluator:

Algorithm 10 Evaluator for Maze Navigation
Require: Interaction History H , Max Turns K
1: Initialize Metrics:
2: Success← False
3: InvalidCount← 0
4: Patterns← InitializeCounts()
5: for each turn t in H do
6: Feedback ← H[t].SystemOutput
7: ▷ 1. Invalid Rate: Capture both Format and Logic Errors
8: if Feedback contains "Invalid" then
9: InvalidCount← InvalidCount+ 1 ▷ Format Error

10: else if Feedback == "-1 -1 You lose!" then
11: ▷ Operational Error (Hit Obstacle)
12: InvalidCount← InvalidCount+ 1
13: Success← False
14: break
15: end if
16: ▷ 2. Pattern Analysis
17: Patterns← Patterns+ LLM_Pattern_Analyzer(H[t].Thought)
18: ▷ 3. Check Success
19: if Feedback contains "You win!" then
20: Success← True
21: break
22: end if
23: end for
24: return {Success,Turns Used, InvalidRate, Patterns}

L.2.4 STRATEGIC GAMING: KNIGHT BATTLE

Generator:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Algorithm 11 Generator for Knight Battle
Require: Board Size N
1: TW ← (N/2, N/2); TB ← (N/2 + 1, N/2)
2: loop
3: PW , PB ← RandomPos(N),RandomPos(N)
4: ▷ Constraint: Distinct positions, not on targets
5: if PW ̸= PB and PW /∈ {TW , TB} and PB /∈ {TW , TB} then
6: break
7: end if
8: end loop
9: return (PW , PB , TW , TB)

Monitor:

Algorithm 12 Monitor for Knight Battle
Require: User Input I , Board B, Positions PosW , PosB , Targets TW , TB

1: Regex: r"My Move:\s*(\d+)\s+(\d+)"
2: if I matches Regex with new white pos P ′

W then
3: if ¬IsValidKnightMove(PosW , P ′

W) then
4: return "Invalid", "Invalid knight move"
5: end if
6: PosW ← P ′

W

7: ▷ Check White Win Conditions
8: if PosW == PosB then
9: return "Move: P ′

W ", "White wins!" ▷ Capture
10: else if PosW == TW and ¬UnderAttack(PosW , PosB) then
11: return "Move: P ′

W ", "White wins!" ▷ Target Reached
12: end if
13: ▷ System (Black) Turn
14: Moves← GetValidLShapes(PosB)
15: if Moves is empty then
16: return "Move: P ′

W ", "White wins!"
17: end if
18: PosB ← RandomChoice(Moves)
19: ▷ Check Black Win Conditions
20: if PosB == PosW then
21: return "Move: P ′

W ", "Black wins!"
22: else if PosB == TB and ¬UnderAttack(PosB , PosW) then
23: return "Move: P ′

W ", "Black wins!"
24: end if
25: return "Move: P ′

W ", "PosB .x PosB .y"
26: else
27: return "Invalid", "Invalid format"
28: end if

Evaluator:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Algorithm 13 Evaluator for Knight Battle
Require: Interaction History H
1: Initialize Metrics:
2: Outcome← "Loss"
3: InvalidCount← 0
4: Patterns← InitializeCounts()
5: for each turn t in H do
6: Feedback ← H[t].SystemOutput
7: ▷ 1. Invalid Rate: Logic Constraint Violation
8: if Feedback == "Invalid move" then
9: InvalidCount← InvalidCount+ 1

10: Outcome← "Loss (Invalid)"
11: break
12: end if
13: ▷ 2. Pattern Analysis (Focus on Planning)
14: Patterns← Patterns+ LLM_Pattern_Analyzer(H[t].Thought)
15: ▷ 3. Check Win/Loss Conditions
16: if Feedback == "White wins!" then
17: Outcome← "Win"
18: break
19: else if Feedback == "Black wins!" then
20: Outcome← "Loss (Captured)"
21: break
22: end if
23: end for
24: Success← (Outcome == "Win")
25: return {Success,Turns Used, InvalidRate, Patterns}

M TAXONOMY OF REASONING FAILURE MODES

To provide diagnostic insights beyond the quantitative “Invalid Rate,” we conduct a manual inspection
of 50 randomly sampled failure instances. Based on this analysis, we identify five distinct categories
of core reasoning failures. We formally introduce this taxonomy to better understand the cognitive
limitations of current models:

State Tracking Collapse In dynamic tasks, models often fail to maintain and update a coherent
environmental state across multiple turns. For instance, in Dynamic Adaptation (DA) tasks such
as Password Breaker, even after the Monitor returns “Incorrect” (signaling that the password has
changed via XOR rules), the model frequently continues to reason based on the outdated password
state from previous turns. This failure to update the internal belief state causes the entire subsequent
reasoning chain to derail.

Hasty Generalization This failure mode is prevalent in tasks that require an “explore-then-exploit”
strategy. Models often prematurely lock onto an incorrect global hypothesis before gathering sufficient
evidence to support the conclusion. For example, in State Operation (SO) tasks like Maze Navigation,
a model might verify only the U/D control swap and erroneously assume the L/R controls are normal
without testing. Subsequent planning based on this unverified assumption leads to inevitable failure.

Greedy & Myopic Planning This is commonly observed in Strategic Gaming (SG) tasks. Models
tend to select a “local optimum” for the current turn while ignoring that this move leads to a “global
worst-case” scenario in the near future. In Knight Battle, for instance, a model might choose a move
to capture a piece or check the opponent, failing to foresee that this specific position exposes it to an
unavoidable counter-attack or checkmate in the subsequent turns.

Inefficient Exploration This represents a strategic failure where models fail to employ optimal
search strategies (e.g., binary search) to maximize information gain within the limited horizon (e.g.,
15 turns). In Information Probing (IP) tasks like Find the Impostors, failing models often perform
redundant or overlapping queries (e.g., querying {1, 2, 3} followed immediately by {1, 2, 4}) rather
than querying disjoint sets (e.g., {4, 5, 6}) to rapidly narrow down the possibility space.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Logical Constraint Violation This category transcends the simple formatting errors captured by
the “Invalid Rate.” Here, the model maintains correct syntax but violates the core logical constraints
of the task. For example, in Strategic Gaming (SG) (e.g., Knight Battle), a model might output
“My Move: 9 9”. While syntactically correct, this move is logically illegal on an 8× 8 chessboard.
This indicates a defect in fundamental reasoning capabilities, such as the understanding of spatial
boundaries, rather than a failure in instruction following.

N TASK INTRODUCTION

We classify problems into four types based on their characteristics and testing capabilities: Information
Probing (IP), Dynamic Adaptation (DA), State Operation (SO), and Strategic Gaming (SG). Each
type contains 10 tasks that described in detail below.

N.1 INFORMATION PROBING

FindTheImpostors In this task, models need to identify all impostors among n players through
strategic queries about groups of three players. Models can make queries to compare impostors and
crewmates in specified groups, ultimately determining the complete set of impostors.

Case N.1: FindTheImpostors Problem Template

Let’s play Find the Impostors! Your task is to identify all impostors among n players.
Rules:
1. There are n players
2. Some players are impostors (k) and others are crewmates (n− k)
3. The number of impostors k is between 1/3n and 2/3n
Query Types:
1. Ask about three players:
Format: “My Query: a, b, c” (three different player numbers)
Response will be:
- 0: if there are more impostors than crewmates among these three
- 1: if there are more crewmates or equal numbers
- -1: if query is invalid
2. Submit final answer:
Format: “My Answer: x1, x2, ..., xk”
(k is number of impostors, followed by their indices)
Response will be:
- 0 if incorrect
- 1 if correct
Example interaction:
You: “My Query: 1,2,3”
Me: “0” (means more impostors in this group)
You: “My Query: 3,4,5”
Me: “1” (means more crewmates in this group)
You: “My Answer: 1,2,3,4”
Me: 1 (if correct)
Instructions:
1. You must explain your reasoning before each query
2. Format your responses exactly as shown above
Remember:
- Player numbers must be between 1 and n
- All three numbers in a query must be different
Ready to start? Make your first query!

Case N.2: FindTheImpostors Difficulty Levels

Easy: n = 6, Medium: n = 9, Hard: n = 12

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

GuessMax In this task, models need to discover a hidden password by querying maximum values
from specific positions in an array. The password consists of maximum values from complementary
position sets defined by given exclusion rules.

Case N.3: GuessMax Problem Template

Let’s play Guess The Maximums!
Rules:
1. Hidden array A[1...50] contains numbers from 1 to 50
2. You need to guess n numbers forming the password
3. For password position i, you are given Si = subset of positions to exclude
4. Password[i] = max value among all positions EXCEPT those in Si

Your subsets are:
{subset desc}
Password Example:
For x = 4, n = 2, if:
S1 = {1, 3}, S2 = {2, 4}
And hidden array A = [3, 1, 2, 4]
Then:
- Password[1] ignores positions 1, 3 (S1)
So looks at A[2] = 1, A[4] = 4
Password[1] = 4
- Password[2] ignores positions 2, 4 (S2)
So looks at A[1] = 3, A[3] = 2
Password[2] = 3
Therefore, the answer is “4 3”.
Query Types:
1. Make a query:
Format: “My Query: x1 x2 ... xm”
where:
- xi = positions you want to query (1 ≤ m < 50)
- You’ll receive the maximum value at these positions
2. Submit final answer:
Format: “My Answer: p1 p2 ... pn”
where:
- pi = your guess for each password slot
- You’ll receive “Correct” or “Incorrect”
Simple Example Interaction:
Given: x = 4, n = 2, S1 = {1, 3}, S2 = {2, 4}, A = [3, 1, 2, 4](hidden), Answer = [4, 3](hidden)
You: “My Query: 2 4”
Me: “4”
You: “My Query: 1 3”
Me: “3”
You: “My Answer: 4 3”
Me: “Correct”
Instructions:
1. Make queries based on previous results
2. Use exactly the formats shown above
3. Explain your reasoning before each query
Remember:
- Each query reveals maximum value at specified positions
- Password digits come from complementary position sets
- Think carefully about which positions to query
Ready to start? Make your first query!

Case N.4: GuessMax Difficulty Levels

Easy: n = 7, Medium: n = 10, Hard: n = 16

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

CircleFinding In this task,models need to discover a hidden circle’s parameters (center coordinates
and radius) through ray-shooting queries from the origin. Models can make queries in the format “My
Query: xq yq” to shoot a ray through any specified point, receiving the minimum distance from the
ray to the circle (0.0 if the ray intersects). Through geometric reasoning and strategic ray placement,
models should determine the circle’s exact position and size, submitting their answer in the format
“My Answer: xc yc rc”.

Case N.5: CircleFinding Problem Template

Let’s play Circle Finding Game! Your task is to discover a hidden circle on a plane through
ray-shooting queries.
Rules:
1. There is a hidden circle with center (xc, yc) and radius rc
2. All parameters are integers and |xc|, |yc|, |rc| ≤ {n}
3. The radius rc satisfies: 1 ≤ rc ≤

√
x2
c + y2c − 1

4. You can shoot rays from origin (0, 0) through any point (xq, yq) you specify
Query Types:
1. To shoot a ray:
Format: “My Query: (xq, yq) ”
where:
- xq, yq are integers with |xq|, |yq| ≤ {n}
- At least one of xq or yq must be non-zero
Example: “My Query: 0 -10”
You’ll receive the minimum distance from the ray to the circle
(0.0 if the ray intersects the circle)
2. To submit final answer:
Format: “My Answer: xc yc rc”
where xc, yc, rc are the circle’s parameters
Example: “My Answer: 20 10 10”
You’ll receive the correctness of your answer.
Instructions:
1. Make queries based on previous results
2. Use exactly the formats shown above
3. Explain your reasoning before each query
4. All distances are precise to 10−10

Remember:
- Circle parameters are integers
- Rays start from origin (0, 0)
- Think carefully about ray directions
- Use geometric properties to deduce circle location
- Distance is 0 when ray intersects circle
Ready to start? Make your first query!

Case N.6: CircleFinding Difficulty Levels

Easy: n = 200, Medium: n = 1000, Hard: n = 1500

BitCompare In this task, models need to find two positions in a hidden permutation of numbers
that will yield the maximum XOR value when combined. Models can make queries in the format
“My Query: a b c d” to compare the bitwise OR results of different positions, receiving “<”, “=” or “>”
as responses, and ultimately submit their answer in the format “My Answer: i j”. Through strategic
querying, models should determine which two positions will produce the largest XOR value.

Case N.7: BitCompare Problem Template

Let’s play Bitwise Comparison Game! Your task is to find two positions in a hidden permutation
that maximize their XOR value.
Rules:
1. There is a hidden permutation of {n} numbers (0 to {n− 1})

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

2. Each position contains a unique number from 0 to {n− 1}
3. You can make comparison queries between OR operations:
- Each query compares (a | b) with (c | d)
- | denotes bitwise OR operation
- You’ll receive “<”, “=”, or “>” as response
Query Types:
1. To make a comparison query:
Format: “My Query: a b c d”
where:
- a, b, c, d are positions in array (0-based indexing)
Example: “My Query: 0 2 3 1”
Response will be one of: “<”, “=”, “>”
2. To submit final answer:
Format: “My Answer: i j”
where i and j are the positions with maximum XOR value
Example: “My Answer: 3 2”
Instructions:
1. Make queries based on previous comparisons
2. Use exactly the formats shown above
3. Explain your reasoning before each query
Remember:
- All positions contain unique numbers from 0 to {n− 1}
- Position indices start from 0
- Think carefully about which positions to compare
- Use your queries wisely to find maximum XOR pair
Ready to start? Make your first query!

Case N.8: BitCompare Difficulty Levels

Easy: n = 5, Medium: n = 7, Hard: n = 9

TreeDiscovery In this task, models need to discover the structure of a hidden tree through strategic
path queries. For each query, models specify two disjoint vertex sets and a target vertex, receiving the
number of paths between vertices from these sets that pass through the target vertex.

Case N.9: TreeDiscovery Problem Template

Let’s play Legendary Tree! Your task is to discover the structure of a hidden tree through strategic
queries.
Rules:
1. There is a hidden tree with n vertices (numbered 1 to n)
2. You can ask questions to discover the tree’s structure
3. For each question, you need to specify:
- Set S: A group of vertices (at least one vertex)
- Set T : Another group of vertices (at least one vertex)
- Vertex v: Any vertex you choose
Note: S and T must not have any common vertices
Query Types:
1. To make a query:
Format: “My Query: S | T | v” where:
- S is your first set of vertices (space-separated numbers)
- T is your second set of vertices (space-separated numbers)
- v is the vertex you want to check
Example: “My Query: 1 2 | 3 | 2”
Response:
You will receive the number of vertex pairs (s, t) where:
- s is from set S
- t is from set T

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

- The path from s to t passes through vertex v
2. To submit final answer:
Format: “My Answer: edge1 edge2 ...” where each edge is “u-v”
Example: “My Answer: 1-2 2-3”
Example Interaction:
You: “My Query: 1 2 | 3 | 2”
Me: “2” (meaning 2 paths through vertex 2)
Instructions:
1. Use queries to gather information about the tree
2. Format your queries exactly as shown above
3. Think carefully about which vertices to select
Remember:
- Sets S and T must be non-empty and disjoint
- Use your queries wisely to gather maximum information
- Each edge in final answer should appear exactly once
Ready to start? Make your first query!

Case N.10: TreeDiscovery Difficulty Levels

Easy: n = 5, Medium: n = 6, Hard: n = 7

LinkedListQuery In this task, models need to find a specific value in a sorted linked list through
strategic queries. Models can query values and next pointers at specific positions to explore the list
structure and determine the target value.

Case N.11: LinkedListQuery Problem Template

Let’s play Linked List Query Game! Your task is to find a specific value in a sorted linked list
through queries.
Rules:
1. There is a hidden sorted linked list with n elements
2. Each element has a value and a next pointer (pointing to the next element’s index)
3. You can make two types of queries:
- VALUE query: you will get both value and next pointer at position i
- ANSWER submission: you will get a feedback of “Correct” or “Incorrect”
Query Types:
1. To make a value query:
Format: “My Query: i”
where:
- i is the position in list (1-based indexing)
Example: “My Query: 1”
2. To submit final answer:
Format: “My Answer: ans”
where ans is either:
- The minimum value in the list
Example: “My Answer: 80”
Example Interaction:
List length = n, start = 3, x = 80
You: “My Query: 1”
Me: “value=97, next=-1”
You: “My Query: 3”
Me: “value=16, next=2”
You: “My Answer: 80”
Me: “Correct”
Instructions:
1. Make queries to explore the linked list
2. Use exactly the formats shown above
3. Explain your reasoning before each query/answer

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Remember:
- Following next pointers, values are in increasing order
- You need to find minimum value of the list
- Position indices start from 1
- Think carefully about which positions to query
Ready to start? Make your first query!

Case N.12: LinkedListQuery Difficulty Levels

Easy: n = 5, Medium: n = 9, Hard: n = 11

MedianQuery In this task, models need to find specific positions in a hidden permutation through
queries about subsequence medians. For each query, models specify positions to examine and receive
the two middle values, ultimately locating target values in the permutation.

Case N.13: MedianQuery Problem Template

Let’s play Median Query Game! Your task is to find specific positions in a hidden permutation
through median queries.
Rules:
1. There is a hidden permutation p of length n (numbers 1 to n)
2. You can make queries about subsequences of even length
3. Each query returns the two middle values (medians) of your chosen subsequence
4. Your goal is to find positions of values {n//2} and {n//2 + 1}
Query Types:
1. To make a query:
Format: “My Query: k x1 x2 ... xk”
where:
- k is the length of subsequence (even number, 4 ≤ k ≤ n)
- x1 to xk are distinct positions (1-based indexing)
Example: “My Query: n 1 2 3 4 5 6”
Response will be two numbers: the k/2-th and (k/2 + 1)-th smallest values in the subsequence
2. To submit final answer:
Format: “My Answer: i j”
where i and j are positions of values {n//2} and {n//2 + 1}
Example: “My Answer: 3 6”
Instructions:
1. Make queries based on previous results
2. Use exactly the formats shown above
3. Explain your reasoning before each query
Remember:
- The permutation contains numbers 1 to n exactly once
- Position indices start from 1
- Think carefully about which subsequences to query
- Use your queries wisely to locate the target positions
- Order of positions in final answer doesn’t matter
Ready to start? Make your first query!

Case N.14: MedianQuery Difficulty Levels

Easy: n = 6, Medium: n = 8, Hard: n = 15

MinMax In this task, models need to find positions of minimum and maximum elements in a
hidden array through pairwise comparison queries. Each query reveals the relative ordering of two
elements, helping deduce the extreme values’ locations.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Case N.15: MinMax Problem Template

Let’s play Find Min Max! Your task is to find the minimum and maximum elements in a hidden
array.
Rules:
1. You are given an array of length n, but you cannot see its elements
2. You can only compare two elements by their positions (i and j)
3. After each comparison, you’ll receive one of these responses:
- “<”: element at position i is less than element at position j
- “=”: element at position i equals element at position j
- “>”: element at position i is greater than element at position j
Example:
If we have an array of length 3:
- Query “1 2” would get:
“>” (means element at position 1 is greater than element at position 2)
- Query “2 3” would get:
“<” (means element at position 2 is less than element at position 3)
Query Types:
1. Ask about comparison:
Format: “My Query: i j” (i and j are positions to compare)
Response will be “<”, “=” or “>”
2. Submit final answer:
Format: “My Answer: ! i j” (where i is minimum position, j is maximum position)
Response will be:
- 1 if correct
- 0 if incorrect
Instructions:
1. You must explain your reasoning before each query
2. Format your responses exactly as shown above
3. You can only compare two different positions at a time
Remember:
- Positions must be between 1 and 6
- Choose comparisons wisely to minimize queries
Ready to start? Make your first query!

Case N.16: MinMax Difficulty Levels

Easy: n = 5, Medium: n = 6, Hard: n = 7

WordGuessing In this task, models need to discover a hidden n-letter word through strategic
guesses. Each guess receives feedback indicating correct letters, misplaced letters, and wrong letters,
helping narrow down the target word.

Case N.17: WordGuessing Problem Template

Let’s play Letters Finding! Your task is to guess a n-letter English word.
Rules:
1. You must provide exactly ONE n-letter English word as your guess
2. After each guess, you’ll receive feedback using these symbols:
- R: Correct letter in the correct position
- G: Correct letter but in the wrong position
- W: Wrong letter, not in the word
Example:
If the target word is ABCDUVWZGHIJ
- Guess ACEFOPQMKLLM would get: RGWWWWWWWWWW
(A is correct position, C is correct but wrong position, rest are wrong)
Query Type:
1. Make a guess:
Format: “My Guess: [YOUR n-LETTER WORD]”

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Response will be:
- A n-character string using R, G, and W
- R: right letter, right position
- G: right letter, wrong position
- W: wrong letter
Instructions:
1. Make your guess based on previous feedback (if any)
2. Guess only one word at a time
3. Give your reasoning process before each guess
Remember:
- Each guess must be exactly n letters long
- The same letter can appear multiple times
- Guesses need not be real English words
- Use feedback wisely to deduce the target word
Ready to start? Make your first query!

Case N.18: WordGuessing Difficulty Levels

Easy: n = 4, Medium: n = 8, Hard: n = 12

BitQuery In this task, models need to discover a hidden array by making queries about pairs of
positions using bitwise operations (AND, OR, XOR). Models can make queries in the format “My
Query: OPERATION i j” to get the result of applying the specified bitwise operation on elements
at positions i and j. After gathering enough information through strategic queries, models should
submit their final answer in the format “My Answer: a1 a2 ... an” representing their guess of the
entire hidden array.

Case N.19: BitQuery Problem Template

Let’s play Bitwise Query Game! Your task is to discover the hidden array through bitwise
operations.
Rules:
1. There is a hidden array of {n} integers
2. Each element in the array is between 0 and {n− 1} inclusive
3. You can ask three types of queries about any two positions i and j:
- AND query: returns the bitwise AND of elements at positions i and j
- OR query: returns the bitwise OR of elements at positions i and j
- XOR query: returns the bitwise XOR of elements at positions i and j
Query Types:
1. To make a query:
Format: “My Query: OPERATION i j”
where:
- OPERATION is one of: AND, OR, XOR
- i and j are positions in array (1-based indexing)
Example: “My Query: OR 1 2”
2. To submit final answer:
Format: “My Answer: a1 a2 ... a{n}”
where a1 to a{n} are your guessed array elements
Example: “My Answer: 0 0 2 3”
Example Interaction:
Array length = {n}
You: “My Query: OR 1 2”
Me: “0” (result of OR operation)
You: “My Query: OR 2 3”
Me: “2” (result of OR operation)
You: “My Query: XOR 2 4”
Me: “3” (result of XOR operation)
You: “My Answer: 0 0 2 3”

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Instructions:
1. Make queries based on previous results
2. Use exactly the formats shown above
3. Explain your reasoning before each query
Remember:
- All array elements are between 0 and {n− 1}
- Position indices start from 1
- Think carefully about which operations to use
- Use your queries wisely to gather maximum information
Ready to start? Make your first query!

Case N.20: BitQuery Difficulty Levels

Easy: n = 4, Medium: n = 8, Hard: n = 12

N.2 DYNAMIC ADAPTATION

PasswordBreaking In this task, models need to discover a hidden password through strategic
guesses. After each incorrect guess, the password changes according to a base-k XOR operation,
requiring careful analysis of the transformation mechanics.

Case N.21: PasswordBreaking Problem Template

Let’s play Password Breaker! Your task is to hack into the RPD database by guessing the correct
password.
Rules:
1. The password is always between MIN_VALUE = m and MAX_VALUE = m+ n (inclusive)
2. After each guess, you’ll receive one of these responses:
- Correct: Correct password, you’ve successfully broken in!
- Incorrect: Wrong password, and the system has changed the password
- Invalid: Invalid guess
Important Mechanics:
- The system uses base-{k} operations (k = {k})
- When you guess wrong (y), if the current password was x:
* First convert both x and y to base-{k} numbers
* Perform digit-by-digit base-{k} XOR:
For each digit position i: result[i] = (x[i] + y[i]) mod {k}
* Convert result back to decimal to get z
* Map z to range [0, n] by taking mod (n+ 1)
* Add m to get the new password between [m,m+ n]
Example:
With k = 2, if x = 6 (base-2: [1, 1, 0]) and y = 5 (base-2: [1, 0, 1]):
1. XOR digits: [1, 1, 0] XOR [1, 0, 1] = [(1 + 1)mod2, (1 + 0)mod2, (0 + 1)mod2] = [0, 1, 1]
2. Convert [0, 1, 1] to decimal: z = 3
3. Map to range: z = (3 mod (n+ 1)) +m
Example Interaction:
- Original password = 5
- You: “My Guess: 3”
- Me: “Incorrect” (wrong, password changes by XOR mechanism)
- You: “My Guess: 5”
- Me: “Incorrect” (wrong, password changes by XOR mechanism)
- You: “My Guess: 8”
- Me: “Correct” (correct!)
Query Type:
1. Make a guess:
Format: “My Guess: X”
where X is a number between {min_value} and {max_value}
Instructions:

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

1. Make your guess based on previous responses
2. Format your response exactly as shown above
3. Give your reasoning before making each guess
Remember:
- Always guess within valid range [m, {max_value}]
- Password changes after each incorrect guess
- Think carefully about the base-{k} XOR mechanism
Ready to start? Make your first query!

Case N.22: PasswordBreaking Difficulty Levels

Easy: n = 10, Medium: n = 20, Hard: n = 30

RotaryLaserLock In this task, models need to discover the relative positions of metal arcs on
concentric rings through strategic rotations. Each query rotates a ring and reveals the count of
unblocked laser paths passing through all rings.

Case N.23: RotaryLaserLock Problem Template

Let’s play the Rotary Laser Lock Game! Your task is to discover the final relative positions of
metal arcs after your rotations.
Rules:
1. Lock Structure:
- {n} concentric rings numbered 0 to {n− 1}
- Each ring has {n ∗m} sections (0 to {n ∗m− 1})
- Each section can be empty or contain metal
- Rings can rotate independently
2. Metal Arcs:
- Each ring has one metal arc
- Each arc covers exactly 6 consecutive sections
- Arcs are solid and cannot be broken
3. Rotation Mechanics:
- You can rotate any ring
- Clockwise rotation: +1 section
- Anticlockwise rotation: -1 section
- Ring 0 is your reference ring
4. Laser Detection:
- {n ∗m} lasers emit from center
- One laser per section
- Metal arcs block lasers
- Display shows count of unblocked lasers
Query Types:
1. Make a rotation:
Format: “My Query: x d”
where:
- x: ring number (0 to {n− 1})
- d: direction (-1 or +1)
Example: “My Query: 2 1” rotates ring 2 clockwise
2. Submit final answer:
Format: “My Answer: p1 p2 ... pn”
where:
- Each pi is final position of ring i relative to ring 0
- Positions range from 0 to {n ∗m− 1}
Example Round:
Initial state unknown, {n ∗m} sections per ring
You: “My Query: 1 1”
- Rotating ring 1 clockwise
Me: “10”

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

- 10 lasers pass through
You: “My Query: 2 -1”
- Rotating ring 2 anticlockwise
Me: “12”
- 12 lasers pass through
You: “My Answer: 3 1 12 11”
- Final positions relative to ring 0
Me: “Correct”
Instructions:
1. Make rotations based on previous results
2. Use exactly the formats shown above
3. Explain your reasoning before each query
Remember:
- Each arc is exactly 6 sections long
- Track your rotations carefully
- All positions are mod {n ∗m}
- Invalid query/answer = immediate loss
Ready to start? Make your first query!

Case N.24: RotaryLaserLock Difficulty Levels

Easy: n = 3, Medium: n = 4, Hard: n = 5

AttendanceCheck In this task, models need to identify an absent student through strategic range
queries. Students respond by raising hands, but may be dishonest in their responses following specific
patterns of truthfulness and deception.

Case N.25: AttendanceCheck Problem Template

Let’s play the Attendance Check Game! Your task is to find the absent student through a series of
range queries.
Rules:
1. There are {n} students (numbered 1 to {n})
2. Exactly one student is absent
3. You can make queries about ranges of students
4. Students might be dishonest in their responses
Query Types:
1. To make a range query:
Format: “My Query: l r”
where:
- l and r are the range boundaries (1 ≤ l ≤ r ≤ {n})
Example: “My Query: 1 4”
Response will be number of students who raised hands
2. To mark absent student:
Format: “My Answer: a”
where:
- a is the student number you think is absent
Example: “My Answer: 3”
Response Types for Range Queries:
For a query (l, r), you’ll get either r − l or r − l + 1 students raising hands:
1. True Positive: r − l + 1 present, r − l + 1 raised
2. True Negative: r − l present, r − l raised
3. False Positive: r − l present, r − l + 1 raised
4. False Negative: r − l + 1 present, r − l raised
Important Rules:
1. Students will never answer honestly 3 times in a row
2. Students will never answer dishonestly 3 times in a row
Example Interaction:

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

You: “My Query: 1 4”
Me: “3” (3 students raised hands)
You: “My Query: 3 5”
Me: “2” (2 students raised hands)
You: “My Answer: 2”
Me: “Correct”
Instructions:
1. Make queries based on previous responses
2. Use exactly the formats shown above
3. Explain your reasoning before each query
Remember:
- Plan your queries carefully
- Students are strategically dishonest
- Pattern of honesty/dishonesty is key
- Think about overlapping ranges
Ready to start? Make your first query!

Case N.26: AttendanceCheck Difficulty Levels

Easy: n = 5− 9, Medium: n = 10− 14, Hard: n = 15− 20

BinaryNumberGuessing In this task, models need to discover a hidden number through strategic
subtraction operations. Each operation reveals the count of 1s in the binary representation of the
resulting number, helping deduce the current value.

Case N.27: BinaryNumberGuessing Problem Template

Let’s play Binary Number Guessing! Your task is to guess the original hidden number by
performing subtraction operations.
Rules:
1. There is a hidden positive integer k (1 ≤ k ≤ n)
2. You will be told the number of 1s in its binary representation
3. For each operation, you can:
- Subtract any positive integer x from the current number
- After subtraction, you’ll be told the new count of 1s in binary
- If you try to subtract a number larger than current k, you will get a response of “Invalid”
4. Your goal is to guess the current number after all of your operations
Query Types:
1. Make a subtraction:
Format: “My Operation: X”
where X is the number you want to subtract
Response will be:
- Count of 1s in new binary number (if valid)
- “Invalid” (if X larger than current k)
2. Submit final answer:
Format: “My Answer: k”
where k is your guess for current number
Response will be:
- “Correct” (if right)
- “Incorrect” (if wrong)
- “Invalid” (if invalid format)
Example Interaction:
- Original number = 3 (binary: 11, count of 1s: 2)
You: “My Operation: 1”
Me: “1” (current number is 2, binary: 10)
You: “My Operation: 1”
Me: “1” (current number is 1, binary: 1)
You: “My Answer: 1”

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Me: “Correct” (current number is 1, correct!)
Instructions:
1. Make operations based on previous results
2. Use exactly the formats shown above
3. Explain your reasoning before each operation
Remember:
- Don’t subtract more than current number
- Track binary representation changes
- Consider patterns in 1s count
- Invalid operations waste moves
Ready to start? Make your first query!

Case N.28: BinaryNumberGuessing Difficulty Levels

Easy: n = 50, Medium: n = 150, Hard: n = 500

HiddenNumberFinding In this task, models need to discover a hidden number through strategic set
queries. Responses might be deceptive, but follow a pattern where at least one of any two consecutive
queries is truthful, while direct guesses are always answered honestly.

Case N.29: HiddenNumberFinding Problem Template

Let’s play Find the Hidden Number Game! Your task is to discover a hidden number through a
series of queries and guesses.
Rules:
1. There is a hidden number x between 1 and {n}
2. For each query, you can ask about a set of numbers:
- You choose any non-empty set of numbers
- System will tell you if x is in that set (“YES”) or not (“NO”)
- WARNING: Responses might be lies!
- BUT: At least one answer out of any two consecutive queries is truthful
3. For guesses:
- You can directly guess what x is
- Guesses are always answered truthfully
- A correct guess ends the game
Query Types:
1. To make a set query:
Format: “My Query: k n1 n2 ... nk”
where:
- k is the size of your set
- n1 to nk are the numbers in your set
Example: “My Query: 3 1 2 3”
2. To make a guess:
Format: “My Answer: x”
Example: “My Answer: 2”
Example Interaction:
You: “My Query: 3 1 2 3”
Me: “YES”
You: “My Query: 2 4 5”
Me: “YES”
You: “My Answer: 4”
Me: “Correct”
Instructions:
1. Make queries based on previous responses
2. Use exactly the formats shown above
3. Explain your reasoning before each query
Important Notes:
- At least one of any two consecutive queries is truthful

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

- Guesses are always answered truthfully
- Plan your strategy carefully!
Remember:
- Track truthful/deceptive patterns
- Use overlapping sets strategically
- Consider binary search approaches
Ready to start? Make your first query!

Case N.30: HiddenNumberFinding Difficulty Levels

Easy: n = 19/20, Medium: n = 30, Hard: n = 40

MahjongDetective In this task, models need to discover a hidden set of Mahjong tiles through
strategic tile additions. Each addition reveals changes in the number of valid combinations (triplets
and straights), helping deduce the original set composition.

Case N.31: MahjongDetective Problem Template

Let’s play Mahjong Detective Game! Your task is to discover Yui’s mysterious tile set through
careful queries.
Rules:
1. There is a hidden set of Mahjong tiles
2. Each tile has a value from 1 to {n}
3. Each value appears at most {n} times
4. You need to find how many tiles of each value exist
5. You can add tiles to help your investigation
Special Combinations:
- Triplet: Three tiles with same value (e.g., {2, 2, 2})
- Straight: Three consecutive values (e.g., {2, 3, 4})
Note: Same-value tiles are treated as different piece!
Query Types:
1. To add a tile:
Format: “My Query: + x”
where:
- x is the value of tile to add (1 to {n})
Example: “My Query: + 3”
Response will be:
- Number of triplets in new set
- Number of straights in new set
2. To submit final answer:
Format: “My Answer: a1 a2 ... a{n}”
where ai is number of tiles with value i AFTER ALL YOUR ADDITIONS
Example: “My Answer: 2 1 3 0 2 ...”
Example Interaction:
Initial set has:
- 1 triplet
- 6 straights
You: “My Query: + 1”
Me: “2 9” (new set has 2 triplets, 9 straights)
You: “My Query: + 1”
Me: “5 12” (new set has 5 triplets, 12 straights)
You: “My Query: + 2”
Me: “5 24” (new set has 5 triplets, 24 straights)
You: “My Query: + 5”
Me: “6 24” (new set has 6 triplets, 24 straights)
You: “My Answer: 2 1 3 0 2 ...”
(This answer includes ALL tiles, including the ones you added!)
Instructions:

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

1. Make queries to add tiles strategically
2. Use exactly the formats shown above
3. Explain your reasoning before each addition
4. Watch how combinations change
Remember:
- Each value appears 0 to {n} times
- Same-value tiles count as different pieces
- Watch how triplets and straights change
- Your final answer must include your added tiles
Ready to start? Make your first query!

Case N.32: MahjongDetective Difficulty Levels

Easy: n = 3, Medium: n = 6, Hard: n = 9

MimicHunting In this task, models need to identify a shape-shifting mimic among objects through
strategic removals. After each removal, objects are mixed and the mimic may change its type,
following specific transformation rules.

Case N.33: MimicHunting Problem Template

Let’s play Mimic Hunt Game! Your task is to find a shape-shifting creature among objects through
careful observation and removal.
Rules:
1. There are {n} objects in a room, each with a type number (1-9)
2. One object is a mimic that can transform into any type
3. The mimic cannot stay the same type for more than 2 stages
Query Types:
1. To remove objects:
Format: “My Query: - k x1 x2 ... xk”
where: - k is number of objects to remove
- x1 to xk are positions (1-based indexing)
Example: “My Query: - 2 1 5”
Response will be:
- Remaining objects’ types after mixing
2. To identify mimic:
Format: “My Answer: i”
where i is the position of suspected mimic
Example: “My Answer: 3”
Example Interaction:
Objects: [1,1,2,2,3]
You: “My Query: - 2 1 5”
Me: “[2,1,2]” (remaining objects after mixing)
You: “My Query: - 4 1 2 3 4”
Me: “[2]” (remaining objects after mixing)
You: “My Answer: 5”
Me: “Correct”
Instructions:
1. Each stage:
- Observe current objects
- Either remove some objects or guess mimic
- After removal, objects are mixed and mimic may change
2. Use exactly the formats shown above
3. Explain your reasoning before each action
4. Remember mimic’s transformation rules
Remember:
- Object types are numbers 1-9
- Position indices start from 1

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

- Mimic can’t stay same type > 2 stages
- Track type patterns carefully
Ready to start? Make your first query!

Case N.34: MimicHunting Difficulty Levels

Easy: n = 5, Medium: n = 10, Hard: n = 20

PermutationDiscovery In this task, models need to discover a hidden permutation through dynamic
queries. A visible permutation changes after each query according to the hidden permutation’s rules,
requiring careful analysis of transformation patterns.

Case N.35: PermutationDiscovery Problem Template

Let’s play Permutation Discovery Game! Your task is to find a hidden permutation through
dynamic queries.
Rules:
1. There are two permutations of length {n}:
- p: hidden permutation you need to discover
- q: visible permutation that changes after each query
2. Initially, q is [1, 2, ..., {n}]
3. After each query, q changes following this rule:
- For each position i: q′[i] = q[p[i]]
4. Your goal is to discover permutation p
Query Types:
1. To ask about q’s value:
Format: “My Query: i”
where:
- i is a position (1-based indexing)
Example: “My Query: 3”
Response will be the value at position i in current q
2. To submit final answer:
Format: “My Answer: p1 p2 ... p{n}”
where p1 to p{n} form your guessed permutation
Example: “My Answer: 4 2 1 3”
Example Interaction:
Initial q = [1, 2, ..., {n}]
You: “My Query: 3”
Me: “3”
[q updates based on p]
You: “My Query: 2”
Me: “2”
[q updates again]
You: “My Answer: 4 2 1 3”
Instructions:
1. Make queries based on previous results
2. Use exactly the formats shown above
3. Explain your reasoning before each query
4. Watch how q changes after each query
Remember:
- q starts as [1, 2, ..., {n}]
- Position indices start from 1
- q changes after every query
- Think carefully about which positions to query
Ready to start? Make your first query!

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Case N.36: PermutationDiscovery Difficulty Levels

Easy: n = 4, Medium: n = 5, Hard: n = 6

TrainPursuit In this task, models need to locate a moving train on a circular railway through range
queries. The train moves up to a certain number of stations after each query, following a circular
pattern that wraps around from the last station to the first.

Case N.37: TrainPursuit Problem Template

Let’s play Train Pursuit Game! Your task is to find a moving train on a circular railway through
range queries.
Rules:
1. There is a train hidden at one of {n} stations (numbered 1 to {n})
2. The train moves circularly:
- Can move up to {k} stations after each query
- After station {n}, continues from station 1
- Example: at station {n}, moving 2 stations means going to station 2
3. You can make range queries to find the train
4. Each query must be in valid format or you’ll get “Invalid” response
Query Types:
1. To make a range query:
Format: “My Query: l r”
where:
- l and r are station numbers (1-based indexing)
- l ≤ r ≤ {n}
Example: “My Query: 3 5”
Response will be:
- “Yes” if train is in this range
- “No” if train is not in this range
- “Invalid” if query format is incorrect
2. To catch the train:
Format: “My Answer: x”
where x is the station you think the train is now at
Example: “My Answer: 5”
Example Movement:
If train is at station 1 and moves 2 stations:
- First move: station 1 → station 3
- Second move: station 3 → station 5
Instructions:
1. Make queries based on previous results
2. Use exactly the formats shown above
3. Explain your reasoning before each query
4. Remember circular movement pattern
Remember:
- Train is at a station numbered 1 to {n}
- Train moves up to {k} stations circularly
- Query format must be exact
- Need to find exact location to win
- Invalid queries will receive “Invalid” response
Ready to start? Make your first query!

Case N.38: TrainPursuit Difficulty Levels

Easy: n <= 5, Medium: 5 < n <= 7, Hard: 7 < n <= 9

ZeroFinding In this task, models need to locate the k-th zero in a hidden binary array through
range sum queries. Non-target zeros transform into ones when discovered, requiring strategic query
placement and careful tracking of zero positions.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Case N.39: ZeroFinding Problem Template

Let’s play Zero Finding Game! Your task is to find the {k}-th zero in a hidden binary array through
range sum queries.
Rules:
1. There is a hidden array of {n} elements (all 0s and 1s)
2. You need to find the {k}-th zero
3. Each time you find a non-target zero (not {k}-th), it turns into 1
4. The game continues until you find the {k}-th zero
Query Types:
1. To make a range sum query:
Format: “My Query: l r”
where:
- l and r are positions (1-based indexing)
- l ≤ r ≤ {n}
Example: “My Query: 4 6”
Response will be the sum of elements in positions l to r
2. To submit temporary answer:
Format: “My Answer: x”
where x is position of a non-{k}-th zero
Example: “My Answer: 5”
3. To submit final answer:
Format: “My Final Answer: x”
where x is position of the {k}-th zero
Example: “My Final Answer: 3”
Example Interaction:
Finding 2nd zero:
You: “My Query: 4 6”
Me: “1” (sum in range [4,6])
You: “My Answer: 5”
Me: “Correct! Non-target zero found and turned to 1”
You: “My Final Answer: 3”
Me: “Correct! You found the 2nd zero!”
Instructions:
1. Game Process:
- Make queries to locate zeros
- Use “My Answer” for non-{k}-th zeros
- Use “My Final Answer” for the {k}-th zero
- Array updates when non-target zeros are found
2. Use exactly the formats shown above
3. Explain your reasoning before each action
Remember:
- Array only contains 0s and 1s
- Position indices start from 1
- Non-target zeros turn into 1 when found
- Each query shows sum in range
- Use different formats for target and non-target zeros
Ready to start? Make your first query!

Case N.40: ZeroFinding Difficulty Levels

Easy: n = 10, Medium: n = 50, Hard: n = 100

N.3 STATE OPERATION

MazeNavigation In this task, models need to navigate through a maze with potentially swapped
directional controls to reach a finish point. Models must deduce any control swaps while avoiding
dangerous cells and staying within grid boundaries.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Case N.41: MazeNavigation Problem Template

Let’s play Maze Navigation Game! Your task is to navigate through a maze with potentially
swapped controls to reach the finish point.
Rules:
1. Game Field:
- A {n} * {m} grid with three types of cells:
* “.” - normal cell you can visit
* “F” - finish cell (exactly one)
* “*” - dangerous cell (avoid these)
- Coordinates are 1-based indexing: (row, column)
- Current cell positions:
* Start: {start_pos} (top-left corner)
* Finish: {finish_pos}
* Dangerous cells:
{dangerous_str}
2. Movement Controls:
- Four direction buttons: U(up), D(down), L(left), R(right)
- Button Functions may be swapped:
* L and R might be swapped with each other
* U and D might be swapped with each other
- Swaps (if any) are set at game start and remain fixed
- Effects of each button when NOT swapped:
* U: moves to (current_row − 1, current_col)
* D: moves to (current_row + 1, current_col)
* L: moves to (current_row, current_col − 1)
* R: moves to (current_row, current_col + 1)
3. Movement Rules:
- Each move returns your new position (x, y)
- If move is invalid (out of grid), position stays same
- Grid boundaries: 1 ≤ row ≤ {n}, 1 ≤ column ≤ {m}
- If you hit dangerous cell, returns (−1,−1) and game ends
- When you reach finish cell ({finish_pos}), game ends successfully
Move Types:
1. To make a move:
Format: “My Move: X”
where X is one of: U, D, L, R
Example: “My Move: R”
2. System Response:
Format: “x y”
where:
- (x, y) is your new position
- (−1,−1) if you hit dangerous cell
Example: After “My Move: R” at (1, 1), response might be “1 2”
Instructions:
1. Make moves based on previous responses
2. Use exactly the format shown above
3. Explain your reasoning before each move
Remember:
- Start position is {start_pos}
- Controls might be swapped
- Avoid dangerous cells at: {dangerous_str}
- Target is to reach {finish_pos}
- Watch for grid boundaries: 1 ≤ row ≤ {n}, 1 ≤ column ≤ {m}
Current Grid Layout: {grid_str}
Ready to start? Make your first query!

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Case N.42: MazeNavigation Difficulty Levels

Easy: n = 4, Medium: n = 5, Hard: n = 6

TreasureHunt In this task, models need to explore a forest where junction numbers are hidden and
scrambled. Navigation requires strategic use of path counts and flags, as connected junctions appear
in random order at each visit.

Case N.43: TreasureHunt Problem Template

Let’s play the Treasure Hunt Game! Your task is to explore an enchanted forest where a mis-
chievous wizard keeps scrambling the junction numbers to confuse you.
Rules:
1. Game Setup: - Enchanted forest with {n} junctions
- Each junction contains a treasure
- You start at junction 1
- Initial flag placed at starting junction
- Junctions are connected by fixed paths
2. Game Mechanics:
What You Can See:
- At each junction, you can only see:
* Number of paths at each connected junction
* Whether you’ve placed a flag there
The Wizard’s Trick:
- The wizard hides real junction numbers
- Each time you visit a junction, connected junctions are shown in random order
- Though connections stay the same, you can’t identify specific junctions
- Must use path counts and flags to navigate
3. Information Format:
I provide: “R d deg1 flag1 deg2 flag2 ... degd flagd”
- R: you’re at current junction
- d: number of connected junctions
- degi: number of paths at connected junction i
- flagi: flag status at connected junction i (0=no, 1=yes)
Example: “R 3 2 1 4 0 3 0” means:
- 3 connected junctions
- First has 2 paths and is flagged
- Second has 4 paths and no flag
- Third has 3 paths and no flag
Query Type:
Format your move as: “My Choice: X”
where X is from 1 to d (position in current list)
Example Round:
Starting at junction 1:
Me: “R 2 2 0 2 0”
- Two connected junctions
- Both have 2 paths
- Neither has your flag
You: “My Choice: 1”
- Moving to first listed junction
Me: “R 2 2 0 2 1”
- Two connected junctions shown
- One leads back (has your flag)
- One is unexplored (no flag)
You: “My Choice: 1”
- Moving to unflagged junction
Instructions:
1. Give your reasoning before each choice

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

2. Wait for response before next move
3. Use exactly the format shown above
Remember:
- Real junction numbers are hidden
- Connected junctions appear in random order each visit
- Use path counts and flags to track progress
- Must visit all junctions
- Invalid move = automatic loss
Ready to start? Make your first query!

Case N.44: TreasureHunt Difficulty Levels

Easy: n = 6, Medium: n = 7, Hard: n = 8

SafepathFinding In this task, models need to navigate from start to goal on a grid while avoiding
hidden traps. Each position reveals the number of traps in adjacent cells, requiring careful analysis of
danger levels to choose safe moves.

Case N.45: SafepathFinding Problem Template

Let’s play SafepathFinder! Your task is to find a safe path from start to the goal while avoiding
hidden traps.
Rules:
1. You are an explorer on a n*n grid
2. Start: (1, 1), Goal: (n, n)
3. Each cell can be either:
- SAFE: can move through
- TRAP: ends game if stepped on (hidden)
4. At each cell, you can:
- See the number of traps in adjacent cells (DANGER_LEVEL)
- Cannot see traps until stepped on them
5. Movement rules: - From position (x, y), you can move to any adjacent cell:
- (x− 1, y − 1), (x− 1, y), (x− 1, y + 1)
- (x, y − 1), ,(x, y + 1)
- (x+ 1, y − 1), (x+ 1, y), (x+ 1, y + 1)
- Cannot move outside grid
- Example: from (2, 2) you can move to any surrounding cell
Query Type:
Format: “My Choice: X Y ”
where X,Y are coordinates (1-based)
Example: “My Choice: 2 3”
Response Format:
DANGER_LEVEL v
- v is the number of traps in the 8 adjacent cells
- Higher number means more danger nearby
- 0 means no traps in adjacent cells
Example interaction:
You: “My Choice: 2 1”
Me: “DANGER_LEVEL 1”
You: “My Choice: 3 2”
Me: “DANGER_LEVEL 2”
Game Ends When:
- SUCCESS: Reach (n, n)
- FAILURE: Step on a trap
- INVALID: Try to move outside grid or not to adjacent cell
Instructions:
1. Make moves based on danger levels
2. Use exactly the format shown above

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

3. Explain your reasoning before each move
Strategy Tips:
- Higher DANGER_LEVEL means more risk
- Watch how DANGER_LEVEL changes as you move
- Use these changes to deduce trap locations
- Sometimes longer path might be safer
- Pay attention to diagonal movements too
Ready to start? Make your first move!

Case N.46: SafepathFinding Difficulty Levels

Easy: n = 5, Medium: n = 6, Hard: n = 7

RainbowCandyFactory In this task, models need to guide a candy through a factory grid with
hidden color-changing devices. The goal is to reach the destination with a specific target color by
strategically using dye machines and bleach machines.

Case N.47: RainbowCandyFactory Problem Template

Let’s play Rainbow Candy Factory! Your task is to guide a candy through hidden devices to reach
the destination with target color.
Rules:
1. Control a candy through a n ∗ n factory grid
2. Start at (1, 1) with white color (W), reach (n, n)
3. Hidden devices in cells marked by X:
- Dye Machines: R(red), G(green), B(blue)
- Empty cells (-)
4. Bleach Machine is shown as W(white) in the map and it can reset any color to white
5. Each level gives a target color to achieve
Move Types:
1. To make a move:
Format: “My Move: Y ”
where: - Y is one of: N, E, S, W (directions)
Example: “My Move: E”
Color Rules:
- Initial color: White (W)
- Basic colors: Red (R), Green (G), Blue (B)
- Mixed colors: Yellow (Y), Cyan (C), Purple (P)
- Color mixing: R+G=Y, G+B=C, R+B=P
- Bleach Machine (W) resets ANY color back to White
- For Mixed colors, bleaching machine can make it White, but dyeing machine cannot change its
color
Example Interaction:
You: “My Move: E”
Me: “R”
You: “My Move: S”
Me: “W”
You: “My Move: E”
Me: “G”
Instructions:
1. Make moves based on color feedback
2. Use exactly the format shown above
3. Explain your reasoning before each move
4. Watch out for bleach machines that reset progress
Initial Map: {initial_map}
Target Color: {target}
Remember:
- Start at (1, 1) with White color

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

- Cannot see machine types until encountered
- Bleach machines reset ALL colors to White
- You can go to the cell you’ve been to
- Moving out of bounds will result in failure
- Must reach (n, n) with target color
Ready to start? Make your first move!

Case N.48: RainbowCandyFactory Difficulty Levels

Easy: n = 3, Medium: n = 4, Hard: n = 5

MagneticFieldExploration In this task, models need to navigate through a grid containing magnetic
fields that force movement in specific directions. Success requires understanding the behavior of
different magnetic fields while avoiding danger zones to reach the goal.

Case N.49: MagneticFieldExploration Problem Template

Let’s play Magnetic Field Explorer! Your task is to navigate through a grid with mysterious
magnetic forces.
Rules:
1. Game Field:
- A n ∗ n grid with:
* Numbers (1-4) - Different types of magnetic fields
* “.” - Neutral space
* “X” - Danger zone (avoid these)
* “G” - Goal (reach here to win)
- Start: (1, 1) (top-left corner)
- Goal: (n, n) (bottom-right corner)
2. Magnetic Fields:
- Four types of magnetic fields (1-4)
- Each number represents a unique direction (North, South, East, or West)
- You’ll discover the direction of each number through movement
- Same number always means same direction
- When you enter a magnetic field:
* You will be forced to move one step in its direction
* If that step would hit a boundary, you stay on the magnetic field
* If that step would hit a danger zone, you lose
* If that step would hit another magnetic field, you move there and it activates
3. Movement Rules: - Basic moves: U(up), D(down), L(left), R(right)
- Movement sequence for each turn: 1. You move one step in your chosen direction
2. If you land on:
- Magnetic field: Move one step in its direction unless that step would hit a boundary
- Danger zone: You lose
- Neutral space: Stay there
3. If magnetic field pushed you to another magnetic field, repeat step 2
Current Grid Layout (with coordinates):
{grid_str}
{position_str}
Query Types:
1. To make a move:
Format: “My Move: X”
where X is one of: U, D, L, R
Example: “My Move: R”
2. System Response:
Format: “x y”
- Shows your final position coordinates
- (−1,−1) if you hit danger zone
Instructions:

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

1. Make moves based on previous results
2. Use exactly the format shown above
3. Explain your reasoning before each move
Remember:
- Each number (1-4) represents a fixed direction
- Figure out what direction each number represents
- Magnetic fields activate when you land on them
- Avoid danger zones (X)
- Reach goal (G) to win
- You don’t necessarily need to figure out or pass through the magnetic fields; your goal is only to
reach the target zone (n, n) safely
Ready to start? Make your first move!

Case N.50: MagneticFieldExploration Difficulty Levels

Easy: n = 3, Medium: n = 4, Hard: n = 5

FindingBiggest In this task, models need to locate and collect the highest value treasure on a grid
through strategic movement. Each position reveals directional hints to nearby treasures, but these
hints may be deceptive following specific patterns.

Case N.51: FindingBiggest Problem Template

Let’s play Finding the Biggest! Your task is to find and collect the highest value treasure through
strategic movement on the grid.
Rules:
1. You are an explorer on a n*n grid
2. There are exactly 2 treasures hidden on the grid
3. Each treasure has a value between 1 and 100
4. You start at position (1, 1)
5. Movement rules:
- From position (x, y), you can move to any of its 8 adjacent cells:
- (x− 1, y − 1), (x− 1, y), (x− 1, y + 1)
- (x, y − 1), ,(x, y + 1)
- (x+ 1, y − 1), (x+ 1, y), (x+ 1, y + 1)
- Cannot move outside the grid boundaries
6. Direction System:
- N: treasure is somewhere in the region above your current position
- NE: treasure is somewhere in the upper-right region
- E: treasure is somewhere in the region to your right
- SE: treasure is somewhere in the lower-right region
- S: treasure is somewhere in the region below your current position
- SW: treasure is somewhere in the lower-left region
- W: treasure is somewhere in the region to your left
- NW: treasure is somewhere in the upper-left region
The direction indicates a general area, not a specific cell
7. MAGNETIC INTERFERENCE:
- When you get a direction, there’s 50% chance it’s completely wrong
- However, wrong directions never appear in consecutive moves
- If you get a wrong direction, the next move’s direction is guaranteed correct
Query Types:
1. To move to a position:
Format: “My Choice: X Y ”
where X,Y are grid coordinates (1-based)
Example: “My Choice: 2 3” moves to row 2, column 3
2. To collect treasure:
Format: “My Choice: COLLECT”
- Only use when you’re sure you’re on the highest value treasure

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

- You only get one collection attempt
Response Types:
- If you find a treasure: “TREASURE v” (v is the treasure’s value)
- If empty cell: “EMPTY dir” (dir indicates which region contains nearest treasure)
- If invalid move: “INVALID_MOVE”
Example interaction:
You: “My Choice: 2 2”
Me: “EMPTY SW” (indicates treasure might be in lower-left region, but could be wrong)
You: “My Choice: 1 2”
Me: “EMPTY NE” (guaranteed correct: treasure is in upper-right region)
You: “My Choice: 2 3”
Me: “TREASURE 80”
You: “My Choice: COLLECT”
Me: “Win”
Instructions:
1. Make moves based on directional hints
2. Use exactly the formats shown above
3. Explain your reasoning before each move
Key Points:
- Directions point to regions, not specific cells
- If a direction seems wrong, the next one will be correct
- Must find and be at highest value treasure to win
- Wrong COLLECT attempt = game over
Ready to start? Make your first move!

Case N.52: FindingBiggest Difficulty Levels

Easy: n = 3, Medium: n = 4, Hard: n = 5

DarkMazeExploration In this task, models need to navigate through a dark maze where walls are
only revealed upon encounter. Success requires careful mapping of discovered walls and strategic
path planning to reach the exit.

Case N.53: DarkMazeExploration Problem Template

Let’s play DarkMazeExplorer! Your task is to find your way through a dark maze using only
directional movements.
Rules:
1. You are exploring a n*n maze
2. Each cell may have walls in any direction (North, East, South, West)
3. You start at position (1, 1) and must reach (n, n)
4. You can only make one directional move at a time
5. You cannot move through walls or outside the maze boundaries
Query Type:
Format: “My Choice: X”
where:
- X is one of: N, E, S, W (representing directions)
- N = North, E = East, S = South, W = West
Example: “My Choice: E”
Response Types:
- MOVED: successfully moved into the next cell in your chosen direction
- BLOCKED: wall exists in that direction
- INVALID: tried to move outside maze boundaries
- WIN: reached the exit at (n, n)
Example Interaction:
Starting at (1, 1) with North and West walls
You: “My Choice: E”
Me: “MOVED”

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

You: “My Choice: N”
Me: “BLOCKED”
You: “My Choice: S”
Me: “WIN”
Instructions:
1. Make moves based on feedback
2. Use exactly the format shown above
3. Explain your reasoning before each move
4. Plan your path carefully
Remember:
- Starting room (1, 1) has North and West walls
- You can only see walls when you encounter them
- Need to mentally map the maze
- Cannot move through walls or outside boundaries
- Must reach (n, n) to win
Ready to start? Make your first move!

Case N.54: DarkMazeExploration Difficulty Levels

Easy: n = 2, Medium: n = 3, Hard: n = 4

ColorMagic In this task, models need to transform a grid of colored cells to a uniform color through
magical operations. Success requires discovering the mapping between operation numbers and their
effects while planning strategic color transformations.

Case N.55: ColorMagic Problem Template

Let’s play Color Magic! Your task is to make all cells the same color through magical color
transformations.
Rules:
1. You have a n ∗ n grid where each cell contains one of three colors: Red(R), Blue(B), Yellow(Y)
2. There are three magic operations with unknown number assignments (1, 2, or 3):
- Magic Alpha: Selected cell rotates R->B->Y->R, adjacent cells rotate R->Y->B->R
- Magic Beta: Selected cell rotates B->Y->R->B, adjacent cells rotate B->R->Y->B
- Magic Gamma: Selected cell stays same, adjacent cells swap colors (R<->B, B<->Y, Y<->R)
3. Your goal is to make all cells the same color
Move Types:
Format: “My Move: OPERATION POSITION”
where:
- OPERATION is one of: 1, 2, 3 (each corresponds to a magic type)
- POSITION is cell number (1-n ∗ n, numbered left to right, top to bottom)
Example: “My Move: 2 5”
Instructions:
1. Make moves based on observed color changes
2. Use exactly the format shown above
3. Explain your reasoning before each move
4. Try to discover which number corresponds to which magic
Example Interaction:
Current Grid:
R B Y
B R B
Y R Y
You: “My Move: 1 5”
Me:
R R Y
R R R
Y B Y
- Note: This is just an example; in reality, 1 may not correspond to this operation.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

Initial Grid: initial_grid
Remember:
- Each number (1,2,3) maps to one magic type (Alpha/Beta/Gamma)
- You must figure out the mapping through experimentation
- Grid positions are numbered from 1 to n ∗ n from left to right, top to bottom
- Adjacent means sharing an edge (not diagonal)
- Need to make all cells the same color to win
Ready to start? Make your first move!

Case N.56: ColorMagic Difficulty Levels

Easy: n = 3, Medium: n = 4, Hard: n = 5

ChemicalSynthesis In this task, models need to create a target compound through strategic chemical
operations. Each operation has consistent but unknown number assignments and may produce
unexpected results due to chemical instability.

Case N.57: ChemicalSynthesis Problem Template

Let’s play Chemical Synthesis! Your task is to create compound {target} containing n elements
through different operations in an unstable environment.
Rules:
1. Basic Setup:
- Initial compounds: {′,′ .join(init_compounds)}
- Goal: Create {target}
- Four types of operations (1,2,3,4)
- Element order matters (ABC ̸= CBA)
- After each operation, resulting compounds and original compounds can be used
2. Operation Types (numbers 1-4 each correspond to one of these):
SPLIT:
- Usually breaks a compound into two parts of its first element and the other elements
- Sometimes splits at a random position due to instability
- Example: ABC → A + BC (normal) or AB + C (unstable)
- Format: “My Move: X N” (X is a compound, and N = 1/2/3/4)
MERGE:
- Combines two compounds into one
- May cause a catalytic reaction that changes element order
- Result usually keeps elements in order, but might rearrange
- Example: AB + CD → ABCD (normal) or ACBD (catalytic)
- Format: “My Move: X Y N” (X,Y are two compounds, and N = 1/2/3/4)
SWAP:
- Exchanges elements within a compound
- High energy might cause multiple swaps
- Example: ABC → CBA (normal) or BAC (partial)
- Format: “My Move: X N” (X is a compound, and N = 1/2/3/4)
EXTRACT:
- Takes out one element from a compound
- Usually the last element, but might extract a random element
- Example: ABC → C (normal) or B (unstable)
- Format: “My Move: X N” (X is a compound, and N = 1/2/3/4)
3. Operation Format and Responses:
Single Compound Operations (SPLIT, SWAP, EXTRACT):
- Format: “My Move: X N”
Example: “My Move: BC 1”
MERGE Operation:
- Format: “My Move: X Y N”
Example: “My Move: AB CD 2”
System Responses:

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

- Valid query: “Available: [list of unrepeated available compounds]”
- Invalid query: “Wrong type”/“Invalid format”/“Invalid compound”
- Success: “WIN”
4. Current State:
Available Compounds: {init_compounds}
Important Notes:
- Element order matters (ABC ̸= CBA)
- Operations are consistent but their numbers (1-4) are unknown
- Chemical instability may cause unexpected results
- Goal compound must match exactly (including element order)
- Can only operate on currently available compounds
- System will return “Wrong type” if:
* Using single-element compounds for SPLIT/SWAP/EXTRACT
* Using wrong number of compounds for operation
Example Interactions:
Initial: “ABC AB D”
You: “My Move: ABC 1”
Me: “Available: ABC A BC AB D” (normal split)
You: “My Move: AB D 2”
Me: “Available: ABC A BC AB D DAB” (unstable merge)
Example Invalid Interactions:
You: “My Move: A B 1” (invalid: single element for SPLIT)
Me: “Wrong type”
You: “My Move: AB 2” (invalid: MERGE needs two compounds)
Me: “Wrong type”
Goal: Create {target} (exact order matters)
Ready to start! Make your move using the correct format!

Case N.58: ChemicalSynthesis Difficulty Levels

Easy: n = 4, Medium: n = 6, Hard: n = 7

CactusSearch In this task, models need to find a secret vertex in a cactus graph through strategic
guessing. Each incorrect guess reveals which adjacent vertex leads closer to the target, requiring
careful navigation of the graph structure.

Case N.59: CactusSearch Problem Template

Let’s play Cactus Search Game! Your task is to find a secret vertex in a cactus graph through
strategic guessing.
Rules:
1. The game is played on a cactus graph with {n} vertices (numbered from 1 to {n})
2. A secret vertex v has been chosen
3. After each incorrect guess, you’ll be told which adjacent vertex leads closer to v
Game Setup:
This cactus graph consists of {n} vertices and {m} distinct paths: {paths_text}
Each path represents a sequence of connected vertices, where consecutive vertices are connected
by edges.
The graph is structured as a cactus, meaning each edge belongs to at most one cycle.
Query Type:
1. To make a guess:
Format: “My Guess: x”
where x is the vertex number (1 ≤ x ≤ {n})
Example: “My Guess: 3”
2. System Response:
- If correct: “FOUND”
- If incorrect: “GO w” (w is adjacent vertex closer to target)
Example Interaction:

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

You: “My Guess: 3”
System: “GO 4”
You: “My Guess: 4”
System: “FOUND”
Instructions:
1. Make guesses based on previous responses
2. Use exactly the format shown above
3. Explain your reasoning before each guess
Remember:
- Each vertex is numbered from 1 to {n}
- The graph structure is fixed as described above
- Adjacent vertices in paths are directly connected
- Use responses wisely to navigate towards target
Ready to start? Make your first query!

Case N.60: CactusSearch Difficulty Levels

Easy: n = 10, Medium: n = 12, Hard: n = 15

N.4 STRATEGIC GAMING

KnightBattle In this task, models need to win a strategic battle between knights through either
capture or reaching a target position. Success requires careful planning of L-shaped movements while
considering opponent’s potential threats.

Case N.61: KnightBattle Problem Template

Let’s play the Knight Battle Game! You are the White Knight and will move first. Your task is to
win by either capturing the Black Knight or reaching your target position safely.
Rules:
1. Game Setup:
- Chessboard size: {n}*{m}
- You (White Knight) start at: ({x1}, {y1})
- Opponent (Black Knight) starts at: ({x2}, {y2})
- Your target: ({tw_x}, {tw_y})
- Opponent’s target: ({tb_x}, {tb_y})
2. Knight’s Movement Rules:
From your current position (x, y), you can move to:
1. Up 2, Right 1: (x+ 1, y + 2)
2. Up 2, Left 1: (x− 1, y + 2)
3. Down 2, Right 1: (x+ 1, y − 2)
4. Down 2, Left 1: (x− 1, y − 2)
5. Right 2, Up 1: (x+ 2, y + 1)
6. Right 2, Down 1: (x+ 2, y − 1)
7. Left 2, Up 1: (x− 2, y + 1)
8. Left 2, Down 1: (x− 2, y − 1)
* All moves must stay within board boundaries (1 to {n}, 1 to {m})
3. Victory Conditions:
You win if either:
- You move to Black Knight’s position (capture)
- You reach ({tw_x}, {tw_y}) and Black Knight cannot attack this position
* A position is under attack if opponent’s knight can move there next turn
Query Type:
Format: “My Move: x y”
where x, y are your new coordinates
Example: “My Move: 4 4”
Example Interaction:
You (at {x1}, {y1}): “My Move: 4 4”

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

- Moving to position (4,4)
Me: “6 3”
- Black Knight moves to (6,3)
You: “My Move: 5 6”
- Moving to position (5,6)
Me: “5 1”
- Black Knight moves to (5,1)
Instructions:
1. Make moves based on board state
2. Use exactly the format shown above
3. Explain your reasoning before each move
Remember:
- You are White Knight and move first
- Use L-shaped movements only
- Use exact format: “My Move: X Y”
- Stay within board boundaries
- Plan moves to either:
* Capture Black Knight
* Reach ({tw_x}, {tw_y}) safely
- Invalid move = immediate loss
- You have at most 15 rounds to defeat the Black Knight
Ready to start? Make your first move!

Case N.62: KnightBattle Difficulty Levels

Easy: n = 6, Medium: n = 8, Hard: n = 16

ZigzagGraph In this task, models need to win a strategic graph traversal game where players
follow opposite weight constraints. Success requires careful planning of moves while considering
both immediate options and future path availability.

Case N.63: ZigzagGraph Problem Template

Let’s play the Zigzag Graph Game! Your task is to win this game by strategically moving through
the graph while following increasing or decreasing edge weights.
Rules:
1. Game Setup:
- Graph: {n}*{n} bipartite graph
- Left nodes: {′,′ .join(str(x)forxinrange(1, n+ 1))}
- Right nodes: {′,′ .join(str(x)forxinrange(n+ 1, 2 ∗ n+ 1))}
- Edge weights:
{chr(10).join(edge_desc)}
- All edge weights are distinct
2. Game Mechanics:
- You choose “decreasing” mode and I choose “increasing” mode
- You place token on one node and then I place token on one node
- Players take turns moving token to adjacent unvisited nodes:
* Must move from opponent’s last chosen node
* Edge weight must be less than last used edge (for you)
* Edge weight must be greater than last used edge (for me)
- Cannot visit same node twice
3. Victory Conditions:
- Player loses if unable to make a valid move from opponent’s node
- Game ends when no legal moves remain
Query Type:
Format: “My Choice: X”
where X is the node number (1− {2 ∗ n})
Example Round:

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Initial placement:
You: “My Choice: 2”
- Placing token at node 2
I: “My Choice: 5”
- Moving from node 2 to node 5 with edge weight 8
You: “My Choice: 3”
- Moving from node 5 to node 3 with edge weight 6
- Following decreasing rule: 6 < 8
I: “My Choice: 6”
- Moving from node 3 to node 6 with edge weight 9
- Following increasing rule: 9 > 6
Instructions:
1. Make moves based on graph state
2. Use exactly the format shown above
3. Explain your reasoning before each move
Remember:
- Use exact format: “My Choice: X”
- Must move from opponent’s last node
- Follow decreasing weight rule
- Invalid move = automatic loss
Ready to start? Make your first query!

Case N.64: ZigzagGraph Difficulty Levels

Easy: n = 5, Medium: n = 8, Hard: n = 12

XORBreaking In this task, models need to win a strategic game by breaking numbers using XOR
operations. Success requires careful selection and breaking of numbers while forcing the opponent
into unbreakable positions.

Case N.65: XORBreaking Problem Template

Let’s play the XOR Break Game! Your task is to win this game by strategically breaking numbers
and forcing your opponent into a position where they can’t make a valid move.
Rules:
1. Game Setup:
- Initial number: {k} (2 =< k =< n)
- You play first
- I play second
- Maximum 20 moves allowed
2. Game Mechanics:
First Turn:
- You break initial number p into two numbers p1 and p2
- Must satisfy: 0 < p1, p2 < p and p1 ⊕ p2 = p
Subsequent Turns:
- Active player does two actions:
1. Choose one number (p1 or p2) from opponent’s break
2. Try to break chosen number into two new numbers
- If player cannot break their chosen number, they lose
- Game continues until someone can’t break their number
3. XOR Calculation Example:
Breaking 13:
- Can choose 10 and 7 because:
* 10 = 1010 in binary
* 7 = 0111 in binary
* 10⊕ 7 = 1101 = 13
- Both numbers are less than 13
- Both numbers are positive

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

Query Types:
First Turn Format:
- Your move: “Breaking into: p1 p2”
- Example: “Breaking into: 10 7”
Other Turns Format:
- Your move: “Choosing: p Breaking into: p1 p2”
- My response: Either
* “Choosing: x Breaking into: y z”
or
* “Choosing: x Cannot break further”
Example Round:
Initial number: 13
You: “Breaking into: 10 7”
- Breaking 13 into 10⊕ 7
- Both numbers less than 13
Me: “Choosing: 7 Breaking into: 3 4”
- Selected 7 and broke it into 3⊕ 4
You: “Choosing: 3 Breaking into: 2 1”
- Selected 3 and broke it into 2⊕ 1
Me: “Choosing: 1 Cannot break further”
- You win! 1 cannot be broken
Instructions:
1. Make moves based on XOR properties
2. Use exactly the format shown above
3. Explain your reasoning before each move
Remember:
- Use exact format for moves
- Numbers must satisfy: * Less than current number * Greater than 0 * XOR to current number
- Invalid break = automatic loss
- More than 20 moves = loss
Ready to start? Make your first query!

Case N.66: XORBreaking Difficulty Levels

Easy: n = 100000, Medium: n = 10000000, Hard: n = 100000000

PizzaSlicing In this task, models need to win a strategic game by choosing vertices that minimize
the total area of triangular slices eaten. Success requires careful calculation of areas while considering
both immediate and future slice configurations.

Case N.67: PizzaSlicing Problem Template

Let’s play the Pizza Slice Game! Your task is to eat as little spinach pizza as possible by
strategically choosing vertices. The player who eats less total area wins!
Rules:
1. Game Setup:
- Pizza shape: {n}-vertex convex polygon
- Vertices: {points_str}
- You play first, I play second
- Total {(n− 2)} turns to complete
2. Game Mechanics:
- Players take turns choosing vertices
- When chosen, player eats triangle formed by:
* The chosen vertex
* Its two neighboring edges
- After each choice, pizza loses one vertex
- Game ends when all pizza is eaten
- Each vertex can only be chosen once

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

3. Area Calculation Example:
If you choose vertex 1 (x1, y1):
- Triangle area = |(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)|/2
- Where (x2, y2) and (x3, y3) are neighboring vertices
- Area adds to your total eaten amount
- Player with smaller total area wins!
Query Type:
Format: “My Choice: X”
where X is vertex index (1 to {n})
Example Round:
You: “My Choice: 1”
Me: “3”
You: “My Choice: 2”
Me: “4”
Result: Add up areas of your triangles and compare with mine to determine winner!
Instructions:
1. Make choices based on area calculations
2. Use exactly the format shown above
3. Explain your reasoning before each choice
Remember:
- Use exact format: “My Choice: X”
- Choose only available vertices
- Aim to eat LESS total area than opponent
- Invalid move = automatic loss
- Victory = eating smaller total area than opponent
Ready to start? Make your first query!

Case N.68: PizzaSlicing Difficulty Levels

Easy: n = 6, Medium: n = 8, Hard: n = 12

PaperNumbering In this task, models need to arrange numbers in non-decreasing order on a line
of papers through strategic placement and overwriting. Success requires careful planning of number
positions while adapting to new values each round.

Case N.69: PaperNumbering Problem Template

Let’s play the Paper Number Game!
Rules:
1. Game Setup:
- n blank papers in a line, numbered 1 to n from left to right
- Game lasts {turns} rounds
- Numbers range from 1 to {max_number}
2. Game Mechanics:
- System provides one number (1 to {max_number}) each round
- You must choose which paper to write the number on
- You can overwrite existing numbers on papers
- Game ends after {turns} rounds or when winning condition is met
3. Winning Condition:
- All papers must have numbers written
- Numbers must be in non-decreasing order from left to right
- Win immediately when condition is met
- Lose if not achieved after {turns} rounds
Query Type:
Format: “My Choice: X”
where X is paper position (1 to n)
Example Round:
Given:

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

Me: “2”
You: “I’ll place 2 on first paper to leave room for larger numbers”
“My Choice: 1”
- Paper state: [2,_,_...]
Me: “1”
You: “I’ll place 1 on second paper temporarily”
“My Choice: 2”
- Paper state: [2,1,_...]
Me: “3”
You: “I’ll replace 1 with 3 to achieve non-decreasing order”
“My Choice: 2”
- Paper state: [2,3,_...]
Instructions:
1. Make choices based on number sequence
2. Use exactly the format shown above
3. Explain your reasoning before each choice
Remember:
- Use exact format: “My Choice: X”
- Choose valid paper positions (1 to n)
- Aim for non-decreasing sequence
- Invalid move = automatic loss
Ready to start? Make your first query!
The first number I give you is: {initial_value}

Case N.70: PaperNumbering Difficulty Levels

Easy: n = 5, Medium: n = 10, Hard: n = 15

GridGame In this task, models need to win a strategic game by selecting grid cells that minimize
their sum while following adjacency rules. Success requires careful planning of cell selections while
considering both immediate values and future path availability.

Case N.71: GridGame Problem Template

Let’s play the Grid Game! Your task is to choose cells strategically to win.
Rules:
1. Game Setup:
- Grid size: {n}*{m}
- Grid already filled with numbers 1 to {n ∗m}
- Each number appears exactly once {grid_str}
2. Game Mechanics:
- Players take turns selecting unselected cells
- You move first
- Any cell chosen after first turn must be adjacent to a previously selected cell
- Cells are adjacent if they share an edge (up/down/left/right)
- Game ends when all cells are selected
- You win if your selected numbers sum < my sum
3. Adjacency Example:
For cell (2, 2):
- Adjacent cells: (1, 2), (2, 1), (2, 3), (3, 2)
- Diagonal cells like (1, 1) are not adjacent
- Must choose a cell adjacent to any previously selected cell
Query Type:
Format: “My Choice: x y”
where x is row (1 to {n}) and y is column (1 to {m})
Example Interaction:
You: “My Choice: 2 2”
- Selecting cell at row 2, column 2

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

Me: “My Choice: 2 3”
- Cell is adjacent to (2, 2)
You: “My Choice: 1 2”
- Cell is adjacent to (2, 2)
Instructions:
1. Make choices based on grid values
2. Use exactly the format shown above
3. Explain your reasoning before each choice
Remember:
- Use exact format: “My Choice: x y”
- Choose only adjacent cells after first turn
- First move can be any cell
- Keep track of both sums
- Plan moves to keep your sum smaller
- Invalid move = automatic loss
Ready to start? Make your first choice!

Case N.72: GridSumGame Difficulty Levels

Easy: n = 3, Medium: n = 5, Hard: n = 8

GridColoring In this task, models need to discover a special rectangular pattern on a grid through
strategic cell selection. Success requires finding four differently colored cells that form a rectangle
with sides parallel to grid lines.

Case N.73: GridColoring Problem Template

Let’s play the Grid Coloring Game! Find a special rectangular pattern on the grid.
Rules:
1. Game Setup:
- I have a n*n grid
- {coloring_description}
2. Game Mechanics:
- You can make up to 10 moves
- Each move: Choose an uncolored cell by specifying coordinates (x, y)
- I will respond by coloring that cell with a color of my choice (1 to {2 ∗ n})
- Your goal: Find 4 colored cells that form a valid rectangle
3. Victory Conditions:
A valid rectangle must:
- Have all 4 cells colored
- Have different colors in all 4 cells
- Form a rectangle with sides parallel to grid lines
Query Types:
1. To choose a cell:
Format: “My Choice: x y”
where 1 ≤ x, y ≤ n
2. To submit answer:
Format: “My Answer: x1 x2 y1 y2”
where (x1, y1), (x1, y2), (x2, y1), (x2, y2) are rectangle corners
Example Interaction:
Given a 3*3 grid with initial coloring:
- Cell at position (1, 1) has color 1
- Cell at position (2, 2) has color 2
- Cell at position (3, 3) has color 3
You: “My Choice: 1 2”
Me: “Cell (1, 2) colored with color 4”
You: “My Choice: 2 1”
Me: “Cell (2, 1) colored with color 5”

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

You: “My Answer: 1 2 1 2”
Me: “Win!”
Instructions:
1. Make choices based on grid state
2. Use exactly the formats shown above
3. Explain your reasoning before each move
Remember:
- Use exact format: “My Choice: x y” for queries
- Use exact format: “My Answer: x1 x2 y1 y2” for final answer
- Explain your reasoning before making a choice
- Wait for my color response before next move
- Choosing already colored cell = invalid move = immediate loss
- All 4 cells in rectangle must have different colors
Ready to start? Make your first query!

Case N.74: GridColoring Difficulty Levels

Easy: n = 10, Medium: n = 20, Hard: n = 30

GeometricDistance In this task, models need to win a strategic game by choosing points that
control the parity of cumulative squared distances. Success requires careful calculation of distances
while planning moves to achieve an even final sum.

Case N.75: GeometricDistance Problem Template

Let’s play Geometric Distance Game! Your task is to win this game by choosing points and
controlling the sum’s parity.
Rules:
1. Game Setup:
- Starting point: ({sx}, {sy})
- Available points:
Point 1: ({x1}, {y1})
Point 2: ({x2}, {y2})
Point 3: ({x3}, {y3})
Point 4: ({x4}, {y4})
...
Point n: ({xn}, {yn})
2. Game Mechanics:
- Players take turns choosing one point
- Each point can only be chosen once
- After each choice, add the squared distance to sum:
* First turn: distance from ({sx}, {sy}) to your choice
* Later turns: distance from opponent’s last choice to your choice
- Game ends when all points are chosen
- You win if final sum is even
3. Distance Calculation Example:
If you choose (0, 1):
- From (0, 0): distance squared = (0− 0)2 + (1− 0)2 = 0 + 1 = 1
- Sum becomes 1
Query Type:
Format: “My Choice: X”
where X is point index (1 to n)
Example Round:
Given:
- Starting point: (0, 0)
- Points: (1, 0), (0, 1), (1, 1), (1, 2)
You: “My Choice: 4”
- Distance from (0, 0) to (1, 2): (1− 0)2 + (2− 0)2 = 1 + 4 = 5

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

- Sum = 5
Me: “My Choice: 2”
- Distance from (1, 2) to (0, 1): (0− 1)2 + (1− 2)2 = 1 + 1 = 2
- Sum = 5 + 2 = 7
You: “My Choice: 3”
- Distance from (0, 1) to (1, 1): (1− 0)2 + (1− 1)2 = 1 + 0 = 1
- Sum = 7 + 1 = 8
Me: “My Choice: 1”
- Distance from (1, 1) to (1, 0): (1− 1)2 + (0− 1)2 = 0 + 1 = 1
- Sum = 8 + 1 = 9
Result: You lose! (Final sum = 9 is odd)
Instructions:
1. Make choices based on distance calculations
2. Use exactly the format shown above
3. Explain your reasoning before each choice
Remember:
- Use exact format: “My Choice: X”
- Choose only available points (1-n)
- Plan moves to make final sum even
- Invalid move = automatic loss
Ready to start? Make your first query!

Case N.76: GeometricDistance Difficulty Levels

Easy: n = 4, Medium: n = 6, Hard: n = 8

BeeChase In this task, models need to catch a moving target on a special honeycomb graph by
coordinating three bees’ movements. Success requires strategic positioning and understanding of
graph topology to trap the target.

Case N.77: BeeChase Problem Template

Let’s play the Bee Chase Game! Your task is to catch Nastya by strategically moving three bees
on a special honeycomb graph.
Rules:
1. Game Setup:
- Graph: {n} vertices connected by {len(edges)} edges
- Edges: {edge_desc}
- You control 3 bees
- I control Nastya
- Each vertex connects to at most 3 others
- Each edge is part of a cycle of length ≤ 5
2. Game Mechanics:
- First round:
* You place 3 bees on any vertices
* I place Nastya on a different vertex
- Each subsequent round:
* You move each bee (or keep in place)
* I move Nastya along one edge
- Movement rules:
* Can only move along edges
* Multiple bees can share same vertex
* Nastya must move each turn
* All moves must be valid graph moves
3. Victory Conditions:
- You win if any bee reaches same vertex as Nastya
- You lose if not caught after {n} moves
- Game ends immediately upon catch

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

Query Type:
Format: “My Choice: X Y Z”
where X , Y , Z are vertex numbers for three bees
Example Round:
Initial placement:
You: “My Choice: 1 2 3”
- Placing bees at vertices 1,2,3
Me: “5”
- Nastya appears at vertex 5
You: “My Choice: 2 3 4”
- Moving bees to surround Nastya
Me: “6”
- Nastya moves to vertex 6
Result: You catch Nastya!
Instructions:
1. Make moves based on graph structure
2. Use exactly the format shown above
3. Explain your reasoning before each move
Remember:
- Use exact format: “My Choice: X Y Z”
- Choose only valid vertex numbers
- Plan moves to trap Nastya
- Invalid move = immediate loss
- Maximum {n} moves to win
Ready to start? Make your first query!

Case N.78: BeeChase Difficulty Levels

Easy: n = 10, Medium: n = 20, Hard: n = 40

AssiutChess In this task, models need to trap a hidden king using a queen on a chessboard. Success
requires strategic queen placement and movement while responding to the king’s reported directions.

Case N.79: AssiutChess Problem Template

Let’s play Assiut Chess! Your task is to win this game by controlling a queen to trap the hidden
king.
Rules:
1. Game Setup:
- {n}*{n} chessboard (rows and columns from 1 to {n})
- You control the queen, I control the hidden king
- First, you place the queen anywhere on the board
2. Game Mechanics:
- On each turn:
* I move the king first (in one of 8 directions)
* I tell you which direction the king moved
* You move the queen to any cell in straight or diagonal line
- King’s possible moves:
* “Right”, “Left”, “Up”, “Down”
* “Down-Right”, “Down-Left”, “Up-Left”, “Up-Right”
- King’s restrictions:
* Cannot move out of the board
* Cannot move to cells attacked by queen (same row, column, or diagonal)
- Queen’s restrictions:
* Must move to a different cell each turn
* Must move in straight or diagonal lines
3. Victory Conditions:
- You win if the king has no valid moves

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

- Game ends when “Done” is received
Query Type:
Format: “My Choice: x y”
where 1 ≤ x, y ≤ {n}
Example Round:
Initial queen placement:
You: “My Choice: 3 2”
Me: “Left”
You: “My Choice: 3 3”
Me: “Right”
You: “My Choice: 3 4”
Me: “Done”
Result: You win! King is trapped!
Instructions:
1. Make moves based on king’s direction
2. Use exactly the format shown above
3. Explain your reasoning before each move
Remember:
- Use exact format: “My Choice: x y”
- Choose valid queen moves only
- Plan moves to trap the king
- Invalid move = immediate loss
- You have maximun 20 moves
Ready to start? Make your first query!

Case N.80: AssiutChess Difficulty Levels

Easy: n = 4, Medium: n = 6, Hard: n = 7

O PER-TASK RESULTS

We list the experimental results for each of the 40 tasks in this section.

Model Easy Medium Hard
o3-mini 93.33 73.33 60.00
R1 96.67 56.67 50.00
QwQ-32B 86.67 46.67 20.00
R1-Distill-Llama-70B 90.00 46.67 33.33
R1-Distill-Qwen-32B 40.00 10.00 6.67
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 83.33 43.33 50.00
Qwen-Max 93.33 80.00 43.33
gemma-3-27b-IT 50.00 3.33 6.67
gemma-3-12b-IT 26.67 0.00 0.00
gemma-3-4b-IT 46.67 0.00 3.33
Qwen2.5-72B-IT 93.33 66.67 50.00
Qwen2.5-32B-IT 90.00 73.33 56.67
Qwen2.5-7B-IT 66.67 46.67 36.67
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 90.00 56.67 23.33
Llama-3.1-8B-IT 40.00 13.33 3.33
Mistral-Small-24B-IT-2501 70.00 10.00 3.33
Ministral-8B-IT-2410 63.33 10.00 0.00

Table 8: Average accuracy for AssiutChess across different difficulties.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 42.22 26.67 15.56
R1 52.22 37.78 28.89
QwQ-32B 50.00 42.22 25.56
R1-Distill-Llama-70B 37.78 13.33 14.44
R1-Distill-Qwen-32B 14.44 7.78 3.33
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 31.11 13.33 10.00
Qwen-Max 27.78 12.22 2.22
gemma-3-27b-IT 24.44 15.56 10.00
gemma-3-12b-IT 16.67 7.78 4.44
gemma-3-4b-IT 34.44 8.89 7.78
Qwen2.5-72B-IT 30.00 11.11 3.33
Qwen2.5-32B-IT 11.11 7.78 2.22
Qwen2.5-7B-IT 24.44 13.33 3.33
Qwen2.5-1.5B-IT 2.22 1.11 0.00
Llama-3.1-70B-IT 27.78 13.33 10.00
Llama-3.1-8B-IT 22.22 5.56 7.78
Mistral-Small-24B-IT-2501 33.33 6.67 5.56
Ministral-8B-IT-2410 13.33 2.22 0.00

Table 9: Average accuracy for AttendanceCheck across different difficulties.

Model Easy Medium Hard
o3-mini 100.00 100.00 86.67
R1 100.00 86.67 86.67
QwQ-32B 90.00 56.67 66.67
R1-Distill-Llama-70B 56.67 46.67 30.00
R1-Distill-Qwen-32B 73.33 40.00 6.67
R1-Distill-Qwen-7B 3.33 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 3.33 0.00 0.00
Qwen-M a z 43.33 36.67 30.00
gemma-3-27b-IT 30.00 3.33 3.33
gemma-3-12b-IT 3.33 0.00 0.00
gemma-3-4b-IT 6.67 0.00 0.00
Qwen2.5-72B-IT 26.67 6.67 3.33
Qwen2.5-32B-IT 23.33 26.67 0.00
Qwen2.5-7B-IT 16.67 6.67 3.33
Qwen2.5-1.5B-IT 53.33 70.00 53.33
Llama-3.1-70B-IT 23.33 3.33 6.67
Llama-3.1-8B-IT 13.33 0.00 0.00
Mistral-Small-24B-IT-2501 30.00 3.33 0.00
Ministral-8B-IT-2410 20.00 10.00 0.00

Table 10: Average accuracy for BeeChase across different difficulties.

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 60.00 42.22 23.33
R1 67.78 60.00 20.00
QwQ-32B 95.56 97.78 74.44
R1-Distill-Llama-70B 42.22 38.89 11.11
R1-Distill-Qwen-32B 60.00 45.56 15.56
R1-Distill-Qwen-7B 25.56 18.89 4.44
R1-Distill-Qwen-1.5B 0.00 6.67 2.22
GPT-4o 21.11 10.00 13.33
Qwen-Max 42.22 31.11 17.78
gemma-3-27b-IT 52.22 38.89 28.89
gemma-3-12b-IT 21.11 10.00 4.44
gemma-3-4b-IT 16.67 10.00 6.67
Qwen2.5-72B-IT 52.22 58.89 16.67
Qwen2.5-32B-IT 55.56 42.22 15.56
Qwen2.5-7B-IT 76.67 65.56 11.11
Qwen2.5-1.5B-IT 6.67 1.11 0.00
Llama-3.1-70B-IT 73.33 53.33 30.00
Llama-3.1-8B-IT 60.00 30.00 5.56
Mistral-Small-24B-IT-2501 22.22 18.89 8.89
Ministral-8B-IT-2410 3.33 15.56 0.00

Table 11: Average accuracy for BitCompare across different difficulties.

Model Easy Medium Hard
o3-mini 78.89 54.44 40.00
R1 77.78 41.11 24.44
QwQ-32B 32.22 13.33 10.00
R1-Distill-Llama-70B 13.33 1.11 0.00
R1-Distill-Qwen-32B 8.89 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 25.56 12.22 1.11
Qwen-Max 31.11 17.78 6.67
gemma-3-27b-IT 32.22 5.56 2.22
gemma-3-12b-IT 7.78 3.33 1.11
gemma-3-4b-IT 0.00 1.11 0.00
Qwen2.5-72B-IT 31.11 6.67 2.22
Qwen2.5-32B-IT 7.78 2.22 1.11
Qwen2.5-7B-IT 4.44 1.11 3.33
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 18.89 12.22 3.33
Llama-3.1-8B-IT 7.78 1.11 0.00
Mistral-Small-24B-IT-2501 12.22 2.22 0.00
Ministral-8B-IT-2410 7.78 2.22 0.00

Table 12: Average accuracy for BitGuessing across different difficulties.

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 26.67 25.56 16.67
R1 100.00 100.00 100.00
QwQ-32B 93.33 96.67 94.44
R1-Distill-Llama-70B 18.89 15.56 15.56
R1-Distill-Qwen-32B 7.78 4.44 5.56
R1-Distill-Qwen-7B 5.56 3.33 2.22
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 23.33 24.44 23.33
Qwen-Max 22.22 22.22 15.56
gemma-3-27b-IT 21.11 32.22 10.00
gemma-3-12b-IT 45.56 25.56 20.00
gemma-3-4b-IT 30.00 18.89 13.33
Qwen2.5-72B-IT 11.11 7.78 14.44
Qwen2.5-32B-IT 66.67 67.78 60.00
Qwen2.5-7B-IT 24.44 21.11 28.89
Qwen2.5-1.5B-IT 15.56 6.67 4.44
Llama-3.1-70B-IT 50.00 48.89 53.33
Llama-3.1-8B-IT 35.56 23.33 22.22
Mistral-Small-24B-IT-2501 48.89 16.67 23.33
Ministral-8B-IT-2410 72.22 55.56 20.00

Table 13: Average accuracy for CactusSearch across different difficulties.

Model Easy Medium Hard
o3-mini 34.44 25.56 7.78
R1 6.67 11.11 6.67
QwQ-32B 2.22 3.33 1.11
R1-Distill-Llama-70B 3.33 1.11 1.11
R1-Distill-Qwen-32B 8.89 3.33 1.11
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 0.00 0.00 1.11
Qwen-Max 4.44 2.22 3.33
gemma-3-27b-IT 3.33 1.11 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 2.22 2.22 1.11
Qwen2.5-32B-IT 5.56 1.11 0.00
Qwen2.5-7B-IT 1.11 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 1.11 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 14: Average accuracy for ChemicalSynthesis across different difficulties.

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 25.00 4.44 0.00
R1 24.44 3.33 2.22
QwQ-32B 7.78 0.00 0.00
R1-Distill-Llama-70B 1.11 0.00 0.00
R1-Distill-Qwen-32B 2.22 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 1.11 0.00 0.00
Qwen-Max 1.11 0.00 0.00
gemma-3-27b-IT 1.11 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 1.11 0.00 0.00
Qwen2.5-72B-IT 0.00 0.00 0.00
Qwen2.5-32B-IT 8.89 0.00 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 2.22 0.00 0.00
Llama-3.1-8B-IT 3.33 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 15: Average accuracy for ColorMagic across different difficulties.

Model Easy Medium Hard
o3-mini 78.89 46.67 26.67
R1 80.00 45.56 15.56
QwQ-32B 62.22 34.44 8.89
R1-Distill-Llama-70B 24.44 2.22 3.33
R1-Distill-Qwen-32B 11.11 2.22 1.11
R1-Distill-Qwen-7B 0.00 2.22 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 81.11 51.11 13.33
Qwen-Max 70.00 42.22 15.56
gemma-3-27b-IT 6.67 2.22 0.00
gemma-3-12b-IT 11.11 0.00 0.00
gemma-3-4b-IT 13.33 11.11 0.00
Qwen2.5-72B-IT 13.33 2.22 0.00
Qwen2.5-32B-IT 13.33 6.67 2.22
Qwen2.5-7B-IT 13.33 11.11 0.00
Qwen2.5-1.5B-IT 50.00 0.00 0.00
Llama-3.1-70B-IT 7.78 0.00 0.00
Llama-3.1-8B-IT 26.67 1.11 1.11
Mistral-Small-24B-IT-2501 37.78 3.33 1.11
Ministral-8B-IT-2410 33.33 20.00 2.22

Table 16: Average accuracy for DarkMaze across different difficulties.

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 11.11 10.00 10.00
R1 54.44 47.78 38.89
QwQ-32B 32.22 36.67 14.44
R1-Distill-Llama-70B 4.44 16.67 1.11
R1-Distill-Qwen-32B 1.11 1.11 3.33
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 5.56 3.33 2.22
Qwen-Max 4.44 10.00 2.22
gemma-3-27b-IT 4.44 7.78 2.22
gemma-3-12b-IT 4.44 6.67 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 11.11 13.33 6.67
Qwen2.5-32B-IT 4.44 2.22 1.11
Qwen2.5-7B-IT 7.78 10.00 2.22
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 12.22 13.33 2.22
Llama-3.1-8B-IT 7.78 6.67 1.11
Mistral-Small-24B-IT-2501 16.67 17.78 4.44
Ministral-8B-IT-2410 11.11 28.89 10.00

Table 17: Average accuracy for FindBiggest across different difficulties.

Model Easy Medium Hard
o3-mini 82.00 6.67 16.67
R1 74.00 3.33 2.22
QwQ-32B 75.33 6.67 5.56
R1-Distill-Llama-70B 54.44 0.00 0.00
R1-Distill-Qwen-32B 24.44 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 49.33 2.22 4.44
Qwen-Max 47.33 0.00 5.56
gemma-3-27b-IT 4.44 1.11 0.00
gemma-3-12b-IT 4.44 0.00 0.00
gemma-3-4b-IT 26.67 0.00 0.00
Qwen2.5-72B-IT 45.56 0.00 0.00
Qwen2.5-32B-IT 48.89 0.00 0.00
Qwen2.5-7B-IT 37.78 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 33.33 0.00 0.00
Llama-3.1-8B-IT 12.22 0.00 0.00
Mistral-Small-24B-IT-2501 1.11 0.00 0.00
Ministral-8B-IT-2410 2.22 0.00 0.00

Table 18: Average accuracy for BitQuery across different difficulties.

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 66.67 51.11 57.78
R1 25.56 10.00 11.11
QwQ-32B 26.67 20.00 15.56
R1-Distill-Llama-70B 16.67 5.56 1.11
R1-Distill-Qwen-32B 11.11 2.22 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 0.00 0.00 0.00
Qwen-Max 0.00 0.00 0.00
gemma-3-27b-IT 0.00 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 1.11 0.00 0.00
Qwen2.5-32B-IT 0.00 0.00 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 19: Average accuracy for CircleFinding across different difficulties.

Model Easy Medium Hard
o3-mini 32.22 22.22 21.11
R1 42.22 37.78 18.89
QwQ-32B 24.44 20.00 15.56
R1-Distill-Llama-70B 22.22 21.11 14.44
R1-Distill-Qwen-32B 7.78 4.44 2.22
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 36.67 14.44 12.22
Qwen-Max 17.78 18.89 5.56
gemma-3-27b-IT 12.22 13.33 12.22
gemma-3-12b-IT 15.56 12.22 8.89
gemma-3-4b-IT 2.22 2.22 0.00
Qwen2.5-72B-IT 26.67 20.00 12.22
Qwen2.5-32B-IT 26.67 7.78 13.33
Qwen2.5-7B-IT 11.11 18.89 11.11
Qwen2.5-1.5B-IT 0.00 1.11 0.00
Llama-3.1-70B-IT 32.22 14.44 5.56
Llama-3.1-8B-IT 18.89 8.89 10.00
Mistral-Small-24B-IT-2501 16.67 13.33 11.11
Ministral-8B-IT-2410 15.56 8.89 6.67

Table 20: Average accuracy for FindHidden across different difficulties.

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 61.11 42.22 14.44
R1 62.22 32.22 5.56
QwQ-32B 71.11 51.11 21.11
R1-Distill-Llama-70B 41.11 10.00 2.22
R1-Distill-Qwen-32B 27.78 3.33 1.11
R1-Distill-Qwen-7B 2.22 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 31.11 8.89 0.00
Qwen-Max 36.67 13.33 1.11
gemma-3-27b-IT 55.56 20.00 4.44
gemma-3-12b-IT 51.11 18.89 6.67
gemma-3-4b-IT 2.22 0.00 0.00
Qwen2.5-72B-IT 53.33 11.11 4.44
Qwen2.5-32B-IT 38.89 21.11 1.11
Qwen2.5-7B-IT 25.56 7.78 1.11
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 58.89 14.44 0.00
Llama-3.1-8B-IT 10.00 0.00 0.00
Mistral-Small-24B-IT-2501 40.00 10.00 0.00
Ministral-8B-IT-2410 11.11 5.56 0.00

Table 21: Average accuracy for FindTheImpostors across different difficulties.

Model Easy Medium Hard
o3-mini 72.17 46.83 25.83
R1 70.00 53.33 53.33
QwQ-32B 6.67 3.33 0.00
R1-Distill-Llama-70B 61.11 25.56 14.44
R1-Distill-Qwen-32B 24.44 15.56 6.67
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 35.56 33.33 25.56
Qwen-Max 11.11 17.78 18.89
gemma-3-27b-IT 23.11 11.11 18.33
gemma-3-12b-IT 32.67 32.22 20.67
gemma-3-4b-IT 23.33 3.33 0.00
Qwen2.5-72B-IT 46.00 46.67 43.33
Qwen2.5-32B-IT 45.78 31.11 28.00
Qwen2.5-7B-IT 33.33 20.00 13.33
Qwen2.5-1.5B-IT 70.00 46.67 56.67
Llama-3.1-70B-IT 49.33 41.33 41.78
Llama-3.1-8B-IT 36.67 30.00 23.33
Mistral-Small-24B-IT-2501 41.11 36.89 46.89
Ministral-8B-IT-2410 70.00 3.33 33.33

Table 22: Average accuracy for GeoGame across different difficulties.

75

4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 100.00 96.67 100.00
R1 90.00 96.67 100.00
QwQ-32B 83.33 83.33 76.67
R1-Distill-Llama-70B 26.67 60.00 46.67
R1-Distill-Qwen-32B 6.67 3.33 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 60.00 60.00 43.33
Qwen-Max 73.33 66.67 50.00
gemma-3-27b-IT 0.00 0.00 3.33
gemma-3-12b-IT 0.00 3.33 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 33.33 46.67 26.67
Qwen2.5-32B-IT 26.67 26.67 6.67
Qwen2.5-7B-IT 30.00 26.67 20.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 50.00 46.67 23.33
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 23: Average accuracy for GridColoring across different difficulties.

Model Easy Medium Hard
o3-mini 93.33 96.67 80.00
R1 80.00 83.33 46.67
QwQ-32B 83.33 73.33 33.33
R1-Distill-Llama-70B 83.33 56.67 26.67
R1-Distill-Qwen-32B 86.67 60.00 20.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 70.00 46.67 40.00
Qwen-Max 93.33 46.67 30.00
gemma-3-27b-IT 0.00 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 3.33 0.00 0.00
Qwen2.5-72B-IT 43.33 60.00 63.33
Qwen2.5-32B-IT 76.67 43.33 40.00
Qwen2.5-7B-IT 23.33 0.00 3.33
Qwen2.5-1.5B-IT 16.67 3.33 0.00
Llama-3.1-70B-IT 20.00 13.33 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 16.67 26.67 53.33

Table 24: Average accuracy for GridGame across different difficulties.

76

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 60.00 55.56 55.56
R1 14.44 2.22 7.78
QwQ-32B 3.33 2.22 2.22
R1-Distill-Llama-70B 4.44 1.11 3.33
R1-Distill-Qwen-32B 0.00 1.11 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 27.78 10.00 1.11
Qwen-Max 28.89 12.22 5.56
gemma-3-27b-IT 1.11 2.22 4.44
gemma-3-12b-IT 6.67 1.11 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 46.67 22.22 6.67
Qwen2.5-32B-IT 33.33 7.78 6.67
Qwen2.5-7B-IT 1.11 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 24.44 8.89 5.56
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 3.33 1.11 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 25: Average accuracy for GuessMax across different difficulties.

Model Easy Medium Hard
o3-mini 93.33 93.33 93.33
R1 90.00 100.00 100.00
QwQ-32B 90.00 86.67 90.00
R1-Distill-Llama-70B 73.33 86.67 80.00
R1-Distill-Qwen-32B 63.33 60.00 60.00
R1-Distill-Qwen-7B 20.00 20.00 6.67
R1-Distill-Qwen-1.5B 3.33 6.67 0.00
GPT-4o 16.67 10.00 16.67
Qwen-Max 26.67 23.33 13.33
gemma-3-27b-IT 6.67 13.33 3.33
gemma-3-12b-IT 3.33 3.33 0.00
gemma-3-4b-IT 0.00 13.33 0.00
Qwen2.5-72B-IT 13.33 23.33 30.00
Qwen2.5-32B-IT 3.33 20.00 3.33
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 0.00 13.33 0.00
Llama-3.1-70B-IT 0.00 6.67 0.00
Llama-3.1-8B-IT 0.00 3.33 3.33
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 26: Average accuracy for KnightBattle across different difficulties.

77

4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 24.44 7.78 0.00
R1 5.56 0.00 0.00
QwQ-32B 12.22 0.00 0.00
R1-Distill-Llama-70B 6.67 0.00 0.00
R1-Distill-Qwen-32B 2.22 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 0.00 0.00 0.00
Qwen-Max 0.00 0.00 0.00
gemma-3-27b-IT 2.22 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 2.22 0.00 0.00
Qwen2.5-32B-IT 1.11 0.00 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 27: Average accuracy for LegendaryTree across different difficulties.

Model Easy Medium Hard
o3-mini 76.67 61.11 38.89
R1 80.00 67.78 51.11
QwQ-32B 92.22 68.89 50.00
R1-Distill-Llama-70B 86.67 50.00 32.22
R1-Distill-Qwen-32B 84.44 36.67 14.44
R1-Distill-Qwen-7B 2.22 2.22 5.56
R1-Distill-Qwen-1.5B 0.00 1.11 1.11
GPT-4o 70.00 42.22 30.00
Qwen-Max 72.22 50.00 38.89
gemma-3-27b-IT 78.89 20.00 50.00
gemma-3-12b-IT 75.56 44.44 32.22
gemma-3-4b-IT 63.33 30.00 15.56
Qwen2.5-72B-IT 75.56 57.78 44.44
Qwen2.5-32B-IT 87.78 66.67 67.78
Qwen2.5-7B-IT 54.44 30.00 22.22
Qwen2.5-1.5B-IT 8.89 0.00 0.00
Llama-3.1-70B-IT 77.78 65.56 60.00
Llama-3.1-8B-IT 80.00 52.22 32.22
Mistral-Small-24B-IT-2501 70.00 44.44 36.67
Ministral-8B-IT-2410 57.78 21.11 20.00

Table 28: Average accuracy for ListQuery across different difficulties.

78

4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 20.00 23.33 16.67
R1 17.78 28.89 21.11
QwQ-32B 2.22 0.00 0.00
R1-Distill-Llama-70B 0.00 0.00 0.00
R1-Distill-Qwen-32B 0.00 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 4.00 0.00 0.00
Qwen-Max 3.71 0.00 0.00
gemma-3-27b-IT 5.56 5.56 2.22
gemma-3-12b-IT 5.56 2.22 1.11
gemma-3-4b-IT 4.44 2.22 0.00
Qwen2.5-72B-IT 4.44 8.89 0.00
Qwen2.5-32B-IT 6.67 14.44 1.11
Qwen2.5-7B-IT 6.67 3.33 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 10.00 7.78 1.11
Llama-3.1-8B-IT 0.00 1.11 0.00
Mistral-Small-24B-IT-2501 6.67 10.00 0.00
Ministral-8B-IT-2410 2.22 0.00 0.00

Table 29: Average accuracy for MagneticField across different difficulties.

Model Easy Medium Hard
o3-mini 4.44 2.22 1.11
R1 31.11 18.89 1.11
QwQ-32B 16.67 6.67 0.00
R1-Distill-Llama-70B 0.00 0.00 0.00
R1-Distill-Qwen-32B 0.00 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 1.11 0.00 0.00
Qwen-Max 6.67 2.22 0.00
gemma-3-27b-IT 0.00 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 0.00 0.00 0.00
Qwen2.5-32B-IT 0.00 0.00 0.00
Qwen2.5-7B-IT 1.11 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 2.22 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 30: Average accuracy for MahjongDetective across different difficulties.

79

4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 72.22 55.56 37.78
R1 62.22 32.22 7.78
QwQ-32B 88.89 32.22 21.11
R1-Distill-Llama-70B 52.22 23.33 13.33
R1-Distill-Qwen-32B 31.11 11.11 1.11
R1-Distill-Qwen-7B 8.89 2.22 1.11
R1-Distill-Qwen-1.5B 5.56 0.00 0.00
GPT-4o 34.44 5.56 1.11
Qwen-Max 31.11 7.78 4.44
gemma-3-27b-IT 40.00 14.44 6.67
gemma-3-12b-IT 30.00 8.89 2.22
gemma-3-4b-IT 0.00 5.56 2.22
Qwen2.5-72B-IT 38.89 2.22 1.11
Qwen2.5-32B-IT 2.22 3.33 4.44
Qwen2.5-7B-IT 35.56 11.11 2.22
Qwen2.5-1.5B-IT 6.67 0.00 2.22
Llama-3.1-70B-IT 56.67 23.33 1.11
Llama-3.1-8B-IT 34.44 6.67 3.33
Mistral-Small-24B-IT-2501 18.89 2.22 0.00
Ministral-8B-IT-2410 3.33 0.00 0.00

Table 31: Average accuracy for MedianQuery across different difficulties.

Model Easy Medium Hard
o3-mini 62.22 28.89 14.44
R1 64.44 33.33 21.11
QwQ-32B 57.78 20.00 10.00
R1-Distill-Llama-70B 51.11 25.56 5.56
R1-Distill-Qwen-32B 12.22 1.11 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 10.00 1.11
GPT-4o 3.33 4.44 1.11
Qwen-Max 18.89 16.67 5.56
gemma-3-27b-IT 1.11 0.00 0.00
gemma-3-12b-IT 17.78 3.33 3.33
gemma-3-4b-IT 0.00 7.78 1.11
Qwen2.5-72B-IT 6.67 4.44 1.11
Qwen2.5-32B-IT 31.11 24.44 0.00
Qwen2.5-7B-IT 46.67 11.11 2.22
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 36.67 11.11 6.67
Llama-3.1-8B-IT 23.33 11.11 0.00
Mistral-Small-24B-IT-2501 22.22 2.22 1.11
Ministral-8B-IT-2410 13.33 7.78 6.67

Table 32: Average accuracy for MimicHunt across different difficulties.

80

4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 66.67 40.00 30.00
R1 45.56 26.67 7.78
QwQ-32B 65.56 0.00 0.00
R1-Distill-Llama-70B 32.22 2.22 0.00
R1-Distill-Qwen-32B 26.67 1.11 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 1.11 0.00 0.00
GPT-4o 50.00 26.67 18.89
Qwen-Max 70.00 1.11 0.00
gemma-3-27b-IT 71.11 1.11 2.22
gemma-3-12b-IT 58.89 0.00 0.00
gemma-3-4b-IT 5.56 0.00 0.00
Qwen2.5-72B-IT 66.67 47.78 35.56
Qwen2.5-32B-IT 66.67 5.56 28.89
Qwen2.5-7B-IT 43.33 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 76.67 46.67 22.22
Llama-3.1-8B-IT 30.00 11.11 7.78
Mistral-Small-24B-IT-2501 31.11 1.11 0.00
Ministral-8B-IT-2410 11.11 0.00 0.00

Table 33: Average accuracy for MinMax across different difficulties.

Model Easy Medium Hard
o3-mini 3.33 3.33 3.33
R1 14.44 12.22 14.44
QwQ-32B 8.89 3.33 1.11
R1-Distill-Llama-70B 1.11 1.11 1.11
R1-Distill-Qwen-32B 0.00 0.00 2.22
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 0.00 1.11 6.67
Qwen-Max 0.00 0.00 2.22
gemma-3-27b-IT 13.33 1.11 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 1.11 0.00 0.00
Qwen2.5-72B-IT 2.22 14.44 2.22
Qwen2.5-32B-IT 3.33 1.11 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 3.33 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 3.33
Ministral-8B-IT-2410 16.67 7.78 1.11

Table 34: Average accuracy for SafepathFinder across different difficulties.

81

4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 6.67 1.11 0.00
R1 30.00 30.00 24.44
QwQ-32B 33.33 16.67 7.78
R1-Distill-Llama-70B 23.33 12.22 8.89
R1-Distill-Qwen-32B 14.44 4.44 3.33
R1-Distill-Qwen-7B 1.11 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 7.78 6.67 2.22
Qwen-Max 8.89 3.33 5.56
gemma-3-27b-IT 11.11 3.33 3.33
gemma-3-12b-IT 6.67 3.33 2.22
gemma-3-4b-IT 4.44 0.00 2.22
Qwen2.5-72B-IT 4.44 2.22 0.00
Qwen2.5-32B-IT 8.89 11.11 1.11
Qwen2.5-7B-IT 14.44 7.78 11.11
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 6.67 2.22 4.44
Llama-3.1-8B-IT 1.11 0.00 0.00
Mistral-Small-24B-IT-2501 4.44 2.22 0.00
Ministral-8B-IT-2410 5.56 4.44 5.56

Table 35: Average accuracy for TrainPursuit across different difficulties.

Model Easy Medium Hard
o3-mini 45.56 52.22 41.11
R1 61.11 55.56 51.11
QwQ-32B 58.89 54.44 63.33
R1-Distill-Llama-70B 64.44 64.44 47.78
R1-Distill-Qwen-32B 23.33 17.78 6.67
R1-Distill-Qwen-7B 0.00 3.33 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 11.11 21.11 15.56
Qwen-Max 15.56 14.44 14.44
gemma-3-27b-IT 60.00 40.00 33.33
gemma-3-12b-IT 13.33 0.00 0.00
gemma-3-4b-IT 20.00 8.89 6.67
Qwen2.5-72B-IT 63.33 55.56 52.22
Qwen2.5-32B-IT 65.56 62.22 53.33
Qwen2.5-7B-IT 23.33 11.11 3.33
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 43.33 32.22 17.78
Llama-3.1-8B-IT 33.33 16.67 10.00
Mistral-Small-24B-IT-2501 51.11 42.22 22.22
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 36: Average accuracy for TreasureHunt across different difficulties.

82

4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 86.67 78.89 80.00
R1 83.33 81.11 77.78
QwQ-32B 70.00 70.00 70.00
R1-Distill-Llama-70B 8.89 6.67 8.89
R1-Distill-Qwen-32B 11.11 13.33 11.11
R1-Distill-Qwen-7B 1.11 2.22 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 43.33 50.00 53.33
Qwen-Max 46.67 45.56 54.44
gemma-3-27b-IT 13.33 10.00 8.89
gemma-3-12b-IT 11.11 11.11 14.44
gemma-3-4b-IT 1.11 1.11 8.89
Qwen2.5-72B-IT 11.11 5.56 2.22
Qwen2.5-32B-IT 26.67 21.11 26.67
Qwen2.5-7B-IT 6.67 3.33 14.44
Qwen2.5-1.5B-IT 2.22 2.22 8.89
Llama-3.1-70B-IT 12.22 12.22 13.33
Llama-3.1-8B-IT 0.00 4.44 3.33
Mistral-Small-24B-IT-2501 4.44 10.00 13.33
Ministral-8B-IT-2410 10.00 3.33 10.00

Table 37: Average accuracy for VladikMaze across different difficulties.

Model Easy Medium Hard
o3-mini 42.22 53.33 7.78
R1 27.78 18.89 0.00
QwQ-32B 13.33 3.33 0.00
R1-Distill-Llama-70B 1.11 0.00 0.00
R1-Distill-Qwen-32B 0.00 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 3.33 0.00 0.00
Qwen-Max 11.11 0.00 0.00
gemma-3-27b-IT 4.44 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 0.00 0.00 0.00
Qwen2.5-32B-IT 0.00 0.00 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 38: Average accuracy for Wordle across different difficulties.

83

4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 80.00 90.00 66.67
R1 63.33 60.00 86.67
QwQ-32B 56.67 86.67 80.00
R1-Distill-Llama-70B 13.33 10.00 6.67
R1-Distill-Qwen-32B 10.00 23.33 16.67
R1-Distill-Qwen-7B 3.33 3.33 3.33
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 76.67 53.33 16.67
Qwen-Max 30.00 20.00 10.00
gemma-3-27b-IT 3.33 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 10.00 0.00 0.00
Qwen2.5-32B-IT 3.33 0.00 10.00
Qwen2.5-7B-IT 6.67 0.00 6.67
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 3.33 13.33 16.67
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 20.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 39: Average accuracy for XORBreaking across different difficulties.

Model Easy Medium Hard
o3-mini 58.57 21.84 30.22
R1 57.78 42.22 27.78
QwQ-32B 81.11 54.44 28.89
R1-Distill-Llama-70B 31.11 7.78 4.44
R1-Distill-Qwen-32B 32.22 8.89 4.44
R1-Distill-Qwen-7B 2.22 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 46.67 21.11 13.33
Qwen-Max 71.11 40.00 26.67
gemma-3-27b-IT 30.00 11.11 14.44
gemma-3-12b-IT 27.78 13.33 4.44
gemma-3-4b-IT 3.33 3.33 1.11
Qwen2.5-72B-IT 37.78 18.89 11.11
Qwen2.5-32B-IT 45.56 21.11 14.44
Qwen2.5-7B-IT 11.11 4.44 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 34.44 16.67 7.78
Llama-3.1-8B-IT 10.00 5.56 3.33
Mistral-Small-24B-IT-2501 6.67 0.00 1.11
Ministral-8B-IT-2410 3.33 2.22 3.33

Table 40: Average accuracy for ZeroFinding across different difficulties.

84

4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 43.33 56.67 43.33
R1 40.00 20.00 13.33
QwQ-32B 26.67 23.33 26.67
R1-Distill-Llama-70B 20.00 23.33 6.67
R1-Distill-Qwen-32B 30.00 13.33 23.33
R1-Distill-Qwen-7B 0.00 3.33 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 6.67 6.67 0.00
Qwen-Max 33.33 6.67 0.00
gemma-3-27b-IT 3.33 0.00 3.33
gemma-3-12b-IT 0.00 3.33 0.00
gemma-3-4b-IT 0.00 3.33 0.00
Qwen2.5-72B-IT 3.33 0.00 3.33
Qwen2.5-32B-IT 20.00 0.00 0.00
Qwen2.5-7B-IT 3.33 0.00 0.00
Qwen2.5-1.5B-IT 3.33 0.00 3.33
Llama-3.1-70B-IT 6.67 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 3.33 0.00 0.00
Ministral-8B-IT-2410 10.00 3.33 0.00

Table 41: Average accuracy for ZigzagGraph across different difficulties.

Model Easy Medium Hard
o3-mini 23.61 17.78 16.67
R1 62.50 31.11 30.00
QwQ-32B 22.22 13.33 5.56
R1-Distill-Llama-70B 13.89 8.89 1.11
R1-Distill-Qwen-32B 2.78 2.22 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 18.06 13.33 3.33
Qwen-Max 20.83 20.00 6.67
gemma-3-27b-IT 12.50 7.78 0.00
gemma-3-12b-IT 12.50 6.67 0.00
gemma-3-4b-IT 2.78 4.44 0.00
Qwen2.5-72B-IT 27.78 18.89 5.56
Qwen2.5-32B-IT 18.06 11.11 2.22
Qwen2.5-7B-IT 0.00 2.22 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 18.06 11.11 2.22
Llama-3.1-8B-IT 1.39 2.22 0.00
Mistral-Small-24B-IT-2501 18.06 10.00 6.67
Ministral-8B-IT-2410 6.94 2.22 0.00

Table 42: Average accuracy for PermutationDiscovery across different difficulties.

85

4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 96.67 96.67 83.33
R1 83.33 76.67 73.33
QwQ-32B 76.67 76.67 56.67
R1-Distill-Llama-70B 93.33 83.33 70.00
R1-Distill-Qwen-32B 23.33 26.67 30.00
R1-Distill-Qwen-7B 10.00 0.00 0.00
R1-Distill-Qwen-1.5B 3.33 0.00 0.00
GPT-4o 36.67 26.67 30.00
Qwen-Max 80.00 46.67 33.33
gemma-3-27b-IT 36.67 3.33 0.00
gemma-3-12b-IT 20.00 3.33 0.00
gemma-3-4b-IT 16.67 3.33 3.33
Qwen2.5-72B-IT 46.67 40.00 10.00
Qwen2.5-32B-IT 43.33 23.33 33.33
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 16.67 13.33 6.67
Llama-3.1-70B-IT 33.33 40.00 53.33
Llama-3.1-8B-IT 10.00 10.00 0.00
Mistral-Small-24B-IT-2501 60.00 30.00 3.33
Ministral-8B-IT-2410 30.00 0.00 0.00

Table 43: Average accuracy for PizzaSlice across different difficulties.

Model Easy Medium Hard
o3-mini 86.67 66.67 32.22
R1 83.33 60.00 30.00
QwQ-32B 55.56 17.78 16.67
R1-Distill-Llama-70B 62.22 20.00 7.78
R1-Distill-Qwen-32B 12.22 3.33 3.33
R1-Distill-Qwen-7B 1.11 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 58.89 30.00 26.67
Qwen-Max 71.11 45.56 22.22
gemma-3-27b-IT 65.56 40.00 21.11
gemma-3-12b-IT 45.56 34.44 34.44
gemma-3-4b-IT 38.89 32.22 28.89
Qwen2.5-72B-IT 67.78 42.22 27.78
Qwen2.5-32B-IT 47.78 43.33 27.78
Qwen2.5-7B-IT 70.00 34.44 31.11
Qwen2.5-1.5B-IT 62.22 41.11 7.78
Llama-3.1-70B-IT 61.11 38.89 27.78
Llama-3.1-8B-IT 51.11 23.33 25.56
Mistral-Small-24B-IT-2501 65.56 25.56 24.44
Ministral-8B-IT-2410 71.11 26.67 28.89

Table 44: Average accuracy for RPD across different difficulties.

86

4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 54.44 0.00 0.00
R1 34.44 0.00 0.00
QwQ-32B 28.89 0.00 0.00
R1-Distill-Llama-70B 28.89 0.00 0.00
R1-Distill-Qwen-32B 5.56 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 27.78 0.00 0.00
Qwen-Max 33.33 0.00 0.00
gemma-3-27b-IT 31.11 0.00 0.00
gemma-3-12b-IT 31.11 0.00 0.00
gemma-3-4b-IT 18.89 0.00 0.00
Qwen2.5-72B-IT 28.89 0.00 0.00
Qwen2.5-32B-IT 35.56 0.00 0.00
Qwen2.5-7B-IT 13.33 0.00 0.00
Qwen2.5-1.5B-IT 26.67 0.00 0.00
Llama-3.1-70B-IT 30.00 0.00 0.00
Llama-3.1-8B-IT 15.56 0.00 0.00
Mistral-Small-24B-IT-2501 28.89 0.00 0.00
Ministral-8B-IT-2410 21.11 0.00 0.00

Table 45: Average accuracy for RainbowCandy across different difficulties.

Model Easy Medium Hard
o3-mini 7.78 0.00 0.00
R1 5.56 0.00 0.00
QwQ-32B 10.00 0.00 0.00
R1-Distill-Llama-70B 0.00 0.00 0.00
R1-Distill-Qwen-32B 0.00 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 0.00 0.00 0.00
Qwen-Max 0.00 0.00 0.00
gemma-3-27b-IT 0.00 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 0.00 0.00 0.00
Qwen2.5-32B-IT 0.00 0.00 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 46: Average accuracy for RotaryLock across different difficulties.

87

4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
o3-mini 93.33 46.67 23.33
R1 86.67 46.67 20.00
QwQ-32B 100.00 26.67 10.00
R1-Distill-Llama-70B 93.33 40.00 3.33
R1-Distill-Qwen-32B 66.67 10.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 46.67 20.00 0.00
Qwen-Max 83.33 23.33 3.33
gemma-3-27b-IT 3.33 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 10.00 0.00 0.00
Qwen2.5-72B-IT 90.00 10.00 3.33
Qwen2.5-32B-IT 80.00 10.00 0.00
Qwen2.5-7B-IT 46.67 0.00 0.00
Qwen2.5-1.5B-IT 16.67 0.00 0.00
Llama-3.1-70B-IT 63.33 0.00 0.00
Llama-3.1-8B-IT 10.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 3.33 0.00 0.00

Table 47: Average accuracy for PaperNumber across different difficulties.

88

4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805

Under review as a conference paper at ICLR 2026

P GRADING CASE STUDY OF A HARD TASK (CODEFORCES 3500)

To provide an intuitive understanding of how EvolArena handles high-difficulty reasoning tasks,
we detail the implementation of GridGame. This task is adapted from a Codeforces problem (e.g.,
"Grid Game") with a difficulty rating of 3500, representing the peak of competitive programming
challenges.

P.1 TASK LOGIC

Objective: Two players take turns selecting numbers from an N ×M grid. The game ends when
all cells are selected. The player wins if their total sum is strictly less than the opponent’s sum.
Constraint: After the first move, every selected cell must be orthogonally adjacent to a previously
selected cell (by either player). This requires deep strategic lookahead to force the opponent into
selecting high-value cells.

Original Codeforces Problem: Grid Game (Difficulty 3500)

Problem Description: You are given a grid with n rows and m columns. You need to fill
each cell with a unique integer from 1 to n ·m. After filling the grid, you will play a game on
this grid against the interactor.
Players take turns selecting one of the previously unselected cells from the grid, with the
interactor going first.

• On the first turn, the interactor can choose any cell from the grid.
• After that, any chosen cell must be orthogonally adjacent to at least one previously

selected cell. (Two cells are adjacent if they share an edge).
The game continues until all cells have been selected. Your goal is to let the sum of numbers
in the cells selected by you be strictly less than the sum of numbers in the cells selected by
the interactor.

Input/Output constraints: The first line contains t (1 ≤ t ≤ 100) test cases. Each test case
contains n and m (4 ≤ n,m ≤ 10). If the sum of numbers in the cells selected by you is not
strictly less than the interactor’s sum, you receive a Wrong Answer verdict.

Tags: constructive algorithms, games, graph matchings, greedy, interactive.

P.2 GENERATOR: PROCEDURAL PROBLEM CONSTRUCTION

The Generator is responsible for creating a unique, randomized game instance for each evaluation to
prevent data contamination and memorization. For the GridSum task, simply memorizing a strategy
is insufficient; the model must analyze the specific numerical layout.

The generator performs two key functions:

1. State Randomization: It generates a random permutation of numbers from 1 to N ×M and
maps them to the grid coordinates. This ensures that every game instance presents a novel
numerical landscape, forcing the model to perform calculation and planning dynamically.

2. Prompt Synthesis: It embeds this generated grid into a standardized natural language
template (similar to a Codeforces problem statement), explicitly defining the grid size, the
specific numbers in each cell, and the adjacency rules.

P.3 MONITOR: DETERMINISTIC GAME ENGINE AND OPPONENT

The Monitor acts as the deterministic game engine that enforces rules and simulates the opponent.
Unlike simple format checkers, it maintains the global game state—including the set of selected
cells S, the grid values G, and the cumulative scores (SumPlayer, SumSystem)—and executes the
following critical functions:

89

4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859

Under review as a conference paper at ICLR 2026

• Strict Adjacency Enforcement: The defining constraint of this Codeforces 3500 task is
that every newly selected cell (after the first move) must be orthogonally adjacent to at
least one cell in the set of previously selected cells S. The Monitor strictly validates this
topological constraint at every turn, rejecting any move that violates it.

• System Strategy Execution: The Monitor acts as the opponent (System). It calculates the
set of all currently valid moves based on the updated S and selects one (randomly in this
baseline implementation) to expand the territory, dynamically updating the system’s score.

• Outcome Determination: Upon game completion (when all cells are filled or maximum
turns are reached), the Monitor compares the final sums to deterministically judge the
winner.

P.4 EVALUATOR: MULTI-DIMENSIONAL GRADING

The Evaluator acts as a comprehensive diagnostic tool. Instead of simply checking the final output, it
parses the entire interaction history H to compute four critical metrics, providing a holistic view of
the model’s reasoning capability:

• Accuracy: It determines success by checking if the player achieved a strictly lower sum
than the system (SumPlayer < SumSystem) upon game completion, or if the system was
forced into a stalemate.

• Invalid Rate: It rigorously counts every instance where the model attempted an illegal
move (e.g., violating the adjacency constraint), distinguishing between "strategy failure"
and "rule violation."

• Pattern Analysis: It integrates an LLM-based analyzer to scan the model’s "Thought" trace,
quantifying specific reasoning behaviors such as Planning (looking ahead for low-value
cells) and Verifying (checking adjacency).

• Efficiency: It records the number of turns taken to achieve victory, penalizing failed attempts
with the maximum turn count.

Case P.1: GridGame Problem Template

Let’s play the Grid Game! Your task is to choose cells strategically to win.
Rules:
1. Game Setup:
- Grid size: {n}*{m}
- Grid already filled with numbers 1 to {n ∗m}
- Each number appears exactly once {grid_str}
2. Game Mechanics:
- Players take turns selecting unselected cells
- You move first
- Any cell chosen after first turn must be adjacent to a previously selected cell
- Cells are adjacent if they share an edge (up/down/left/right)
- Game ends when all cells are selected
- You win if your selected numbers sum < my sum
3. Adjacency Example:
For cell (2, 2):
- Adjacent cells: (1, 2), (2, 1), (2, 3), (3, 2)
- Diagonal cells like (1, 1) are not adjacent
- Must choose a cell adjacent to any previously selected cell
Query Type:
Format: “My Choice: x y”
where x is row (1 to {n}) and y is column (1 to {m})
Example Interaction:
You: “My Choice: 2 2”
- Selecting cell at row 2, column 2
Me: “My Choice: 2 3”
- Cell is adjacent to (2, 2)

90

4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913

Under review as a conference paper at ICLR 2026

You: “My Choice: 1 2”
- Cell is adjacent to (2, 2)
Instructions:
1. Make choices based on grid values
2. Use exactly the format shown above
3. Explain your reasoning before each choice
Remember:
- Use exact format: “My Choice: x y”
- Choose only adjacent cells after first turn
- First move can be any cell
- Keep track of both sums
- Plan moves to keep your sum smaller
- Invalid move = automatic loss
Ready to start? Make your first choice!

Algorithm 14 Monitor for GridGame
Require: User Input I , Selected Set S, Grid G, Scores SumP , SumS , Turn t, MaxTurns K
1: Regex: r"My Choice:\s*(\d+)\s+(\d+)"
2: if I matches Regex with (x, y) then
3: Cell← (x, y)
4: ▷ 1. Basic Validity Checks
5: if Cell /∈ G or Cell ∈ S then
6: return "Invalid", "Invalid cell choice"
7: end if
8: ▷ 2. Enforce Adjacency (Critical Constraint)
9: if S ̸= ∅ and ¬∃s ∈ S, IsOrthogonallyAdjacent(Cell, s) then

10: return "Invalid", "Cell must be adjacent to previous selection"
11: end if
12: ▷ 3. Update Player State
13: S.add(Cell)
14: SumP ← SumP +G[Cell]
15: ▷ 4. System Turn: Calculate Valid Moves
16: V alidMoves← {c | c ∈ G \ S and ∃s ∈ S, IsAdjacent(c, s)}
17: if V alidMoves = ∅ then
18: return "My Choice: x y", "I have no valid moves. You win!"
19: end if
20: SysMove← RandomChoice(V alidMoves)
21: S.add(SysMove); SumS ← SumS +G[SysMove]
22: ▷ 5. Check End Condition
23: if t == K then
24: if SumP < SumS then
25: return "My Choice: x y", "My Choice: SysMove\n You win!"
26: else
27: return "My Choice: x y", "My Choice: SysMove\n You lose!"
28: end if
29: end if
30: return "My Choice: x y", "My Choice: SysMove"
31: else
32: return "Invalid", "Invalid Format"
33: end if

91

4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967

Under review as a conference paper at ICLR 2026

Algorithm 15 Generator for GridGame
Require: Complexity Parameters N (Rows), M (Cols)
1: ▷ 1. Construct Randomized Game State
2: V alues← RandomPermutation([1, . . . , N ×M])
3: Grid← MapToCoordinates(V alues,N,M)
4: TotalTurns← (N ×M)/2
5: ▷ 2. Synthesize Natural Language Prompt
6: GridDescription← "Initial grid state:\n"
7: for i← 1 to N do
8: for j ← 1 to M do
9: GridDescription← GridDescription+ f"Cell (i, j): Grid[i, j]\n"

10: end for
11: end for
12: ProblemPrompt← FillTemplate(TaskDescription, GridDescription,N,M)
13: return (ProblemPrompt,Grid, TotalTurns)

Algorithm 16 Evaluator for GridGame
Require: Interaction History H , MaxTurns K, Final Scores SumP , SumS

1: Initialize Metrics:
2: Success← False
3: TurnCount← Length(H)
4: InvalidCount← 0
5: Patterns← {Associate : 0,Verify : 0, Plan : 0, Feedback : 0}
6: for each turn t in H do
7: Feedback ← H[t].Feedback
8: Thought← H[t].ModelThought
9: ▷ 1. Robustness: Count Rule Violations

10: if Feedback contains "Invalid" then
11: InvalidCount← InvalidCount+ 1
12: end if
13: ▷ 2. Cognitive Diagnosis: Extract Reasoning Steps
14: ▷ Calls external LLM analyzer to classify thought process
15: Patterns← Patterns+ AnalyzeReasoningPatterns(Thought)
16: ▷ 3. Outcome Verification
17: if Feedback contains "You win!" then
18: Success← True
19: else if t == K then ▷ Game ended normally
20: if SumP < SumS then
21: Success← True
22: end if
23: end if
24: end for
25: ▷ 4. Efficiency Calculation
26: Efficiency ← TurnCount if Success else K
27: InvalidRate← InvalidCount/TurnCount
28: return {Success, Efficiency, InvalidRate, Patterns}

92

	Introduction
	Overview
	Benchmark Construction
	Data Classification
	Dataset Construction
	Interactive Evaluation

	Experiment
	Experiment Setup
	Main Performance (RQ1)
	Turn Analysis (RQ2)
	Efficiency Analysis (RQ3)
	Invalid Operation Analysis (RQ4)
	Reasoning Pattern Analysis (RQ5)

	Related Work
	Conclusion
	Statement on the Use of LLMs
	Multi-Turn Reasoning Formulation
	Extended Discussion on Evolving Nature
	Automated Curriculum Learning (From Assessment to Training)
	High-Resolution Adaptive Evaluation
	Adversarial & Strategic Evolution

	The Inherent Necessity of Multi-Turn Interaction of Our Tasks
	Information Probing and Dynamic Adaptation
	State Operation
	Strategic Gaming

	Raw Data Statistics and Utilization
	Discussion on the upper limit of rounds
	Practical Considerations and Trade-offs.

	Detailed Experimental Settings
	Dataset and Sample Size
	Evaluation Setting and Rationale
	Inference Parameters
	Evaluation Metrics and Stability

	Limitations and Future Work
	Broader Impact
	Efficiency Analysis
	Number of Interaction Turns
	Token Consumption

	Human Performance Baseline
	Implementation Details of EvolArena
	Main Evaluation Loop
	Task-Specific Implementation Details
	Information Probing: Find the Impostors
	Dynamic Adaptation: Password Breaker
	State Operation: Maze Navigation
	Strategic Gaming: Knight Battle

	Taxonomy of Reasoning Failure Modes
	Task Introduction
	Information Probing
	Dynamic Adaptation
	State Operation
	Strategic Gaming

	Per-Task Results
	Grading Case Study of a Hard Task (Codeforces 3500)
	Task Logic
	Generator: Procedural Problem Construction
	Monitor: Deterministic Game Engine and Opponent
	Evaluator: Multi-Dimensional Grading

