

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EVOLARENA: AN EVOLVING ARENA FOR MULTI-TURN REASONING IN LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in LLMs have shown promising results in complex reasoning tasks. However, current evaluations predominantly focus on single-turn reasoning scenarios, leaving interactive tasks largely unexplored. We attribute it to the absence of comprehensive datasets and scalable automatic evaluation protocols. To fill these gaps, we present **EvolArena**, an **Evolving Arena** for LLMs' multi-turn reasoning evaluation. Comprising 4 classes, 40 tasks, and 3600 instances, EvolArena covers diverse reasoning capabilities, fine-grained difficulty granularity, and necessitates multi-turn interactions with the environments. Moreover, EvolArena features fully-automated framework spanning both dataset constructions and model evaluations, which enables scalable assessment without human interventions. Experiments reveal that even the cutting-edge reasoning models fall short of multi-turn, interactive reasoning tasks. And the further analysis upon these results brings valuable insights for future research in interactive AI systems.

1 INTRODUCTION

With the emergence of reasoning-enhanced Large Language Models (LLMs), such as o1 (Jaech et al., 2024) and R1 (DeepSeek-AI et al., 2025), significant progress has been made in complex reasoning tasks (Wei et al., 2022; Luo et al., 2024; Ye et al., 2025; Lightman et al., 2024). However, most current evaluations focus on single-turn reasoning in domains like mathematics (Cobbe et al., 2021; Hendrycks et al., 2021), commonsense (Talmor et al., 2019; Zellers et al., 2019), logic reasoning (Han et al., 2024; Team et al., 2025b), and code generation (Jain et al., 2025; Chen et al., 2021), which do not reflect the interactive and iterative nature of real-world problem-solving. But multi-turn reasoning is essential for practical reasoning performance. It enables long-term planning, allows for feedback acquisition and reuse, and supports gradual problem solving through iterative refinement. A key question thus arises: *Can frontier LLMs maintain effective reasoning capabilities in dynamic, multi-turn environments?*

To answer this question, we require a rigorous evaluation framework that captures the dynamic and iterative nature of reasoning. However, as summarized in Table 1, existing approaches fall short of providing a comprehensive solution. Static benchmarks like CodeElo (Quan et al., 2025) and LiveCodeBench Pro (Zheng et al., 2025) predominantly focus on single-turn generation, neglecting the essential capabilities of dynamic state tracking. While real-world agent benchmarks such as AgentBench (Liu et al., 2024) and AgentBoard (Chang et al., 2024) introduce interactivity, they largely assess application-specific skills (e.g., web browsing) within noisy environments and rely on fixed datasets that are susceptible to contamination and saturation. Similarly, benchmarks from the AI planning community (e.g., ACPBench (Kokel et al., 2025)) often frame reasoning as static question-answering rather than long-horizon exploration. Furthermore, interactive frameworks like MT-Bench (Zheng et al., 2023) and GameArena (Hu et al., 2025) are limited by subjective scoring (e.g., LLM-as-a-Judge) or scalability bottlenecks due to human involvement. These limitations highlight the urgent need for a fully automated, deterministic, and evolvable framework dedicated to evaluating pure multi-turn logical reasoning.

To bridge these gaps, we propose a novel multi-turn automated reasoning evaluation framework designed to more accurately evaluate LLMs' comprehensive capabilities in interactive environments. The development of such a benchmark presents two primary challenges: (1) designing effective and diverse multi-turn tasks that can measure the multi-dimensional reasoning capabilities of models and

Category	Benchmarks	Dynamic Interaction	Deterministic Eval.	Parametric Gen.	Abstract Logic
Static Evaluation	CodeElo (Quan et al., 2025) LiveCodeBench Pro (Zheng et al., 2025)		✓	✓	
Real-world Agent	AgentBench (Liu et al., 2024) AgentBoard (Chang et al., 2024)	✓ ✓	✓ ✓		
AI Planning	TRAC (He et al., 2023) ACPBench (Kokel et al., 2025) ActionReasoningBench (Handa et al., 2025)		✓ ✓ ✓		✓ ✓ ✓
Interactive/Game	MT-Bench (Zheng et al., 2023) GameArena (Hu et al., 2025) SPIN-Bench (Yao et al., 2025)	✓ ✓ ✓			
Ours	EvolArena	✓	✓	✓	✓

Table 1: Comparison of EvolArena with representative benchmarks. EvolArena uniquely combines **dynamic multi-turn interaction** with **infinite parametric generation** in a **deterministic** environment, while focusing on **abstract logical reasoning**.

(2) establishing an evolving and automated interactive evaluation framework to facilitate scaling and avoid saturation after model advancement (Perlitz et al., 2024).

To address the first challenge, we focus on constructing tasks that inherently require multi-turn reasoning, where each interaction step introduces new constraints or information that necessitates iterative refinement of the model’s reasoning process. To achieve this, we manually collect and validate a set of highly reasoning-intensive tasks from various sources for systematically evaluating four fine-grained reasoning abilities: **Inductive**, **Abductive**, **Deductive**, and **Planning Reasoning** (Seel, 2011; Huang & Chang, 2023). Then for each task, we design a structured problem template that explicitly defines interactive rules, format requirements, and example interactions demonstrating valid exchanges. Through these templates, models are required to engage in active reasoning, gather environmental feedback, and iteratively refine their reasoning process in order to accomplish the given reasoning objective.

As for the second challenge, to enable scalable automated evaluation, we implement three components - **Generator**, **Monitor**, and **Evaluator**, to construct an automated interactive evaluation framework. The generator transforms each problem template into tasks of distinct difficulty levels while ensuring solution feasibility through carefully controlled complexity parameters. With the generator, we can smoothly control the difficulty of reasoning as models’ performance improves. The rule-based monitor processes model queries through a two-stage validation system: it first checks query format compliance, then provides rule-specific feedback for valid queries while monitoring whether the given reasoning objectives are achieved. The evaluator assesses completed dialogues across multiple dimensions to provide a comprehensive evaluation of models’ sustained reasoning capabilities.

Building upon these design principles, we present **EvolArena**, an evolving evaluation framework that encompasses 40 distinct reasoning tasks designed to assess four reasoning abilities, with each task calibrated across three difficulty levels. Through extensive empirical evaluation of 20 reasoning and non-reasoning models, our analysis reveals that o3-mini demonstrates superior overall performance. Our key findings indicate: (1) As the reasoning difficulty increases, even current frontier models struggle significantly. (2) As the number of reasoning steps increases, the advantage of o3-mini over other models becomes more pronounced, which indicates a potential optimization direction for the open-source community. (3) Reasoning ability is not directly correlated with reasoning efficiency; o3-mini often requires more reasoning steps compared to QwQ-32B and R1 on questions where all three models arrive at correct answers.

In summary, our main contributions are as follows:

- We introduce a high-quality benchmark specifically designed to assess models’ reasoning capabilities in multi-turn interactive scenarios.
- We propose an automated framework for evolving multi-turn evaluation, capable of producing problems with tunable complexity. This enables the benchmark to evolve alongside advances in model capabilities.
- Our empirical findings reveal several critical limitations of current models in multi-turn reasoning settings, offering valuable insights for future research directions.

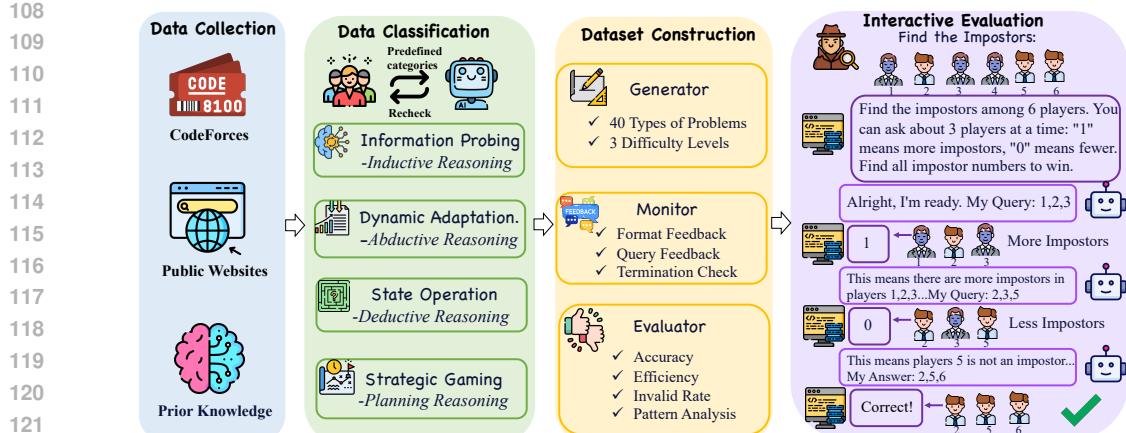


Figure 1: This figure represents the complete framework of our arena, from construction to evaluation. It includes four modules: data collection, data classification, dataset construction, and interactive evaluation. After the dataset is built, the evaluation system can perform automated multi-round interactive evaluations and automatically increase the difficulty of the problems.

2 OVERVIEW

In this section, we first propose our automated interactive framework that simulates real-world reasoning scenarios. At its core, the framework enables a model to engage in multiple turns of interaction¹ while maintaining consistent reasoning progress toward solving a given task. Formally, our framework consists of three essential components, including generator, monitor and evaluator, which can work together to create a controlled and automated evaluation environment:

Generator (P) creates interactive problems with controlled difficulty levels and corresponding reasoning objectives. Formally defined as $p, s = P(t, n, g_n)$, where p represents the generated problem, s defines the reasoning objective, t specifies the problem template, n determines the complexity level, and g_n encodes the corresponding problem parameters. We carefully design t with explicit interaction rules, format requirements and example interactions for each task.

Monitor (M) generates feedback and determines termination based on the model’s query, acting as a deterministic, rule-based environment. The monitoring process can be formalized as: $(m_i, s_i) = M(t, q_i, s_{i-1}, s, I)$, where s_{i-1} and s_i denote the conversation states at turns $i - 1$ and i respectively, and m_i represents the generated feedback for query q_i based on template t . The interaction terminates when either the target state $s_i = s$ is achieved or the maximum turn limit I is reached. For each query, M first validates the legality of the query format, then determines whether the current conversation should be terminated, and finally inputs m_i as the response to the model.

Evaluator (E) assesses multi-turn interactions across multiple dimensions. Formally, $e = E(t, \{(q_1, m_1), \dots, (q_T, m_T)\})$, where T denotes the total turns and e encompasses a range of metrics of accuracy, efficiency, invalid rate, and pattern analysis. Specifically,

- **Accuracy (Acc)** measures the proportion of successfully completed tasks. A task is considered successful if and only if its final state s_T matches the task’s reasoning objective s . Formally, $\text{Acc} = \frac{S_C}{C}$, where C is the total number of tasks and S_C is the number of successful tasks.
- **Efficiency (Eff)** evaluates relative solution efficiency by comparing turn counts on commonly solved tasks between model pairs. For two models A and B , let C_{AB} denote their set of commonly solved tasks. The efficiency score of model A over B is computed as: $\text{Eff}_{A,B} = \frac{\sum_{c \in C_{AB}} I(T_A^c < T_B^c)}{|C_{AB}|}$, where T_A^c and T_B^c represent the turn counts for task c by models A and B respectively, and $I(\cdot)$ is an indicator function that equals 1 when the condition is true and 0 otherwise.
- **Invalid Rate (IR)** assesses the proportion of interactions containing invalid operations among all interaction conversations. This metric not only measures the model’s ability to follow instructions but also reflects its fundamental reasoning capability to infer valid operations from the current environment. Formally, $\text{IR} = \frac{N_V}{N}$, where N_V is the number of interactions with invalid operations and N is the total number of interactions.

¹Our tasks involve multi-turn interactions for successful completion. See Appendix D for details.

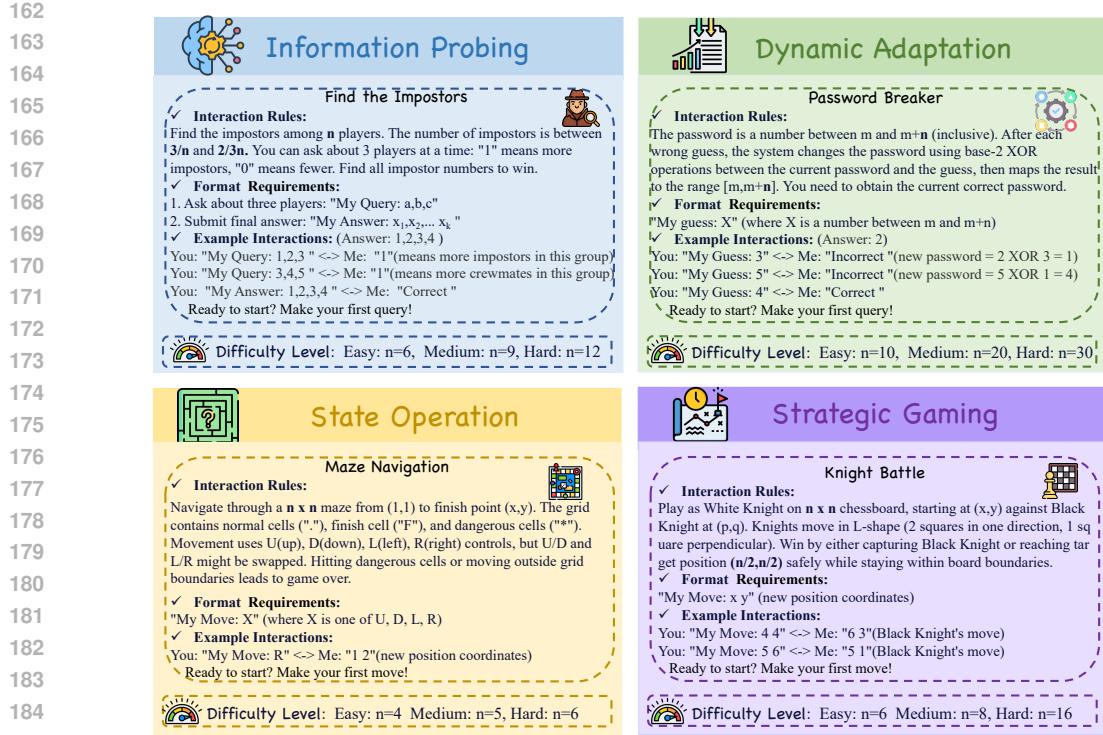


Figure 2: This figure illustrates examples of our four task types. Each task includes interaction rules, query format requirements, and example interactions, with three levels of input difficulty.

• **Pattern Analysis (PA)** examines the model’s reasoning patterns across four categories: **Associate** (associating with the original problem), **Verify** (reflecting and verifying the reasoning process), **Plan** (strategically planning subsequent interactions) and **Feedback** (utilizing previous feedback for reasoning). We analyze the occurrence count of each pattern in each interactive turn and calculate $PA_J = \frac{1}{\sum_{c=1}^C T_c} \sum_{c=1}^C \sum_{i=1}^{T_c} r_{c,i}^J$, where T_c denotes the number of interaction turns for task c , and $r_{c,i}^J$ represents the occurrence count of pattern J in the i -th turn of task c .

Through these components, our framework uses the Generator to create problems, facilitates interactions between the Monitor and models, and ultimately employs the Evaluator to measure performance.

3 BENCHMARK CONSTRUCTION

In this section, we first introduce the task classification (§3.1), and then explain how we construct each problem (§3.2), finally we briefly discuss how the interactive evaluation occurs (§3.3) in Figure 1.

3.1 DATA CLASSIFICATION

To construct our dataset, we first collect seed tasks from various websites²³⁴. To facilitate a systematic analysis of models’ reasoning capabilities, we categorize the public seed tasks into four predefined classes as follows using GPT-4o, with subsequent human validation ensuring classification accuracy. While successful task completion generally requires a combination of various reasoning skills, each predefined class is specifically designed to evaluate distinct aspects of reasoning capabilities.

• **Information Probing (IP):** It involves discovering hidden but fixed information. As shown in Figure 2, in “Find the Impostors”, models determine the complete role distribution by querying about different group compositions, with the monitor revealing each group’s majority type as clues. In this task, models should progressively eliminate distractors to reach the answer.

²<https://codeforces.com/>

³<https://www.nytimes.com/>

⁴Statistics and utilization of raw data are detailed in Appendix E.

- **Dynamic Adaptation (DA):** Unlike “Information Probing” where answers remain static, this type involves answers that evolve according to deterministic transformation rules. As exemplified in “Password Breaker”, each incorrect query triggers specific password modifications based on predefined mechanisms. Success in this type requires models to accurately understand and apply transformation rules to make informed and targeted queries.
- **State Operation (SO):** This category introduces hidden mechanics, distinguishing it from the previous two categories. For example, in “Maze Navigation”, models are required to guide an agent to a target location under an initially unknown control system. Success requires models to rationally analyze the current situation and infer the hidden mechanism through appropriate actions, then proceed with subsequent operations based on this understanding.
- **Strategic Gaming (SG):** It features adversarial two-player environments where task outcomes depend on the dynamic interaction between model actions and system responses⁵. Taking “Knight Battle” as an instance, models should strategically outpace the system to complete objectives, requiring both competitive awareness and efficient execution.

By leveraging four distinct task categories, we comprehensively assess LLMs’ multi-turn reasoning capabilities. Specifically, our framework focuses on the following essential types of reasoning.

- **Inductive Reasoning:** This involves forming general conclusions by identifying patterns from specific observations (Han et al., 2022; Misra et al., 2022; Yang et al., 2024b). For example, in “Find the Imposters” of “Information Probing”, models need to gather evidence by querying different group configurations, observe the majority role types within each group, and synthesize these observations to infer the complete role distribution.
- **Abductive Reasoning:** This is the process of inferring the most plausible explanation from limited or incomplete evidence (Seel, 2011; Jung et al., 2022). In “Dynamic Adaptation”, where the correct answer evolves according to predefined rules, models require to infer the current state of the target answer based on a limited number of interactions.
- **Deductive Reasoning:** This refers to deriving specific conclusions through the application of known rules or logical implications (Creswell et al., 2023; Saparov & He, 2023). In “State Operation”, for instance, models should first infer hidden mechanisms from rule-based environmental feedback and then apply those rules to perform correct reasoning.
- **Planning:** Success in our tasks crucially depends on multi-step planning capabilities (Valmeekam et al., 2023; Huang et al., 2022; Ajay et al., 2023). This is particularly evident in “Strategic Gaming”, where models should construct action sequences by anticipating future states and considering both their moves and potential opponent responses.

3.2 DATASET CONSTRUCTION

After obtaining the categorized seed task sets, we select 10 representative tasks for each of the four categories, yielding a total of 40 tasks that exhibit diverse interaction patterns and rule structures as detailed in Appendix. Then, we manually convert the seed tasks into structured problem templates. Based on these templates, we develop problem generators with three difficulty levels: “easy”, “medium”, and “hard”. Each level corresponds to different values of n , the parameter that determines the task complexity. We further implement monitors tailored to each task’s interactive rules, enabling the system to extract model queries, provide real-time feedback, and detect conversation termination. For evaluation purposes, we design task-specific evaluators that assess performance based on the complete conversation history, employing metrics aligned with each task’s reasoning objective.

To calibrate difficulty levels, we evaluate task solvability using o3-mini across 10 problems for each n , iteratively refining until difficulty gradient exhibits meaningful progression and reasonable feasibility.

Finally, we generate a comprehensive dataset comprising 30 distinct problems per difficulty level for each of 40 tasks, resulting in a total of 3,600 evaluation instances. This structure enables robust and fine-grained assessment of model performance across varying complexity levels.

⁵Our experimental results show that models struggle to achieve high accuracy even in simple scenarios with random system actions, leading us to adopt random system responses as our evaluation baseline.

270
271

3.3 INTERACTIVE EVALUATION

272
273
274
275
276
277
278

As shown in Figure 2, the interaction process begins with the generator providing the problem to the tested model while passing reasoning objective to the monitor. Upon receiving the problem, the model generates response which is then sent to the monitor. The monitor extracts query from the response, computes appropriate feedback, and returns it to the model. Based on the feedback, the model adjusts its reasoning and continues responding. This iterative cycle repeats until the monitor detects conversation termination conditions. Finally, the evaluator receives the complete conversation history and analyzes it using various metrics.

279
280
281
282

To illustrate this process, let’s consider “Find the Impostors”. The generator first creates problems across three difficulty levels by varying the parameter n . Along with each problem, it generates reasoning objective in the form of binary sequences of length n , where 0 denotes impostors and 1 represents non-impostors (e.g., “000011” for $n = 6$).

283
284
285
286
287
288

During the interaction, the monitor validates model responses against two specific patterns: “My Query: a, b, c ” and “My Answer: x_1, x_2, \dots, x_k ”. Any response not matching these patterns is rejected. For valid queries in the format “My Query: a, b, c ”, the monitor returns “1” if the specified positions contain more impostors according to the answer sequence, and “0” otherwise. When the model submits a final answer, the monitor responds with either “Correct” or “Incorrect” and terminates the conversation if correct. Additionally, the monitor enforces a maximum round limit.

289
290
291

Upon conversation completion, the evaluator processes the entire dialogue history, determining accuracy based on whether the final response received a “Correct” feedback, and calculates other metrics as defined in Section 2.

292
293
294
295
296

The difficulty calibration process begins with initial testing using $n = 6, 7, 8$, generating 10 problems with their reasoning objectives per difficulty level. When these values fail to produce sufficient performance gradients, the generator iteratively tests different values until finding suitable ones (e.g., $n = 6, 9, 12$). Once appropriate difficulty parameters are established, we proceed with large-scale evaluation, generating 30 problems per difficulty level and testing them across all models.

297
298

4 EXPERIMENT

299
300
301
302
303
304
305

In this section, we conduct extensive experiments to evaluate various LLMs on EvolArena, guided by the following research questions: - **RQ1:** How do current LLMs perform overall on our benchmark? - **RQ2:** How does those LLMs performance vary under increasing reasoning turns? - **RQ3:** Does superior performance equate to greater efficiency in the number of interactions? - **RQ4:** How do the LLMs’ instruction following abilities and basic reasoning capabilities under multi-turn scenarios? - **RQ5:** Which reasoning patterns are relatively more important in multi-turn reasoning scenarios?

306
307

4.1 EXPERIMENT SETUP

308
309
310
311
312
313
314
315

Model Selection We evaluate both reasoning-enhanced LLMs and non-reasoning LLMs in our experiments. Among the reasoning-enhanced models, we include o3-mini (Jaech et al., 2024), DeepSeek-R1 (DeepSeek-AI et al., 2025), QwQ-32B (Team, 2024), and DeepSeek-R1-Distilled Series (DeepSeek-AI et al., 2025). For non-reasoning models, we select GPT-4o (Hurst et al., 2024), Qwen-Max (Yang et al., 2024a), Gemma-3 (Team et al., 2025a), Qwen2.5 (Yang et al., 2024a), Llama-3.1 (Grattafiori et al., 2024), and Mistral Series (AI, 2025). This diverse selection of both open-source and closed-source models ensures comprehensive coverage of current LLM capabilities in multi-turn reasoning scenarios.⁶⁷

316
317

4.2 MAIN PERFORMANCE (RQ1)

318
319
320
321
322
323

We first present the overall results of models on four reasoning tasks of our datasets in Table 2. From the results, we can observe the following conclusions:

- **Impact of Task Difficulties:** Across all models, performance decreases progressively from “easy” to “medium” to “hard”. This demonstrates the rationality of our dataset’s difficulty stratification.

⁶For all models, we limit the maximum number of turns to 15 due to the consideration in Appendix F.

⁷See Appendix G for the detailed experimental settings.

Model	IP			DA			SO			SG			AVG		
	E	M	H	E	M	H	E	M	H	E	M	H	E	M	H
<i>Reasoning Model</i>															
o3-mini	60.33	41.56	28.22	40.33	24.18	17.13	38.61	27.00	20.22	85.00	74.44	59.17	56.07	41.80	31.19
R1	39.22	25.00	11.11	34.58	23.11	15.22	47.67	38.56	32.78	73.00	62.67	57.67	48.62	37.33	29.19
QwQ-32B	53.56	28.22	19.00	38.33	20.44	12.00	36.67	29.89	25.33	70.00	56.33	46.00	49.64	33.72	25.58
R1-Distill-Llama-70B	33.78	13.11	6.33	25.50	11.00	5.67	15.56	10.78	7.89	61.11	44.17	28.89	33.99	19.76	12.19
R1-Distill-Qwen-32B	26.78	10.11	3.22	10.50	3.22	1.67	7.11	4.22	3.11	39.44	24.44	15.28	20.96	10.50	5.82
R1-Distill-Qwen-7B	3.89	2.33	1.11	0.44	0.00	0.00	0.67	1.11	0.22	3.67	2.67	1.00	2.17	1.53	0.58
R1-Distill-Qwen-1.5B	0.67	0.78	0.33	0.00	1.00	0.11	0.00	0.00	0.00	0.67	0.67	0.00	0.33	0.61	0.11
<i>Non-Reasoning Model</i>															
GPT-4o	29.11	10.56	6.89	22.92	11.56	7.00	19.73	15.11	11.56	42.22	30.56	22.78	28.50	16.94	12.06
Qwen-Max	33.89	11.56	7.33	27.42	17.67	8.11	20.15	13.67	10.78	49.17	33.61	22.50	32.66	19.13	12.18
gemma-3-27b-IT	31.00	9.78	9.67	18.92	9.67	6.33	16.00	10.00	5.67	16.89	4.72	5.15	20.70	8.54	6.70
gemma-3-12b-IT	24.78	8.33	4.56	15.03	8.44	5.89	12.22	4.56	3.56	12.61	9.17	5.17	16.16	7.63	4.79
gemma-3-4b-IT	11.44	4.56	2.44	8.61	6.00	4.11	9.00	4.22	2.89	10.67	2.33	0.67	9.93	4.28	2.53
Qwen2.5-72B-IT	38.22	20.00	10.89	23.22	12.44	6.33	14.78	11.00	7.89	41.50	32.78	26.67	29.43	19.06	12.94
Qwen2.5-32B-IT	33.44	14.67	12.44	19.69	12.89	6.22	23.67	17.67	14.44	42.00	25.00	19.76	29.70	17.56	13.22
Qwen2.5-7B-IT	27.44	11.44	3.67	18.33	9.33	6.22	9.67	6.00	4.89	22.67	10.00	8.33	19.53	9.19	5.78
Qwen2.5-1.5B-IT	2.22	0.11	0.22	6.44	4.33	0.78	9.44	0.89	1.33	17.67	14.67	12.00	8.94	5.00	3.58
Llama-3.1-70B-IT	40.11	21.22	11.89	23.81	12.00	6.78	16.78	11.44	8.78	36.50	25.33	20.72	29.30	17.50	12.04
Llama-3.1-8B-IT	22.67	10.00	4.89	13.58	5.78	4.67	12.56	5.33	3.78	11.00	5.67	3.00	14.95	6.69	4.08
Mistral-Small-24B-IT-2501	18.67	7.78	4.56	17.92	6.22	5.00	19.56	10.00	6.78	25.56	12.83	12.28	20.42	9.21	7.15
Mistral-8B-IT-2410	8.89	4.22	2.00	13.69	5.67	5.11	16.67	11.56	4.33	21.33	5.33	8.67	15.15	6.69	5.03
AVG	27.01	12.39	12.77	18.96	10.25	6.22	17.32	11.65	8.81	34.13	23.87	18.78	24.36	14.63	10.34

Table 2: **Model Accuracy on EvolArena. IT: Instruction-based models. IP: Information Probing. DA: Dynamic Adaptation. SO: State Operation. SG: Strategic Gaming. E / M / H: Easy / Medium / Hard.** The best results (column-wise) for reasoning and non-reasoning models are highlighted in purple and red, respectively. Their second-best results are shown in bold. Table 7 shows accuracy with 95% confidence intervals.

- **Comparison Between Reasoning and Non-Reasoning Models:** When comparing state-of-the-art reasoning models (e.g., o1, R1) with non-reasoning models, it is evident that reasoning models significantly outperform their non-reasoning counterparts. Notably, even smaller-parameter reasoning models (e.g., QwQ-32B) surpass the strongest non-reasoning models within the same series (e.g., Qwen-Max). This highlights the necessity of enhancing reasoning capabilities in model design.
- **Comparison Between Non-Reasoning Models and its Distilled Versions:** Comparing the non-reasoning and reasoning-specific version (e.g., R1-Distill) of the same model series shows nearly equivalent performance. While R1-Distill excels in math and code-related tasks, it fails to generalize effectively on our OOD tasks. This indicates that merely applying SFT distillation is insufficient to generalize reasoning, underscoring the necessity of reinforcement learning (Kirk et al., 2024).
- **Task-Specific Observations:** A closer inspection of individual tasks reveals that while o3-mini consistently outperforms other models, particularly in IP and SG, its performance is similarly to QwQ-32B and R1 in DA and SO. The distinction of the two categories lies in the nature of environmental feedback: in DA and SO tasks, the feedback is less straightforward, requiring models to first correctly interpret the feedback before proceeding with their reasoning. This additional interpretation and reasoning may deviate significantly from training distribution.
- **Performance of Small Models:** Models with fewer than 7B parameters achieve almost no meaningful scores, further emphasizing the difficulty of our benchmark. Consequently, in subsequent analyses, we will focus on models with 32B or more parameters.

4.3 TURN ANALYSIS (RQ2)

In this section, we analyze how the number of interaction turns affects model performance. Figure 3 illustrates the accuracy of five representative models across various tasks and difficulty levels, with different numbers of interaction turns. Our analysis focuses on four key perspectives:

- **Task-Specific Analysis:** IP benefits the most from increased interaction turns. In contrast, for DA and SO, additional turns do not always lead to significant performance gains. This suggests that even current reasoning models are primarily strong in direct reasoning based on inductive inference, but still weak in deductive and abductive reasoning, which rely on premise assumptions.

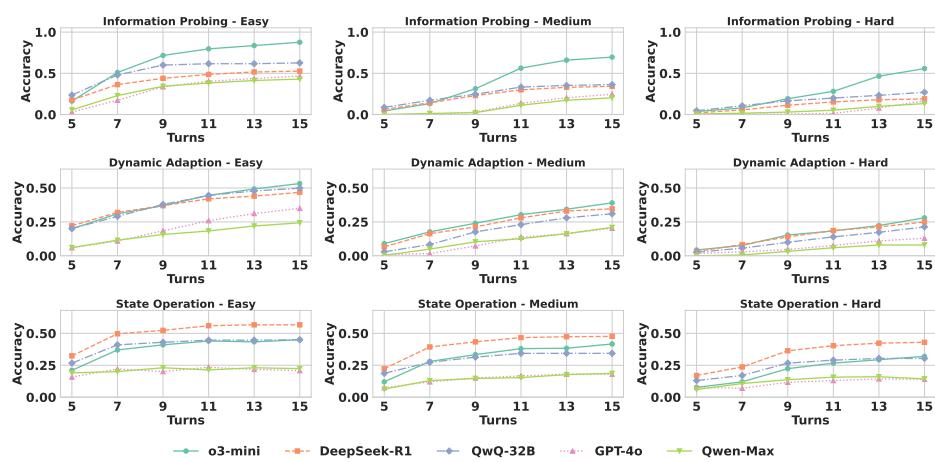
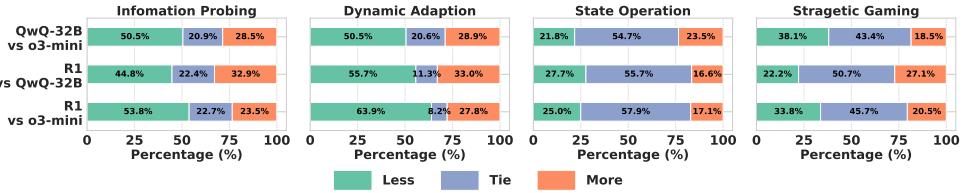



Figure 3: Model accuracy v.s. interaction turns across different tasks and difficulty levels.

Figure 4: Efficiency comparison of interaction turns between models on correctly-answered problems. For each pair (A vs B), A is labeled as **Less** if it requires fewer turns than B, and **More** otherwise. A higher proportion of **Less** indicates superior efficiency in problem-solving. And Table 5 shows the specific average number of rounds of each model.

- **Reasoning vs. Non-Reasoning Models:** Overall, the accuracy improvement of non-reasoning models with increasing turns is significantly lower than that of reasoning models. This indirectly suggests that non-reasoning models are less effective in utilizing feedback in multi-turn dialogues.
- **Comparison among Reasoning Models:** We find that o3-mini does not have a clear advantage across arbitrary numbers of turns, especially when the number of reasoning turns is small (e.g., 5). However, as the number of turns increases, o3-mini demonstrates the most significant improvement in accuracy, particularly in IP. This further underscores o3-mini’s strong abilities in leveraging and integrating historical interaction information over multiple turns.

4.4 EFFICIENCY ANALYSIS (RQ3)

To further analyze the relationship between performance and efficiency, we conduct an analysis of three reasoning models.⁸ Specifically, we select a random sample of 100 problems that are correctly answered by all three models for each task type. We then compare the number of interaction turns required by each model pair to success, and calculate their efficiency scores defined in Section 2.

As shown in Figure 4.3, surprisingly, among the three models, o3-mini, which demonstrates the best performance, is relatively the least efficient, while R1 achieves the highest efficiency. This suggests that higher performance does not necessarily translate to better efficiency in terms of interaction turns. Combined with the conclusions in Section 4.2, the superior performance of o3-mini does not necessarily lie in its efficient reasoning. Instead, it may be more adept at long-term planning compared to others, making reasonable use of feedback in each turn to tackle more complex tasks.

4.5 INVALID OPERATION ANALYSIS (RQ4)

To better understand the poor performance of current LLMs on our benchmark, we conduct a manual review of model responses. Our analysis reveals that beyond limitations in long-term reasoning

⁸A more detailed analysis is provided in Appendix J.

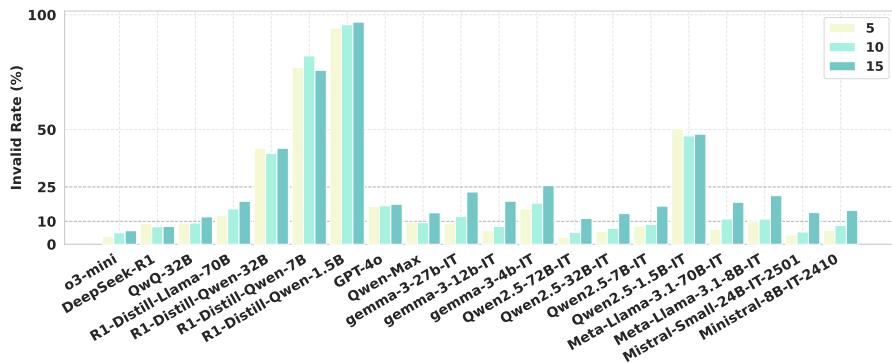


Figure 5: Invalid rate across evaluated models. Larger rate indicates weaker instruction-following and reasoning capabilities.

Model	IP			DA			SA			SG		
	Ass.	Ver.	Pla.	Fee.	Ass.	Ver.	Pla.	Fee.	Ass.	Ver.	Pla.	Fee.
QwQ-32B	11.1	6.9	2.3	7.2	11.6	7.7	2.7	6.2	10.0	5.2	3.9	5.5
Deepseek-R1	10.6	6.6	2.2	5.2	11.1	7.0	2.3	4.1	9.9	5.3	3.8	3.7
R1-Distill-Qwen-32B	7.6	2.7	2.7	3.0	8.7	3.3	3.8	3.0	8.2	2.9	3.5	4.3

Table 3: Pattern analysis on EvolArena. **Ass.**: Associate. **Ver.**: Verify. **Pla.**: Plan. **Fee.**: Feedback.

ability, a significant factor is the presence of “Invalid Operations” even in the best-performing models. These invalid operations fall into two categories: instruction-following failures where models fail to format queries according to format requirements, and operational failures where models cannot perform legitimate operations (e.g., making out-of-bounds moves in “KnightBattle”), which often requires basic reasoning capabilities. As shown in Figure 5, we can lead to the following conclusions:

- Overall, smaller models exhibit higher “Invalid Rate” (IR), particularly 1.5B-sized models which struggle with basic operation validity, reflecting their limited instruction-following capabilities.
- Surprisingly, distilled models show higher IR than their original versions, suggesting that while distillation may enhance reasoning, it potentially compromises stability in multi-turn interactions.
- Comparing state-of-the-art reasoning models with non-reasoning models, the former exhibit lower IR, further confirming the superior capabilities of reasoning models in multi-turn scenarios.

4.6 REASONING PATTERN ANALYSIS (RQ5)

To gain deeper insights into the reasoning capabilities of models on our benchmark, we conduct a reasoning pattern analysis on three open-source reasoning models. Specifically, using Qwen2.5-72B as the analyzer, we measure the average per-turn frequency of four reasoning patterns: original problem recall (**Associate**), error checking (**Verify**), strategic planning (**Plan**), and feedback analysis (**Feedback**). The results are summarized in Table 3, from which we draw the following conclusions:

- Stronger reasoning models QwQ-32B and R1 demonstrate superior capabilities in “Associate”, “Verify”, and “Feedback” compared to R1-Distill-32B, indicating these three abilities are crucial for multi-turn reasoning. Enhancement of these capabilities could potentially yield improvement.
- Although planning is essential for multi-turn tasks, the three models show similar planning frequencies across most tasks. However, SG exhibits notably higher planning frequency, suggesting that competitive scenarios inherently demand stronger strategic planning capabilities.

5 RELATED WORK

Static Evaluation of Reasoning. Early benchmarks for math (e.g., GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021)) and code (e.g., HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021)) rely on static, single-turn evaluation. However, these face severe data contamination and saturation risks. Studies like Performative Thinking (Palod et al., 2025) suggest that long-CoT traces in static tasks often reflect pattern matching rather than genuine reasoning. Even recent initiatives like CodeElo (Quan et al., 2025) and LiveCodeBench Pro (Zheng et al., 2025) remain focused on the

486 final product of single-turn generation, neglecting the dynamic correction and state tracking inherent
 487 in the reasoning process.

488 **Real-world Agent Benchmarks.** Benchmarks like AgentBench (Liu et al., 2024) and Agent-
 489 Board (Chang et al., 2024) evaluate task execution in complex, noisy environments (e.g., OS and
 490 Web). Unlike these application-focused benchmarks, EvolArena operates within closed, deterministic
 491 environments to isolate intrinsic logical capabilities—specifically induction, deduction, and plan-
 492 ning—from tool usage or environmental noise. Furthermore, while AgentBoard (Chang et al., 2024)
 493 relies on costly human annotation, EvolArena achieves fully automated assessment via procedural
 494 generators.

495 **Benchmarks for Reasoning about Actions and Planning.** The AI planning community proposes
 496 PDDL-based benchmarks like TRAC (He et al., 2023), ACPBench (Kokel et al., 2025), and Ac-
 497 tionReasoningBench (Handa et al., 2025) to test formal understanding of actions. However, these
 498 are predominantly static question-answering tasks lacking long-horizon exploration. In contrast,
 499 EvolArena does not require mastering formal planning semantics. Instead, it compels models to
 500 operate in partially observable environments through dynamic multi-turn interaction, progressively
 501 uncovering information to construct solutions, which better mirrors general reasoning processes.

502 **Interactive and Game-based Benchmarks.** Existing interactive benchmarks have limitations:
 503 MT-Bench (Zheng et al., 2023) relies on subjective scoring, GameArena (Hu et al., 2025) is limited
 504 by scale, and SPIN-Bench (Yao et al., 2025) focuses on social multi-agent settings. Conversely,
 505 EvolArena targets single-agent logical reasoning against an environment. Critically, EvolArena
 506 features “Evolvability”: driven by parametric generators capable of producing infinite instances, it
 507 addresses the data contamination and overfitting issues inherent in fixed datasets.

509 6 CONCLUSION

510 In this paper, we present EvolArena, an evolving arena for evaluating LLMs’ multi-turn reasoning
 511 capabilities. The benchmark comprises 40 diverse tasks across four reasoning categories with ad-
 512 justable difficulty levels, supported by an evolving evaluation framework. Our extensive experiments
 513 reveal both strengths and limitations of current LLMs in interactive reasoning, providing valuable
 514 insights for future research in LLM evaluation.

517 REPRODUCIBILITY STATEMENT

518 To ensure full reproducibility of our results, we submit data and code in the supplementary material.
 519 This includes the dataset and the source code for our automated evaluation framework (Generator,
 520 Monitor, and Evaluator). The 40 tasks in EvolArena are constructed from publicly available seeds.
 521 32 tasks originate from algorithmic problems on Codeforces (mean difficulty rating: 2453), and 8
 522 are adapted from logic puzzles on the New York Times website. Each seed problem was manually
 523 transformed into a novel interactive task by designing specific interaction rules and standardized
 524 templates. Our publicly released code will include the generators developed for each task, which can
 525 deterministically produce the 3,600 evaluation instances used in this paper, as well as new instances
 526 with varying difficulty levels. Our evaluation environment is deterministic; for a given model and
 527 input, the interaction process and outcome are fixed. All experiments were conducted using the
 528 default inference parameters for each model (e.g., temperature=0.6, top-p=0.95 for R1) to ensure our
 529 results reflect the models’ standard configurations. The complete experimental settings are provided
 530 in Appendix G.

532 ETHICS STATEMENT

533 The research presented in this paper was conducted with a commitment to ethical standards and
 534 responsible scientific practice. All tasks are derived from publicly available data sources: algorithmic
 535 competition problems from Codeforces and logic puzzles from the New York Times website. No
 536 private, sensitive, or personally identifiable information was used in the construction of this bench-
 537 mark. The adaptation process focused on transforming the logic of these public problems into novel,
 538 interactive formats. The primary goal of this work is to advance the scientific understanding of the

540 reasoning capabilities of LLMs in multi-turn, interactive scenarios. EvolArena is intended to serve as
 541 a diagnostic tool for researchers and developers to identify strengths and weaknesses in AI reasoning,
 542 thereby fostering progress in the field.

544 **REFERENCES**

546 Mistral AI. <https://mistral.ai/news/mistral-small-3>. *Hugging Face*, 2025.

548 Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi S. Jaakkola, Joshua B.
 549 Tenenbaum, Leslie Pack Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional foun-
 550 dation models for hierarchical planning. In *Thirty-seventh Conference on Neural Information
 551 Processing Systems*, 2023. URL <https://openreview.net/forum?id=dyXNh5HLq3>.

552 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 553 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 554 models. *arXiv preprint arXiv:2108.07732*, 2021.

555 Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
 556 Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
 557 agents. *Advances in neural information processing systems*, 37:74325–74362, 2024.

559 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
 560 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 561 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 562 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 563 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 564 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
 565 Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 566 Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
 567 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
 568 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
 569 large language models trained on code. *CoRR*, abs/2107.03374, 2021. URL <https://arxiv.org/abs/2107.03374>.

571 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 572 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 573 Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021. URL
 574 <https://arxiv.org/abs/2110.14168>.

575 Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
 576 language models for interpretable logical reasoning. In *The Eleventh International Confer-
 577 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=3Pf3Wg6o-A4>.

580 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 581 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 582 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 583 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 584 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 585 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 586 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 587 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 588 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 589 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 590 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 591 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
 592 Ruyi Chen, Shanghao Lu, Shanyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping
 593 Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in
 llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948.
 URL <https://doi.org/10.48550/arXiv.2501.12948>.

594 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 595 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 596 models. *arXiv preprint arXiv:2407.21783*, 2024.

597 Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
 598 Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alexander Wardle-Solano, Hannah
 599 Szabó, Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor,
 600 Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri, Wojciech
 601 Kryscinski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex
 602 Ying, Arman Cohan, and Dragomir Radev. FOLIO: natural language reasoning with first-order
 603 logic. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024*
 604 *Conference on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL,*
 605 *USA, November 12-16, 2024*, pp. 22017–22031. Association for Computational Linguistics, 2024.
 606 URL <https://aclanthology.org/2024.emnlp-main.1229>.

607 Simon Jerome Han, Keith James Ransom, Andrew Perfors, and Charles Kemp. Human-like property
 608 induction is a challenge for large language models. In Jennifer Culbertson, Hugh Rabagliati,
 609 Verónica C. Ramenzoni, and Andrew Perfors (eds.), *Proceedings of the 44th Annual Meeting of*
 610 *the Cognitive Science Society, CogSci 2022, Toronto, ON, Canada, July 27-30, 2022*. cognitive-
 611 sciencesociety.org, 2022. URL <https://escholarship.org/uc/item/3w84q1s1>.

612 Divij Handa, Pavel Dolin, Shrinidhi Kumbhar, Tran Cao Son, and Chitta Baral. Actionreasoningbench:
 613 Reasoning about actions with and without ramification constraints. In *ICLR*, 2025. URL <https://openreview.net/forum?id=NUD03NBDOE>.

614 Weinan He, Canming Huang, Zhanhao Xiao, and Yongmei Liu. Exploring the capacity of pretrained
 615 language models for reasoning about actions and change. In *Proceedings of the 61st Annual*
 616 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4629–
 617 4643, 2023.

618 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 619 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
 620 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*
 621 *(Round 2)*, 2021. URL <https://openreview.net/forum?id=7Bywt2mQsCe>.

622 Lanxiang Hu, Qiyu Li, Anze Xie, Nan Jiang, Ion Stoica, Haojian Jin, and Hao Zhang. Gamearena:
 623 Evaluating LLM reasoning through live computer games. In *The Thirteenth International Confer-
 624 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=SeQ818x01r>.

625 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
 626 In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association*
 627 *for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023*, pp. 1049–1065.
 628 Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.67.
 629 URL <https://doi.org/10.18653/v1/2023.findings-acl.67>.

630 Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
 631 shot planners: Extracting actionable knowledge for embodied agents. In Kamalika Chaudhuri,
 632 Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), *International*
 633 *Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*,
 634 *volume 162 of Proceedings of Machine Learning Research*, pp. 9118–9147. PMLR, 2022. URL
 635 <https://proceedings.mlr.press/v162/huang22a.html>.

636 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 637 trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex
 638 Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
 639 Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali,
 640 Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya Kumar,
 641 Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew
 642 Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, An-
 643 toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital
 644 Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben

648 Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler,
 649 Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright
 650 Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright, Cary Bassin, Cary Hudson,
 651 Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea
 652 Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian
 653 Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer,
 654 Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, and Dane
 655 Sherburn. Gpt-4o system card. *CoRR*, abs/2410.21276, 2024. doi: 10.48550/ARXIV.2410.21276.
 656 URL <https://doi.org/10.48550/arXiv.2410.21276>.

657 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 658 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
 659 Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
 660 Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrei
 661 Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
 662 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
 663 Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lu-
 664 garesi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen,
 665 Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan
 666 Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely,
 667 David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Ed-
 668 mund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan
 669 Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Fran-
 670 cис Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas
 671 Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao
 672 Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung,
 673 Ian Kivlichan, Ian O'Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya. Ope-
 674 nai o1 system card. *CoRR*, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720. URL
 675 <https://doi.org/10.48550/arXiv.2412.16720>.

676 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 677 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free eval-
 678 uation of large language models for code. In *The Thirteenth International Conference on Learning
 Representations*, 2025. URL <https://openreview.net/forum?id=chfJJYC3iL>.

679 Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras, and
 680 Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations. In
 681 Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference
 on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab
 Emirates, December 7-11, 2022*, pp. 1266–1279. Association for Computational Linguistics,
 682 2022. doi: 10.18653/V1/2022.EMNLP-MAIN.82. URL <https://doi.org/10.18653/v1/2022.emnlp-main.82>.

683 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
 684 Grefenstette, and Roberta Raileanu. Understanding the effects of RLHF on LLM generalisation
 685 and diversity. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 686 <https://openreview.net/forum?id=PXD3FAVHJT>.

687 Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. Acpbench: Reasoning about
 688 action, change, and planning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 689 volume 39, pp. 26559–26568, 2025.

690 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 691 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth
 692 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=v8L0pN6EOi>.

693 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 694 Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. In *ICLR*, 2024.

695 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
 696 Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language

702 models by automated process supervision. *CoRR*, abs/2406.06592, 2024. doi: 10.48550/ARXIV.
 703 2406.06592. URL <https://doi.org/10.48550/arXiv.2406.06592>.

704

705 Kanishka Misra, Julia Rayz, and Allyson Ettinger. A property induction framework for neural
 706 language models. In Jennifer Culbertson, Hugh Rabagliati, Verónica C. Ramenzi, and Andrew
 707 Perfors (eds.), *Proceedings of the 44th Annual Meeting of the Cognitive Science Society, CogSci
 708 2022, Toronto, ON, Canada, July 27-30, 2022*. cognitivesciencesociety.org, 2022. URL <https://escholarship.org/uc/item/6170h6nj>.

709

710 Vardhan Palod, Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Performative
 711 thinking? the brittle correlation between cot length and problem complexity. *arXiv preprint
 712 arXiv:2509.07339*, 2025.

713

714 Yotam Perlitz, Ariel Gera, Ofir Arviv, Asaf Yehudai, Elron Bandel, Eyal Shnarch, Michal Shmueli-
 715 Scheuer, and Leshem Choshen. Benchmark agreement testing done right: A guide for LLM
 716 benchmark evaluation. *CoRR*, abs/2407.13696, 2024. doi: 10.48550/ARXIV.2407.13696. URL
 717 <https://doi.org/10.48550/arXiv.2407.13696>.

718

719 Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren,
 720 Bofei Gao, Yibo Miao, Yunlong Feng, et al. Codeelo: Benchmarking competition-level code
 721 generation of llms with human-comparable elo ratings. *arXiv preprint arXiv:2501.01257*, 2025.

722

723 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
 724 of chain-of-thought. In *The Eleventh International Conference on Learning Representations*, 2023.
 725 URL <https://openreview.net/forum?id=qFVVBzXxR2V>.

726

727 Norbert M Seel. *Encyclopedia of the Sciences of Learning*. Springer Science & Business Media,
 728 2011.

729

730 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 731 answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
 732 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
 733 the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
 734 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 4149–
 735 4158. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1421. URL
<https://doi.org/10.18653/v1/n19-1421>.

736

737 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 738 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 739 report. *arXiv preprint arXiv:2503.19786*, 2025a.

740

741 M.-A-P. Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, Kang Zhu, Minghao
 742 Liu, Yiming Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixin Deng, Shian Jia, Sichao
 743 Jiang, Yiyang Liao, Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, Dehua Ma, Yuansheng
 744 Ni, Haoran Que, Qiyao Wang, Zhoufutu Wen, Siwei Wu, Tianshun Xing, Ming Xu, Zhenzhu
 745 Yang, Zekun Moore Wang, Jun Zhou, Yuelin Bai, Xingyuan Bu, Chenglin Cai, Liang Chen, Yifan
 746 Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun Huang, Yaoru Li, Yizhe
 747 Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Tianyang Pang,
 748 Zhongyuan Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Shanghaoran Quan, Yizhou Tan, Zili
 749 Wang, Chenqing Wang, Hao Wang, Yiya Wang, Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin Yuan,
 750 Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jinyang Zhang, Xiyue Zhang, Xingjian Zhang, Yue
 751 Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun Li, Dayiheng Liu,
 752 Qian Liu, Tianyu Liu, Shiwen Ni, Junran Peng, Yujia Qin, Wenbo Su, Guoyin Wang, Shi Wang,
 753 Jian Yang, Min Yang, Meng Cao, Xiang Yue, Zhaoxiang Zhang, Wangchunshu Zhou, Jiaheng
 754 Liu, Qunshu Lin, Wenhao Huang, and Ge Zhang. Supergpqa: Scaling LLM evaluation across 285
 755 graduate disciplines. *CoRR*, abs/2502.14739, 2025b. doi: 10.48550/ARXIV.2502.14739. URL
<https://doi.org/10.48550/arXiv.2502.14739>.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. *Hugging Face*, 2024.

756 Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
 757 planning abilities of large language models - a critical investigation. In *Thirty-seventh Conference*
 758 *on Neural Information Processing Systems*, 2023. URL [https://openreview.net/](https://openreview.net/forum?id=X6dEqX1sEW)
 759 [forum?id=X6dEqX1sEW](https://openreview.net/forum?id=X6dEqX1sEW).

760 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
 761 Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
 762 Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
 763 guage models. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL
 764 <https://openreview.net/forum?id=yzkSU5zdwD>. Survey Certification.

765

766 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 767 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 768 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 769 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
 770 Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
 771 Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *CorR*, abs/2412.15115,
 772 2024a. doi: 10.48550/ARXIV.2412.15115. URL [https://doi.org/10.48550/arXiv.](https://doi.org/10.48550/arXiv.2412.15115)
 773

774 Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik Cambria, Xiaodong Liu, Jianfeng Gao, and
 775 Furu Wei. Language models as inductive reasoners. In Yvette Graham and Matthew Purver (eds.),
 776 *Proceedings of the 18th Conference of the European Chapter of the Association for Computational*
 777 *Linguistics, EACL 2024 - Volume 1: Long Papers, St. Julian's, Malta, March 17-22, 2024*, pp.
 778 209–225. Association for Computational Linguistics, 2024b. URL <https://aclanthology.org/2024.eacl-long.13>.

779

780 Jianzhu Yao, Kevin Wang, Ryan Hsieh, Haisu Zhou, Tianqing Zou, Zerui Cheng, Zhangyang Wang,
 781 and Pramod Viswanath. Spin-bench: How well do llms plan strategically and reason socially?
 782 *arXiv preprint arXiv:2503.12349*, 2025.

783

784 Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
 785 grade-school math and the hidden reasoning process. In *The Thirteenth International Confer-
 786 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Tn5B6Udq3E>.

787

788 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
 789 machine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Márquez
 790 (eds.), *Proceedings of the 57th Conference of the Association for Computational Linguistics,
 791 ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers*, pp. 4791–4800.
 792 Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL <https://doi.org/10.18653/v1/p19-1472>.

793

794 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 795 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 796 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference*
 797 *on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=uccHPGDlao>.

798

799 Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
 800 Stanley Wei, Hangyi Hao, Jianzhu Yao, Peiyao Sheng, Zixuan Wang, Wenhao Chai, Aleksandra
 801 Korolova, Peter Henderson, Sanjeev Arora, Pramod Viswanath, Jingbo Shang, and Saining Xie.
 802 Livecodebench pro: How do olympiad medalists judge LLMs in competitive programming? In
 803 *The Thirty-ninth Annual Conference on Neural Information Processing Systems Datasets and*
 804 *Benchmarks Track*, 2025. URL <https://openreview.net/forum?id=U5RIVFtat1>.

805

806

807

808

809

810 A STATEMENT ON THE USE OF LLMs
811812 LLMs are the primary subject of the research presented in this paper. Our work is focused on the
813 development of a benchmark (EvolArena) to evaluate the multi-turn reasoning capabilities of various
814 LLMs. While LLMs are the object of our study, we clarify that they were not used as a significant
815 tool for research ideation or for the writing of this manuscript. The authors of this paper take full
816 responsibility for the contents of this work, including all claims made.
817818 B MULTI-TURN REASONING FORMULATION
819820 Let f_θ denote a LLM engaged in interactive reasoning. The model generates a sequence of queries
821 $\{q_i\}_{i=1}^n$ through iterative interaction turns. At each turn i , the model’s query generation process can
822 be formulated as:
823

824
$$q_i = f_\theta(\mathcal{C}_i) = f_\theta(p, \mathcal{H}_{i-1}) \quad (1)$$

825

826 where \mathcal{C}_i represents the complete context at turn i , p is the initial problem specification, $\mathcal{H}_{i-1} =$
827 $\{(q_j, m_j)\}_{j=1}^{i-1}$ denotes the interaction history, q_j and m_j are previous queries and their corresponding
828 feedback.
829830 This formulation captures how the model leverages both the original problem and accumulated
831 evidence from previous interactions to inform its next query decision.
832833 C EXTENDED DISCUSSION ON EVOLVING NATURE
834835 In this section, we elaborate on the future potential of the “Evolving” mechanism within EvolArena.
836 While our current experiments demonstrate procedural extensibility and parameterized difficulty
837 scaling, we emphasize that the architecture of EvolArena—specifically the parameterized **Generator**
838 and the deterministic **Monitor**—serves as the necessary infrastructure to realize advanced forms of
839 adaptability. We detail this potential across three progressive levels:
840841 C.1 AUTOMATED CURRICULUM LEARNING (FROM ASSESSMENT TO TRAINING)
842843 This represents the most direct future application of the “Evolving” nature: transforming EvolArena
844 from an *examination venue* into a *gymnasium* for RL training.
845

- **Problem:** One of the major challenges in training reasoning agents is reward sparsity. If tasks are too difficult, the model rarely succeeds and learns nothing; if tasks are too easy, the learning is inefficient.
- **Solution:** Our framework addresses this by providing the three essential components of an RL environment:
 1. **Environment:** 40 diverse tasks provide a rich training ground.
 2. **Reward:** The Monitor provides immediate, deterministic feedback (Success, Failure, Invalid), serving as a perfect reward signal.
 3. **Curriculum:** The Generator provides a tunable knob for difficulty (parameter n) that can be adjusted smoothly.
- **Implementation:** An external “Curriculum Controller” can be constructed to observe the model’s win rate at current difficulty n . If the win rate $> 90\%$, the controller calls the Generator to increase difficulty to $n + 1$; if $< 10\%$, it decreases to $n - 1$. This ensures the model always trains within its zone of proximal development, maximizing training efficiency and the upper bound of reasoning capabilities.

862 C.2 HIGH-RESOLUTION ADAPTIVE EVALUATION
863

Beyond training, the concept of adapting to the agent’s capabilities is equally critical for evaluation.

- 864 • **Problem:** Static, one-size-fits-all benchmarks often suffer from low resolution. They
865 struggle to differentiate subtle differences between two strong models (e.g., o3-mini vs. R1)
866 that both solve “Hard” tasks, or distinguish between two weak models that both fail.
- 867 • **Solution:** Our evolving architecture supports model-contingent evaluation.
- 868 • **Implementation:** Instead of testing on fixed levels (e.g., $n = 6, 9, 12$), the Evaluator can
869 dynamically adjust n :
 - 871 – For a smaller model (e.g., 7B), the Evaluator starts at $n = 4$ and incrementally increases
872 difficulty until identifying the model’s capability inflection point (e.g., failure at $n = 7$).
 - 873 – For a strong model (e.g., o3-mini), the Evaluator starts at $n = 12$ and evolves upward
874 to $n = 13, 14, 15, \dots$, probing its true capability ceiling.
- 875 • **Value:** This yields a high-resolution capability score (e.g., o3-mini achieves capability level
876 $n = 15$ on Task X), which is crucial for precisely measuring incremental model progress.

878 C.3 ADVERSARIAL & STRATEGIC EVOLUTION

879 This represents the frontier of the “Evolving” concept: the evolution of the *benchmark itself*.

- 881 • **Problem:** Models may overfit or game a benchmark by learning specific task heuristics
882 rather than general reasoning abilities.
- 883 • **Solution:** Our Generator is controlled not only by the difficulty parameter n but also by
884 problem parameters g_n (e.g., specific configurations).
- 885 • **Implementation:** We envision an “Adversarial Generator” that analyzes the failure logs
886 of a specific model (e.g., o3-mini) to identify specific strategic blind spots (e.g., consistent
887 failure in specific opening configurations of *Knight Battle*). The Generator then evolves to
888 specifically produce more of these instances that effectively counter the model’s current
889 strategy.
- 890 • **Value:** This facilitates a true co-evolutionary paradigm: as models evolve stronger capa-
891 bilities, the benchmark evolves more challenging problems. This allows EvolArena to
892 continuously expose the frontier defects of SOTA models.

894 In conclusion, while our current work demonstrates the initial stage of “Evolving” capabilities (i.e.,
895 procedural generation and parameterized scaling), the Generator-Monitor architecture constitutes
896 the core innovation. It not only solves the saturation crisis of current static benchmarks but, more
897 importantly, provides the viable technical foundation for true evolution—encompassing automated
898 curriculum learning, adaptive evaluation, and adversarial evolution. We have expanded the definition
899 of “Evolving” in this work from simple parameterized scaling to serving as the infrastructure for
900 adaptive assessment, training, and adversarial evolution.

902 D THE INHERENT NECESSITY OF MULTI-TURN INTERACTION OF OUR TASKS

904 A foundational design principle of EvolArena is that all 40 tasks mechanically enforce multi-turn
905 interaction and cannot be successfully completed in a single turn. We contend that a core component
906 of advanced reasoning involves a LLM’s ability to continuously interact with an environment to gather
907 information, verify hypotheses, and dynamically adjust its strategy. Our benchmark is specifically
908 engineered to evaluate this fundamental capability.

909 The design across all tasks is centered on an essential probe-observe-deduce loop, where a model
910 must first execute an exploratory action, then process the environment’s feedback, and only then can
911 it deduce the underlying rules or state required for effective planning. This principle makes multi-turn
912 engagement an inescapable necessity for success. This design philosophy is consistently applied
913 across our four task categories, as detailed below and verifiable in the task prompts in Appendix N.

915 D.1 INFORMATION PROBING AND DYNAMIC ADAPTATION

916 For tasks within these categories, the possibility of a single-turn solution is statistically infinitesimal.
917 The core mechanic is built upon an iterative feedback loop where the model must make a series of

queries to incrementally narrow down the solution space. A prime example is the “Word Guessing” task; in the easy mode, the probability of correctly guessing a four-letter word in one attempt is approximately $(1/26)^4 \approx 0.000002188$. Success is therefore contingent on the model’s ability to process feedback over multiple turns—such as “Correct letter in correct position” or “Correct letter but in wrong position”—to logically deduce the answer. The low accuracy scores achieved by most models further validate this design, as only those with strong iterative multi-turn reasoning capabilities, like o3-mini, demonstrate an ability to improve their chances of success.

D.2 STATE OPERATION

The design philosophy for all tasks in this category is centered on incomplete information, making multi-turn interaction a prerequisite for understanding the environment. In tasks like “Maze Navigation,” the system’s rules are deliberately obscured; for instance, the model is not informed if directional controls like “up/down” and “left/right” are swapped. The model is thus forced to engage in an exploratory phase over several turns, experimenting with actions and observing outcomes to deduce the full set of hidden mechanics before a successful path can be planned and executed. This requirement for empirical discovery through interaction is a consistent feature across all tasks in this category.

D.3 STRATEGIC GAMING

In our strategic gaming scenarios, the task Generator is programmatically designed to ensure that a one-move victory is impossible for either side. This guarantees that a strategic, multi-turn engagement unfolds from the start. For example, in the “Knight Battle” task, the initial board positions for the player’s White Knight and the system’s Black Knight are algorithmically set to prevent a capture or a target-reaching move on the first turn. This forces the model to engage in a sustained exchange, requiring it to plan several steps ahead while anticipating and reacting to the opponent’s moves over multiple rounds.

E RAW DATA STATISTICS AND UTILIZATION

The initial seeds for the 40 tasks in EvolArena were sourced from two public websites.

- **Codeforces:** 32 tasks originate from algorithmic competition problems on Codeforces. These problems have official difficulty ratings ranging from 1700 to 3500, with a mean rating of 2453.13. This range signifies a high degree of difficulty, presenting a significant challenge even for expert human programmers and ensuring the rigorous nature of our benchmark.
- **New York Times:** The remaining 8 tasks are adapted from popular logic puzzles published on the New York Times website.

It is crucial to note that we did not use these seed problems in their original, static form. Instead, each seed was manually and meticulously adapted into a novel, interactive task requiring multi-turn engagement. This comprehensive adaptation process involved three key steps:

1. **Designing Interaction Rules:** We deliberately designed a new set of interaction rules for each original problem to transform it into a dynamic task that necessitates multi-turn interaction for its solution.
2. **Creating Question Templates:** We manually created standardized question templates for every task. These templates include a clear description of the interaction rules, strict input/output format requirements, and illustrative examples of the interaction flow.
3. **Developing Generators:** Based on these structured templates, we developed corresponding generators. These generators are capable of automatically producing numerous instances of each task at varying difficulty levels, all of which can be evaluated by our automated framework.

This structured process clarifies how we utilized existing data sources to construct the novel, interactive challenges within EvolArena.

972 F DISCUSSION ON THE UPPER LIMIT OF ROUNDS
973

974 **Evaluating Reasoning Efficiency.** Setting an upper limit on interaction turns is a core element of
975 our evaluation philosophy, not merely a consideration of cost. We believe that efficient reasoning is a
976 key marker of advanced intelligence. Many real-world scenarios require problem-solving that is not
977 only correct but also completed within a finite number of steps. Therefore, by setting a cap, EvolArena
978 evaluates a model’s ability to solve problems efficiently under resource constraints, compelling it to
979 seek more concise and direct reasoning paths rather than engaging in endless trial and error.
980

981 **Empirical Justification for the 15-Turn Cap.** Regarding the sensitivity to the specific 15-turn
982 limit, our experimental results provide strong support. The analysis presented in Figure 3 of our paper
983 shows that for many tasks, performance gains tend to plateau around the 10-turn mark. This suggests
984 that the 15-turn limit provides sufficient exploratory space for models in most cases. Furthermore, we
985 observe a practical engineering constraint: beyond 15 turns, the accumulated conversation history
986 often causes models to exceed their maximum context length, which can lead to truncated outputs
987 that compromise the validity of the evaluation.
988

989 F.1 PRACTICAL CONSIDERATIONS AND TRADE-OFFS.
990

991 Finally, we acknowledge that this cap is also influenced by practical computational costs and repre-
992 sents a trade-off between evaluating efficiency and exploring the absolute limits of performance. This
993 limit may pose a challenge for “slow-thinking” models that require longer reasoning chains to arrive
994 at a solution.
995

996 G DETAILED EXPERIMENTAL SETTINGS
997

998 G.1 DATASET AND SAMPLE SIZE
999

1000 The performance metrics reported in Table 2 represent the average performance over 300 distinct
1001 samples for each of the four task categories: Information Probing, Dynamic Adaptation, State Opera-
1002 tion, and Strategic Gaming. This sample set consists of 10 unique tasks within each category, where
1003 each task comprises 30 distinct problem instances (10 tasks \times 30 questions/task = 300 samples).
1004 This scale provides a statistically robust foundation for our performance analysis.
1005

1006 G.2 EVALUATION SETTING AND RATIONALE
1007

1008 Our benchmark is intentionally designed for a zero-shot interactive setting, with the crucial clarifica-
1009 tion that each task prompt includes a built-in, one-shot demonstration. As illustrated in Figure 2, the
1010 “Example Interactions” section within each prompt provides an in-context example of a successful
1011 dialogue. This example effectively serves as a single “shot” to guide the model on the required
1012 interaction format and rules.
1013

1014 We deliberately opted against a traditional few-shot evaluation for two primary reasons stemming
1015 from the multi-turn nature of our benchmark:
1016

1017

1018 - **Context Length Limitations:** In multi-turn tasks, the accumulated conversation history
1019 occupies a significant portion of the context window. Adding multiple, complete dialogue
1020 examples for a few-shot setup would risk exceeding the context length limits of many
1021 models, making a fair and practical evaluation challenging.
1022 - **Multi-Turn Evaluation Paradigm:** Unlike static, single-turn tasks, multi-turn interactive
1023 benchmarks like MT-Bench typically focus more on a model’s performance in a dynamic,
1024 continuous dialogue rather than employing traditional few-shot configurations.

1025 Therefore, our “zero-shot with a built-in demonstration” approach is a deliberate design choice
tailored to the unique challenges of evaluating multi-turn reasoning.
1026

1026
1027

G.3 INFERENCE PARAMETERS

1028
1029
1030
1031

For all experiments, we utilize the default inference parameters for each model as recommended upon their public release. This approach ensures a fair and representative evaluation that aligns with best practices. For instance, we evaluate the R1 model using a temperature of 0.6 and a top-p value of 0.95.

1032

1033
1034

G.4 EVALUATION METRICS AND STABILITY

1035
1036
1037
1038
1039
1040

We report pass@1 for our main results. Given that our evaluation environment is deterministic, the interaction process and outcome are fixed for any given model and input, which makes pass@1 a direct and reliable metric. To investigate potential performance variance while managing computational costs, we conduct supplementary pass@16 experiments on the R1 model across four representative tasks. The results, presented in Table 4, demonstrate minimal performance variance, which reinforces the stability and reliability of our evaluation framework.

1041
1042
1043
1044

Category	IP (%)			DA (%)			SO (%)			SG (%)		
Difficulty	E	M	H	E	M	H	E	M	H	E	M	H
Std. Dev.	0.25	0.81	0.31	0.35	0.97	1.04	0.26	0.59	0.60	0.24	0.67	0.55

1045
1046
1047

Table 4: Performance variance (standard deviation in %) for R1 on pass@16 experiments across four task categories (E: Easy, M: Medium, H: Hard).

1048
1049

H LIMITATIONS AND FUTURE WORK

1050
1051
1052
1053
1054

Our work provides a robust framework for evaluating multi-turn reasoning; however, it is essential to acknowledge its limitations and outline directions for future research.

1055
1056
1057
1058
1059
1060
1061
1062

Closed-World Design and External Validity. EvolArena operates as a closed-world system with highly structured environments and deterministic rules. This design contrasts sharply with ambiguous, open-world problems that are characterized by incomplete information. We made this trade-off to achieve full automation, objectivity, and reproducibility in our evaluations. Consequently, strong performance on EvolArena indicates proficiency in structured reasoning but is not a direct measure of a model’s ability to generalize to unstructured, real-world applications. Performance should be viewed as a necessary, but not sufficient, condition for general reasoning ability.

1063
1064
1065
1066
1067
1068
1069

Risk of Overfitting and Responsible Interpretation. There is a risk that models could achieve high scores by “gaming” the benchmark—learning techniques specific to its tasks rather than developing general-purpose reasoning skills. While the diversity of 40 tasks across four categories mitigates this risk by requiring a broad set of skills, the fundamental possibility remains. Therefore, EvolArena should be used as a diagnostic tool rather than a definitive measure of general intelligence. Optimizing solely for this benchmark may create excellent puzzle solvers instead of true general reasoners.

1070
1071
1072
1073
1074

Interaction Modality. Another limitation is the structured, non-natural language interaction format of EvolArena. This design was a deliberate choice to isolate and measure a model’s core logical reasoning capabilities, separate from the complexities of natural language processing. The trade-off is that our benchmark currently cannot assess a model’s ability to reason within a natural language dialogue, which is a crucial skill for many real-world applications.

1075
1076
1077
1078
1079

Future Work. To address these limitations, our future work will focus on bridging the gap between our benchmark and real-world complexity. Key directions include: (1) Extending the framework to support and evaluate reasoning within natural language interactions. (2) Introducing more complex adversarial strategies to further challenge the models. (3) Utilizing EvolArena as a reinforcement learning environment to train more powerful and generalizable reasoning agents.

1080 I BROADER IMPACT

1081
 1082 Our work on evaluating LLMs’ strategic reasoning through interactive tasks has implications beyond
 1083 just testing model capabilities. The evaluation framework provides an engaging and intuitive way to
 1084 understand how language models approach complex decision-making tasks. This could help bridge
 1085 the gap between technical AI research and public understanding, as this work offers a familiar context
 1086 for demonstrating both the capabilities and limitations of current AI systems. Additionally, the
 1087 insights gained from observing how models handle strategic planning and adaptation in interactive
 1088 environments could inform the development of more effective AI assistants for everyday problem-
 1089 solving tasks. We believe our approach of using structured tasks for evaluation could inspire similar
 1090 frameworks in other domains where step-by-step reasoning and strategic thinking are important.

1091 1092 J EFFICIENCY ANALYSIS

1093 We evaluate model efficiency from two distinct perspectives: strategic efficiency, which measures the
 1094 number of interactions required to find a solution, and computational efficiency, which measures the
 1095 token cost of those interactions.

1096 J.1 NUMBER OF INTERACTION TURNS

1097 Our initial analysis used pairwise comparison win rates to intuitively demonstrate direct competition
 1098 between top models on identical problems. However, a more direct metric for strategic efficiency is
 1099 the average number of turns a model takes to correctly solve a problem. We present these statistics
 1100 in Table 5. These results align with the conclusions in body text: although o3-mini demonstrates
 1101 the strongest overall performance in terms of accuracy, it typically requires more turns to arrive at a
 1102 solution, making it the least strategically efficient among the top models.

Model	IP			DA			SO			SG			AVG
	E	M	H	E	M	H	E	M	H	E	M	H	
o3-mini	8.25	10.18	8.64	10.45	9.35	9.41	7.03	9.41	9.62	3.52	5.80	8.21	8.97
R1	5.38	6.84	6.25	5.29	5.60	6.26	5.43	5.59	7.13	4.13	6.05	8.13	6.94
QwQ-32B	7.57	5.77	5.79	7.50	7.22	6.55	4.25	3.29	3.49	3.29	5.70	7.64	5.87

1103 Table 5: Average number of interaction turns on correctly solved problems.

1104 J.2 TOKEN CONSUMPTION

1105 To provide a more complete picture, we also analyze the computational efficiency by measuring
 1106 the average token consumption. Table 6 shows a comparison between R1 and QwQ-32B. The
 1107 data indicates that R1 is not only more strategically efficient (fewer turns) but is also significantly
 1108 more computationally efficient (lower token consumption) than QwQ-32B in most categories. This
 1109 dual-dimensional analysis provides a more comprehensive and nuanced view of model efficiency,
 1110 reinforcing body text’s conclusions.

Category	A \geq B (%)	A \leq B (%)	A = B (%)
IP	45.13	54.87	0.00
DA	35.05	64.95	0.00
SO	62.13	37.87	0.00
SG	31.13	68.87	0.00

1111 Table 6: Token Consumption Comparison: R1 vs. QwQ-32B. A represents R1, and B represents
 1112 QwQ-32B.

1134 **K HUMAN PERFORMANCE BASELINE**
11351136
1137 Providing a human baseline is crucial for calibrating the difficulty of our benchmark. To offer this
1138 perspective, we clarify that the majority of our seed tasks originate from the competitive programming
1139 platform Codeforces. The problems we selected have established human difficulty ratings on this
1140 platform, with a mean rating of 2453, a minimum of 1700, and a maximum of 3500. On Codeforces, a
1141 rating of approximately 2400 corresponds to the “Master” tier, indicating that these tasks are designed
1142 to be challenging even for highly skilled human experts. Therefore, these ratings serve as a strong
1143 proxy for expert human performance and confirm that EvolArena is calibrated to assess reasoning on
1144 tasks of significant difficulty.
11451146 **L IMPLEMENTATION DETAILS OF EVOLARENA**
11471148
1149 To ensure full technical transparency and reproducibility, we provide the detailed algorithmic im-
1150 plementation of our automated framework. This section covers the main interaction loop and the
1151 specific logic for the Generator, Monitor, and Evaluator across representative tasks from each of the
1152 four reasoning categories.
11531154 **L.1 MAIN EVALUATION LOOP**
11551156 The core of EvolArena is an automated pipeline that manages the interaction between the Large
1157 Language Model (LLM) and the environment. Algorithm 1 outlines the process implemented in our
1158 evaluation script.
11591160 **Algorithm 1** EvolArena Main Evaluation Loop
11611162 **Require:** Model M , Task Template T , Difficulty Parameter n , Max Rounds K
1163 1: **Initialization:**
1164 2: $(p, s) \leftarrow \text{Generator}(T, n)$ \triangleright Generate problem instance p and reasoning objective s
1165 3: $H \leftarrow []$ \triangleright Initialize conversation history
1166 4: $\text{State} \leftarrow \text{InitialState}(p)$
1167 5: $\text{Round} \leftarrow 1$
1168 6: **while** $\text{Round} \leq K$ **and** $\neg \text{IsTerminated}(\text{State})$ **do**
1169 7: $\text{Prompt} \leftarrow \text{ConstructPrompt}(p, H)$
1170 8: $\text{Response} \leftarrow M(\text{Prompt})$ \triangleright Get model output
1171 9: $\text{Query} \leftarrow \text{Parse}(\text{Response})$
1172 10: $(\text{Feedback}, \text{State}) \leftarrow \text{Monitor}(T, \text{Query}, \text{State}, s)$ \triangleright Update state & get feedback
1173 11: $H.\text{append}(\text{User} : \text{Query}, \text{System} : \text{Feedback})$
1174 12: $\text{Round} \leftarrow \text{Round} + 1$
1175 13: **end while**
1176 14: $\text{Result} \leftarrow \text{Evaluator}(H, s)$ \triangleright Compute Accuracy, Efficiency, etc.
1177 15: **return** Result
11781179 **L.2 TASK-SPECIFIC IMPLEMENTATION DETAILS**
11801181 We provide the detailed implementation logic for the Generator, Monitor, and Evaluator across repre-
1182 sentative tasks. These components ensure that the generated problems are solvable, the interactions
1183 are deterministic, and the evaluations are rigorous.
11841185 **L.2.1 INFORMATION PROBING: FIND THE IMPOSTORS**
11861187 **Generator:**

1188	1189	1190	Model	IP			DA			SO			SG			AVG		
				E	M	H	E	M	H	E	M	H	E	M	H	E	M	H
<i>Reasoning Model</i>																		
1191	o3-mini			60.33	41.56	28.22	40.33	24.18	17.13	38.61	27.00	20.22	85.00	74.44	59.17	56.07	41.80	31.19
1192				(± 3.06)	(± 3.22)	(± 2.94)	(± 3.24)	(± 2.80)	(± 2.46)	(± 3.17)	(± 2.90)	(± 2.63)	(± 3.71)	(± 4.41)	(± 4.82)	(± 3.30)	(± 3.33)	(± 3.21)
1193	R1			39.22	25.00	11.11	34.58	23.11	15.22	47.67	38.56	32.78	73.00	62.67	57.67	48.62	37.33	29.19
1194				(± 3.12)	(± 2.83)	(± 2.05)	(± 3.13)	(± 2.76)	(± 2.35)	(± 3.26)	(± 3.18)	(± 3.07)	(± 5.03)	(± 5.48)	(± 5.60)	(± 3.64)	(± 3.56)	(± 3.27)
1195	QwQ-32B			53.56	28.22	19.00	38.33	20.44	12.00	36.67	29.89	25.33	70.00	56.33	46.00	49.64	33.72	25.58
1196				(± 2.21)	(± 1.50)	(± 1.13)	(± 2.05)	(± 1.25)	(± 1.09)	(± 2.16)	(± 1.57)	(± 1.69)	(± 4.09)	(± 3.14)	(± 2.77)	(± 2.63)	(± 1.87)	(± 1.67)
1197	R1-Distill-Llama-70B			33.78	13.11	6.33	25.50	11.00	5.67	15.56	10.78	7.89	61.11	44.17	28.89	33.99	19.76	12.19
1198				(± 3.09)	(± 2.21)	(± 1.59)	(± 2.89)	(± 2.05)	(± 1.51)	(± 2.37)	(± 2.03)	(± 1.76)	(± 5.04)	(± 5.14)	(± 4.69)	(± 3.35)	(± 2.86)	(± 2.39)
1199	R1-Distill-Qwen-32B			26.78	10.11	3.22	10.50	3.22	1.67	7.11	4.22	3.11	39.44	24.44	15.28	20.96	10.50	5.82
1200				(± 2.89)	(± 1.97)	(± 1.15)	(± 2.04)	(± 1.15)	(± 0.84)	(± 1.68)	(± 1.31)	(± 1.13)	(± 5.06)	(± 4.45)	(± 3.72)	(± 2.92)	(± 2.22)	(± 1.71)
1201	R1-Distill-Qwen-7B			3.89	2.33	1.11	0.44	0.00	0.00	0.67	1.11	0.22	3.67	2.67	1.00	2.17	1.53	0.58
1202				(± 1.26)	(± 0.99)	(± 0.69)	(± 0.44)	(± 0.00)	(± 0.53)	(± 0.69)	(± 0.31)	(± 2.13)	(± 1.83)	(± 1.13)	(± 1.09)	(± 0.88)	(± 0.53)	
1203	R1-Distill-Qwen-1.5B			0.67	0.78	0.33	0.00	1.00	0.11	0.00	0.00	0.00	0.67	0.67	0.00	0.33	0.61	0.11
1204				(± 0.50)	(± 0.57)	(± 0.38)	(± 0.00)	(± 0.65)	(± 0.22)	(± 0.00)	(± 0.00)	(± 0.92)	(± 0.00)	(± 0.00)	(± 0.36)	(± 0.15)		
<i>Non-Reasoning Model</i>																		
1205	GPT-4o			29.11	10.56	6.89	22.92	11.56	7.00	19.73	15.11	11.56	42.22	30.56	22.78	28.50	16.94	12.06
1206				(± 2.90)	(± 2.01)	(± 1.66)	(± 2.78)	(± 2.09)	(± 1.67)	(± 2.60)	(± 2.34)	(± 2.09)	(± 5.11)	(± 4.77)	(± 4.34)	(± 3.35)	(± 2.80)	(± 2.44)
1207	Qwen-Max			33.89	11.56	7.33	27.42	17.67	8.11	20.15	13.67	10.78	49.17	33.61	22.50	32.66	19.13	12.18
1208				(± 3.01)	(± 2.09)	(± 1.70)	(± 2.95)	(± 2.49)	(± 1.78)	(± 2.62)	(± 2.25)	(± 2.03)	(± 5.17)	(± 4.89)	(± 4.32)	(± 3.44)	(± 2.93)	(± 2.46)
1209	gemma-3-27b-IT			31.00	9.78	9.67	18.92	9.67	6.33	16.00	10.00	5.67	16.89	4.72	5.15	20.70	8.54	6.70
1210				(± 3.02)	(± 1.94)	(± 1.93)	(± 2.59)	(± 1.93)	(± 1.59)	(± 2.40)	(± 1.96)	(± 1.51)	(± 3.77)	(± 2.19)	(± 2.49)	(± 2.95)	(± 2.01)	(± 1.88)
1211	gemma-3-12b-IT			24.78	8.33	4.56	15.03	8.44	5.89	12.22	4.56	3.56	12.61	9.17	5.17	16.16	7.63	4.79
1212				(± 2.82)	(± 1.81)	(± 1.36)	(± 2.36)	(± 1.82)	(± 1.54)	(± 2.14)	(± 1.36)	(± 1.21)	(± 3.48)	(± 3.04)	(± 2.62)	(± 2.70)	(± 2.01)	(± 1.68)
1213	gemma-3-4b-IT			11.44	4.56	2.44	8.61	6.00	4.11	9.00	4.22	2.89	10.67	2.33	0.67	9.93	4.28	2.53
1214				(± 2.08)	(± 1.01)	(± 1.86)	(± 1.55)	(± 1.30)	(± 1.87)	(± 1.31)	(± 1.09)	(± 3.50)	(± 1.71)	(± 0.92)	(± 2.33)	(± 1.48)	(± 1.08)	
1215	Qwen2.5-72B-IT			38.22	20.00	10.89	23.22	12.44	6.33	14.78	11.00	7.89	41.50	32.78	26.67	29.43	19.06	12.94
1216				(± 3.18)	(± 2.61)	(± 2.04)	(± 2.78)	(± 2.16)	(± 1.59)	(± 2.32)	(± 2.05)	(± 1.76)	(± 4.85)	(± 4.65)	(± 4.41)	(± 3.28)	(± 2.87)	(± 2.45)
1217	Qwen2.5-32B-IT			33.44	14.67	12.44	19.69	12.89	6.22	23.67	17.67	14.44	42.00	25.00	19.76	29.70	17.56	13.22
1218				(± 3.08)	(± 2.31)	(± 2.16)	(± 2.19)	(± 1.58)	(± 2.78)	(± 2.49)	(± 2.30)	(± 4.85)	(± 4.91)	(± 4.20)	(± 3.34)	(± 2.98)	(± 2.56)	
1219	Qwen2.5-7B-IT			27.44	11.44	3.67	18.33	9.33	6.22	9.67	6.00	4.89	22.67	10.00	8.33	19.53	9.19	5.78
1220				(± 2.92)	(± 2.08)	(± 1.23)	(± 2.58)	(± 1.90)	(± 1.58)	(± 1.93)	(± 1.55)	(± 1.41)	(± 4.75)	(± 3.40)	(± 3.13)	(± 3.05)	(± 2.23)	(± 1.84)
1221	Qwen2.5-1.5B-IT			2.22	0.11	0.22	6.44	4.33	0.78	9.44	0.89	1.33	17.67	14.67	12.00	8.94	5.00	3.58
1222				(± 0.96)	(± 0.22)	(± 0.31)	(± 1.64)	(± 1.33)	(± 0.57)	(± 1.91)	(± 0.61)	(± 0.75)	(± 4.32)	(± 4.01)	(± 3.68)	(± 2.21)	(± 1.54)	(± 1.33)
1223	Llama-3.1-70B-IT			40.11	21.22	11.89	23.81	12.00	6.78	16.78	11.44	8.78	36.50	25.33	20.72	29.30	17.50	12.04
1224				(± 3.20)	(± 2.67)	(± 2.12)	(± 2.82)	(± 2.12)	(± 1.64)	(± 2.44)	(± 2.08)	(± 1.85)	(± 4.76)	(± 4.36)	(± 4.14)	(± 3.31)	(± 2.81)	(± 2.44)
1225	Llama-3.1-8B-IT			22.67	10.00	4.89	13.58	5.78	4.67	12.56	5.33	3.78	11.00	5.67	3.00	14.95	6.69	4.08
1226				(± 2.74)	(± 1.96)	(± 1.41)	(± 2.28)	(± 1.53)	(± 1.38)	(± 2.17)	(± 1.47)	(± 1.25)	(± 3.55)	(± 2.62)	(± 1.93)	(± 2.69)	(± 1.90)	(± 1.49)
1227	Mistral-Small-24B-IT-2501			18.67	7.78	4.56	17.92	6.22	5.00	19.56	10.00	6.78	25.56	12.83	12.28	20.42	9.21	7.15
1228				(± 2.55)	(± 1.75)	(± 1.36)	(± 2.53)	(± 1.58)	(± 1.42)	(± 2.59)	(± 1.96)	(± 1.64)	(± 4.38)	(± 3.53)	(± 3.57)	(± 3.01)	(± 2.21)	(± 2.00)
1229	Minstral-8B-IT-2410			8.89	4.22	2.00	13.69	5.67	5.11	16.67	11.56	4.33	21.33	5.33	8.67	15.15	6.69	5.03
1230				(± 1.86)	(± 1.31)	(± 0.92)	(± 2.28)	(± 1.51)	(± 1.44)	(± 2.44)	(± 2.09)	(± 1.33)	(± 4.64)	(± 2.55)	(± 3.19)	(± 2.81)	(± 1.87)	(± 1.72)
1231	Avg			27.01	12.39	12.77	18.96	10.25	6.22	17.32	11.65	8.81	34.13	23.87	18.78	24.36	14.63	10.34
1232				(± 2.63)	(± 1.87)	(± 1.50)	(± 2.37)	(± 1.73)	(± 1.38)	(± 2.23)	(± 1.82)	(± 1.55)	(± 4.21)	(± 3.55)	(± 3.15)	(± 2.86)	(± 1.90)	

Table 7: Model Accuracy with 95% confidence intervals on EvolArena.

Algorithm 2 Generator for Find the Impostors

Require: Total players N , Existing Answers Set \mathcal{D}

```

1: loop
2:    $A \leftarrow \text{RandomBinaryString}(N)$ 
3:    $Zeros \leftarrow \text{Count}(A, '0')$ 
4:   if  $N/3 \leq \text{Zeros} \leq 2N/3$  and  $A \notin \mathcal{D}$  then
5:      $\mathcal{D}.\text{add}(A)$ 
6:   return  $A$ 
7: end if
8: end loop

```

1242

1243

Monitor:

1244

Algorithm 3 Monitor for Find the Impostors

Require: User Input I , Hidden Sequence A

```

1246 1: Regex (Query): r"My Query:\s*(\d+), (\d+), (\d+)"
1247 2: Regex (Answer): r"My Answer:\s*(?:\d+, )*\d+)"
1248 3: if I matches Query format with indices P = {p1, p2, p3} then
1249 4:   ImpostorCount  $\leftarrow \sum_{p \in P} (1 \text{ if } A[p] == '0' \text{ else } 0)$ 
1250 5:   if ImpostorCount > 3 - ImpostorCount then
1251 6:     return "0"                                ▷ Majority are impostors
1252 7:   else
1253 8:     return "1"                                ▷ Majority are crewmates
1254 9:   end if
1255 10: else if I matches Answer format with indices G then
1256 11:   PredictedA  $\leftarrow \text{IndicesToBinary}(G)$ 
1257 12:   if PredictedA == A then
1258 13:     return "1"
1259 14:   else
1260 15:     return "0"
1261 16:   end if
1262 17: else
1263 18:   return "Invalid", "-1"
1264 19: end if

```

1263

Evaluator:

1266

Algorithm 4 Evaluator for Find the Impostors

Require: Interaction History H , Ground Truth Sequence A

```

1: Initialize Metrics:
2: Success  $\leftarrow$  False
3: TurnCount  $\leftarrow$  Length(H)
4: InvalidCount  $\leftarrow$  0
5: Patterns  $\leftarrow$  {Associate : 0, Verify : 0, Plan : 0, Feedback : 0}
6: for each turn t in H do
7:   Feedback  $\leftarrow$  H[t].SystemOutput
8:   Thought  $\leftarrow$  H[t].ModelThought
9:   ▷ 1. Metric: Invalid Rate (Instruction Following)
10:  if Feedback == "-1"  $\vee$  Feedback == "Invalid Format" then
11:    InvalidCount  $\leftarrow$  InvalidCount + 1
12:  end if
13:   ▷ 2. Metric: Pattern Analysis (Cognitive Process)
14:   Patterns  $\leftarrow$  Patterns + LLM_Pattern_Analyzer(Thought)
15:   ▷ 3. Metric: Accuracy (Final Outcome)
16:  if t == TurnCount then
17:    Query  $\leftarrow$  H[t].UserQuery
18:    if Query starts with "My Answer." then
19:      SubmittedIndices  $\leftarrow$  ParseAnswer(Query)
20:      TrueIndices  $\leftarrow$  GetIndicesOfZeros(A)
21:      if SubmittedIndices == TrueIndices then
22:        Success  $\leftarrow$  True
23:      end if
24:    end if
25:  end if
26: end for
27: InvalidRate  $\leftarrow$  InvalidCount/TurnCount
28: return {Success, TurnCount, InvalidRate, Patterns}

```

1292

1293

1.2.2. Решение Аддитивной Вырожденной Вариации

```

1296 Algorithm 5 Generator for Password Breaker
1297 Require: Base  $k$ , Group Index  $i$ 
1298 1:  $Min \leftarrow i \times 10 + 1$ 
1299 2:  $Max \leftarrow Min + 9$ 
1300 3:  $P_{curr} \leftarrow \text{RandomInteger}(Min, Max)$ 
1301 4: return  $P_{curr}, Min, Max$ 

```

Monitor:

1320 **Algorithm 6** Monitor for Password Breaker

1321 **Require:** Input I , Password P , Base k , Range $[Min, Max]$

1322 1: **Regex:** $r^{\text{My Guess: } \backslash s^* (\backslash d+)}^{\text{ }}$

1323 2: **if** I matches Regex with guess G **then**

1324 3: **if** $G < Min \vee G > Max$ **then**

1325 4: **return** "Invalid"

1326 5: **end if**

1327 6: **if** $G == P$ **then**

1328 7: **return** "Correct"

1329 8: **else**

1330 9: $D_P \leftarrow \text{ToBaseK}(P, k)$

1331 10: $D_G \leftarrow \text{ToBaseK}(G, k)$

1332 11: $D_{new} \leftarrow []$

1333 12: **for** $j \leftarrow 0$ **to** $\max(\text{len}(D_P), \text{len}(D_G))$ **do**

1334 13: $digit \leftarrow (D_P[j] + D_G[j]) \pmod k$

1335 14: $D_{new}.\text{append}(digit)$

1336 15: **end for**

1337 16: $Val \leftarrow \text{FromBaseK}(D_{new}, k)$

1338 17: $P \leftarrow (Val \pmod (Max - Min + 1)) + Min$ ▷ Update Hidden State

1339 18: **return** "Incorrect"

1340 19: **end if**

1341 20: **else**

1342 21: **return** "Invalid"

1343 22: **end if**

Evaluator:

1350 **Algorithm 7** Evaluator for Password Breaker

1351 **Require:** Interaction History H

1352 1: **Initialize Metrics:**

1353 2: $Success \leftarrow \text{False}$

1354 3: $SolvedAtTurn \leftarrow \text{None}$

1355 4: $InvalidCount \leftarrow 0$

1356 5: $Patterns \leftarrow \{\text{Assoc : 0, Ver : 0, Plan : 0, Feed : 0}\}$

1357 6: **for** $t \leftarrow 1$ **to** $\text{Length}(H)$ **do**

1358 7: $Feedback \leftarrow H[t].\text{SystemOutput}$

1359 8: **if** $Feedback == \text{"Invalid"}$ **then** ▷ Check for Invalid Rate

1360 10: $InvalidCount \leftarrow InvalidCount + 1$

1361 11: **end if**

1362 13: $Patterns \leftarrow Patterns + \text{LLM_Pattern_Analyzer}(H[t].\text{Thought})$ ▷ Run Pattern Analysis

1363 14: **if** $Feedback == \text{"Correct"}$ **then** ▷ Check for Success (Can happen at any turn)

1364 16: $Success \leftarrow \text{True}$

1365 17: $SolvedAtTurn \leftarrow t$

1366 18: **break** ▷ Stop counting turns after success for Efficiency

1367 19: **end if**

1368 20: **end for**

1369 21: $Efficiency \leftarrow SolvedAtTurn$ **if** $Success$ **else** $\text{Length}(H)$

1370 22: $InvalidRate \leftarrow InvalidCount/\text{Length}(H)$

1371 23: **return** $\{Success, Efficiency, InvalidRate, Patterns\}$

1372

1373

1374

1375

1376 **L.2.3 STATE OPERATION: MAZE NAVIGATION**

1377

1378

1379

Generator:

1380

1381

1382

1383

Algorithm 8 Generator for Maze Navigation

1384

Require: Grid Size $N \times M$

1385

1: $Grid \leftarrow \text{Initialize}(N, M, \text{'.'})$, $Start \leftarrow (0, 0)$

1386

2: **loop**

1387

3: $F \leftarrow \text{RandomPos}(N, M)$

1388

4: **if** $F \neq Start$ **then** $Grid[F] \leftarrow \text{'F'}$; **break**

1389

5: **end if**

1390

6: **end loop**

1391

7: **for** $k \leftarrow 1$ **to** $N \times M // 3$ **do**

1392

8: $P \leftarrow \text{RandomPos}(N, M)$

1393

9: **if** $Grid[P] == \text{'.'}$ **then**

1394

10: $Grid[P] \leftarrow \text{'*'}$; $Valid \leftarrow \text{DFS_CheckPath}(Start, F, Grid)$

1395

11: **if** $\neg Valid$ **then** $Grid[P] \leftarrow \text{'.'}$

1396

12: **end if**

1397

13: **end if**

1398

14: **end for**

1399

15: $S_{UD}, S_{LR} \leftarrow \text{RandomBool}()$, $\text{RandomBool}()$

1400

16: **return** $(Grid, S_{UD}, S_{LR})$

1401

1402

1403

Monitor:

```

1404
1405 Algorithm 9 Monitor for Maze Navigation
1406 Require: User Input  $I$ , Current Pos  $P$ , Grid  $G$ , Swap Flags  $S_{LR}, S_{UD}$ 
1407 1: Regex:  $r"My\ Move:\s*(\w{1,2})"$ 
1408 2: if  $I$  matches Regex with direction  $D$  then
1409 3: if  $S_{LR}$  and  $D \in \{L, R\}$  then ▷ Apply Control Swaps
1410 4:    $D \leftarrow \text{Flip}(D)$ 
1411 5: end if
1412 6: if  $S_{UD}$  and  $D \in \{U, D\}$  then
1413 7:    $D \leftarrow \text{Flip}(D)$ 
1414 8: end if
1415 9: if  $P_{new} \leftarrow P + \text{Delta}(D)$  ▷ Check Boundaries
1416 10: if  $\neg \text{InGrid}(P_{new})$  then
1417 11:    $P_{new} \leftarrow P$ 
1418 12: end if
1419 13: if  $Cell \leftarrow G[P_{new}]$  and  $Cell == '*'$  then
1420 14:   return "My Move:  $D$ ", "-1 -1 You lose!"
1421 15: else if  $Cell == 'F'$  then
1422 16:   return "My Move:  $D$ ", " $P_{new.x}, P_{new.y}$  You win!"
1423 17: else ▷ Update Agent Position
1424 18:    $P \leftarrow P_{new}$ 
1425 19:   return "My Move:  $D$ ", " $P_{new.x}, P_{new.y}$ "
1426 20: end if
1427 21: else
1428 22:   return "Invalid", "Invalid format"
1429 23: end if

```

Evaluator:

Algorithm 10 Evaluator for Maze Navigation

```

Require: Interaction History  $H$ , Max Turns  $K$ 
1: Initialize Metrics:
2:  $Success \leftarrow \text{False}$ 
3:  $InvalidCount \leftarrow 0$ 
4:  $Patterns \leftarrow \text{InitializeCounts}()$ 
5: for each turn  $t$  in  $H$  do
6:    $Feedback \leftarrow H[t].\text{SystemOutput}$ 
7:   if  $Feedback$  contains "Invalid" then            $\triangleright$  1. Invalid Rate: Capture both Format and Logic Errors
8:      $InvalidCount \leftarrow InvalidCount + 1$            $\triangleright$  Format Error
9:   else if  $Feedback == "-1 -1 You lose!"$  then
10:    else if  $Feedback == "You win!"$  then            $\triangleright$  Operational Error (Hit Obstacle)
11:       $InvalidCount \leftarrow InvalidCount + 1$ 
12:       $Success \leftarrow \text{False}$ 
13:      break
14:    end if
15:  end if
16:   $Patterns \leftarrow Patterns + \text{LLM\_Pattern\_Analyzer}(H[t].\text{Thought})$             $\triangleright$  2. Pattern Analysis
17:  if  $Feedback$  contains "You win!" then            $\triangleright$  3. Check Success
18:     $Success \leftarrow \text{True}$ 
19:    break
20:  end if
21: end for
22: return  $\{Success, Turns Used, InvalidRate, Patterns\}$ 

```

L 2.4 STRATEGIC GAMING: KNIGHT BATTLE

Generator:

1458

Algorithm 11 Generator for Knight Battle

1459

Require: Board Size N

1460

1: $T_W \leftarrow (N/2, N/2); T_B \leftarrow (N/2 + 1, N/2)$

1461

2: **loop**

1462

3: $P_W, P_B \leftarrow \text{RandomPos}(N), \text{RandomPos}(N)$

1463

4: \triangleright Constraint: Distinct positions, not on targets

1464

5: **if** $P_W \neq P_B$ **and** $P_W \notin \{T_W, T_B\}$ **and** $P_B \notin \{T_W, T_B\}$ **then**

1465

6: **break**

1466

7: **end if**

1467

8: **end loop**

1468

9: **return** (P_W, P_B, T_W, T_B)

1469

1470

1471

1472

1473

1474

Monitor:

1475

1476

1477

1478

1479

1480

Algorithm 12 Monitor for Knight Battle

1481

Require: User Input I , Board B , Positions Pos_W, Pos_B , Targets T_W, T_B

1482

1: **Regex:** $r^{\text{My Move: } \backslash s^* (\backslash d+) \backslash s+ (\backslash d+)^*}$

1483

2: **if** I matches Regex with new white pos P'_W **then**

1484

3: **if** $\neg \text{IsValidKnightMove}(Pos_W, P'_W)$ **then**

1485

4: **return** "Invalid", "Invalid knight move"

1486

5: **end if**

1487

6: $Pos_W \leftarrow P'_W$ 7: \triangleright Check White Win Conditions

1488

8: **if** $Pos_W == Pos_B$ **then**9: **return** "Move: P'_W ", "White wins!"

▷ Capture

1489

10: **else if** $Pos_W == T_W$ **and** $\neg \text{UnderAttack}(Pos_W, Pos_B)$ **then**

1490

11: **return** "Move: P'_W ", "White wins!"

▷ Target Reached

1491

12: **end if**

1492

13: \triangleright System (Black) Turn

1493

14: $Moves \leftarrow \text{GetValidLShapes}(Pos_B)$

1494

15: **if** $Moves$ is empty **then**16: **return** "Move: P'_W ", "White wins!"

1495

17: **end if**

1496

18: $Pos_B \leftarrow \text{RandomChoice}(Moves)$

1497

19: \triangleright Check Black Win Conditions

1498

20: **if** $Pos_B == Pos_W$ **then**21: **return** "Move: P'_W ", "Black wins!"

1499

22: **else if** $Pos_B == T_B$ **and** $\neg \text{UnderAttack}(Pos_B, Pos_W)$ **then**

1500

23: **return** "Move: P'_W ", "Black wins!"

1501

24: **end if**

1502

25: **return** "Move: P'_W ", " $Pos_B.x$ $Pos_B.y$ "

1503

26: **else**

1504

27: **return** "Invalid", "Invalid format"

1505

28: **end if**

1506

1507

1508

1509

1510

1511

Evaluator:

```

1512
1513 Algorithm 13 Evaluator for Knight Battle
1514
1515 Require: Interaction History  $H$ 
1516
1517 1: Initialize Metrics:
1518 2:  $Outcome \leftarrow "Loss"$ 
1519 3:  $InvalidCount \leftarrow 0$ 
1520 4:  $Patterns \leftarrow \text{InitializeCounts}()$ 
1521 5: for each turn  $t$  in  $H$  do
1522 6:    $Feedback \leftarrow H[t].SystemOutput$ 
1523 7:   if  $Feedback == "Invalid move"$  then
1524 8:      $InvalidCount \leftarrow InvalidCount + 1$ 
1525 9:      $Outcome \leftarrow "Loss (Invalid)"$ 
1526 10:    break
1527 11:   end if
1528 12:   if  $Feedback == "White wins!"$  then
1529 13:      $Outcome \leftarrow "Win"$ 
1530 14:     break
1531 15:   else if  $Feedback == "Black wins!"$  then
1532 16:      $Outcome \leftarrow "Loss (Captured)"$ 
1533 17:     break
1534 18:   end if
1535 19: end for
20:  $Success \leftarrow (Outcome == "Win")$ 
21: return { $Success, Turns Used, InvalidRate, Patterns$ }

```

M TAXONOMY OF REASONING FAILURE MODES

To provide diagnostic insights beyond the quantitative “Invalid Rate,” we conduct a manual inspection of 50 randomly sampled failure instances. Based on this analysis, we identify five distinct categories of core reasoning failures. We formally introduce this taxonomy to better understand the cognitive limitations of current models:

State Tracking Collapse In dynamic tasks, models often fail to maintain and update a coherent environmental state across multiple turns. For instance, in *Dynamic Adaptation (DA)* tasks such as *Password Breaker*, even after the Monitor returns “Incorrect” (signaling that the password has changed via XOR rules), the model frequently continues to reason based on the outdated password state from previous turns. This failure to update the internal belief state causes the entire subsequent reasoning chain to derail.

Hasty Generalization This failure mode is prevalent in tasks that require an “explore-then-exploit” strategy. Models often prematurely lock onto an incorrect global hypothesis before gathering sufficient evidence to support the conclusion. For example, in *State Operation (SO)* tasks like *Maze Navigation*, a model might verify only the U/D control swap and erroneously assume the L/R controls are normal without testing. Subsequent planning based on this unverified assumption leads to inevitable failure.

Greedy & Myopic Planning This is commonly observed in *Strategic Gaming (SG)* tasks. Models tend to select a “local optimum” for the current turn while ignoring that this move leads to a “global worst-case” scenario in the near future. In *Knight Battle*, for instance, a model might choose a move to capture a piece or check the opponent, failing to foresee that this specific position exposes it to an unavoidable counter-attack or checkmate in the subsequent turns.

Inefficient Exploration This represents a strategic failure where models fail to employ optimal search strategies (e.g., binary search) to maximize information gain within the limited horizon (e.g., 15 turns). In *Information Probing (IP)* tasks like *Find the Impostors*, failing models often perform redundant or overlapping queries (e.g., querying $\{1, 2, 3\}$ followed immediately by $\{1, 2, 4\}$) rather than querying disjoint sets (e.g., $\{4, 5, 6\}$) to rapidly narrow down the possibility space.

1566 **Logical Constraint Violation** This category transcends the simple formatting errors captured by
 1567 the “Invalid Rate.” Here, the model maintains correct syntax but violates the core logical constraints
 1568 of the task. For example, in *Strategic Gaming (SG)* (e.g., *Knight Battle*), a model might output
 1569 “My Move: 9 9”. While syntactically correct, this move is logically illegal on an 8×8 chessboard.
 1570 This indicates a defect in fundamental reasoning capabilities, such as the understanding of spatial
 1571 boundaries, rather than a failure in instruction following.

N TASK INTRODUCTION

1576 We classify problems into four types based on their characteristics and testing capabilities: Information
 1577 Probing (IP), Dynamic Adaptation (DA), State Operation (SO), and Strategic Gaming (SG). Each
 1578 type contains 10 tasks that described in detail below.

N.1 INFORMATION PROBING

1582 **FindTheImpostors** In this task, models need to identify all impostors among n players through
 1583 strategic queries about groups of three players. Models can make queries to compare impostors and
 1584 crewmates in specified groups, ultimately determining the complete set of impostors.

Case N.1: FindTheImpostors Problem Template

1587 Let’s play Find the Impostors! Your task is to identify all impostors among n players.

1588 Rules:

1. There are n players
2. Some players are impostors (k) and others are crewmates ($n - k$)
3. The number of impostors k is between $1/3n$ and $2/3n$

1592 Query Types:

1. Ask about three players:

1594 Format: “My Query: a, b, c ” (three different player numbers)

1595 Response will be:

- 0: if there are more impostors than crewmates among these three
- 1: if there are more crewmates or equal numbers
- -1: if query is invalid

2. Submit final answer:

1599 Format: “My Answer: x_1, x_2, \dots, x_k ”

1600 (k is number of impostors, followed by their indices)

1601 Response will be:

- 0 if incorrect

- 1 if correct

1603 Example interaction:

1604 You: “My Query: 1,2,3”

1605 Me: “0” (means more impostors in this group)

1606 You: “My Query: 3,4,5”

1607 Me: “1” (means more crewmates in this group)

1608 You: “My Answer: 1,2,3,4”

1609 Me: 1 (if correct)

1610 Instructions:

1. You must explain your reasoning before each query

2. Format your responses exactly as shown above

1613 Remember:

- Player numbers must be between 1 and n
- All three numbers in a query must be different

1616 Ready to start? Make your first query!

Case N.2: FindTheImpostors Difficulty Levels

1618 Easy: $n = 6$, Medium: $n = 9$, Hard: $n = 12$

1620
 1621 **GuessMax** In this task, models need to discover a hidden password by querying maximum values
 1622 from specific positions in an array. The password consists of maximum values from complementary
 1623 position sets defined by given exclusion rules.
 1624

1624 **Case N.3: GuessMax Problem Template**

1625 Let's play Guess The Maximums!

1626 Rules:

1. Hidden array $A[1\dots 50]$ contains numbers from 1 to 50
2. You need to guess n numbers forming the password
3. For password position i , you are given S_i = subset of positions to exclude
4. Password $[i]$ = max value among all positions EXCEPT those in S_i

1631 Your subsets are:

1632 {subset desc}

1633 Password Example:

1634 For $x = 4, n = 2$, if:

1635 $S_1 = \{1, 3\}, S_2 = \{2, 4\}$

1636 And hidden array $A = [3, 1, 2, 4]$

1637 Then:

1638 - Password $[1]$ ignores positions 1, 3 (S_1)

1639 So looks at $A[2] = 1, A[4] = 4$

1640 Password $[1] = 4$

1641 - Password $[2]$ ignores positions 2, 4 (S_2)

1642 So looks at $A[1] = 3, A[3] = 2$

1643 Password $[2] = 3$

1644 Therefore, the answer is “4 3”.

1645 Query Types:

1646 1. Make a query:

1647 Format: “My Query: $x_1 x_2 \dots x_m$ ”

1648 where:

1649 - x_i = positions you want to query ($1 \leq m < 50$)

1650 - You'll receive the maximum value at these positions

1651 2. Submit final answer:

1652 Format: “My Answer: $p_1 p_2 \dots p_n$ ”

1653 where:

1654 - p_i = your guess for each password slot

1655 - You'll receive “Correct” or “Incorrect”

1656 Simple Example Interaction:

1657 Given: $x = 4, n = 2, S_1 = \{1, 3\}, S_2 = \{2, 4\}, A = [3, 1, 2, 4]$ (hidden), Answer = [4, 3](hidden)

1658 You: “My Query: 2 4”

1659 Me: “4”

1660 You: “My Query: 1 3”

1661 Me: “3”

1662 You: “My Answer: 4 3”

1663 Me: “Correct”

1664 Instructions:

1665 1. Make queries based on previous results

1666 2. Use exactly the formats shown above

1667 3. Explain your reasoning before each query

1668 Remember:

1669 - Each query reveals maximum value at specified positions

1670 - Password digits come from complementary position sets

1671 - Think carefully about which positions to query

1672 Ready to start? Make your first query!

1673 **Case N.4: GuessMax Difficulty Levels**

1674 Easy: $n = 7$, Medium: $n = 10$, Hard: $n = 16$

1674
 1675 **CircleFinding** In this task, models need to discover a hidden circle's parameters (center coordinates
 1676 and radius) through ray-shooting queries from the origin. Models can make queries in the format "My
 1677 Query: $x_q \ y_q$ " to shoot a ray through any specified point, receiving the minimum distance from the
 1678 ray to the circle (0.0 if the ray intersects). Through geometric reasoning and strategic ray placement,
 1679 models should determine the circle's exact position and size, submitting their answer in the format
 "My Answer: $x_c \ y_c \ r_c$ ".

1680 Case N.5: CircleFinding Problem Template

1682 Let's play Circle Finding Game! Your task is to discover a hidden circle on a plane through
 1683 ray-shooting queries.

1684 Rules:

- 1685 1. There is a hidden circle with center (x_c, y_c) and radius r_c
- 1686 2. All parameters are integers and $|x_c|, |y_c|, |r_c| \leq \{n\}$
- 1687 3. The radius r_c satisfies: $1 \leq r_c \leq \sqrt{x_c^2 + y_c^2} - 1$
- 1688 4. You can shoot rays from origin $(0, 0)$ through any point (x_q, y_q) you specify

1689 Query Types:

- 1690 1. To shoot a ray:

1691 Format: "My Query: (x_q, y_q) "

1692 where:

- 1693 - x_q, y_q are integers with $|x_q|, |y_q| \leq \{n\}$
- 1694 - At least one of x_q or y_q must be non-zero

1695 Example: "My Query: 0 -10"

1696 You'll receive the minimum distance from the ray to the circle
 (0.0 if the ray intersects the circle)

- 1697 2. To submit final answer:

1698 Format: "My Answer: $x_c \ y_c \ r_c$ "

1699 where x_c, y_c, r_c are the circle's parameters

1700 Example: "My Answer: 20 10 10"

1701 You'll receive the correctness of your answer.

1702 Instructions:

- 1703 1. Make queries based on previous results
- 1704 2. Use exactly the formats shown above
- 1705 3. Explain your reasoning before each query
- 1706 4. All distances are precise to 10^{-10}

1707 Remember:

- 1708 - Circle parameters are integers
- 1709 - Rays start from origin $(0, 0)$
- 1710 - Think carefully about ray directions
- 1711 - Use geometric properties to deduce circle location
- 1712 - Distance is 0 when ray intersects circle

1713 Ready to start? Make your first query!

1714 Case N.6: CircleFinding Difficulty Levels

1715 Easy: $n = 200$, Medium: $n = 1000$, Hard: $n = 1500$

1717 **BitCompare** In this task, models need to find two positions in a hidden permutation of numbers
 1718 that will yield the maximum XOR value when combined. Models can make queries in the format
 1719 "My Query: $a \ b \ c \ d$ " to compare the bitwise OR results of different positions, receiving "<", "=" or ">"
 1720 as responses, and ultimately submit their answer in the format "My Answer: $i \ j$ ". Through strategic
 1721 querying, models should determine which two positions will produce the largest XOR value.

1722 Case N.7: BitCompare Problem Template

1724 Let's play Bitwise Comparison Game! Your task is to find two positions in a hidden permutation
 1725 that maximize their XOR value.

1726 Rules:

- 1727 1. There is a hidden permutation of $\{n\}$ numbers (0 to $\{n - 1\}$)

1728 2. Each position contains a unique number from 0 to $\{n - 1\}$
 1729 3. You can make comparison queries between OR operations:
 1730 - Each query compares $(a \mid b)$ with $(c \mid d)$
 1731 - \mid denotes bitwise OR operation
 1732 - You'll receive " $<$ ", " $=$ ", or " $>$ " as response
 1733 Query Types:
 1734 1. To make a comparison query:
 1735 Format: "My Query: $a \ b \ c \ d$ "
 1736 where:
 1737 - a, b, c, d are positions in array (0-based indexing)
 1738 Example: "My Query: 0 2 3 1"
 1739 Response will be one of: " $<$ ", " $=$ ", " $>$ "
 1740 2. To submit final answer:
 1741 Format: "My Answer: $i \ j$ "
 1742 where i and j are the positions with maximum XOR value
 1743 Example: "My Answer: 3 2"
 1744 Instructions:
 1745 1. Make queries based on previous comparisons
 1746 2. Use exactly the formats shown above
 1747 3. Explain your reasoning before each query
 1748 Remember:
 1749 - All positions contain unique numbers from 0 to $\{n - 1\}$
 1750 - Position indices start from 0
 1751 - Think carefully about which positions to compare
 1752 - Use your queries wisely to find maximum XOR pair
 Ready to start? Make your first query!

Case N.8: BitCompare Difficulty Levels

Easy: $n = 5$, Medium: $n = 7$, Hard: $n = 9$

1757 **TreeDiscovery** In this task, models need to discover the structure of a hidden tree through strategic
 1758 path queries. For each query, models specify two disjoint vertex sets and a target vertex, receiving the
 1759 number of paths between vertices from these sets that pass through the target vertex.
 1760

Case N.9: TreeDiscovery Problem Template

1763 Let's play Legendary Tree! Your task is to discover the structure of a hidden tree through strategic
 1764 queries.

1765 Rules:

1. There is a hidden tree with n vertices (numbered 1 to n)
2. You can ask questions to discover the tree's structure
3. For each question, you need to specify:
 - Set S : A group of vertices (at least one vertex)
 - Set T : Another group of vertices (at least one vertex)
 - Vertex v : Any vertex you choose

1771 Note: S and T must not have any common vertices

1772 Query Types:

1. To make a query:

1774 Format: "My Query: $S \mid T \mid v$ " where:

- S is your first set of vertices (space-separated numbers)
- T is your second set of vertices (space-separated numbers)
- v is the vertex you want to check

1778 Example: "My Query: 1 2 | 3 | 2"

1779 Response:

1780 You will receive the number of vertex pairs (s, t) where:

- s is from set S
- t is from set T

1782 - The path from s to t passes through vertex v
 1783 2. To submit final answer:
 1784 Format: “My Answer: $edge_1 edge_2 \dots$ ” where each edge is “ $u-v$ ”
 1785 Example: “My Answer: 1-2 2-3”
 1786 Example Interaction:
 1787 You: “My Query: 1 2 | 3 | 2”
 1788 Me: “2” (meaning 2 paths through vertex 2)
 1789 Instructions:
 1790 1. Use queries to gather information about the tree
 1791 2. Format your queries exactly as shown above
 1792 3. Think carefully about which vertices to select
 1793 Remember:
 1794 - Sets S and T must be non-empty and disjoint
 1795 - Use your queries wisely to gather maximum information
 1796 - Each edge in final answer should appear exactly once
 1797 Ready to start? Make your first query!

Case N.10: TreeDiscovery Difficulty Levels

Easy: $n = 5$, Medium: $n = 6$, Hard: $n = 7$

1802 **LinkedListQuery** In this task, models need to find a specific value in a sorted linked list through
 1803 strategic queries. Models can query values and next pointers at specific positions to explore the list
 1804 structure and determine the target value.
 1805

Case N.11: LinkedListQuery Problem Template

1806 Let’s play Linked List Query Game! Your task is to find a specific value in a sorted linked list
 1807 through queries.
 1808 Rules:

1809 1. There is a hidden sorted linked list with n elements
 1810 2. Each element has a value and a next pointer (pointing to the next element’s index)
 1811 3. You can make two types of queries:
 1812 - VALUE query: you will get both value and next pointer at position i
 1813 - ANSWER submission: you will get a feedback of “Correct” or “Incorrect”

1814 Query Types:

1815 1. To make a value query:

1816 Format: “My Query: i ”
 1817 where:

1818 - i is the position in list (1-based indexing)

1819 Example: “My Query: 1”
 1820 2. To submit final answer:

1821 Format: “My Answer: ans ”
 1822 where ans is either:

1823 - The minimum value in the list

1824 Example: “My Answer: 80”
 1825 Example Interaction:

1826 List length = n , start = 3, x = 80
 1827 You: “My Query: 1”
 1828 Me: “value=97, next=-1”
 1829 You: “My Query: 3”
 1830 Me: “value=16, next=2”
 1831 You: “My Answer: 80”
 1832 Me: “Correct”
 1833 Instructions:

1834 1. Make queries to explore the linked list
 1835 2. Use exactly the formats shown above
 3. Explain your reasoning before each query/answer

1836 Remember:
 1837 - Following next pointers, values are in increasing order
 1838 - You need to find minimum value of the list
 1839 - Position indices start from 1
 1840 - Think carefully about which positions to query
 1841 Ready to start? Make your first query!

Case N.12: LinkedListQuery Difficulty Levels

1843 Easy: $n = 5$, Medium: $n = 9$, Hard: $n = 11$

1844 **MedianQuery** In this task, models need to find specific positions in a hidden permutation through
 1845 queries about subsequence medians. For each query, models specify positions to examine and receive
 1846 the two middle values, ultimately locating target values in the permutation.

Case N.13: MedianQuery Problem Template

1847 Let's play Median Query Game! Your task is to find specific positions in a hidden permutation
 1848 through median queries.

1849 Rules:

- 1850 1. There is a hidden permutation p of length n (numbers 1 to n)
- 1851 2. You can make queries about subsequences of even length
- 1852 3. Each query returns the two middle values (medians) of your chosen subsequence
- 1853 4. Your goal is to find positions of values $\{n//2\}$ and $\{n//2 + 1\}$

1854 Query Types:

- 1855 1. To make a query:

1856 Format: "My Query: k x_1 x_2 ... x_k "

1857 where:

1858 - k is the length of subsequence (even number, $4 \leq k \leq n$)

1859 - x_1 to x_k are distinct positions (1-based indexing)

1860 Example: "My Query: n 1 2 3 4 5 6"

1861 Response will be two numbers: the $k/2$ -th and $(k/2 + 1)$ -th smallest values in the subsequence

- 1862 2. To submit final answer:

1863 Format: "My Answer: i j "

1864 where i and j are positions of values $\{n//2\}$ and $\{n//2 + 1\}$

1865 Example: "My Answer: 3 6"

1866 Instructions:

- 1867 1. Make queries based on previous results

- 1868 2. Use exactly the formats shown above

- 1869 3. Explain your reasoning before each query

1870 Remember:

- 1871 - The permutation contains numbers 1 to n exactly once
- 1872 - Position indices start from 1
- 1873 - Think carefully about which subsequences to query
- 1874 - Use your queries wisely to locate the target positions
- 1875 - Order of positions in final answer doesn't matter

1876 Ready to start? Make your first query!

Case N.14: MedianQuery Difficulty Levels

1877 Easy: $n = 6$, Medium: $n = 8$, Hard: $n = 15$

1878 **MinMax** In this task, models need to find positions of minimum and maximum elements in a
 1879 hidden array through pairwise comparison queries. Each query reveals the relative ordering of two
 1880 elements, helping deduce the extreme values' locations.

1890

Case N.15: MinMax Problem Template

1891

1892 Let's play Find Min Max! Your task is to find the minimum and maximum elements in a hidden
 1893 array.

1894

1895 Rules:

1896

1. You are given an array of length n , but you cannot see its elements
2. You can only compare two elements by their positions (i and j)
3. After each comparison, you'll receive one of these responses:
 - " $<$ ": element at position i is less than element at position j
 - " $=$ ": element at position i equals element at position j
 - " $>$ ": element at position i is greater than element at position j

1900

1901 Example:

1902

1903 If we have an array of length 3:

1904

1905 - Query "1 2" would get:

1906 ">>" (means element at position 1 is greater than element at position 2)

1907

1908 - Query "2 3" would get:

1909 "=>" (means element at position 2 is less than element at position 3)

1910

1911 Query Types:

1912

1. Ask about comparison:

1913

1914 Format: "My Query: $i j$ " (i and j are positions to compare)

1915

1916 Response will be " $<$ ", " $=$ " or " $>$ "

1917

2. Submit final answer:

1918

1919 Format: "My Answer: ! $i j$ " (where i is minimum position, j is maximum position)

1920

1921 Response will be:

1922

- 1 if correct

1923

- 0 if incorrect

1924

1925 Instructions:

1926

1. You must explain your reasoning before each query

1927

2. Format your responses exactly as shown above

1928

3. You can only compare two different positions at a time

1929

1930 Remember:

1931

- Positions must be between 1 and 6

1932

- Choose comparisons wisely to minimize queries

1933

1934 Ready to start? Make your first query!

1935

Case N.16: MinMax Difficulty Levels

1936

1937 Easy: $n = 5$, Medium: $n = 6$, Hard: $n = 7$

1938

1939 **WordGuessing** In this task, models need to discover a hidden n -letter word through strategic
 1940 guesses. Each guess receives feedback indicating correct letters, misplaced letters, and wrong letters,
 1941 helping narrow down the target word.

1942

Case N.17: WordGuessing Problem Template

1943

1944 Let's play Letters Finding! Your task is to guess a n -letter English word.

1945

1946 Rules:

1947

1. You must provide exactly ONE n -letter English word as your guess

1948

2. After each guess, you'll receive feedback using these symbols:

1949

- R: Correct letter in the correct position

1950

- G: Correct letter but in the wrong position

1951

- W: Wrong letter, not in the word

1952

1953 Example:

1954

1955 If the target word is ABCDUVWZGHJ

1956

1957 - Guess ACEFOPQMKGLL would get: RGWWWWWWWWWWWW

1958

1959 (A is correct position, C is correct but wrong position, rest are wrong)

1960

1961 Query Type:

1962

1. Make a guess:

1963

1964 Format: "My Guess: [YOUR n -LETTER WORD]"

1944 Response will be:
 1945 - A n -character string using R, G, and W
 1946 - R: right letter, right position
 1947 - G: right letter, wrong position
 1948 - W: wrong letter
 1949 Instructions:
 1950 1. Make your guess based on previous feedback (if any)
 1951 2. Guess only one word at a time
 1952 3. Give your reasoning process before each guess
 1953 Remember:
 1954 - Each guess must be exactly n letters long
 1955 - The same letter can appear multiple times
 1956 - Guesses need not be real English words
 1957 - Use feedback wisely to deduce the target word
 1958 Ready to start? Make your first query!

Case N.18: WordGuessing Difficulty Levels

1959 Easy: $n = 4$, Medium: $n = 8$, Hard: $n = 12$

1963 **BitQuery** In this task, models need to discover a hidden array by making queries about pairs of
 1964 positions using bitwise operations (AND, OR, XOR). Models can make queries in the format “My
 1965 Query: OPERATION i j ” to get the result of applying the specified bitwise operation on elements
 1966 at positions i and j . After gathering enough information through strategic queries, models should
 1967 submit their final answer in the format “My Answer: $a_1 a_2 \dots a_n$ ” representing their guess of the
 1968 entire hidden array.

Case N.19: BitQuery Problem Template

1971 Let’s play Bitwise Query Game! Your task is to discover the hidden array through bitwise
 1972 operations.

1973 Rules:

1. There is a hidden array of $\{n\}$ integers
2. Each element in the array is between 0 and $\{n - 1\}$ inclusive
3. You can ask three types of queries about any two positions i and j :

- AND query: returns the bitwise AND of elements at positions i and j
- OR query: returns the bitwise OR of elements at positions i and j
- XOR query: returns the bitwise XOR of elements at positions i and j

1979 Query Types:

1. To make a query:

1982 Format: “My Query: OPERATION i j ”

1983 where:

1984 - OPERATION is one of: AND, OR, XOR

1985 - i and j are positions in array (1-based indexing)

1986 Example: “My Query: OR 1 2”

2. To submit final answer:

1987 Format: “My Answer: $a_1 a_2 \dots a_{\{n\}}$ ”

1988 where a_1 to $a_{\{n\}}$ are your guessed array elements

1989 Example: “My Answer: 0 0 2 3”

1990 Example Interaction:

1991 Array length = $\{n\}$

1992 You: “My Query: OR 1 2”

1993 Me: “0” (result of OR operation)

1994 You: “My Query: OR 2 3”

1995 Me: “2” (result of OR operation)

1996 You: “My Query: XOR 2 4”

1997 Me: “3” (result of XOR operation)

1998 You: “My Answer: 0 0 2 3”

1998
 1999 Instructions:
 2000 1. Make queries based on previous results
 2001 2. Use exactly the formats shown above
 2002 3. Explain your reasoning before each query
 Remember:
 2003 - All array elements are between 0 and $\{n - 1\}$
 2004 - Position indices start from 1
 2005 - Think carefully about which operations to use
 2006 - Use your queries wisely to gather maximum information
 2007 Ready to start? Make your first query!

2008
 2009 **Case N.20: BitQuery Difficulty Levels**
 2010 Easy: $n = 4$, Medium: $n = 8$, Hard: $n = 12$

2012
 2013 N.2 DYNAMIC ADAPTATION
 2014

2015 **PasswordBreaking** In this task, models need to discover a hidden password through strategic
 2016 guesses. After each incorrect guess, the password changes according to a base-k XOR operation,
 2017 requiring careful analysis of the transformation mechanics.

2018
 2019 **Case N.21: PasswordBreaking Problem Template**
 2020 Let's play Password Breaker! Your task is to hack into the RPD database by guessing the correct
 2021 password.
 2022 Rules:
 2023 1. The password is always between $\text{MIN_VALUE} = m$ and $\text{MAX_VALUE} = m + n$ (inclusive)
 2024 2. After each guess, you'll receive one of these responses:
 2025 - Correct: Correct password, you've successfully broken in!
 2026 - Incorrect: Wrong password, and the system has changed the password
 2027 - Invalid: Invalid guess
 2028 Important Mechanics:
 2029 - The system uses base- $\{k\}$ operations ($k = \{k\}$)
 2030 - When you guess wrong (y), if the current password was x :
 2031 * First convert both x and y to base- $\{k\}$ numbers
 2032 * Perform digit-by-digit base- $\{k\}$ XOR:
 2033 For each digit position i : $\text{result}[i] = (x[i] + y[i]) \bmod \{k\}$
 2034 * Convert result back to decimal to get z
 2035 * Map z to range $[0, n]$ by taking $\bmod (n + 1)$
 2036 * Add m to get the new password between $[m, m + n]$
 2037 Example:
 2038 With $k = 2$, if $x = 6$ (base-2: $[1, 1, 0]$) and $y = 5$ (base-2: $[1, 0, 1]$):
 2039 1. XOR digits: $[1, 1, 0] \text{ XOR } [1, 0, 1] = [(1 + 1)\bmod 2, (1 + 0)\bmod 2, (0 + 1)\bmod 2] = [0, 1, 1]$
 2040 2. Convert $[0, 1, 1]$ to decimal: $z = 3$
 2041 3. Map to range: $z = (3 \bmod (n + 1)) + m$
 2042 Example Interaction:
 2043 - Original password = 5
 2044 - You: "My Guess: 3"
 2045 - Me: "Incorrect" (wrong, password changes by XOR mechanism)
 2046 - You: "My Guess: 5"
 2047 - Me: "Incorrect" (wrong, password changes by XOR mechanism)
 2048 - You: "My Guess: 8"
 2049 - Me: "Correct" (correct!)
 2050 Query Type:
 2051 1. Make a guess:
 Format: "My Guess: X "
 where X is a number between $\{\text{min_value}\}$ and $\{\text{max_value}\}$
 Instructions:

2052 1. Make your guess based on previous responses
 2053 2. Format your response exactly as shown above
 2054 3. Give your reasoning before making each guess
 2055 Remember:
 2056 - Always guess within valid range $[m, \{max_value\}]$
 2057 - Password changes after each incorrect guess
 2058 - Think carefully about the base- $\{k\}$ XOR mechanism
 2059 Ready to start? Make your first query!

Case N.22: PasswordBreaking Difficulty Levels

Easy: $n = 10$, Medium: $n = 20$, Hard: $n = 30$

2065 **RotaryLaserLock** In this task, models need to discover the relative positions of metal arcs on
 2066 concentric rings through strategic rotations. Each query rotates a ring and reveals the count of
 2067 unblocked laser paths passing through all rings.

Case N.23: RotaryLaserLock Problem Template

2070 Let's play the Rotary Laser Lock Game! Your task is to discover the final relative positions of
 2071 metal arcs after your rotations.

2072 Rules:

2073 1. Lock Structure:
 2074 - $\{n\}$ concentric rings numbered 0 to $\{n - 1\}$
 2075 - Each ring has $\{n * m\}$ sections (0 to $\{n * m - 1\}$)
 2076 - Each section can be empty or contain metal
 2077 - Rings can rotate independently
 2078 2. Metal Arcs:
 2079 - Each ring has one metal arc
 2080 - Each arc covers exactly 6 consecutive sections
 2081 - Arcs are solid and cannot be broken
 2082 3. Rotation Mechanics:
 2083 - You can rotate any ring
 2084 - Clockwise rotation: +1 section
 2085 - Anticlockwise rotation: -1 section
 2086 - Ring 0 is your reference ring
 2087 4. Laser Detection:
 2088 - $\{n * m\}$ lasers emit from center
 2089 - One laser per section
 2090 - Metal arcs block lasers
 2091 - Display shows count of unblocked lasers

Query Types:

2092 1. Make a rotation:
 2093 Format: "My Query: $x d$ "
 2094 where:
 2095 - x : ring number (0 to $\{n - 1\}$)
 2096 - d : direction (-1 or +1)

2097 Example: "My Query: 2 1" rotates ring 2 clockwise

2098 2. Submit final answer:
 2099 Format: "My Answer: $p_1 p_2 \dots p_n$ "
 2100 where:

2101 - Each p_i is final position of ring i relative to ring 0
 2102 - Positions range from 0 to $\{n * m - 1\}$

2103 Example Round:
 2104 Initial state unknown, $\{n * m\}$ sections per ring
 2105 You: "My Query: 1 1"
 - Rotating ring 1 clockwise
 Me: "10"

2106 - 10 lasers pass through
 2107 You: "My Query: 2 -1"
 2108 - Rotating ring 2 anticlockwise
 2109 Me: "12"
 2110 - 12 lasers pass through
 2111 You: "My Answer: 3 1 12 11"
 2112 - Final positions relative to ring 0
 2113 Me: "Correct"
 2114 Instructions:
 2115 1. Make rotations based on previous results
 2116 2. Use exactly the formats shown above
 2117 3. Explain your reasoning before each query
 2118 Remember:
 2119 - Each arc is exactly 6 sections long
 2120 - Track your rotations carefully
 2121 - All positions are mod $\{n * m\}$
 2122 - Invalid query/answer = immediate loss
 2123 Ready to start? Make your first query!

Case N.24: RotaryLaserLock Difficulty Levels

Easy: $n = 3$, Medium: $n = 4$, Hard: $n = 5$

2124 **AttendanceCheck** In this task, models need to identify an absent student through strategic range
 2125 queries. Students respond by raising hands, but may be dishonest in their responses following specific
 2126 patterns of truthfulness and deception.

Case N.25: AttendanceCheck Problem Template

Let's play the Attendance Check Game! Your task is to find the absent student through a series of range queries.

Rules:

1. There are $\{n\}$ students (numbered 1 to $\{n\}$)
2. Exactly one student is absent
3. You can make queries about ranges of students
4. Students might be dishonest in their responses

Query Types:

1. To make a range query:

Format: "My Query: l r "

where:

- l and r are the range boundaries ($1 \leq l \leq r \leq \{n\}$)

Example: "My Query: 1 4"

Response will be number of students who raised hands

2. To mark absent student:

Format: "My Answer: a "

where:

- a is the student number you think is absent

Example: "My Answer: 3"

Response Types for Range Queries:

For a query (l, r) , you'll get either $r - l$ or $r - l + 1$ students raising hands:

1. True Positive: $r - l + 1$ present, $r - l + 1$ raised
2. True Negative: $r - l$ present, $r - l$ raised
3. False Positive: $r - l$ present, $r - l + 1$ raised
4. False Negative: $r - l + 1$ present, $r - l$ raised

Important Rules:

1. Students will never answer honestly 3 times in a row
2. Students will never answer dishonestly 3 times in a row

Example Interaction:

2160 You: "My Query: 1 4"
 2161 Me: "3" (3 students raised hands)
 2162 You: "My Query: 3 5"
 2163 Me: "2" (2 students raised hands)
 2164 You: "My Answer: 2"
 2165 Me: "Correct"
 2166 Instructions:
 2167 1. Make queries based on previous responses
 2168 2. Use exactly the formats shown above
 2169 3. Explain your reasoning before each query
 2170 Remember:
 2171 - Plan your queries carefully
 2172 - Students are strategically dishonest
 2173 - Pattern of honesty/dishonesty is key
 2174 - Think about overlapping ranges
 2175 Ready to start? Make your first query!

Case N.26: AttendanceCheck Difficulty Levels

Easy: $n = 5 - 9$, Medium: $n = 10 - 14$, Hard: $n = 15 - 20$

2180 **BinaryNumberGuessing** In this task, models need to discover a hidden number through strategic
 2181 subtraction operations. Each operation reveals the count of 1s in the binary representation of the
 2182 resulting number, helping deduce the current value.
 2183

Case N.27: BinaryNumberGuessing Problem Template

Let's play Binary Number Guessing! Your task is to guess the original hidden number by performing subtraction operations.

Rules:

1. There is a hidden positive integer k ($1 \leq k \leq n$)
2. You will be told the number of 1s in its binary representation
3. For each operation, you can:
 - Subtract any positive integer x from the current number
 - After subtraction, you'll be told the new count of 1s in binary
 - If you try to subtract a number larger than current k , you will get a response of "Invalid"
4. Your goal is to guess the current number after all of your operations

Query Types:

1. Make a subtraction:

Format: "My Operation: X "

where X is the number you want to subtract

Response will be:

- Count of 1s in new binary number (if valid)
- "Invalid" (if X larger than current k)

2. Submit final answer:

Format: "My Answer: k "

where k is your guess for current number

Response will be:

- "Correct" (if right)
- "Incorrect" (if wrong)
- "Invalid" (if invalid format)

Example Interaction:

- Original number = 3 (binary: 11, count of 1s: 2)
- You: "My Operation: 1"
- Me: "1" (current number is 2, binary: 10)
- You: "My Operation: 1"
- Me: "1" (current number is 1, binary: 1)
- You: "My Answer: 1"

2214 Me: “Correct” (current number is 1, correct!)
 2215 Instructions:
 2216 1. Make operations based on previous results
 2217 2. Use exactly the formats shown above
 2218 3. Explain your reasoning before each operation
 2219 Remember:
 2220 - Don’t subtract more than current number
 2221 - Track binary representation changes
 2222 - Consider patterns in 1s count
 2223 - Invalid operations waste moves
 2224 Ready to start? Make your first query!

Case N.28: BinaryNumberGuessing Difficulty Levels

Easy: $n = 50$, Medium: $n = 150$, Hard: $n = 500$

2230 **HiddenNumberFinding** In this task, models need to discover a hidden number through strategic set
 2231 queries. Responses might be deceptive, but follow a pattern where at least one of any two consecutive
 2232 queries is truthful, while direct guesses are always answered honestly.

Case N.29: HiddenNumberFinding Problem Template

2235 Let’s play Find the Hidden Number Game! Your task is to discover a hidden number through a
 2236 series of queries and guesses.

2237 Rules:

- 2238 1. There is a hidden number x between 1 and $\{n\}$
- 2239 2. For each query, you can ask about a set of numbers:
 - You choose any non-empty set of numbers
 - System will tell you if x is in that set (“YES”) or not (“NO”)
 - WARNING: Responses might be lies!
 - BUT: At least one answer out of any two consecutive queries is truthful
- 2243 3. For guesses:
 - You can directly guess what x is
 - Guesses are always answered truthfully
 - A correct guess ends the game

2247 Query Types:

- 2248 1. To make a set query:
 Format: “My Query: $k n_1 n_2 \dots n_k$ ”

2249 where:

- k is the size of your set
- n_1 to n_k are the numbers in your set

2253 Example: “My Query: 3 1 2 3”

- 2254 2. To make a guess:

2255 Format: “My Answer: x ”

2256 Example: “My Answer: 2”

2257 Example Interaction:

2258 You: “My Query: 3 1 2 3”

2259 Me: “YES”

2260 You: “My Query: 2 4 5”

2261 Me: “YES”

2262 You: “My Answer: 4”

2263 Me: “Correct”

2264 Instructions:

- 2265 1. Make queries based on previous responses
- 2266 2. Use exactly the formats shown above
- 2267 3. Explain your reasoning before each query

2268 Important Notes:

- At least one of any two consecutive queries is truthful

2268 - Guesses are always answered truthfully
 2269 - Plan your strategy carefully!
 2270 Remember:
 2271 - Track truthful/deceptive patterns
 2272 - Use overlapping sets strategically
 2273 - Consider binary search approaches
 2274 Ready to start? Make your first query!
 2275

Case N.30: HiddenNumberFinding Difficulty Levels

Easy: $n = 19/20$, Medium: $n = 30$, Hard: $n = 40$

2280 **MahjongDetective** In this task, models need to discover a hidden set of Mahjong tiles through
 2281 strategic tile additions. Each addition reveals changes in the number of valid combinations (triplets
 2282 and straights), helping deduce the original set composition.
 2283

Case N.31: MahjongDetective Problem Template

2284 Let's play Mahjong Detective Game! Your task is to discover Yui's mysterious tile set through
 2285 careful queries.
 2286

Rules:

1. There is a hidden set of Mahjong tiles
2. Each tile has a value from 1 to $\{n\}$
3. Each value appears at most $\{n\}$ times
4. You need to find how many tiles of each value exist
5. You can add tiles to help your investigation

2287 Special Combinations:

- Triplet: Three tiles with same value (e.g., $\{2, 2, 2\}$)
- Straight: Three consecutive values (e.g., $\{2, 3, 4\}$)

2288 Note: Same-value tiles are treated as different piece!

2289 Query Types:

1. To add a tile:

2290 Format: "My Query: + x "

2291 where:

- x is the value of tile to add (1 to $\{n\}$)

2292 Example: "My Query: + 3"

2293 Response will be:

- Number of triplets in new set
- Number of straights in new set

2. To submit final answer:

2294 Format: "My Answer: $a_1 a_2 \dots a_{\{n\}}$ "

2295 where a_i is number of tiles with value i AFTER ALL YOUR ADDITIONS

2296 Example: "My Answer: 2 1 3 0 2 ..."

2297 Example Interaction:

2298 Initial set has:

- 1 triplet
- 6 straights

2299 You: "My Query: + 1"

2300 Me: "2 9" (new set has 2 triplets, 9 straights)

2301 You: "My Query: + 1"

2302 Me: "5 12" (new set has 5 triplets, 12 straights)

2303 You: "My Query: + 2"

2304 Me: "5 24" (new set has 5 triplets, 24 straights)

2305 You: "My Query: + 5"

2306 Me: "6 24" (new set has 6 triplets, 24 straights)

2307 You: "My Answer: 2 1 3 0 2 ..."

2308 (This answer includes ALL tiles, including the ones you added!)

2309 Instructions:

2322 1. Make queries to add tiles strategically
 2323 2. Use exactly the formats shown above
 2324 3. Explain your reasoning before each addition
 2325 4. Watch how combinations change
 2326 Remember:
 2327 - Each value appears 0 to $\{n\}$ times
 2328 - Same-value tiles count as different pieces
 2329 - Watch how triplets and straights change
 2330 - Your final answer must include your added tiles
 2331 Ready to start? Make your first query!

2332 **Case N.32: Mahjong Detective Difficulty Levels**

2333 Easy: $n = 3$, Medium: $n = 6$, Hard: $n = 9$

2337 **MimicHunting** In this task, models need to identify a shape-shifting mimic among objects through
 2338 strategic removals. After each removal, objects are mixed and the mimic may change its type,
 2339 following specific transformation rules.

2340 **Case N.33: MimicHunting Problem Template**

2342 Let's play Mimic Hunt Game! Your task is to find a shape-shifting creature among objects through
 2343 careful observation and removal.

2344 Rules:

2345 1. There are $\{n\}$ objects in a room, each with a type number (1-9)
 2346 2. One object is a mimic that can transform into any type
 2347 3. The mimic cannot stay the same type for more than 2 stages

2348 Query Types:

2349 1. To remove objects:

2350 Format: "My Query: - k x_1 x_2 ... x_k "
 2351 where: - k is number of objects to remove
 2352 - x_1 to x_k are positions (1-based indexing)

2353 Example: "My Query: - 2 1 5"

2353 Response will be:

2354 - Remaining objects' types after mixing

2355 2. To identify mimic:

2356 Format: "My Answer: i "

2357 where i is the position of suspected mimic

2358 Example: "My Answer: 3"

2359 Example Interaction:

2360 Objects: [1,1,2,2,3]

2361 You: "My Query: - 2 1 5"

2362 Me: "[2,1,2]" (remaining objects after mixing)

2363 You: "My Query: - 4 1 2 3 4"

2364 Me: "[2]" (remaining objects after mixing)

2365 You: "My Answer: 5"

2366 Me: "Correct"

2367 Instructions:

2368 1. Each stage:

2369 - Observe current objects

2370 - Either remove some objects or guess mimic

2371 - After removal, objects are mixed and mimic may change

2372 2. Use exactly the formats shown above

2373 3. Explain your reasoning before each action

2374 4. Remember mimic's transformation rules

2375 Remember:

2376 - Object types are numbers 1-9

2377 - Position indices start from 1

2376 - Mimic can't stay same type > 2 stages
 2377 - Track type patterns carefully
 2378 Ready to start? Make your first query!
 2379

2380

2381 Case N.34: MimicHunting Difficulty Levels

2382 Easy: $n = 5$, Medium: $n = 10$, Hard: $n = 20$

2383

2384

2385

2386 PermutationDiscovery In this task, models need to discover a hidden permutation through dynamic
 2387 queries. A visible permutation changes after each query according to the hidden permutation's rules,
 2388 requiring careful analysis of transformation patterns.

2389

2390

Case N.35: PermutationDiscovery Problem Template

Let's play Permutation Discovery Game! Your task is to find a hidden permutation through dynamic queries.

Rules:

1. There are two permutations of length $\{n\}$:

- p : hidden permutation you need to discover

- q : visible permutation that changes after each query

2. Initially, q is $[1, 2, \dots, \{n\}]$

3. After each query, q changes following this rule:

- For each position i : $q'[i] = q[p[i]]$

4. Your goal is to discover permutation p

Query Types:

1. To ask about q 's value:

Format: "My Query: i "

where:

- i is a position (1-based indexing)

Example: "My Query: 3"

Response will be the value at position i in current q

2. To submit final answer:

Format: "My Answer: $p_1 p_2 \dots p_{\{n\}}$ "

where p_1 to $p_{\{n\}}$ form your guessed permutation

Example: "My Answer: 4 2 1 3"

Example Interaction:

Initial $q = [1, 2, \dots, \{n\}]$

You: "My Query: 3"

Me: "3"

[q updates based on p]

You: "My Query: 2"

Me: "2"

[q updates again]

You: "My Answer: 4 2 1 3"

Instructions:

1. Make queries based on previous results

2. Use exactly the formats shown above

3. Explain your reasoning before each query

4. Watch how q changes after each query

Remember:

- q starts as $[1, 2, \dots, \{n\}]$

- Position indices start from 1

- q changes after every query

- Think carefully about which positions to query

Ready to start? Make your first query!

2429

2430

Case N.36: PermutationDiscovery Difficulty Levels

2431

Easy: $n = 4$, Medium: $n = 5$, Hard: $n = 6$

2432

2433

2434

2435

2436

TrainPursuit In this task, models need to locate a moving train on a circular railway through range queries. The train moves up to a certain number of stations after each query, following a circular pattern that wraps around from the last station to the first.

2437

2438

Case N.37: TrainPursuit Problem Template

2439

2440

Let's play Train Pursuit Game! Your task is to find a moving train on a circular railway through range queries.

2441

Rules:

2442

1. There is a train hidden at one of $\{n\}$ stations (numbered 1 to $\{n\}$)

2443

2. The train moves circularly:

2444

- Can move up to $\{k\}$ stations after each query

2445

- After station $\{n\}$, continues from station 1

2446

- Example: at station $\{n\}$, moving 2 stations means going to station 2

2447

3. You can make range queries to find the train

2448

4. Each query must be in valid format or you'll get "Invalid" response

2449

Query Types:

2450

1. To make a range query:

2451

Format: "My Query: l r "

2452

where:

2453

- l and r are station numbers (1-based indexing)

2454

- $l \leq r \leq \{n\}$

2455

Example: "My Query: 3 5"

2456

Response will be:

2457

- "Yes" if train is in this range

2458

- "No" if train is not in this range

2459

- "Invalid" if query format is incorrect

2460

2. To catch the train:

2461

Format: "My Answer: x "

2462

where x is the station you think the train is now at

2463

Example: "My Answer: 5"

2464

Example Movement:

2465

If train is at station 1 and moves 2 stations:

2466

- First move: station 1 → station 3

2467

- Second move: station 3 → station 5

2468

Instructions:

2469

1. Make queries based on previous results

2470

2. Use exactly the formats shown above

2471

3. Explain your reasoning before each query

2472

4. Remember circular movement pattern

2473

Remember:

2474

- Train is at a station numbered 1 to $\{n\}$

2475

- Train moves up to $\{k\}$ stations circularly

2476

- Query format must be exact

2477

- Need to find exact location to win

2478

- Invalid queries will receive "Invalid" response

2479

Ready to start? Make your first query!

2480

Case N.38: TrainPursuit Difficulty Levels

2481

Easy: $n \leq 5$, Medium: $5 < n \leq 7$, Hard: $7 < n \leq 9$

2482

2483

ZeroFinding In this task, models need to locate the k -th zero in a hidden binary array through range sum queries. Non-target zeros transform into ones when discovered, requiring strategic query placement and careful tracking of zero positions.

2484
2485**Case N.39: ZeroFinding Problem Template**2486
2487

Let's play Zero Finding Game! Your task is to find the $\{k\}$ -th zero in a hidden binary array through range sum queries.

2488

Rules:

2489

1. There is a hidden array of $\{n\}$ elements (all 0s and 1s)
2. You need to find the $\{k\}$ -th zero
3. Each time you find a non-target zero (not $\{k\}$ -th), it turns into 1
4. The game continues until you find the $\{k\}$ -th zero

2492

Query Types:

2493

1. To make a range sum query:

2494

Format: "My Query: $l\ r$ "

2495

where:

2496

- l and r are positions (1-based indexing)

2497

- $l \leq r \leq \{n\}$

2498

Example: "My Query: 4 6"

2499

Response will be the sum of elements in positions l to r

2500

2. To submit temporary answer:

2501

Format: "My Answer: x "

2502

where x is position of a non- $\{k\}$ -th zero

2503

Example: "My Answer: 5"

2504

3. To submit final answer:

2505

Format: "My Final Answer: x "

2506

where x is position of the $\{k\}$ -th zero

2507

Example: "My Final Answer: 3"

2508

Example Interaction:

2509

Finding 2nd zero:

2510

You: "My Query: 4 6"

2511

Me: "1" (sum in range [4,6])

2512

You: "My Answer: 5"

2513

Me: "Correct! Non-target zero found and turned to 1"

2514

You: "My Final Answer: 3"

2515

Me: "Correct! You found the 2nd zero!"

2516

Instructions:

2517

1. Game Process:

2518

- Make queries to locate zeros

2519

- Use "My Answer" for non- $\{k\}$ -th zeros

2520

- Use "My Final Answer" for the $\{k\}$ -th zero

2521

- Array updates when non-target zeros are found

2522

2. Use exactly the formats shown above

2523

3. Explain your reasoning before each action

2524

Remember:

2525

- Array only contains 0s and 1s

2526

- Position indices start from 1

2527

- Non-target zeros turn into 1 when found

2528

- Each query shows sum in range

2529

- Use different formats for target and non-target zeros

2530

Ready to start? Make your first query!

2531

Case N.40: ZeroFinding Difficulty Levels

2532

Easy: $n = 10$, Medium: $n = 50$, Hard: $n = 100$

2533

N.3 STATE OPERATION

2534

MazeNavigation In this task, models need to navigate through a maze with potentially swapped directional controls to reach a finish point. Models must deduce any control swaps while avoiding dangerous cells and staying within grid boundaries.

2538
2539**Case N.41: MazeNavigation Problem Template**2540
2541

Let's play Maze Navigation Game! Your task is to navigate through a maze with potentially swapped controls to reach the finish point.

2542

Rules:

2543

1. Game Field:

2544

- A $\{n\} * \{m\}$ grid with three types of cells:

2545

- * “.” - normal cell you can visit

2546

- * “F” - finish cell (exactly one)

2547

- * “*” - dangerous cell (avoid these)

2548

- Coordinates are 1-based indexing: (row, column)

2549

- Current cell positions:

2550

- * Start: $\{start_pos\}$ (top-left corner)

2551

- * Finish: $\{finish_pos\}$

2552

- * Dangerous cells:

2553

- $\{dangerous_str\}$

2554

2. Movement Controls:

2555

- Four direction buttons: U(up), D(down), L(left), R(right)

2556

- Button Functions may be swapped:

2557

- * L and R might be swapped with each other

2558

- * U and D might be swapped with each other

2559

- Swaps (if any) are set at game start and remain fixed

2560

- Effects of each button when NOT swapped:

2561

- * U: moves to $(current_row - 1, current_col)$

2562

- * D: moves to $(current_row + 1, current_col)$

2563

- * L: moves to $(current_row, current_col - 1)$

2564

- * R: moves to $(current_row, current_col + 1)$

2565

3. Movement Rules:

2566

- Each move returns your new position (x, y)

2567

- If move is invalid (out of grid), position stays same

2568

- Grid boundaries: $1 \leq row \leq \{n\}$, $1 \leq column \leq \{m\}$

2569

- If you hit dangerous cell, returns $(-1, -1)$ and game ends

2570

- When you reach finish cell ($\{finish_pos\}$), game ends successfully

Move Types:

2571

1. To make a move:

2572

Format: “My Move: X”

2573

where X is one of: U, D, L, R

2574

Example: “My Move: R”

2575

2. System Response:

2576

Format: “x y”

2577

where:

2578

- (x, y) is your new position

2579

- $(-1, -1)$ if you hit dangerous cell

2580

Example: After “My Move: R” at $(1, 1)$, response might be “1 2”

2581

Instructions:

2582

1. Make moves based on previous responses

2583

2. Use exactly the format shown above

2584

3. Explain your reasoning before each move

2585

Remember:

2586

- Start position is $\{start_pos\}$

2587

- Controls might be swapped

2588

- Avoid dangerous cells at: $\{dangerous_str\}$

2589

- Target is to reach $\{finish_pos\}$

2590

- Watch for grid boundaries: $1 \leq row \leq \{n\}$, $1 \leq column \leq \{m\}$

2591

Current Grid Layout: $\{grid_str\}$

Ready to start? Make your first query!

2592

Case N.42: MazeNavigation Difficulty Levels

2593

Easy: $n = 4$, Medium: $n = 5$, Hard: $n = 6$

2594

2595

2596

2597

TreasureHunt In this task, models need to explore a forest where junction numbers are hidden and scrambled. Navigation requires strategic use of path counts and flags, as connected junctions appear in random order at each visit.

2598

2599

2600

2601

Case N.43: TreasureHunt Problem Template

2602

2603

Let's play the Treasure Hunt Game! Your task is to explore an enchanted forest where a mischievous wizard keeps scrambling the junction numbers to confuse you.

2604

Rules:

2605

1. Game Setup: - Enchanted forest with $\{n\}$ junctions

2606

- Each junction contains a treasure

2607

- You start at junction 1

2608

- Initial flag placed at starting junction

2609

- Junctions are connected by fixed paths

2610

2. Game Mechanics:

2611

What You Can See:

2612

- At each junction, you can only see:

2613

* Number of paths at each connected junction

2614

* Whether you've placed a flag there

2615

The Wizard's Trick:

2616

- The wizard hides real junction numbers

2617

- Each time you visit a junction, connected junctions are shown in random order

2618

- Though connections stay the same, you can't identify specific junctions

2619

- Must use path counts and flags to navigate

3. Information Format:

2620

I provide: "R d deg_1 $flag_1$ deg_2 $flag_2$... deg_d $flag_d$ "

2621

- R: you're at current junction

2622

- d : number of connected junctions

2623

- deg_i : number of paths at connected junction i

2624

- $flag_i$: flag status at connected junction i (0=no, 1=yes)

Example: "R 3 2 1 4 0 3 0" means:

2625

- 3 connected junctions

2626

- First has 2 paths and is flagged

2627

- Second has 4 paths and no flag

2628

- Third has 3 paths and no flag

Query Type:

2629

Format your move as: "My Choice: X"

2630

where X is from 1 to d (position in current list)

2631

Example Round:

2632

Starting at junction 1:

2633

Me: "R 2 2 0 2 0"

2634

- Two connected junctions

2635

- Both have 2 paths

2636

- Neither has your flag

2637

You: "My Choice: 1"

2638

- Moving to first listed junction

2639

Me: "R 2 2 0 2 1"

2640

- Two connected junctions shown

2641

- One leads back (has your flag)

2642

- One is unexplored (no flag)

2643

You: "My Choice: 1"

2644

- Moving to unflagged junction

2645

Instructions:

1. Give your reasoning before each choice

2646 2. Wait for response before next move
 2647 3. Use exactly the format shown above
 2648 Remember:
 2649 - Real junction numbers are hidden
 2650 - Connected junctions appear in random order each visit
 2651 - Use path counts and flags to track progress
 2652 - Must visit all junctions
 2653 - Invalid move = automatic loss
 2654 Ready to start? Make your first query!

Case N.44: TreasureHunt Difficulty Levels

Easy: $n = 6$, Medium: $n = 7$, Hard: $n = 8$

2659
 2660 **SafepathFinding** In this task, models need to navigate from start to goal on a grid while avoiding
 2661 hidden traps. Each position reveals the number of traps in adjacent cells, requiring careful analysis of
 2662 danger levels to choose safe moves.

Case N.45: SafepathFinding Problem Template

2663 Let's play SafepathFinder! Your task is to find a safe path from start to the goal while avoiding
 2664 hidden traps.

2665 Rules:

2666 1. You are an explorer on a $n \times n$ grid
 2667 2. Start: $(1, 1)$, Goal: (n, n)
 2668 3. Each cell can be either:
 2669 - SAFE: can move through
 2670 - TRAP: ends game if stepped on (hidden)
 2671 4. At each cell, you can:
 2672 - See the number of traps in adjacent cells (DANGER_LEVEL)
 2673 - Cannot see traps until stepped on them
 2674 5. Movement rules: - From position (x, y) , you can move to any adjacent cell:
 2675 - $(x - 1, y - 1)$, $(x - 1, y)$, $(x - 1, y + 1)$
 2676 - $(x, y - 1)$, $(x, y + 1)$
 2677 - $(x + 1, y - 1)$, $(x + 1, y)$, $(x + 1, y + 1)$
 2678 - Cannot move outside grid
 2679 - Example: from $(2, 2)$ you can move to any surrounding cell

2680 Query Type:

2681 Format: "My Choice: X Y "

2682 where X, Y are coordinates (1-based)

2683 Example: "My Choice: 2 3"

2684 Response Format:

2685 DANGER_LEVEL v

2686 - v is the number of traps in the 8 adjacent cells
 2687 - Higher number means more danger nearby
 2688 - 0 means no traps in adjacent cells

2689 Example interaction:

2690 You: "My Choice: 2 1"

2691 Me: "DANGER_LEVEL 1"

2692 You: "My Choice: 3 2"

2693 Me: "DANGER_LEVEL 2"

2694 Game Ends When:

2695 - SUCCESS: Reach (n, n)
 2696 - FAILURE: Step on a trap
 2697 - INVALID: Try to move outside grid or not to adjacent cell

2698 Instructions:

2699 1. Make moves based on danger levels
 2. Use exactly the format shown above

2700 3. Explain your reasoning before each move
 2701 Strategy Tips:
 2702 - Higher DANGER_LEVEL means more risk
 2703 - Watch how DANGER_LEVEL changes as you move
 2704 - Use these changes to deduce trap locations
 2705 - Sometimes longer path might be safer
 2706 - Pay attention to diagonal movements too
 2707 Ready to start? Make your first move!

2708

2709 **Case N.46: SafepathFinding Difficulty Levels**

2710 Easy: $n = 5$, Medium: $n = 6$, Hard: $n = 7$

2713 **RainbowCandyFactory** In this task, models need to guide a candy through a factory grid with
 2714 hidden color-changing devices. The goal is to reach the destination with a specific target color by
 2715 strategically using dye machines and bleach machines.

2716

2717 **Case N.47: RainbowCandyFactory Problem Template**

2718 Let's play Rainbow Candy Factory! Your task is to guide a candy through hidden devices to reach
 2719 the destination with target color.

2720 Rules:

2721 1. Control a candy through a $n * n$ factory grid
 2722 2. Start at (1, 1) with white color (W), reach (n, n)
 2723 3. Hidden devices in cells marked by X:
 2724 - Dye Machines: R(red), G(green), B(blue)
 2725 - Empty cells (-)
 2726 4. Bleach Machine is shown as W(white) in the map and it can reset any color to white
 2727 5. Each level gives a target color to achieve

2728 Move Types:

2729 1. To make a move:

2730 Format: "My Move: Y"

2731 where: - Y is one of: N, E, S, W (directions)

2732 Example: "My Move: E"

2733 Color Rules:

2734 - Initial color: White (W)
 2735 - Basic colors: Red (R), Green (G), Blue (B)
 2736 - Mixed colors: Yellow (Y), Cyan (C), Purple (P)
 2737 - Color mixing: R+G=Y, G+B=C, R+B=P
 2738 - Bleach Machine (W) resets ANY color back to White
 2739 - For Mixed colors, bleaching machine can make it White, but dyeing machine cannot change its
 color

2740 Example Interaction:

2741 You: "My Move: E"

2742 Me: "R"

2743 You: "My Move: S"

2744 Me: "W"

2745 You: "My Move: E"

2746 Me: "G"

2747 Instructions:

2748 1. Make moves based on color feedback
 2749 2. Use exactly the format shown above
 2750 3. Explain your reasoning before each move
 2751 4. Watch out for bleach machines that reset progress

2752 Initial Map: {initial_map}

2753 Target Color: {target}

2754 Remember:

2755 - Start at (1, 1) with White color

2754 - Cannot see machine types until encountered
 2755 - Bleach machines reset ALL colors to White
 2756 - You can go to the cell you've been to
 2757 - Moving out of bounds will result in failure
 2758 - Must reach (n, n) with target color
 2759 Ready to start? Make your first move!

2760

2761 **Case N.48: RainbowCandyFactory Difficulty Levels**

2762 Easy: $n = 3$, Medium: $n = 4$, Hard: $n = 5$

2763
 2764
 2765 **MagneticFieldExploration** In this task, models need to navigate through a grid containing magnetic fields that force movement in specific directions. Success requires understanding the behavior of different magnetic fields while avoiding danger zones to reach the goal.

2766

2767

2768

2769 **Case N.49: MagneticFieldExploration Problem Template**

2770 Let's play Magnetic Field Explorer! Your task is to navigate through a grid with mysterious
 2771 magnetic forces.

2772 Rules:

2773 1. Game Field:

2774 - A $n * n$ grid with:
 2775 * Numbers (1-4) - Different types of magnetic fields
 2776 * “.” - Neutral space
 2777 * “X” - Danger zone (avoid these)
 2778 * “G” - Goal (reach here to win)
 2779 - Start: $(1, 1)$ (top-left corner)
 2780 - Goal: (n, n) (bottom-right corner)

2781 2. Magnetic Fields:

2782 - Four types of magnetic fields (1-4)
 2783 - Each number represents a unique direction (North, South, East, or West)
 2784 - You'll discover the direction of each number through movement
 2785 - Same number always means same direction
 2786 - When you enter a magnetic field:

2787 * You will be forced to move one step in its direction
 2788 * If that step would hit a boundary, you stay on the magnetic field
 2789 * If that step would hit a danger zone, you lose
 2790 * If that step would hit another magnetic field, you move there and it activates

2791 3. Movement Rules: - Basic moves: U(up), D(down), L(left), R(right)
 2792 - Movement sequence for each turn: 1. You move one step in your chosen direction

2793 2. If you land on:

2794 - Magnetic field: Move one step in its direction unless that step would hit a boundary
 2795 - Danger zone: You lose
 2796 - Neutral space: Stay there

2797 3. If magnetic field pushed you to another magnetic field, repeat step 2

2798 Current Grid Layout (with coordinates):

2799 `{grid_str}`

2800 `{position_str}`

2801 Query Types:

2802 1. To make a move:

2803 Format: “My Move: X”

2804 where X is one of: U, D, L, R

2805 Example: “My Move: R”

2806 2. System Response:

2807 Format: “ $x y$ ”

2808 - Shows your final position coordinates

2809 - $(-1, -1)$ if you hit danger zone

2810 Instructions:

2808 1. Make moves based on previous results
 2809 2. Use exactly the format shown above
 2810 3. Explain your reasoning before each move
 2811 Remember:
 2812 - Each number (1-4) represents a fixed direction
 2813 - Figure out what direction each number represents
 2814 - Magnetic fields activate when you land on them
 2815 - Avoid danger zones (X)
 2816 - Reach goal (G) to win
 2817 - You don't necessarily need to figure out or pass through the magnetic fields; your goal is only to
 2818 reach the target zone (n, n) safely
 2819 Ready to start? Make your first move!

2820
 2821 **Case N.50: MagneticFieldExploration Difficulty Levels**
 2822 Easy: $n = 3$, Medium: $n = 4$, Hard: $n = 5$

2824
 2825 **FindingBiggest** In this task, models need to locate and collect the highest value treasure on a grid
 2826 through strategic movement. Each position reveals directional hints to nearby treasures, but these
 2827 hints may be deceptive following specific patterns.

2828
 2829 **Case N.51: FindingBiggest Problem Template**
 2830 Let's play Finding the Biggest! Your task is to find and collect the highest value treasure through
 2831 strategic movement on the grid.
 2832 Rules:
 2833 1. You are an explorer on a $n \times n$ grid
 2834 2. There are exactly 2 treasures hidden on the grid
 2835 3. Each treasure has a value between 1 and 100
 2836 4. You start at position $(1, 1)$
 2837 5. Movement rules:
 2838 - From position (x, y) , you can move to any of its 8 adjacent cells:
 2839 - $(x - 1, y - 1)$, $(x - 1, y)$, $(x - 1, y + 1)$
 2840 - $(x, y - 1)$, $(x, y + 1)$
 2841 - $(x + 1, y - 1)$, $(x + 1, y)$, $(x + 1, y + 1)$
 2842 - Cannot move outside the grid boundaries
 2843 6. Direction System:
 2844 - N: treasure is somewhere in the region above your current position
 2845 - NE: treasure is somewhere in the upper-right region
 2846 - E: treasure is somewhere in the region to your right
 2847 - SE: treasure is somewhere in the lower-right region
 2848 - S: treasure is somewhere in the region below your current position
 2849 - SW: treasure is somewhere in the lower-left region
 2850 - W: treasure is somewhere in the region to your left
 2851 - NW: treasure is somewhere in the upper-left region
 2852 The direction indicates a general area, not a specific cell
 2853 7. MAGNETIC INTERFERENCE:
 2854 - When you get a direction, there's 50% chance it's completely wrong
 2855 - However, wrong directions never appear in consecutive moves
 2856 - If you get a wrong direction, the next move's direction is guaranteed correct
 2857 Query Types:
 2858 1. To move to a position:
 2859 Format: "My Choice: X Y "
 2860 where X, Y are grid coordinates (1-based)
 2861 Example: "My Choice: 2 3" moves to row 2, column 3
 2862 2. To collect treasure:
 2863 Format: "My Choice: COLLECT"
 2864 - Only use when you're sure you're on the highest value treasure

2862 - You only get one collection attempt
 2863 Response Types:
 2864 - If you find a treasure: "TREASURE v " (v is the treasure's value)
 2865 - If empty cell: "EMPTY dir " (dir indicates which region contains nearest treasure)
 2866 - If invalid move: "INVALID_MOVE"
 2867 Example interaction:
 2868 You: "My Choice: 2 2"
 2869 Me: "EMPTY SW" (indicates treasure might be in lower-left region, but could be wrong)
 2870 You: "My Choice: 1 2"
 2871 Me: "EMPTY NE" (guaranteed correct: treasure is in upper-right region)
 2872 You: "My Choice: 2 3"
 2873 Me: "TREASURE 80"
 2874 You: "My Choice: COLLECT"
 2875 Me: "Win"
 2876 Instructions:
 2877 1. Make moves based on directional hints
 2878 2. Use exactly the formats shown above
 2879 3. Explain your reasoning before each move
 2880 Key Points:
 2881 - Directions point to regions, not specific cells
 2882 - If a direction seems wrong, the next one will be correct
 2883 - Must find and be at highest value treasure to win
 2884 - Wrong COLLECT attempt = game over
 Ready to start? Make your first move!

Case N.52: Finding Biggest Difficulty Levels

Easy: $n = 3$, Medium: $n = 4$, Hard: $n = 5$

2889
 2890 **DarkMazeExploration** In this task, models need to navigate through a dark maze where walls are
 2891 only revealed upon encounter. Success requires careful mapping of discovered walls and strategic
 2892 path planning to reach the exit.

Case N.53: DarkMazeExploration Problem Template

2893 Let's play DarkMazeExplorer! Your task is to find your way through a dark maze using only
 2894 directional movements.

2895 Rules:

- 2896 1. You are exploring a $n \times n$ maze
- 2897 2. Each cell may have walls in any direction (North, East, South, West)
- 2898 3. You start at position $(1, 1)$ and must reach (n, n)
- 2899 4. You can only make one directional move at a time
- 2900 5. You cannot move through walls or outside the maze boundaries

2901 Query Type:

2902 Format: "My Choice: X "

2903 where:

- 2904 - X is one of: N, E, S, W (representing directions)
- 2905 - N = North, E = East, S = South, W = West

2906 Example: "My Choice: E"

2907 Response Types:

- 2908 - MOVED: successfully moved into the next cell in your chosen direction
- 2909 - BLOCKED: wall exists in that direction
- 2910 - INVALID: tried to move outside maze boundaries
- 2911 - WIN: reached the exit at (n, n)

2912 Example Interaction:

2913 Starting at $(1, 1)$ with North and West walls

2914 You: "My Choice: E"

2915 Me: "MOVED"

2916 You: "My Choice: N"
 2917 Me: "BLOCKED"
 2918 You: "My Choice: S"
 2919 Me: "WIN"
 2920 Instructions:
 2921 1. Make moves based on feedback
 2922 2. Use exactly the format shown above
 2923 3. Explain your reasoning before each move
 2924 4. Plan your path carefully
 2925 Remember:
 2926 - Starting room (1, 1) has North and West walls
 2927 - You can only see walls when you encounter them
 2928 - Need to mentally map the maze
 2929 - Cannot move through walls or outside boundaries
 2930 - Must reach (n, n) to win
 2931 Ready to start? Make your first move!

Case N.54: DarkMazeExploration Difficulty Levels

Easy: $n = 2$, Medium: $n = 3$, Hard: $n = 4$

2936 **ColorMagic** In this task, models need to transform a grid of colored cells to a uniform color through
 2937 magical operations. Success requires discovering the mapping between operation numbers and their
 2938 effects while planning strategic color transformations.
 2939

Case N.55: ColorMagic Problem Template

Let's play Color Magic! Your task is to make all cells the same color through magical color transformations.

Rules:

1. You have a $n * n$ grid where each cell contains one of three colors: Red(R), Blue(B), Yellow(Y)
2. There are three magic operations with unknown number assignments (1, 2, or 3):
 - Magic Alpha: Selected cell rotates R->B->Y->R, adjacent cells rotate R->Y->B->R
 - Magic Beta: Selected cell rotates B->Y->R->B, adjacent cells rotate B->R->Y->B
 - Magic Gamma: Selected cell stays same, adjacent cells swap colors (R<->B, B<->Y, Y<->R)
3. Your goal is to make all cells the same color

Move Types:

Format: "My Move: OPERATION POSITION"

where:

- OPERATION is one of: 1, 2, 3 (each corresponds to a magic type)
- POSITION is cell number ($1-n * n$, numbered left to right, top to bottom)

Example: "My Move: 2 5"

Instructions:

1. Make moves based on observed color changes
2. Use exactly the format shown above
3. Explain your reasoning before each move
4. Try to discover which number corresponds to which magic

Example Interaction:

Current Grid:

R B Y

B R B

Y R Y

You: "My Move: 1 5"

Me:

R R Y

R R R

Y B Y

- Note: This is just an example; in reality, 1 may not correspond to this operation.

2970 Initial Grid: *initial_grid*
 2971 Remember:
 2972 - Each number (1,2,3) maps to one magic type (Alpha/Beta/Gamma)
 2973 - You must figure out the mapping through experimentation
 2974 - Grid positions are numbered from 1 to $n * n$ from left to right, top to bottom
 2975 - Adjacent means sharing an edge (not diagonal)
 2976 - Need to make all cells the same color to win
 2977 Ready to start? Make your first move!

Case N.56: ColorMagic Difficulty Levels

2979 Easy: $n = 3$, Medium: $n = 4$, Hard: $n = 5$

2983 **ChemicalSynthesis** In this task, models need to create a target compound through strategic chemical
 2984 operations. Each operation has consistent but unknown number assignments and may produce
 2985 unexpected results due to chemical instability.

Case N.57: ChemicalSynthesis Problem Template

2988 Let's play Chemical Synthesis! Your task is to create compound $\{target\}$ containing n elements
 2989 through different operations in an unstable environment.

2990 Rules:

2991 1. Basic Setup:

- Initial compounds: $\{', '\.join(init_compounds)\}$
- Goal: Create $\{target\}$
- Four types of operations (1,2,3,4)
- Element order matters ($ABC \neq CBA$)
- After each operation, resulting compounds and original compounds can be used

2997 2. Operation Types (numbers 1-4 each correspond to one of these):

2998 SPLIT:

- Usually breaks a compound into two parts of its first element and the other elements
- Sometimes splits at a random position due to instability
- Example: $ABC \rightarrow A + BC$ (normal) or $AB + C$ (unstable)
- Format: "My Move: $X N$ " (X is a compound, and $N = 1/2/3/4$)

3002 MERGE:

- Combines two compounds into one
- May cause a catalytic reaction that changes element order
- Result usually keeps elements in order, but might rearrange
- Example: $AB + CD \rightarrow ABCD$ (normal) or $ACBD$ (catalytic)
- Format: "My Move: $X Y N$ " (X, Y are two compounds, and $N = 1/2/3/4$)

3008 SWAP:

- Exchanges elements within a compound
- High energy might cause multiple swaps
- Example: $ABC \rightarrow CBA$ (normal) or BAC (partial)
- Format: "My Move: $X N$ " (X is a compound, and $N = 1/2/3/4$)

3012 EXTRACT:

- Takes out one element from a compound
- Usually the last element, but might extract a random element
- Example: $ABC \rightarrow C$ (normal) or B (unstable)
- Format: "My Move: $X N$ " (X is a compound, and $N = 1/2/3/4$)

3017 3. Operation Format and Responses:

3018 Single Compound Operations (SPLIT, SWAP, EXTRACT):

- Format: "My Move: $X N$ "

3019 Example: "My Move: BC 1"

3020 MERGE Operation:

- Format: "My Move: $X Y N$ "

3022 Example: "My Move: AB CD 2"

3023 System Responses:

3024 - Valid query: “Available: [list of unrepeated available compounds]”
 3025 - Invalid query: “Wrong type”/“Invalid format”/“Invalid compound”
 3026 - Success: “WIN”
 3027 4. Current State:
 3028 Available Compounds: $\{init_compounds\}$
 3029 Important Notes:
 3030 - Element order matters ($ABC \neq CBA$)
 3031 - Operations are consistent but their numbers (1-4) are unknown
 3032 - Chemical instability may cause unexpected results
 3033 - Goal compound must match exactly (including element order)
 3034 - Can only operate on currently available compounds
 3035 - System will return “Wrong type” if:
 3036 * Using single-element compounds for SPLIT/SWAP/EXTRACT
 3037 * Using wrong number of compounds for operation
 3038 Example Interactions:
 3039 Initial: “ABC AB D”
 3040 You: “My Move: ABC 1”
 3041 Me: “Available: ABC A BC AB D” (normal split)
 3042 You: “My Move: AB D 2”
 3043 Me: “Available: ABC A BC AB D DAB” (unstable merge)
 3044 Example Invalid Interactions:
 3045 You: “My Move: A B 1” (invalid: single element for SPLIT)
 3046 Me: “Wrong type”
 3047 You: “My Move: AB 2” (invalid: MERGE needs two compounds)
 3048 Me: “Wrong type”
 3049 Goal: Create $\{target\}$ (exact order matters)
 Ready to start! Make your move using the correct format!

Case N.58: ChemicalSynthesis Difficulty Levels

Easy: $n = 4$, Medium: $n = 6$, Hard: $n = 7$

3054 **CactusSearch** In this task, models need to find a secret vertex in a cactus graph through strategic
 3055 guessing. Each incorrect guess reveals which adjacent vertex leads closer to the target, requiring
 3056 careful navigation of the graph structure.
 3057

Case N.59: CactusSearch Problem Template

Let’s play Cactus Search Game! Your task is to find a secret vertex in a cactus graph through strategic guessing.

Rules:

1. The game is played on a cactus graph with $\{n\}$ vertices (numbered from 1 to $\{n\}$)
2. A secret vertex v has been chosen
3. After each incorrect guess, you’ll be told which adjacent vertex leads closer to v

Game Setup:

This cactus graph consists of $\{n\}$ vertices and $\{m\}$ distinct paths: $\{paths_text\}$

Each path represents a sequence of connected vertices, where consecutive vertices are connected by edges.

The graph is structured as a cactus, meaning each edge belongs to at most one cycle.

Query Type:

1. To make a guess:

Format: “My Guess: x ”

where x is the vertex number ($1 \leq x \leq \{n\}$)

Example: “My Guess: 3”

2. System Response:

- If correct: “FOUND”

- If incorrect: “GO w ” (w is adjacent vertex closer to target)

Example Interaction:

3078 You: "My Guess: 3"
 3079 System: "GO 4"
 3080 You: "My Guess: 4"
 3081 System: "FOUND"
 3082 Instructions:
 3083 1. Make guesses based on previous responses
 3084 2. Use exactly the format shown above
 3085 3. Explain your reasoning before each guess
 3086 Remember:
 3087 - Each vertex is numbered from 1 to $\{n\}$
 3088 - The graph structure is fixed as described above
 3089 - Adjacent vertices in paths are directly connected
 3090 - Use responses wisely to navigate towards target
 3091 Ready to start? Make your first query!

Case N.60: CactusSearch Difficulty Levels

Easy: $n = 10$, Medium: $n = 12$, Hard: $n = 15$

N.4 STRATEGIC GAMING

KnightBattle In this task, models need to win a strategic battle between knights through either capture or reaching a target position. Success requires careful planning of L-shaped movements while considering opponent's potential threats.

Case N.61: KnightBattle Problem Template

Let's play the Knight Battle Game! You are the White Knight and will move first. Your task is to win by either capturing the Black Knight or reaching your target position safely.

Rules:

1. Game Setup:

- Chessboard size: $\{n\} * \{m\}$
- You (White Knight) start at: $(\{x1\}, \{y1\})$
- Opponent (Black Knight) starts at: $(\{x2\}, \{y2\})$
- Your target: $(\{tw_x\}, \{tw_y\})$
- Opponent's target: $(\{tb_x\}, \{tb_y\})$

2. Knight's Movement Rules:

From your current position (x, y) , you can move to:

1. Up 2, Right 1: $(x + 1, y + 2)$
2. Up 2, Left 1: $(x - 1, y + 2)$
3. Down 2, Right 1: $(x + 1, y - 2)$
4. Down 2, Left 1: $(x - 1, y - 2)$
5. Right 2, Up 1: $(x + 2, y + 1)$
6. Right 2, Down 1: $(x + 2, y - 1)$
7. Left 2, Up 1: $(x - 2, y + 1)$
8. Left 2, Down 1: $(x - 2, y - 1)$

* All moves must stay within board boundaries (1 to $\{n\}$, 1 to $\{m\}$)

3. Victory Conditions:

You win if either:

- You move to Black Knight's position (capture)
- You reach $(\{tw_x\}, \{tw_y\})$ and Black Knight cannot attack this position

* A position is under attack if opponent's knight can move there next turn

Query Type:

Format: "My Move: $x \ y$ "

where x, y are your new coordinates

Example: "My Move: 4 4"

Example Interaction:

You (at $\{x1\}, \{y1\}$): "My Move: 4 4"

3132 - Moving to position (4,4)
 3133 Me: "6 3"
 3134 - Black Knight moves to (6,3)
 3135 You: "My Move: 5 6"
 3136 - Moving to position (5,6)
 3137 Me: "5 1"
 3138 - Black Knight moves to (5,1)
 3139 Instructions:
 3140 1. Make moves based on board state
 3141 2. Use exactly the format shown above
 3142 3. Explain your reasoning before each move
 3143 Remember:
 3144 - You are White Knight and move first
 3145 - Use L-shaped movements only
 3146 - Use exact format: "My Move: X Y"
 3147 - Stay within board boundaries
 3148 - Plan moves to either:
 3149 * Capture Black Knight
 3150 * Reach ($\{tw_x\}$, $\{tw_y\}$) safely
 3151 - Invalid move = immediate loss
 3152 - You have at most 15 rounds to defeat the Black Knight
 Ready to start? Make your first move!

Case N.62: KnightBattle Difficulty Levels

Easy: $n = 6$, Medium: $n = 8$, Hard: $n = 16$

3153
 3154 **ZigzagGraph** In this task, models need to win a strategic graph traversal game where players
 3155 follow opposite weight constraints. Success requires careful planning of moves while considering
 3156 both immediate options and future path availability.

Case N.63: ZigzagGraph Problem Template

Let's play the Zigzag Graph Game! Your task is to win this game by strategically moving through the graph while following increasing or decreasing edge weights.

Rules:

1. Game Setup:

- Graph: $\{n\}^* \{n\}$ bipartite graph
- Left nodes: $\{', .join(str(x)) for x in range(1, n + 1)\}$
- Right nodes: $\{', .join(str(x)) for x in range(n + 1, 2 * n + 1)\}$
- Edge weights: $\{chr(10).join(edge_desc)\}$
- All edge weights are distinct

2. Game Mechanics:

- You choose "decreasing" mode and I choose "increasing" mode
- You place token on one node and then I place token on one node
- Players take turns moving token to adjacent unvisited nodes:

* Must move from opponent's last chosen node

* Edge weight must be less than last used edge (for you)

* Edge weight must be greater than last used edge (for me)

- Cannot visit same node twice

3. Victory Conditions:

- Player loses if unable to make a valid move from opponent's node
- Game ends when no legal moves remain

Query Type:

Format: "My Choice: X"

where X is the node number ($1 - \{2 * n\}$)

Example Round:

3186 Initial placement:
 3187 You: "My Choice: 2"
 3188 - Placing token at node 2
 3189 I: "My Choice: 5"
 3190 - Moving from node 2 to node 5 with edge weight 8
 3191 You: "My Choice: 3"
 3192 - Moving from node 5 to node 3 with edge weight 6
 3193 - Following decreasing rule: $6 < 8$
 3194 I: "My Choice: 6"
 3195 - Moving from node 3 to node 6 with edge weight 9
 3196 - Following increasing rule: $9 > 6$
 3197 Instructions:
 3198 1. Make moves based on graph state
 3199 2. Use exactly the format shown above
 3200 3. Explain your reasoning before each move
 3201 Remember:
 3202 - Use exact format: "My Choice: X "
 3203 - Must move from opponent's last node
 3204 - Follow decreasing weight rule
 3205 - Invalid move = automatic loss
 3206 Ready to start? Make your first query!

Case N.64: ZigzagGraph Difficulty Levels

3207 Easy: $n = 5$, Medium: $n = 8$, Hard: $n = 12$

3210 **XORBreaking** In this task, models need to win a strategic game by breaking numbers using XOR operations. Success requires careful selection and breaking of numbers while forcing the opponent into unbreakable positions.

Case N.65: XORBreaking Problem Template

3211 Let's play the XOR Break Game! Your task is to win this game by strategically breaking numbers
 3212 and forcing your opponent into a position where they can't make a valid move.

3213 Rules:

3214 1. Game Setup:
 3215 - Initial number: $\{k\}$ ($2 = < k = < n$)
 3216 - You play first
 3217 - I play second
 3218 - Maximum 20 moves allowed

3219 2. Game Mechanics:

3220 First Turn:

3221 - You break initial number p into two numbers p_1 and p_2
 3222 - Must satisfy: $0 < p_1, p_2 < p$ and $p_1 \oplus p_2 = p$

3223 Subsequent Turns:

3224 - Active player does two actions:
 3225 1. Choose one number (p_1 or p_2) from opponent's break
 3226 2. Try to break chosen number into two new numbers
 3227 - If player cannot break their chosen number, they lose
 3228 - Game continues until someone can't break their number
 3229 3. XOR Calculation Example:

3230 Breaking 13:

3231 - Can choose 10 and 7 because:
 3232 * $10 = 1010$ in binary
 3233 * $7 = 0111$ in binary
 3234 * $10 \oplus 7 = 1101 = 13$
 3235 - Both numbers are less than 13
 3236 - Both numbers are positive

3240 Query Types:
 3241 First Turn Format:
 3242 - Your move: “Breaking into: $p_1 p_2$ ”
 3243 - Example: “Breaking into: 10 7”
 3244 Other Turns Format:
 3245 - Your move: “Choosing: p Breaking into: $p_1 p_2$ ”
 3246 - My response: Either
 3247 * “Choosing: x Breaking into: $y z$ ”
 3248 or
 3249 * “Choosing: x Cannot break further”
 3250 Example Round:
 3251 Initial number: 13
 3252 You: “Breaking into: 10 7”
 3253 - Breaking 13 into $10 \oplus 7$
 3254 - Both numbers less than 13
 3255 Me: “Choosing: 7 Breaking into: 3 4”
 3256 - Selected 7 and broke it into $3 \oplus 4$
 3257 You: “Choosing: 3 Breaking into: 2 1”
 3258 - Selected 3 and broke it into $2 \oplus 1$
 3259 Me: “Choosing: 1 Cannot break further”
 3260 - You win! 1 cannot be broken
 3261 Instructions:
 3262 1. Make moves based on XOR properties
 3263 2. Use exactly the format shown above
 3264 3. Explain your reasoning before each move
 3265 Remember:
 3266 - Use exact format for moves
 3267 - Numbers must satisfy: * Less than current number * Greater than 0 * XOR to current number
 3268 - Invalid break = automatic loss
 3269 - More than 20 moves = loss
 3270 Ready to start? Make your first query!

Case N.66: XORBreaking Difficulty Levels

Easy: $n = 100000$, Medium: $n = 10000000$, Hard: $n = 100000000$

3274 **PizzaSlicing** In this task, models need to win a strategic game by choosing vertices that minimize
 3275 the total area of triangular slices eaten. Success requires careful calculation of areas while considering
 3276 both immediate and future slice configurations.

Case N.67: PizzaSlicing Problem Template

3279 Let’s play the Pizza Slice Game! Your task is to eat as little spinach pizza as possible by
 3280 strategically choosing vertices. The player who eats less total area wins!

3281 Rules:

- 3282 1. Game Setup:
 - 3283 - Pizza shape: $\{n\}$ -vertex convex polygon
 - 3284 - Vertices: $\{points_str\}$
 - 3285 - You play first, I play second
 - 3286 - Total $\{(n - 2)\}$ turns to complete
- 3287 2. Game Mechanics:
 - 3288 - Players take turns choosing vertices
 - 3289 - When chosen, player eats triangle formed by:
 - 3290 * The chosen vertex
 - 3291 * Its two neighboring edges
 - 3292 - After each choice, pizza loses one vertex
 - 3293 - Game ends when all pizza is eaten
 - 3294 - Each vertex can only be chosen once

3294 3. Area Calculation Example:
 3295 If you choose vertex 1 (x_1, y_1) :
 3296 - Triangle area = $|(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)|/2$
 3297 - Where (x_2, y_2) and (x_3, y_3) are neighboring vertices
 3298 - Area adds to your total eaten amount
 3299 - Player with smaller total area wins!
 3300 Query Type:
 3301 Format: "My Choice: X"
 3302 where X is vertex index (1 to $\{n\}$)
 3303 Example Round:
 3304 You: "My Choice: 1"
 3305 Me: "3"
 3306 You: "My Choice: 2"
 3307 Me: "4"
 3308 Result: Add up areas of your triangles and compare with mine to determine winner!
 3309 Instructions:
 3310 1. Make choices based on area calculations
 3311 2. Use exactly the format shown above
 3312 3. Explain your reasoning before each choice
 3313 Remember:
 3314 - Use exact format: "My Choice: X"
 3315 - Choose only available vertices
 3316 - Aim to eat LESS total area than opponent
 3317 - Invalid move = automatic loss
 3318 - Victory = eating smaller total area than opponent
 Ready to start? Make your first query!

Case N.68: PizzaSlicing Difficulty Levels

Easy: $n = 6$, Medium: $n = 8$, Hard: $n = 12$

3319
 3320
 3321
 3322
 3323
PaperNumbering In this task, models need to arrange numbers in non-decreasing order on a line
 3324 of papers through strategic placement and overwriting. Success requires careful planning of number
 3325 positions while adapting to new values each round.
 3326

Case N.69: PaperNumbering Problem Template

3327 Let's play the Paper Number Game!
 3328 Rules:
 3329 1. Game Setup:
 3330 - n blank papers in a line, numbered 1 to n from left to right
 3331 - Game lasts $\{turns\}$ rounds
 3332 - Numbers range from 1 to $\{max_number\}$
 3333 2. Game Mechanics:
 3334 - System provides one number (1 to $\{max_number\}$) each round
 3335 - You must choose which paper to write the number on
 3336 - You can overwrite existing numbers on papers
 3337 - Game ends after $\{turns\}$ rounds or when winning condition is met
 3338 3. Winning Condition:
 3339 - All papers must have numbers written
 3340 - Numbers must be in non-decreasing order from left to right
 3341 - Win immediately when condition is met
 3342 - Lose if not achieved after $\{turns\}$ rounds
 3343 Query Type:
 3344 Format: "My Choice: X"
 3345 where X is paper position (1 to n)
 3346 Example Round:
 3347 Given:

3348 Me: “2”
 3349 You: “I’ll place 2 on first paper to leave room for larger numbers”
 3350 “My Choice: 1”
 3351 - Paper state: [2,_,_]...]
 3352 Me: “1”
 3353 You: “I’ll place 1 on second paper temporarily”
 3354 “My Choice: 2”
 3355 - Paper state: [2,1,_]...]
 3356 Me: “3”
 3357 You: “I’ll replace 1 with 3 to achieve non-decreasing order”
 3358 “My Choice: 2”
 3359 - Paper state: [2,3,_]...]
 3360 Instructions:
 3361 1. Make choices based on number sequence
 3362 2. Use exactly the format shown above
 3363 3. Explain your reasoning before each choice
 3364 Remember:
 3365 - Use exact format: “My Choice: X ”
 3366 - Choose valid paper positions (1 to n)
 3367 - Aim for non-decreasing sequence
 3368 - Invalid move = automatic loss
 3369 Ready to start? Make your first query!
 3370 The first number I give you is: {initial_value}

Case N.70: PaperNumbering Difficulty Levels

3371 Easy: $n = 5$, Medium: $n = 10$, Hard: $n = 15$

3372 **GridGame** In this task, models need to win a strategic game by selecting grid cells that minimize
 3373 their sum while following adjacency rules. Success requires careful planning of cell selections while
 3374 considering both immediate values and future path availability.

Case N.71: GridGame Problem Template

3375 Let’s play the Grid Game! Your task is to choose cells strategically to win.
 3376 Rules:

3377 1. Game Setup:
 3378 - Grid size: $\{n\} * \{m\}$
 3379 - Grid already filled with numbers 1 to $\{n * m\}$
 3380 - Each number appears exactly once {grid_str}
 3381 2. Game Mechanics:
 3382 - Players take turns selecting unselected cells
 3383 - You move first
 3384 - Any cell chosen after first turn must be adjacent to a previously selected cell
 3385 - Cells are adjacent if they share an edge (up/down/left/right)
 3386 - Game ends when all cells are selected
 3387 - You win if your selected numbers sum < my sum

3388 3. Adjacency Example:

3389 For cell (2, 2):

3390 - Adjacent cells: (1, 2), (2, 1), (2, 3), (3, 2)
 3391 - Diagonal cells like (1, 1) are not adjacent
 3392 - Must choose a cell adjacent to any previously selected cell

3393 Query Type:

3394 Format: “My Choice: $x \ y$ ”

3395 where x is row (1 to $\{n\}$) and y is column (1 to $\{m\}$)

3396 Example Interaction:

3397 You: “My Choice: 2 2”

3398 - Selecting cell at row 2, column 2

3402 Me: "My Choice: 2 3"
 3403 - Cell is adjacent to (2, 2)
 3404 You: "My Choice: 1 2"
 3405 - Cell is adjacent to (2, 2)
 3406 Instructions:
 3407 1. Make choices based on grid values
 3408 2. Use exactly the format shown above
 3409 3. Explain your reasoning before each choice
 3410 Remember:
 3411 - Use exact format: "My Choice: x y "
 3412 - Choose only adjacent cells after first turn
 3413 - First move can be any cell
 3414 - Keep track of both sums
 3415 - Plan moves to keep your sum smaller
 3416 - Invalid move = automatic loss
 3417 Ready to start? Make your first choice!

Case N.72: GridSumGame Difficulty Levels

Easy: $n = 3$, Medium: $n = 5$, Hard: $n = 8$

3422 **GridColoring** In this task, models need to discover a special rectangular pattern on a grid through
 3423 strategic cell selection. Success requires finding four differently colored cells that form a rectangle
 3424 with sides parallel to grid lines.
 3425

Case N.73: GridColoring Problem Template

3426 Let's play the Grid Coloring Game! Find a special rectangular pattern on the grid.
 3427 Rules:

1. Game Setup:
 - I have a $n \times n$ grid
 - $\{coloring_description\}$
2. Game Mechanics:
 - You can make up to 10 moves
 - Each move: Choose an uncolored cell by specifying coordinates (x, y)
 - I will respond by coloring that cell with a color of my choice (1 to $\{2 * n\}$)
 - Your goal: Find 4 colored cells that form a valid rectangle
3. Victory Conditions:

A valid rectangle must:

- Have all 4 cells colored
- Have different colors in all 4 cells
- Form a rectangle with sides parallel to grid lines

3441 Query Types:

1. To choose a cell:

Format: "My Choice: x y "

3444 where $1 \leq x, y \leq n$

2. To submit answer:

Format: "My Answer: x_1 x_2 y_1 y_2 "

3447 where $(x_1, y_1), (x_1, y_2), (x_2, y_1), (x_2, y_2)$ are rectangle corners

3448 Example Interaction:

3449 Given a 3×3 grid with initial coloring:

- Cell at position (1, 1) has color 1
- Cell at position (2, 2) has color 2
- Cell at position (3, 3) has color 3

3452 You: "My Choice: 1 2"

3453 Me: "Cell (1, 2) colored with color 4"

3454 You: "My Choice: 2 1"

3455 Me: "Cell (2, 1) colored with color 5"

3456 You: "My Answer: 1 2 1 2"
 3457 Me: "Win!"
 3458 Instructions:
 3459 1. Make choices based on grid state
 3460 2. Use exactly the formats shown above
 3461 3. Explain your reasoning before each move
 3462 Remember:
 3463 - Use exact format: "My Choice: $x \ y$ " for queries
 3464 - Use exact format: "My Answer: $x_1 \ x_2 \ y_1 \ y_2$ " for final answer
 3465 - Explain your reasoning before making a choice
 3466 - Wait for my color response before next move
 3467 - Choosing already colored cell = invalid move = immediate loss
 3468 - All 4 cells in rectangle must have different colors
 3469 Ready to start? Make your first query!

Case N.74: GridColoring Difficulty Levels

3470 Easy: $n = 10$, Medium: $n = 20$, Hard: $n = 30$

3471 **GeometricDistance** In this task, models need to win a strategic game by choosing points that
 3472 control the parity of cumulative squared distances. Success requires careful calculation of distances
 3473 while planning moves to achieve an even final sum.

Case N.75: GeometricDistance Problem Template

3474 Let's play Geometric Distance Game! Your task is to win this game by choosing points and
 3475 controlling the sum's parity.

3476 Rules:

3477 1. Game Setup:
 3478 - Starting point: $(\{sx\}, \{sy\})$
 3479 - Available points:

3480 Point 1: $(\{x_1\}, \{y_1\})$

3481 Point 2: $(\{x_2\}, \{y_2\})$

3482 Point 3: $(\{x_3\}, \{y_3\})$

3483 Point 4: $(\{x_4\}, \{y_4\})$

3484 ...

3485 Point n: $(\{x_n\}, \{y_n\})$

3486 2. Game Mechanics:

3487 - Players take turns choosing one point
 3488 - Each point can only be chosen once
 3489 - After each choice, add the squared distance to sum:
 3490 * First turn: distance from $(\{sx\}, \{sy\})$ to your choice
 3491 * Later turns: distance from opponent's last choice to your choice
 3492 - Game ends when all points are chosen
 3493 - You win if final sum is even

3494 3. Distance Calculation Example:

3495 If you choose $(0, 1)$:

3496 - From $(0, 0)$: distance squared = $(0 - 0)^2 + (1 - 0)^2 = 0 + 1 = 1$
 3497 - Sum becomes 1

3498 Query Type:

3499 Format: "My Choice: X"

3500 where X is point index (1 to n)

3501 Example Round:

3502 Given:

3503 - Starting point: $(0, 0)$
 3504 - Points: $(1, 0), (0, 1), (1, 1), (1, 2)$

3505 You: "My Choice: 4"

3506 - Distance from $(0, 0)$ to $(1, 2)$: $(1 - 0)^2 + (2 - 0)^2 = 1 + 4 = 5$

3510 - Sum = 5
 3511 Me: "My Choice: 2"
 3512 - Distance from (1, 2) to (0, 1): $(0 - 1)^2 + (1 - 2)^2 = 1 + 1 = 2$
 3513 - Sum = 5 + 2 = 7
 3514 You: "My Choice: 3"
 3515 - Distance from (0, 1) to (1, 1): $(1 - 0)^2 + (1 - 1)^2 = 1 + 0 = 1$
 3516 - Sum = 7 + 1 = 8
 3517 Me: "My Choice: 1"
 3518 - Distance from (1, 1) to (1, 0): $(1 - 1)^2 + (0 - 1)^2 = 0 + 1 = 1$
 3519 - Sum = 8 + 1 = 9
 3520 Result: You lose! (Final sum = 9 is odd)
 3521 Instructions:
 3522 1. Make choices based on distance calculations
 3523 2. Use exactly the format shown above
 3524 3. Explain your reasoning before each choice
 3525 Remember:
 3526 - Use exact format: "My Choice: X "
 3527 - Choose only available points (1-n)
 3528 - Plan moves to make final sum even
 3529 - Invalid move = automatic loss
 3530 Ready to start? Make your first query!

Case N.76: GeometricDistance Difficulty Levels

Easy: $n = 4$, Medium: $n = 6$, Hard: $n = 8$

3534
 3535 **BeeChase** In this task, models need to catch a moving target on a special honeycomb graph by
 3536 coordinating three bees' movements. Success requires strategic positioning and understanding of
 3537 graph topology to trap the target.

Case N.77: BeeChase Problem Template

Let's play the Bee Chase Game! Your task is to catch Nastya by strategically moving three bees on a special honeycomb graph.

Rules:

1. Game Setup:
 - Graph: $\{n\}$ vertices connected by $\{len(edges)\}$ edges
 - Edges: $\{edge_desc\}$
 - You control 3 bees
 - I control Nastya
 - Each vertex connects to at most 3 others
 - Each edge is part of a cycle of length ≤ 5
2. Game Mechanics:
 - First round:
 - * You place 3 bees on any vertices
 - * I place Nastya on a different vertex
 - Each subsequent round:
 - * You move each bee (or keep in place)
 - * I move Nastya along one edge
 - Movement rules:
 - * Can only move along edges
 - * Multiple bees can share same vertex
 - * Nastya must move each turn
 - * All moves must be valid graph moves
3. Victory Conditions:
 - You win if any bee reaches same vertex as Nastya
 - You lose if not caught after $\{n\}$ moves
 - Game ends immediately upon catch

3564 Query Type:
 3565 Format: “My Choice: $X Y Z$ ”
 3566 where X, Y, Z are vertex numbers for three bees
 3567 Example Round:
 3568 Initial placement:
 3569 You: “My Choice: 1 2 3”
 3570 - Placing bees at vertices 1,2,3
 3571 Me: “5”
 3572 - Nastya appears at vertex 5
 3573 You: “My Choice: 2 3 4”
 3574 - Moving bees to surround Nastya
 3575 Me: “6”
 3576 - Nastya moves to vertex 6
 3577 Result: You catch Nastya!
 3578 Instructions:
 3579 1. Make moves based on graph structure
 3580 2. Use exactly the format shown above
 3581 3. Explain your reasoning before each move
 3582 Remember:
 3583 - Use exact format: “My Choice: $X Y Z$ ”
 3584 - Choose only valid vertex numbers
 3585 - Plan moves to trap Nastya
 3586 - Invalid move = immediate loss
 3587 - Maximum $\{n\}$ moves to win
 Ready to start? Make your first query!

Case N.78: BeeChase Difficulty Levels

Easy: $n = 10$, Medium: $n = 20$, Hard: $n = 40$

3592 **AssiutChess** In this task, models need to trap a hidden king using a queen on a chessboard. Success
 3593 requires strategic queen placement and movement while responding to the king’s reported directions.
 3594

Case N.79: AssiutChess Problem Template

3595 Let’s play Assiut Chess! Your task is to win this game by controlling a queen to trap the hidden
 3596 king.
 3597

3598 Rules:

- 3599 1. Game Setup:
 - 3600 - $\{n\} \times \{n\}$ chessboard (rows and columns from 1 to $\{n\}$)
 - 3601 - You control the queen, I control the hidden king
 - 3602 - First, you place the queen anywhere on the board
- 3603 2. Game Mechanics:
 - 3604 - On each turn:
 - 3605 * I move the king first (in one of 8 directions)
 - 3606 * I tell you which direction the king moved
 - 3607 * You move the queen to any cell in straight or diagonal line
 - 3608 - King’s possible moves:
 - 3609 * “Right”, “Left”, “Up”, “Down”
 - 3610 * “Down-Right”, “Down-Left”, “Up-Left”, “Up-Right”
 - 3611 - King’s restrictions:
 - 3612 * Cannot move out of the board
 - 3613 * Cannot move to cells attacked by queen (same row, column, or diagonal)
 - 3614 - Queen’s restrictions:
 - 3615 * Must move to a different cell each turn
 - 3616 * Must move in straight or diagonal lines
 - 3617 3. Victory Conditions:
 - 3618 - You win if the king has no valid moves

3618 - Game ends when “Done” is received
 3619 Query Type:
 3620 Format: “My Choice: x y ”
 3621 where $1 \leq x, y \leq \{n\}$
 3622 Example Round:
 3623 Initial queen placement:
 3624 You: “My Choice: 3 2”
 3625 Me: “Left”
 3626 You: “My Choice: 3 3”
 3627 Me: “Right”
 3628 You: “My Choice: 3 4”
 3629 Me: “Done”
 3630 Result: You win! King is trapped!
 3631 Instructions:
 3632 1. Make moves based on king’s direction
 3633 2. Use exactly the format shown above
 3634 3. Explain your reasoning before each move
 3635 Remember:
 3636 - Use exact format: “My Choice: x y ”
 3637 - Choose valid queen moves only
 3638 - Plan moves to trap the king
 3639 - Invalid move = immediate loss
 3640 - You have maximum 20 moves
 Ready to start? Make your first query!

Case N.80: AssiutChess Difficulty Levels

Easy: $n = 4$, Medium: $n = 6$, Hard: $n = 7$

O PER-TASK RESULTS

We list the experimental results for each of the 40 tasks in this section.

Model	Easy	Medium	Hard
o3-mini	93.33	73.33	60.00
R1	96.67	56.67	50.00
QwQ-32B	86.67	46.67	20.00
R1-Distill-Llama-70B	90.00	46.67	33.33
R1-Distill-Qwen-32B	40.00	10.00	6.67
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	83.33	43.33	50.00
Qwen-Max	93.33	80.00	43.33
gemma-3-27b-IT	50.00	3.33	6.67
gemma-3-12b-IT	26.67	0.00	0.00
gemma-3-4b-IT	46.67	0.00	3.33
Qwen2.5-72B-IT	93.33	66.67	50.00
Qwen2.5-32B-IT	90.00	73.33	56.67
Qwen2.5-7B-IT	66.67	46.67	36.67
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	90.00	56.67	23.33
Llama-3.1-8B-IT	40.00	13.33	3.33
Mistral-Small-24B-IT-2501	70.00	10.00	3.33
Minstral-8B-IT-2410	63.33	10.00	0.00

Table 8: Average accuracy for AssiutChess across different difficulties.

Model	Easy	Medium	Hard
o3-mini	42.22	26.67	15.56
R1	52.22	37.78	28.89
QwQ-32B	50.00	42.22	25.56
R1-Distill-Llama-70B	37.78	13.33	14.44
R1-Distill-Qwen-32B	14.44	7.78	3.33
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	31.11	13.33	10.00
Qwen-Max	27.78	12.22	2.22
gemma-3-27b-IT	24.44	15.56	10.00
gemma-3-12b-IT	16.67	7.78	4.44
gemma-3-4b-IT	34.44	8.89	7.78
Qwen2.5-72B-IT	30.00	11.11	3.33
Qwen2.5-32B-IT	11.11	7.78	2.22
Qwen2.5-7B-IT	24.44	13.33	3.33
Qwen2.5-1.5B-IT	2.22	1.11	0.00
Llama-3.1-70B-IT	27.78	13.33	10.00
Llama-3.1-8B-IT	22.22	5.56	7.78
Mistral-Small-24B-IT-2501	33.33	6.67	5.56
Minstral-8B-IT-2410	13.33	2.22	0.00

Table 9: Average accuracy for AttendanceCheck across different difficulties.

Model	Easy	Medium	Hard
o3-mini	100.00	100.00	86.67
R1	100.00	86.67	86.67
QwQ-32B	90.00	56.67	66.67
R1-Distill-Llama-70B	56.67	46.67	30.00
R1-Distill-Qwen-32B	73.33	40.00	6.67
R1-Distill-Qwen-7B	3.33	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	3.33	0.00	0.00
Qwen-M a z	43.33	36.67	30.00
gemma-3-27b-IT	30.00	3.33	3.33
gemma-3-12b-IT	3.33	0.00	0.00
gemma-3-4b-IT	6.67	0.00	0.00
Qwen2.5-72B-IT	26.67	6.67	3.33
Qwen2.5-32B-IT	23.33	26.67	0.00
Qwen2.5-7B-IT	16.67	6.67	3.33
Qwen2.5-1.5B-IT	53.33	70.00	53.33
Llama-3.1-70B-IT	23.33	3.33	6.67
Llama-3.1-8B-IT	13.33	0.00	0.00
Mistral-Small-24B-IT-2501	30.00	3.33	0.00
Minstral-8B-IT-2410	20.00	10.00	0.00

Table 10: Average accuracy for BeeChase across different difficulties.

3726
3727
3728

Model	Easy	Medium	Hard
o3-mini	60.00	42.22	23.33
R1	67.78	60.00	20.00
QwQ-32B	95.56	97.78	74.44
R1-Distill-Llama-70B	42.22	38.89	11.11
R1-Distill-Qwen-32B	60.00	45.56	15.56
R1-Distill-Qwen-7B	25.56	18.89	4.44
R1-Distill-Qwen-1.5B	0.00	6.67	2.22
GPT-4o	21.11	10.00	13.33
Qwen-Max	42.22	31.11	17.78
gemma-3-27b-IT	52.22	38.89	28.89
gemma-3-12b-IT	21.11	10.00	4.44
gemma-3-4b-IT	16.67	10.00	6.67
Qwen2.5-72B-IT	52.22	58.89	16.67
Qwen2.5-32B-IT	55.56	42.22	15.56
Qwen2.5-7B-IT	76.67	65.56	11.11
Qwen2.5-1.5B-IT	6.67	1.11	0.00
Llama-3.1-70B-IT	73.33	53.33	30.00
Llama-3.1-8B-IT	60.00	30.00	5.56
Mistral-Small-24B-IT-2501	22.22	18.89	8.89
Minstral-8B-IT-2410	3.33	15.56	0.00

3749 Table 11: Average accuracy for BitCompare across different difficulties.
37503751
3752
3753
3754
3755

Model	Easy	Medium	Hard
o3-mini	78.89	54.44	40.00
R1	77.78	41.11	24.44
QwQ-32B	32.22	13.33	10.00
R1-Distill-Llama-70B	13.33	1.11	0.00
R1-Distill-Qwen-32B	8.89	0.00	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	25.56	12.22	1.11
Qwen-Max	31.11	17.78	6.67
gemma-3-27b-IT	32.22	5.56	2.22
gemma-3-12b-IT	7.78	3.33	1.11
gemma-3-4b-IT	0.00	1.11	0.00
Qwen2.5-72B-IT	31.11	6.67	2.22
Qwen2.5-32B-IT	7.78	2.22	1.11
Qwen2.5-7B-IT	4.44	1.11	3.33
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	18.89	12.22	3.33
Llama-3.1-8B-IT	7.78	1.11	0.00
Mistral-Small-24B-IT-2501	12.22	2.22	0.00
Minstral-8B-IT-2410	7.78	2.22	0.00

3776 Table 12: Average accuracy for BitGuessing across different difficulties.
37773778
3779

Model	Easy	Medium	Hard
o3-mini	26.67	25.56	16.67
R1	100.00	100.00	100.00
QwQ-32B	93.33	96.67	94.44
R1-Distill-Llama-70B	18.89	15.56	15.56
R1-Distill-Qwen-32B	7.78	4.44	5.56
R1-Distill-Qwen-7B	5.56	3.33	2.22
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	23.33	24.44	23.33
Qwen-Max	22.22	22.22	15.56
gemma-3-27b-IT	21.11	32.22	10.00
gemma-3-12b-IT	45.56	25.56	20.00
gemma-3-4b-IT	30.00	18.89	13.33
Qwen2.5-72B-IT	11.11	7.78	14.44
Qwen2.5-32B-IT	66.67	67.78	60.00
Qwen2.5-7B-IT	24.44	21.11	28.89
Qwen2.5-1.5B-IT	15.56	6.67	4.44
Llama-3.1-70B-IT	50.00	48.89	53.33
Llama-3.1-8B-IT	35.56	23.33	22.22
Mistral-Small-24B-IT-2501	48.89	16.67	23.33
Minstral-8B-IT-2410	72.22	55.56	20.00

Table 13: Average accuracy for CactusSearch across different difficulties.

Model	Easy	Medium	Hard
o3-mini	34.44	25.56	7.78
R1	6.67	11.11	6.67
QwQ-32B	2.22	3.33	1.11
R1-Distill-Llama-70B	3.33	1.11	1.11
R1-Distill-Qwen-32B	8.89	3.33	1.11
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	0.00	0.00	1.11
Qwen-Max	4.44	2.22	3.33
gemma-3-27b-IT	3.33	1.11	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	0.00	0.00	0.00
Qwen2.5-72B-IT	2.22	2.22	1.11
Qwen2.5-32B-IT	5.56	1.11	0.00
Qwen2.5-7B-IT	1.11	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	0.00	0.00	0.00
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	1.11	0.00	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

Table 14: Average accuracy for ChemicalSynthesis across different difficulties.

3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856

Model	Easy	Medium	Hard
o3-mini	25.00	4.44	0.00
R1	24.44	3.33	2.22
QwQ-32B	7.78	0.00	0.00
R1-Distill-Llama-70B	1.11	0.00	0.00
R1-Distill-Qwen-32B	2.22	0.00	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	1.11	0.00	0.00
Qwen-Max	1.11	0.00	0.00
gemma-3-27b-IT	1.11	0.00	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	1.11	0.00	0.00
Qwen2.5-72B-IT	0.00	0.00	0.00
Qwen2.5-32B-IT	8.89	0.00	0.00
Qwen2.5-7B-IT	0.00	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	2.22	0.00	0.00
Llama-3.1-8B-IT	3.33	0.00	0.00
Mistral-Small-24B-IT-2501	0.00	0.00	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

Table 15: Average accuracy for ColorMagic across different difficulties.

3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887

Model	Easy	Medium	Hard
o3-mini	78.89	46.67	26.67
R1	80.00	45.56	15.56
QwQ-32B	62.22	34.44	8.89
R1-Distill-Llama-70B	24.44	2.22	3.33
R1-Distill-Qwen-32B	11.11	2.22	1.11
R1-Distill-Qwen-7B	0.00	2.22	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	81.11	51.11	13.33
Qwen-Max	70.00	42.22	15.56
gemma-3-27b-IT	6.67	2.22	0.00
gemma-3-12b-IT	11.11	0.00	0.00
gemma-3-4b-IT	13.33	11.11	0.00
Qwen2.5-72B-IT	13.33	2.22	0.00
Qwen2.5-32B-IT	13.33	6.67	2.22
Qwen2.5-7B-IT	13.33	11.11	0.00
Qwen2.5-1.5B-IT	50.00	0.00	0.00
Llama-3.1-70B-IT	7.78	0.00	0.00
Llama-3.1-8B-IT	26.67	1.11	1.11
Mistral-Small-24B-IT-2501	37.78	3.33	1.11
Minstral-8B-IT-2410	33.33	20.00	2.22

Table 16: Average accuracy for DarkMaze across different difficulties.

Model	Easy	Medium	Hard
o3-mini	11.11	10.00	10.00
R1	54.44	47.78	38.89
QwQ-32B	32.22	36.67	14.44
R1-Distill-Llama-70B	4.44	16.67	1.11
R1-Distill-Qwen-32B	1.11	1.11	3.33
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	5.56	3.33	2.22
Qwen-Max	4.44	10.00	2.22
gemma-3-27b-IT	4.44	7.78	2.22
gemma-3-12b-IT	4.44	6.67	0.00
gemma-3-4b-IT	0.00	0.00	0.00
Qwen2.5-72B-IT	11.11	13.33	6.67
Qwen2.5-32B-IT	4.44	2.22	1.11
Qwen2.5-7B-IT	7.78	10.00	2.22
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	12.22	13.33	2.22
Llama-3.1-8B-IT	7.78	6.67	1.11
Mistral-Small-24B-IT-2501	16.67	17.78	4.44
Ministral-8B-IT-2410	11.11	28.89	10.00

Table 17: Average accuracy for FindBiggest across different difficulties.

Model	Easy	Medium	Hard
o3-mini	82.00	6.67	16.67
R1	74.00	3.33	2.22
QwQ-32B	75.33	6.67	5.56
R1-Distill-Llama-70B	54.44	0.00	0.00
R1-Distill-Qwen-32B	24.44	0.00	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	49.33	2.22	4.44
Qwen-Max	47.33	0.00	5.56
gemma-3-27b-IT	4.44	1.11	0.00
gemma-3-12b-IT	4.44	0.00	0.00
gemma-3-4b-IT	26.67	0.00	0.00
Qwen2.5-72B-IT	45.56	0.00	0.00
Qwen2.5-32B-IT	48.89	0.00	0.00
Qwen2.5-7B-IT	37.78	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	33.33	0.00	0.00
Llama-3.1-8B-IT	12.22	0.00	0.00
Mistral-Small-24B-IT-2501	1.11	0.00	0.00
Ministral-8B-IT-2410	2.22	0.00	0.00

Table 18: Average accuracy for BitQuery across different difficulties.

Model	Easy	Medium	Hard
o3-mini	66.67	51.11	57.78
R1	25.56	10.00	11.11
QwQ-32B	26.67	20.00	15.56
R1-Distill-Llama-70B	16.67	5.56	1.11
R1-Distill-Qwen-32B	11.11	2.22	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	0.00	0.00	0.00
Qwen-Max	0.00	0.00	0.00
gemma-3-27b-IT	0.00	0.00	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	0.00	0.00	0.00
Qwen2.5-72B-IT	1.11	0.00	0.00
Qwen2.5-32B-IT	0.00	0.00	0.00
Qwen2.5-7B-IT	0.00	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	0.00	0.00	0.00
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	0.00	0.00	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

Table 19: Average accuracy for CircleFinding across different difficulties.

Model	Easy	Medium	Hard
o3-mini	32.22	22.22	21.11
R1	42.22	37.78	18.89
QwQ-32B	24.44	20.00	15.56
R1-Distill-Llama-70B	22.22	21.11	14.44
R1-Distill-Qwen-32B	7.78	4.44	2.22
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	36.67	14.44	12.22
Qwen-Max	17.78	18.89	5.56
gemma-3-27b-IT	12.22	13.33	12.22
gemma-3-12b-IT	15.56	12.22	8.89
gemma-3-4b-IT	2.22	2.22	0.00
Qwen2.5-72B-IT	26.67	20.00	12.22
Qwen2.5-32B-IT	26.67	7.78	13.33
Qwen2.5-7B-IT	11.11	18.89	11.11
Qwen2.5-1.5B-IT	0.00	1.11	0.00
Llama-3.1-70B-IT	32.22	14.44	5.56
Llama-3.1-8B-IT	18.89	8.89	10.00
Mistral-Small-24B-IT-2501	16.67	13.33	11.11
Minstral-8B-IT-2410	15.56	8.89	6.67

Table 20: Average accuracy for FindHidden across different difficulties.

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

Model	Easy	Medium	Hard
o3-mini	61.11	42.22	14.44
R1	62.22	32.22	5.56
QwQ-32B	71.11	51.11	21.11
R1-Distill-Llama-70B	41.11	10.00	2.22
R1-Distill-Qwen-32B	27.78	3.33	1.11
R1-Distill-Qwen-7B	2.22	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	31.11	8.89	0.00
Qwen-Max	36.67	13.33	1.11
gemma-3-27b-IT	55.56	20.00	4.44
gemma-3-12b-IT	51.11	18.89	6.67
gemma-3-4b-IT	2.22	0.00	0.00
Qwen2.5-72B-IT	53.33	11.11	4.44
Qwen2.5-32B-IT	38.89	21.11	1.11
Qwen2.5-7B-IT	25.56	7.78	1.11
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	58.89	14.44	0.00
Llama-3.1-8B-IT	10.00	0.00	0.00
Mistral-Small-24B-IT-2501	40.00	10.00	0.00
Minstral-8B-IT-2410	11.11	5.56	0.00

Table 21: Average accuracy for FindTheImpostors across different difficulties.

4019

4020

4021

4022

4023

4024

4025

4026

Model	Easy	Medium	Hard
o3-mini	72.17	46.83	25.83
R1	70.00	53.33	53.33
QwQ-32B	6.67	3.33	0.00
R1-Distill-Llama-70B	61.11	25.56	14.44
R1-Distill-Qwen-32B	24.44	15.56	6.67
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	35.56	33.33	25.56
Qwen-Max	11.11	17.78	18.89
gemma-3-27b-IT	23.11	11.11	18.33
gemma-3-12b-IT	32.67	32.22	20.67
gemma-3-4b-IT	23.33	3.33	0.00
Qwen2.5-72B-IT	46.00	46.67	43.33
Qwen2.5-32B-IT	45.78	31.11	28.00
Qwen2.5-7B-IT	33.33	20.00	13.33
Qwen2.5-1.5B-IT	70.00	46.67	56.67
Llama-3.1-70B-IT	49.33	41.33	41.78
Llama-3.1-8B-IT	36.67	30.00	23.33
Mistral-Small-24B-IT-2501	41.11	36.89	46.89
Minstral-8B-IT-2410	70.00	3.33	33.33

Table 22: Average accuracy for GeoGame across different difficulties.

4046

4047

4048

4049

Model	Easy	Medium	Hard
o3-mini	100.00	96.67	100.00
R1	90.00	96.67	100.00
QwQ-32B	83.33	83.33	76.67
R1-Distill-Llama-70B	26.67	60.00	46.67
R1-Distill-Qwen-32B	6.67	3.33	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	60.00	60.00	43.33
Qwen-Max	73.33	66.67	50.00
gemma-3-27b-IT	0.00	0.00	3.33
gemma-3-12b-IT	0.00	3.33	0.00
gemma-3-4b-IT	0.00	0.00	0.00
Qwen2.5-72B-IT	33.33	46.67	26.67
Qwen2.5-32B-IT	26.67	26.67	6.67
Qwen2.5-7B-IT	30.00	26.67	20.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	50.00	46.67	23.33
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	0.00	0.00	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

Table 23: Average accuracy for GridColoring across different difficulties.

Model	Easy	Medium	Hard
o3-mini	93.33	96.67	80.00
R1	80.00	83.33	46.67
QwQ-32B	83.33	73.33	33.33
R1-Distill-Llama-70B	83.33	56.67	26.67
R1-Distill-Qwen-32B	86.67	60.00	20.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	70.00	46.67	40.00
Qwen-Max	93.33	46.67	30.00
gemma-3-27b-IT	0.00	0.00	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	3.33	0.00	0.00
Qwen2.5-72B-IT	43.33	60.00	63.33
Qwen2.5-32B-IT	76.67	43.33	40.00
Qwen2.5-7B-IT	23.33	0.00	3.33
Qwen2.5-1.5B-IT	16.67	3.33	0.00
Llama-3.1-70B-IT	20.00	13.33	0.00
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	0.00	0.00	0.00
Minstral-8B-IT-2410	16.67	26.67	53.33

Table 24: Average accuracy for GridGame across different difficulties.

4104

4105

4106

4107

Model	Easy	Medium	Hard
o3-mini	60.00	55.56	55.56
R1	14.44	2.22	7.78
QwQ-32B	3.33	2.22	2.22
R1-Distill-Llama-70B	4.44	1.11	3.33
R1-Distill-Qwen-32B	0.00	1.11	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	27.78	10.00	1.11
Qwen-Max	28.89	12.22	5.56
gemma-3-27b-IT	1.11	2.22	4.44
gemma-3-12b-IT	6.67	1.11	0.00
gemma-3-4b-IT	0.00	0.00	0.00
Qwen2.5-72B-IT	46.67	22.22	6.67
Qwen2.5-32B-IT	33.33	7.78	6.67
Qwen2.5-7B-IT	1.11	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	24.44	8.89	5.56
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	3.33	1.11	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

4127

Table 25: Average accuracy for GuessMax across different difficulties.

4128

4129

4130

4131

4132

4133

4134

Model	Easy	Medium	Hard
o3-mini	93.33	93.33	93.33
R1	90.00	100.00	100.00
QwQ-32B	90.00	86.67	90.00
R1-Distill-Llama-70B	73.33	86.67	80.00
R1-Distill-Qwen-32B	63.33	60.00	60.00
R1-Distill-Qwen-7B	20.00	20.00	6.67
R1-Distill-Qwen-1.5B	3.33	6.67	0.00
GPT-4o	16.67	10.00	16.67
Qwen-Max	26.67	23.33	13.33
gemma-3-27b-IT	6.67	13.33	3.33
gemma-3-12b-IT	3.33	3.33	0.00
gemma-3-4b-IT	0.00	13.33	0.00
Qwen2.5-72B-IT	13.33	23.33	30.00
Qwen2.5-32B-IT	3.33	20.00	3.33
Qwen2.5-7B-IT	0.00	0.00	0.00
Qwen2.5-1.5B-IT	0.00	13.33	0.00
Llama-3.1-70B-IT	0.00	6.67	0.00
Llama-3.1-8B-IT	0.00	3.33	3.33
Mistral-Small-24B-IT-2501	0.00	0.00	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

4154

4155

4156

4157

Table 26: Average accuracy for KnightBattle across different difficulties.

4158
4159
4160

Model	Easy	Medium	Hard
o3-mini	24.44	7.78	0.00
R1	5.56	0.00	0.00
QwQ-32B	12.22	0.00	0.00
R1-Distill-Llama-70B	6.67	0.00	0.00
R1-Distill-Qwen-32B	2.22	0.00	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	0.00	0.00	0.00
Qwen-Max	0.00	0.00	0.00
gemma-3-27b-IT	2.22	0.00	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	0.00	0.00	0.00
Qwen2.5-72B-IT	2.22	0.00	0.00
Qwen2.5-32B-IT	1.11	0.00	0.00
Qwen2.5-7B-IT	0.00	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	0.00	0.00	0.00
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	0.00	0.00	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

4181
4182 Table 27: Average accuracy for LegendaryTree across different difficulties.
4183
4184
4185
4186
4187

Model	Easy	Medium	Hard
o3-mini	76.67	61.11	38.89
R1	80.00	67.78	51.11
QwQ-32B	92.22	68.89	50.00
R1-Distill-Llama-70B	86.67	50.00	32.22
R1-Distill-Qwen-32B	84.44	36.67	14.44
R1-Distill-Qwen-7B	2.22	2.22	5.56
R1-Distill-Qwen-1.5B	0.00	1.11	1.11
GPT-4o	70.00	42.22	30.00
Qwen-Max	72.22	50.00	38.89
gemma-3-27b-IT	78.89	20.00	50.00
gemma-3-12b-IT	75.56	44.44	32.22
gemma-3-4b-IT	63.33	30.00	15.56
Qwen2.5-72B-IT	75.56	57.78	44.44
Qwen2.5-32B-IT	87.78	66.67	67.78
Qwen2.5-7B-IT	54.44	30.00	22.22
Qwen2.5-1.5B-IT	8.89	0.00	0.00
Llama-3.1-70B-IT	77.78	65.56	60.00
Llama-3.1-8B-IT	80.00	52.22	32.22
Mistral-Small-24B-IT-2501	70.00	44.44	36.67
Minstral-8B-IT-2410	57.78	21.11	20.00

4208
4209 Table 28: Average accuracy for ListQuery across different difficulties.
4210
4211

4212
4213
4214

Model	Easy	Medium	Hard
o3-mini	20.00	23.33	16.67
R1	17.78	28.89	21.11
QwQ-32B	2.22	0.00	0.00
R1-Distill-Llama-70B	0.00	0.00	0.00
R1-Distill-Qwen-32B	0.00	0.00	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	4.00	0.00	0.00
Qwen-Max	3.71	0.00	0.00
gemma-3-27b-IT	5.56	5.56	2.22
gemma-3-12b-IT	5.56	2.22	1.11
gemma-3-4b-IT	4.44	2.22	0.00
Qwen2.5-72B-IT	4.44	8.89	0.00
Qwen2.5-32B-IT	6.67	14.44	1.11
Qwen2.5-7B-IT	6.67	3.33	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	10.00	7.78	1.11
Llama-3.1-8B-IT	0.00	1.11	0.00
Mistral-Small-24B-IT-2501	6.67	10.00	0.00
Minstral-8B-IT-2410	2.22	0.00	0.00

4235 Table 29: Average accuracy for MagneticField across different difficulties.
42364237
4238
4239
4240
4241

Model	Easy	Medium	Hard
o3-mini	4.44	2.22	1.11
R1	31.11	18.89	1.11
QwQ-32B	16.67	6.67	0.00
R1-Distill-Llama-70B	0.00	0.00	0.00
R1-Distill-Qwen-32B	0.00	0.00	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	1.11	0.00	0.00
Qwen-Max	6.67	2.22	0.00
gemma-3-27b-IT	0.00	0.00	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	0.00	0.00	0.00
Qwen2.5-72B-IT	0.00	0.00	0.00
Qwen2.5-32B-IT	0.00	0.00	0.00
Qwen2.5-7B-IT	1.11	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	2.22	0.00	0.00
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	0.00	0.00	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

4262 Table 30: Average accuracy for MahjongDetective across different difficulties.
42634264
4265

4266

4267

4268

4269

Model	Easy	Medium	Hard
o3-mini	72.22	55.56	37.78
R1	62.22	32.22	7.78
QwQ-32B	88.89	32.22	21.11
R1-Distill-Llama-70B	52.22	23.33	13.33
R1-Distill-Qwen-32B	31.11	11.11	1.11
R1-Distill-Qwen-7B	8.89	2.22	1.11
R1-Distill-Qwen-1.5B	5.56	0.00	0.00
GPT-4o	34.44	5.56	1.11
Qwen-Max	31.11	7.78	4.44
gemma-3-27b-IT	40.00	14.44	6.67
gemma-3-12b-IT	30.00	8.89	2.22
gemma-3-4b-IT	0.00	5.56	2.22
Qwen2.5-72B-IT	38.89	2.22	1.11
Qwen2.5-32B-IT	2.22	3.33	4.44
Qwen2.5-7B-IT	35.56	11.11	2.22
Qwen2.5-1.5B-IT	6.67	0.00	2.22
Llama-3.1-70B-IT	56.67	23.33	1.11
Llama-3.1-8B-IT	34.44	6.67	3.33
Mistral-Small-24B-IT-2501	18.89	2.22	0.00
Minstral-8B-IT-2410	3.33	0.00	0.00

4289

Table 31: Average accuracy for MedianQuery across different difficulties.

4290

4291

4292

4293

4294

4295

4296

Model	Easy	Medium	Hard
o3-mini	62.22	28.89	14.44
R1	64.44	33.33	21.11
QwQ-32B	57.78	20.00	10.00
R1-Distill-Llama-70B	51.11	25.56	5.56
R1-Distill-Qwen-32B	12.22	1.11	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	10.00	1.11
GPT-4o	3.33	4.44	1.11
Qwen-Max	18.89	16.67	5.56
gemma-3-27b-IT	1.11	0.00	0.00
gemma-3-12b-IT	17.78	3.33	3.33
gemma-3-4b-IT	0.00	7.78	1.11
Qwen2.5-72B-IT	6.67	4.44	1.11
Qwen2.5-32B-IT	31.11	24.44	0.00
Qwen2.5-7B-IT	46.67	11.11	2.22
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	36.67	11.11	6.67
Llama-3.1-8B-IT	23.33	11.11	0.00
Mistral-Small-24B-IT-2501	22.22	2.22	1.11
Minstral-8B-IT-2410	13.33	7.78	6.67

4316

4317

4318

4319

Table 32: Average accuracy for MimicHunt across different difficulties.

Model	Easy	Medium	Hard
o3-mini	66.67	40.00	30.00
R1	45.56	26.67	7.78
QwQ-32B	65.56	0.00	0.00
R1-Distill-Llama-70B	32.22	2.22	0.00
R1-Distill-Qwen-32B	26.67	1.11	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	1.11	0.00	0.00
GPT-4o	50.00	26.67	18.89
Qwen-Max	70.00	1.11	0.00
gemma-3-27b-IT	71.11	1.11	2.22
gemma-3-12b-IT	58.89	0.00	0.00
gemma-3-4b-IT	5.56	0.00	0.00
Qwen2.5-72B-IT	66.67	47.78	35.56
Qwen2.5-32B-IT	66.67	5.56	28.89
Qwen2.5-7B-IT	43.33	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	76.67	46.67	22.22
Llama-3.1-8B-IT	30.00	11.11	7.78
Mistral-Small-24B-IT-2501	31.11	1.11	0.00
Minstral-8B-IT-2410	11.11	0.00	0.00

Table 33: Average accuracy for MinMax across different difficulties.

Model	Easy	Medium	Hard
o3-mini	3.33	3.33	3.33
R1	14.44	12.22	14.44
QwQ-32B	8.89	3.33	1.11
R1-Distill-Llama-70B	1.11	1.11	1.11
R1-Distill-Qwen-32B	0.00	0.00	2.22
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	0.00	1.11	6.67
Qwen-Max	0.00	0.00	2.22
gemma-3-27b-IT	13.33	1.11	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	1.11	0.00	0.00
Qwen2.5-72B-IT	2.22	14.44	2.22
Qwen2.5-32B-IT	3.33	1.11	0.00
Qwen2.5-7B-IT	0.00	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	0.00	0.00	0.00
Llama-3.1-8B-IT	3.33	0.00	0.00
Mistral-Small-24B-IT-2501	0.00	0.00	3.33
Minstral-8B-IT-2410	16.67	7.78	1.11

Table 34: Average accuracy for SafepathFinder across different difficulties.

4374

4375

4376

4377

Model	Easy	Medium	Hard
o3-mini	6.67	1.11	0.00
R1	30.00	30.00	24.44
QwQ-32B	33.33	16.67	7.78
R1-Distill-Llama-70B	23.33	12.22	8.89
R1-Distill-Qwen-32B	14.44	4.44	3.33
R1-Distill-Qwen-7B	1.11	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	7.78	6.67	2.22
Qwen-Max	8.89	3.33	5.56
gemma-3-27b-IT	11.11	3.33	3.33
gemma-3-12b-IT	6.67	3.33	2.22
gemma-3-4b-IT	4.44	0.00	2.22
Qwen2.5-72B-IT	4.44	2.22	0.00
Qwen2.5-32B-IT	8.89	11.11	1.11
Qwen2.5-7B-IT	14.44	7.78	11.11
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	6.67	2.22	4.44
Llama-3.1-8B-IT	1.11	0.00	0.00
Mistral-Small-24B-IT-2501	4.44	2.22	0.00
Minstral-8B-IT-2410	5.56	4.44	5.56

4396

Table 35: Average accuracy for TrainPursuit across different difficulties.

4397

4398

4399

4400

4401

4402

4403

4404

Model	Easy	Medium	Hard
o3-mini	45.56	52.22	41.11
R1	61.11	55.56	51.11
QwQ-32B	58.89	54.44	63.33
R1-Distill-Llama-70B	64.44	64.44	47.78
R1-Distill-Qwen-32B	23.33	17.78	6.67
R1-Distill-Qwen-7B	0.00	3.33	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	11.11	21.11	15.56
Qwen-Max	15.56	14.44	14.44
gemma-3-27b-IT	60.00	40.00	33.33
gemma-3-12b-IT	13.33	0.00	0.00
gemma-3-4b-IT	20.00	8.89	6.67
Qwen2.5-72B-IT	63.33	55.56	52.22
Qwen2.5-32B-IT	65.56	62.22	53.33
Qwen2.5-7B-IT	23.33	11.11	3.33
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	43.33	32.22	17.78
Llama-3.1-8B-IT	33.33	16.67	10.00
Mistral-Small-24B-IT-2501	51.11	42.22	22.22
Minstral-8B-IT-2410	0.00	0.00	0.00

4424

4425

4426

4427

Table 36: Average accuracy for TreasureHunt across different difficulties.

4428
4429
4430

Model	Easy	Medium	Hard
o3-mini	86.67	78.89	80.00
R1	83.33	81.11	77.78
QwQ-32B	70.00	70.00	70.00
R1-Distill-Llama-70B	8.89	6.67	8.89
R1-Distill-Qwen-32B	11.11	13.33	11.11
R1-Distill-Qwen-7B	1.11	2.22	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	43.33	50.00	53.33
Qwen-Max	46.67	45.56	54.44
gemma-3-27b-IT	13.33	10.00	8.89
gemma-3-12b-IT	11.11	11.11	14.44
gemma-3-4b-IT	1.11	1.11	8.89
Qwen2.5-72B-IT	11.11	5.56	2.22
Qwen2.5-32B-IT	26.67	21.11	26.67
Qwen2.5-7B-IT	6.67	3.33	14.44
Qwen2.5-1.5B-IT	2.22	2.22	8.89
Llama-3.1-70B-IT	12.22	12.22	13.33
Llama-3.1-8B-IT	0.00	4.44	3.33
Mistral-Small-24B-IT-2501	4.44	10.00	13.33
Minstral-8B-IT-2410	10.00	3.33	10.00

4451 Table 37: Average accuracy for VladikMaze across different difficulties.
44524453
4454
4455
4456
4457

Model	Easy	Medium	Hard
o3-mini	42.22	53.33	7.78
R1	27.78	18.89	0.00
QwQ-32B	13.33	3.33	0.00
R1-Distill-Llama-70B	1.11	0.00	0.00
R1-Distill-Qwen-32B	0.00	0.00	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	3.33	0.00	0.00
Qwen-Max	11.11	0.00	0.00
gemma-3-27b-IT	4.44	0.00	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	0.00	0.00	0.00
Qwen2.5-72B-IT	0.00	0.00	0.00
Qwen2.5-32B-IT	0.00	0.00	0.00
Qwen2.5-7B-IT	0.00	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	0.00	0.00	0.00
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	0.00	0.00	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

4478 Table 38: Average accuracy for Wordle across different difficulties.
44794480
4481

Model	Easy	Medium	Hard
o3-mini	80.00	90.00	66.67
R1	63.33	60.00	86.67
QwQ-32B	56.67	86.67	80.00
R1-Distill-Llama-70B	13.33	10.00	6.67
R1-Distill-Qwen-32B	10.00	23.33	16.67
R1-Distill-Qwen-7B	3.33	3.33	3.33
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	76.67	53.33	16.67
Qwen-Max	30.00	20.00	10.00
gemma-3-27b-IT	3.33	0.00	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	0.00	0.00	0.00
Qwen2.5-72B-IT	10.00	0.00	0.00
Qwen2.5-32B-IT	3.33	0.00	10.00
Qwen2.5-7B-IT	6.67	0.00	6.67
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	3.33	13.33	16.67
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	20.00	0.00	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

Table 39: Average accuracy for XORBreaking across different difficulties.

Model	Easy	Medium	Hard
o3-mini	58.57	21.84	30.22
R1	57.78	42.22	27.78
QwQ-32B	81.11	54.44	28.89
R1-Distill-Llama-70B	31.11	7.78	4.44
R1-Distill-Qwen-32B	32.22	8.89	4.44
R1-Distill-Qwen-7B	2.22	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	46.67	21.11	13.33
Qwen-Max	71.11	40.00	26.67
gemma-3-27b-IT	30.00	11.11	14.44
gemma-3-12b-IT	27.78	13.33	4.44
gemma-3-4b-IT	3.33	3.33	1.11
Qwen2.5-72B-IT	37.78	18.89	11.11
Qwen2.5-32B-IT	45.56	21.11	14.44
Qwen2.5-7B-IT	11.11	4.44	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	34.44	16.67	7.78
Llama-3.1-8B-IT	10.00	5.56	3.33
Mistral-Small-24B-IT-2501	6.67	0.00	1.11
Minstral-8B-IT-2410	3.33	2.22	3.33

Table 40: Average accuracy for ZeroFinding across different difficulties.

4536

4537

4538

4539

Model	Easy	Medium	Hard
o3-mini	43.33	56.67	43.33
R1	40.00	20.00	13.33
QwQ-32B	26.67	23.33	26.67
R1-Distill-Llama-70B	20.00	23.33	6.67
R1-Distill-Qwen-32B	30.00	13.33	23.33
R1-Distill-Qwen-7B	0.00	3.33	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	6.67	6.67	0.00
Qwen-Max	33.33	6.67	0.00
gemma-3-27b-IT	3.33	0.00	3.33
gemma-3-12b-IT	0.00	3.33	0.00
gemma-3-4b-IT	0.00	3.33	0.00
Qwen2.5-72B-IT	3.33	0.00	3.33
Qwen2.5-32B-IT	20.00	0.00	0.00
Qwen2.5-7B-IT	3.33	0.00	0.00
Qwen2.5-1.5B-IT	3.33	0.00	3.33
Llama-3.1-70B-IT	6.67	0.00	0.00
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	3.33	0.00	0.00
Minstral-8B-IT-2410	10.00	3.33	0.00

4559

Table 41: Average accuracy for ZigzagGraph across different difficulties.

4560

4561

4562

4563

4564

4565

4566

Model	Easy	Medium	Hard
o3-mini	23.61	17.78	16.67
R1	62.50	31.11	30.00
QwQ-32B	22.22	13.33	5.56
R1-Distill-Llama-70B	13.89	8.89	1.11
R1-Distill-Qwen-32B	2.78	2.22	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	18.06	13.33	3.33
Qwen-Max	20.83	20.00	6.67
gemma-3-27b-IT	12.50	7.78	0.00
gemma-3-12b-IT	12.50	6.67	0.00
gemma-3-4b-IT	2.78	4.44	0.00
Qwen2.5-72B-IT	27.78	18.89	5.56
Qwen2.5-32B-IT	18.06	11.11	2.22
Qwen2.5-7B-IT	0.00	2.22	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	18.06	11.11	2.22
Llama-3.1-8B-IT	1.39	2.22	0.00
Mistral-Small-24B-IT-2501	18.06	10.00	6.67
Minstral-8B-IT-2410	6.94	2.22	0.00

4586

4587

Table 42: Average accuracy for PermutationDiscovery across different difficulties.

4588

4589

4590

4591

4592

4593

Model	Easy	Medium	Hard
o3-mini	96.67	96.67	83.33
R1	83.33	76.67	73.33
QwQ-32B	76.67	76.67	56.67
R1-Distill-Llama-70B	93.33	83.33	70.00
R1-Distill-Qwen-32B	23.33	26.67	30.00
R1-Distill-Qwen-7B	10.00	0.00	0.00
R1-Distill-Qwen-1.5B	3.33	0.00	0.00
GPT-4o	36.67	26.67	30.00
Qwen-Max	80.00	46.67	33.33
gemma-3-27b-IT	36.67	3.33	0.00
gemma-3-12b-IT	20.00	3.33	0.00
gemma-3-4b-IT	16.67	3.33	3.33
Qwen2.5-72B-IT	46.67	40.00	10.00
Qwen2.5-32B-IT	43.33	23.33	33.33
Qwen2.5-7B-IT	0.00	0.00	0.00
Qwen2.5-1.5B-IT	16.67	13.33	6.67
Llama-3.1-70B-IT	33.33	40.00	53.33
Llama-3.1-8B-IT	10.00	10.00	0.00
Mistral-Small-24B-IT-2501	60.00	30.00	3.33
Minstral-8B-IT-2410	30.00	0.00	0.00

4612

Table 43: Average accuracy for PizzaSlice across different difficulties.

4613

4614

4615

4616

4617

4618

4619

4620

Model	Easy	Medium	Hard
o3-mini	86.67	66.67	32.22
R1	83.33	60.00	30.00
QwQ-32B	55.56	17.78	16.67
R1-Distill-Llama-70B	62.22	20.00	7.78
R1-Distill-Qwen-32B	12.22	3.33	3.33
R1-Distill-Qwen-7B	1.11	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	58.89	30.00	26.67
Qwen-Max	71.11	45.56	22.22
gemma-3-27b-IT	65.56	40.00	21.11
gemma-3-12b-IT	45.56	34.44	34.44
gemma-3-4b-IT	38.89	32.22	28.89
Qwen2.5-72B-IT	67.78	42.22	27.78
Qwen2.5-32B-IT	47.78	43.33	27.78
Qwen2.5-7B-IT	70.00	34.44	31.11
Qwen2.5-1.5B-IT	62.22	41.11	7.78
Llama-3.1-70B-IT	61.11	38.89	27.78
Llama-3.1-8B-IT	51.11	23.33	25.56
Mistral-Small-24B-IT-2501	65.56	25.56	24.44
Minstral-8B-IT-2410	71.11	26.67	28.89

4640

4641

4642

4643

Table 44: Average accuracy for RPD across different difficulties.

4644

4645

4646

4647

Model	Easy	Medium	Hard
o3-mini	54.44	0.00	0.00
R1	34.44	0.00	0.00
QwQ-32B	28.89	0.00	0.00
R1-Distill-Llama-70B	28.89	0.00	0.00
R1-Distill-Qwen-32B	5.56	0.00	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	27.78	0.00	0.00
Qwen-Max	33.33	0.00	0.00
gemma-3-27b-IT	31.11	0.00	0.00
gemma-3-12b-IT	31.11	0.00	0.00
gemma-3-4b-IT	18.89	0.00	0.00
Qwen2.5-72B-IT	28.89	0.00	0.00
Qwen2.5-32B-IT	35.56	0.00	0.00
Qwen2.5-7B-IT	13.33	0.00	0.00
Qwen2.5-1.5B-IT	26.67	0.00	0.00
Llama-3.1-70B-IT	30.00	0.00	0.00
Llama-3.1-8B-IT	15.56	0.00	0.00
Mistral-Small-24B-IT-2501	28.89	0.00	0.00
Minstral-8B-IT-2410	21.11	0.00	0.00

4666

Table 45: Average accuracy for RainbowCandy across different difficulties.

4668

4669

4670

4671

4672

4673

4674

Model	Easy	Medium	Hard
o3-mini	7.78	0.00	0.00
R1	5.56	0.00	0.00
QwQ-32B	10.00	0.00	0.00
R1-Distill-Llama-70B	0.00	0.00	0.00
R1-Distill-Qwen-32B	0.00	0.00	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	0.00	0.00	0.00
Qwen-Max	0.00	0.00	0.00
gemma-3-27b-IT	0.00	0.00	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	0.00	0.00	0.00
Qwen2.5-72B-IT	0.00	0.00	0.00
Qwen2.5-32B-IT	0.00	0.00	0.00
Qwen2.5-7B-IT	0.00	0.00	0.00
Qwen2.5-1.5B-IT	0.00	0.00	0.00
Llama-3.1-70B-IT	0.00	0.00	0.00
Llama-3.1-8B-IT	0.00	0.00	0.00
Mistral-Small-24B-IT-2501	0.00	0.00	0.00
Minstral-8B-IT-2410	0.00	0.00	0.00

4694

4695

4696

4697

Table 46: Average accuracy for RotaryLock across different difficulties.

4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714

Model	Easy	Medium	Hard
o3-mini	93.33	46.67	23.33
R1	86.67	46.67	20.00
QwQ-32B	100.00	26.67	10.00
R1-Distill-Llama-70B	93.33	40.00	3.33
R1-Distill-Qwen-32B	66.67	10.00	0.00
R1-Distill-Qwen-7B	0.00	0.00	0.00
R1-Distill-Qwen-1.5B	0.00	0.00	0.00
GPT-4o	46.67	20.00	0.00
Qwen-Max	83.33	23.33	3.33
gemma-3-27b-IT	3.33	0.00	0.00
gemma-3-12b-IT	0.00	0.00	0.00
gemma-3-4b-IT	10.00	0.00	0.00
Qwen2.5-72B-IT	90.00	10.00	3.33
Qwen2.5-32B-IT	80.00	10.00	0.00
Qwen2.5-7B-IT	46.67	0.00	0.00
Qwen2.5-1.5B-IT	16.67	0.00	0.00
Llama-3.1-70B-IT	63.33	0.00	0.00
Llama-3.1-8B-IT	10.00	0.00	0.00
Mistral-Small-24B-IT-2501	0.00	0.00	0.00
Minstral-8B-IT-2410	3.33	0.00	0.00

4734
 4735 Table 47: Average accuracy for PaperNumber across different difficulties.
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751

4752 P GRADING CASE STUDY OF A HARD TASK (CODEFORCES 3500) 4753

4754 To provide an intuitive understanding of how EvolArena handles high-difficulty reasoning tasks,
 4755 we detail the implementation of **GridGame**. This task is adapted from a Codeforces problem (e.g.,
 4756 "Grid Game") with a difficulty rating of 3500, representing the peak of competitive programming
 4757 challenges.

4758 P.1 TASK LOGIC

4761 **Objective:** Two players take turns selecting numbers from an $N \times M$ grid. The game ends when
 4762 all cells are selected. The player wins if their total sum is strictly less than the opponent's sum.
 4763

4764 **Constraint:** After the first move, every selected cell must be orthogonally adjacent to a previously
 4765 selected cell (by either player). This requires deep strategic lookahead to force the opponent into
 4766 selecting high-value cells.

4767 Original Codeforces Problem: Grid Game (Difficulty 3500)

4769 **Problem Description:** You are given a grid with n rows and m columns. You need to fill
 4770 each cell with a unique integer from 1 to $n \cdot m$. After filling the grid, you will play a game on
 4771 this grid against the interactor.

4772 Players take turns selecting one of the previously unselected cells from the grid, with the
 4773 interactor going first.

- 4774 • On the first turn, the interactor can choose any cell from the grid.
- 4775 • After that, any chosen cell must be **orthogonally adjacent** to at least one previously
 4776 selected cell. (Two cells are adjacent if they share an edge).

4777 The game continues until all cells have been selected. Your goal is to let the sum of numbers
 4778 in the cells selected by you be **strictly less** than the sum of numbers in the cells selected by
 4779 the interactor.

4780 **Input/Output constraints:** The first line contains t ($1 \leq t \leq 100$) test cases. Each test case
 4781 contains n and m ($4 \leq n, m \leq 10$). If the sum of numbers in the cells selected by you is not
 4782 strictly less than the interactor's sum, you receive a Wrong Answer verdict.

4783 **Tags:** constructive algorithms, games, graph matchings, greedy, interactive.

4785 P.2 GENERATOR: PROCEDURAL PROBLEM CONSTRUCTION

4788 The Generator is responsible for creating a unique, randomized game instance for each evaluation to
 4789 prevent data contamination and memorization. For the GridSum task, simply memorizing a strategy
 4790 is insufficient; the model must analyze the specific numerical layout.

4792 The generator performs two key functions:

- 4793 1. **State Randomization:** It generates a random permutation of numbers from 1 to $N \times M$ and
 4794 maps them to the grid coordinates. This ensures that every game instance presents a novel
 4795 numerical landscape, forcing the model to perform calculation and planning dynamically.
- 4797 2. **Prompt Synthesis:** It embeds this generated grid into a standardized natural language
 4798 template (similar to a Codeforces problem statement), explicitly defining the grid size, the
 4799 specific numbers in each cell, and the adjacency rules.

4800 P.3 MONITOR: DETERMINISTIC GAME ENGINE AND OPPONENT

4803 The Monitor acts as the deterministic game engine that enforces rules and simulates the opponent.
 4804 Unlike simple format checkers, it maintains the global game state—including the set of selected
 4805 cells S , the grid values G , and the cumulative scores ($Sum_{Player}, Sum_{System}$)—and executes the
 following critical functions:

- **Strict Adjacency Enforcement:** The defining constraint of this Codeforces 3500 task is that every newly selected cell (after the first move) must be orthogonally adjacent to *at least one* cell in the set of previously selected cells S . The Monitor strictly validates this topological constraint at every turn, rejecting any move that violates it.
- **System Strategy Execution:** The Monitor acts as the opponent (System). It calculates the set of all currently valid moves based on the updated S and selects one (randomly in this baseline implementation) to expand the territory, dynamically updating the system's score.
- **Outcome Determination:** Upon game completion (when all cells are filled or maximum turns are reached), the Monitor compares the final sums to deterministically judge the winner.

P.4 EVALUATOR: MULTI-DIMENSIONAL GRADING

The Evaluator acts as a comprehensive diagnostic tool. Instead of simply checking the final output, it parses the entire interaction history H to compute four critical metrics, providing a holistic view of the model's reasoning capability:

- **Accuracy:** It determines success by checking if the player achieved a strictly lower sum than the system ($Sum_{Player} < Sum_{System}$) upon game completion, or if the system was forced into a stalemate.
- **Invalid Rate:** It rigorously counts every instance where the model attempted an illegal move (e.g., violating the adjacency constraint), distinguishing between "strategy failure" and "rule violation."
- **Pattern Analysis:** It integrates an LLM-based analyzer to scan the model's "Thought" trace, quantifying specific reasoning behaviors such as *Planning* (looking ahead for low-value cells) and *Verifying* (checking adjacency).
- **Efficiency:** It records the number of turns taken to achieve victory, penalizing failed attempts with the maximum turn count.

Case P.1: GridGame Problem Template

Let's play the Grid Game! Your task is to choose cells strategically to win.

Rules:

1. Game Setup:

- Grid size: $\{n\} * \{m\}$
- Grid already filled with numbers 1 to $\{n * m\}$
- Each number appears exactly once $\{grid_str\}$

2. Game Mechanics:

- Players take turns selecting unselected cells
- You move first
- Any cell chosen after first turn must be adjacent to a previously selected cell
- Cells are adjacent if they share an edge (up/down/left/right)
- Game ends when all cells are selected
- You win if your selected numbers sum < my sum

3. Adjacency Example:

For cell (2, 2):

- Adjacent cells: (1, 2), (2, 1), (2, 3), (3, 2)
- Diagonal cells like (1, 1) are not adjacent
- Must choose a cell adjacent to any previously selected cell

Query Type:

Format: "My Choice: $x \ y$ "

where x is row (1 to $\{n\}$) and y is column (1 to $\{m\}$)

Example Interaction:

You: "My Choice: 2 2"

- Selecting cell at row 2, column 2

Me: "My Choice: 2 3"

- Cell is adjacent to (2, 2)

```

4860 You: "My Choice: 1 2"
4861 - Cell is adjacent to (2, 2)
4862 Instructions:
4863 1. Make choices based on grid values
4864 2. Use exactly the format shown above
4865 3. Explain your reasoning before each choice
4866 Remember:
4867 - Use exact format: "My Choice:  $x$   $y$ "
4868 - Choose only adjacent cells after first turn
4869 - First move can be any cell
4870 - Keep track of both sums
4871 - Plan moves to keep your sum smaller
4872 - Invalid move = automatic loss
4873 Ready to start? Make your first choice!

```

```

4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884

```

Algorithm 14 Monitor for GridGame

```

4885 Require: User Input  $I$ , Selected Set  $S$ , Grid  $G$ , Scores  $Sum_P, Sum_S$ , Turn  $t$ , MaxTurns  $K$ 
4886 1: Regex: r"My Choice:\s*(\d+)\s+(\d+)"
4887 2: if  $I$  matches Regex with  $(x, y)$  then
4888 3:    $Cell \leftarrow (x, y)$                                       $\triangleright$  1. Basic Validity Checks
4889 4:
4890 5:   if  $Cell \notin G$  or  $Cell \in S$  then
4891 6:     return "Invalid", "Invalid cell choice"
4892 7:   end if
4893 8:   if  $S \neq \emptyset$  and  $\neg \exists s \in S, \text{IsOrthogonallyAdjacent}(Cell, s)$  then            $\triangleright$  2. Enforce Adjacency (Critical Constraint)
4894 9:     return "Invalid", "Cell must be adjacent to previous selection"
4895 10:   end if
4896 11:    $S.add(Cell)$                                           $\triangleright$  3. Update Player State
4897 12:    $Sum_P \leftarrow Sum_P + G[Cell]$ 
4898 13:   if  $ValidMoves = \emptyset$  then                                 $\triangleright$  4. System Turn: Calculate Valid Moves
4899 14:      $ValidMoves \leftarrow \{c \mid c \in G \setminus S \text{ and } \exists s \in S, \text{IsAdjacent}(c, s)\}$ 
4900 15:     if  $ValidMoves = \emptyset$  then
4901 16:       return "My Choice:  $x$   $y$ ", "I have no valid moves. You win!"
4902 17:     end if
4903 18:      $SysMove \leftarrow \text{RandomChoice}(ValidMoves)$ 
4904 19:      $S.add(SysMove); Sum_S \leftarrow Sum_S + G[SysMove]$                                  $\triangleright$  5. Check End Condition
4905 20:
4906 21:   if  $t == K$  then
4907 22:     if  $Sum_P < Sum_S$  then
4908 23:       return "My Choice:  $x$   $y$ ", "My Choice:  $SysMove$ \n You win!"
4909 24:     else
4910 25:       return "My Choice:  $x$   $y$ ", "My Choice:  $SysMove$ \n You lose!"
4911 26:     end if
4912 27:   end if
4913 28:   return "My Choice:  $x$   $y$ ", "My Choice:  $SysMove$ "
31: else
32:   return "Invalid", "Invalid Format"
33: end if

```

4914

Algorithm 15 Generator for GridGame

4915

Require: Complexity Parameters N (Rows), M (Cols)

4916

1: ▷ 1. Construct Randomized Game State

4917

2: $Values \leftarrow \text{RandomPermutation}([1, \dots, N \times M])$

4918

3: $Grid \leftarrow \text{MapToCoordinates}(Values, N, M)$

4919

4: $TotalTurns \leftarrow (N \times M)/2$

4920

5:

▷ 2. Synthesize Natural Language Prompt

4921

6: $GridDescription \leftarrow \text{"Initial grid state:}\n$

4922

7: **for** $i \leftarrow 1$ **to** N **do**

4923

8: **for** $j \leftarrow 1$ **to** M **do**

4924

9: $GridDescription \leftarrow GridDescription + \text{f"Cell (i, j): Grid[i, j]\n"}$

4925

10: **end for**

4926

11: **end for**

4927

12: $ProblemPrompt \leftarrow \text{FillTemplate}(\text{TaskDescription}, GridDescription, N, M)$

4928

13: **return** ($ProblemPrompt, Grid, TotalTurns$)

4929

4930

Algorithm 16 Evaluator for GridGame

4931

Require: Interaction History H , MaxTurns K , Final Scores Sum_P, Sum_S

4932

1: **Initialize Metrics:**

4933

2: $Success \leftarrow \text{False}$

4934

3: $TurnCount \leftarrow \text{Length}(H)$

4935

4: $InvalidCount \leftarrow 0$

4936

5: $Patterns \leftarrow \{\text{Associate : 0, Verify : 0, Plan : 0, Feedback : 0}\}$

4937

6: **for** each turn t in H **do**

4938

7: $Feedback \leftarrow H[t].Feedback$

4939

8: $Thought \leftarrow H[t].ModelThought$

4940

9:

▷ 1. Robustness: Count Rule Violations

4941

10: **if** $Feedback$ contains "Invalid" **then**

4942

11: $InvalidCount \leftarrow InvalidCount + 1$

4943

12: **end if**

4944

13: ▷ 2. Cognitive Diagnosis: Extract Reasoning Steps

4945

14: ▷ Calls external LLM analyzer to classify thought process

4946

15: $Patterns \leftarrow Patterns + \text{AnalyzeReasoningPatterns}(Thought)$

4947

16: ▷ 3. Outcome Verification

4948

17: **if** $Feedback$ contains "You win!" **then**

4949

18: $Success \leftarrow \text{True}$

4950

19: **else if** $t == K$ **then**

4951

20: **if** $Sum_P < Sum_S$ **then**

4952

21: $Success \leftarrow \text{True}$

4953

22: **end if**

4954

23: **end if**

4955

24: **end for**

▷ 4. Efficiency Calculation

4956

25: $Efficiency \leftarrow TurnCount$ **if** $Success$ **else** K

4957

26: $InvalidRate \leftarrow InvalidCount/TurnCount$

4958

27: **return** $\{Success, Efficiency, InvalidRate, Patterns\}$

4959

4960

4961

4962

4963

4964

4965

4966

4967