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Abstract

Vision-Language Models (VLMs) have achieved remarkable progress, yet their
large scale often renders them impractical for resource-constrained environments.
This paper introduces Unified Reinforcement and Imitation Learning (RIL), a novel
and efficient training algorithm designed to create powerful, lightweight VLLMs.
RIL distinctively combines the strengths of reinforcement learning with adversarial
imitation learning. This enables smaller student VLMs not only to mimic the
sophisticated text generation of large teacher models but also to systematically
improve their generative capabilities through reinforcement signals. Key to our
imitation framework is an LLM-based discriminator that adeptly distinguishes
between student and teacher outputs, complemented by guidance from multiple
large teacher VLMs to ensure diverse learning. This unified learning strategy,
leveraging both reinforcement and imitation, empowers student models to achieve
significant performance gains, making them competitive with leading closed-source
VLMs. Extensive experiments on diverse vision-language benchmarks demonstrate
that RIL significantly narrows the performance gap with state-of-the-art open- and
closed-source VLMs and, in several instances, surpasses them.
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Figure 1: Showing the performance improvements (%) of Qwen2.5-VL-7B [[1] across vision-language
evaluation benchmarks for AI2D [2], MathVista [3], MM-Vet [4], MMMU [3]], BLINK [6], and
the average scores for 14 evaluation benchmarks used in Table m Note that, we conduct RL on
GRPO [7] and advanced GRPO, Dr.GRPO [8]], with only answer rewards from LLM-as-a-Judge [9]]
(see Algorithm[T)), and we present RIL based on similarity rewards from single or multi large teacher
VLMs and simultaneously answer rewards (see Algorithm |Z[)
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Figure 2: Comparing RIL-applied VLMs based on multi large VLMs with diverse open- and closed-
source VLMs, under average performance of numerous vision-language evaluation benchmarks:
AI2D [2]], ChartQA [19], MathVista [3], MMB [20]], MM-Vet [4]], MMMU [5], MMMU-Pro [21],
MMStar [22], BLINK [6], SEED [23]], SEED2+ [24]], and RealWorldQA (RWQA).

1 Introduction

The pursuit of artificial general intelligence (AGI) has gained momentum, with much of the initial
progress driven by instruction-tuned large language models (LLMs) [10H15]. Vision-Language
Models (VLMs) [[16} 1} 17, [18] represent a significant step forward, extending the LLM framework
to integrate visual data and thereby achieve multimodal understanding. Their ability to generate
insightful, visually-grounded textual responses that increasingly emulate human-like comprehension
has made VLM:s a focal point of considerable attention. Recognizing their transformative potential,
numerous organizations are heavily investing to push the boundaries of what VLMs can achieve.

Historically, the enhancements in vision-language performance have primarily relied on traditional
strategies such as scaling up model sizes [15] 25| 26] and expanding visual instruction tuning
datasets [27-30, [18]]. More recent advancements have explored architectural modifications—for
instance, directly altering model structures [31} 32] or integrating auxiliary vision [33] 27, 134]
and reasoning modules [35]. Alongside these efforts, the ‘think-answer’ paradigm [36-42] has
gained prominence following DeepSeek-R1’s [7]] application of reinforcement learning (RL) via
GRPO [43]. However, such architectural changes and the verbose ‘think’ responses preceding
answers can significantly increase inference latency and computational memory requirements. These
challenges render many powerful VLMs impractical for resource-limited settings like smartphones
and augmented reality (AR) devices. As a result, there is a growing imperative within the research
community to develop VLM designs that achieve a compelling balance between strong vision-
language capabilities, low inference latency, and a lightweight model footprint.

To overcome these challenges, we introduce an approach for developing high-performing, efficient
VLMs that avoids architectural modifications and the need for lengthy ‘think’ responses. Our method,
termed Unified Reinforcement and Imitation Learning (RIL), is an efficient training algorithm
integrating principles from both GRPO [43] and the GAIL framework [44]. The central objective of
RIL is to enable smaller VLMs (e.g., 7B models) to effectively mimic the text generation style of
significantly larger VLMs (e.g., 72B models). Prior works [45] 46| have argued that natural language
response-based distillation is more effective than high-dimensional feature distillation, emphasizing
the importance of utilizing the language head—referred to as the verbalization effect. Motivated by
this insight, we began by leveraging the similarity in natural language responses between teacher
and student models. Drawing inspiration from how models articulate responses differently, RIL
employs an LLLM-based discriminator trained to distinguish between the text responses generated
by the student (small VLMs) and the teacher (large VLMs). This discriminator’s output provides a
similarity reward signal, guiding the student VLMs, which act as a generator, to produce responses
increasingly akin to those of the teacher. To maintain training stability and prevent the generator or
discriminator from overpowering the other, a common issue known as the balance problem [47, 48],
the discriminator’s architecture initially mirrors that of the generator.

However, the practical implementation of RIL for VLMs entails several specific challenges. Firstly,
relying on continuous discriminator scores (ranging from zero to one) to assess similarity to large
VLM outputs can introduce ambiguity into the learning signal. To ensure a clearer and more decisive
reward, and drawing inspiration from prior works that binarize answer rewards [7} 43, we convert
the discriminator’s similarity score into a binary value. Secondly, the discriminator, by design,
focuses on stylistic similarity and does not inherently verify factual correctness against ground truth
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SYSTEM: You are a discriminator assistant. A
You are provided with Response in <response> </response> tag.

Your task is to determine whether the Response was generated by teacher or student model.
Return 0 if the Response was generated by the teacher model.
Return 1 if the Response was generated by the student model.

USER: <response>{response}</response>
Determine the source of the Response.

Provide your answer as one of the following: 0 (Teacher model) 1 (Student model)
.

Figure 3: Input prompt for Discriminator

answers, which could otherwise lead to performance degradation. We mitigate this by incorporating
an LLM-as-a-Judge [9] to provide a separate binary reward signal based on the accuracy of the
generated response. A third challenge arises during the GRPO [43]] phase: if the student VLMs, due
to their more limited knowledge, fail to generate any correct responses for a given task, they struggle
to identify effective learning pathways. To provide clearer guidance, especially when the student
VLM lacks sufficient domain-specific knowledge compared to larger models, we incorporate text
responses from both student and teacher VLMs during this GRPO training step. This strategy not
only stabilizes RIL training but also creates opportunities for the student VLM to potentially surpass
the performance of larger teachers.

Several key aspects of RIL contribute to its effectiveness. Notably, we observe that sourcing text
responses from multiple large teacher VLM significantly boosts student performance beyond what
a single teacher can achieve, owing to the richer diversity of responses and the consequently more
robust discriminator. This enriched learning environment is further enhanced during GRPO [43]
step: by incorporating text responses from both student and teacher VLMs, we provide the student
with clearer exemplars for reaching correct answers. RIL also demonstrates particular synergy
with distillation-based VLMs; these models show marked performance improvements because their
inherent feature alignment through distillation complements RIL’s objectives. Beyond these learning
dynamics, a crucial practical advantage of RIL is its inference efficiency: trained models do not
require an explicit ‘think’ phase before generating answers, thereby maintaining the same inference
speed as the original student VLM.

Furthermore, RIL’s reliance on LLM-as-a-Judge [9] for accuracy evaluation offers substantial ad-
vantages in applicability. Unlike methods such as DeepSeek-R1 [7] and its variants [39, 49,41} 137],
which often use conventional answer parsing for reward computation and are thus limited to domains
with predefined metrics (e.g., math or image grounding), RIL transcends these limitations. For
example, conventional parsing struggles with open-ended general visual questions, such as “How to
cook this dish?” based on a food image, or “Summarize this movie” from its poster. In addition, the
parsing poses a challenge to flexibly compare different types of answers, if a response is “The answer
is twenty percent” but its ground truth is “20”. The versatile evaluation power of LLM-as-a-Judge [9]
enables RIL’s successful application to a broad spectrum of visual question answering tasks, fostering
strong performance in areas like recognition, OCR, common-sense reasoning, mathematical problem-
solving, and chart/document understanding. Finally, because RIL operates purely on generated text
responses, it is agnostic to the specific image embedding strategies or language tokenizers used
by the student or teacher VLMs, ensuring broad compatibility.

To validate our approach, we conduct extensive experiments across diverse vision-language bench-
marks. The results compellingly demonstrate that RIL not only significantly narrows the performance
gap to state-of-the-art open- and closed-source VLMs but, in several instances, surpasses them. The
primary contributions of this work are:

¢ Unified Reinforcement and Imitation Learning (RIL): We introduce RIL, an efficient
and novel training framework for VLMs. It empowers smaller models to emulate the text
generation patterns of significantly larger VLMs, leading to substantial enhancements in
their overall performance.

* Broad Applicability and Flexibility: RIL exhibits wide applicability, functioning effec-
tively with diverse VLMs irrespective of their underlying image embedding strategies or
language tokenizers. Furthermore, it preserves the original inference speed by avoiding
lengthy intermediate reasoning steps and capably addresses general visual question answer-
ing tasks through its integration with LLM-as-a-Judge.
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SYSTEM: You are an evaluation assistant. \
Question is in <question> </question> tag.
Ground Truth is in <ground truth> </ground truth> tag.
Generated Text in <generated text> </generated text> tag.
After reading the Question, compare the Generated Text against the Ground Truth summary:
- If the Generated Text fully and correctly captures the core point — 1
- If itis incorrect or irrelevant — 0
Output the evaluation score (0 or 1) after giving a brief explanation
- The evaluation score should be wrapped in <answer> </answer> tags

USER: <question>{question}</question>

<ground truth>{ground truth}</ground truth>

<generated text>{response}</generated text>

Provide the evaluation score after giving a brief explanation.

The evaluation score should be wrapped in <answer> </answer> tag.

J

Figure 4: Input prompt for LLM-as-a-Judge [9]

» Extensive Validation and Significant Performance Gains: Our comprehensive experi-
mental results consistently show that RIL delivers substantial performance improvements
across a variety of vision-language benchmarks. These gains position RIL-trained models
as highly competitive with, and sometimes superior to, existing state-of-the-art VLMs.

2 Related Works

Evolution of Vision-Language Models (VLMs). Conventional remedies for advancing VLMs have
largely centered on scaling up model sizes and expanding datasets to push performance boundaries.
Consequently, promising VLMs have emerged, for example, closed-source VLMs: GPT-4o [50],
Gemini [51], and Claude-3.5 Sonnet [52], and open-source VLMs: Molmo-72B [53]], LLaVA-
OneVision-72B [28]], NVLM-72B [54], Qwen2.5-VL-72B [1], and InternVL3-78B [18]] have fol-
lowed this paradigm, incorporating large-scale language models such as Qwen2/Qwen2.5-72B [13].
However, the sheer size and computational demands of these models present significant barriers to
deployment in resource-constrained environments such as mobile and embedded devices. To address
these challenges, CoLLaVO [33]] and MoALI [34] utilize computer vision models directly for visual
capability, and Mini-Gemini [27], MoVA [55]], and Eagle [56] employ multiple vision encoders such
as CLIP [57], ConvNeXt [58], DINO-v2 [59]], and SAM [60]]. In parallel, Meteor [35]] explores the
efficient way of learning complex reasoning abilities, and TroL [31] and Phantom [32] investigate
propagation modification for how we can embed vision-language knowledge as much as possible
despite using the same architectures. More recently, since DeepSeek-R1 [7]] introduces think-answer
process and shows its dramatic performance improvements by using reinforcement learning (RL)
such as GRPO [43]], many variant models for VLMs has presented LMM-R1 [61], Vision-R1 [37],
R1-V [42], OpenVLThinker [62], R1-OneVision [63], R1-Zero [64], and MM-Eureka [65]. They
employ think-answer process to VLMs in specific areas such as math problems and object counting
tasks. In addition, NoisyRollout [40] injects noise into clean images for distortion and train VLMs to
strongly improve visual robustness, thereby understanding visual properties more than before.

Imitation Learning (IL). It originates from the concept of learning expert behavior in robotics.
Generative adversarial imitation learning (GAIL) [44] is a foundational framework in this domain. It
employs a generator and a discriminator where the generator (e.g., small student VLMs) attempts to
replicate expert behavior (e.g., large teacher VLMs) by producing outputs such as actions or trajec-
tories (e.g., text responses) that are indistinguishable from those generated by experts. Meanwhile,
the discriminator aims to distinguish between the generator and the expert. By framing imitation
learning (IL) as a minimax game, GAIL [44]] leverages adversarial training to align the behavior of
the generator with that of the expert without explicitly defining a reward function. Instead, GAIL [44]
only relies on discriminator scores to evaluate how the generator similarly produces outputs of an
expert. This approach has demonstrated strong performance in complex, high-dimensional tasks
by directly learning from expert data, making it a widely adopted strategy in IL [66]. Based on
its effectiveness, we integrate reinforcement and imitation learning (RIL) for VLMs with four key
modifications: (1) combining GRPO [43]] and GAIL [44] framework with explicitly reward design,
(2) making the output scores of the discriminator binary to stabilize training, (3) incorporating
LLM-as-a-Judge [9] to evaluate answer rewards that assess whether the generated text responses from



Table 1: Comparing the performances by using answer rewards from LLM-as-a-Judge [9] with purely
RL on GRPO [7] and advanced GRPO [8], and by using similarity and answer rewards from RIL
on GAIL [44], under numerous evaluation benchmarks: AI2D [2], ChartQA [19], MathVista [3],
MMB/MMB®N [20], MM-Vet [4], MM-Vet-v2 [67]], MMMU [5]], MMMU-Pro [21]], MMStar [22]],
BLINK [6]], SEED [23], SEED2+ [24]], and RealWorldQA (RWQA). Note that, for RIL, we set large
VLMs as the largest version of same small VLMs, such as Qwen2.5-VL-7B < Qwen2.5-VL-72B
and InternVL3-8B < InternVL3-78B.

VLMs AI2D ChartQA MathVista MMB MMBN MM-Vet MM-Vet-v2 MMMU MMMU-Pro MMStar BLINK SEED SEED2+ RWQA
Qwen2.5-VL-7B 839 873 67.8 835 834 71.8 63.7 55.0 383 639 564 77.0 704 685
w. RL (GRPO) 84.1 88.8 69.0 838 839 72.8 63.9 56.2 40.3 652 589 774 706 694
w. RL (Dr.GRPO) 845  90.0 69.5 843 844 73.5 64.2 572 41.8 663 607 78.0 709 703
w. RIL (Dr.GRPO + GAIL) 86.7 954 74.5 86.8 87.2 71.3 66.1 61.8 48.2 711 685 80.7 73.0 742
Qwen2.5-VL-3B 81.6 84.0 61.2 79.1 781 61.8 57.6 51.2 31.6 559 476 740 676 654
w. RL (GRPO) 819 878 61.8 80.3  79.7 62.8 55.4 52.0 33.7 577 526 757 68.6  66.4
w. RL (Dr.GRPO) 824 897 62.5 818 812 63.8 55.9 525 343 59.1 53.7 765 692 670
w. RIL (Dr.GRPO + GAIL) 83.0 954 65.2 848 842 67.4 57.6 53.7 36.8 612 555 787 703 677
InternVL3-8B 852 86.6 71.6 834 822 78.5 66.3 62.7 41.3 682 555 771 69.7 70.8
w. RL (GRPO) 859 89.6 723 846 842 78.7 66.4 63.8 42.5 700 571 779 706 713
w. RL (Dr.GRPO) 863 912 72.9 852 853 79.0 66.5 64.9 42.8 707 575 781 711 72.0
w. RIL (Dr.GRPO + GAIL) 874 955 74.1 88.7 893 78.4 66.5 66.8 4.8 754  60.1 80.6 73.0 733
InternVL3-2B 78.7  80.2 57.0 81.1 784 62.2 539 48.6 249 60.7 470 750 646 643
w. RL (GRPO) 79.1  86.9 57.8 824  80.0 61.8 53.6 49.6 25.7 615 473 758 649  64.6
w. RL (Dr.GRPO) 79.8  90.3 58.5 832 813 62.1 53.8 50.5 26.4 624 479 765 654 652
w. RIL (Dr.GRPO + GAIL) 81.1  93.6 63.0 856 832 61.5 54.2 52.9 275 632 483 782 667  66.8
InternVL3-1B 694 753 45.8 726 679 58.7 47.5 434 17.5 515 429 712 582 582
w. RL (GRPO) 69.6  83.0 46.7 738  69.4 57.7 47.0 42.8 17.2 525 427 715 585 58.5
w. RL (Dr.GRPO) 69.9  86.7 47.6 749 1705 57.5 47.0 42.8 17.3 534 429 719 594 594
w. RIL (Dr.GRPO + GAIL) 72.0  93.6 51.6 796 757 56.9 474 43.1 18.3 574 441 742 614 614

student VLMs are correct, and (4) utilizing the generated text responses from teacher VLMs when
GRPO [43] updates student VLMs, serving as a direct guidance to reach the correct text responses.
These approach not only stabilizes RIL training but also provides a mechanism for student VLMs
to potentially exceed the performance of teacher VLMs. Moreover, RIL do not require an explicit
think-answer process, thereby maintaining the same inference, and it is independent of any particular
image embedding methods or language tokenizers used in the student or the teacher VLMs.

3 Unified Reinforcement and Imitation Learning for VLMs

3.1 Core Model Components for RIL

Our RIL framework utilizes several key model components. For the student models—which are the
VLMs we aim to enhance—we employ recently released architectures such as Qwen2.5-VL (3B
and 7B variants) [1] and InternVL3 (1B, 2B, and 8B variants) [18]]. Starting from these pre-trained
checkpoints, RIL directly updates their parameters with the goal of developing efficient, high-
performing VLMs capable of rivaling leading closed-source systems like GPT-40 [50], Gemini [51]],
and Claude-3.5 Sonnet [52]]. For the teacher models, which provide the target behavior, we select
powerful large teacher VLMs recognized for their strong performance on benchmarks like VLM
Leaderboard [68]], specifically Qwen2.5-VL-72B [1] and InternVL3-78B [18]. The student VLMs
are trained to mimic the text generation patterns and response styles of these teacher models. Central
to the imitation learning aspect is a discriminator, designed to assess the similarity between student-
generated responses and those from the teacher VLMs. To promote training stability and mitigate the
balance problem common in adversarial setups [47, 48]—where one component might overpower
the other—the discriminator’s architecture and initial parameters deliberately mirror those of the
student VLMs. Lastly, to evaluate the factual correctness of the generated text, we utilize an LLM-
as-a-Judge [9], specifically Qwen2.5-32B [13], following the methodology of Zheng et al. [9]]. This
model is not trained but is used solely to determine whether the predicted response accurately reflects
the meaning of the ground truth.

The subsequent sections will first elaborate on the discriminator’s architecture and pre-training (Sec-
tion3.2), followed by a detailed exposition of the RIL algorithm and its reward design (Section 3.3).

3.2 Discriminator Architecture and Pre-training

With the student (small) VLMs serving as the generator in our framework, the effective pre-training
of the discriminator is crucial. This initial training phase equips the discriminator (Dg) with the
ability to reliably differentiate between text responses originating from student VLMs versus teacher



Table 2: Showing the effectiveness of employing multiple large VLMs more than a single VLM,
under the numerous evaluation benchmarks equally used in Table[T]

VLMs AI2D ChartQA MathVista MMB MMB®N MM-Vet MM-Vet-v2 MMMU MMMU-Pro MMStar BLINK SEED SEED2+ RWQA
Qwen2.5-VL-7B 839 873 67.8 835 834 71.8 63.7 55.0 383 639 564 770 704  68.5
w. RIL (Qwen2.5-VL-72B) 86.7  95.4 74.5 86.8 87.2 77.3 66.1 61.8 48.2 711 685 807 73.0 742
w. RIL (InternVL3-78B)  86.8  95.5 74.6 86.7 87.1 75.8 66.0 60.9 47.1 711 68.1 808 72.7 754
w. RIL (Both) 86.1 95.6 79.7 863 865 80.4 71.1 65.7 48.5 711 700 805 728 72.8
Qwen2.5-VL-3B 81.6  84.0 61.2 79.1 781 61.8 57.6 51.2 31.6 559 476 740 676 654
w. RIL (Qwen2.5-VL-72B) 83.0 954 65.2 84.8 842 67.4 57.6 53.7 36.8 61.2 555 787 703 67.7
w. RIL (InternVL3-78B) 833 954 65.1 850 84.7 66.6 56.3 54.9 37.7 61.1 553 788 702 682
w. RIL (Both) 839 957 71.7 85.2 845 74.7 62.8 60.7 43.7 652 608 787 714 732
InternVL3-8B 852 86.6 71.6 834 822 78.5 66.3 62.7 41.3 682 555 771  69.7 70.8
w. RIL (Qwen2.5-VL-72B) 87.5 95.2 74.3 888 89.8 77.6 65.9 67.3 45.7 752 59.1 804 729 72.5
w. RIL (InternVL3-78B)  87.4  95.5 74.1 88.7 89.3 78.4 66.5 66.8 44.8 754  60.1 806 730 733
w. RIL (Both) 873 953 77.8 88.1 89.6 80.1 67.6 68.6 47.8 748 627 805 738 737
InternVL3-2B 78.7 80.2 57.0 81.1 784 62.2 539 48.6 249 60.7 470 750 646 643
w. RIL (Qwen2.5-VL-72B) 81.1 93.6 61.9 853 83.0 62.6 52.8 52.6 26.6 63.6 488 78.0 67.1 66.3
w. RIL (InternVL3-78B)  81.1  93.6 630 856 832 61.5 542 529 275 632 483 782 66.7 66.8
w. RIL (Both) 80.7 94.0 67.4 847 822 70.7 58.4 56.6 323 639 515 778 668 69.3
InternVL3-1B 694 753 45.8 726 679 58.7 47.5 43.4 17.5 515 429 712 582 582
w. RIL (Qwen2.5-VL-72B) 72.2  93.6 50.9 799 758 56.1 47.3 43.6 18.0 580 436 746 60.7 61.0
w. RIL (InternVL3-78B)  72.0  93.6 51.6 796 757 56.9 47.4 43.1 183 574 441 742 614 614
w. RIL (Both) 73.0 941 5515 79.1 759 62.9 50.7 49.7 19.0 60.5 469 747 619  63.7

(large) VLMs. Without adequate pre-training, Dy would yield unreliable scores, undermining its
utility and potentially degrading overall model performance. To prepare for pre-training, we first
collect a dataset of responses. For each given question ¢, N text responses are generated from both

the student VLMs, denoted as {ogs)}f\él, and the teacher VLMs, denoted as {ogt)}i]\il. Using this
collection, the discriminator Dy, parameterized by ¢, is trained to maximize the following objective:

1 .
max £(0) = 5 3 {log Dy(a.0f") +log(1 — Dy(a, "))} ()

According to this objective, Dy learns to output a score approaching ‘one value’ for responses from
student VLMs and ‘zero value’ for those from teacher VLMs. For practical implementation, given
that the discriminator’s backbone is language-based (mirroring the student VLMs), the generated
responses o are formatted using a specific prompt (detailed in Fig. [3) to ensure proper textual
understanding. To elicit the scalar discrimination score, the standard language head of the VLM
(typically mapping to vocabulary logits, (R?*") is replaced with a linear discriminator head (R?*1).
The input to this head is the representation of the final sequence token from the last layer of the
backbone model, from which the score is directly computed with the sigmoid function.

3.3 Mimicking Large Teacher VLLMs with Similarity and Answer Rewards

The RIL process commences after an initial supervised finetuning (SFT) phase for the student (small)
VLM:s 7y using a comprehensive visual instruction tuning dataset (see Appendix [C). This SFT stage
acts as a crucial warm-up, acclimating 7y to the target data distribution. Once the student VLMs
and the pre-trained discriminator Dy (from Section @) are prepared, the RIL loop begins. For
each question ¢ in a training batch, we generate GG text responses from the current student VLMs,

{ogs)}iG:l, and retrieve GG responses corresponding the question ¢ from the teacher (large) VLMs,

{OZ(-t) }ZG:1 We note that pre-generating and caching the responses from teacher VLMs (e.g., during
the discriminator’s pre-training) can significantly reduce RIL training time. In the end, this yields a
combined set of 2G responses, {oi}ffl, for each question. Within each RIL iteration, we first update
the discriminator Dy using Eq. ([H) on these 2G responses. This step ensures that Dy maintains its
ability to distinguish between student and teacher outputs as the student VLMs evolve. Next, the
student VLMs 7, are updated using an objective derived from Dr.GRPO [8]], an advanced variant of

GRPO that provides unbiased advantage estimates {Al}ffl The objective function is:

| 2@ R A
max L(0) = Ye ; {min {ri(Q)Ai, clip(r;(0),1 —€,1+¢) Al} — 8Dk (7 | Wref)} ,
- 2)
2G

mo(0i | ¢ i 1
where r;(0) = M, A; = R(q,0;) — Yel ZR(q,oj).
old \ % j=1

Here, r;(0) is the probability ratio between the current policy 7 and the policy before the update
Told> Tret 18 typically the initial SFT model, € is a clipping hyperparameter, and /5 controls the KL-



Table 3: Comparing RIL-applied VLMs with standard or smaller model size open-source VLMs.

VLMs ARD ChartQA MathVista MMB MMB®N MM-Vet MMMU MMMU-Pro MMStar BLINK SEED SEED2+ RWQA
LLaVA-OneVision-7B [28]  81.4  80.0 63.2 80.8 - 575 48.8 24.1 61.9 53.0 767 65.4 69.9
InternVL2-8B [69 83.8 833 58.3 81.7 812 542 49.3 29.0 61.5 509 754 673 64.2
MiniCPM-V2.5-8B [70 78.4 - 54.3 772 742 52.8 45.8 - 51.8 - 72.3 61.4 63.5
MiniCPM-V2.6-8B [70] 82.1 - 60.6 - - 60.0 49.8 272 57.5 552 740 65.7 65.0
MiniCPM-02.6-8B [70] 86.1 86.9 73.3 - - 67.2 50.9 - 63.3 539 755 67.9 68.0
Ovis2-8B [71] 86.6 - 71.8 - - 65.1 574 - 64.6 543 712 70.4 725
Ovis2-16B [71] 86.3 - 73.7 - - 68.4 60.7 - 67.2 59.0 717 72.1 74.1
Qwen2-VL-7B [16] 71.5 83.0 58.2 83.0 805 62.0 54.1 30.5 60.7 53.8 760 68.6 68.5
InternVL2.5-8B [17 84.8 84.8 64.4 846 826 62.8 56.0 343 63.2 548 768 69.7 70.1
Qwen2.5-VL-7B [1 839 873 67.8 835 83.4 71.8 55.0 383 63.9 564 710 70.4 68.5
InternVL3-8B [18 852  86.6 71.6 834 822 78.5 62.7 41.3 68.2 555 771 69.7 70.8
Qwen2.5-VL-RIL-7B (Both) 86.1 95.6 79.7 86.3 86.5 80.4 65.7 48.5 71.1 70.0 80.5 72.8 72.8
InternVL3-RIL-8B (Both) 873 953 77.8 88.1  89.6 80.1 68.6 47.8 74.8 62.7 805 73.8 73.7
Phi-3.5-Vision-4B |72 77.8 81.8 439 76.0  66.1 432 43.0 19.7 47.5 583 69.7 62.2 53.6
Phi-4-Multimodal-5.6B [73] 83.0  81.4 65.8 86.7 - 51.9 56.0 385 58.9 421 732 68.5 64.1
Ovis2-4B |71} 85.7 - 69.6 - - 65.5 49.0 - 61.9 53.0 762 69.3 71.1
InternVL2-4B 69 78.9 815 58.6 78.6 739 51.0 343 32.7 53.9 46.1 732 63.9 60.7
InternVL2.5-4B [69 814 840 60.5 81.1 79.3 60.6 523 32.7 58.7 50.8 748 66.9 64.3
Qwen2.5-VL-3B [1 81.6  84.0 61.2 79.1 78.1 61.8 51.2 31.6 55.9 476 740 67.6 65.4
Qwen2.5-VL-RIL-3B (Both) 839  95.7 71.7 852 845 74.7 60.7 43.7 65.2 60.8 78.7 71.4 73.2
InternVL2-2B [69' 74.1 76.2 46.3 732 1709 395 343 182 49.8 438 709 60.0 573
Qwen2-VL-2B [16] 60.2 735 43.0 749 735 49.5 41.1 21.2 47.5 452 724 61.2 62.6
Aquila-VL-2B [17 750 765 59.0 - - 43.8 47.4 - 54.9 341 739 63.0 65.0
Ovis2-2B 711 82.7 - 64.1 - - 58.3 45.6 - 56.7 479 744 67.4 66.0
InternVL2.5-2B [17} 749  79.2 51.3 747 719 60.8 43.6 23.7 54.3 440 732 60.0 60.1
InternVL3-2B [18 78.7 80.2 57.0 81.1 78.4 62.2 48.6 249 60.7 470 750 64.6 64.3
InternVL3-RIL-2B (Both) 80.7  94.0 67.4 847 822 70.7 56.6 323 63.9 515 778 66.8 69.3
LLaVA-OneVision-0.5B [28] 57.1 61.4 34.8 61.6 555 322 31.4 - 37.7 52.1  66.6 45.7 55.6
Ovis2-1B [71] 76.4 - 59.4 - - 50.0 36.1 - 52.1 440 717 61.4 63.9
InternVL2-1B [69’ 64.1 729 377 654  60.7 327 36.7 14.8 45.6 386 652 54.3 50.3
InternVL2.5-1B [17 69.3 759 432 707 66.3 48.8 40.9 18.8 51.3 420 704 59.0 575
InternVL3-1B [18 694 753 458 726 679 58.7 434 17.5 51.5 429 712 58.2 58.2
InternVL3-RIL-1B (Both) 73.0 941 55.5 791 759 62.9 49.7 19.0 60.5 46.9 74.7 61.9 63.7

divergence penalty. The total reward R(q, o;) for each response o; is a crucial composite signal,
comprising two binary components:

1. Similarity Reward: This indicates if the response o; resembles those from teacher VLMs,
denoted by 1(Dy(q,0;) < 0.5). A discriminator score below 0.5 suggests higher similarity
to teacher responses, consistent with D being trained to output ‘zero value’ for teacher
samples (Eq. [I).

2. Answer Reward: It assesses the factual correctness of 0; against a ground truth answer a,
determined by LLM-as-a-Judge(q, a, 0;). This evaluation uses the prompt detailed in Fig.

These two rewards are summed to form the overall reward R(q, 0;). The inclusion of the answer
reward is essential, as the discriminator alone primarily captures stylistic similarity and does not
guarantee factual accuracy, the absence of which could lead to significant performance issues. This
dual-reward strategy ensures that mimicking large teacher VLMs involves not just replicating surface-
level text patterns but also encompasses the deeper ‘verbalization effect’ [45]], which characterizes
how proficient VLMs articulate correct and contextually appropriate answers. The comprehensive
RIL procedure is detailed in Algorithm [2]

4 Experiments

4.1 Dissecting RIL

To understand the distinct contributions of its components, we first analyze RIL by comparing it
against reinforcement learning (RL) baselines that utilize only answer rewards. Specifically, we
evaluate RL agents trained solely with GRPO [43] or its advanced variant, Dr.GRPO [8]], without
the discriminator or the associated similarity rewards. As shown in Table[T} RIL, which integrates
reinforcement and imitation learning elements based on Dr.GRPO and GAIL [44], demonstrably
outperforms these RL-only approaches, confirming the efficacy of our unified training algorithm.

A key finding is the substantial benefit of employing multiple large teacher VLMs. As detailed in
Table 2} using responses from a combination of large models (specifically Qwen2.5-VL-72B [1]] and
InternVL3-78B [18]]) yields significantly better vision-language performance than relying on any
single teacher. This advantage arises from the richer diversity of textual responses, which strengthens
the discriminator’s training. Furthermore, incorporating this diverse set of high-quality responses
from teacher VLMs directly into the GRPO optimization step provides student VLMs with clearer and



Table 4: Comparing RIL-applied VLMs with large size open-source and closed-source VLMs.

VLMs AI2D ChartQA MathVista MMB MM-Vet MM-Vet-v2 MMMU MMMU-Pro MMStar BLINK SEED SEED2+ RWQA
NVLM-72B [54] 852 86.0 66.6 - 58.9 - 59.7 - 63.7 48.0 755 684 69.9
LLaVA-OV-72B [28] 85.6 837 67.5 858  60.6 - 56.8 31.0 658 554 775 - 71.9
Molmo-72B [53] 834 873 58.6 - 61.1 - 54.1 - 63.3 49.7 746 67.6 73.7
Qwen2-VL-72B [16] 88.1 883 70.5 86.5 74.0 68.7 64.5 46.2 683 605 779 723 778
Qwen2.5-VL-72B [1] 88.7 895 74.2 88.6 769 76.2 68.2 46.2 70.8 644 795 73.0 75.7
InternVL2-76B [69 87.6 884 65.5 86.5 657 68.4 62.7 40.0 674 568 776 69.7 722
InternVL2.5-78B [28 89.1 88.3 72.3 883 723 65.5 70.1 48.6 69.5 63.8 770 713 78.7
InternVL3-78B [18] 89.7 89.7 790 89.0 813 70.0 722 473 725 663 787 719  78.0
Claude-3.5-Sonnet [52 81.2 90.8 67.7 82.6 70.1 71.8 68.3 51.5 65.1 60.1 61.7 717 65.8
Claude-3.7-Sonnet [52] 82.5 - 66.8 - 70.0 - 71.0 - 65.1 56.6 743 676 554
Gemini-1.5-Pro [S1 79.1 872 63.9 739  64.0 66.9 62.2 46.9 59.1 59.1 760 708 67.5
Gemini-2.0-Flash [51] 83.1 - 704 900 73.6 - 69.9 54.4 69.4  64.0 - - 723
GPT-40 (24.05.13) [74] 84.6 85.7 63.8 834 69.1 71.0 69.1 51.9 64.7 68.0 77.1 72.0 75.4
GPT-4.1 (25.04.14) [74] 85.9 - 70.4 - 78.8 - 74.0 - 69.8 685 780 73.1 78.7
Qwen2.5-VL-RIL-7B (Both) 86.1 95.6 79.7 863 804 71.1 65.7 48.5 71.1 70.0 80.5 728 72.8
InternVL3-RIL-8B (Both) 873 953 71.8 88.1  80.1 67.6 68.6 47.8 748 627 805 738 737
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Figure 5: Illustrating training dynamics of small VLMs during RIL, where (Left) showing the
evolution of similarity rewards over training iterations and (Mid) accuracy rewards obtained using
LLM-as-a-Judge [9], ensuring that generated responses are both contextually appropriate and factually
correct. (Right) displaying the overall average performance of evaluation benchmarks used in Tablem

more varied exemplars of correct answer generation. To be simplified in the manner of an algorithm,
given a response ‘T1’ from one teacher VLM and ‘T2’ from another teacher VLM, and a response ‘S’
from the student VLM, then the discriminator is trained to output zero when ‘S’ is provided and one
when either ‘T1’ or “T2’ is provided. Additionally, the rewards and their advantages for ‘S’, ‘T1’,
and ‘T2’ are computed based on similarity and answer quality in order to train the student VLM by
using RIL’s objective loss.

Beyond these component analyses, our RIL-trained student VLMs exhibit highly competitive per-
formance against a range of recent open-source and closed-source models. Comparisons across
various model sizes (detailed in Table [3|for smaller models and Table [ for larger ones) and diverse
vision-language benchmarks (illustrated in Figures [T]and 2) show that RIL not only substantially
narrows the performance gap to state-of-the-art VLMs but, in several instances, surpasses them.

Finally, the training dynamics of RIL, depicted in Figure [5] offer further insight. Over the course
of training, RIL consistently increases both the similarity rewards (from the discriminator) and the
answer rewards (from LLM-as-a-Judge [9]]). It indicates that the student VLMs are progressively
generating responses that are both more stylistically aligned with teacher models and factually correct,
with these improving reward signals directly translating into significant overall performance gains.

For a comprehensive account of the specific training procedures, hyperparameter settings, evaluation
setups, and dataset details that ensure the reproducibility of these, please refer to Appendix [C| Using
256 NVIDIA A100 GPUs, pre-training the discriminator on 1.2M samples (40K [number of samples]
X 16 [generated responses] x 2 [for both teacher and student]) takes approximately 1 to 3 days. The
SFT step on the 4M-sample SFT dataset takes around 3 to 5 days. Conducting the RIL loop for the
sampled 40K data requires an additional 3 to 5 days using 8 NVIDIA A100 GPUs.

4.2 TImpacts of Hyperparameters, Techniques, and Distillation

We systematically investigate the sources of RIL’s effectiveness by analyzing key training hyperpa-
rameters, component design choices, and its interplay with other learning techniques. Note that, for
the optimization objective of student VLMs in Eq. (2)), the clipping hyperparameter € is consistently
set to 0.2. Our first analyses focus on core optimization settings. We examine the number of update
iterations, y, for the discriminator and student VLMs within each RIL cycle (related to Algorithm 2)).



Table 5: Analyzing the impacts of training hyperparameters, techniques for stabilization, and the
effect of distillation. Note that, these tables (a)-(c) set a backbone model as Qwen2.5-VL-7B [1] and

apply RIL to this model in order to validate it by controlling multiple factors .
(a) Discriminator & small VLMs Iteration (1) (b) KL-divergence Penalty Coefficient (/3) (c) Importance of VLM Modules
4 AI2D MathVista MMB MM-Vet MMMU BLINK ~ §  AI2D MathVista MMB MM-Vet MMMU BLINK  Module MathVista. MMB MM-Vet MMMU
1861 797 863 804 657 700 000 771 599 732 602 429 450  Full Training 797 863 804 657

wo. Word-Embed 754 855 75.1 62.2

w.o. Self-Attn 737 843 752 613

w.o. FFN-Gate 765 860 788 635

w.o. FFN-Up 773 860 790 641

w.0. FEN-Down 784 861 796 6438

& -9 9.9 2 w.o. Layer-Norm 79.7 86.3 80.4 65.7

12° 84, 738 844 769 610 642 100 842 739 843 748 604 617 w.o. Lang-Head 749 852 739 620

(d) Importance of discriminator D4 (e) Effect of Answer Rewards (AR) and SFT () Effect of Distillation
VLMs D, MathVista MMB MM-Vet MMMU ~_VLMs AR MathVista  MMB~ MM-Vet  MMMU VLMs RIL  MahVisa MMB _ MM-Vet  MMMU

X 652 53.6 g X613 84 el 5TA

en2 SVITB X 695 843 735 572 Qe SVLIB o MmLMTE D 708 853 s 66.1
Qwen25-VL-7B A 753 855 750 612 DisilLLm7B Ko SIS 6 79

v 79.7 863 804 65.7 ) v 710 854 739 67.2
X 729 852 790 649 X693 Bl4 LLaVA-KD7B .- Ko OIS 880 68 582

InernVL3-8B A 954 s6e 95 665 memvizss A 700 s v 719 858 740 6.7
S o GRRRR o imsl eI s ee X7 w8 72 @3

v 718 88.1 80.1 68.6 /w.o. SFT 752 794 v 76.8 862 81.2 734

As shown in Table[5|(a), a single update iteration (1 = 1) for both is sufficient for strong performance;
more iterations, especially for student VLM updates, can risk overfitting. Subsequently, we explore
the impact of the KL-divergence penalty coefficient 3 (Eq.[2) in Table[5|b). These results confirm
that while constraining policy updates is crucial for stability, an overly restrictive penalty (large ()
can hinder performance.

Next, we assess decisions related to model component updates. Table [5(c) details the importance
of updating different parameter groups within the student VLMs, revealing that training the self-
attention layers, word embeddings, and the language head yields more significant gains than updating
feed-forward networks (FFN) or layer normalization parameters. We also investigate the necessity of
continuously updating the discriminator during RIL training (Table[5(d)). Interestingly, Table [5(d)
shows that using a fixed (not updated: A), pre-trained discriminator can outperform RL-only baselines
(denoted by X), but overall RIL efficacy still critically depends on leveraging a continuously trained
discriminator (denoted by v') during training RIL.

In addition, we evaluate RIL’s interaction with evaluation methodologies of the predicted answer
and its synergy with other training paradigms. Table[5{e) underscores the importance of LLM-as-a-
Judge [9] for answer rewards; replacing it with conventional answer parsing (denoted A) significantly
degrades performance, particularly on general visual questions (e.g., “How to cook this dish?” from
an image) where fixed parsing rules are inadequate. This highlights the need for flexible, LLM-based
evaluation. The same table also affirms that while initial SFT is beneficial for capturing the training
data distribution, RIL subsequently delivers substantially larger improvements.

On Table Ekf), we examine RIL’s effectiveness on student VLMs that are already trained on distillation
methods like MiniLLM [75]], DistilLLM [[76], LLaVA-KD [77]], and VLsI [45]] (on same backbones
like Qwen2-VL [16] and training datasets[C). As shown in Table [5(f), RIL proves particularly potent
for these models compared to non-distillation counterparts, likely because prior feature alignment
through distillation primes them for RIL’s alignment mechanisms.

Lastly, we demonstrate that the binary similarity reward introduced in Sec. 3.3 enables more efficient
and stable training of RIL. As shown in Fig.[6] the binary reward consistently outperforms continuous
and multi-level discretizations, suggesting that binary feedback provides clearer and more reliable
learning signals. This improvement arises because models often struggle to interpret subtle differences
in continuous rewards (e.g., why a score of 0.21 should be preferred over 0.20).

4.3 Discussion and Limitation

RIL leverages the diversity of responses generated by large VLMs, which tend to produce more
varied and higher-quality answers beyond the ground truth answers used in SFT training datasets.
As illustrated in Fig.[/] increasing the number of teacher-generated responses consistently improves
the student model’s performance, demonstrating that richer supervision from diverse teacher outputs
enhances the student VLM’s overall generalization ability. In summary, RIL exploits these diverse,
high-quality teacher responses to guide smaller VLMs toward learning more flexible responses
beyond fixed ground truth answers.

Furthermore, RIL offers distinct advantages over traditional knowledge distillation techniques [[78]].
Unlike conventional distillation, which typically requires student VLMs to replicate the high-
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Figure 6: Comparison of RIL performance using different discretization levels of the similarity
reward on four benchmarks: MathVista [3]], MMB [20], MM-Vet [4], and MMMU [[3]]) with Qwen2.5-
VL-7B [[] and InternVL3-8B [18].
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Figure 7: Performance of RIL with varying numbers of generated responses from a teacher VLM
across four benchmarks and their average. They are evaluated on Qwen2.5-VL-7B [1].

dimensional logit features of teacher models, RIL operates exclusively on generated text responses in
natural language. This fundamental difference liberates RIL from restrictive feature-level constraints,
such as the need for identical image embedding strategies or perfectly aligned language tokenizers
(including vocabulary, index order, and sequence length) between student and teacher VLMs. Com-
mon distillation methods [75H77, often rely on KL divergence—a static, non-trainable metric
devoid of contextual understanding—to measure feature similarity, but RIL employs a trainable
discriminator which assesses natural language responses directly, learning to discern nuanced similar-
ities and stylistic differences between student and teacher outputs. The adaptability of the trainable
discriminator in capturing contextual relationships makes RIL a particularly flexible and powerful
approach for lightweight VLM and enhancement.

While RIL demonstrates these significant strengths, its current implementation has been focused
primarily on the post-instruction tuning alignment phase. A promising avenue for future research,
therefore, involves extending the utility of our discriminator to the initial visual instruction tuning
stage itself. We hypothesize that the discriminator’s ability to learn from natural language signals and
overcome conventional architectural constraints could also offer significant benefits in this earlier
phase of VLM training, potentially leading to more efficient instruction following from the outset.

5 Conclusion

In this work, we have introduced Unified Reinforcement and Imitation Learning (RIL), a novel frame-
work enabling smaller VLMs to emulate the sophisticated text-generation capabilities of substantially
larger counterparts, often matching or even exceeding their performance. RIL directly addresses the
pressing need for high-performing, lightweight VLMs deployable in resource-constrained settings.
By leveraging a dual reward system—combining similarity scores from a discriminator with answer
accuracy assessments from an LLM-as-a-Judge—RIL effectively guides student VLMs towards
superior alignment and overall efficacy. Key findings from our research include the significant
performance boost achieved by using multiple large teacher VLMs, which provides a richer di-
versity of training signals, and the notable success of RIL in enhancing distillation-based VLMs.
Comprehensive experiments across a wide array of vision-language benchmarks confirm that RIL
substantially narrows, and in several cases surpasses, the performance gap to state-of-the-art open-
and closed-source VLMs.

10



References

[1] S. Bai, K. Chen, X. Liu, J. Wang, W. Ge, S. Song, K. Dang, P. Wang, S. Wang, J. Tang, et al.,
“Qwen2. 5-vl technical report,” arXiv preprint arXiv:2502.13923, 2025.

[2] A.Kembhavi, M. Salvato, E. Kolve, M. Seo, H. Hajishirzi, and A. Farhadi, “A diagram is worth
a dozen images,” in Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part IV 14, pp. 235-251, Springer, 2016.

[3] P. Lu, H. Bansal, T. Xia, J. Liu, C. Li, H. Hajishirzi, H. Cheng, K.-W. Chang, M. Galley,
and J. Gao, “Mathvista: Evaluating mathematical reasoning of foundation models in visual
contexts,” arXiv preprint arXiv:2310.02255, 2023.

[4] W. Yu, Z. Yang, L. Li, J. Wang, K. Lin, Z. Liu, X. Wang, and L. Wang, “Mm-vet: Evaluating
large multimodal models for integrated capabilities,” arXiv preprint arXiv:2308.02490, 2023.

[5] X.Yue, Y.Ni, K. Zhang, T. Zheng, R. Liu, G. Zhang, S. Stevens, D. Jiang, W. Ren, Y. Sun, et al.,
“Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for
expert agi,” arXiv preprint arXiv:2311.16502, 2023.

[6] X. Fu, Y. Hu, B. Li, Y. Feng, H. Wang, X. Lin, D. Roth, N. A. Smith, W.-C. Ma, and
R. Krishna, “Blink: Multimodal large language models can see but not perceive,” arXiv
preprint arXiv:2404.12390, 2024.

[71 D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.,
“Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,” arXiv
preprint arXiv:2501.12948, 2025.

[8] Z. Liu, C. Chen, W. Li, P. Qi, T. Pang, C. Du, W. S. Lee, and M. Lin, “Understanding
rl-zero-like training: A critical perspective,” arXiv preprint arXiv:2503.20783, 2025.

[9] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li,
E. Xing, et al., “Judging llm-as-a-judge with mt-bench and chatbot arena,” Advances in Neural
Information Processing Systems, vol. 36, pp. 46595-46623, 2023.

[10] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziere,
N. Goyal, E. Hambro, F. Azhar, et al., “Llama: Open and efficient foundation language
models,” arXiv preprint arXiv:2302.13971, 2023.

[11] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, et al., “The llama 3 herd of models,” arXiv preprint arXiv:2407.21783, 2024.

[12] A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li, D. Liu, F. Huang, G. Dong,
H. Wei, H. Lin, J. Tang, J. Wang, J. Yang, J. Tu, J. Zhang, J. Ma, J. Yang, J. Xu, J. Zhou,
J. Bai, J. He, J. Lin, K. Dang, K. Lu, K. Chen, K. Yang, M. Li, M. Xue, N. Ni, P. Zhang,
P. Wang, R. Peng, R. Men, R. Gao, R. Lin, S. Wang, S. Bai, S. Tan, T. Zhu, T. Li, T. Liu,
W. Ge, X. Deng, X. Zhou, X. Ren, X. Zhang, X. Wei, X. Ren, X. Liu, Y. Fan, Y. Yao, Y. Zhang,
Y. Wan, Y. Chu, Y. Liu, Z. Cui, Z. Zhang, Z. Guo, and Z. Fan, “Qwen2 technical report,” 2024.

[13] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al.,
“Qwen2. 5 technical report,” arXiv preprint arXiv:2412.15115, 2024.

[14] J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le,
“Finetuned language models are zero-shot learners,” in International Conference on Learning
Representations, 2022.

[15] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. De-
hghani, S. Brahma, et al., “Scaling instruction-finetuned language models,” arXiv preprint
arXiv:2210.11416, 2022.

[16] P. Wang, S. Bai, S. Tan, S. Wang, Z. Fan, J. Bai, K. Chen, X. Liu, J. Wang, W. Ge, Y. Fan,
K. Dang, M. Du, X. Ren, R. Men, D. Liu, C. Zhou, J. Zhou, and J. Lin, “Qwen2-vl: Enhancing
vision-language model’s perception of the world at any resolution,” 2024.

11



(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

Z. Chen, W. Wang, Y. Cao, Y. Liu, Z. Gao, E. Cui, J. Zhu, S. Ye, H. Tian, Z. Liu, et al.,
“Expanding performance boundaries of open-source multimodal models with model, data, and
test-time scaling,” arXiv preprint arXiv:2412.05271, 2024.

J. Zhu, W. Wang, Z. Chen, Z. Liu, S. Ye, L. Gu, Y. Duan, H. Tian, W. Su, J. Shao, et al.,
“Internvl3: Exploring advanced training and test-time recipes for open-source multimodal
models,” arXiv preprint arXiv:2504.10479, 2025.

A. Masry, D. X. Long, J. Q. Tan, S. Joty, and E. Hoque, “Chartqa: A benchmark for question
answering about charts with visual and logical reasoning,” arXiv preprint arXiv:2203.10244,
2022.

Y. Liu, H. Duan, Y. Zhang, B. Li, S. Zhang, W. Zhao, Y. Yuan, J. Wang, C. He, Z. Liu,
et al., “Mmbench: Is your multi-modal model an all-around player?,” arXiv preprint
arXiv:2307.06281, 2023.

X. Yue, T. Zheng, Y. Ni, Y. Wang, K. Zhang, S. Tong, Y. Sun, B. Yu, G. Zhang, H. Sun, ef al.,
“Mmmu-pro: A more robust multi-discipline multimodal understanding benchmark,” arXiv
preprint arXiv:2409.02813, 2024.

L. Chen, J. Li, X. Dong, P. Zhang, Y. Zang, Z. Chen, H. Duan, J. Wang, Y. Qiao, D. Lin,
et al., “Are we on the right way for evaluating large vision-language models?,” arXiv preprint
arXiv:2403.20330, 2024.

B. Li, R. Wang, G. Wang, Y. Ge, Y. Ge, and Y. Shan, “Seed-bench: Benchmarking multimodal
llms with generative comprehension,” arXiv preprint arXiv:2307.16125, 2023.

B. Li, Y. Ge, Y. Chen, Y. Ge, R. Zhang, and Y. Shan, “Seed-bench-2-plus: Benchmarking
multimodal large language models with text-rich visual comprehension,” arXiv preprint
arXiv:2404.16790, 2024.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei, “Scaling laws for neural language models,” arXiv preprint
arXiv:2001.08361, 2020.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al., “Palm: Scaling language modeling with pathways,”
Journal of Machine Learning Research, vol. 24, no. 240, pp. 1-113, 2023.

Y. Li, Y. Zhang, C. Wang, Z. Zhong, Y. Chen, R. Chu, S. Liu, and J. Jia, “Mini-gemini: Mining
the potential of multi-modality vision language models,” arXiv preprint arXiv:2403.18814,
2024.

B. Li, Y. Zhang, D. Guo, R. Zhang, F. Li, H. Zhang, K. Zhang, Y. Li, Z. Liu, and C. Li,
“Llava-onevision: Easy visual task transfer,” arXiv preprint arXiv:2408.03326, 2024.

X. Yue, T. Zheng, G. Zhang, and W. Chen, “Mammoth2: Scaling instructions from the web,”
2024.

S. Gu, J. Zhang, S. Zhou, K. Yu, Z. Xing, L. Wang, Z. Cao, J. Jia, Z. Zhang, Y. Wang, et al.,
“Infinity-mm: Scaling multimodal performance with large-scale and high-quality instruction
data,” arXiv preprint arXiv:2410.18558, 2024.

B.-K. Lee, S. Chung, C. W. Kim, B. Park, and Y. M. Ro, “Trol: Traversal of layers for large
language and vision models,” arXiv preprint arXiv:2406.12246, 2024.

B.-K. Lee, S. Chung, C. W. Kim, B. Park, and Y. M. Ro, “Phantom of latent for large language
and vision models,” arXiv preprint arXiv:2409.14713, 2024.

B.-K. Lee, B. Park, C. W. Kim, and Y. M. Ro, “Collavo: Crayon large language and vision
model,” arXiv preprint arXiv:2402.11248, 2024.

B.-K. Lee, B. Park, C. W. Kim, and Y. M. Ro, “Moai: Mixture of all intelligence for large
language and vision models,” arXiv preprint arXiv:2403.07508, 2024.

12



(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

[51]

(52]

B.-K. Lee, C. W. Kim, B. Park, and Y. M. Ro, “Meteor: Mamba-based traversal of rationale
for large language and vision models,” arXiv preprint arXiv:2405.15574, 2024.

Q. Yu, Z. Zhang, R. Zhu, Y. Yuan, X. Zuo, Y. Yue, T. Fan, G. Liu, L. Liu, X. Liu, et al., “Dapo:
An open-source llm reinforcement learning system at scale,” arXiv preprint arXiv:2503.14476,
2025.

W. Huang, B. Jia, Z. Zhai, S. Cao, Z. Ye, F. Zhao, Z. Xu, Y. Hu, and S. Lin, “Vision-r1:
Incentivizing reasoning capability in multimodal large language models,” arXiv preprint
arXiv:2503.06749, 2025.

Z. Lu, Y. Chai, Y. Guo, X. Yin, L. Liu, H. Wang, G. Xiong, and H. Li, “Ui-rl: Enhancing
action prediction of gui agents by reinforcement learning,” arXiv preprint arXiv:2503.21620,
2025.

E. Yu, K. Lin, L. Zhao, J. Yin, Y. Wei, Y. Peng, H. Wei, J. Sun, C. Han, Z. Ge, et al.,
“Perception-rl: Pioneering perception policy with reinforcement learning,” arXiv preprint
arXiv:2504.07954, 2025.

X. Liu, J. Ni, Z. Wu, C. Du, L. Dou, H. Wang, T. Pang, and M. Q. Shieh, ‘“Noisyrollout:
Reinforcing visual reasoning with data augmentation,” arXiv preprint arXiv:2504.13055, 2025.

H. Shen, P. Liu, J. Li, C. Fang, Y. Ma, J. Liao, Q. Shen, Z. Zhang, K. Zhao, Q. Zhang, et al.,
“Vlm-rl: A stable and generalizable r1-style large vision-language model,” arXiv preprint
arXiv:2504.07615, 2025.

L. Chen, L. Li, H. Zhao, Y. Song, and Vinci, “R1-v: Reinforcing super generalization ability
in vision-language models with less than $3.” https://github.com/Deep-Agent/R1-V,
2025. Accessed: 2025-02-02.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, Y. Wu, et al.,
“Deepseekmath: Pushing the limits of mathematical reasoning in open language models,” arXiv
preprint arXiv:2402.03300, 2024.

J. Ho and S. Ermon, “Generative adversarial imitation learning,” Advances in neural informa-
tion processing systems, vol. 29, 2016.

B.-K. Lee, R. Hachiuma, Y.-C. F. Wang, Y. M. Ro, and Y.-H. Wu, “Vlsi: Verbalized layers-to-
interactions from large to small vision language models,” arXiv preprint arXiv:2412.01822,
2024.

Y. Li, F. Wei, C. Zhang, and H. Zhang, “Eagle: Speculative sampling requires rethinking
feature uncertainty,” arXiv preprint arXiv:2401.15077, 2024.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved
techniques for training gans,” Advances in neural information processing systems, vol. 29,
2016.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two
time-scale update rule converge to a local nash equilibrium,” Advances in neural information
processing systems, vol. 30, 2017.

Z.Liu, Z. Sun, Y. Zang, X. Dong, Y. Cao, H. Duan, D. Lin, and J. Wang, “Visual-rft: Visual
reinforcement fine-tuning,” arXiv preprint arXiv:2503.01785, 2025.

A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow, A. Welihinda,
A. Hayes, A. Radford, et al., “Gpt-4o system card,” arXiv preprint arXiv:2410.21276, 2024.

G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M.
Dai, A. Hauth, et al., “Gemini: a family of highly capable multimodal models,” arXiv preprint
arXiv:2312.11805, 2023.

Anthropic, “The claude 3 model family: Opus, sonnet, haiku.” https://www.anthropic,
com, 2024.

13


https://github.com/Deep-Agent/R1-V
https://www.anthropic.com
https://www.anthropic.com

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

M. Deitke, C. Clark, S. Lee, R. Tripathi, Y. Yang, J. S. Park, M. Salehi, N. Muennighoff,
K. Lo, L. Soldaini, et al., “Molmo and pixmo: Open weights and open data for state-of-the-art
multimodal models,” arXiv preprint arXiv:2409.17146, 2024.

W. Dai, N. Lee, B. Wang, Z. Yang, Z. Liu, J. Barker, T. Rintamaki, M. Shoeybi, B. Catanzaro,
and W. Ping, “NvIim: Open frontier-class multimodal 1lms,” arXiv preprint, 2024.

Z.Zong, B. Ma, D. Shen, G. Song, H. Shao, D. Jiang, H. Li, and Y. Liu, “Mova: Adapting
mixture of vision experts to multimodal context,” arXiv preprint arXiv:2404.13046, 2024.

M. Shi, FE. Liu, S. Wang, S. Liao, S. Radhakrishnan, D.-A. Huang, H. Yin, K. Sapra, Y. Yacoob,
H. Shi, et al., “Eagle: Exploring the design space for multimodal Ilms with mixture of encoders,”
arXiv preprint arXiv:2408.15998, 2024.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and 1. Sutskever, “Learning transferable visual models
from natural language supervision,” in Proceedings of the 38th International Conference
on Machine Learning (M. Meila and T. Zhang, eds.), vol. 139 of Proceedings of Machine
Learning Research, pp. 8748-8763, PMLR, 18-24 Jul 2021.

S. Woo, S. Debnath, R. Hu, X. Chen, Z. Liu, I. S. Kweon, and S. Xie, “Convnext v2: Co-
designing and scaling convnets with masked autoencoders,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16133-16142, 2023.

M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,
D. Haziza, F. Massa, A. El-Nouby, et al., “Dinov2: Learning robust visual features without
supervision,” arXiv preprint arXiv:2304.07193, 2023.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, et al., “Segment anything,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 4015-4026, 2023.

Y. Peng, G. Zhang, M. Zhang, Z. You, J. Liu, Q. Zhu, K. Yang, X. Xu, X. Geng, and X. Yang,
“Lmm-rl: Empowering 3b Imms with strong reasoning abilities through two-stage rule-based
rl,” arXiv preprint arXiv:2503.07536, 2025.

Y. Deng, H. Bansal, F. Yin, N. Peng, W. Wang, and K.-W. Chang, “Openvlthinker: An
early exploration to complex vision-language reasoning via iterative self-improvement,” arXiv
preprint arXiv:2503.17352, 2025.

Y. Yang, X. He, H. Pan, X. Jiang, Y. Deng, X. Yang, H. Lu, D. Yin, F. Rao, M. Zhu, et al., “R1-
onevision: Advancing generalized multimodal reasoning through cross-modal formalization,”
arXiv preprint arXiv:2503.10615, 2025.

H. Zhou, X. Li, R. Wang, M. Cheng, T. Zhou, and C.-J. Hsieh, “R1-zero’s" aha moment" in
visual reasoning on a 2b non-sft model,” arXiv preprint arXiv:2503.05132, 2025.

F. Meng, L. Du, Z. Liu, Z. Zhou, Q. Lu, D. Fu, T. Han, B. Shi, W. Wang, J. He, et al.,
“Mm-eureka: Exploring the frontiers of multimodal reasoning with rule-based reinforcement
learning,” arXiv preprint arXiv:2503.07365, 2025.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A survey of learning
methods,” ACM Computing Surveys (CSUR), vol. 50, no. 2, pp. 1-35, 2017.

W. Yu, Z. Yang, L. Ren, L. Li, J. Wang, K. Lin, C.-C. Lin, Z. Liu, L. Wang, and X. Wang,
“Mm-vet v2: A challenging benchmark to evaluate large multimodal models for integrated
capabilities,” arXiv preprint arXiv:2408.00765, 2024.

O. Contributors, “Opencompass: A universal evaluation platform for foundation models.”
https://github.com/open-compass/opencompass, 2023.

Z. Chen, J. Wu, W. Wang, W. Su, G. Chen, S. Xing, Z. Muyan, Q. Zhang, X. Zhu, L. Lu, et al.,
“Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks,”
arXiv preprint arXiv:2312.14238, 2023.

14


https://github.com/open-compass/opencompass

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(87]

Y. Yao, T. Yu, A. Zhang, C. Wang, J. Cui, H. Zhu, T. Cai, H. Li, W. Zhao, Z. He, et al.,
“Minicpm-v: A gpt-4v level mllm on your phone,” arXiv preprint arXiv:2408.01800, 2024.

S. Lu, Y. Li, Q.-G. Chen, Z. Xu, W. Luo, K. Zhang, and H.-J. Ye, “Ovis: Structural embedding
alignment for multimodal large language model,” arXiv:2405.20797, 2024.

M. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah, H. Awadalla, N. Bach, A. Bahree,
A. Bakhtiari, H. Behl, ef al., “Phi-3 technical report: A highly capable language model locally
on your phone,” arXiv preprint arXiv:2404.14219, 2024.

A. Abouelenin, A. Ashfaq, A. Atkinson, H. Awadalla, N. Bach, J. Bao, A. Benhaim, M. Cai,
V. Chaudhary, C. Chen, et al., “Phi-4-mini technical report: Compact yet powerful multimodal
language models via mixture-of-loras,” arXiv preprint arXiv:2503.01743, 2025.

OpenAl, “Gpt-4v(ision) system card,” 2023. https://openai.com/research/
gpt-4v-system-card, Last accessed on 2024-02-13.

Y. Gu, L. Dong, F. Wei, and M. Huang, “Minillm: Knowledge distillation of large language
models,” in The Twelfth International Conference on Learning Representations, 2024.

J. Ko, S. Kim, T. Chen, and S.-Y. Yun, “Distillm: Towards streamlined distillation for large
language models,” arXiv preprint arXiv:2402.03898, 2024.

Y. Cai, J. Zhang, H. He, X. He, A. Tong, Z. Gan, C. Wang, and X. Bai, “Llava-kd: A framework
of distilling multimodal large language models,” arXiv preprint arXiv:2410.16236, 2024.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv
preprint arXiv:1503.02531, 2015.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica,
“Efficient memory management for large language model serving with pagedattention,” in
Proceedings of the 29th Symposium on Operating Systems Principles, pp. 611-626, 2023.

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory optimizations toward
training trillion parameter models,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-16, IEEE, 2020.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Confer-
ence on Learning Representations, 2019.

Z. Liu, L. Zhu, B. Shi, Z. Zhang, Y. Lou, S. Yang, H. Xi, S. Cao, Y. Gu, D. Li, et al., “Nvila:
Efficient frontier visual language models,” arXiv preprint arXiv:2412.04468, 2024.

S. Singh, A. Yadav, J. Jain, H. Shi, J. Johnson, and K. Desai, “Benchmarking object detectors
with coco: A new path forward,” in European Conference on Computer Vision, pp. 279-295,
Springer, 2024.

G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona, and
S. Belongie, “The inaturalist species classification and detection dataset,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 8769-8778, 2018.

Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, “Making the V in VQA matter:
Elevating the role of image understanding in Visual Question Answering,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

Z.Li, X. Wang, E. Stengel-Eskin, A. Kortylewski, W. Ma, B. Van Durme, and A. L. Yuille,
“Super-clevr: A virtual benchmark to diagnose domain robustness in visual reasoning,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14963—

14973, 2023.
R. Zhang, X. Wei, D. Jiang, Y. Zhang, Z. Guo, C. Tong, J. Liu, A. Zhou, B. Wei, S. Zhang,
et al., “Mavis: Mathematical visual instruction tuning,” arXiv e-prints, pp. arXiv—2407, 2024.

15


https://openai.com/research/gpt-4v-system-card
https://openai.com/research/gpt-4v-system-card

[88] P. Lu, R. Gong, S. Jiang, L. Qiu, S. Huang, X. Liang, and S.-C. Zhu, “Inter-gps: Interpretable
geometry problem solving with formal language and symbolic reasoning,” in The 59th Annual
Meeting of the Association for Computational Linguistics (ACL), 2021.

[89] P.Lu, S. Mishra, T. Xia, L. Qiu, K.-W. Chang, S.-C. Zhu, O. Tafjord, P. Clark, and A. Kalyan,
“Learn to explain: Multimodal reasoning via thought chains for science question answering,”
Advances in Neural Information Processing Systems, vol. 35, pp. 2507-2521, 2022.

[90] Y. Zhang, R. Zhang, J. Gu, Y. Zhou, N. Lipka, D. Yang, and T. Sun, “Llavar: Enhanced visual
instruction tuning for text-rich image understanding,” arXiv preprint arXiv:2306.17107, 2023.

[91] F. Liu, G. Emerson, and N. Collier, “Visual spatial reasoning,” Transactions of the Association
for Computational Linguistics, vol. 11, pp. 635-651, 2023.

[92] M. Acharya, K. Kafle, and C. Kanan, “Tallyqa: Answering complex counting questions,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 8076-8084, 2019.

[93] P. Lu, L. Qiu, K.-W. Chang, Y. N. Wu, S.-C. Zhu, T. Rajpurohit, P. Clark, and A. Kalyan,
“Dynamic prompt learning via policy gradient for semi-structured mathematical reasoning,”
arXiv preprint arXiv:2209.14610, 2022.

[94] V. Hosu, H. Lin, T. Sziranyi, and D. Saupe, “Konig-10k: An ecologically valid database for
deep learning of blind image quality assessment,” IEEE Transactions on Image Processing,
vol. 29, pp. 40414056, 2020.

[95] W. Wang, Z. Chen, W. Wang, Y. Cao, Y. Liu, Z. Gao, J. Zhu, X. Zhu, L. Lu, Y. Qiao, et al.,
“Enhancing the reasoning ability of multimodal large language models via mixed preference
optimization,” arXiv preprint arXiv:2411.10442, 2024.

[96] T. Yu, H. Zhang, Y. Yao, Y. Dang, D. Chen, X. Lu, G. Cui, T. He, Z. Liu, T.-S. Chua, et al.,
“Rlaif-v: Aligning mllms through open-source ai feedback for super gpt-4v trustworthiness,”
arXiv preprint arXiv:2405.17220, 2024.

[97] A. D. Lindstrom and S. S. Abraham, “Clevr-math: A dataset for compositional language,
visual and mathematical reasoning,” arXiv preprint arXiv:2208.05358, 2022.

[98] Z. Huang, K. Chen, J. He, X. Bai, D. Karatzas, S. Lu, and C. Jawahar, “Icdar2019 competition
on scanned receipt ocr and information extraction,” in 2019 International Conference on
Document Analysis and Recognition (ICDAR), pp. 1516-1520, IEEE, 2019.

[99] M. Mathew, D. Karatzas, and C. Jawahar, “Docvqa: A dataset for vqa on document images,” in
Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 2200—
2209, 2021.

[100] S.E. Kahou, V. Michalski, A. Atkinson, A. Kadar, A. Trischler, and Y. Bengio, “Figureqa: An
annotated figure dataset for visual reasoning,” arXiv preprint arXiv:1710.07300, 2017.

[101] D. A. Hudson and C. D. Manning, “Gqga: A new dataset for real-world visual reasoning and
compositional question answering,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700-6709, 2019.

[102] M. Mathew, V. Bagal, R. Tito, D. Karatzas, E. Valveny, and C. Jawahar, “Infographicvqa,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp- 1697-1706, 2022.

[103] Q. Chen, L. Qin, J. Zhang, Z. Chen, X. Xu, and W. Che, “M3cot: A novel benchmark for
multi-domain multi-step multi-modal chain-of-thought,” in Proc. of ACL, 2024.

[104] S. Chang, D. Palzer, J. Li, E. Fosler-Lussier, and N. Xiao, “Mapqa: A dataset for question
answering on choropleth maps,” arXiv preprint arXiv:2211.08545, 2022.

[105] K. Marino, M. Rastegari, A. Farhadi, and R. Mottaghi, “Ok-vqa: A visual question answering
benchmark requiring external knowledge,” in Proceedings of the IEEE/cvf conference on
computer vision and pattern recognition, pp. 3195-3204, 2019.

16



[106] A. Singh, V. Natarajan, M. Shah, Y. Jiang, X. Chen, D. Batra, D. Parikh, and M. Rohrbach,
“Towards vgqa models that can read,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8317-8326, 2019.

[107] Y. Lu, D. Jiang, W. Chen, W. Y. Wang, Y. Choi, and B. Y. Lin, “Wildvision: Evaluating vision-
language models in the wild with human preferences,” arXiv preprint arXiv:2406.11069,
2024.

[108] K. Kafle, B. Price, S. Cohen, and C. Kanan, “Dvqa: Understanding data visualizations via
question answering,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5648-5656, 2018.

[109] J. Cao and J. Xiao, “An augmented benchmark dataset for geometric question answering
through dual parallel text encoding,” in Proceedings of the 29th international conference on
computational linguistics, pp. 1511-1520, 2022.

[110] M. Seo, H. Hajishirzi, A. Farhadi, O. Etzioni, and C. Malcolm, “Solving geometry prob-
lems: Combining text and diagram interpretation,” in Proceedings of the 2015 conference on
empirical methods in natural language processing, pp. 1466—1476, 2015.

[111] P. Lu, L. Qiu, J. Chen, T. Xia, Y. Zhao, W. Zhang, Z. Yu, X. Liang, and S.-C. Zhu, “Iconqa:
A new benchmark for abstract diagram understanding and visual language reasoning,” arXiv
preprint arXiv:2110.13214, 2021.

[112] J. Chen, T.Li, J. Qin, P. Lu, L. Lin, C. Chen, and X. Liang, “Unigeo: Unifying geometry logical
reasoning via reformulating mathematical expression,” arXiv preprint arXiv:2212.02746, 2022.

[113] M. Kazemi, H. Alvari, A. Anand, J. Wu, X. Chen, and R. Soricut, “Geomverse: A systematic
evaluation of large models for geometric reasoning,” arXiv preprint arXiv:2312.12241, 2023.

[114] J. Gao, R. Pi, J. Zhang, J. Ye, W. Zhong, Y. Wang, L. Hong, J. Han, H. Xu, Z. Li, et al.,
“G-llava: Solving geometric problem with multi-modal large language model,” arXiv preprint
arXiv:2312.11370, 2023.

[115] W. Shi, Z. Hu, Y. Bin, J. Liu, Y. Yang, S.-K. Ng, L. Bing, and R. K.-W. Lee, “Math-llava:
Bootstrapping mathematical reasoning for multimodal large language models,” arXiv preprint
arXiv:2406.17294, 2024.

[116] e. a. Yunxin Li, “Cognitive visual-language mapper: Advancing multimodal comprehension
with enhanced visual knowledge alignment,” Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics, 2024.

[117] Y. Chen, H. Hu, Y. Luan, H. Sun, S. Changpinyo, A. Ritter, and M.-W. Chang, “Can pre-trained
vision and language models answer visual information-seeking questions?,” arXiv preprint
arXiv:2302.11713,2023.

[118] X. Huang, Y.-J. Huang, Y. Zhang, W. Tian, R. Feng, Y. Zhang, Y. Xie, Y. Li, and L. Zhang,
“Open-set image tagging with multi-grained text supervision,” arXiv preprint arXiv:2310.15200,
2023.

[119] B.-K. Lee, J. Kim, and Y. M. Ro, “Masking adversarial damage: Finding adversarial saliency
for robust and sparse network,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15126-15136, 2022.

[120] J. Kim, B.-K. Lee, and Y. M. Ro, “Distilling robust and non-robust features in adversarial
examples by information bottleneck,” Advances in Neural Information Processing Systems,
vol. 34, pp. 17148-17159, 2021.

[121] J. Kim, B.-K. Lee, and Y. M. Ro, “Demystifying causal features on adversarial examples
and causal inoculation for robust network by adversarial instrumental variable regression,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12302-12312, 2023.

17



[122] B.-K. Lee, Y. Yu, and Y. M. Ro, “Towards adversarial robustness of bayesian neural network
through hierarchical variational inference,” 2021.

[123] B.-K. Lee, R. Hachiuma, Y. M. Ro, Y.-C. F. Wang, and Y.-H. Wu, “Genrecal: Generation after
recalibration from large to small vision-language models,” arXiv preprint arXiv:2506.15681,
2025.

18



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and Introduction section, and Figure 1-2
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussion and Limitation section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There are no theoretical formulations that need to be proved.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Experiment section and Appendix C
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]

Justification: Dataset is all open-source, but the code and the model checkpoints will be
open once it is accepted.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experiment section and Appendix C
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experiment section and Appendix C
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have read all materials regarding the NeurIPS code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix D
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: N/A
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Method, Experiment section, Appendix C
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Experiment Section and Appendix C
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: N/A
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: N/A
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Algorithm of RL only with Answer Rewards from LLM-as-a-Judge

Algorithm 1 RL purely with GRPO or Dr.GRPO based on accuracy rewards from LLM-as-a-Judge

Require: Pre-trained VLMS 7y, ,
1: Set reference model 7 < 7o,
2: Set the training model g < g,
3: for sample a batch B in Dataset do
Copy and freeze model 7y, < g

4 old
5. Sample G outputs {0;}&, ~ 7y, (:|q) for each question q € B

6:  Compute Rewards and Advantages for all G outputs by LLM-as-a-Judge
7. for VLMs Updating iteration = 1,2, --- , 4 do

8 Update my by using the objective of GRPO [43]] or Dr.GRPO [8§]

9:  end for

0:

10: end for

B Algorithm of RIL for VLMs

Algorithm 2 RIL for VLMs

Require: Pre-trained discriminator Dy and Pre-trained student VLMs g,

Require: Saved collection for the generated text responses {0(1)} from teacher VLMs
1: Set reference model 7 < g,
2: Set the training model g < 7y,
3: for sample a batch B in Dataset do

Copy and freeze model 7y, < 7

Sample G outputs {ogs) & | ~ mg,,(|q) for each question ¢ € B

old

Extract G outputs {ogt)}le in the saved collection for each question g € B
for Discriminator Updating iteration = 1,2, --- , 1 do
Update Dy by using Equation I]
9:  end for
10:  Compute Rewards and Advantages for all 2G outputs by Discriminator and LLM-as-a-Judge
11:  for Student VLMs Updating iteration = 1,2, --- | u do

A A

12: Update 7y by using Equation 2]
13:  end for
14: end for

C Implementation Detail

Details of Training and Evaluation. We train and evaluate RIL, mainly on NVIDIA A100 80GB
GPUs. Because it is practically critical point to get fast text generation during training, we utilize
vLLM [79] built on PagedAttention. For the pre-training step of discriminator, we assign VLLM [79]
to 8 GPUs for fast text generation, and we generate N=16 text responses for each question at student
and teacher VLM, respectively. Once it is finished, we use DeepSpeed engine with ZeRO-3 [80] for
8 GPUs, and we use AdamW optimizer [81] and apply a linearly decayed learning rate from le-5
to le-6 to pre-training discriminator and SFT of student VLMs. In subsequent step, when training
both discriminator and student VLMs, one of 8 GPUs is assigned to conduct online generation
of student VLMs by vLLM [79]. In addition, another GPU is assigned to conduct LLM-as-a-
Judge [9]] by vLLM [79]. The other 6 GPUs are assigned to use DeepSpeed engine with ZeRO-3 [80Q].
Mimicking step requires static learning rate le-6 and p=1 iteration to train both student VLMs and
the discriminator. Note that, when we generate text responses, we generate G=4 responses for each
question, by setting temperature to 1.0, top-p to 0.95, top-k to 50, and repetition penalty to 1.05,
in order to get diverse text responses. For stable training, we handle large batch sizes by using
gradient accumulation with 6 steps. At every step, we use 4 batches per one GPU, leading to total
144 batches. For evaluation, we use distributed data parallel to load student VLMs for all 8 GPUs and
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score the correctness or generation quality of their text responses by using their default generation
hyperparameter.

Computational Cost. Compared to GRPO [43]], RIL requires increased computational costs during
training due to teacher, student, discriminator, and LLM-as-a-Judge [9]]. However, we would like
to emphasize that discriminator and student costs can be at least mitigated. While pretraining the
discriminator is a necessary step and cannot be avoided from a computational standpoint, we can
reduce training costs of discriminator and student during the RIL loop (Algorithm [2)) by managing
model weights efficiently between CPU and GPU. Specifically, we offload the weights of the
discriminator and student to the CPU when they are not in use. When needed, we load the appropriate
weights from the CPU to the GPU using DeepSpeed API [80]]. This allows us to load or unload model
weights without uploading both architecture to GPU, thereby minimizing computational overhead.
This approach is feasible because we use the same model architecture for both the discriminator and
student, enabling seamless weight replacement and resource-efficient training.

Visual Instruction Tuning Dataset. We assemble a 4M-sample visual instruction tuning dataset
that encompasses a diverse array of vision-language tasks, including general visual question answer-
ing, dense image captioning, chart, diagram, and document understanding, common-sense knowledge,
scientific and mathematical problem-solving, and multidimensional reasoning. For SFT, we utilize
the entire 4M-sample dataset, and then we curate a 40K-sample dataset for RIL of VLMs based
on log-probability sampling [82] and overlong filtering [36]]. Our dataset integrates both real-world
and synthetic sources: COCO-ReM [83]], iNaturalist2018 [84], VQA-v2 [85]], Super-CLEVR [86],
MAVIS [87], Geometry3K [88]], SQA [89], AI2D (2], SA-1B [60], LLaVAR [90]], VSR [91]], Tal-
IyQA [92], TabMWP [93]], KonlQ [94], InternVL [95]-filtered synthetic knowledge dataset covering
politics, math, physics, chemistry, RLAI-F [96], CLEVR-Math [97], SROIE [98], ChartQA [19],
DocVQA [99]], FigureQA [100], GQA [101], InfoVQA [102], M3CoT [103]], MapQA [104],
OK-VQA [105]], TextVQA [106], WildVision [107], DVQA [108], GeoQA+ [109]], GeOS [110],
IconQA [111], UniGEO [112], GeomVerse [[113]], Geo170K [114], MathV360K [115]], multimodal
wikipedia knowledge [116]], InfoSeek [[117], and RAM++ [[L18]-filtered synthetic data of Infinity-
MM [30] covering coarse and fine-grained perception, relation, attribute, and logic reasoning.

D Broader Impacts

Our reinforcement and imitation learning (RIL) approach democratises access to advanced vi-
sion—language capabilities by enabling lightweight, efficient models to run on edge devices and in
low-resource settings—thereby lowering both deployment costs and environmental impact. RIL
fosters seamless interoperability across diverse model architectures and tokenization schemes. The
use of multiple large teacher VLMs to generate varied training samples further accelerates perfor-
mance gains, underscoring the value of collaborative model development. We believe RIL will inspire
future research into efficient multimodal learning techniques and support the widespread, sustainable
adoption of lightweight [[119] and robust [120H122]] AI solutions across a broad range of applications
even with different tokenizers [123]. We hope that by bridging efficiency and performance, RIL
become a landscape of building sophisticated multimodal Al technologies and accelerating innovation
across industries and academia.
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