Under review as a conference paper at ICLR 2026

EVOLARENA: AN EVOLVING ARENA FOR MULTI-TURN
REASONING IN LILLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in LLMs have shown promising results in complex reasoning tasks.
However, current evaluations predominantly focus on single-turn reasoning scenar-
ios, leaving interactive tasks largely unexplored. We attribute it to the absence of
comprehensive datasets and scalable automatic evaluation protocols. To fill these
gaps, we present EvolArena, an Evolving Arena for LLMs’ multi-turn reasoning
evaluation. Comprising 4 classes, 40 tasks, and 3600 instances, EvolArena covers
diverse reasoning capabilities, fine-grained difficulty granularity, and necessitates
multi-turn interactions with the environments. Moreover, EvolArena features fully-
automated framework spanning both dataset constructions and model evaluations,
which enables scalable assessment without human interventions. Experiments re-
veal that even the cutting-edge reasoning models fall short of multi-turn, interactive
reasoning tasks. And the further analysis upon these results brings valuable insights
for future research in interactive Al systems.

1 INTRODUCTION

With the emergence of reasoning-enhanced Large Language Models (LLMs), such as ol (Jaech et al.|
2024)) and R1 (DeepSeek-Al et al.l 2025), significant progress has been made in complex reasoning
tasks (Wei et al., 2022} Luo et al., 2024; |Ye et al.| [2025] |[Lightman et al.| [2024). However, most
current evaluations focus on single-turn reasoning in domains like mathematics (Cobbe et al., 2021}
Hendrycks et al.} 2021)), commonsense (Talmor et al.,[2019; [Zellers et al.,|2019), logic reasoning (Han
et al.} 2024} [Team et al., [2025b), and code generation (Jain et al., 2025} |Chen et al., [2021), which
do not reflect the interactive and iterative nature of real-world problem-solving. But multi-turn
reasoning is essential for practical reasoning performance. It enables long-term planning, allows for
feedback acquisition and reuse, and supports gradual problem solving through iterative refinement. A
key question thus arises: Can frontier LLMs maintain effective reasoning capabilities in dynamic,
multi-turn environments?

To answer this question, we require a rigorous evaluation framework that captures the dynamic and
iterative nature of reasoning. However, as summarized in Table[T] existing approaches fall short
of providing a comprehensive solution. Static benchmarks like CodeElo (Quan et al., [2025) and
LiveCodeBench Pro (Zheng et al.,|2025) predominantly focus on single-turn generation, neglecting
the essential capabilities of dynamic state tracking. While real-world agent benchmarks such as
AgentBench (Liu et al., 2024) and AgentBoard (Chang et al.| 2024)) introduce interactivity, they
largely assess application-specific skills (e.g., web browsing) within noisy environments and rely
on fixed datasets that are susceptible to contamination and saturation. Similarly, benchmarks from
the AI planning community (e.g., ACPBench (Kokel et al.l|2025)) often frame reasoning as static
question-answering rather than long-horizon exploration. Furthermore, interactive frameworks like
MT-Bench (Zheng et al.||2023) and GameArena (Hu et al}[2025) are limited by subjective scoring
(e.g., LLM-as-a-Judge) or scalability bottlenecks due to human involvement. These limitations
highlight the urgent need for a fully automated, deterministic, and evolvable framework dedicated to
evaluating pure multi-turn logical reasoning.

To bridge these gaps, we propose a novel multi-turn automated reasoning evaluation framework
designed to more accurately evaluate LLMs’ comprehensive capabilities in interactive environments.
The development of such a benchmark presents two primary challenges: (1) designing effective and
diverse multi-turn tasks that can measure the multi-dimensional reasoning capabilities of models and

Under review as a conference paper at ICLR 2026

Category Benchmarks Dynamic Interaction Deterministic Eval. Parametric Gen. Abstract Logic

Static Evaluation CodeElo (Quan et al.|[2025) v
¢ uato LiveCodeBench Pro (Zheng et al.}[2025) v
AgentBench (Liu et al.|[2024) v v
Real-world Agent AgentBoard (Chang et al.|[2024) v v
TRAC (He et al.||2023) v v
Al Planning ACPBench (Kokel et al.|2025) v v
ActionReasoningBench (Handa et al.{[2025) v v
MT-Bench (Zheng et al.|[2023) v
Interactive/Game ~ GameArena (Hu et al.[[2025) v
SPIN-Bench (Yao et al.[|[2025) v
Ours EvolArena v v v v

Table 1: Comparison of EvolArena with representative benchmarks. EvolArena uniquely combines
dynamic multi-turn interaction with infinite parametric generation in a deterministic environ-
ment, while focusing on abstract logical reasoning.

(2) establishing an evolving and automated interactive evaluation framework to facilitate scaling and
avoid saturation after model advancement (Perlitz et al.| [2024).

To address the first challenge, we focus on constructing tasks that inherently require multi-turn
reasoning, where each interaction step introduces new constraints or information that necessitates
iterative refinement of the model’s reasoning process. To achieve this, we manually collect and vali-
date a set of highly reasoning-intensive tasks from various sources for systematically evaluating four
fine-grained reasoning abilities: Inductive, Abductive, Deductive, and Planning Reasoning (Seel,
2011; Huang & Chang, 2023). Then for each task, we design a structured problem template that
explicitly defines interactive rules, format requirements, and example interactions demonstrating
valid exchanges. Through these templates, models are required to engage in active reasoning, gather
environmental feedback, and iteratively refine their reasoning process in order to accomplish the
given reasoning objective.

As for the second challenge, to enable scalable automated evaluation, we implement three components
- Generator, Monitor, and Evaluator, to construct an automated interactive evaluation framework.
The generator transforms each problem template into tasks of distinct difficulty levels while ensuring
solution feasibility through carefully controlled complexity parameters. With the generator, we
can smoothly control the difficulty of reasoning as models’ performance improves. The rule-based
monitor processes model queries through a two-stage validation system: it first checks query format
compliance, then provides rule-specific feedback for valid queries while monitoring whether the
given reasoning objectives are achieved. The evaluator assesses completed dialogues across multiple
dimensions to provide a comprehensive evaluation of models’ sustained reasoning capabilities.

Building upon these design principles, we present EvolArena, an evolving evaluation framework that
encompasses 40 distinct reasoning tasks designed to assess four reasoning abilities, with each task
calibrated across three difficulty levels. Through extensive empirical evaluation of 20 reasoning and
non-reasoning models, our analysis reveals that 03-mini demonstrates superior overall performance.
Our key findings indicate: (1) As the reasoning difficulty increases, even current frontier models
struggle significantly. (2) As the number of reasoning steps increases, the advantage of 03-mini over
other models becomes more pronounced, which indicates a potential optimization direction for the
open-source community. (3) Reasoning ability is not directly correlated with reasoning efficiency;
03-mini often requires more reasoning steps compared to QwQ-32B and R1 on questions where all
three models arrive at correct answers.

In summary, our main contributions are as follows:

* We introduce a high-quality benchmark specifically designed to assess models’ reasoning capabili-
ties in multi-turn interactive scenarios.

* We propose an automated framework for evolving multi-turn evaluation, capable of producing
problems with tunable complexity. This enables the benchmark to evolve alongside advances in
model capabilities.

* Our empirical findings reveal several critical limitations of current models in multi-turn reasoning
settings, offering valuable insights for future research directions.

Under review as a conference paper at ICLR 2026

Interactive Evaluation

Data Collection Data Classification Dataset Construction Find the Impostors:
.o . Predefined
AR cmgoncs \ g % '% g g
CODE % Generator 2 3 6
111’8100 Red‘uk A 7 —— Find the impostors among 6 players. You
- DESIOIIRD RIS | 2554 | can ask about 3 players at a time: "1"

CodeForces Information Probing v 3 Difficulty Levels means more impostors, "0" means fewer.

-Inductive Reasoning Find all impostor numbers to win.

— : Alnéht I'm ready. My Query: 1,2 3] @
d> nm Dynamic Adaptation. [> @ iontion
-Abductive Reasoning *v' Format Feedback '_’8,‘ g g More Impostors
-~ v" Query Feedback

Public Websites v' Termination Check [

This means there are more impostors in
State Operation players 1,2,3...My Query: 2,3,5
-Deductive R
-Deductive Reasoning % Evaluator @hg g‘ % Tess Tmpostors

oY
C:IY‘B v’ Accuracy [Thm means players 5 is not an impostor..] @
‘R Sfrafegic Gaming v Efficiency My Answer: 2.5.6
v' Invalid Rate % e
v’ Pattern Analysis Bg | Correct! g % g «
2 5 6

Figure 1: This figure represents the complete framework of our arena, from construction to evaluation.
It includes four modules: data collection, data classification, dataset construction, and interactive

evaluation. After the dataset is built, the evaluation system can perform automated multi-round
interactive evaluations and automatically increase the difficulty of the problems.

2 OVERVIEW

-Planning Reasoning

Prior Knowledge

In this section, we first propose our automated interactive framework that simulates real-world
reasoning scenarios. At its core, the framework enables a model to engage in multiple turns of
interactiorﬂ while maintaining consistent reasoning progress toward solving a given task. Formally,
our framework consists of three essential components, including generator, monitor and evaluator,
which can work together to create a controlled and automated evaluation environment:

Generator (P) creates interactive problems with controlled difficulty levels and corresponding
reasoning objectives. Formally defined as p, s = P(t,n,g,), where p represents the generated
problem, s defines the reasoning objective, ¢ specifies the problem template, n determines the
complexity level, and g,, encodes the corresponding problem parameters. We carefully design ¢ with
explicit interaction rules, format requirements and example interactions for each task.

Monitor (M) generates feedback and determines termination based on the model’s query, acting as
a deterministic, rule-based environment. The monitoring process can be formalized as: (m;, s;) =
M(t,q;,8i—1,8,I), where s;_1 and s; denote the conversation states at turns ¢ — 1 and ¢ respectively,
and m; represents the generated feedback for query ¢; based on template ¢. The interaction terminates
when either the target state s; = s is achieved or the maximum turn limit 7 is reached. For each query,
M first validates the legality of the query format, then determines whether the current conversation
should be terminated, and finally inputs m; as the response to the model.

Evaluator (E) assesses multi-turn interactions across multiple dimensions. Formally, e =
E(t,{(q1,m1), ..., (gr,mT)}), where T denotes the total turns and e encompasses a range of metrics
of accuracy, efficiency, invalid rate, and pattern analysis. Specifically,

* Accuracy (Acc) measures the proportion of successfully completed tasks. A task is considered
successful if and only if its final state s matches the task’s reasoning objective s. Formally,
Acc = % where C is the total number of tasks and S¢ is the number of successful tasks.

* Efficiency (Eff) evaluates relative solution efficiency by comparing turn counts on commonly
solved tasks between model pairs. For two models A and B, let C 4 g denote their set of commonly

Dcec,p I(Ta<Th)

[Casl ’
where T'§ and T'§ represent the turn counts for task ¢ by models A and B respectively, and I(-) is
an indicator function that equals 1 when the condition is true and 0 otherwise.

 Invalid Rate (IR) assesses the proportion of interactions containing invalid operations among all
interaction conversations. This metric not only measures the model’s ability to follow instructions
but also reflects its fundamental reasoning capability to infer valid operations from the current
environment. Formally, IR = N , where Ny is the number of interactions with invalid operations
and N is the total number of interactions.

solved tasks. The efficiency score of model A over B is computed as: Eff4 g =

' Our tasks involve multi-turn interactions for successful completion. See Appendix |§| for details.

Under review as a conference paper at ICLR 2026

Dynamic Adaptation

2 Find The Imposfors S Password Breaker S
,I/ Interaction Rules: \| ,I/ Interaction Rules: OO \|
I Find the impostors among n players. The number of impostors is between IThe password is a number between m and m+n (inclusive). After each
13/n and 2/3n. You can ask about 3 players at a time: "1" means more hyrong guess, the system changes the password using base-2 XOR

'imposlors, "0" means fewer. Find all impostor numbers to win.
¥ Format Requirements:
1 1. Ask about three players: "My Query: a,b,c"

1
1
Ioperati(ms between the current password and the guess, then maps the result:
to the range [m,m+n]. You need to obtain the current correct password. |
¥ Format Requirements: 1
12. Submit final answer: "My Answer: X;,X,,... X; "My guess: X" (where X is a number between m and m+n) 1
I'v' Example Interactions: (Answer: 1,2,3,4) v 'Example Interactions: (Answer: 2) 1
'You: "My Query: 1,2,3 " <->Me: "1"(means more impostors in this group) :You: "My Guess: 3" <-> Me: "Incorrect "(new password =2 XOR 3 = 1) :

1

| You: "My Query: 3,4,5 " <-> Me: "1"(means more crewmates in this gmup1 You: "My Guess: 5" <-> Me: "Incorrect "(new password = 5 XOR 1 = 4)
\You: "My Answer: 1,2,3.4 " <->Me: "Correct " 7 You: "My Guess: 4" <-> Me: "Correct " ’
N Ready to start? Make your first query! 4 » Ready to start? Make your first query! P4

i Maze Navigation
v Interaction Rules:

. Knight Battle t@ S
| ¥ Interaction Rules:

| Play as White Knight on n x n chessboard, starting at (x,y) against Black

I Knight at (p,q). Knights move in L-shape (2 squares in one direction, 1 sq
| Movement uses U(up), D(down), L(left), R(right) controls, but U/D and I uare perpendicular). Win by either capturing Black Knight or reaching tar
' L/R might be swapped. Hitting dangerous cells or moving outside grid get position (n/2,n/2) safely while staying within board boundaries.

\
| Navigate through a n x n maze from (1,1) to finish point (x,y). The grid :
1
1
1
, boundaries Ieads to game over. 1 | ¥ Format Requirements:
1
1
1
1
1

| contains normal cells ("."), finish cell ("F"), and dangerous cells ("*").

1 "My Move: x y" (new position coordinates)
| v/ Example Interactions:
! You: "My Move: 4 4" <-> Me: "6 3"(Black Knight's move)
U \ You: "My Move: 5 6" <-> Me: "5 1"(Black Knight's move)
\ Ready to start? Make your first move! o

Iv" Format Requirements:

"My Move: X" (where X is one of U, D, L, R)

: v Example Interactions:

yYou: "My Move: R" <->Me: "1 2"(new position coordinates)
S Ready to sta

Make your first move!

iy

| s Difficulty Level: Easy: n=6 Medium: n=8, Hard: =16

Figure 2: This figure illustrates examples of our four task types. Each task includes interaction rules,
query format requirements, and example interactions, with three levels of input difficulty.

 Pattern Analysis (PA) examines the model’s reasoning patterns across four categories: Associate
(associating with the original problem), Verify (reflecting and verifying the reasoning process),
Plan (strategically planning subsequent interactions) and Feedback (utilizing previous feedback for
reasoning). We analyze the occurrence count of each pattern in each interactive turn and calculate

PA; = ﬁ chzl Z;‘F; 7. ;» Where T, denotes the number of interaction turns for task ¢, and
c=1-"¢

ri ; represents the occurrence count of pattern J in the i-th turn of task c.

Through these components, our framework uses the Generator to create problems, facilitates interac-
tions between the Monitor and models, and ultimately employs the Evaluator to measure performance.

3 BENCHMARK CONSTRUCTION

In this section, we first introduce the task classification (@, and then explain how we construct each
problem (§3.2), finally we briefly discuss how the interactive evaluation occurs (§3.3)) in Figure/[T}

3.1 DATA CLASSIFICATION

To construct our dataset, we first collect seed tasks from various website% To facilitate a systematic
analysis of models’ reasoning capabilities, we categorize the public seed tasks into four predefined
classes as follows using GPT-40, with subsequent human validation ensuring classification accuracy.
While successful task completion generally requires a combination of various reasoning skills, each
predefined class is specifically designed to evaluate distinct aspects of reasoning capabilities.

* Information Probing (IP): It involves discovering hidden but fixed information. As shown in
Figure[2] in “Find the Impostors”, models determine the complete role distribution by querying
about different group compositions, with the monitor revealing each group’s majority type as clues.
In this task, models should progressively eliminate distractors to reach the answer.

Zhttps://codeforces.com/
3https://www.nytimes.com/
*Statistics and utilization of raw data are detailed in Appendix EI

Under review as a conference paper at ICLR 2026

* Dynamic Adaptation (DA): Unlike “Information Probing” where answers remain static, this
type involves answers that evolve according to deterministic transformation rules. As exemplified
in “Password Breaker”, each incorrect query triggers specific password modifications based on
predefined mechanisms. Success in this type requires models to accurately understand and apply
transformation rules to make informed and targeted queries.

» State Operation (SO): This category introduces hidden mechanics, distinguishing it from the
previous two categories. For example, in “Maze Navigation”, models are required to guide an
agent to a target location under an initially unknown control system. Success requires models to
rationally analyze the current situation and infer the hidden mechanism through appropriate actions,
then proceed with subsequent operations based on this understanding.

* Strategic Gaming (SG): It features adversarial two-player environments where task outcomes
depend on the dynamic interaction between model actions and system responseﬂ Taking “Knight
Battle” as an instance, models should strategically outpace the system to complete objectives,
requiring both competitive awareness and efficient execution.

By leveraging four distinct task categories, we comprehensively assess LLMs’ multi-turn reasoning
capabilities. Specifically, our framework focuses on the following essential types of reasoning.

* Inductive Reasoning: This involves forming general conclusions by identifying patterns from
specific observations (Han et al.l 2022} [Misra et al. 2022 |Yang et al., [2024b). For example,
in “Find the Imposters” of “Information Probing”, models need to gather evidence by querying
different group configurations, observe the majority role types within each group, and synthesize
these observations to infer the complete role distribution.

* Abductive Reasoning: This is the process of inferring the most plausible explanation from limited
or incomplete evidence (Seel, 201 1; Jung et al., 2022). In “Dynamic Adaptation”, where the correct
answer evolves according to predefined rules, models require to infer the current state of the target
answer based on a limited number of interactions.

* Deductive Reasoning: This refers to deriving specific conclusions through the application of known
rules or logical implications (Creswell et al., 2023} Saparov & Hel 2023)). In “State Operation”, for
instance, models should first infer hidden mechanisms from rule-based environmental feedback
and then apply those rules to perform correct reasoning.

* Planning: Success in our tasks crucially depends on multi-step planning capabilities (Valmeekam
et al., 2023} [Huang et al.|2022;|Ajay et al.,[2023)). This is particularly evident in “Strategic Gaming”,
where models should construct action sequences by anticipating future states and considering both
their moves and potential opponent responses.

3.2 DATASET CONSTRUCTION

After obtaining the categorized seed task sets, we select 10 representative tasks for each of the four
categories, yielding a total of 40 tasks that exhibit diverse interaction patterns and rule structures as
detailed in Appendix. Then, we manually convert the seed tasks into structured problem templates.
Based on these templates, we develop problem generators with three difficulty levels: “easy”,
“medium”, and “hard”. Each level corresponds to different values of n, the parameter that determines
the task complexity. We further implement monitors tailored to each task’s interactive rules, enabling
the system to extract model queries, provide real-time feedback, and detect conversation termination.
For evaluation purposes, we design task-specific evaluators that assess performance based on the
complete conversation history, employing metrics aligned with each task’s reasoning objective.

To calibrate difficulty levels, we evaluate task solvability using 03-mini across 10 problems for each n,
iteratively refining until difficulty gradient exhibits meaningful progression and reasonable feasibility.

Finally, we generate a comprehensive dataset comprising 30 distinct problems per difficulty level for
each of 40 tasks, resulting in a total of 3,600 evaluation instances. This structure enables robust and
fine-grained assessment of model performance across varying complexity levels.

3Our experimental results show that models struggle to achieve high accuracy even in simple scenarios with
random system actions, leading us to adopt random system responses as our evaluation baseline.

Under review as a conference paper at ICLR 2026

3.3 INTERACTIVE EVALUATION

As shown in Figure [2| the interaction process begins with the generator providing the problem to
the tested model while passing reasoning objective to the monitor. Upon receiving the problem, the
model generates response which is then sent to the monitor. The monitor extracts query from the
response, computes appropriate feedback, and returns it to the model. Based on the feedback, the
model adjusts its reasoning and continues responding. This iterative cycle repeats until the monitor
detects conversation termination conditions. Finally, the evaluator receives the complete conversation
history and analyzes it using various metrics.

To illustrate this process, let’s consider “Find the Impostors”. The generator first creates problems
across three difficulty levels by varying the parameter n. Along with each problem, it generates
reasoning objective in the form of binary sequences of length n, where 0 denotes impostors and 1
represents non-impostors (e.g., “000011” for n = 6).

During the interaction, the monitor validates model responses against two specific patterns: “My
Query: a, b, ¢’ and “My Answer: x1, T2, ..., . Any response not matching these patterns is rejected.
For valid queries in the format “My Query: a, b, ¢”, the monitor returns “1” if the specified positions
contain more impostors according to the answer sequence, and “0” otherwise. When the model
submits a final answer, the monitor responds with either “Correct” or “Incorrect” and terminates the
conversation if correct. Additionally, the monitor enforces a maximum round limit.

Upon conversation completion, the evaluator processes the entire dialogue history, determining
accuracy based on whether the final response received a “Correct” feedback, and calculates other
metrics as defined in Section 2l

The difficulty calibration process begins with initial testing using n = 6, 7, 8, generating 10 problems
with their reasoning objectives per difficulty level. When these values fail to produce sufficient
performance gradients, the generator iteratively tests different values until finding suitable ones (e.g.,
n = 6,9, 12). Once appropriate difficulty parameters are established, we proceed with large-scale
evaluation, generating 30 problems per difficulty level and testing them across all models.

4 EXPERIMENT

In this section, we conduct extensive experiments to evaluate various LLMs on EvolArena, guided by
the following research questions: - RQ1: How do current LLMs perform overall on our benchmark?
- RQ2: How does those LL.Ms performance vary under increasing reasoning turns? - RQ3: Does
superior performance equate to greater efficiency in the number of interactions? - RQ4: How do the
LLMs’ instruction following abilities and basic reasoning capabilities under multi-turn scenarios? -
RQS: Which reasoning patterns are relatively more important in multi-turn reasoning scenarios?

4.1 EXPERIMENT SETUP

Model Selection We evaluate both reasoning-enhanced LLMs and non-reasoning LLMs in our
experiments. Among the reasoning-enhanced models, we include o3-mini (Jaech et al., [2024),
DeepSeek-R1 (DeepSeek-Al et al.| [2025), QwQ-32B (Team, [2024), and DeepSeek-R1-Distilled
Series (DeepSeek-Al et al., 2025)). For non-reasoning models, we select GPT-40 (Hurst et al., 2024)),
Qwen-Max (Yang et al.| [2024a), Gemma-3 (Team et al., [2025a), Qwen2.5 (Yang et al., [2024a),
Llama-3.1 (Grattafiori et al.| [2024), and Mistral Series (Al [2025). This diverse selection of both
open-source and closed-source models ensures comprehensive coverage of current LLM capabilities
in multi-turn reasoning scenarios. [f|[

4.2 MAIN PERFORMANCE (RQ1)

We first present the overall results of models on four reasoning tasks of our datasets in Table 2] From
the results, we can observe the following conclusions:

* Impact of Task Difficulties: Across all models, performance decreases progressively from “easy”
to “medium” to “hard”. This demonstrates the rationality of our dataset’s difficulty stratification.

SFor all models, we limit the maximum number of turns to 15 due to the consideration in Appendix
See Appendix for the detailed experimental settings.

Under review as a conference paper at ICLR 2026

P DA SO SG AVG
Model E M H E M H E M H E M H E M H
Reasoning Model
©03-mini 60.33 41.56 2822 40.33 24.18 17.13 38.61 27.00 2022 85.00 74.44 59.17 56.07 41.80 31.19
RI 3922 2500 11.11 3458 23.11 1522 47.67 38.56 3278 73.00 62.67 57.67 48.62 37.33 29.19
QwQ-32B 53.56 28.22 19.00 38.33 2044 12.00 36.67 29.89 2533 70.00 56.33 46.00 49.64 33.72 25.58
R1-Distill-Llama-70B 3378 13.11 633 2550 11.00 5.67 1556 1078 7.89 61.11 44.17 28.89 33.99 19.76 12.19
RI1-Distill-Qwen-32B 2678 1011 322 1050 322 1.67 7.1 422 3.11 3944 2444 1528 2096 1050 5.82
R1-Distill-Qwen-7B 389 233 L1l 044 000 000 067 111 022 367 267 100 217 153 058
RI1-Distill-Qwen-1.5B 067 078 033 000 100 0.1 000 000 000 067 067 000 033 061 0.11
Non-Reasoning Model
GPT-40 2911 1056 6.89 22.92 1156 7.00 1973 15.11 11.56 42.22 30.56 22.78 28.50 16.94 12.06
Qwen-Max 3389 11.56 7.33 2742 17.67 8.11 2015 13.67 10.78 49.17 33.61 2250 32.66 19.13 12.18
gemma-3-27b-IT 3100 978 9.67 1892 9.67 633 1600 10.00 567 1689 472 5.15 2070 854 6.70
gemma-3-12b-IT 2478 833 456 1503 844 589 1222 456 356 1261 9.17 517 1616 7.63 479
gemma-3-4b-IT 1144 456 244 861 600 411 900 422 289 1067 233 067 993 428 253
Qwen2.5-72B-IT 3822 20.00 10.89 2322 1244 633 1478 11.00 7.89 41.50 32.78 26.67 29.43 19.06 12.94
Qwen2.5-32B-IT 3344 1467 1244 1969 1289 622 23.67 17.67 1444 42.00 25.00 19.76 29.70 17.56 13.22
Qwen2.5-7B-IT 2744 1144 367 1833 933 622 967 600 489 2267 1000 833 1953 919 578
Qwen2.5-1.5B-IT 222 011 022 644 433 078 944 089 133 17.67 14.67 1200 894 500 3.58
Llama-3.1-70B-IT 40.11 2122 11.89 23.81 1200 678 1678 1144 878 36.50 25.33 2072 29.30 17.50 12.04
Llama-3.1-8B-IT 22.67 1000 489 1358 578 4.67 1256 533 3.78 11.00 567 3.00 1495 6.69 4.08
Mistral-Small-24B-IT-2501 18.67 7.78 456 1792 622 500 19.56 10.00 678 2556 12.83 1228 2042 921 7.15
Ministral-8B-IT-2410 8.89 422 200 13.69 567 5.1 1667 1156 433 2133 533 867 1515 669 5.03
AVG 2701 1239 1277 1896 1025 622 1732 11.65 8.81 34.13 23.87 1878 24.36 14.63 10.34

Table 2: Model Accuracy on EvolArena. IT: Instruction-based models. IP: Information Probing.
DA: Dynamic Adaptation. SO: State Operation. SG: Strategic Gaming. E /M / H: Easy / Medium
/ Hard. The best results (column-wise) for reasoning and non-reasoning models are highlighted in
purple and red , respectively. Their second-best results are shown in bold. Tableshows accuracy
with 95% confidence intervals.

» Comparison Between Reasoning and Non-Reasoning Models: When comparing state-of-the-art
reasoning models (e.g., ol, R1) with non-reasoning models, it is evident that reasoning models sig-
nificantly outperform their non-reasoning counterparts. Notably, even smaller-parameter reasoning
models (e.g., QwQ-32B) surpass the strongest non-reasoning models within the same series (e.g.,
Qwen-Max). This highlights the necessity of enhancing reasoning capabilities in model design.

* Comparison Between Non-Reasoning Models and its Distilled Versions: Comparing the non-
reasoning and reasoning-specific version (e.g., R1-Distill) of the same model series shows nearly
equivalent performance. While R1-Distill excels in math and code-related tasks, it fails to generalize
effectively on our OOD tasks. This indicates that merely applying SFT distillation is insufficient to
generalize reasoning, underscoring the necessity of reinforcement learning (Kirk et al., [2024).

» Task-Specific Observations: A closer inspection of individual tasks reveals that while 03-mini
consistently outperforms other models, particularly in IP and SG, its performance is similarly
to QwQ-32B and R1 in DA and SO. The distinction of the two categories lies in the nature of
environmental feedback: in DA and SO tasks, the feedback is less straightforward, requiring models
to first correctly interpret the feedback before proceeding with their reasoning. This additional
interpretation and reasoning may deviate significantly from training distribution.

* Performance of Small Models: Models with fewer than 7B parameters achieve almost no mean-
ingful scores, further emphasizing the difficulty of our benchmark. Consequently, in subsequent
analyses, we will focus on models with 32B or more parameters.

4.3 TURN ANALYSIS (RQ2)

In this section, we analyze how the number of interaction turns affects model performance. Figure
illustrates the accuracy of five representative models across various tasks and difficulty levels, with
different numbers of interaction turns. Our analysis focuses on four key perspectives:

» Task-Specific Analysis: IP benefits the most from increased interaction turns. In contrast, for DA
and SO, additional turns do not always lead to significant performance gains. This suggests that
even current reasoning models are primarily strong in direct reasoning based on inductive inference,
but still weak in deductive and abductive reasoning, which rely on premise assumptions.

Under review as a conference paper at ICLR 2026

Information Probing - Easy Information Probing - Medium Information Probing - Hard

1.0 1.0 1.0
> > >
9 9 9
© © ©
< < <
30.5 30.5 30.5
o o o
]]]
< < <
0.0 5 7 9 11 13 15 0.0 5 7 9 11 13 15 0.0 5 7 9 11 13 15
Turns Turns Turns
Dynamic Adaption - Easy Dynamic Adaption - Medium Dynamic Adaption - Hard
20.50 20.50 20.50
I I]
< < <
3o.25 3o.25 3o.25
g g g
< < <
0.00 0.00 0.00
5 7 9 11 13 15 5 7 9 11 13 15 5 7 9 11 13 15
Turns Turns Turns
State Operation - Easy State Operation - Medium State Operation - Hard
Z0.50 Z0.50 Z0.50
« « «
£ £ =
3 H H
go.25 go.25 go.25
< < <
0.00 0.00 0.00
5 7 9 11 13 15 5 7 9 11 13 15 5 7 9 11 13 15
Turns Turns Turns
03-mini DeepSeek-R1 QwQ-32B GPT-40 Qwen-Max

Figure 3: Model accuracy v.s. interaction turns across different tasks and difficulty levels.

Infomation Probing Dynamic Adaption State Operation Stragetic Gaming
QWQ-B_ZB 50.5% 20.9% 28.5% 50.5% 20.6% 28.9% 21.8% 54.7% 23.5% 38.1% 43.4% 18.5%
vs 03-mini
R1 44.8% 224% 32.9% 55.7% 11.3% 33.0% 27.7% 55.7% 16.6% 22.2% 50.7% 27.1%
vs QwQ-32B
!‘1 53.8% 22.7% 23.5% 63.9% 8.2% 27.8% 25.0% 57.9% 17.1% 33.8% 45.7% 20.5%
vs 03-mini
o 25 50 75 100 0 25 50 75 100 O 25 50 75 100 O 25 50 75 100
Percentage (%) Percentage (%) Percentage (%) Percentage (%)
Less Tie More

Figure 4: Efficiency comparison of interaction turns between models on correctly-answered problems.
For each pair (A vs B), A is labeled as Less if it requires fewer turns than B, and More otherwise. A
higher proportion of Less indicates superior efficiency in problem-solving. And Table[3]shows the
specific average number of rounds of each model.

* Reasoning vs. Non-Reasoning Models: Overall, the accuracy improvement of non-reasoning
models with increasing turns is significantly lower than that of reasoning models. This indirectly
suggests that non-reasoning models are less effective in utilizing feedback in multi-turn dialogues.

* Comparison among Reasoning Models: We find that 03-mini does not have a clear advantage
across arbitrary numbers of turns, especially when the number of reasoning turns is small (e.g., 5).
However, as the number of turns increases, 03-mini demonstrates the most significant improvement
in accuracy, particularly in IP. This further underscores 03-mini’s strong abilities in leveraging and
integrating historical interaction information over multiple turns.

4.4 EFFICIENCY ANALYSIS (RQ3)

To further analyze the relationship between performance and efficiency, we conduct an analysis of
three reasoning modelsﬁ Specifically, we select a random sample of 100 problems that are correctly
answered by all three models for each task type. We then compare the number of interaction turns
required by each model pair to success, and calculate their efficiency scores defined in Section 2]

As shown in Figure 3] surprisingly, among the three models, 03-mini, which demonstrates the best
performance, is relatively the least efficient, while R1 achieves the highest efficiency. This suggests
that higher performance does not necessarily translate to better efficiency in terms of interaction
turns. Combined with the conclusions in Section .2] the superior performance of 03-mini does
not necessarily lie in its efficient reasoning. Instead, it may be more adept at long-term planning
compared to others, making reasonable use of feedback in each turn to tackle more complex tasks.

4.5 INVALID OPERATION ANALYSIS (RQ4)

To better understand the poor performance of current LLMs on our benchmark, we conduct a manual
review of model responses. Our analysis reveals that beyond limitations in long-term reasoning

8 A more detailed analysis is provided in Appendix

Under review as a conference paper at ICLR 2026

100

10

50

Invalid Rate (%)

25

10

«\\0‘ 5 2% 0% “1?’ 5% (B0 ot

N © xS XS oY 4O
< <> N

et (02 @ oo o (M z“ 2 1,“,51&“ 11.% 31?’,,1?’ e& 10?’ B (2% <

° iy %
0o® Ao O o a*® 0¥ 0 @ a® a5 “—z,‘> Ry \,
o O W G WY 06‘ e‘“ o v i o (el o \'o‘“ @\\

OO o o o 9 A% M oM o
R A S “\e‘a “\e" ‘1\\
W

Figure 5: Invalid rate across evaluated models. Larger rate indicates weaker instruction-following
and reasoning capabilities.

P DA SA SG
Model Ass. Ver. Pla. Fee. Ass. Ver. Pla. Fee. Ass. Ver. Pla. Fee. Ass. Ver. Pla. Fee.
QwQ-32B 11.1 69 2.3 72 11.6 7.7 2.7 6.2 10.0 52 39 55 87 54 4.1 3.1
Deepseek-R1 10.6 6.6 2.2 52 11.1 7.0 2.3 4.1 9953 3.8 3.7 7.0 4.1 3.1 19

R1-Distill-Qwen-32B 7.6 2.7 2.7 3.0 8.7 3.3 3.8 3.0 8229 3.5 43 81 28 40 29

Table 3: Pattern analysis on EvolArena. Ass.: Associate. Ver.: Verify. Pla.: Plan. Fee.: Feedback.

ability, a significant factor is the presence of “Invalid Operations” even in the best-performing models.
These invalid operations fall into two categories: instruction-following failures where models fail
to format queries according to format requirements, and operational failures where models cannot
perform legitimate operations (e.g., making out-of-bounds moves in “KnightBattle’), which often
requires basic reasoning capabilities. As shown in Figure [5] we can lead to the following conclusions:

* Overall, smaller models exhibit higher “Invalid Rate” (IR), particularly 1.5B-sized models which
struggle with basic operation validity, reflecting their limited instruction-following capabilities.

* Surprisingly, distilled models show higher IR than their original versions, suggesting that while
distillation may enhance reasoning, it potentially compromises stability in multi-turn interactions.

» Comparing state-of-the-art reasoning models with non-reasoning models, the former exhibit lower
IR, further confirming the superior capabilities of reasoning models in multi-turn scenarios.

4.6 REASONING PATTERN ANALYSIS (RQ5)

To gain deeper insights into the reasoning capabilities of models on our benchmark, we conduct a
reasoning pattern analysis on three open-source reasoning models. Specifically, using Qwen2.5-72B
as the analyzer, we measure the average per-turn frequency of four reasoning patterns: original
problem recall (Associate), error checking (Verify), strategic planning (Plan), and feedback analysis
(Feedback). The results are summarized in Table E], from which we draw the following conclusions:

* Stronger reasoning models QwQ-32B and R1 demonstrate superior capabilities in “Associate”,
“Verify”, and “Feedback” compared to R1-Distill-32B, indicating these three abilities are crucial
for multi-turn reasoning. Enhancement of these capabilities could potentially yield improvement.

* Although planning is essential for multi-turn tasks, the three models show similar planning frequen-
cies across most tasks. However, SG exhibits notably higher planning frequency, suggesting that
competitive scenarios inherently demand stronger strategic planning capabilities.

5 RELATED WORK

Static Evaluation of Reasoning. Early benchmarks for math (e.g., GSM8K (Cobbe et al., [2021]),
MATH (Hendrycks et all [2021))) and code (e.g., HumanEval (Chen et al.,2021), MBPP (Austin
et al.|[2021)) rely on static, single-turn evaluation. However, these face severe data contamination and
saturation risks. Studies like Performative Thinking (Palod et al., 2025)) suggest that long-CoT traces
in static tasks often reflect pattern matching rather than genuine reasoning. Even recent initiatives
like CodeElo (Quan et al., 2025) and LiveCodeBench Pro (Zheng et al., [2025) remain focused on the

Under review as a conference paper at ICLR 2026

final product of single-turn generation, neglecting the dynamic correction and state tracking inherent
in the reasoning process.

Real-world Agent Benchmarks. Benchmarks like AgentBench (Liu et al.| 2024) and Agent-
Board (Chang et al.l [2024) evaluate task execution in complex, noisy environments (e.g., OS and
Web). Unlike these application-focused benchmarks, EvolArena operates within closed, deterministic
environments to isolate intrinsic logical capabilities—specifically induction, deduction, and plan-
ning—from tool usage or environmental noise. Furthermore, while AgentBoard (Chang et al.| [2024)
relies on costly human annotation, EvolArena achieves fully automated assessment via procedural
generators.

Benchmarks for Reasoning about Actions and Planning. The Al planning community proposes
PDDL-based benchmarks like TRAC (He et al., [2023), ACPBench (Kokel et al.l [2025)), and Ac-
tionReasoningBench (Handa et al., [2025]) to test formal understanding of actions. However, these
are predominantly static question-answering tasks lacking long-horizon exploration. In contrast,
EvolArena does not require mastering formal planning semantics. Instead, it compels models to
operate in partially observable environments through dynamic multi-turn interaction, progressively
uncovering information to construct solutions, which better mirrors general reasoning processes.

Interactive and Game-based Benchmarks. Existing interactive benchmarks have limitations:
MT-Bench (Zheng et al.}[2023)) relies on subjective scoring, GameArena (Hu et al.| |2025)) is limited
by scale, and SPIN-Bench (Yao et al., [2025) focuses on social multi-agent settings. Conversely,
EvolArena targets single-agent logical reasoning against an environment. Critically, EvolArena
features “Evolvability”: driven by parametric generators capable of producing infinite instances, it
addresses the data contamination and overfitting issues inherent in fixed datasets.

6 CONCLUSION

In this paper, we present EvolArena, an evolving arena for evaluating LLMs’ multi-turn reasoning
capabilities. The benchmark comprises 40 diverse tasks across four reasoning categories with ad-
justable difficulty levels, supported by an evolving evaluation framework. Our extensive experiments
reveal both strengths and limitations of current LLMs in interactive reasoning, providing valuable
insights for future research in LLM evaluation.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we submit data and code in the supplementary material.
This includes the dataset and the source code for our automated evaluation framework (Generator,
Monitor, and Evaluator). The 40 tasks in EvolArena are constructed from publicly available seeds.
32 tasks originate from algorithmic problems on Codeforces (mean difficulty rating: 2453), and 8
are adapted from logic puzzles on the New York Times website. Each seed problem was manually
transformed into a novel interactive task by designing specific interaction rules and standardized
templates. Our publicly released code will include the generators developed for each task, which can
deterministically produce the 3,600 evaluation instances used in this paper, as well as new instances
with varying difficulty levels. Our evaluation environment is deterministic; for a given model and
input, the interaction process and outcome are fixed. All experiments were conducted using the
default inference parameters for each model (e.g., temperature=0.6, top-p=0.95 for R1) to ensure our
results reflect the models’ standard configurations. The complete experimental settings are provided

in Appendix

ETHICS STATEMENT

The research presented in this paper was conducted with a commitment to ethical standards and
responsible scientific practice. All tasks are derived from publicly available data sources: algorithmic
competition problems from Codeforces and logic puzzles from the New York Times website. No
private, sensitive, or personally identifiable information was used in the construction of this bench-
mark. The adaptation process focused on transforming the logic of these public problems into novel,
interactive formats. The primary goal of this work is to advance the scientific understanding of the

10

Under review as a conference paper at ICLR 2026

reasoning capabilities of LLMs in multi-turn, interactive scenarios. EvolArena is intended to serve as
a diagnostic tool for researchers and developers to identify strengths and weaknesses in Al reasoning,
thereby fostering progress in the field.

REFERENCES

Mistral Al https://mistral.ai/news/mistral-small-3. Hugging Face, 2025.

Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi S. Jaakkola, Joshua B.
Tenenbaum, Leslie Pack Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional foun-
dation models for hierarchical planning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=dyXNh5HLg3.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn IIm
agents. Advances in neural information processing systems, 37:74325-74362, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374,2021. URL https://arxiv,
org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168\

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL |https://openreview.net/forum?id=
3Pf3Wg60-Adl

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping
Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-rl: Incentivizing reasoning capability in
llms via reinforcement learning. CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948.
URL https://doi.org/10.48550/arXiv.2501.129438|

11

https://openreview.net/forum?id=dyXNh5HLq3
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://doi.org/10.48550/arXiv.2501.12948

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dabhle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alexander Wardle-Solano, Hannah
Szabd, Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor,
Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri, Wojciech
Kryscinski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex
Ying, Arman Cohan, and Dragomir Radev. FOLIO: natural language reasoning with first-order
logic. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL,
USA, November 12-16, 2024, pp. 22017-22031. Association for Computational Linguistics, 2024.
URL https://aclanthology.org/2024.emnlp-main.1229.

Simon Jerome Han, Keith James Ransom, Andrew Perfors, and Charles Kemp. Human-like property
induction is a challenge for large language models. In Jennifer Culbertson, Hugh Rabagliati,
Verénica C. Ramenzoni, and Andrew Perfors (eds.), Proceedings of the 44th Annual Meeting of
the Cognitive Science Society, CogSci 2022, Toronto, ON, Canada, July 27-30, 2022. cognitive-
sciencesociety.org, 2022. URL https://escholarship.org/uc/item/3w84qglsl.

Divij Handa, Pavel Dolin, Shrinidhi Kumbhar, Tran Cao Son, and Chitta Baral. Actionreasoningbench:
Reasoning about actions with and without ramification constraints. In /CLR, 2025. URL https:
//openreview.net/forum?id=NUDO3NBDOE.

Weinan He, Canming Huang, Zhanhao Xiao, and Yongmei Liu. Exploring the capacity of pretrained
language models for reasoning about actions and change. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4629—
4643, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2),2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Lanxiang Hu, Qiyu Li, Anze Xie, Nan Jiang, Ion Stoica, Haojian Jin, and Hao Zhang. Gamearena:
Evaluating LLM reasoning through live computer games. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL |https://openreview.net/forum?id=
SeQ8l8xolr.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association
for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 1049-1065.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.67.
URL https://doi.org/10.18653/v1/2023.findings-acl.67.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pp. 9118-9147. PMLR, 2022. URL
https://proceedings.mlr.press/v162/huang22a.htmll

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex
Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali,
Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya Kumar,
Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew
Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, An-
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital
Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben

12

https://aclanthology.org/2024.emnlp-main.1229
https://escholarship.org/uc/item/3w84q1s1
https://openreview.net/forum?id=NUD03NBDOE
https://openreview.net/forum?id=NUD03NBDOE
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=SeQ8l8xo1r
https://openreview.net/forum?id=SeQ8l8xo1r
https://doi.org/10.18653/v1/2023.findings-acl.67
https://proceedings.mlr.press/v162/huang22a.html

Under review as a conference paper at ICLR 2026

Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler,
Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright
Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright, Cary Bassin, Cary Hudson,
Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea
Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian
Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer,
Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, and Dane
Sherburn. Gpt-4o system card. CoRR, abs/2410.21276, 2024. doi: 10.48550/ARXIV.2410.21276.
URL https://doi.org/10.48550/arXiv.2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, An-
drey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen,
Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan
Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely,
David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Ed-
mund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan
Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Fran-
cis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas
Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao
Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung,
Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya. Ope-
nai ol system card. CoRR, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720. URL
https://doi.orqg/10.48550/arXiv.2412.16720.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free eval-
uation of large language models for code. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=chfJJYC31iL.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras, and
Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pp. 1266—1279. Association for Computational Linguistics,
2022. doi: 10.18653/V1/2022. EMNLP-MAIN.82. URL https://doi.org/10.18653/
v1/2022.emnlp-main. 82,

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of RLHF on LLM generalisation
and diversity. In The Tivelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=PXD3FAVHJT.

Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. Acpbench: Reasoning about
action, change, and planning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 26559-26568, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview,
net/forum?id=v8LOpN6EOi.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. In ICLR, 2024.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language

13

https://doi.org/10.48550/arXiv.2410.21276
https://doi.org/10.48550/arXiv.2412.16720
https://openreview.net/forum?id=chfJJYC3iL
https://doi.org/10.18653/v1/2022.emnlp-main.82
https://doi.org/10.18653/v1/2022.emnlp-main.82
https://openreview.net/forum?id=PXD3FAVHJT
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi

Under review as a conference paper at ICLR 2026

models by automated process supervision. CoRR, abs/2406.06592, 2024. doi: 10.48550/ARXIV.
2406.06592. URL https://doi.org/10.48550/arXiv.2406.06592.

Kanishka Misra, Julia Rayz, and Allyson Ettinger. A property induction framework for neural
language models. In Jennifer Culbertson, Hugh Rabagliati, Verénica C. Ramenzoni, and Andrew
Perfors (eds.), Proceedings of the 44th Annual Meeting of the Cognitive Science Society, CogSci
2022, Toronto, ON, Canada, July 27-30, 2022. cognitivesciencesociety.org, 2022. URL |https:
//escholarship.org/uc/item/6170hénj.

Vardhan Palod, Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Performative
thinking? the brittle correlation between cot length and problem complexity. arXiv preprint
arXiv:2509.07339, 2025.

Yotam Perlitz, Ariel Gera, Ofir Arviv, Asaf Yehudai, Elron Bandel, Eyal Shnarch, Michal Shmueli-
Scheuer, and Leshem Choshen. Benchmark agreement testing done right: A guide for LLM
benchmark evaluation. CoRR, abs/2407.13696, 2024. doi: 10.48550/ARXIV.2407.13696. URL
https://doi.org/10.48550/arXiv.2407.13696.

Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren,
Bofei Gao, Yibo Miao, Yunlong Feng, et al. Codeelo: Benchmarking competition-level code
generation of 1lms with human-comparable elo ratings. arXiv preprint arXiv:2501.01257, 2025.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=gFVVBzXxR2V.

Norbert M Seel. Encyclopedia of the Sciences of Learning. Springer Science & Business Media,
2011.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4149—
4158. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1421. URL
https://doi.org/10.18653/v1/n19-1421.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025a.

M.-A-P. Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, Kang Zhu, Minghao
Liu, Yiming Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixin Deng, Shian Jia, Sichao
Jiang, Yiyan Liao, Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, Dehua Ma, Yuansheng
Ni, Haoran Que, Qiyao Wang, Zhoufutu Wen, Siwei Wu, Tianshun Xing, Ming Xu, Zhenzhu
Yang, Zekun Moore Wang, Jun Zhou, Yuelin Bai, Xingyuan Bu, Chenglin Cai, Liang Chen, Yifan
Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun Huang, Yaoru Li, Yizhe
Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Tianyang Pang,
Zhongyuan Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Shanghaoran Quan, Yizhou Tan, Zili
Wang, Chenqing Wang, Hao Wang, Yiya Wang, Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin Yuan,
Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jinyang Zhang, Xiyue Zhang, Xingjian Zhang, Yue
Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun Li, Dayiheng Liu,
Qian Liu, Tianyu Liu, Shiwen Ni, Junran Peng, Yujia Qin, Wenbo Su, Guoyin Wang, Shi Wang,
Jian Yang, Min Yang, Meng Cao, Xiang Yue, Zhaoxiang Zhang, Wangchunshu Zhou, Jiaheng
Liu, Qunshu Lin, Wenhao Huang, and Ge Zhang. Supergpqa: Scaling LLM evaluation across 285
graduate disciplines. CoRR, abs/2502.14739, 2025b. doi: 10.48550/ARXIV.2502.14739. URL
https://doi.org/10.48550/arXiv.2502.147309.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. Hugging Face, 2024.

14

https://doi.org/10.48550/arXiv.2406.06592
https://escholarship.org/uc/item/6170h6nj
https://escholarship.org/uc/item/6170h6nj
https://doi.org/10.48550/arXiv.2407.13696
https://openreview.net/forum?id=qFVVBzXxR2V
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.48550/arXiv.2502.14739

Under review as a conference paper at ICLR 2026

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models - a critical investigation. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=X6dEgXIsEW.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
guage models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115,
2024a. doi: 10.48550/ARX1IV.2412.15115. URL https://doi.org/10.48550/arXiv,
2412.15115.

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik Cambria, Xiaodong Liu, Jianfeng Gao, and
Furu Wei. Language models as inductive reasoners. In Yvette Graham and Matthew Purver (eds.),
Proceedings of the 18th Conference of the European Chapter of the Association for Computational
Linguistics, EACL 2024 - Volume 1: Long Papers, St. Julian’s, Malta, March 17-22, 2024, pp.
209-225. Association for Computational Linguistics, 2024b. URL https://aclanthology.
org/2024.eacl-1long.13.

Jianzhu Yao, Kevin Wang, Ryan Hsieh, Haisu Zhou, Tianqing Zou, Zerui Cheng, Zhangyang Wang,
and Pramod Viswanath. Spin-bench: How well do llms plan strategically and reason socially?
arXiv preprint arXiv:2503.12349, 2025.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL |https://openreview.net/forum?id=
Tn5BoUdg3E.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluis Marquez
(eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4791-4800.
Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL https
//doi.org/10.18653/v1/pl9-1472.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlaol

Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
Stanley Wei, Hangyi Hao, Jianzhu Yao, Peiyao Sheng, Zixuan Wang, Wenhao Chai, Aleksandra
Korolova, Peter Henderson, Sanjeev Arora, Pramod Viswanath, Jingbo Shang, and Saining Xie.
Livecodebench pro: How do olympiad medalists judge LLMs in competitive programming? In
The Thirty-ninth Annual Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2025. URL https://openreview.net/forum?id=U5RIVFtatl.

15

https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2412.15115
https://aclanthology.org/2024.eacl-long.13
https://aclanthology.org/2024.eacl-long.13
https://openreview.net/forum?id=Tn5B6Udq3E
https://openreview.net/forum?id=Tn5B6Udq3E
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=U5RIVFtat1

Under review as a conference paper at ICLR 2026

A STATEMENT ON THE USE OF LLMsS

LLMs are the primary subject of the research presented in this paper. Our work is focused on the
development of a benchmark (EvolArena) to evaluate the multi-turn reasoning capabilities of various
LLMs. While LLMs are the object of our study, we clarify that they were not used as a significant
tool for research ideation or for the writing of this manuscript. The authors of this paper take full
responsibility for the contents of this work, including all claims made.

B MULTI-TURN REASONING FORMULATION

Let fy denote a LLM engaged in interactive reasoning. The model generates a sequence of queries
{q:}7, through iterative interaction turns. At each turn ¢, the model’s query generation process can
be formulated as:

¢ = fo(Ci) = fo(p,Hi-1) (1)

where C; represents the complete context at turn 4, p is the initial problem specification, H;, 1 =

{(gj, mj)};;ll denotes the interaction history, g; and m; are previous queries and their corresponding
feedback.

This formulation captures how the model leverages both the original problem and accumulated
evidence from previous interactions to inform its next query decision.

C EXTENDED DISCUSSION ON EVOLVING NATURE

In this section, we elaborate on the future potential of the “Evolving” mechanism within EvolArena.
While our current experiments demonstrate procedural extensibility and parameterized difficulty
scaling, we emphasize that the architecture of EvolArena—specifically the parameterized Generator
and the deterministic Monitor—serves as the necessary infrastructure to realize advanced forms of
adaptability. We detail this potential across three progressive levels:

C.1 AUTOMATED CURRICULUM LEARNING (FROM ASSESSMENT TO TRAINING)

This represents the most direct future application of the “Evolving” nature: transforming EvolArena
from an examination venue into a gymnasium for RL training.

e Problem: One of the major challenges in training reasoning agents is reward sparsity. If
tasks are too difficult, the model rarely succeeds and learns nothing; if tasks are too easy, the
learning is inefficient.

* Solution: Our framework addresses this by providing the three essential components of an
RL environment:
1. Environment: 40 diverse tasks provide a rich training ground.
2. Reward: The Monitor provides immediate, deterministic feedback (Success, Failure,
Invalid), serving as a perfect reward signal.
3. Curriculum: The Generator provides a tunable knob for difficulty (parameter n) that
can be adjusted smoothly.

e Implementation: An external “Curriculum Controller” can be constructed to observe the
model’s win rate at current difficulty n. If the win rate > 90%, the controller calls the
Generator to increase difficulty to n + 1; if < 10%, it decreases to n — 1. This ensures the
model always trains within its zone of proximal development, maximizing training efficiency
and the upper bound of reasoning capabilities.

C.2 HIGH-RESOLUTION ADAPTIVE EVALUATION

Beyond training, the concept of adapting to the agent’s capabilities is equally critical for evaluation.

16

Under review as a conference paper at ICLR 2026

* Problem: Static, one-size-fits-all benchmarks often suffer from low resolution. They
struggle to differentiate subtle differences between two strong models (e.g., 03-mini vs. R1)
that both solve “Hard” tasks, or distinguish between two weak models that both fail.

* Solution: Our evolving architecture supports model-contingent evaluation.

* Implementation: Instead of testing on fixed levels (e.g., n = 6,9, 12), the Evaluator can
dynamically adjust n:

— For a smaller model (e.g., 7B), the Evaluator starts at n = 4 and incrementally increases
difficulty until identifying the model’s capability inflection point (e.g., failure at n = 7).

— For a strong model (e.g., 03-mini), the Evaluator starts at n = 12 and evolves upward
ton = 13,14, 15..., probing its true capability ceiling.

* Value: This yields a high-resolution capability score (e.g., 03-mini achieves capability level
n = 15 on Task X), which is crucial for precisely measuring incremental model progress.

C.3 ADVERSARIAL & STRATEGIC EVOLUTION

This represents the frontier of the “Evolving” concept: the evolution of the benchmark itself.

* Problem: Models may overfit or game a benchmark by learning specific task heuristics
rather than general reasoning abilities.

* Solution: Our Generator is controlled not only by the difficulty parameter n but also by
problem parameters g,, (e.g., specific configurations).

* Implementation: We envision an “Adversarial Generator” that analyzes the failure logs
of a specific model (e.g., 03-mini) to identify specific strategic blind spots (e.g., consistent
failure in specific opening configurations of Knight Battle). The Generator then evolves to
specifically produce more of these instances that effectively counter the model’s current
strategy.

* Value: This facilitates a true co-evolutionary paradigm: as models evolve stronger capa-
bilities, the benchmark evolves more challenging problems. This allows EvolArena to
continuously expose the frontier defects of SOTA models.

In conclusion, while our current work demonstrates the initial stage of “Evolving” capabilities (i.e.,
procedural generation and parameterized scaling), the Generator-Monitor architecture constitutes
the core innovation. It not only solves the saturation crisis of current static benchmarks but, more
importantly, provides the viable technical foundation for true evolution—encompassing automated
curriculum learning, adaptive evaluation, and adversarial evolution. We have expanded the definition
of “Evolving” in this work from simple parameterized scaling to serving as the infrastructure for
adaptive assessment, training, and adversarial evolution.

D THE INHERENT NECESSITY OF MULTI-TURN INTERACTION OF OUR TASKS

A foundational design principle of EvolArena is that all 40 tasks mechanically enforce multi-turn
interaction and cannot be successfully completed in a single turn. We contend that a core component
of advanced reasoning involves a LLM’s ability to continuously interact with an environment to gather
information, verify hypotheses, and dynamically adjust its strategy. Our benchmark is specifically
engineered to evaluate this fundamental capability.

The design across all tasks is centered on an essential probe-observe-deduce loop, where a model
must first execute an exploratory action, then process the environment’s feedback, and only then can
it deduce the underlying rules or state required for effective planning. This principle makes multi-turn
engagement an inescapable necessity for success. This design philosophy is consistently applied
across our four task categories, as detailed below and verifiable in the task prompts in Appendix

D.1 INFORMATION PROBING AND DYNAMIC ADAPTATION

For tasks within these categories, the possibility of a single-turn solution is statistically infinitesimal.
The core mechanic is built upon an iterative feedback loop where the model must make a series of

17

Under review as a conference paper at ICLR 2026

queries to incrementally narrow down the solution space. A prime example is the “Word Guessing”
task; in the easy mode, the probability of correctly guessing a four-letter word in one attempt is
approximately (1/26)* ~ 0.000002188. Success is therefore contingent on the model’s ability
to process feedback over multiple turns—such as “Correct letter in correct position” or “Correct
letter but in wrong position”—to logically deduce the answer. The low accuracy scores achieved
by most models further validate this design, as only those with strong iterative multi-turn reasoning
capabilities, like 03-mini, demonstrate an ability to improve their chances of success.

D.2 STATE OPERATION

The design philosophy for all tasks in this category is centered on incomplete information, making
multi-turn interaction a prerequisite for understanding the environment. In tasks like “Maze Nav-
igation,” the system’s rules are deliberately obscured; for instance, the model is not informed if
directional controls like “up/down” and “left/right” are swapped. The model is thus forced to engage
in an exploratory phase over several turns, experimenting with actions and observing outcomes to
deduce the full set of hidden mechanics before a successful path can be planned and executed. This
requirement for empirical discovery through interaction is a consistent feature across all tasks in this
category.

D.3 STRATEGIC GAMING

In our strategic gaming scenarios, the task Generator is programmatically designed to ensure that a
one-move victory is impossible for either side. This guarantees that a strategic, multi-turn engagement
unfolds from the start. For example, in the “Knight Battle” task, the initial board positions for the
player’s White Knight and the system’s Black Knight are algorithmically set to prevent a capture or
a target-reaching move on the first turn. This forces the model to engage in a sustained exchange,
requiring it to plan several steps ahead while anticipating and reacting to the opponent’s moves over
multiple rounds.

E RAW DATA STATISTICS AND UTILIZATION

The initial seeds for the 40 tasks in EvolArena were sourced from two public websites.

* Codeforces: 32 tasks originate from algorithmic competition problems on Codeforces.
These problems have official difficulty ratings ranging from 1700 to 3500, with a mean
rating of 2453.13. This range signifies a high degree of difficulty, presenting a significant
challenge even for expert human programmers and ensuring the rigorous nature of our
benchmark.

* New York Times: The remaining 8 tasks are adapted from popular logic puzzles published
on the New York Times website.

It is crucial to note that we did not use these seed problems in their original, static form. Instead,
each seed was manually and meticulously adapted into a novel, interactive task requiring multi-turn
engagement. This comprehensive adaptation process involved three key steps:

1. Designing Interaction Rules: We deliberately designed a new set of interaction rules
for each original problem to transform it into a dynamic task that necessitates multi-turn
interaction for its solution.

2. Creating Question Templates: We manually created standardized question templates
for every task. These templates include a clear description of the interaction rules, strict
input/output format requirements, and illustrative examples of the interaction flow.

3. Developing Generators: Based on these structured templates, we developed corresponding
generators. These generators are capable of automatically producing numerous instances
of each task at varying difficulty levels, all of which can be evaluated by our automated
framework.

This structured process clarifies how we utilized existing data sources to construct the novel, interac-
tive challenges within EvolArena.

18

Under review as a conference paper at ICLR 2026

F DISCUSSION ON THE UPPER LIMIT OF ROUNDS

Evaluating Reasoning Efficiency. Setting an upper limit on interaction turns is a core element of
our evaluation philosophy, not merely a consideration of cost. We believe that efficient reasoning is a
key marker of advanced intelligence. Many real-world scenarios require problem-solving that is not
only correct but also completed within a finite number of steps. Therefore, by setting a cap, EvolArena
evaluates a model’s ability to solve problems efficiently under resource constraints, compelling it to
seek more concise and direct reasoning paths rather than engaging in endless trial and error.

Empirical Justification for the 15-Turn Cap. Regarding the sensitivity to the specific 15-turn
limit, our experimental results provide strong support. The analysis presented in Figure 3 of our paper
shows that for many tasks, performance gains tend to plateau around the 10-turn mark. This suggests
that the 15-turn limit provides sufficient exploratory space for models in most cases. Furthermore, we
observe a practical engineering constraint: beyond 15 turns, the accumulated conversation history
often causes models to exceed their maximum context length, which can lead to truncated outputs
that compromise the validity of the evaluation.

F.1 PRACTICAL CONSIDERATIONS AND TRADE-OFFS.

Finally, we acknowledge that this cap is also influenced by practical computational costs and repre-
sents a trade-off between evaluating efficiency and exploring the absolute limits of performance. This
limit may pose a challenge for “slow-thinking” models that require longer reasoning chains to arrive
at a solution.

G DETAILED EXPERIMENTAL SETTINGS

G.1 DATASET AND SAMPLE SIZE

The performance metrics reported in Table 2] represent the average performance over 300 distinct
samples for each of the four task categories: Information Probing, Dynamic Adaptation, State Opera-
tion, and Strategic Gaming. This sample set consists of 10 unique tasks within each category, where
each task comprises 30 distinct problem instances (10 tasks x 30 questions/task = 300 samples).
This scale provides a statistically robust foundation for our performance analysis.

G.2 EVALUATION SETTING AND RATIONALE

Our benchmark is intentionally designed for a zero-shot interactive setting, with the crucial clarifica-
tion that each task prompt includes a built-in, one-shot demonstration. As illustrated in Figure[2] the
“Example Interactions” section within each prompt provides an in-context example of a successful
dialogue. This example effectively serves as a single “shot” to guide the model on the required
interaction format and rules.

We deliberately opted against a traditional few-shot evaluation for two primary reasons stemming
from the multi-turn nature of our benchmark:

* Context Length Limitations: In multi-turn tasks, the accumulated conversation history
occupies a significant portion of the context window. Adding multiple, complete dialogue
examples for a few-shot setup would risk exceeding the context length limits of many
models, making a fair and practical evaluation challenging.

* Multi-Turn Evaluation Paradigm: Unlike static, single-turn tasks, multi-turn interactive
benchmarks like MT-Bench typically focus more on a model’s performance in a dynamic,
continuous dialogue rather than employing traditional few-shot configurations.

Therefore, our “zero-shot with a built-in demonstration™ approach is a deliberate design choice
tailored to the unique challenges of evaluating multi-turn reasoning.

19

Under review as a conference paper at ICLR 2026

G.3 INFERENCE PARAMETERS

For all experiments, we utilize the default inference parameters for each model as recommended
upon their public release. This approach ensures a fair and representative evaluation that aligns with
best practices. For instance, we evaluate the R1 model using a temperature of 0.6 and a top-p value
of 0.95.

G.4 EVALUATION METRICS AND STABILITY

We report pass@1 for our main results. Given that our evaluation environment is deterministic, the
interaction process and outcome are fixed for any given model and input, which makes pass@1 a direct
and reliable metric. To investigate potential performance variance while managing computational
costs, we conduct supplementary pass @ 16 experiments on the R1 model across four representative
tasks. The results, presented in Table 4} demonstrate minimal performance variance, which reinforces
the stability and reliability of our evaluation framework.

Category IP (%) DA (%) SO (%) SG (%)
Difficulty E M H | E M H|E M H|E M H
Std. Dev. |0.25 0.81 0.31]0.35 0.97 1.04]0.26 0.59 0.60|0.24 0.67 0.55

Table 4: Performance variance (standard deviation in %) for R1 on pass@ 16 experiments across four
task categories (E: Easy, M: Medium, H: Hard).

H LIMITATIONS AND FUTURE WORK

Our work provides a robust framework for evaluating multi-turn reasoning; however, it is essential to
acknowledge its limitations and outline directions for future research.

Closed-World Design and External Validity. EvolArena operates as a closed-world system with
highly structured environments and deterministic rules. This design contrasts sharply with ambiguous,
open-world problems that are characterized by incomplete information. We made this trade-off to
achieve full automation, objectivity, and reproducibility in our evaluations. Consequently, strong
performance on EvolArena indicates proficiency in structured reasoning but is not a direct measure
of a model’s ability to generalize to unstructured, real-world applications. Performance should be
viewed as a necessary, but not sufficient, condition for general reasoning ability.

Risk of Overfitting and Responsible Interpretation. There is a risk that models could achieve high
scores by “gaming” the benchmark—Ilearning techniques specific to its tasks rather than developing
general-purpose reasoning skills. While the diversity of 40 tasks across four categories mitigates this
risk by requiring a broad set of skills, the fundamental possibility remains. Therefore, EvolArena
should be used as a diagnostic tool rather than a definitive measure of general intelligence. Optimizing
solely for this benchmark may create excellent puzzle solvers instead of true general reasoners.

Interaction Modality. Another limitation is the structured, non-natural language interaction format
of EvolArena. This design was a deliberate choice to isolate and measure a model’s core logical
reasoning capabilities, separate from the complexities of natural language processing. The trade-off
is that our benchmark currently cannot assess a model’s ability to reason within a natural language
dialogue, which is a crucial skill for many real-world applications.

Future Work. To address these limitations, our future work will focus on bridging the gap between
our benchmark and real-world complexity. Key directions include: (1) Extending the framework to
support and evaluate reasoning within natural language interactions. (2) Introducing more complex
adversarial strategies to further challenge the models. (3) Utilizing EvolArena as a reinforcement
learning environment to train more powerful and generalizable reasoning agents.

20

Under review as a conference paper at ICLR 2026

I BROADER IMPACT

Our work on evaluating LLMs’ strategic reasoning through interactive tasks has implications beyond
just testing model capabilities. The evaluation framework provides an engaging and intuitive way to
understand how language models approach complex decision-making tasks. This could help bridge
the gap between technical Al research and public understanding, as this work offers a familiar context
for demonstrating both the capabilities and limitations of current Al systems. Additionally, the
insights gained from observing how models handle strategic planning and adaptation in interactive
environments could inform the development of more effective Al assistants for everyday problem-
solving tasks. We believe our approach of using structured tasks for evaluation could inspire similar
frameworks in other domains where step-by-step reasoning and strategic thinking are important.

J EFFICIENCY ANALYSIS

We evaluate model efficiency from two distinct perspectives: strategic efficiency, which measures the
number of interactions required to find a solution, and computational efficiency, which measures the
token cost of those interactions.

J.1 NUMBER OF INTERACTION TURNS

Our initial analysis used pairwise comparison win rates to intuitively demonstrate direct competition
between top models on identical problems. However, a more direct metric for strategic efficiency is
the average number of turns a model takes to correctly solve a problem. We present these statistics
in Table[5] These results align with the conclusions in body text: although 03-mini demonstrates
the strongest overall performance in terms of accuracy, it typically requires more turns to arrive at a
solution, making it the least strategically efficient among the top models.

Model 1P DA SO SG AVG
E M H E M H|E M H|E M H
o3-mini | 8.25 10.18 8.64[10.45 935 9.41|7.03 9.41 9.62|3.52 5.80 8.21| 8.97
R1 538 6.84 625|529 5.60 6.26|543 559 7.13|4.13 6.05 8.13| 6.94
QwQ-32B|7.57 577 5.79| 7.50 7.22 6.55|4.25 3.29 3.49|3.29 5.70 7.64| 5.87

Table 5: Average number of interaction turns on correctly solved problems.

J.2 TOKEN CONSUMPTION

To provide a more complete picture, we also analyze the computational efficiency by measuring
the average token consumption. Table [6] shows a comparison between R1 and QwQ-32B. The
data indicates that R1 is not only more strategically efficient (fewer turns) but is also significantly
more computationally efficient (lower token consumption) than QwQ-32B in most categories. This
dual-dimensional analysis provides a more comprehensive and nuanced view of model efficiency,
reinforcing body text’s conclusions.

Category |[A>=B (%) A<=B (%) A=B (%)
P 45.13 54.87 0.00
DA 35.05 64.95 0.00
SO 62.13 37.87 0.00
SG 31.13 68.87 0.00

Table 6: Token Consumption Comparison: R1 vs. QwQ-32B. A represents R1, and B represents
QwQ-32B.

21

Under review as a conference paper at ICLR 2026

K HUMAN PERFORMANCE BASELINE

Providing a human baseline is crucial for calibrating the difficulty of our benchmark. To offer this
perspective, we clarify that the majority of our seed tasks originate from the competitive programming
platform Codeforces. The problems we selected have established human difficulty ratings on this
platform, with a mean rating of 2453, a minimum of 1700, and a maximum of 3500. On Codeforces, a
rating of approximately 2400 corresponds to the “Master” tier, indicating that these tasks are designed
to be challenging even for highly skilled human experts. Therefore, these ratings serve as a strong
proxy for expert human performance and confirm that EvolArena is calibrated to assess reasoning on
tasks of significant difficulty.

L IMPLEMENTATION DETAILS OF EVOLARENA

To ensure full technical transparency and reproducibility, we provide the detailed algorithmic im-
plementation of our automated framework. This section covers the main interaction loop and the
specific logic for the Generator, Monitor, and Evaluator across representative tasks from each of the
four reasoning categories.

L.1 MAIN EVALUATION LOOP

The core of EvolArena is an automated pipeline that manages the interaction between the Large
Language Model (LLM) and the environment. Algorithm [T]outlines the process implemented in our
evaluation script.

Algorithm 1 EvolArena Main Evaluation Loop

Require: Model M, Task Template 7", Difficulty Parameter n, Max Rounds K
: Initialization:
(p, s) < Generator(T, n) > Generate problem instance p and reasoning objective s
H+ || > Initialize conversation history
State + InitialState(p)
Round + 1
while Round < K and —IsTerminated(State) do

Prompt < ConstructPrompt(p, H)

Response < M (Prompt) > Get model output
9: Query + Parse(Response)
10: (Feedback, State) < Monitor(T, Query, State, s) > Update state & get feedback
11: H.append(User : Query, System : Feedback)
12: Round < Round + 1
13: end while
14: Result + Evaluator(H, s) > Compute Accuracy, Efficiency, etc.
15: return Result

PRI R

L.2 TASK-SPECIFIC IMPLEMENTATION DETAILS

We provide the detailed implementation logic for the Generator, Monitor, and Evaluator across repre-
sentative tasks. These components ensure that the generated problems are solvable, the interactions
are deterministic, and the evaluations are rigorous.

L.2.1 INFORMATION PROBING: FIND THE IMPOSTORS

Generator:

22

Under review as a conference paper at ICLR 2026

1P DA SO SG AVG
Model E M H E M H E M H E M H E M H
Reasoning Model
03-mini 60.33 41.56 2822 40.33 24.18 17.13 38.61 27.00 20.22 85.00 7444 59.17 56.07 41.80 31.19

(£3.06) (£3.22) (£2.94) (£3.24) (+2.80) (£2.46) (£3.17) (£2.90) (£2.63) (23.71) (+4.41) (+4.82) (+3.30) (+3.33) (£3.21)

R1 39.22 2500 11.11 3458 23.11 1522 47.67 38.56 3278 73.00 62.67 57.67 48.62 37.33 29.19

(£3.12) (£2.83) (£2.05) (£3.13) (£2.76) (£2.35) (£3.26) (£3.18) (£3.07) (£5.03) (£5.48) (£5.60) (+3.64) (£3.56) (£3.27)

QwQ-32B 53.56 2822 19.00 38.33 2044 12.00 36.67 29.89 2533 70.00 56.33 46.00 49.64 33.72 25.58

(22.21) (£1.50) (£1.13) (£2.05) (£1.25) (£1.09) (£2.16) (£1.57) (£1.69) (24.09) (£3.14) (£2.77) (£2.63) (£1.87) (+£1.67)

R1-Distill-Llama-70B 3378 13.11 633 2550 11.00 5.67 1556 10.78 7.89 61.11 44.17 28.89 3399 19.76 12.19

(£3.09) (£2.21) (£1.59) (2.89) (x2.05) (x1.51) (£2.37) (£2.03) (£1.76) (£5.04) (£5.14) (£4.69) (+£3.35) (+2.86) (+2.39)

R1-Distill-Qwen-32B 26,78 10.11 322 1050 322 1.67 7.11 422 311 3944 2444 1528 2096 10.50 5.82

(£2.89) (£1.97) (£1.15) (£2.04) (x1.15) (0.84) (£1.68) (£1.31) (£1.13) (£5.06) (4.45) (£3.72) (+2.92) (+2.22) (x1.71)

R1-Distill-Qwen-7B 389 233 111 044 0.00 000 067 111 022 367 267 100 217 153 0.58

(£1.26) (£0.99) (£0.69) (£0.44) (x0.00) (£0.00) (£0.53) (£0.69) (£0.31) (£2.13) (x1.83) (x1.13) (£1.09) (£0.88) (+0.53)

R1-Distill-Qwen-1.5B 0.67 078 033 000 100 0.11 0.00 000 000 067 067 000 033 061 011

(£0.50) (£0.57) (£0.38) (£0.00) (£0.65) (£0.22) (£0.00) (x0.00) (£0.00) (£0.92) (£0.92) (x0.00) (£0.36) (£0.54) (+0.15)

Non-Reasoning Model

GPT-40 29.11 10.56 6.89 2292 11.56 7.00 19.73 15.11 11.56 42.22 30.56 22.78 28.50 16.94 12.06

(£2.90) (£2.01) (£1.66) (£2.78) (£2.09) (£1.67) (£2.60) (£2.34) (£2.09) (£5.11) (4.77) (£4.34) (£3.35) (+2.80) (x2.44)

Qwen-Max 33.89 11.56 733 2742 17.67 8.11 20.15 13.67 10.78 49.17 33.61 22.50 32.66 19.13 12.18

(3.01) (22.09) (£1.70) (£2.95) (£2.49) (£1.78) (£2.62) (£2.25) (£2.03) (£5.17) (+4.89) (£4.32) (+3.44) (£2.93) (+£2.46)

gemma-3-27b-IT 31.00 9.78 9.67 1892 9.67 633 16.00 10.00 5.67 1689 472 5.15 20.70 854 6.70

(£3.02) (£1.94) (£1.93) (£2.59) (£1.93) (£1.59) (£2.40) (£1.96) (£1.51) (23.77) (£2.19) (£2.49) (+2.95) (+2.01) (+1.88)

gemma-3-12b-IT 2478 833 456 1503 844 589 1222 456 356 1261 9.17 517 1616 7.63 479

(£2.82) (£1.81) (£1.36) (£2.36) (£1.82) (£1.54) (£2.14) (£1.36) (£1.21) (23.48) (£3.04) (£2.62) (+2.70) (2.01) (+1.68)

gemma-3-4b-IT 11.44 456 244 861 600 411 900 422 289 1067 233 067 993 428 253

(22.08) (£1.36) (£1.01) (£1.86) (£1.55) (£1.30) (£1.87) (£1.31) (£1.09) (23.50) (£1.71) (£0.92) (+2.33) (+1.48) (+1.08)

Qwen2.5-72B-IT 38.22 20.00 10.89 2322 1244 633 1478 11.00 7.89 41.50 32.78 26.67 2943 19.06 12.94

(23.18) (22.61) (£2.04) (£2.78) (+2.16) (£1.59) (£2.32) (£2.05) (£1.76) (24.85) (+4.65) (+4.41) (+3.28) (£2.87) (£2.45)

Qwen2.5-32B-IT 3344 14.67 1244 19.69 12.89 622 23.67 17.67 1444 42.00 25.00 19.76 29.70 17.56 13.22

(£3.08) (£2.31) (£2.16) (£2.63) (¢2.19) (£1.58) (£2.78) (+2.49) (+2.30) (+4.85) (+4.91) (£4.20) (£3.34) (+2.98) (¥2.56)

Qwen2.5-7B-IT 2744 1144 367 1833 933 622 9.67 6.00 489 2267 10.00 833 1953 9.19 578

(£2.92) (£2.08) (£1.23) (+2.58) (x1.90) (x1.58) (£1.93) (£1.55) (x1.41) (+4.75) (3.40) (£3.13) (£3.05) (+2.23) (+1.84)

Qwen2.5-1.5B-IT 222 011 022 644 433 078 944 089 133 17.67 14.67 1200 894 500 3.58

(20.96) (£0.22) (£0.31) (£1.64) (x1.33) (x0.57) (£1.91) (£0.61) (+0.75) (+4.32) (+4.01) (£3.68) (+2.21) (+1.54) (+1.33)

Llama-3.1-70B-IT 40.11 2122 11.89 23.81 12.00 6.78 16.78 11.44 878 36.50 2533 20.72 29.30 17.50 12.04

(£3.20) (£2.67) (£2.12) (+2.82) (+2.12) (x1.64) (£2.44) (+2.08) (+1.85) (+4.76) (+4.36) (+4.14) (£3.31) (+2.81) (2.44)

Llama-3.1-8B-IT 22.67 10.00 489 1358 578 4.67 1256 533 378 11.00 5.67 3.00 1495 6.69 4.08

(£2.74) (£1.96) (£1.41) (+2.28) (+1.53) (x1.38) (£2.17) (£1.47) (+1.25) (+3.55) (¥2.62) (£1.93) (+2.69) (+1.90) (+1.49)

Mistral-Small-24B-IT-2501 18.67 7.78 4.56 17.92 622 500 19.56 10.00 6.78 2556 12.83 12.28 2042 921 7.5

(£2.55) (£1.75) (£1.36) (£2.53) (x1.58) (x1.42) (£2.59) (£1.96) (+1.64) (+4.38) (+3.53) (¥3.57) (+3.01) (+2.21) (+2.00)

Ministral-8B-IT-2410 889 422 200 13.69 5.67 511 1667 1156 433 2133 533 867 1515 6.69 5.03

(£1.86) (£1.31) (£0.92) (£2.28) (£1.51) (£1.44) (£2.44) (£2.00) (£1.33) (24.64) (+2.55) (¢3.19) (+2.81) (£1.87) (+1.72)

AVG 27.01 1239 1277 1896 1025 622 1732 11.65 8.81 34.13 2387 18.78 2436 14.63 10.34

(£2.63) (£1.87) (£1.50) (£2.37) (x1.73) (£1.38) (£2.23) (+1.82) (£1.55) (£4.21) (¢3.55) (¥3.15) (£2.86) (+2.24) (x1.90)

Table 7: Model Accuracy with 95% confidence intervals on EvolArena.

Algorithm 2 Generator for Find the Impostors

Require: Total players IV, Existing Answers Set D

1
2
3
4:
5:
6
7
8
9

: loop
: A + RandomBinaryString(N) > 0: Impostor, 1: Crewmate
: Zeros < Count(A,’0”)
> Constraint: Impostors between N/3 and 2N/3

if N/3 < Zeros < 2N/3 and A ¢ D then

D.add(A)

return A
end if
: end loop

23

Under review as a conference paper at ICLR 2026

Monitor:

Algorithm 3 Monitor for Find the Impostors

Require: User Input 7, Hidden Sequence A

1

Regex (Query): r"My Query:\sx (\d+), (\d+), (\d+)"

2: Regex (Answer): r"My Answer:\s= ((?:\d+,)*\d+)"
3: if I matches Query format with indices P = {p1, p2, p3 } then
4: ImpostorCount < 3 p(1if Alp] =="0" else 0)
5: if ImpostorCount > 3 — ImpostorCount then
6: return "0" > Majority are impostors
7: else
8: return "1" > Majority are crewmates
9: end if
10: else if I matches Answer format with indices G then
11: PredictedA < IndicesToBinary(G)
12: if PredictedA == A then
13: return "1"
14: else
15: return "0"
16: end if
17: else
18: return "Invalid", "-1"
19: end if
Evaluator:

Algorithm 4 Evaluator for Find the Impostors

Require: Interaction History H, Ground Truth Sequence A

> 1. Metric: Invalid Rate (Instruction Following)

> 2. Metric: Pattern Analysis (Cognitive Process)

> 3. Metric: Accuracy (Final Outcome)

1: Initialize Metrics:
2: Success < False
3: TurnCount < Length(H)
4: InvalidCount < 0
5: Patterns < {Associate : 0, Verify : 0, Plan : 0, Feedback : 0}
6: for each turn ¢t in H do
7: Feedback <+ H|[t].SystemOutput
8: Thought < H|[t].ModelThought
9:
10: if Feedback == "-1"V Feedback == "Invalid Format" then
11: InvalidCount <+ InvalidCount + 1
12: end if
13:
14: Patterns < Patterns + LLM_Pattern_Analyzer(Thought)
15:
16: if t == TurnCount then
17: Query < H|[t].UserQuery
18: if Query starts with "My Answer:" then
19: SubmittedIndices < ParseAnswer(Query)
20: Truelndices < GetIndicesOfZeros(A)
21 if SubmittedIndices == Truelndices then
22: Success < True
23: end if
24: end if
25: end if
26: end for

27: InvalidRate < InvalidCount/TurnCount
28: return {Success, TurnCount, Invalid Rate, Patterns}

L.2.2 DYNAMIC ADAPTATION: PASSWORD BREAKER

Generator:

24

Under review as a conference paper at ICLR 2026

Algorithm 5 Generator for Password Breaker

Require: Base k, Group Index ¢
1: Min<+ix10+1
2: Max < Min+9
3: Peurr < Randomlnteger(Min, Max)
4: return Py, Min, Max

Monitor:

Algorithm 6 Monitor for Password Breaker

Require: Input I, Password P, Base k, Range [Min, Maz|
1: Regex: r"My Guess:\s* (\d+)"
2: if I matches Regex with guess GG then
3 if G < Min Vv G > Max then
4 return "Invalid"
5: end if

6: if G == P then

7.

8

9

return "Correct"

else

: Dp «+ ToBaseK(P, k)
10: D¢ <+ ToBaseK(G, k)
11: Dnew — []
12: for j <— 0 to max(len(Dp),len(D¢)) do
13: digit < (Dp[j] + Dc[j]) (mod k)
14: Dy .append(digit)
15: end for
16: Val < FromBaseK(Dnpew, k)
17: P+ (Val (mod (Max — Min + 1))) + Min > Update Hidden State
18: return "Incorrect”
19: end if
20: else
21: return "Invalid"
22: end if
Evaluator:

25

Under review as a conference paper at ICLR 2026

Algorithm 7 Evaluator for Password Breaker

Require: Interaction History H

. Initialize Metrics:

. Success < False

. SolvedAtTurn < None

. InvalidCount < 0

: Patterns < {Assoc : 0, Ver : 0, Plan : 0, Feed : 0}
: for t < 1 to Length(H) do

Feedback + Ht].SystemOutput

> Check for Invalid Rate

if Feedback == "Invalid" then

10: InvalidCount < InvalidCount + 1

11: end if

12: > Run Pattern Analysis
13: Patterns < Patterns + LLM_Pattern_Analyzer(H [t]. Thought)

14: > Check for Success (Can happen at any turn)
15: if Feedback == "Correct" then

16: Success < True

17: SolvedAtTurn <t

18: break > Stop counting turns after success for Efficiency
19: end if

20: end for

21: Ef ficiency < Solved AtTurn if Success else Length(H)

22: InwalidRate < InvalidCount/Length(H)

23: return {Success, E f ficiency, InvalidRate, Patterns}

L.2.3 STATE OPERATION: MAZE NAVIGATION

Generator:

Algorithm 8 Generator for Maze Navigation

Require: Grid Size N x M

. Grid < Initialize(N, M, "), Start < (0,0)
: loop

F + RandomPos(N, M)

if F' # Start then Grid[F] < 'F’; break
end if

: end loop

s fork <« 1to N x M//3do

P <+ RandomPos(N, M)

if Grid[P] == . then

10: Grid[P] < **’; Valid - DFS_CheckPath(Start, F, Grid)
11: if =V alid then Grid[P] < .

12: end if

13: end if

14: end for

15: Sup, Scr + RandomBool(), RandomBool()
16: return (Grid, Sup, SLRr)

RE ARl S

Monitor:

26

Under review as a conference paper at ICLR 2026

Algorithm 9 Monitor for Maze Navigation

Require: User Input I, Current Pos P, Grid G, Swap Flags S r, Sup
1: Regex: r"My Move:\s« ([UDLR])"
2: if I matches Regex with direction D then

if S,rand D € {L, R} then
D « Flip(D)

end if

if Syp and D € {U, D} then
D « Flip(D)

end if

Prew < P+ Delta(D)

3
4
5
6
7
8
9
10
11
12 if —=InGrid(Ppew) then
13: Prew < P
14: end if
15 Cell + G[Prew]
16 if Cell ==’ «’ then
17 return "My Move: D", "-1 -1 You lose!"
18 else if Cell == F’ then
19 return "My Move: D", "Pyew.Z Ppew.y You win!"
20
21
22

> Apply Control Swaps

> Check Boundaries

else
P <+ Phew > Update Agent Position
: return "My Move: D", "Ppcw.Z Ppew.y"

23: end if
24: else
25: return "Invalid", "Invalid format"
26: end if
Evaluator:

Algorithm 10 Evaluator for Maze Navigation

Require: Interaction History H, Max Turns K
1: Initialize Metrics:

2: Swuccess <— False

3: InvalidCount < 0

4: Patterns < InitializeCounts()

5: for each turn ¢t in H do

6: Feedback + Ht].SystemOutput

7:

8

9

if Feedback contains "Invalid" then
: InvalidCount < InvalidCount + 1
10: else if F'eedback == "-1 -1 You lose!" then

11:

12: InvalidCount < InvalidCount + 1
13: Success < False

14: break

15: end if

16:

17: Patterns < Patterns + LLM_Pattern_Analyzer(H [t]. Thought)

19: if Feedback contains "You win!" then
20: Success < True

21: break

22: end if

23: end for

24: return {Success, Turns Used, Invalid Rate, Patterns}

> 1. Invalid Rate: Capture both Format and Logic Errors

> Format Error

> Operational Error (Hit Obstacle)

> 2. Pattern Analysis

> 3. Check Success

L.2.4 STRATEGIC GAMING: KNIGHT BATTLE

Generator:

27

Under review as a conference paper at ICLR 2026

Algorithm 11 Generator for Knight Battle

Require: Board Size N

I: Tw + (N/2,N/2); Tg < (N/2+1,N/2)

2: loop

3: Py, P < RandomPos(N), RandomPos(N)

4
5 ifPW #PB and PW ¢ {TW,TB}and PB ¢ {TW,TB}then
6: break

7 end if

8: end loop

9: return (Pw,PB,Tw,TB)

> Constraint: Distinct positions, not on targets

Monitor:

Algorithm 12 Monitor for Knight Battle

Require: User Input I, Board B, Positions Posw , Posg, Targets Tw, T
1: Regex: r"My Move:\sx (\d+) \s+ (\d+)"
2: if I matches Regex with new white pos Py}, then
3 if —IsValidKnightMove(Posw , Pyy) then
4 return "Invalid", "Invalid knight move"
5: end if

6: Posw < Py

7.

8

9

if Posyw == Posp then
: return "Move: Py{;/", "White wins!"
10: else if Posw == Tw and —~UnderAttack(Posw , Posg) then

11: return "Move: Py{;", "White wins!"
12: end if
13:

14: Moves < GetValidLShapes(Posg)
15: if Moves is empty then

> Check White Win Conditions
> Capture
> Target Reached

> System (Black) Turn

16: return "Move: P;;", "White wins!"

17: end if

18: Posp + RandomChoice(M oves)

19: > Check Black Win Conditions
20: if Posgp == Posw then

21: return "Move: P{;,", "Black wins!"

22: else if Posp == T's and —~UnderAttack(Posp, Posw) then
23: return "Move: Pyy", "Black wins!"

24 end if

25: return "Move: P},", "Posp.x Posp.y"

26: else

27: return "Invalid", "Invalid format"

28: end if

Evaluator:

28

Under review as a conference paper at ICLR 2026

Algorithm 13 Evaluator for Knight Battle

Require: Interaction History H
1: Initialize Metrics:

2: Outcome < "Loss"

3: InvalidCount < 0

4: Patterns < InitializeCounts()
5: for each turn ¢ in H do
6:
7:
8:

Feedback + Ht].SystemOutput
> 1. Invalid Rate: Logic Constraint Violation

if F'eedback == "Invalid move" then
9: InvalidCount < InvalidCount + 1
10: Outcome < "Loss (Invalid)"
11: break
12: end if
13: > 2. Pattern Analysis (Focus on Planning)
14: Patterns < Patterns + LLM_Pattern_Analyzer(H [t]. Thought)
15: > 3. Check Win/Loss Conditions
16: if F'eedback == "White wins!" then
17: Outcome <+ "Win"
18: break
19: else if F'eedback == "Black wins!" then
20: Outcome < "Loss (Captured)"
21: break
22: end if
23: end for
24: Success < (Outcome == "Win")

25: return {Success, Turns Used, Invalid Rate, Patterns}

M TAXONOMY OF REASONING FAILURE MODES

To provide diagnostic insights beyond the quantitative “Invalid Rate,” we conduct a manual inspection
of 50 randomly sampled failure instances. Based on this analysis, we identify five distinct categories
of core reasoning failures. We formally introduce this taxonomy to better understand the cognitive
limitations of current models:

State Tracking Collapse In dynamic tasks, models often fail to maintain and update a coherent
environmental state across multiple turns. For instance, in Dynamic Adaptation (DA) tasks such
as Password Breaker, even after the Monitor returns “Incorrect” (signaling that the password has
changed via XOR rules), the model frequently continues to reason based on the outdated password
state from previous turns. This failure to update the internal belief state causes the entire subsequent
reasoning chain to derail.

Hasty Generalization This failure mode is prevalent in tasks that require an “explore-then-exploit”
strategy. Models often prematurely lock onto an incorrect global hypothesis before gathering sufficient
evidence to support the conclusion. For example, in State Operation (SO) tasks like Maze Navigation,
a model might verify only the U/D control swap and erroneously assume the L/R controls are normal
without testing. Subsequent planning based on this unverified assumption leads to inevitable failure.

Greedy & Myopic Planning This is commonly observed in Strategic Gaming (SG) tasks. Models
tend to select a “local optimum” for the current turn while ignoring that this move leads to a “global
worst-case” scenario in the near future. In Knight Battle, for instance, a model might choose a move
to capture a piece or check the opponent, failing to foresee that this specific position exposes it to an
unavoidable counter-attack or checkmate in the subsequent turns.

Inefficient Exploration This represents a strategic failure where models fail to employ optimal
search strategies (e.g., binary search) to maximize information gain within the limited horizon (e.g.,
15 turns). In Information Probing (IP) tasks like Find the Impostors, failing models often perform
redundant or overlapping queries (e.g., querying {1, 2, 3} followed immediately by {1, 2, 4}) rather
than querying disjoint sets (e.g., {4, 5,6}) to rapidly narrow down the possibility space.

29

Under review as a conference paper at ICLR 2026

Logical Constraint Violation This category transcends the simple formatting errors captured by
the “Invalid Rate.” Here, the model maintains correct syntax but violates the core logical constraints
of the task. For example, in Strategic Gaming (SG) (e.g., Knight Battle), a model might output
“My Move: 9 9”. While syntactically correct, this move is logically illegal on an 8 x 8 chessboard.
This indicates a defect in fundamental reasoning capabilities, such as the understanding of spatial
boundaries, rather than a failure in instruction following.

N TASK INTRODUCTION

We classify problems into four types based on their characteristics and testing capabilities: Information
Probing (IP), Dynamic Adaptation (DA), State Operation (SO), and Strategic Gaming (SG). Each
type contains 10 tasks that described in detail below.

N.1 INFORMATION PROBING

FindTheImpostors In this task, models need to identify all impostors among n players through
strategic queries about groups of three players. Models can make queries to compare impostors and
crewmates in specified groups, ultimately determining the complete set of impostors.

Case N.1: FindTheImpostors Problem Template

Let’s play Find the Impostors! Your task is to identify all impostors among n players.
Rules:

1. There are n players

2. Some players are impostors (k) and others are crewmates (n — k)
3. The number of impostors & is between 1/3n and 2/3n
Query Types:

1. Ask about three players:

Format: “My Query: a, b, ¢” (three different player numbers)
Response will be:

- 0: if there are more impostors than crewmates among these three
- 1: if there are more crewmates or equal numbers

- -1: if query is invalid

2. Submit final answer:

Format: “My Answer: x1, Zo, ..., Tt~

(k is number of impostors, followed by their indices)
Response will be:

- 0 if incorrect

- 1 if correct

Example interaction:

You: “My Query: 1,2,3”

Me: “0” (means more impostors in this group)

You: “My Query: 3,4,5”

Me: “1” (means more crewmates in this group)

You: “My Answer: 1,2,3,4”

Me: 1 (if correct)

Instructions:

1. You must explain your reasoning before each query

2. Format your responses exactly as shown above
Remember:

- Player numbers must be between 1 and n

- All three numbers in a query must be different

Ready to start? Make your first query!

Case N.2: FindTheImpostors Difficulty Levels

Easy: n = 6, Medium: n = 9, Hard: n = 12

30

Under review as a conference paper at ICLR 2026

GuessMax In this task, models need to discover a hidden password by querying maximum values
from specific positions in an array. The password consists of maximum values from complementary
position sets defined by given exclusion rules.

Case N.3: GuessMax Problem Template

Let’s play Guess The Maximums!

Rules:

1. Hidden array A[1...50] contains numbers from 1 to 50
2. You need to guess n numbers forming the password

3. For password position ¢, you are given .S; = subset of positions to exclude
4. Password[i] = max value among all positions EXCEPT those in S;
Your subsets are:

{subset desc}

Password Example:

Forx =4, n = 2, if:

S1={1,3}, 52 ={2,4}

And hidden array A = [3, 1, 2, 4]

Then:

- Password[1] ignores positions 1, 3 (S7)

Solooks at A[2] =1, A[4] =4

Password[1] = 4

- Password[2] ignores positions 2, 4 (S2)

So looks at A[1] = 3, A[3] =2

Password[2] = 3

Therefore, the answer is “4 3”.

Query Types:

1. Make a query:

Format: “My Query: x1 2 ... ;"

where:

- x; = positions you want to query (1 < m < 50)

- You’ll receive the maximum value at these positions

2. Submit final answer:

Format: “My Answer: pj pa ... pn”

where:

- p; = your guess for each password slot

- You’ll receive “Correct” or “Incorrect”

Simple Example Interaction:

Given: t =4, n = 2,5 = {1,3}, S2 = {2,4}, A = [3, 1, 2, 4](hidden), Answer = [4, 3](hidden)
You: “My Query: 2 4”

Me: “4”

You: “My Query: 137

Me: “3”

You: “My Answer: 4 3”

Me: “Correct”

Instructions:

1. Make queries based on previous results

2. Use exactly the formats shown above

3. Explain your reasoning before each query

Remember:

- Each query reveals maximum value at specified positions
- Password digits come from complementary position sets
- Think carefully about which positions to query

Ready to start? Make your first query!

Case N.4: GuessMax Difficulty Levels

Easy: n = 7, Medium: n = 10, Hard: n = 16

31

Under review as a conference paper at ICLR 2026

CircleFinding In this task,models need to discover a hidden circle’s parameters (center coordinates
and radius) through ray-shooting queries from the origin. Models can make queries in the format “My
Query: x4 y,” to shoot a ray through any specified point, receiving the minimum distance from the
ray to the circle (0.0 if the ray intersects). Through geometric reasoning and strategic ray placement,
models should determine the circle’s exact position and size, submitting their answer in the format
“My Answer: T, Ye e

Case N.5: CircleFinding Problem Template

Let’s play Circle Finding Game! Your task is to discover a hidden circle on a plane through
ray-shooting queries.

Rules:

1. There is a hidden circle with center (z., y.) and radius 7.
2. All parameters are integers and |x.|, |y.|, |7¢| < {n}

3. The radius r satisfies: 1 < r. < /22 +y2 —1

4. You can shoot rays from origin (0, 0) through any point (x4, y4) you specify
Query Types:

1. To shoot a ray:

Format: “My Query: (z4,%q)”

where:

- Ty, Yq are integers with |z4], |y, < {n}

- At least one of x, or y, must be non-zero

Example: “My Query: 0 -10”

You’ll receive the minimum distance from the ray to the circle
(0.0 if the ray intersects the circle)

2. To submit final answer:

Format: “My Answer: x. y. 1.’

where x., Y., . are the circle’s parameters

Example: “My Answer: 20 10 10”

You’ll receive the correctness of your answer.

Instructions:

1. Make queries based on previous results

2. Use exactly the formats shown above

3. Explain your reasoning before each query

4. All distances are precise to 10710

Remember:

- Circle parameters are integers

- Rays start from origin (0, 0)

- Think carefully about ray directions

- Use geometric properties to deduce circle location

- Distance is 0 when ray intersects circle

Ready to start? Make your first query!

Case N.6: CircleFinding Difficulty Levels

Easy: n = 200, Medium: n = 1000, Hard: n = 1500

BitCompare In this task, models need to find two positions in a hidden permutation of numbers
that will yield the maximum XOR value when combined. Models can make queries in the format
“My Query: a b c d” to compare the bitwise OR results of different positions, receiving “<”, “=" or “>”
as responses, and ultimately submit their answer in the format “My Answer: ¢ 7”. Through strategic

querying, models should determine which two positions will produce the largest XOR value.

Case N.7: BitCompare Problem Template

Let’s play Bitwise Comparison Game! Your task is to find two positions in a hidden permutation
that maximize their XOR value.

Rules:

1. There is a hidden permutation of {n} numbers (0 to {n — 1})

32

Under review as a conference paper at ICLR 2026

2. Each position contains a unique number from 0 to {n — 1}
3. You can make comparison queries between OR operations:
- Each query compares (a | b) with (¢ | d)

- | denotes bitwise OR operation

99 G699

- You’ll receive “<”, “=", or ‘“>” as response

Query Types:

1. To make a comparison query:

Format: “My Query: a b ¢ d”

where:

- a, b, c,d are positions in array (0-based indexing)
Example: “My Query: 023 17

Response will be one of: “<”, “=", “>”

2. To submit final answer:

Format: “My Answer: ¢ j”

where ¢ and j are the positions with maximum XOR value
Example: “My Answer: 3 2”

Instructions:

1. Make queries based on previous comparisons

2. Use exactly the formats shown above

3. Explain your reasoning before each query
Remember:

- All positions contain unique numbers from 0 to {n — 1}
- Position indices start from 0

- Think carefully about which positions to compare

- Use your queries wisely to find maximum XOR pair
Ready to start? Make your first query!

Case N.8: BitCompare Difficulty Levels

Easy: n = 5, Medium: n = 7, Hard: n = 9

TreeDiscovery In this task, models need to discover the structure of a hidden tree through strategic
path queries. For each query, models specify two disjoint vertex sets and a target vertex, receiving the
number of paths between vertices from these sets that pass through the target vertex.

Case N.9: TreeDiscovery Problem Template

Let’s play Legendary Tree! Your task is to discover the structure of a hidden tree through strategic
queries.

Rules:

1. There is a hidden tree with n vertices (numbered 1 to n)
2. You can ask questions to discover the tree’s structure

3. For each question, you need to specify:

- Set S: A group of vertices (at least one vertex)

- Set T": Another group of vertices (at least one vertex)

- Vertex v: Any vertex you choose

Note: .S and 7" must not have any common vertices

Query Types:

1. To make a query:

Format: “My Query: S | T'| v” where:

- S is your first set of vertices (space-separated numbers)

- T is your second set of vertices (space-separated numbers)
- v is the vertex you want to check

Example: “My Query: 121312~

Response:

You will receive the number of vertex pairs (s, t) where:

- s is from set S

-t is from set T’

33

Under review as a conference paper at ICLR 2026

- The path from s to ¢ passes through vertex v

2. To submit final answer:

Format: “My Answer: edge; edges ...” where each edge is “u-v”
Example: “My Answer: 1-2 2-3”

Example Interaction:

You: “My Query: 121312”

Me: “2” (meaning 2 paths through vertex 2)

Instructions:

1. Use queries to gather information about the tree

2. Format your queries exactly as shown above

3. Think carefully about which vertices to select
Remember:

- Sets .S and 7" must be non-empty and disjoint

- Use your queries wisely to gather maximum information
- Each edge in final answer should appear exactly once
Ready to start? Make your first query!

Case N.10: TreeDiscovery Difficulty Levels

Easy: n = 5, Medium: n = 6, Hard: n =7

LinkedListQuery In this task, models need to find a specific value in a sorted linked list through
strategic queries. Models can query values and next pointers at specific positions to explore the list
structure and determine the target value.

Case N.11: LinkedListQuery Problem Template

Let’s play Linked List Query Game! Your task is to find a specific value in a sorted linked list
through queries.

Rules:

1. There is a hidden sorted linked list with n elements

2. Each element has a value and a next pointer (pointing to the next element’s index)
3. You can make two types of queries:

- VALUE query: you will get both value and next pointer at position ¢
- ANSWER submission: you will get a feedback of “Correct” or “Incorrect”
Query Types:

1. To make a value query:

Format: “My Query: ¢~

where:

- % is the position in list (1-based indexing)

Example: “My Query: 17

2. To submit final answer:

Format: “My Answer: ans”

where ans is either:

- The minimum value in the list

Example: “My Answer: 80"

Example Interaction:

List length = n, start =3, z = 80

You: “My Query: 17

Me: “value=97, next=-1"

You: “My Query: 3”

Me: “value=16, next=2"

You: “My Answer: 80”

Me: “Correct”

Instructions:

1. Make queries to explore the linked list

2. Use exactly the formats shown above

3. Explain your reasoning before each query/answer

34

Under review as a conference paper at ICLR 2026

Remember:

- Following next pointers, values are in increasing order
- You need to find minimum value of the list

- Position indices start from 1

- Think carefully about which positions to query

Ready to start? Make your first query!

Case N.12: LinkedListQuery Difficulty Levels

Easy: n = 5, Medium: n = 9, Hard: n = 11

MedianQuery In this task, models need to find specific positions in a hidden permutation through
queries about subsequence medians. For each query, models specify positions to examine and receive
the two middle values, ultimately locating target values in the permutation.

Case N.13: MedianQuery Problem Template

Let’s play Median Query Game! Your task is to find specific positions in a hidden permutation
through median queries.

Rules:

1. There is a hidden permutation p of length n (numbers 1 to n)

2. You can make queries about subsequences of even length

3. Each query returns the two middle values (medians) of your chosen subsequence

4. Your goal is to find positions of values {rn//2} and {n//2 + 1}

Query Types:

1. To make a query:

Format: “My Query: k 1 T2 ... Tk
where:

- k is the length of subsequence (even number, 4 < k < n)

- x1 to xy, are distinct positions (1-based indexing)

Example: “My Query: n123456”

Response will be two numbers: the k/2-th and (k/2 + 1)-th smallest values in the subsequence
2. To submit final answer:

Format: “My Answer: ¢ j”

where ¢ and j are positions of values {n//2} and {n//2 + 1}

Example: “My Answer: 3 6”

Instructions:

1. Make queries based on previous results

2. Use exactly the formats shown above

3. Explain your reasoning before each query

Remember:

- The permutation contains numbers 1 to n exactly once

- Position indices start from 1

- Think carefully about which subsequences to query

- Use your queries wisely to locate the target positions

- Order of positions in final answer doesn’t matter

Ready to start? Make your first query!

i)

Case N.14: MedianQuery Difficulty Levels

Easy: n = 6, Medium: n = 8, Hard: n = 15

MinMax In this task, models need to find positions of minimum and maximum elements in a
hidden array through pairwise comparison queries. Each query reveals the relative ordering of two
elements, helping deduce the extreme values’ locations.

35

Under review as a conference paper at ICLR 2026

Case N.15: MinMax Problem Template

Let’s play Find Min Max! Your task is to find the minimum and maximum elements in a hidden
array.

Rules:

1. You are given an array of length n, but you cannot see its elements
2. You can only compare two elements by their positions (¢ and 7)

3. After each comparison, you’ll receive one of these responses:

- “<”: element at position ¢ is less than element at position j

- “=": element at position ¢ equals element at position j

- “>”: element at position % is greater than element at position j
Example:

If we have an array of length 3:

- Query “1 2” would get:

“>” (means element at position 1 is greater than element at position 2)
- Query “2 3” would get:

“<” (means element at position 2 is less than element at position 3)
Query Types:

1. Ask about comparison:

Format: “My Query: ¢ j” (¢ and j are positions to compare)
Response will be “<”, “="or “>"

2. Submit final answer:

Format: “My Answer: ! ¢ 37 (where ¢ is minimum position, j is maximum position)
Response will be:

- 1 if correct

- 0 if incorrect

Instructions:

1. You must explain your reasoning before each query

2. Format your responses exactly as shown above

3. You can only compare two different positions at a time
Remember:

- Positions must be between 1 and 6

- Choose comparisons wisely to minimize queries

Ready to start? Make your first query!

Case N.16: MinMax Difficulty Levels

Easy: n = 5, Medium: n = 6, Hard: n =7

WordGuessing In this task, models need to discover a hidden n-letter word through strategic
guesses. Each guess receives feedback indicating correct letters, misplaced letters, and wrong letters,
helping narrow down the target word.

Case N.17: WordGuessing Problem Template

Let’s play Letters Finding! Your task is to guess a n-letter English word.
Rules:

1. You must provide exactly ONE n-letter English word as your guess
2. After each guess, you’ll receive feedback using these symbols:

- R: Correct letter in the correct position

- G: Correct letter but in the wrong position

- W: Wrong letter, not in the word

Example:

If the target word is ABCDUVWZGHIJ

- Guess ACEFOPQMKLLM would get: RGWWWWWWWWWW
(A is correct position, C is correct but wrong position, rest are wrong)
Query Type:

1. Make a guess:

Format: “My Guess: [YOUR n-LETTER WORD]”

36

Under review as a conference paper at ICLR 2026

Response will be:

- A n-character string using R, G, and W

- R: right letter, right position

- G: right letter, wrong position

- W: wrong letter

Instructions:

1. Make your guess based on previous feedback (if any)
2. Guess only one word at a time

3. Give your reasoning process before each guess
Remember:

- Each guess must be exactly n letters long

- The same letter can appear multiple times

- Guesses need not be real English words

- Use feedback wisely to deduce the target word
Ready to start? Make your first query!

Case N.18: WordGuessing Difficulty Levels

Easy: n = 4, Medium: n = 8, Hard: n = 12

BitQuery In this task, models need to discover a hidden array by making queries about pairs of
positions using bitwise operations (AND, OR, XOR). Models can make queries in the format “My
Query: OPERATION ¢ j” to get the result of applying the specified bitwise operation on elements
at positions ¢ and j. After gathering enough information through strategic queries, models should
submit their final answer in the format “My Answer: a; as ... a,,” representing their guess of the
entire hidden array.

Case N.19: BitQuery Problem Template

Let’s play Bitwise Query Game! Your task is to discover the hidden array through bitwise
operations.

Rules:

1. There is a hidden array of {n} integers

2. Each element in the array is between 0 and {n — 1} inclusive

3. You can ask three types of queries about any two positions ¢ and j:
- AND query: returns the bitwise AND of elements at positions ¢ and j
- OR query: returns the bitwise OR of elements at positions ¢ and j

- XOR query: returns the bitwise XOR of elements at positions 7 and j
Query Types:

1. To make a query:

Format: “My Query: OPERATION 7 5~

where:

- OPERATION is one of: AND, OR, XOR

-7 and j are positions in array (1-based indexing)

Example: “My Query: OR 1 2”

2. To submit final answer:

Format: “My Answer: a1 as ... a{n}”

where a; to ay,} are your guessed array elements

Example: “My Answer: 00 2 3”

Example Interaction:

Array length = {n}

You: “My Query: OR 1 2”

Me: “0” (result of OR operation)

You: “My Query: OR 2 37

Me: “2” (result of OR operation)

You: “My Query: XOR 2 4”

Me: “3” (result of XOR operation)

You: “My Answer: 00 2 3”

37

Under review as a conference paper at ICLR 2026

Instructions:

1. Make queries based on previous results

2. Use exactly the formats shown above

3. Explain your reasoning before each query

Remember:

- All array elements are between 0 and {n — 1}

- Position indices start from 1

- Think carefully about which operations to use

- Use your queries wisely to gather maximum information
Ready to start? Make your first query!

Case N.20: BitQuery Difficulty Levels

Easy: n = 4, Medium: n = 8, Hard: n = 12

N.2 DYNAMIC ADAPTATION

PasswordBreaking In this task, models need to discover a hidden password through strategic
guesses. After each incorrect guess, the password changes according to a base-k XOR operation,
requiring careful analysis of the transformation mechanics.

Case N.21: PasswordBreaking Problem Template

Let’s play Password Breaker! Your task is to hack into the RPD database by guessing the correct
password.

Rules:

1. The password is always between MIN_VALUE = m and MAX_VALUE = m + n (inclusive)
2. After each guess, you’ll receive one of these responses:

- Correct: Correct password, you’ve successfully broken in!

- Incorrect: Wrong password, and the system has changed the password
- Invalid: Invalid guess

Important Mechanics:

- The system uses base-{k} operations (k = {k})

- When you guess wrong (y), if the current password was x:

* First convert both x and y to base-{k} numbers

* Perform digit-by-digit base-{k} XOR:

For each digit position 4: result[i] = (x[¢] + y[i]) mod {k}

* Convert result back to decimal to get z

* Map z to range [0, n] by taking mod (n + 1)

* Add m to get the new password between [m, m + n]

Example:

With k& = 2, if = 6 (base-2: [1,1,0]) and y = 5 (base-2: [1, 0, 1]):

1. XOR digits: [1,1,0] XOR [1,0,1] = [(1 + 1)mod2, (1 + 0)mod2, (0 + 1)mod2] = [0, 1, 1]
2. Convert [0, 1, 1] to decimal: z = 3

3. Map to range: z = (3mod (n+ 1)) +m

Example Interaction:

- Original password = 5

- You: “My Guess: 3”

- Me: “Incorrect” (wrong, password changes by XOR mechanism)

- You: “My Guess: 57

- Me: “Incorrect” (wrong, password changes by XOR mechanism)

- You: “My Guess: 8”

- Me: “Correct” (correct!)

Query Type:

1. Make a guess:

Format: “My Guess: X

where X is a number between {min_value} and {max_value}
Instructions:

38

Under review as a conference paper at ICLR 2026

1. Make your guess based on previous responses

2. Format your response exactly as shown above

3. Give your reasoning before making each guess
Remember:

- Always guess within valid range [m, {maz_value}]
- Password changes after each incorrect guess

- Think carefully about the base-{k} XOR mechanism
Ready to start? Make your first query!

Case N.22: PasswordBreaking Difficulty Levels

Easy: n = 10, Medium: n = 20, Hard: n = 30

RotaryLaserLock In this task, models need to discover the relative positions of metal arcs on
concentric rings through strategic rotations. Each query rotates a ring and reveals the count of
unblocked laser paths passing through all rings.

Case N.23: RotaryLaserLock Problem Template

Let’s play the Rotary Laser Lock Game! Your task is to discover the final relative positions of
metal arcs after your rotations.

Rules:

1. Lock Structure:

- {n} concentric rings numbered 0 to {n — 1}

- Each ring has {n * m} sections (0 to {n *m — 1})
- Each section can be empty or contain metal

- Rings can rotate independently

2. Metal Arcs:

- Each ring has one metal arc

- Each arc covers exactly 6 consecutive sections

- Arcs are solid and cannot be broken

3. Rotation Mechanics:

- You can rotate any ring

- Clockwise rotation: +1 section

- Anticlockwise rotation: -1 section

- Ring 0 is your reference ring

4. Laser Detection:

- {n * m} lasers emit from center

- One laser per section

- Metal arcs block lasers

- Display shows count of unblocked lasers

Query Types:

1. Make a rotation:

Format: “My Query: x d”

where:

- z: ring number (0 to {n — 1})

- d: direction (-1 or +1)

Example: “My Query: 2 1” rotates ring 2 clockwise
2. Submit final answer:

Format: “My Answer: p1 p2 ... pn”

where:

- Each p; is final position of ring ¢ relative to ring 0
- Positions range from 0 to {n «m — 1}

Example Round:

Initial state unknown, {n * m} sections per ring
You: “My Query: 117

- Rotating ring 1 clockwise

Me: “10”

39

Under review as a conference paper at ICLR 2026

- 10 lasers pass through

You: “My Query: 2 -1”

- Rotating ring 2 anticlockwise

Me: “12”

- 12 lasers pass through

You: “My Answer: 311211~

- Final positions relative to ring 0

Me: “Correct”

Instructions:

1. Make rotations based on previous results
2. Use exactly the formats shown above

3. Explain your reasoning before each query
Remember:

- Each arc is exactly 6 sections long

- Track your rotations carefully

- All positions are mod {n x m}

- Invalid query/answer = immediate loss
Ready to start? Make your first query!

Case N.24: RotaryLaserLock Difficulty Levels

Easy: n = 3, Medium: n = 4, Hard: n = 5

AttendanceCheck In this task, models need to identify an absent student through strategic range
queries. Students respond by raising hands, but may be dishonest in their responses following specific
patterns of truthfulness and deception.

Case N.25: AttendanceCheck Problem Template

Let’s play the Attendance Check Game! Your task is to find the absent student through a series of
range queries.

Rules:

1. There are {n} students (numbered 1 to {n})

2. Exactly one student is absent

3. You can make queries about ranges of students

4. Students might be dishonest in their responses

Query Types:

1. To make a range query:

Format: “My Query: [r”

where:

- [and r are the range boundaries (1 <1 < r < {n})
Example: “My Query: 14”

Response will be number of students who raised hands

2. To mark absent student:

Format: “My Answer: a”

where:

- a is the student number you think is absent

Example: “My Answer: 3”

Response Types for Range Queries:

For a query (I, r), you’ll get either » — [or r — [+ 1 students raising hands:
1. True Positive: » — [+ 1 present, r — [+ 1 raised

2. True Negative: r — [present, r — [raised

3. False Positive: » — [present, » — [+ 1 raised

4. False Negative: r — [+ 1 present, r — [raised
Important Rules:

1. Students will never answer honestly 3 times in a row

2. Students will never answer dishonestly 3 times in a row
Example Interaction:

40

Under review as a conference paper at ICLR 2026

You: “My Query: 14~

Me: “3” (3 students raised hands)

You: “My Query: 35"

Me: “2” (2 students raised hands)

You: “My Answer: 2”

Me: “Correct”

Instructions:

1. Make queries based on previous responses
2. Use exactly the formats shown above

3. Explain your reasoning before each query
Remember:

- Plan your queries carefully

- Students are strategically dishonest

- Pattern of honesty/dishonesty is key

- Think about overlapping ranges

Ready to start? Make your first query!

Case N.26: AttendanceCheck Difficulty Levels

Easy: n = 5 — 9, Medium: n = 10 — 14, Hard: n = 15 — 20

BinaryNumberGuessing In this task, models need to discover a hidden number through strategic
subtraction operations. Each operation reveals the count of 1s in the binary representation of the
resulting number, helping deduce the current value.

Case N.27: BinaryNumberGuessing Problem Template

Let’s play Binary Number Guessing! Your task is to guess the original hidden number by
performing subtraction operations.

Rules:

1. There is a hidden positive integer k (1 < k < n)

2. You will be told the number of 1s in its binary representation
3. For each operation, you can:

- Subtract any positive integer x from the current number

- After subtraction, you’ll be told the new count of 1s in binary
- If you try to subtract a number larger than current &, you will get a response of “Invalid”
4. Your goal is to guess the current number after all of your operations
Query Types:

1. Make a subtraction:

Format: “My Operation: X’

where X is the number you want to subtract

Response will be:

- Count of 1s in new binary number (if valid)

- “Invalid” (if X larger than current k)

2. Submit final answer:

Format: “My Answer: k”

where k is your guess for current number

Response will be:

- “Correct” (if right)

- “Incorrect” (if wrong)

- “Invalid” (if invalid format)

Example Interaction:

- Original number = 3 (binary: 11, count of 1s: 2)

You: “My Operation: 1”

Me: “1” (current number is 2, binary: 10)

You: “My Operation: 1”

Me: “1” (current number is 1, binary: 1)

You: “My Answer: 17

41

Under review as a conference paper at ICLR 2026

Me: “Correct” (current number is 1, correct!)
Instructions:

1. Make operations based on previous results
2. Use exactly the formats shown above

3. Explain your reasoning before each operation
Remember:

- Don’t subtract more than current number

- Track binary representation changes

- Consider patterns in 1s count

- Invalid operations waste moves

Ready to start? Make your first query!

Case N.28: BinaryNumberGuessing Difficulty Levels

Easy: n = 50, Medium: n = 150, Hard: n = 500

HiddenNumberFinding In this task, models need to discover a hidden number through strategic set
queries. Responses might be deceptive, but follow a pattern where at least one of any two consecutive
queries is truthful, while direct guesses are always answered honestly.

Case N.29: HiddenNumberFinding Problem Template

Let’s play Find the Hidden Number Game! Your task is to discover a hidden number through a
series of queries and guesses.

Rules:

1. There is a hidden number x between 1 and {n}

2. For each query, you can ask about a set of numbers:

- You choose any non-empty set of numbers

- System will tell you if x is in that set (“YES”) or not (“NO”)

- WARNING: Responses might be lies!

- BUT: At least one answer out of any two consecutive queries is truthful

3. For guesses:

- You can directly guess what x is

- Guesses are always answered truthfully

- A correct guess ends the game
Query Types:

1. To make a set query:

Format: “My Query: k nq ng ... ng
where:

- k is the size of your set

- nj to ny are the numbers in your set

Example: “My Query: 312 3”

2. To make a guess:

Format: “My Answer: x”

Example: “My Answer: 2”

Example Interaction:

You: “My Query: 312 3”

Me: “YES”

You: “My Query: 24 5”

Me: “YES”

You: “My Answer: 4”

Me: “Correct”

Instructions:

1. Make queries based on previous responses

2. Use exactly the formats shown above

3. Explain your reasoning before each query
Important Notes:

- At least one of any two consecutive queries is truthful

Lt}

42

Under review as a conference paper at ICLR 2026

- Guesses are always answered truthfully
- Plan your strategy carefully!
Remember:

- Track truthful/deceptive patterns

- Use overlapping sets strategically

- Consider binary search approaches
Ready to start? Make your first query!

Case N.30: HiddenNumberFinding Difficulty Levels

Easy: n = 19/20, Medium: n = 30, Hard: n = 40

MahjongDetective In this task, models need to discover a hidden set of Mahjong tiles through
strategic tile additions. Each addition reveals changes in the number of valid combinations (triplets
and straights), helping deduce the original set composition.

Case N.31: MahjongDetective Problem Template

Let’s play Mahjong Detective Game! Your task is to discover Yui’s mysterious tile set through
careful queries.

Rules:

1. There is a hidden set of Mahjong tiles

2. Each tile has a value from 1 to {n}

3. Each value appears at most {n} times

4. You need to find how many tiles of each value exist
5. You can add tiles to help your investigation

Special Combinations:

- Triplet: Three tiles with same value (e.g., {2,2,2})

- Straight: Three consecutive values (e.g., {2, 3,4})
Note: Same-value tiles are treated as different piece!
Query Types:

1. To add a tile:

Format: “My Query: + x”

where:

- x is the value of tile to add (1 to {n})

Example: “My Query: + 3”

Response will be:

- Number of triplets in new set

- Number of straights in new set

2. To submit final answer:

Format: “My Answer: a; as ... agn)”

where a; is number of tiles with value ¢ AFTER ALL YOUR ADDITIONS
Example: “My Answer: 21302 ..

Example Interaction:

Initial set has:

- 1 triplet

- 6 straights

You: “My Query: + 17

Me: “2 9” (new set has 2 triplets, 9 straights)

You: “My Query: + 17

Me: “5 12” (new set has 5 triplets, 12 straights)

You: “My Query: +2”

Me: “5 24” (new set has 5 triplets, 24 straights)

You: “My Query: +5”

Me: “6 24” (new set has 6 triplets, 24 straights)

You: “My Answer: 21302 .7

(This answer includes ALL tiles, including the ones you added!)
Instructions:

43

Under review as a conference paper at ICLR 2026

1. Make queries to add tiles strategically

2. Use exactly the formats shown above

3. Explain your reasoning before each addition
4. Watch how combinations change

Remember:

- Each value appears 0 to {n} times

- Same-value tiles count as different pieces

- Watch how triplets and straights change

- Your final answer must include your added tiles
Ready to start? Make your first query!

Case N.32: MahjongDetective Difficulty Levels

Easy: n = 3, Medium: n = 6, Hard: n = 9

MimicHunting In this task, models need to identify a shape-shifting mimic among objects through
strategic removals. After each removal, objects are mixed and the mimic may change its type,
following specific transformation rules.

Case N.33: MimicHunting Problem Template

Let’s play Mimic Hunt Game! Your task is to find a shape-shifting creature among objects through
careful observation and removal.

Rules:

1. There are {n} objects in a room, each with a type number (1-9)
2. One object is a mimic that can transform into any type
3. The mimic cannot stay the same type for more than 2 stages
Query Types:

1. To remove objects:

Format: “My Query: - k 1 25 ... x”

where: - k is number of objects to remove

- x1 to zy, are positions (1-based indexing)

Example: “My Query: -2 157

Response will be:

- Remaining objects’ types after mixing

2. To identify mimic:

Format: “My Answer: 7"

where ¢ is the position of suspected mimic

Example: “My Answer: 3”

Example Interaction:

Objects: [1,1,2,2,3]

You: “My Query: -2 157

Me: “[2,1,2]” (remaining objects after mixing)

You: “My Query: -41234”

Me: “[2]” (remaining objects after mixing)

You: “My Answer: 5”

Me: “Correct”

Instructions:

1. Each stage:

- Observe current objects

- Either remove some objects or guess mimic

- After removal, objects are mixed and mimic may change
2. Use exactly the formats shown above

3. Explain your reasoning before each action

4. Remember mimic’s transformation rules

Remember:

- Object types are numbers 1-9

- Position indices start from 1

44

Under review as a conference paper at ICLR 2026

- Mimic can’t stay same type > 2 stages
- Track type patterns carefully
Ready to start? Make your first query!

Case N.34: MimicHunting Difficulty Levels

Easy: n = 5, Medium: n = 10, Hard: n = 20

PermutationDiscovery In this task, models need to discover a hidden permutation through dynamic
queries. A visible permutation changes after each query according to the hidden permutation’s rules,
requiring careful analysis of transformation patterns.

Case N.35: PermutationDiscovery Problem Template

Let’s play Permutation Discovery Game! Your task is to find a hidden permutation through
dynamic queries.

Rules:

1. There are two permutations of length {n}:
- p: hidden permutation you need to discover
- ¢: visible permutation that changes after each query
2. Initially, ¢ is [1,2, ..., {n}]

3. After each query, g changes following this rule:
- For each position i: ¢'[i] = ¢[p[i]]

4. Your goal is to discover permutation p

Query Types:

1. To ask about ¢’s value:

Format: “My Query: ¢”

where:

- % is a position (1-based indexing)

Example: “My Query: 3”

Response will be the value at position ¢ in current g
2. To submit final answer:

Format: “My Answer: p1 p2 ... p{n}”

where p; to pg,y form your guessed permutation
Example: “My Answer: 42 1 3”

Example Interaction:

Initial ¢ = [1,2, ..., {n}]

You: “My Query: 3”

Me: “3”

[q updates based on p]

You: “My Query: 2”

Me: “2”

[q updates again]

You: “My Answer: 42137

Instructions:

1. Make queries based on previous results

2. Use exactly the formats shown above

3. Explain your reasoning before each query

4. Watch how g changes after each query
Remember:

-gstarts as [1,2, ..., {n}]

- Position indices start from 1

- g changes after every query

- Think carefully about which positions to query
Ready to start? Make your first query!

45

Under review as a conference paper at ICLR 2026

Case N.36: PermutationDiscovery Difficulty Levels

Easy: n = 4, Medium: n = 5, Hard: n = 6

TrainPursuit In this task, models need to locate a moving train on a circular railway through range
queries. The train moves up to a certain number of stations after each query, following a circular
pattern that wraps around from the last station to the first.

Case N.37: TrainPursuit Problem Template

Let’s play Train Pursuit Game! Your task is to find a moving train on a circular railway through
range queries.

Rules:

1. There is a train hidden at one of {n} stations (numbered 1 to {n})
2. The train moves circularly:

- Can move up to {k} stations after each query

- After station {n}, continues from station 1

- Example: at station {n}, moving 2 stations means going to station 2
3. You can make range queries to find the train

4. Each query must be in valid format or you’ll get “Invalid” response
Query Types:

1. To make a range query:

Format: “My Query: [r”

where:

- [and r are station numbers (1-based indexing)
-1<r<{n}

Example: “My Query: 3 5”

Response will be:

- “Yes” if train is in this range

- “No” if train is not in this range

- “Invalid” if query format is incorrect

2. To catch the train:

Format: “My Answer: x”

where x is the station you think the train is now at
Example: “My Answer: 5”

Example Movement:

If train is at station 1 and moves 2 stations:

- First move: station 1 — station 3

- Second move: station 3 — station 5

Instructions:

1. Make queries based on previous results

2. Use exactly the formats shown above

3. Explain your reasoning before each query

4. Remember circular movement pattern
Remember:

- Train is at a station numbered 1 to {n}

- Train moves up to {k} stations circularly

- Query format must be exact

- Need to find exact location to win

- Invalid queries will receive “Invalid” response
Ready to start? Make your first query!

Case N.38: TrainPursuit Difficulty Levels

Easy: n <=5, Medium: 5 <n <=7,Hard: 7T <n <=9

ZeroFinding In this task, models need to locate the k-th zero in a hidden binary array through
range sum queries. Non-target zeros transform into ones when discovered, requiring strategic query
placement and careful tracking of zero positions.

46

Under review as a conference paper at ICLR 2026

Case N.39: ZeroFinding Problem Template

Let’s play Zero Finding Game! Your task is to find the {k }-th zero in a hidden binary array through
range sum queries.

Rules:

1. There is a hidden array of {n} elements (all Os and 1s)
2. You need to find the {k}-th zero

3. Each time you find a non-target zero (not {k}-th), it turns into 1
4. The game continues until you find the {k}-th zero
Query Types:

1. To make a range sum query:

Format: “My Query: [r”

where:

- [and r are positions (1-based indexing)

-1 <r<{n}

Example: “My Query: 4 6

Response will be the sum of elements in positions [to r
2. To submit temporary answer:

Format: “My Answer: z”

where z is position of a non-{k }-th zero

Example: “My Answer: 5”

3. To submit final answer:

Format: “My Final Answer: z”

where x is position of the {k}-th zero

Example: “My Final Answer: 3”

Example Interaction:

Finding 2nd zero:

You: “My Query: 4 67

Me: “1” (sum in range [4,6])

You: “My Answer: 5”

Me: “Correct! Non-target zero found and turned to 1”
You: “My Final Answer: 3”

Me: “Correct! You found the 2nd zero!”

Instructions:

1. Game Process:

- Make queries to locate zeros

- Use “My Answer” for non-{k}-th zeros

- Use “My Final Answer” for the {k}-th zero

- Array updates when non-target zeros are found

2. Use exactly the formats shown above

3. Explain your reasoning before each action
Remember:

- Array only contains Os and 1s

- Position indices start from 1

- Non-target zeros turn into 1 when found

- Each query shows sum in range

- Use different formats for target and non-target zeros
Ready to start? Make your first query!

Case N.40: ZeroFinding Difficulty Levels

Easy: n = 10, Medium: n = 50, Hard: n = 100

N.3 STATE OPERATION
MazeNavigation In this task, models need to navigate through a maze with potentially swapped

directional controls to reach a finish point. Models must deduce any control swaps while avoiding
dangerous cells and staying within grid boundaries.

47

Under review as a conference paper at ICLR 2026

Case N.41: MazeNavigation Problem Template

Let’s play Maze Navigation Game! Your task is to navigate through a maze with potentially
swapped controls to reach the finish point.

Rules:

1. Game Field:

- A {n} * {m} grid with three types of cells:

* “” - normal cell you can visit

* “F” - finish cell (exactly one)

* «#” _ dangerous cell (avoid these)

- Coordinates are 1-based indexing: (row, column)

- Current cell positions:

* Start: {start_pos} (top-left corner)

* Finish: { finish_pos}

* Dangerous cells:

{dangerous_str}

2. Movement Controls:

- Four direction buttons: U(up), D(down), L(left), R(right)
- Button Functions may be swapped:

* L and R might be swapped with each other

* U and D might be swapped with each other

- Swaps (if any) are set at game start and remain fixed

- Effects of each button when NOT swapped:

* U: moves to (current_row — 1, current_col)

* D: moves to (current_row + 1, current_col)

* L: moves to (current_row, current_col — 1)

* R: moves to (current_row, current_col + 1)

3. Movement Rules:

- Each move returns your new position (x, y)

- If move is invalid (out of grid), position stays same

- Grid boundaries: 1 < row < {n}, 1 < column < {m}
- If you hit dangerous cell, returns (—1, —1) and game ends
- When you reach finish cell ({ finish_pos}), game ends successfully
Move Types:

1. To make a move:

Format: “My Move: X

where X is one of: U, D, L, R

Example: “My Move: R”

2. System Response:

Format: “x y”

where:

- (x,y) is your new position

- (=1, —1) if you hit dangerous cell

Example: After “My Move: R” at (1, 1), response might be “1 2”
Instructions:

1. Make moves based on previous responses

2. Use exactly the format shown above

3. Explain your reasoning before each move

Remember:

- Start position is {start_pos}

- Controls might be swapped

- Avoid dangerous cells at: {dangerous_str}

- Target is to reach { finish_pos}

- Watch for grid boundaries: 1 < row < {n}, 1 < column < {m}
Current Grid Layout: {grid_str}

Ready to start? Make your first query!

48

Under review as a conference paper at ICLR 2026

Case N.42: MazeNavigation Difficulty Levels

Easy: n = 4, Medium: n = 5, Hard: n = 6

TreasureHunt In this task, models need to explore a forest where junction numbers are hidden and
scrambled. Navigation requires strategic use of path counts and flags, as connected junctions appear
in random order at each visit.

Case N.43: TreasureHunt Problem Template

Let’s play the Treasure Hunt Game! Your task is to explore an enchanted forest where a mis-
chievous wizard keeps scrambling the junction numbers to confuse you.
Rules:

1. Game Setup: - Enchanted forest with {n} junctions
- Each junction contains a treasure
- You start at junction 1
- Initial flag placed at starting junction
- Junctions are connected by fixed paths

2. Game Mechanics:

What You Can See:

- At each junction, you can only see:

* Number of paths at each connected junction

* Whether you’ve placed a flag there

The Wizard’s Trick:

- The wizard hides real junction numbers

- Each time you visit a junction, connected junctions are shown in random order
- Though connections stay the same, you can’t identify specific junctions
- Must use path counts and flags to navigate

3. Information Format:

I provide: “R d degy flagy degs flags ... degq flagq”
- R: you’re at current junction

- d: number of connected junctions

- deg;: number of paths at connected junction ¢

- flag;: flag status at connected junction ¢ (O=no, 1=yes)
Example: “R3 21403 0” means:

- 3 connected junctions

- First has 2 paths and is flagged

- Second has 4 paths and no flag

- Third has 3 paths and no flag

Query Type:

Format your move as: “My Choice: X

where X is from 1 to d (position in current list)
Example Round:

Starting at junction 1:

Me: “R22020”

- Two connected junctions

- Both have 2 paths

- Neither has your flag

You: “My Choice: 17

- Moving to first listed junction

Me: “R22021”

- Two connected junctions shown

- One leads back (has your flag)

- One is unexplored (no flag)

You: “My Choice: 17

- Moving to unflagged junction

Instructions:

1. Give your reasoning before each choice

49

Under review as a conference paper at ICLR 2026

2. Wait for response before next move

3. Use exactly the format shown above

Remember:

- Real junction numbers are hidden

- Connected junctions appear in random order each visit
- Use path counts and flags to track progress

- Must visit all junctions

- Invalid move = automatic loss

Ready to start? Make your first query!

Case N.44: TreasureHunt Difficulty Levels

Easy: n = 6, Medium: n = 7, Hard: n = 8

SafepathFinding In this task, models need to navigate from start to goal on a grid while avoiding
hidden traps. Each position reveals the number of traps in adjacent cells, requiring careful analysis of
danger levels to choose safe moves.

Case N.45: SafepathFinding Problem Template

Let’s play SafepathFinder! Your task is to find a safe path from start to the goal while avoiding
hidden traps.

Rules:

1. You are an explorer on a n*n grid

2. Start: (1, 1), Goal: (n,n)

3. Each cell can be either:

- SAFE: can move through

- TRAP: ends game if stepped on (hidden)

4. At each cell, you can:

- See the number of traps in adjacent cells (DANGER_LEVEL)
- Cannot see traps until stepped on them

5. Movement rules: - From position (z, y), you can move to any adjacent cell:
- (xf 17y7 1)’ (xf 17y)7 (:L'f 1ay+ 1)

-(x,y—l), ,(x,y—i—l)
“(z+1Ly-1),(z+1y),(z+1y+1)

- Cannot move outside grid

- Example: from (2, 2) you can move to any surrounding cell
Query Type:

Format: “My Choice: X Y

where X, Y are coordinates (1-based)

Example: “My Choice: 2 3”

Response Format:

DANGER_LEVEL v

- v is the number of traps in the 8 adjacent cells

- Higher number means more danger nearby

- 0 means no traps in adjacent cells

Example interaction:

You: “My Choice: 2 17

Me: “DANGER_LEVEL 1”

You: “My Choice: 3 2”

Me: “DANGER_LEVEL 2”

Game Ends When:

- SUCCESS: Reach (n,n)

- FAILURE: Step on a trap

- INVALID: Try to move outside grid or not to adjacent cell
Instructions:

1. Make moves based on danger levels

2. Use exactly the format shown above

50

Under review as a conference paper at ICLR 2026

3. Explain your reasoning before each move

Strategy Tips:

- Higher DANGER_LEVEL means more risk

- Watch how DANGER_LEVEL changes as you move
- Use these changes to deduce trap locations

- Sometimes longer path might be safer

- Pay attention to diagonal movements too

Ready to start? Make your first move!

Case N.46: SafepathFinding Difficulty Levels

Easy: n = 5, Medium: n = 6, Hard: n =7

RainbowCandyFactory In this task, models need to guide a candy through a factory grid with
hidden color-changing devices. The goal is to reach the destination with a specific target color by
strategically using dye machines and bleach machines.

Case N.47: RainbowCandyFactory Problem Template

Let’s play Rainbow Candy Factory! Your task is to guide a candy through hidden devices to reach
the destination with target color.

Rules:

1. Control a candy through a n * n factory grid

2. Start at (1, 1) with white color (W), reach (n, n)

3. Hidden devices in cells marked by X:

- Dye Machines: R(red), G(green), B(blue)

- Empty cells (-)

4. Bleach Machine is shown as W(white) in the map and it can reset any color to white
5. Each level gives a target color to achieve

Move Types:

1. To make a move:

Format: “My Move: Y

where: - Y is one of: N, E, S, W (directions)
Example: “My Move: E”

Color Rules:

- Initial color: White (W)

- Basic colors: Red (R), Green (G), Blue (B)

- Mixed colors: Yellow (Y), Cyan (C), Purple (P)

- Color mixing: R+G=Y, G+B=C, R+B=P

- Bleach Machine (W) resets ANY color back to White
- For Mixed colors, bleaching machine can make it White, but dyeing machine cannot change its
color

Example Interaction:

You: “My Move: E”

Me: “R”

You: “My Move: S”

Me: “W”

You: “My Move: E”

Me: “G”

Instructions:

1. Make moves based on color feedback

2. Use exactly the format shown above

3. Explain your reasoning before each move

4. Watch out for bleach machines that reset progress
Initial Map: {initial_map}

Target Color: {target}

Remember:

- Start at (1, 1) with White color

51

Under review as a conference paper at ICLR 2026

- Cannot see machine types until encountered
- Bleach machines reset ALL colors to White
- You can go to the cell you’ve been to

- Moving out of bounds will result in failure
- Must reach (n, n) with target color

Ready to start? Make your first move!

Case N.48: RainbowCandyFactory Difficulty Levels

Easy: n = 3, Medium: n = 4, Hard: n = 5

MagneticFieldExploration In this task, models need to navigate through a grid containing magnetic
fields that force movement in specific directions. Success requires understanding the behavior of
different magnetic fields while avoiding danger zones to reach the goal.

Case N.49: MagneticFieldExploration Problem Template

Let’s play Magnetic Field Explorer! Your task is to navigate through a grid with mysterious
magnetic forces.

Rules:

1. Game Field:

- A n *n grid with:

* Numbers (1-4) - Different types of magnetic fields

* 2 - Neutral space

* “X” - Danger zone (avoid these)

* “G” - Goal (reach here to win)

- Start: (1, 1) (top-left corner)

- Goal: (n,n) (bottom-right corner)

2. Magnetic Fields:

- Four types of magnetic fields (1-4)

- Each number represents a unique direction (North, South, East, or West)
- You’ll discover the direction of each number through movement

- Same number always means same direction

- When you enter a magnetic field:

* You will be forced to move one step in its direction

* If that step would hit a boundary, you stay on the magnetic field

* If that step would hit a danger zone, you lose

* If that step would hit another magnetic field, you move there and it activates
3. Movement Rules: - Basic moves: U(up), D(down), L(left), R(right)

- Movement sequence for each turn: 1. You move one step in your chosen direction
2. If you land on:

- Magnetic field: Move one step in its direction unless that step would hit a boundary
- Danger zone: You lose

- Neutral space: Stay there

3. If magnetic field pushed you to another magnetic field, repeat step 2
Current Grid Layout (with coordinates):

{grid_str}

{position_str}

Query Types:

1. To make a move:

Format: “My Move: X

where X is one of: U, D, L, R

Example: “My Move: R”

2. System Response:

Format: “x y”

- Shows your final position coordinates

- (=1, —1) if you hit danger zone

Instructions:

52

Under review as a conference paper at ICLR 2026

1. Make moves based on previous results

2. Use exactly the format shown above

3. Explain your reasoning before each move
Remember:

- Each number (1-4) represents a fixed direction

- Figure out what direction each number represents
- Magnetic fields activate when you land on them

- Avoid danger zones (X)

- Reach goal (G) to win

- You don’t necessarily need to figure out or pass through the magnetic fields; your goal is only to
reach the target zone (n,n) safely

Ready to start? Make your first move!

Case N.50: MagneticFieldExploration Difficulty Levels

Easy: n = 3, Medium: n = 4, Hard: n = 5

FindingBiggest In this task, models need to locate and collect the highest value treasure on a grid
through strategic movement. Each position reveals directional hints to nearby treasures, but these
hints may be deceptive following specific patterns.

Case N.51: FindingBiggest Problem Template

Let’s play Finding the Biggest! Your task is to find and collect the highest value treasure through
strategic movement on the grid.

Rules:

1. You are an explorer on a n*n grid

2. There are exactly 2 treasures hidden on the grid

3. Each treasure has a value between 1 and 100

4. You start at position (1, 1)

5. Movement rules:

- From position (x, i), you can move to any of its 8 adjacent cells:

- (‘xf 17y7 1)’ (xf 17y)7 (:L'f 1ay+ 1)

-(x,y—l), ,(x,y—i—l)

“(z+1Ly-1),(z+1y), (z+1y+1)

- Cannot move outside the grid boundaries

6. Direction System:

- N: treasure is somewhere in the region above your current position
- NE: treasure is somewhere in the upper-right region

- E: treasure is somewhere in the region to your right

- SE: treasure is somewhere in the lower-right region

- S: treasure is somewhere in the region below your current position
- SW: treasure is somewhere in the lower-left region

- W: treasure is somewhere in the region to your left

- NW: treasure is somewhere in the upper-left region

The direction indicates a general area, not a specific cell

7. MAGNETIC INTERFERENCE:

- When you get a direction, there’s 50% chance it’s completely wrong
- However, wrong directions never appear in consecutive moves

- If you get a wrong direction, the next move’s direction is guaranteed correct
Query Types:

1. To move to a position:

Format: “My Choice: X Y

where X, Y are grid coordinates (1-based)

Example: “My Choice: 2 3” moves to row 2, column 3

2. To collect treasure:

Format: “My Choice: COLLECT”

- Only use when you’re sure you’re on the highest value treasure

53

Under review as a conference paper at ICLR 2026

- You only get one collection attempt

Response Types:

- If you find a treasure: “TREASURE v (v is the treasure’s value)

- If empty cell: “EMPTY dir” (dir indicates which region contains nearest treasure)
- If invalid move: “INVALID_MOVE”

Example interaction:

You: “My Choice: 2 2”

Me: “EMPTY SW” (indicates treasure might be in lower-left region, but could be wrong)
You: “My Choice: 1 2”

Me: “EMPTY NE” (guaranteed correct: treasure is in upper-right region)
You: “My Choice: 2 3”

Me: “TREASURE 80~

You: “My Choice: COLLECT”

Me: “Win”

Instructions:

1. Make moves based on directional hints

2. Use exactly the formats shown above

3. Explain your reasoning before each move

Key Points:

- Directions point to regions, not specific cells

- If a direction seems wrong, the next one will be correct

- Must find and be at highest value treasure to win

- Wrong COLLECT attempt = game over

Ready to start? Make your first move!

Case N.52: FindingBiggest Difficulty Levels

Easy: n = 3, Medium: n = 4, Hard: n = 5

DarkMazeExploration In this task, models need to navigate through a dark maze where walls are
only revealed upon encounter. Success requires careful mapping of discovered walls and strategic
path planning to reach the exit.

Case N.53: DarkMazeExploration Problem Template

Let’s play DarkMazeExplorer! Your task is to find your way through a dark maze using only
directional movements.

Rules:

1. You are exploring a n*n maze

2. Each cell may have walls in any direction (North, East, South, West)

3. You start at position (1, 1) and must reach (n, n)

4. You can only make one directional move at a time

5. You cannot move through walls or outside the maze boundaries

Query Type:
Format: “My Choice: X~
where:

- X isone of: N, E, S, W (representing directions)
- N = North, E = East, S = South, W = West
Example: “My Choice: E”

Response Types:

- MOVED: successfully moved into the next cell in your chosen direction
- BLOCKED: wall exists in that direction

- INVALID: tried to move outside maze boundaries
- WIN: reached the exit at (n,n)

Example Interaction:

Starting at (1, 1) with North and West walls

You: “My Choice: E”

Me: “MOVED”

54

Under review as a conference paper at ICLR 2026

You: “My Choice: N”

Me: “BLOCKED”

You: “My Choice: S”

Me: “WIN”

Instructions:

1. Make moves based on feedback

2. Use exactly the format shown above

3. Explain your reasoning before each move

4. Plan your path carefully

Remember:

- Starting room (1, 1) has North and West walls

- You can only see walls when you encounter them
- Need to mentally map the maze

- Cannot move through walls or outside boundaries
- Must reach (n,n) to win

Ready to start? Make your first move!

Case N.54: DarkMazeExploration Difficulty Levels

Easy: n = 2, Medium: n = 3, Hard: n = 4

ColorMagic In this task, models need to transform a grid of colored cells to a uniform color through
magical operations. Success requires discovering the mapping between operation numbers and their
effects while planning strategic color transformations.

Case N.55: ColorMagic Problem Template

Let’s play Color Magic! Your task is to make all cells the same color through magical color
transformations.

Rules:

1. You have a n * n grid where each cell contains one of three colors: Red(R), Blue(B), Yellow(Y)
2. There are three magic operations with unknown number assignments (1, 2, or 3):

- Magic Alpha: Selected cell rotates R->B->Y->R, adjacent cells rotate R->Y->B->R

- Magic Beta: Selected cell rotates B->Y->R->B, adjacent cells rotate B->R->Y->B

- Magic Gamma: Selected cell stays same, adjacent cells swap colors (R<->B, B<->Y, Y<->R)
3. Your goal is to make all cells the same color

Move Types:
Format: “My Move: OPERATION POSITION”
where:

- OPERATION is one of: 1, 2, 3 (each corresponds to a magic type)

- POSITION is cell number (1-n * n, numbered left to right, top to bottom)
Example: “My Move: 2 5”

Instructions:

1. Make moves based on observed color changes

2. Use exactly the format shown above

3. Explain your reasoning before each move

4. Try to discover which number corresponds to which magic

Example Interaction:

Current Grid:

RBY

BRB

YRY

You: “My Move: 1 5”

Me:

RRY

RRR

YBY

- Note: This is just an example; in reality, 1 may not correspond to this operation.

55

Under review as a conference paper at ICLR 2026

Initial Grid: initial_grid

Remember:

- Each number (1,2,3) maps to one magic type (Alpha/Beta/Gamma)

- You must figure out the mapping through experimentation

- Grid positions are numbered from 1 to n * n from left to right, top to bottom
- Adjacent means sharing an edge (not diagonal)

- Need to make all cells the same color to win

Ready to start? Make your first move!

Case N.56: ColorMagic Difficulty Levels

Easy: n = 3, Medium: n = 4, Hard: n = 5

ChemicalSynthesis In this task, models need to create a target compound through strategic chemical
operations. Each operation has consistent but unknown number assignments and may produce
unexpected results due to chemical instability.

Case N.57: ChemicalSynthesis Problem Template

Let’s play Chemical Synthesis! Your task is to create compound {target} containing n elements
through different operations in an unstable environment.

Rules:

1. Basic Setup:
- Initial compounds: {’," .join(init_compounds)}
- Goal: Create {target}
- Four types of operations (1,2,3,4)
- Element order matters (ABC # CBA)

- After each operation, resulting compounds and original compounds can be used
2. Operation Types (numbers 1-4 each correspond to one of these):

SPLIT:

- Usually breaks a compound into two parts of its first element and the other elements
- Sometimes splits at a random position due to instability

- Example: ABC — A + BC (normal) or AB + C (unstable)

- Format: “My Move: X N” (X is a compound, and N = 1/2/3/4)

MERGE:

- Combines two compounds into one

- May cause a catalytic reaction that changes element order

- Result usually keeps elements in order, but might rearrange

- Example: AB + CD — ABCD (normal) or ACBD (catalytic)

- Format: “My Move: X Y N” (X,Y are two compounds, and N = 1/2/3/4)
SWAP:

- Exchanges elements within a compound

- High energy might cause multiple swaps

- Example: ABC — CBA (normal) or BAC (partial)

- Format: “My Move: X N” (X is a compound, and N = 1/2/3/4)
EXTRACT:

- Takes out one element from a compound

- Usually the last element, but might extract a random element

- Example: ABC — C (normal) or B (unstable)

- Format: “My Move: X N” (X is a compound, and N = 1/2/3/4)

3. Operation Format and Responses:

Single Compound Operations (SPLIT, SWAP, EXTRACT):

- Format: “My Move: X N”

Example: “My Move: BC 17

MERGE Operation:

- Format: “My Move: X Y N”

Example: “My Move: AB CD 2”

System Responses:

56

Under review as a conference paper at ICLR 2026

- Valid query: “Available: [list of unrepeated available compounds]”
- Invalid query: “Wrong type”/“Invalid format”/*Invalid compound”
- Success: “WIN”

4. Current State:

Available Compounds: {init_compounds}

Important Notes:

- Element order matters (ABC # CBA)

- Operations are consistent but their numbers (1-4) are unknown

- Chemical instability may cause unexpected results

- Goal compound must match exactly (including element order)

- Can only operate on currently available compounds

- System will return “Wrong type” if:

* Using single-element compounds for SPLIT/SWAP/EXTRACT
* Using wrong number of compounds for operation

Example Interactions:

Initial: “ABC AB D”

You: “My Move: ABC 1”

Me: “Available: ABC A BC AB D” (normal split)

You: “My Move: AB D 2”

Me: “Available: ABC A BC AB D DAB” (unstable merge)
Example Invalid Interactions:

You: “My Move: A B 17 (invalid: single element for SPLIT)

Me: “Wrong type”

You: “My Move: AB 2” (invalid: MERGE needs two compounds)
Me: “Wrong type”

Goal: Create {target} (exact order matters)

Ready to start! Make your move using the correct format!

Case N.58: ChemicalSynthesis Difficulty Levels

Easy: n = 4, Medium: n = 6, Hard: n =7

CactusSearch In this task, models need to find a secret vertex in a cactus graph through strategic
guessing. Each incorrect guess reveals which adjacent vertex leads closer to the target, requiring
careful navigation of the graph structure.

Case N.59: CactusSearch Problem Template

Let’s play Cactus Search Game! Your task is to find a secret vertex in a cactus graph through
strategic guessing.

Rules:

1. The game is played on a cactus graph with {n} vertices (numbered from 1 to {n})

2. A secret vertex v has been chosen

3. After each incorrect guess, you’ll be told which adjacent vertex leads closer to v

Game Setup:

This cactus graph consists of {n} vertices and {m} distinct paths: {paths_text}

Each path represents a sequence of connected vertices, where consecutive vertices are connected
by edges.

The graph is structured as a cactus, meaning each edge belongs to at most one cycle.

Query Type:

1. To make a guess:

Format: “My Guess: z”

where x is the vertex number (1 < x < {n})

Example: “My Guess: 3”

2. System Response:

- If correct: “FOUND”

- If incorrect: “GO w” (w is adjacent vertex closer to target)

Example Interaction:

57

Under review as a conference paper at ICLR 2026

You: “My Guess: 3”

System: “GO 4”

You: “My Guess: 4”

System: “FOUND”

Instructions:

1. Make guesses based on previous responses

2. Use exactly the format shown above

3. Explain your reasoning before each guess
Remember:

- Each vertex is numbered from 1 to {n}

- The graph structure is fixed as described above
- Adjacent vertices in paths are directly connected
- Use responses wisely to navigate towards target
Ready to start? Make your first query!

Case N.60: CactusSearch Difficulty Levels

Easy: n = 10, Medium: n = 12, Hard: n = 15

N.4 STRATEGIC GAMING

KnightBattle In this task, models need to win a strategic battle between knights through either
capture or reaching a target position. Success requires careful planning of L-shaped movements while
considering opponent’s potential threats.

Case N.61: KnightBattle Problem Template

Let’s play the Knight Battle Game! You are the White Knight and will move first. Your task is to
win by either capturing the Black Knight or reaching your target position safely.
Rules:

1. Game Setup:

- Chessboard size: {n}*{m}

- You (White Knight) start at: ({x1}, {y1})

- Opponent (Black Knight) starts at: ({22}, {y2})

- Your target: ({tw_z}, {tw_y})

- Opponent’s target: ({tb_z}, {tb_y})

2. Knight’s Movement Rules:

From your current position (z,y), you can move to:

1. Up2,Right 1: (x + 1,y + 2)

.Up2,Leftl: (z — 1,y +2)

. Down 2, Right 1: (z + 1,y — 2)

.Down 2, Left 1: (x — 1,y — 2)

.Right2,Up 1: (z +2,y+ 1)

. Right 2, Down 1: (z + 2,y — 1)

.Left2,Up l: (z —2,y+1)

. Left2, Down I: (x — 2,y — 1)

* All moves must stay within board boundaries (1 to {n}, l to {m})

3. Victory Conditions:

You win if either:

- You move to Black Knight’s position (capture)

- You reach ({tw_x}, {tw_y}) and Black Knight cannot attack this position
* A position is under attack if opponent’s knight can move there next turn
Query Type:

Format: “My Move: x y”

where x, y are your new coordinates

Example: “My Move: 4 4”

Example Interaction:

You (at {1}, {y1}): “My Move: 4 4”

0NN AW

58

Under review as a conference paper at ICLR 2026

- Moving to position (4,4)

Me: “6 3”

- Black Knight moves to (6,3)

You: “My Move: 5 6”

- Moving to position (5,6)

Me: “5 17

- Black Knight moves to (5,1)
Instructions:

1. Make moves based on board state

2. Use exactly the format shown above
3. Explain your reasoning before each move
Remember:

- You are White Knight and move first
- Use L-shaped movements only

- Use exact format: “My Move: X Y”

- Stay within board boundaries

- Plan moves to either:

* Capture Black Knight

* Reach ({tw_zx}, {tw_y}) safely

- Invalid move = immediate loss

- You have at most 15 rounds to defeat the Black Knight
Ready to start? Make your first move!

Case N.62: KnightBattle Difficulty Levels

Easy: n = 6, Medium: n = 8, Hard: n = 16

ZigzagGraph In this task, models need to win a strategic graph traversal game where players
follow opposite weight constraints. Success requires careful planning of moves while considering
both immediate options and future path availability.

Case N.63: ZigzagGraph Problem Template

Let’s play the Zigzag Graph Game! Your task is to win this game by strategically moving through
the graph while following increasing or decreasing edge weights.
Rules:

1. Game Setup:

- Graph: {n}*{n} bipartite graph

- Left nodes: {', .join(str(z) forzinrange(l,n + 1))}

- Right nodes: {’,/ .join(str(x) forzinrange(n + 1,2 xn + 1))}
- Edge weights:

{chr(10).join(edge_desc)}

- All edge weights are distinct

2. Game Mechanics:

- You choose “decreasing” mode and I choose “increasing” mode
- You place token on one node and then I place token on one node
- Players take turns moving token to adjacent unvisited nodes:

* Must move from opponent’s last chosen node

* Edge weight must be less than last used edge (for you)

* Edge weight must be greater than last used edge (for me)

- Cannot visit same node twice

3. Victory Conditions:

- Player loses if unable to make a valid move from opponent’s node
- Game ends when no legal moves remain

Query Type:

Format: “My Choice: X~

where X is the node number (1 — {2 xn})

Example Round:

59

Under review as a conference paper at ICLR 2026

Initial placement:

You: “My Choice: 2”

- Placing token at node 2

I: “My Choice: 5”

- Moving from node 2 to node 5 with edge weight 8
You: “My Choice: 3”

- Moving from node 5 to node 3 with edge weight 6
- Following decreasing rule: 6 < 8

I: “My Choice: 6”

- Moving from node 3 to node 6 with edge weight 9
- Following increasing rule: 9 > 6

Instructions:

1. Make moves based on graph state

2. Use exactly the format shown above

3. Explain your reasoning before each move
Remember:

- Use exact format: “My Choice: X

- Must move from opponent’s last node

- Follow decreasing weight rule

- Invalid move = automatic loss

Ready to start? Make your first query!

Case N.64: ZigzagGraph Difficulty Levels

Easy: n = 5, Medium: n = 8, Hard: n = 12

XORBreaking In this task, models need to win a strategic game by breaking numbers using XOR
operations. Success requires careful selection and breaking of numbers while forcing the opponent

into unbreakable positions.

Case N.65: XORBreaking Problem Template

Rules:

1. Game Setup:

- Initial number: {k} (2 =< k =< n)

- You play first

- I play second

- Maximum 20 moves allowed

2. Game Mechanics:

First Turn:

- You break initial number p into two numbers p; and ps
- Must satisfy: 0 < p1,ps < pandp; G ps =p
Subsequent Turns:

- Active player does two actions:

1. Choose one number (p; or py) from opponent’s break
2. Try to break chosen number into two new numbers

- If player cannot break their chosen number, they lose

- Game continues until someone can’t break their number
3. XOR Calculation Example:

Breaking 13:

- Can choose 10 and 7 because:

* 10 = 1010 in binary

*7=0111 in binary

*107=1101 =13

- Both numbers are less than 13

- Both numbers are positive

Let’s play the XOR Break Game! Your task is to win this game by strategically breaking numbers
and forcing your opponent into a position where they can’t make a valid move.

60

Under review as a conference paper at ICLR 2026

Query Types:

First Turn Format:

- Your move: “Breaking into: p1 ps”

- Example: “Breaking into: 10 7

Other Turns Format:

- Your move: “Choosing: p Breaking into: p1 ps’
- My response: Either

* “Choosing: x Breaking into: y 2”

or

* “Choosing: x Cannot break further”
Example Round:

Initial number: 13

You: “Breaking into: 10 77

- Breaking 13 into 10 & 7

- Both numbers less than 13

Me: “Choosing: 7 Breaking into: 3 4”

- Selected 7 and broke it into 3 & 4

You: “Choosing: 3 Breaking into: 2 1”

- Selected 3 and broke it into 2 & 1

Me: “Choosing: 1 Cannot break further”
- You win! 1 cannot be broken
Instructions:

1. Make moves based on XOR properties
2. Use exactly the format shown above
3. Explain your reasoning before each move
Remember:

- Use exact format for moves

- Numbers must satisfy: * Less than current number * Greater than 0 * XOR to current number
- Invalid break = automatic loss

- More than 20 moves = loss

Ready to start? Make your first query!

s

Case N.66: XORBreaking Difficulty Levels

Easy: n = 100000, Medium: n = 10000000, Hard: n = 100000000

PizzaSlicing In this task, models need to win a strategic game by choosing vertices that minimize
the total area of triangular slices eaten. Success requires careful calculation of areas while considering
both immediate and future slice configurations.

Case N.67: PizzaSlicing Problem Template

Let’s play the Pizza Slice Game! Your task is to eat as little spinach pizza as possible by
strategically choosing vertices. The player who eats less total area wins!
Rules:

1. Game Setup:

- Pizza shape: {n}-vertex convex polygon

- Vertices: {points_str}

- You play first, I play second

- Total {(n — 2)} turns to complete

2. Game Mechanics:

- Players take turns choosing vertices

- When chosen, player eats triangle formed by:

* The chosen vertex

* Its two neighboring edges

- After each choice, pizza loses one vertex

- Game ends when all pizza is eaten

- Each vertex can only be chosen once

61

Under review as a conference paper at ICLR 2026

3. Area Calculation Example:

If you choose vertex 1 (x1,y1):

- Triangle area = |(z2 — x1)(y3 — y1) — (¥3 — 1) (y2 — y1)|/2
- Where (2, y2) and (z3, y3) are neighboring vertices
- Area adds to your total eaten amount

- Player with smaller total area wins!

Query Type:

Format: “My Choice: X"

where X is vertex index (1 to {n})

Example Round:

You: “My Choice: 17

Me: “3”

You: “My Choice: 2”

Me: “4”

Result: Add up areas of your triangles and compare with mine to determine winner!
Instructions:

1. Make choices based on area calculations

2. Use exactly the format shown above

3. Explain your reasoning before each choice
Remember:

- Use exact format: “My Choice: X

- Choose only available vertices

- Aim to eat LESS total area than opponent

- Invalid move = automatic loss

- Victory = eating smaller total area than opponent
Ready to start? Make your first query!

Case N.68: PizzaSlicing Difficulty Levels

Easy: n = 6, Medium: n = 8, Hard: n = 12

PaperNumbering In this task, models need to arrange numbers in non-decreasing order on a line
of papers through strategic placement and overwriting. Success requires careful planning of number
positions while adapting to new values each round.

Case N.69: PaperNumbering Problem Template

Let’s play the Paper Number Game!

Rules:

1. Game Setup:

- n blank papers in a line, numbered 1 to n from left to right
- Game lasts {turns} rounds

- Numbers range from 1 to {max_number}

2. Game Mechanics:

- System provides one number (1 to {maz_number}) each round
- You must choose which paper to write the number on

- You can overwrite existing numbers on papers

- Game ends after {turns} rounds or when winning condition is met
3. Winning Condition:

- All papers must have numbers written

- Numbers must be in non-decreasing order from left to right
- Win immediately when condition is met

- Lose if not achieved after {turns} rounds

Query Type:

Format: “My Choice: X

where X is paper position (1 to n)

Example Round:

Given:

62

Under review as a conference paper at ICLR 2026

Me: “2”

You: “I’'ll place 2 on first paper to leave room for larger numbers”
“My Choice: 1”

- Paper state: [2,_,_...]

Me: “1”

You: “I’'ll place 1 on second paper temporarily”

“My Choice: 2”

- Paper state: [2,1,_...]

Me: “3”

You: “I'll replace 1 with 3 to achieve non-decreasing order”
“My Choice: 2”

- Paper state: [2,3,_...]

Instructions:

1. Make choices based on number sequence

2. Use exactly the format shown above

3. Explain your reasoning before each choice
Remember:

- Use exact format: “My Choice: X

- Choose valid paper positions (1 to n)

- Aim for non-decreasing sequence

- Invalid move = automatic loss

Ready to start? Make your first query!

The first number I give you is: {initial_value}

Case N.70: PaperNumbering Difficulty Levels

Easy: n = 5, Medium: n = 10, Hard: n = 15

GridGame In this task, models need to win a strategic game by selecting grid cells that minimize
their sum while following adjacency rules. Success requires careful planning of cell selections while
considering both immediate values and future path availability.

Case N.71: GridGame Problem Template

Let’s play the Grid Game! Your task is to choose cells strategically to win.
Rules:

1. Game Setup:

- Grid size: {n}*{m}

- Grid already filled with numbers 1 to {n x m}

- Each number appears exactly once {grid_str}

2. Game Mechanics:

- Players take turns selecting unselected cells

- You move first

- Any cell chosen after first turn must be adjacent to a previously selected cell
- Cells are adjacent if they share an edge (up/down/left/right)
- Game ends when all cells are selected

- You win if your selected numbers sum < my sum

3. Adjacency Example:

For cell (2,2):

- Adjacent cells: (1,2), (2,1), (2,3), (3,2)

- Diagonal cells like (1, 1) are not adjacent

- Must choose a cell adjacent to any previously selected cell
Query Type:

Format: “My Choice: = y”

where x is row (1 to {n}) and y is column (1 to {m})
Example Interaction:

You: “My Choice: 2 2”

- Selecting cell at row 2, column 2

63

Under review as a conference paper at ICLR 2026

Me: “My Choice: 2 3”

- Cell is adjacent to (2, 2)

You: “My Choice: 1 2”

- Cell is adjacent to (2, 2)

Instructions:

1. Make choices based on grid values

2. Use exactly the format shown above

3. Explain your reasoning before each choice
Remember:

- Use exact format: “My Choice: z y”

- Choose only adjacent cells after first turn
- First move can be any cell

- Keep track of both sums

- Plan moves to keep your sum smaller

- Invalid move = automatic loss

Ready to start? Make your first choice!

Case N.72: GridSumGame Difficulty Levels

Easy: n = 3, Medium: n = 5, Hard: n = 8

GridColoring In this task, models need to discover a special rectangular pattern on a grid through
strategic cell selection. Success requires finding four differently colored cells that form a rectangle
with sides parallel to grid lines.

Case N.73: GridColoring Problem Template

Let’s play the Grid Coloring Game! Find a special rectangular pattern on the grid.
Rules:

1. Game Setup:

- I have a n*n grid

- {coloring_description}

2. Game Mechanics:

- You can make up to 10 moves

- Each move: Choose an uncolored cell by specifying coordinates (z, y)
- I will respond by coloring that cell with a color of my choice (1 to {2 xn})
- Your goal: Find 4 colored cells that form a valid rectangle

3. Victory Conditions:

A valid rectangle must:

- Have all 4 cells colored

- Have different colors in all 4 cells

- Form a rectangle with sides parallel to grid lines

Query Types:

1. To choose a cell:

Format: “My Choice: x y”

where 1l < z,y <n

2. To submit answer:

Format: “My Answer: x1 22 y1 y2”

where (z1,y1), (x1,¥2), (z2,y1), (x2,y2) are rectangle corners
Example Interaction:

Given a 3*3 grid with initial coloring:

- Cell at position (1, 1) has color 1

- Cell at position (2, 2) has color 2

- Cell at position (3, 3) has color 3

You: “My Choice: 127

Me: “Cell (1, 2) colored with color 4”

You: “My Choice: 2 1”

Me: “Cell (2, 1) colored with color 5”

64

Under review as a conference paper at ICLR 2026

You: “My Answer: 12127

Me: “Win!”

Instructions:

1. Make choices based on grid state

2. Use exactly the formats shown above

3. Explain your reasoning before each move

Remember:

- Use exact format: “My Choice: z y” for queries

- Use exact format: “My Answer: z1 2 y1 y2 for final answer
- Explain your reasoning before making a choice

- Wait for my color response before next move

- Choosing already colored cell = invalid move = immediate loss
- All 4 cells in rectangle must have different colors

Ready to start? Make your first query!

Case N.74: GridColoring Difficulty Levels

Easy: n = 10, Medium: n = 20, Hard: n = 30

GeometricDistance In this task, models need to win a strategic game by choosing points that
control the parity of cumulative squared distances. Success requires careful calculation of distances
while planning moves to achieve an even final sum.

Case N.75: GeometricDistance Problem Template

Let’s play Geometric Distance Game! Your task is to win this game by choosing points and
controlling the sum’s parity.

Rules:

1. Game Setup:

- Starting point: ({sz}, {sy})

- Available points:
Point 1: ({1}, {y1}
Point 2: ({22}, {y2}
Point 3: ({z3}, {y3
Point 4: ({4}, {ya}

Point n: ({zn}, {yn})

2. Game Mechanics:

- Players take turns choosing one point

- Each point can only be chosen once

- After each choice, add the squared distance to sum:

* First turn: distance from ({sz}, {sy}) to your choice

* Later turns: distance from opponent’s last choice to your choice
- Game ends when all points are chosen

- You win if final sum is even

3. Distance Calculation Example:

If you choose (0,1):

- From (0, 0): distance squared = (0 —0)?2 4+ (1 - 0)2=0+1=1
- Sum becomes 1

Query Type:

Format: “My Choice: X”

where X is point index (1 to n)

Example Round:

Given:

- Starting point: (0, 0)

- Points: (1,0), (0,1), (1,1), (1,2)

You: “My Choice: 4”

- Distance from (0,0) to (1,2): (1 —0)2+(2-0)2=1+4=5

—
—

65

Under review as a conference paper at ICLR 2026

-Sum =35

Me: “My Choice: 2”

- Distance from (1,2) to (0,1): (0—1)2+ (1 —-2)2=1+1=2
-Sum=5+2=7

You: “My Choice: 3”

- Distance from (0,1) to (1,1): (1 =02+ (1 -1)2=1+0=1
-Sum=7+1=8

Me: “My Choice: 17

- Distance from (1,1) to (1,0): (1 = 1)2+(0—-1)2=0+1=1

-Sum=8+1=9
Result: You lose! (Final sum =9 is odd)
Instructions:

1. Make choices based on distance calculations
2. Use exactly the format shown above

3. Explain your reasoning before each choice
Remember:

- Use exact format: “My Choice: X

- Choose only available points (1-n)

- Plan moves to make final sum even

- Invalid move = automatic loss

Ready to start? Make your first query!

Case N.76: GeometricDistance Difficulty Levels

Easy: n = 4, Medium: n = 6, Hard: n = 8

BeeChase In this task, models need to catch a moving target on a special honeycomb graph by
coordinating three bees’ movements. Success requires strategic positioning and understanding of
graph topology to trap the target.

Case N.77: BeeChase Problem Template

Let’s play the Bee Chase Game! Your task is to catch Nastya by strategically moving three bees
on a special honeycomb graph.

Rules:

1. Game Setup:

- Graph: {n} vertices connected by {len(edges)} edges
- Edges: {edge_desc}

- You control 3 bees

- I control Nastya

- Each vertex connects to at most 3 others

- Each edge is part of a cycle of length < 5

2. Game Mechanics:

- First round:

* You place 3 bees on any vertices

* I place Nastya on a different vertex

- Each subsequent round:

* You move each bee (or keep in place)

* I move Nastya along one edge

- Movement rules:

* Can only move along edges

* Multiple bees can share same vertex

* Nastya must move each turn

* All moves must be valid graph moves

3. Victory Conditions:

- You win if any bee reaches same vertex as Nastya
- You lose if not caught after {n} moves

- Game ends immediately upon catch

66

Under review as a conference paper at ICLR 2026

Query Type:

Format: “My Choice: X Y Z”

where X, Y, Z are vertex numbers for three bees
Example Round:

Initial placement:

You: “My Choice: 12 3”

- Placing bees at vertices 1,2,3

Me: “5”

- Nastya appears at vertex 5

You: “My Choice: 2 3 4”

- Moving bees to surround Nastya

Me: “6”

- Nastya moves to vertex 6

Result: You catch Nastya!

Instructions:

1. Make moves based on graph structure
2. Use exactly the format shown above

3. Explain your reasoning before each move
Remember:

- Use exact format: “My Choice: X YV Z”
- Choose only valid vertex numbers

- Plan moves to trap Nastya

- Invalid move = immediate loss

- Maximum {n} moves to win

Ready to start? Make your first query!

Case N.78: BeeChase Difficulty Levels

Easy: n = 10, Medium: n = 20, Hard: n = 40

AssiutChess In this task, models need to trap a hidden king using a queen on a chessboard. Success
requires strategic queen placement and movement while responding to the king’s reported directions.

Case N.79: AssiutChess Problem Template

Let’s play Assiut Chess! Your task is to win this game by controlling a queen to trap the hidden
king.

Rules:

1. Game Setup:

- {n}*{n} chessboard (rows and columns from 1 to {n})

- You control the queen, I control the hidden king

- First, you place the queen anywhere on the board

2. Game Mechanics:

- On each turn:

* I move the king first (in one of 8 directions)

* 1 tell you which direction the king moved

* You move the queen to any cell in straight or diagonal line
- King’s possible moves:

* “Right”, “Left”, “Up”, “Down”

* “Down-Right”, “Down-Left”, “Up-Left”, “Up-Right”

- King’s restrictions:

* Cannot move out of the board

* Cannot move to cells attacked by queen (same row, column, or diagonal)
- Queen’s restrictions:

* Must move to a different cell each turn

* Must move in straight or diagonal lines

3. Victory Conditions:

- You win if the king has no valid moves

67

Under review as a conference paper at ICLR 2026

- Game ends when “Done” is received
Query Type:

Format: “My Choice: x y”

where 1 < z,y < {n}

Example Round:

Initial queen placement:

You: “My Choice: 3 2”

Me: “Left”

You: “My Choice: 3 3”

Me: “Right”

You: “My Choice: 3 4”

Me: “Done”

Result: You win! King is trapped!
Instructions:

1. Make moves based on king’s direction
2. Use exactly the format shown above
3. Explain your reasoning before each move
Remember:

- Use exact format: “My Choice: = y”
- Choose valid queen moves only

- Plan moves to trap the king

- Invalid move = immediate loss

- You have maximun 20 moves

Ready to start? Make your first query!

Case N.80: AssiutChess Difficulty Levels

Easy: n = 4, Medium: n = 6, Hard: n =7

O PER-TASK RESULTS

We list the experimental results for each of the 40 tasks in this section.

Model Easy Medium Hard
03-mini 93.33 73.33 60.00
R1 96.67 56.67 50.00
QwQ-32B 86.67 46.67 20.00
R1-Distill-Llama-70B 90.00 46.67 33.33
R1-Distill-Qwen-32B 40.00 10.00 6.67
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 83.33 43.33 50.00
Qwen-Max 93.33 80.00 43.33
gemma-3-27b-IT 50.00 3.33 6.67
gemma-3-12b-IT 26.67 0.00 0.00
gemma-3-4b-IT 46.67 0.00 333
Qwen2.5-72B-IT 93.33 66.67 50.00
Qwen2.5-32B-IT 90.00 73.33 56.67
Qwen2.5-7B-IT 66.67 46.67 36.67
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 90.00 56.67 23.33
Llama-3.1-8B-IT 40.00 1333 333
Mistral-Small-24B-IT-2501 70.00 10.00 3.33
Ministral-8B-1T-2410 63.33 10.00 0.00

Table 8: Average accuracy for AssiutChess across different difficulties.

68

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 4222 26.67 15.56
R1 5222 3778 28.89
QwQ-32B 50.00 4222 25.56
R1-Distill-Llama-70B 3778 1333 1444
R1-Distill-Qwen-32B 1444 778 3.33
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 31.11 13.33 10.00
Qwen-Max 2778 1222 222
gemma-3-27b-IT 24.44 15.56 10.00
gemma-3-12b-IT 16.67 7.78 4.44
gemma-3-4b-1T 3444 889 778
Qwen2.5-72B-IT 30.00 11.11 3.33
Qwen2.5-32B-IT 1111 778 222
Qwen2.5-7B-IT 2444 1333 333
Qwen2.5-1.5B-IT 222 1.11 0.00
Llama-3.1-70B-IT 27.78 13.33 10.00
Llama-3.1-8B-IT 2222 556 778
Mistral-Small-24B-IT-2501 33.33 6.67 5.56
Ministral-8B-1T-2410 13.33 222 0.00

Table 9: Average accuracy for AttendanceCheck across different difficulties.

Model Easy Medium Hard
03-mini 100.00 100.00 86.67
R1 100.00 86.67 86.67
QwQ-32B 90.00 56.67 66.67
R1-Distill-Llama-70B 56.67 46.67 30.00
R1-Distill-Qwen-32B 73.33 40.00 6.67
R1-Distill-Qwen-7B 3.33 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 3.33 0.00 0.00
Qwen-M az 4333 36.67 30.00
gemma-3-27b-1T 30.00 3.33 3.33
gemma-3-12b-IT 3.33 0.00 0.00
gemma-3-4b-1T 6.67 0.00 0.00
Qwen2.5-72B-1T 26.67 6.67 333
Qwen2.5-32B-IT 23.33 26.67 0.00
Qwen2.5-7B-IT 16.67 6.67 3.33
Qwen2.5-1.5B-IT 53.33 70.00 53.33
Llama-3.1-70B-IT 23.33 3.33 6.67
Llama-3.1-8B-IT 13.33 0.00 0.00
Mistral-Small-24B-IT-2501 30.00 3.33 0.00
Ministral-8B-1T-2410 20.00 10.00 0.00

Table 10: Average accuracy for BeeChase across different difficulties.

69

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 60.00 4222 2333
R1 67.78 60.00 20.00
QwQ-32B 95.56 97.78 74.44
R1-Distill-Llama-70B 4222 38.89 11.11
R1-Distill-Qwen-32B 60.00 45.56 15.56
R1-Distill-Qwen-7B 25.56 18.89 4.44
R1-Distill-Qwen-1.5B 0.00 6.67 222
GPT-40 21.11 10.00 13.33
Qwen-Max 4222 31.11 17.78
gemma-3-27b-IT 5222 38.89 28.89
gemma-3-12b-IT 21.11 10.00 4.44
gemma-3-4b-IT 16.67 10.00 6.67
Qwen2.5-72B-IT 5222 58.89 16.67
Qwen2.5-32B-IT 55.56 4222 15.56
Qwen2.5-7B-IT 76.67 65.56 11.11
Qwen2.5-1.5B-IT 6.67 1.11 0.00
Llama-3.1-70B-IT 73.33 53.33 30.00
Llama-3.1-8B-IT 60.00 30.00 5.56
Mistral-Small-24B-1T-2501 22.22 18.89 8.89
Ministral-8B-IT-2410 333 1556 0.00

Table 11:

Average accuracy for BitCompare across different difficulties.

Model Easy Medium Hard
03-mini 78.89 54.44 40.00
R1 7778 4111 2444
QwQ-32B 3222 1333 10.00
R1-Distill-Llama-70B 13.33 1.11 0.00
R1-Distill-Qwen-32B 8.89 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 25.56 1222 1.11
Qwen-Max 31.11 17.78 6.67
gemma-3-27b-1T 3222 556 222
gemma-3-12b-IT 7.78 3.33 1.11
gemma-3-4b-IT 0.00 1.11 0.00
Qwen2.5-72B-IT 31.11 6.67 2.22
Qwen2.5-32B-IT 7.78 222 1.11
Qwen2.5-7B-IT 4.44 1.11 3.33
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 18.89 1222 333
Llama-3.1-8B-IT 7.78 1.11 0.00
Mistral-Small-24B-IT-2501 12.22 222 0.00
Ministral-8B-1T-2410 7.78 222 0.00

Table 12: Average accuracy for BitGuessing across different difficulties.

70

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 26.67 25.56 16.67
R1 100.00 100.00 100.00
QwQ-32B 93.33 96.67 94.44
R1-Distill-Llama-70B 18.89 15.56 15.56
R1-Distill-Qwen-32B 7.78 4.44 5.56

R1-Distill-Qwen-7B 5.56 3.33 222

R1-Distill-Qwen-1.5B 0.00 0.00 0.00

GPT-40 23.33 2444 2333
Qwen-Max 2222 2222 15.56
gemma-3-27b-1T 21.11 3222 10.00
gemma-3-12b-1T 4556 2556 20.00
gemma-3-4b-1T 30.00 18.89 13.33
Qwen2.5-72B-IT 11.11 7.78 14.44
Qwen2.5-32B-IT 66.67 67.78 60.00
Qwen2.5-7B-IT 2444 21.11 28.89
Qwen2.5-1.5B-IT 15.56 6.67 4.44

Llama-3.1-70B-IT 50.00 48.89 53.33
Llama-3.1-8B-IT 3556 2333 2222
Mistral-Small-24B-IT-2501 48.89 16.67 23.33
Ministral-8B-1T-2410 72.22 55.56 20.00

Table 13: Average accuracy for CactusSearch across different difficulties.

Model Easy Medium Hard
03-mini 3444 2556 7.78
R1 6.67 11.11 6.67
QwQ-32B 222 333 1.11
R1-Distill-Llama-70B 3.33 1.11 1.11
R1-Distill-Qwen-32B 8.89 3.33 1.11
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 0.00 0.00 1.11
Qwen-Max 444 222 333
gemma-3-27b-IT 3.33 1.11 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-1T 0.00 0.00 0.00
Qwen2.5-72B-IT 222 222 1.11
Qwen2.5-32B-IT 5.56 1.11 0.00
Qwen2.5-7B-IT 1.11 0.00 0.00
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 1.11 0.00 0.00
Ministral-8B-1T-2410 0.00 0.00 0.00

Table 14: Average accuracy for ChemicalSynthesis across different difficulties.

71

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 25.00 4.44 0.00
R1 24.44 333 222
QwQ-32B 7.78 0.00 0.00
R1-Distill-Llama-70B 1.11 0.00 0.00
R1-Distill-Qwen-32B 222 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 1.11 0.00 0.00
Qwen-Max 1.11 0.00 0.00
gemma-3-27b-IT 1.11 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 1.11 0.00 0.00
Qwen2.5-72B-IT 0.00 0.00 0.00
Qwen2.5-32B-IT 8.89 0.00 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 222 0.00 0.00
Llama-3.1-8B-IT 3.33 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 15:

Average accuracy for ColorMagic across different difficulties.

Model Easy Medium Hard
03-mini 78.89 46.67 26.67
R1 80.00 45.56 15.56
QwQ-32B 62.22 3444 8.89
R1-Distill-Llama-70B 2444 222 333

R1-Distill-Qwen-32B 11.11 222 1.11

R1-Distill-Qwen-7B 0.00 222 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 81.11 51.11 13.33
Qwen-Max 70.00 4222 15.56
gemma-3-27b-1T 6.67 222 0.00
gemma-3-12b-IT 11.11 0.00 0.00
gemma-3-4b-IT 1333 11.11 0.00
Qwen2.5-72B-IT 13.33 222 0.00
Qwen2.5-32B-IT 13.33 6.67 222
Qwen2.5-7B-IT 13.33 11.11 0.00
Qwen2.5-1.5B-1T 50.00 0.00 0.00
Llama-3.1-70B-IT 7.78 0.00 0.00
Llama-3.1-8B-IT 26.67 1.11 1.11

Mistral-Small-24B-IT-2501 37.78 3.33 1.11

Ministral-8B-1T-2410 33.33 20.00 2.22

Table 16: Average accuracy for DarkMaze across different difficulties.

72

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 11.11 10.00 10.00
R1 54.44 47778 38.89
QwQ-32B 3222 36.67 1444
R1-Distill-Llama-70B 444 16.67 1.11

R1-Distill-Qwen-32B 1.11 1.11 3.33

R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 5.56 3.33 2.22
Qwen-Max 444 10.00 222
gemma-3-27b-IT 4.44 7.78 2.22
gemma-3-12b-IT 4.44 6.67 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 11.11 1333 6.67

Qwen2.5-32B-IT 4.44 2.22 1.11

Qwen2.5-7B-IT 7.78 10.00 2.22
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 1222 1333 222
Llama-3.1-8B-IT 7.78 6.67 1.11

Mistral-Small-24B-IT-2501 16.67 17.78 4.44
Ministral-8B-IT-2410 11.11 28.89 10.00

Table 17: Average accuracy for FindBiggest across different difficulties.

Model Easy Medium Hard
03-mini 82.00 6.67 16.67
R1 74.00 3.33 222
QwQ-32B 7533 6.67 5.56
R1-Distill-Llama-70B 5444 0.00 0.00
R1-Distill-Qwen-32B 2444 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 4933 222 444
Qwen-Max 4733 0.00 5.56
gemma-3-27b-1T 4.44 1.11 0.00
gemma-3-12b-IT 444 0.00 0.00
gemma-3-4b-IT 26.67 0.00 0.00
Qwen2.5-72B-IT 45.56 0.00 0.00
Qwen2.5-32B-IT 48.89 0.00 0.00
Qwen2.5-7B-IT 37.78 0.00 0.00
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 33.33 0.00 0.00
Llama-3.1-8B-IT 12.22 0.00 0.00
Mistral-Small-24B-IT-2501 1.11 0.00 0.00
Ministral-8B-1T-2410 222 0.00 0.00

Table 18: Average accuracy for BitQuery across different difficulties.

73

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 66.67 51.11 57.78
R1 25.56 10.00 11.11
QwQ-32B 26.67 20.00 15.56
R1-Distill-Llama-70B 16.67 5.56 1.11
R1-Distill-Qwen-32B 11.11 222 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 0.00 0.00 0.00
Qwen-Max 0.00 0.00 0.00
gemma-3-27b-IT 0.00 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 1.11 0.00 0.00
Qwen2.5-32B-IT 0.00 0.00 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-1T-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 19: Average accuracy for CircleFinding across different difficulties.

Model Easy Medium Hard
03-mini 3222 2222 21.11
R1 4222 3778 18.89
QwQ-32B 2444 20.00 15.56
R1-Distill-Llama-70B 2222 21.11 1444
R1-Distill-Qwen-32B 778 444 222
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 36.67 14.44 1222
Qwen-Max 17.78 18.89 5.56
gemma-3-27b-1T 1222 1333 12.22
gemma-3-12b-IT 15.56 12.22 8.89
gemma-3-4b-IT 2.22 222 0.00
Qwen2.5-72B-IT 26.67 20.00 12.22
Qwen2.5-32B-IT 26.67 7.78 13.33
Qwen2.5-7B-IT 11.11 18.89 11.11
Qwen2.5-1.5B-1T 0.00 1.11 0.00
Llama-3.1-70B-IT 3222 1444 556
Llama-3.1-8B-IT 18.89 8.89 10.00
Mistral-Small-24B-IT-2501 16.67 13.33 11.11
Ministral-8B-1T-2410 15.56 8.89 6.67

Table 20: Average accuracy for FindHidden across different difficulties.

74

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 61.11 4222 1444
R1 62.22 3222 556
QwQ-32B 71.11 5111 21.11
R1-Distill-Llama-70B 41.11 10.00 222
R1-Distill-Qwen-32B 2778 3.33 1.11
R1-Distill-Qwen-7B 222 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 31.11 8.89 0.00
Qwen-Max 36.67 1333 1.11
gemma-3-27b-IT 55.56 20.00 4.44
gemma-3-12b-IT 51.11 18.89 6.67
gemma-3-4b-1T 222 0.00 0.00
Qwen2.5-72B-IT 5333 11.11 4.44
Qwen2.5-32B-IT 38.89 21.11 1.11
Qwen2.5-7B-IT 2556 17.78 1.11
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 58.89 14.44 0.00
Llama-3.1-8B-IT 10.00 0.00 0.00
Mistral-Small-24B-IT-2501 40.00 10.00 0.00
Ministral-8B-1T-2410 11.11 556 0.00

Table 21: Average accuracy for FindTheImpostors across different difficulties.

Model Easy Medium Hard
03-mini 72.17 46.83 25.83
R1 70.00 53.33 53.33
QwQ-32B 6.67 3.33 0.00
R1-Distill-Llama-70B 61.11 2556 1444
R1-Distill-Qwen-32B 2444 1556 6.67
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 35.56 3333 25.56
Qwen-Max 11.11 17.78 18.89
gemma-3-27b-1T 23.11 11.11 18.33
gemma-3-12b-IT 32.67 3222 20.67
gemma-3-4b-1T 23.33 3.33 0.00
Qwen2.5-72B-IT 46.00 46.67 43.33
Qwen2.5-32B-IT 4578 31.11 28.00
Qwen2.5-7B-1T 33.33 20.00 13.33
Qwen2.5-1.5B-1T 70.00 46.67 56.67
Llama-3.1-70B-IT 4933 4133 41.78
Llama-3.1-8B-IT 36.67 30.00 23.33
Mistral-Small-24B-IT-2501 41.11 36.89 46.89
Ministral-8B-1T-2410 70.00 333 3333

Table 22: Average accuracy for GeoGame across different difficulties.

75

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 100.00 96.67 100.00
R1 90.00 96.67 100.00
QwQ-32B 83.33 83.33 76.67
R1-Distill-Llama-70B 26.67 60.00 46.67
R1-Distill-Qwen-32B 6.67 3.33 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 60.00 60.00 43.33
Qwen-Max 73.33 66.67 50.00
gemma-3-27b-IT 0.00 0.00 3.33
gemma-3-12b-1T 0.00 3.33 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 33.33 46.67 26.67
Qwen2.5-32B-IT 26.67 26.67 6.67
Qwen2.5-7B-IT 30.00 26.67 20.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 50.00 46.67 23.33
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-1T-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 23: Average accuracy for GridColoring across different difficulties.

Model Easy Medium Hard
03-mini 93.33 96.67 80.00
R1 80.00 83.33 46.67
QwQ-32B 83.33 7333 33.33
R1-Distill-Llama-70B 83.33 56.67 26.67
R1-Distill-Qwen-32B 86.67 60.00 20.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 70.00 46.67 40.00
Qwen-Max 93.33 46.67 30.00
gemma-3-27b-IT 0.00 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-1T 3.33 0.00 0.00
Qwen2.5-72B-IT 4333 60.00 63.33
Qwen2.5-32B-IT 76.67 43.33 40.00
Qwen2.5-7B-IT 23.33 0.00 3.33
Qwen2.5-1.5B-1T 16.67 3.33 0.00
Llama-3.1-70B-IT 20.00 13.33 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-1T-2410 16.67 26.67 53.33

Table 24: Average accuracy for GridGame across different difficulties.

76

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 60.00 55.56 55.56
R1 14.44 222 7.78
QwQ-32B 3.33 2.22 2.22
R1-Distill-Llama-70B 4.44 1.11 3.33
R1-Distill-Qwen-32B 0.00 1.11 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 27.78 10.00 1.11
Qwen-Max 28.89 1222 5.56
gemma-3-27b-IT 1.11 222 444
gemma-3-12b-IT 6.67 1.11 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 46.67 2222 6.67
Qwen2.5-32B-IT 3333 7.78 6.67
Qwen2.5-7B-1T 1.11 0.00 0.00
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 24.44 8.89 5.56
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-1T-2501 3.33 1.11 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 25: Average accuracy for GuessMax across different difficulties.

Model Easy Medium Hard
03-mini 93.33 9333 9333
R1 90.00 100.00 100.00
QwQ-32B 90.00 86.67 90.00
R1-Distill-Llama-70B 73.33 86.67 80.00
R1-Distill-Qwen-32B 63.33 60.00 60.00
R1-Distill-Qwen-7B 20.00 20.00 6.67
R1-Distill-Qwen-1.5B 3.33 6.67 0.00
GPT-4o 16.67 10.00 16.67
Qwen-Max 26.67 2333 1333
gemma-3-27b-IT 6.67 13.33 3.33
gemma-3-12b-IT 3.33 3.33 0.00
gemma-3-4b-1T 0.00 13.33 0.00
Qwen2.5-72B-IT 13.33 2333 30.00
Qwen2.5-32B-IT 333 20.00 3.33
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-1T 0.00 13.33 0.00
Llama-3.1-70B-IT 0.00 6.67 0.00
Llama-3.1-8B-IT 0.00 3.33 3.33
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-1T-2410 0.00 0.00 0.00

Table 26: Average accuracy for KnightBattle across different difficulties.

77

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 2444 17.78 0.00
R1 5.56 0.00 0.00
QwQ-32B 1222 0.00 0.00
R1-Distill-Llama-70B 6.67 0.00 0.00
R1-Distill-Qwen-32B 222 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 0.00 0.00 0.00
Qwen-Max 0.00 0.00 0.00
gemma-3-27b-IT 222 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 222 0.00 0.00
Qwen2.5-32B-IT 1.11 0.00 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 27: Average accuracy for LegendaryTree across different difficulties.

Model Easy Medium Hard
03-mini 76.67 61.11 38.89
R1 80.00 67.78 51.11
QwQ-32B 9222 68.89 50.00
R1-Distill-Llama-70B 86.67 50.00 32.22
R1-Distill-Qwen-32B 84.44 36.67 14.44
R1-Distill-Qwen-7B 222 222 556
R1-Distill-Qwen-1.5B 0.00 1.11 1.11
GPT-4o 70.00 42.22 30.00
Qwen-Max 72.22 50.00 38.89
gemma-3-27b-IT 78.89 20.00 50.00
gemma-3-12b-IT 75.56 4444 3222
gemma-3-4b-IT 63.33 30.00 15.56
Qwen2.5-72B-IT 75.56 5778 4444
Qwen2.5-32B-IT 87.78 66.67 67.78
Qwen2.5-7B-IT 54.44 30.00 22.22
Qwen2.5-1.5B-1T 8.89 0.00 0.00
Llama-3.1-70B-IT 77.78 65.56 60.00
Llama-3.1-8B-IT 80.00 52.22 3222
Mistral-Small-24B-IT-2501 70.00 44.44 36.67
Ministral-8B-1T-2410 57.78 21.11 20.00

Table 28: Average accuracy for ListQuery across different difficulties.

78

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 20.00 2333 16.67
R1 17.78 28.89 21.11
QwQ-32B 2.22 0.00 0.00
R1-Distill-Llama-70B 0.00 0.00 0.00
R1-Distill-Qwen-32B 0.00 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 4.00 0.00 0.00
Qwen-Max 3.71 0.00 0.00
gemma-3-27b-IT 5.56 5.56 2.22
gemma-3-12b-IT 5.56 2.22 1.11
gemma-3-4b-IT 4.44 2.22 0.00
Qwen2.5-72B-IT 4.44 8.89 0.00
Qwen2.5-32B-IT 6.67 1444 1.11
Qwen2.5-7B-IT 6.67 3.33 0.00
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 10.00 7.78 1.11
Llama-3.1-8B-IT 0.00 1.11 0.00
Mistral-Small-24B-IT-2501 6.67 10.00 0.00
Ministral-8B-IT-2410 2.22 0.00 0.00

Table 29: Average accuracy for MagneticField across different difficulties.

Model Easy Medium Hard
03-mini 444 222 1.11
R1 31.11 18.89 1.11
QwQ-32B 16.67 6.67 0.00
R1-Distill-Llama-70B 0.00 0.00 0.00
R1-Distill-Qwen-32B 0.00 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 1.11 0.00 0.00
Qwen-Max 6.67 222 0.00
gemma-3-27b-IT 0.00 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-1T 0.00 0.00 0.00
Qwen2.5-72B-IT 0.00 0.00 0.00
Qwen2.5-32B-IT 0.00 0.00 0.00
Qwen2.5-7B-IT 1.11 0.00 0.00
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 222 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-1T-2410 0.00 0.00 0.00

Table 30: Average accuracy for MahjongDetective across different difficulties.

79

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 7222 55.56 37.78
R1 6222 3222 7.78
QwQ-32B 88.89 3222 21.11
R1-Distill-Llama-70B 5222 2333 13.33
R1-Distill-Qwen-32B 3111 1111 1.11
R1-Distill-Qwen-7B 8.89 222 1.11
R1-Distill-Qwen-1.5B 5.56 0.00 0.00
GPT-40 3444 556 1.11
Qwen-Max 31.11 7.78 4.44
gemma-3-27b-IT 40.00 1444 6.67
gemma-3-12b-IT 30.00 8.89 2.22
gemma-3-4b-IT 0.00 5.56 2.22
Qwen2.5-72B-IT 38.89 222 1.11
Qwen2.5-32B-IT 2.22 3.33 4.44
Qwen2.5-7B-IT 3556 11.11 2.22
Qwen2.5-1.5B-1T 6.67 0.00 2.22
Llama-3.1-70B-IT 56.67 2333 1.11
Llama-3.1-8B-IT 3444 6.67 3.33
Mistral-Small-24B-1T-2501 18.89 2.22 0.00
Ministral-8B-IT-2410 3.33 0.00 0.00

Table 31: Average accuracy for MedianQuery across different difficulties.

Model Easy Medium Hard
03-mini 6222 28.89 14.44
R1 64.44 3333 21.11
QwQ-32B 57.78 20.00 10.00
R1-Distill-Llama-70B 51.11 2556 5.56
R1-Distill-Qwen-32B 1222 1.11 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 10.00 1.11
GPT-4o 333 444 1.11
Qwen-Max 18.89 16.67 5.56
gemma-3-27b-IT 1.11 0.00 0.00
gemma-3-12b-IT 17.78 3.33 3.33
gemma-3-4b-1T 0.00 7.78 1.11
Qwen2.5-72B-IT 6.67 4.44 1.11
Qwen2.5-32B-IT 31.11 2444 0.00
Qwen2.5-7B-IT 46.67 11.11 222
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 36.67 11.11 6.67
Llama-3.1-8B-IT 23.33 11.11 0.00
Mistral-Small-24B-IT-2501 22.22 2.22 1.11
Ministral-8B-1T-2410 13.33 7.78 6.67

Table 32: Average accuracy for MimicHunt across different difficulties.

80

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 66.67 40.00 30.00
R1 45.56 26.67 7.78
QwQ-32B 65.56 0.00 0.00
R1-Distill-Llama-70B 3222 222 0.00
R1-Distill-Qwen-32B 26.67 1.11 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 1.11 0.00 0.00
GPT-40 50.00 26.67 18.89
Qwen-Max 70.00 1.11 0.00
gemma-3-27b-IT 71.11 1.11 2.22
gemma-3-12b-IT 58.89 0.00 0.00
gemma-3-4b-IT 5.56 0.00 0.00
Qwen2.5-72B-IT 66.67 47.78 35.56
Qwen2.5-32B-IT 66.67 556 28.89
Qwen2.5-7B-IT 4333 0.00 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 76.67 46.67 22.22
Llama-3.1-8B-IT 30.00 11.11 7.78
Mistral-Small-24B-1T-2501 31.11 1.11 0.00
Ministral-8B-IT-2410 11.11 0.00 0.00

Table 33: Average accuracy for MinMax across different difficulties.

Model Easy Medium Hard
03-mini 3.33 3.33 3.33

R1 1444 1222 1444
QwQ-32B 8.89 3.33 1.11

R1-Distill-Llama-70B 1.11 1.11 1.11

R1-Distill-Qwen-32B 0.00 0.00 222
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 0.00 1.11 6.67
Qwen-Max 0.00 0.00 222
gemma-3-27b-1T 13.33 1.11 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 1.11 0.00 0.00
Qwen2.5-72B-IT 222 1444 222
Qwen2.5-32B-IT 3.33 1.11 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 333 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 3.33

Ministral-8B-1T-2410 16.67 7.78 1.11

Table 34: Average accuracy for SafepathFinder across different difficulties.

81

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 6.67 1.11 0.00
R1 30.00 30.00 24.44
QwQ-32B 3333 16.67 7.78
R1-Distill-Llama-70B 23.33 1222 8.89
R1-Distill-Qwen-32B 14.44 444 3.33
R1-Distill-Qwen-7B 1.11 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 7.78 6.67 2.22
Qwen-Max 8.89 3.33 5.56
gemma-3-27b-IT 11.11 3.33 3.33
gemma-3-12b-IT 6.67 3.33 2.22
gemma-3-4b-IT 444 0.00 222
Qwen2.5-72B-IT 4.44 2.22 0.00
Qwen2.5-32B-IT 8.89 11.11 1.11
Qwen2.5-7B-IT 1444 778 11.11
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 6.67 222 444
Llama-3.1-8B-IT 1.11 0.00 0.00
Mistral-Small-24B-1T-2501 4.44 2.22 0.00
Ministral-8B-IT-2410 5.56 444 5.56

Table 35:

Average accuracy for TrainPursuit across different difficulties.

Model Easy Medium Hard
03-mini 4556 5222 41.11
R1 61.11 5556 51.11
QwQ-32B 58.89 5444 63.33
R1-Distill-Llama-70B 64.44 6444 47.78
R1-Distill-Qwen-32B 2333 17.78 6.67
R1-Distill-Qwen-7B 0.00 3.33 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 11.11 21.11 15.56
Qwen-Max 15.56 1444 1444
gemma-3-27b-IT 60.00 40.00 33.33
gemma-3-12b-IT 13.33 0.00 0.00
gemma-3-4b-1T 20.00 8.89 6.67
Qwen2.5-72B-IT 63.33 55.56 5222
Qwen2.5-32B-IT 65.56 62.22 53.33
Qwen2.5-7B-IT 23.33 11.11 3.33
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 4333 3222 17.78
Llama-3.1-8B-IT 33.33 16.67 10.00
Mistral-Small-24B-IT-2501 51.11 42.22 2222
Ministral-8B-1T-2410 0.00 0.00 0.00

Table 36: Average accuracy for TreasureHunt across different difficulties.

82

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 86.67 78.89 80.00
R1 83.33 81.11 77.78
QwQ-32B 70.00 70.00 70.00
R1-Distill-Llama-70B 8.89 6.67 8.89
R1-Distill-Qwen-32B 11.11 1333 11.11
R1-Distill-Qwen-7B 1.11 2.22 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 4333 50.00 53.33
Qwen-Max 46.67 45.56 54.44
gemma-3-27b-IT 13.33 10.00 8.89
gemma-3-12b-IT 11.11 11.11 14.44
gemma-3-4b-IT 1.11 1.11 8.89
Qwen2.5-72B-IT 11.11 5.56 2.22
Qwen2.5-32B-IT 26.67 21.11 26.67
Qwen2.5-7B-1T 6.67 333 1444
Qwen2.5-1.5B-IT 2.22 2.22 8.89
Llama-3.1-70B-IT 1222 1222 13.33
Llama-3.1-8B-IT 0.00 4.44 3.33
Mistral-Small-24B-1T-2501 4.44 10.00 13.33
Ministral-8B-1T-2410 10.00 3.33 10.00

Table 37: Average accuracy for VladikMaze across different difficulties.

Model Easy Medium Hard
03-mini 4222 5333 7.78
R1 27.78 18.89 0.00
QwQ-32B 13.33 333 0.00
R1-Distill-Llama-70B 1.11 0.00 0.00
R1-Distill-Qwen-32B 0.00 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 333 0.00 0.00
Qwen-Max 11.11 0.00 0.00
gemma-3-27b-IT 4.44 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-1T 0.00 0.00 0.00
Qwen2.5-72B-IT 0.00 0.00 0.00
Qwen2.5-32B-IT 0.00 0.00 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-1T-2410 0.00 0.00 0.00

Table 38: Average accuracy for Wordle across different difficulties.

&3

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 80.00 90.00 66.67
R1 63.33 60.00 86.67
QwQ-32B 56.67 86.67 80.00
R1-Distill-Llama-70B 13.33 10.00 6.67
R1-Distill-Qwen-32B 10.00 2333 16.67
R1-Distill-Qwen-7B 3.33 3.33 3.33
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 76.67 5333 16.67
Qwen-Max 30.00 20.00 10.00
gemma-3-27b-IT 333 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-IT 0.00 0.00 0.00
Qwen2.5-72B-IT 10.00 0.00 0.00
Qwen2.5-32B-IT 333 0.00 10.00
Qwen2.5-7B-IT 6.67 0.00 6.67
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 333 1333 16.67
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 20.00 0.00 0.00
Ministral-8B-IT-2410 0.00 0.00 0.00

Table 39: Average accuracy for XORBreaking across different difficulties.

Model Easy Medium Hard
03-mini 58.57 21.84 30.22
R1 57.78 4222 27.78
QwQ-32B 81.11 5444 28.89
R1-Distill-Llama-70B 31.11 7.78 4.44
R1-Distill-Qwen-32B 3222 8.89 444
R1-Distill-Qwen-7B 222 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 46.67 21.11 13.33
Qwen-Max 71.11 40.00 26.67
gemma-3-27b-1T 30.00 11.11 14.44
gemma-3-12b-IT 27.78 1333 4.44
gemma-3-4b-1T 3.33 3.33 1.11
Qwen2.5-72B-IT 37.78 18.89 11.11
Qwen2.5-32B-IT 4556 21.11 1444
Qwen2.5-7B-1T 11.11 444 0.00
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 3444 16.67 7.78
Llama-3.1-8B-IT 10.00 556 333
Mistral-Small-24B-IT-2501 6.67 0.00 1.11
Ministral-8B-1T-2410 3.33 222 333

Table 40: Average accuracy for ZeroFinding across different difficulties.

84

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 4333 56.67 43.33
R1 40.00 20.00 13.33
QwQ-32B 26.67 2333 26.67
R1-Distill-Llama-70B 20.00 2333 6.67
R1-Distill-Qwen-32B 30.00 13.33 23.33
R1-Distill-Qwen-7B 0.00 3.33 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 6.67 6.67 0.00
Qwen-Max 3333 6.67 0.00
gemma-3-27b-IT 333 0.00 333
gemma-3-12b-IT 0.00 333 0.00
gemma-3-4b-IT 0.00 3.33 0.00
Qwen2.5-72B-IT 333 0.00 333
Qwen2.5-32B-IT 20.00 0.00 0.00
Qwen2.5-7B-IT 333 0.00 0.00
Qwen2.5-1.5B-IT 333 0.00 333
Llama-3.1-70B-IT 6.67 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 3.33 0.00 0.00
Ministral-8B-IT-2410 10.00 3.33 0.00

Table 41: Average accuracy for ZigzagGraph across different difficulties.

Model Easy Medium Hard
03-mini 23.61 17.78 16.67
R1 62.50 31.11 30.00
QwQ-32B 2222 1333 5.56
R1-Distill-Llama-70B 13.89 8.89 1.11
R1-Distill-Qwen-32B 278 222 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 18.06 13.33 3.33
Qwen-Max 20.83 20.00 6.67
gemma-3-27b-IT 1250 7.78 0.00
gemma-3-12b-IT 12.50 6.67 0.00
gemma-3-4b-IT 2.78 4.44 0.00
Qwen2.5-72B-IT 27.78 18.89 5.56
Qwen2.5-32B-IT 18.06 11.11 2.22
Qwen2.5-7B-IT 0.00 222 0.00
Qwen2.5-1.5B-IT 0.00 0.00 0.00
Llama-3.1-70B-IT 18.06 11.11 2.22
Llama-3.1-8B-IT 1.39 222 0.00
Mistral-Small-24B-IT-2501 18.06 10.00 6.67
Ministral-8B-1T-2410 694 222 0.00

Table 42: Average accuracy for PermutationDiscovery across different difficulties.

85

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 96.67 96.67 83.33
R1 83.33 76.67 73.33
QwQ-32B 76.67 76.67 56.67
R1-Distill-Llama-70B 93.33 83.33 70.00
R1-Distill-Qwen-32B 23.33 26.67 30.00
R1-Distill-Qwen-7B 10.00 0.00 0.00
R1-Distill-Qwen-1.5B 333 0.00 0.00
GPT-40 36.67 26.67 30.00
Qwen-Max 80.00 46.67 33.33
gemma-3-27b-IT 36.67 3.33 0.00
gemma-3-12b-IT 20.00 3.33 0.00
gemma-3-4b-IT 16.67 3.33 3.33
Qwen2.5-72B-IT 46.67 40.00 10.00
Qwen2.5-32B-IT 4333 2333 33.33
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-IT 16.67 1333 6.67
Llama-3.1-70B-IT 33.33 40.00 53.33
Llama-3.1-8B-IT 10.00 10.00 0.00
Mistral-Small-24B-IT-2501 60.00 30.00 3.33
Ministral-8B-IT-2410 30.00 0.00 0.00

Table 43: Average accuracy for PizzaSlice across different difficulties.

Model Easy Medium Hard
03-mini 86.67 66.67 3222
R1 83.33 60.00 30.00
QwQ-32B 55.56 17.78 16.67
R1-Distill-Llama-70B 62.22 20.00 7.78
R1-Distill-Qwen-32B 1222 333 3.33
R1-Distill-Qwen-7B 1.11 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 58.89 30.00 26.67
Qwen-Max 71.11 4556 22.22
gemma-3-27b-1T 65.56 40.00 21.11
gemma-3-12b-IT 4556 3444 3444
gemma-3-4b-IT 38.89 3222 28.89
Qwen2.5-72B-IT 67.78 4222 27.78
Qwen2.5-32B-IT 4778 4333 27.78
Qwen2.5-7B-IT 70.00 34.44 31.11
Qwen2.5-1.5B-1T 62.22 41.11 7.78
Llama-3.1-70B-IT 61.11 38.89 27.78
Llama-3.1-8B-IT 51.11 2333 25.56
Mistral-Small-24B-IT-2501 65.56 25.56 24.44
Ministral-8B-1T-2410 71.11 26.67 28.89

Table 44: Average accuracy for RPD across different difficulties.

86

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 54.44 0.00 0.00
R1 3444 0.00 0.00
QwQ-32B 28.89 0.00 0.00
R1-Distill-Llama-70B 28.89 0.00 0.00
R1-Distill-Qwen-32B 5.56 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 27.78 0.00 0.00
Qwen-Max 33.33 0.00 0.00
gemma-3-27b-IT 31.11 0.00 0.00
gemma-3-12b-IT 31.11 0.00 0.00
gemma-3-4b-IT 18.89 0.00 0.00
Qwen2.5-72B-IT 28.89 0.00 0.00
Qwen2.5-32B-IT 35.56 0.00 0.00
Qwen2.5-7B-IT 13.33 0.00 0.00
Qwen2.5-1.5B-IT 26.67 0.00 0.00
Llama-3.1-70B-IT 30.00 0.00 0.00
Llama-3.1-8B-IT 15.56 0.00 0.00
Mistral-Small-24B-IT-2501 28.89 0.00 0.00
Ministral-8B-IT-2410 21.11 0.00 0.00

Table 45: Average accuracy for RainbowCandy across different difficulties.

Model Easy Medium Hard
03-mini 7.78 0.00 0.00
R1 5.56 0.00 0.00
QwQ-32B 10.00 0.00 0.00
R1-Distill-Llama-70B 0.00 0.00 0.00
R1-Distill-Qwen-32B 0.00 0.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-4o 0.00 0.00 0.00
Qwen-Max 0.00 0.00 0.00
gemma-3-27b-IT 0.00 0.00 0.00
gemma-3-12b-IT 0.00 0.00 0.00
gemma-3-4b-1T 0.00 0.00 0.00
Qwen2.5-72B-IT 0.00 0.00 0.00
Qwen2.5-32B-IT 0.00 0.00 0.00
Qwen2.5-7B-IT 0.00 0.00 0.00
Qwen2.5-1.5B-1T 0.00 0.00 0.00
Llama-3.1-70B-IT 0.00 0.00 0.00
Llama-3.1-8B-IT 0.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-1T-2410 0.00 0.00 0.00

Table 46: Average accuracy for RotaryLock across different difficulties.

&7

Under review as a conference paper at ICLR 2026

Model Easy Medium Hard
03-mini 9333 46.67 23.33
R1 86.67 46.67 20.00
QwQ-32B 100.00 26.67 10.00
R1-Distill-Llama-70B 93.33 40.00 3.33
R1-Distill-Qwen-32B 66.67 10.00 0.00
R1-Distill-Qwen-7B 0.00 0.00 0.00
R1-Distill-Qwen-1.5B 0.00 0.00 0.00
GPT-40 46.67 20.00 0.00
Qwen-Max 83.33 2333 333
gemma-3-27b-IT 3.33 0.00 0.00
gemma-3-12b-1T 0.00 0.00 0.00
gemma-3-4b-IT 10.00 0.00 0.00
Qwen2.5-72B-IT 90.00 10.00 3.33
Qwen2.5-32B-IT 80.00 10.00 0.00
Qwen2.5-7B-IT 46.67 0.00 0.00
Qwen2.5-1.5B-IT 16.67 0.00 0.00
Llama-3.1-70B-IT 63.33 0.00 0.00
Llama-3.1-8B-IT 10.00 0.00 0.00
Mistral-Small-24B-IT-2501 0.00 0.00 0.00
Ministral-8B-1T-2410 3.33 0.00 0.00

Table 47: Average accuracy for PaperNumber across different difficulties.

88

Under review as a conference paper at ICLR 2026

P GRADING CASE STUDY OF A HARD TASK (CODEFORCES 3500)

To provide an intuitive understanding of how EvolArena handles high-difficulty reasoning tasks,
we detail the implementation of GridGame. This task is adapted from a Codeforces problem (e.g.,
"Grid Game") with a difficulty rating of 3500, representing the peak of competitive programming
challenges.

P.1 TAsK LoGICc

Objective: Two players take turns selecting numbers from an N x M grid. The game ends when
all cells are selected. The player wins if their total sum is strictly less than the opponent’s sum.
Constraint: After the first move, every selected cell must be orthogonally adjacent to a previously
selected cell (by either player). This requires deep strategic lookahead to force the opponent into
selecting high-value cells.

Original Codeforces Problem: Grid Game (Difficulty 3500)

Problem Description: You are given a grid with n rows and m columns. You need to fill
each cell with a unique integer from 1 to n - m. After filling the grid, you will play a game on
this grid against the interactor.

Players take turns selecting one of the previously unselected cells from the grid, with the
interactor going first.

* On the first turn, the interactor can choose any cell from the grid.

* After that, any chosen cell must be orthogonally adjacent to at least one previously
selected cell. (Two cells are adjacent if they share an edge).

The game continues until all cells have been selected. Your goal is to let the sum of numbers
in the cells selected by you be strictly less than the sum of numbers in the cells selected by
the interactor.

Input/Output constraints: The first line contains ¢ (1 < ¢ < 100) test cases. Each test case
contains n and m (4 < n,m < 10). If the sum of numbers in the cells selected by you is not
strictly less than the interactor’s sum, you receive a Wrong Answer verdict.

Tags: constructive algorithms, games, graph matchings, greedy, interactive.
\ J

P.2 GENERATOR: PROCEDURAL PROBLEM CONSTRUCTION

The Generator is responsible for creating a unique, randomized game instance for each evaluation to
prevent data contamination and memorization. For the GridSum task, simply memorizing a strategy
is insufficient; the model must analyze the specific numerical layout.

The generator performs two key functions:

1. State Randomization: It generates a random permutation of numbers from 1 to N x M and
maps them to the grid coordinates. This ensures that every game instance presents a novel
numerical landscape, forcing the model to perform calculation and planning dynamically.

2. Prompt Synthesis: It embeds this generated grid into a standardized natural language
template (similar to a Codeforces problem statement), explicitly defining the grid size, the
specific numbers in each cell, and the adjacency rules.

P.3 MONITOR: DETERMINISTIC GAME ENGINE AND OPPONENT

The Monitor acts as the deterministic game engine that enforces rules and simulates the opponent.
Unlike simple format checkers, it maintains the global game state—including the set of selected
cells S, the grid values G, and the cumulative scores (Sum pjayer, SUM gystem)—and executes the
following critical functions:

&9

Under review as a conference paper at ICLR 2026

 Strict Adjacency Enforcement: The defining constraint of this Codeforces 3500 task is
that every newly selected cell (after the first move) must be orthogonally adjacent to at
least one cell in the set of previously selected cells S. The Monitor strictly validates this
topological constraint at every turn, rejecting any move that violates it.

» System Strategy Execution: The Monitor acts as the opponent (System). It calculates the
set of all currently valid moves based on the updated S and selects one (randomly in this
baseline implementation) to expand the territory, dynamically updating the system’s score.

* Outcome Determination: Upon game completion (when all cells are filled or maximum
turns are reached), the Monitor compares the final sums to deterministically judge the
winner.

P.4 EVALUATOR: MULTI-DIMENSIONAL GRADING

The Evaluator acts as a comprehensive diagnostic tool. Instead of simply checking the final output, it
parses the entire interaction history H to compute four critical metrics, providing a holistic view of
the model’s reasoning capability:

e Accuracy: It determines success by checking if the player achieved a strictly lower sum
than the system (Sumpiayer < SUMsystem) upon game completion, or if the system was
forced into a stalemate.

 Invalid Rate: It rigorously counts every instance where the model attempted an illegal
move (e.g., violating the adjacency constraint), distinguishing between "strategy failure"
and "rule violation."

» Pattern Analysis: It integrates an LLM-based analyzer to scan the model’s "Thought" trace,
quantifying specific reasoning behaviors such as Planning (looking ahead for low-value
cells) and Verifying (checking adjacency).

« Efficiency: It records the number of turns taken to achieve victory, penalizing failed attempts
with the maximum turn count.

Case P.1: GridGame Problem Template

Let’s play the Grid Game! Your task is to choose cells strategically to win.
Rules:

1. Game Setup:

- Grid size: {n}*{m}

- Grid already filled with numbers 1 to {n * m}

- Each number appears exactly once {grid_str}

2. Game Mechanics:

- Players take turns selecting unselected cells

- You move first

- Any cell chosen after first turn must be adjacent to a previously selected cell
- Cells are adjacent if they share an edge (up/down/left/right)
- Game ends when all cells are selected

- You win if your selected numbers sum < my sum

3. Adjacency Example:

For cell (2,2):

- Adjacent cells: (1,2), (2,1), (2,3), (3,2)

- Diagonal cells like (1, 1) are not adjacent

- Must choose a cell adjacent to any previously selected cell
Query Type:

Format: “My Choice: z y”

where z is row (1 to {n}) and y is column (1 to {m})
Example Interaction:

You: “My Choice: 2 2”

- Selecting cell at row 2, column 2

Me: “My Choice: 2 3”

- Cell is adjacent to (2, 2)

90

Under review as a conference paper at ICLR 2026

You: “My Choice: 127

- Cell is adjacent to (2, 2)

Instructions:

1. Make choices based on grid values

2. Use exactly the format shown above

3. Explain your reasoning before each choice
Remember:

- Use exact format: “My Choice: z y”

- Choose only adjacent cells after first turn
- First move can be any cell

- Keep track of both sums

- Plan moves to keep your sum smaller

- Invalid move = automatic loss

Ready to start? Make your first choice!

Algorithm 14 Monitor for GridGame

Require: User Input 7, Selected Set S, Grid G, Scores Sump, Sumg, Turn t, MaxTurns K
1: Regex: r"My Choice:\s* (\d+)\s+ (\d+)"
2: if I matches Regex with (z,y) then

3: Cell + (z,y)
4: > 1. Basic Validity Checks
5: if Cell ¢ G or Cell € S then
6: return "Invalid", "Invalid cell choice"
7: end if
8: > 2. Enforce Adjacency (Critical Constraint)
9: if S # () and —3s € S, [sOrthogonallyAdjacent(Cell, s) then
10: return "Invalid", "Cell must be adjacent to previous selection”
11: end if
12: > 3. Update Player State
13: S.add(Cell)
14: Sump + Sump + G[Cell]
15: > 4. System Turn: Calculate Valid Moves
16: ValidMoves < {c| c € G\ S and 3s € S, IsAdjacent(c, s) }
17: if ValidMoves = () then
18: return "My Choice: = y", "I have no valid moves. You win!"
19: end if
20: SysMove < RandomChoice(V alid M oves)
21: S.add(SysMove); Sums < Sumg + G[SysMove]
22: > 5. Check End Condition
23: if t == K then
24: if Sump < Sumg then
25: return "My Choice: = y", "My Choice: SysM ove\n You win!"
26: else
27: return "My Choice: = y", "My Choice: SysM ove\n You lose!"
28: end if
29: end if
30: return "My Choice: z y", "My Choice: SysM ove"
31: else
32: return "Invalid", "Invalid Format"
33: end if

91

Under review as a conference paper at ICLR 2026

Algorithm 15 Generator for GridGame

Require: Complexity Parameters N (Rows), M (Cols)

: > 1. Construct Randomized Game State
: Values < RandomPermutation([1, ..., N x M])

: Grid < MapToCoordinates(V alues, N, M)

: TotalTurns < (N x M)/2

> 2. Synthesize Natural Language Prompt
: GridDescription < "Initial grid state:\n"
: fori < 1to N do
for j <+ 1to M do
GridDescription < GridDescription + {"Cell (i, j): Grid[i, j]\n"
end for
: end for
. ProblemPrompt < FillTemplate(TaskDescription, Grid Description, N, M)
: return (Problem Prompt, Grid, TotalTurns)

SOPIAQU AW —

—_ = =
W N =

Algorithm 16 Evaluator for GridGame
Require: Interaction History H, MaxTurns K, Final Scores Sump, Sumg

1: Initialize Metrics:

2: Success <+ False

3: TurnCount < Length(H)

4: InvalidCount < 0

5: Patterns < {Associate : 0, Verify : 0, Plan : 0, Feedback : 0}

6: for each turn ¢t in H do

7: Feedback <+ Ht].Feedback

8: Thought < H[t].ModelThought

9: > 1. Robustness: Count Rule Violations
10: if Feedback contains "Invalid" then

11: InvalidCount < InvalidCount + 1

12: end if

13: > 2. Cognitive Diagnosis: Extract Reasoning Steps
14: > Calls external LLM analyzer to classify thought process
15: Patterns < Patterns + AnalyzeReasoningPatterns(T hought)
16: > 3. Outcome Verification
17: if Feedback contains "You win!" then
18: Success < True
19: else if t == K then > Game ended normally
20: if Sump < Sums then
21: Success < True
22: end if
23: end if
24: end for
25: > 4. Efficiency Calculation

26: Ef ficiency < TurnCount if Success else K
27: InvalidRate < InvalidCount/TurnCount
28: return {Success, Ef ficiency, InvalidRate, Patterns}

92

	Introduction
	Overview
	Benchmark Construction
	Data Classification
	Dataset Construction
	Interactive Evaluation

	Experiment
	Experiment Setup
	Main Performance (RQ1)
	Turn Analysis (RQ2)
	Efficiency Analysis (RQ3)
	Invalid Operation Analysis (RQ4)
	Reasoning Pattern Analysis (RQ5)

	Related Work
	Conclusion
	Statement on the Use of LLMs
	Multi-Turn Reasoning Formulation
	Extended Discussion on Evolving Nature
	Automated Curriculum Learning (From Assessment to Training)
	High-Resolution Adaptive Evaluation
	Adversarial & Strategic Evolution

	The Inherent Necessity of Multi-Turn Interaction of Our Tasks
	Information Probing and Dynamic Adaptation
	State Operation
	Strategic Gaming

	Raw Data Statistics and Utilization
	Discussion on the upper limit of rounds
	Practical Considerations and Trade-offs.

	Detailed Experimental Settings
	Dataset and Sample Size
	Evaluation Setting and Rationale
	Inference Parameters
	Evaluation Metrics and Stability

	Limitations and Future Work
	Broader Impact
	Efficiency Analysis
	Number of Interaction Turns
	Token Consumption

	Human Performance Baseline
	Implementation Details of EvolArena
	Main Evaluation Loop
	Task-Specific Implementation Details
	Information Probing: Find the Impostors
	Dynamic Adaptation: Password Breaker
	State Operation: Maze Navigation
	Strategic Gaming: Knight Battle

	Taxonomy of Reasoning Failure Modes
	Task Introduction
	Information Probing
	Dynamic Adaptation
	State Operation
	Strategic Gaming

	Per-Task Results
	Grading Case Study of a Hard Task (Codeforces 3500)
	Task Logic
	Generator: Procedural Problem Construction
	Monitor: Deterministic Game Engine and Opponent
	Evaluator: Multi-Dimensional Grading

