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Abstract001

The ability to comprehend human emotion002
using multimodal large language models003
(MLLMs) is essential for advancing human-AI004
interaction and multimodal sentiment analysis.005
While psychology theory-based human annota-006
tions have contributed to multimodal emotion007
tasks, the subjective nature of emotional percep-008
tion often leads to inconsistent annotations, lim-009
iting the robustness of current models. Address-010
ing these challenges requires more fine-grained011
methods and evaluation frameworks. In this pa-012
per, we propose the Retrieval-Augmented Emo-013
tion Reasoning (RAER) framework, a plug-and-014
play module that enhances MLLMs’ ability015
to tackle compound and context-rich emotion016
tasks. To systematically evaluate model perfor-017
mance, we introduce the Stimulus-Armed Ban-018
dit (SAB) framework, designed to benchmark019
emotional reasoning capabilities. Addition-020
ally, we construct the Compound Emotion QA021
dataset, an AI-generated multimodal dataset022
aimed at strengthening emotion understanding023
in MLLMs. Experimental results demonstrate024
the effectiveness of RAER across both tradi-025
tional benchmarks and SAB evaluations, high-026
lighting its potential to enhance emotional in-027
telligence in multimodal AI systems.028

1 Introduction029

Emotion is a multifaceted phenomenon encom-030

passing subjective experiences, physiological re-031

sponses, and context-dependent behaviors, shaped032

by both internal states and external stimuli. Emo-033

tions play a critical role in human cognition and034

interaction, influencing decision-making, directing035

attention, and shaping social relationships. Their036

complexity and impact underscore the significance037

of emotions as a core component of human experi-038

ence and behavior.039

Recent advancements in neural network meth-040

ods have highlighted the effectiveness of special-041

ized models for emotion tasks. These models,042

Figure 1: Overall of our proposed method and evalua-
tion framework, where the Retrieval-Augmented Emo-
tion Reasoning (RAER) method is introduced as a plug-
and-play module to enhance the capability of MLLMs
in handling compound and ambiguous emotions. The
Stimulus-Armed Bandit (SAB) evaluation framework is
used to assess the model’s emotional capabilities, espe-
cially for tasks that are difficult to quantify.

which predict labels within a constrained range, 043

have achieved impressive performance, particu- 044

larly in tasks such as Dynamic Facial Emotion 045

Recognition (DFER) (Tran et al., 2015; Wang et al., 046

2023; Ghaleb et al., 2019) and Multimodal Emo- 047

tion Recognition (MER) (Tsai et al., 2019; Haz- 048

arika et al., 2020; Zadeh et al., 2018). 049

However, widely adopted annotation standards 050

within a constrained range—such as the “Big 051

Six” discrete label system (Ekman, 1992) and the 052

VAD (Valence-Arousal-Dominance) dimensional 053

label system (Russell and Mehrabian, 1977)—have 054

proven effective in capturing emotional expres- 055

sion, they may not fully align with the more nu- 056

anced emotional interactions required for AI sys- 057

tems, particularly in the era of large models that 058

demand more human-like interaction for emotion- 059

related tasks. To address these limitations, ap- 060

proaches based on multimodal large language mod- 061
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els (MLLMs) have emerged (Lian et al., 2024c;062

Cheng et al., 2024a). Tasks such as Multimodal063

Empathetic Response Generation (MERG) (Zhang064

et al., 2024a) and other emotion-related tasks065

(Zheng et al., 2024; Sabour et al., 2024; Plaza066

Del Arco et al., 2024) have shown strong perfor-067

mance on MLLMs, with excellent generalization068

capabilities. Despite these advancements, signifi-069

cant challenges remain in handling compound and070

ambiguous emotions, especially in tasks involving071

compound and context-rich emotional scenarios.072

In this paper, as shown in Figure 2, we draw in-073

spiration from recent advances in preference-based074

learning methods—such as Reinforcement Learn-075

ing with Human Feedback (RLHF) (Stiennon et al.,076

2022), Reinforcement Learning from AI Feedback077

(RLAIF) (Bai et al., 2022), Direct Preference Op-078

timization (DPO) (Rafailov et al., 2024), and In-079

verse Preference Optimization (IPO) (Huang et al.,080

2024b)—to explore a more fluid and subjective081

approach to evaluating emotion tasks. However,082

a major challenge in constructing emotion prefer-083

ence datasets lies in the labor-intensive process of084

manually drafting labels, which is not only time-085

consuming but also prone to inconsistencies. These086

inconsistencies arise from both variations in linguis-087

tic descriptions and differences in human prefer-088

ences, making it difficult to disentangle the specific089

preference signals required for AI model training090

(Lian et al., 2024a; Cheng et al., 2024a).091

As shown in figure.1. Instead of relying on man-092

ually curated label drafts and preference annota-093

tions, we propose a Retrieval-Augmented Emo-094

tion Reasoning (RAER) Framework, a RAG-based095

module that integrates chain-of-thought (CoT) rea-096

soning. RAER can be easily applied to MLLMs,097

enhancing their emotional reasoning and general-098

ization capabilities to tackle compound emotional099

scenarios. To evaluate MLLMs’ emotional task100

capabilities and gather human preferences, we in-101

troduce the Stimulus-Armed Bandit (SAB) Evalua-102

tion Framework, which uses AI-generated stimuli103

to test a broad range of emotion tasks. This ap-104

proach not only collects human preferences but105

also benchmarks model performance in dynamic106

and compound emotional contexts. By combining107

RAER-generated responses with SAB-collected108

human preferences, we construct the Compound109

Emotion QA Dataset, a multimodal dataset that110

captures nuanced emotional reasoning aligned with111

human preferences. This methodology bridges the112

gap between traditional emotion recognition and113

Figure 2: In linguistic contexts, the expression of human
emotions is inherently open-ended, suggesting that label
systems with predefined boundaries are limited in the
context of large models. To enhance the emotional
capabilities of these models, it is essential to adopt more
human-like, nuanced approaches that allow for a broader
range of emotional expression.

more compound emotional reasoning, offering a 114

scalable and preference-aligned solution to advance 115

emotional intelligence in MLLMs. 116

Main Contributions. The major contributions 117

of this work are summarized as follows: 118

• Emotion Reasoning RAG: We propose a 119

retrieval-augmented framework, Retrieval- 120

Augmented Emotion Reasoning (RAER), 121

which incorporates a chain-of-emotion reason- 122

ing approach to enhance MLLMs’ capability 123

in addressing compound emotional tasks. 124

• Stimulus-Armed Bandit (SAB) Evaluation 125

Framework: We introduce the SAB frame- 126

work to systematically evaluate MLLMs’ per- 127

formance in compound emotional scenarios. 128

• Compound Emotion QA: We construct a 129

multimodal QA dataset that includes com- 130

pound emotion tasks, designed to enhance the 131

compound emotional capabilities of MLLMs. 132

2 Related Work 133

2.1 Multimodal Emotion Recognition 134

Multimodal Emotion Recognition (MER) aims to 135

improve emotion detection by integrating multiple 136

modalities. With the rise of neural network-based 137

methods, advanced modality fusion networks have 138
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been proposed (Tsai et al., 2019; Hazarika et al.,139

2020; Zadeh et al., 2018), leading to significant140

improvements in MER. However, challenges such141

as high dataset labeling costs and task-specific net-142

work architectures still hinder the models’ general-143

ization in real-world scenarios.144

The development of MLLMs has shown promis-145

ing improvements in MER. These models, leverag-146

ing large-scale pretraining on diverse multimodal147

data, demonstrate enhanced generalization capabil-148

ities in emotion tasks (Lian et al., 2024c; Cheng149

et al., 2024a), surpassing traditional approaches in150

terms of flexibility and adaptability.151

Moreover, the ongoing expansion of multimodal152

emotion recognition benchmarks and datasets has153

contributed significantly to this progress (Sabour154

et al., 2024; Lian et al., 2024c). These resources al-155

low for more comprehensive evaluations of MLM-156

based models, supporting more accurate emotion157

detection and better alignment with real-world ap-158

plications.159

2.2 Multimodal Empathetic Response160

Generation161

Multimodal empathetic response generation aims162

to enable machines to not only understand human163

emotions but also respond empathetically across164

various modalities. While Large Language Models165

(LLMs) (Zhang et al., 2024a; Yang et al., 2024),166

have shown potential in generating empathetic re-167

sponses from textual inputs, incorporating addi-168

tional modalities such as voice tone, facial expres-169

sions, and body language remains an ongoing chal-170

lenge. Furthermore, the subjective nature of em-171

pathy complicates the evaluation process, making172

it difficult to define consistent and reliable metrics173

for assessing the quality of empathetic responses174

(Wu et al., 2024). These challenges emphasize the175

need for further research into better integration of176

multimodal data to enhance the emotional depth177

and reliability of empathetic response generation178

systems.179

2.3 Retrieval-Augmented Generation180

Retrieval-Augmented Generation (RAG) has181

proven effective in enhancing generative models’182

ability to generalize across tasks by incorporat-183

ing external knowledge, such as in Text-to-3D184

(Seo et al., 2024) and Protein Molecule Generation185

(Huang et al., 2024d). In emotion-related tasks,186

RAG has been used to improve response genera-187

tion by dynamically retrieving emotionally relevant188

data to refine models’ outputs (Huang et al., 2024a; 189

Liu et al., 2024). These approaches have been ap- 190

plied in areas like emotional agent (Huang et al., 191

2024a) and Empathetic response generation(ERC) 192

(Huang et al., 2024c), where diverse emotional cues 193

enhance performance. 194

Building on these methods, our work extends 195

RAG to compound emotion tasks by incorporating 196

contextual emotional knowledge from multimodal 197

sources. This approach improves emotion recog- 198

nition and generation by using dynamic, context- 199

driven retrieval, enabling more flexible and em- 200

pathetic models that can handle a wider range of 201

emotional scenarios. 202

3 Retrieval-Augmented Emotion 203

Reasoning 204

Emotional reasoning refers to the process of de- 205

riving conclusions based on emotional responses, 206

even when empirical evidence may suggest other- 207

wise. This concept has proven effective in large 208

models for addressing compound emotion-related 209

tasks (Lian et al., 2023), particularly those involv- 210

ing ambiguous or context-dependent emotional 211

content. Building on this foundation, as shown in 212

Figure 3, we propose Retrieval-Augmented Emo- 213

tion Reasoning (RAER), a framework designed 214

to enhance multimodal large language models 215

(MLLMs) by integrating emotional reasoning into 216

a structured chain-of-thought (CoT) process (Wei 217

et al., 2023). 218

3.1 Building the Emotional Knowledge Base 219

A cornerstone of RAER is the emotional knowl- 220

edge base, which serves as the foundation for re- 221

trieval during the reasoning process. Initially, the 222

knowledge base is constructed from multimodal 223

emotion datasets, encoding diverse inputs such 224

as facial expression animations, emotional audio 225

clips, and human/AI-generated emotional descrip- 226

tions. Each sample is transformed into a high- 227

dimensional vector embedding, enriched with de- 228

tailed emotional annotations, enabling efficient 229

similarity-based retrieval to support the reasoning 230

process. As RAER engages in iterative reason- 231

ing tasks, the knowledge base evolves through the 232

addition of high-confidence samples generated dur- 233

ing the reasoning process. This dynamic updat- 234

ing mechanism not only enhances the diversity of 235

the knowledge base but also improves its ability 236

to provide contextually relevant emotional refer- 237
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Figure 3: Overall of the RAER architecture, where a multimodal prompt is input into the model. RAER searches for
the most similar content in the vector database, incorporating the Emotion Reasoning CoT process to validate the
emotional consistency of the model’s response. After ensuring emotional coherence, the model generates the final
output.

ences. By combining curated data from traditional238

datasets with newly derived samples, the emotional239

knowledge base becomes a continuously expand-240

ing resource, progressively strengthening RAER’s241

capacity for compound and nuanced emotional rea-242

soning.243

3.2 Guiding Emotion Reasoning with244

Chain-of-Thought245

The RAER framework leverages a CoT reasoning246

mechanism to guide MLLMs through emotional247

reasoning tasks. This structured approach allows248

models to process compound emotional inputs step249

by step, identifying uncertainties or ambiguities250

within generated captions or descriptions. These251

challenges often arise in scenarios involving over-252

lapping or conflicting emotional cues. To address253

them, RAER incorporates retrieval-based augmen-254

tation, enabling models to draw upon contextually255

relevant emotional information retrieved from an256

external knowledge base.257

3.3 Enhancing Emotional Reasoning with258

Retrieval259

Incorporating retrieval into the reasoning process260

allows RAG to refine the model’s understanding of261

compound emotions. For example, when a caption262

reflects emotional ambiguity, the framework re-263

trieves similar examples from the emotional knowl-264

edge base, along with their associated emotional265

descriptions. By grounding its reasoning in these266

examples, RAER enables the model to refine its267

understanding, disambiguate emotional cues, and268

generate more accurate and contextually appropri- 269

ate inferences. 270

Algorithm 1 Retrieval-Augmented Emotion Rea-
soning (RAER)
Input: Task prompt I , multimodal input X (e.g.,
video, audio, text), knowledge base K, MLLM fθ
Output: Refined reasoning outputs {yt}Tt=1

1: Generate initial response: Y = fθ(I,X)
2: Segment reasoning steps: {yi}Ti=1 =

Segment(fAnalyze(Y ))
3: for t = 1 to T do
4: Retrieve context: R(yt−1) =

Retrieve(K,Sim(yt−1,K))
5: if Detect(yt, R(yt−1)) is ambiguous then
6: Generate reasoning step: yt =

fCoT(yt, R(yt))
7: end if
8: end for
9: if Uncertainty(yt) ≤ ϵ then

10: Update knowledge base: K ← K ∪
{(X, {yt}Tt=1)}

11: end if
12: Return: Refined reasoning steps {yt}Tt=1

Through RAER, we enhance MLLMs’ zero-shot 271

capabilities for handling emotion tasks. However, 272

to further improve model performance with human 273

feedback, we need precise human preference sig- 274

nals and a method to evaluate generative models’ 275

performance on emotion tasks in open-ended lan- 276

guage contexts. To address this, we designed the 277

Stimulus-Armed Bandit(SAB) framework. 278
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4 Stimulus-Armed Bandit279

The Stimulus-Armed Bandit (SAB) framework280

is a novel evaluation method designed to assess281

the compound emotion capabilities of multimodal282

large language models (MLLMs). The name is in-283

spired by the classic multi-armed bandit optimiza-284

tion problem, as emotion tasks similarly involve285

balancing between different emotional responses.286

SAB introduces a preference-based ranking system287

that combines multimodal stimuli with emotion288

tasks. Through pairwise comparisons, SAB dy-289

namically ranks models based on their emotional290

reasoning, while also collecting human preferences291

and corresponding task labels.292

The SAB framework integrates three key com-293

ponents to enable comprehensive and scalable eval-294

uation:295

(1) Stimulus Generation, which produces multi-296

modal triggers to elicit emotional responses;297

(2) Task Formulation, which combines stimuli298

with emotion-related downstream tasks to create299

diverse evaluation challenges; and300

(3) Ranking Mechanism, which utilizes an elo-301

based scoring system to dynamically adjust model302

rankings based on their comparative performance.303

4.1 Stimulus Generation and Task304

Formulation305

Stimulus Generation. Stimuli serve as the core306

of the SAB framework, functioning as controlled307

triggers designed to evoke specific emotional and308

cognitive responses. To achieve this, single or mul-309

tiple emotion-neutral keywords are randomly sam-310

pled, and LLMs are prompted to improvisationally311

generate human-centered scenario prompts. Gen-312

erative models then create corresponding content313

based on these prompts. This approach ensures314

that the generated content aligns with real-world315

emotional scenarios rather than pre-defined emo-316

tional contexts. Leveraging AI-generated content,317

stimuli are dynamically delivered with diverse and318

non-repetitive samples across multiple modalities,319

including text, audio, images, and video, providing320

a broad spectrum of emotional triggers for evalua-321

tion.322

Task Formulation. Each stimulus is paired with323

a corresponding downstream task commonly seen324

in MER or MERG, These tasks are randomly as-325

signed to MLLMs to ensure diverse and unbiased326

evaluations. The randomized pairing of stimuli and327

tasks ensures that MLLMs are exposed to a wide328

range of scenarios, testing their adaptability and 329

robustness in compound emotional contexts. 330

4.2 Ranking Mechanism 331

Initialization. All MLLMs start with identical 332

ranking scores, ensuring a fair initial condition. 333

The starting score is set to a predefined baseline, 334

S0, which is the same for all participating models. 335

Pairwise Matching and Preference Judgments. 336

During each evaluation round, MLLMs are first 337

paired based on similar ranking scores to ensure 338

competitive and balanced matches. Let the mod- 339

els be denoted as M1,M2, . . . ,MN , where each 340

Mi has a score Si. The models are paired such 341

that |Si − Sj | is minimized for each match. Next, 342

each pair of models is assigned identical stimuli 343

and tasks drawn randomly from the task pool. For 344

instance, if a pair Mi and Mj is matched, they 345

both receive the same stimulus Xstimulus and task 346

Ttask.Once the stimuli and tasks are assigned, each 347

model generates a response to the task, denoted 348

as Ri for model Mi and Rj for model Mj . The 349

responses Ri and Rj are then evaluated by human 350

or AI evaluators, who compare them based on cri- 351

teria such as emotional relevance, coherence, and 352

depth of reasoning .Finally, the evaluators select 353

the preferred response, which could be denoted as 354

Rpreferred, where: 355

Rpreferred =

{
Ri, if model Mi is preferred,
Rj , if model Mj is preferred.

356

This process ensures a robust and contextually rele- 357

vant evaluation based on human-like judgments or 358

AI preferences. 359

Score Adjustment. The ranking scores are up- 360

dated using an elo-based mechanism, as follows: 361

Snew
i = Sold

i +K · (R− E), (1) 362

where: Snew
i denotes the updated ranking score of 363

model i, Sold
i represents the current ranking score 364

of model i, K is the scaling factor that determines 365

the sensitivity of score adjustments, M is a tunable 366

parameter that controls the ranking sensitivity, R 367

indicates the actual match outcome, where R = 1 368

if the model wins, R = 0.5 for a draw, and R = 0 369

if the model loses, E represents the expected match 370

outcome, calculated as: 371

E =
1

1 + 10(Sj−Si)/M
, (2) 372

where Sj is the opponent’s ranking score. 373
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Iterative Refinement. Over multiple rounds, mod-374

els compete against opponents with similar scores,375

gradually revealing their relative strengths. This376

mechanism ensures fair and adaptive ranking, re-377

flecting each model’s ability to handle compound378

emotional tasks.379

5 Experiments380

In this section, we present a comprehensive eval-381

uation of the Retrieval-Augmented Emotion Rea-382

soning (RAER) framework. The experiments are383

conducted across two main categories: Traditional384

datasets and metrics, encompassing various tasks in385

Multimodal Emotion Recognition (MER) and Mul-386

timodal Empathetic Response Generation (MERG),387

and the novel Stimulus-Armed Bandit (SAB) eval-388

uation framework, which systematically evaluates389

both visual-language and audio-language generated390

samples.391

5.1 Implementation Details392

In our experiments, the models under consideration393

include AffectGPT (Lian et al., 2024c), EmotionL-394

lama (Cheng et al., 2024a), VideoLlama2 (Cheng395

et al., 2024b), LlavaNextVideo (Zhang et al.,396

2024b), Qwen2.5VL (Team, 2025), SALMONN397

(Sun et al., 2024), and Qwen2Audio (Chu et al.,398

2024). All models are evaluated using zero-shot399

inference, with the exception of AffectGPT and400

EmotionLlama, which were fine-tuned specifically401

for emotion tasks. All models in our experiments402

used a 7B parameter size. WAR (Weighted Average403

Recall) is employed as the evaluation metric across404

all datasets in MER Task evaluation, and ablation405

studies are conducted to examine the integration of406

RAER. During the course of the experiments, we407

find that the MLLMs of AffectGPT and Emotion-408

Llama support a maximum context size of 2048409

tokens, which lead to failures in RAER’s CoT pro-410

cess due to the inability to retrieve the context suc-411

cessfully. As a result, we decide not to incorporate412

the RAER module into these models. We use Faiss413

(Douze et al., 2024) as the vector dataset for RAER,414

employing SBERT (Reimers and Gurevych, 2019)415

for encoding the textual content and CLIP (Radford416

et al., 2021) for encoding the visual content. The417

features from multiple frames are concatenated to418

form the query vector. For the audio content, we419

use AST (Gong et al., 2021)for encoding. The420

initial samples are derived from the 332 labeled421

entries in the EMER-finev2 (Lian et al., 2024a)422

Figure 4: In the RAER framework, correctly pre-
dicted samples from the dataset are added to the vector
database and referenced in subsequent predictions. Af-
ter multiple rounds of this process, the model demon-
strates significant performance improvements, as shown
by the average WAR growth across epochs.

dataset. For the SAB evaluation, we use GPT-4 to 423

generate task prompts, OpenAI’s Sora for visual- 424

language evaluation, and Meta’s AudioGen (Kreuk 425

et al., 2022) for audio-language evaluation. Since 426

no generative model currently exists that can si- 427

multaneously produce visual, audio, and language 428

modalities, we are unable to perform SAB evalu- 429

ation on VAT samples. The experiments are con- 430

ducted using four NVIDIA H800 80GB GPUs and 431

the hyper-parameter of RAER and SAB can be 432

found in Appendix A. 433

5.2 Traditional Benchmarks Evaluation 434

MER Tasks Evaluation. As shown in Table 7. We 435

conduct a comprehensive evaluation of REAR’s im- 436

pact on the emotional capabilities of various mul- 437

timodal large language models (MLLMs) through 438

ablation studies. Further details can be found in 439

Appendix B. Models are evaluated on three widely 440

recognized multimodal emotion recognition (MER) 441

datasets: MER2024 (Lian et al., 2024b), DFEW 442

(Jiang et al., 2020), and IEMOCAP (Busso et al., 443

2008). In our experiments, Qwen2.5VL demon- 444

strates remarkable performance. Despite the ab- 445

sence of audio modality information, Qwen2.5VL- 446

RAER still achieves a WAR score of over 0.7 across 447

three datasets, outperforming both AffectGPT and 448

EmotionLlama, which had been fine-tuned on the 449

MER task in a zero-shot setting. Additionally, we 450

observed that visual information contributed more 451

significantly to performance improvements com- 452

pared to audio information. The experimental re- 453

sults consistently demonstrate that REAR signif- 454

icantly enhances the emotion recognition perfor- 455
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MER2024 DFEW IEMOCAP
MLLMs V A T w/o RAER RAER w/o RAER RAER w/o RAER RAER
AffectGPT ✓ ✓ ✓ 0.64 - 0.52 - 0.71 -
EmotionLlama ✓ ✓ ✓ 0.23 - 0.59 - 0.32 -
VideoLlama2 ✓ ✓ ✓ 0.35 0.62 0.32 0.66 0.41 0.71
LlavaNextVideo ✓ ✗ ✓ 0.23 0.37 0.22 0.32 0.28 0.40
Qwen2.5VL ✓ ✗ ✓ 0.45 0.73 0.43 0.69 0.53 0.78
SALMONN ✓ ✓ ✗ 0.31 0.42 0.24 0.37 0.34 0.39
Qwen2Audio ✓ ✓ ✗ 0.27 0.35 0.22 0.28 0.31 0.37

Table 1: The results of MER tasks are presented, where WAR is used as the evaluation metric. All results are
obtained using zero-shot inference.

BLEU Dist-1/2 ROU_L. MET. BERTS.
MLLMs w/o RAER RAER w/o RAER RAER w/o RAER RAER w/o RAER RAER w/o RAER RAER
AffectGPT 0.13 - 0.56/0.82 - 0.17 - 0.31 - 0.87 -
EmotionLlama 0.10 - 0.54/0.79 - 0.15 - 0.28 - 0.85 -
VideoLlama2 0.22 0.24 0.71/0.92 0.69/0.92 0.23 0.24 0.31 0.40 0.83 0.87
LlavaNextVideo 0.17 0.22 0.69/0.87 0.71/0.86 0.19 0.2 0.28 0.25 0.79 0.83
Qwen2.5VL 0.21 0.25 0.74/0.95 0.77/0.95 0.23 0.25 0.33 0.36 0.86 0.91
SALMONN 0.18 0.17 0.72/0.88 0.72/0.89 0.17 0.21 0.23 0.25 0.81 0.85
Qwen2Audio 0.15 0.22 0.68/0.85 0.69/0.87 0.18 0.22 0.25 0.27 0.83 0.86

Table 2: The results of the automatic evaluation of MERG tasks are presented, with all outcomes obtained through
zero-shot inference.

mance of these MLLMs, highlighting its robust456

ability to improve emotional comprehension across457

diverse multimodal contexts.458

MERG Tasks Evaluation. As shown in Fig-459

ure Table 2, We first conducted automated eval-460

uations using several standard metrics, including461

BLEU (Papineni et al., 2002), Dist-1/2 (Li et al.,462

2016), ROUGE-L (Lin, 2004), METEOR (Baner-463

jee and Lavie, 2005), and BERTScore (Zhang et al.,464

2020). Following the previous approaches (Wu465

et al., 2025; Zhang et al., 2024a; Fei et al., 2024),466

we also designed human evaluation protocols to467

assess various aspects such as response empathy,468

linguistic fluency, and consistency in Table 3. In469

our experiments, REAR significantly improved the470

model’s consistency while preserving its general-471

ization ability, with no noticeable decline in empa-472

thy or fluency.473

Emp./Con./Flu. ( Human Evaluation )
MLLMs w/o RAER RAER
AffectGPT 2.32/3.29/2.45 -
EmotionLlama 2.24/3.37/2.37 -
VideoLlama2 3.42/3.22/3.53 3.44/3.34/3.54
LlavaNextVideo 2.72/2.92/3.12 2.78/3.07/3.13
Qwen2.5VL 3.76/3.46/3.78 3.74/3.78/3.76
SALMONN 3.17/3.25/3.38 3.16/3.35/3.23
Qwen2Audio 3.24/3.32/3.42 3.26/3.42/3.35

Table 3: The results of the human evaluation of MERG
tasks are presented, with all outcomes obtained through
zero-shot inference.

5.3 Stimulus-Armed Bandit Evaluation 474

In the Stimulus-Armed Bandit (SAB) evaluation, 475

we randomly generate one or a few emotion-neutral 476

keywords and use generative models to produce 477

corresponding stimuli. For this process, we employ 478

GPT-4o to generate prompts, Sora for visual stim- 479

uli, and AudioGen for audio stimuli, further details 480

can be found in Appendix C. Each evaluation match 481

randomly selects a task from a predefined task pool, 482

which is then combined with the generated stimuli 483

to create a task prompt. The paired models are then 484

tasked with providing the most suitable responses 485

to the prompt. These responses are evaluated based 486

on human or GPT-4o preferences, and the SAB 487

framework uses an Elo-based scoring mechanism. 488

The winning model gains points, while the losing 489

model’s score is adjusted accordingly. 490

In our experiments, as shown in Figure 5, most 491

task pools converged after approximately 100 492

rounds, and the resulting model rankings align 493

with those obtained in traditional benchmark eval- 494

uations. This demonstrates that the SAB frame- 495

work effectively leverages human-like preferences 496

to comprehensively evaluate the emotional reason- 497

ing and generation capabilities of multimodal large 498

language models. 499

5.4 Compound Emotion QA Construction 500

We compiled the results from the SAB evalu- 501

ation into two sub-datasets, as shown in Table 502

4. Each sample is annotated with preferred and 503

non-preferred responses, as illustrated in Figure 6. 504
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(a) Mixed Task on Visual-Language (b) MER Task on Visual-Language (c) MERG Task on Visual-Language

(d) Mixed Task on Audio-Language (e) MER Task on Audio-Language (f) MERG Task on Audio-Language

Figure 5: Part of the SAB evaluation results, where we used three task pools: Mixed, MER, and MERG. Figures (a),
(b), and (c) evaluate visual-language capabilities, while figures (d), (e), and (f) assess audio-language capabilities.
Most models’ Elo scores remain relatively stable between upper and lower bounds, indicating that the models’
abilities are accurately assessed through multiple rounds of testing.

Figure 6: An example of SAB collected human prefer-
ences and corresponding task labels.

Data type Human Preference GPT-4 Preference
VL 240 760
AL 1000 0

Table 4: Number of samples for Visual-Language (VL)
and Audio-Language (AL) datasets, with preferences
by human evaluators and GPT-4.

Based on this, we fine-tuned VideoLLama2 using505

Direct Preference Optimization (DPO) and con-506

ducted experiments on the MER task. The ablation507

experiment results are presented in Table 5. The508

findings suggest that our Compound Emotion QA509

MER2024 DFEW IEMOCAP
VideoLlama2 0.35 0.32 0.41
w/ DPO 0.48 0.41 0.53
w/ RAER 0.62 0.66 0.71
w/ DPO&RAER 0.67 0.65 0.79

Table 5: The ablation experiment on DPO and RAER,
with all metrics evaluated using WAR.

dataset leads to an improvement in model perfor- 510

mance. 511

6 Conclusion 512

In this paper, we introduced the Retrieval- 513

Augmented Emotion Reasoning (RAER) frame- 514

work, which enhances multimodal large language 515

models (MLLMs) by combining emotional rea- 516

soning with retrieval-augmented processes. Our 517

experiments on standard benchmarks and the 518

Stimulus-Armed Bandit (SAB) evaluation demon- 519

strate RAER’s effectiveness in handling com- 520

pound emotional tasks. We also contributed the 521

Compound Emotion QA dataset, an AI-generated 522

dataset designed to further improve emotional rea- 523

soning. The results highlight RAER’s potential 524

in advancing multimodal sentiment analysis and 525

enhancing human-AI interaction. 526
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Limitations527

Although our study presents promising advance-528

ments, it is not without its limitations. Firstly, while529

we aim for full automation, current state-of-the-art530

multimodal models still fall short in aligning with531

human preferences in audio. Although preference-532

based methods reduce the cost of manual selec-533

tion, SAB cannot yet be fully automated. Secondly,534

RAER requires longer inference times compared to535

regular reasoning methods, leading to significantly536

lower computational efficiency. We are exploring537

more advanced CoT methods to potentially replace538

the current approach. Additionally, we utilize gen-539

erative models to generate samples; however, there540

is currently no VAT-enabled (Visual,Audio,Text)541

generative model that covers all three modalities.542

As such, the SAB evaluation framework cannot543

fully replace traditional evaluation methods at this544

stage. Lastly, while RAER leverages human pref-545

erences at the annotation level, we are considering546

extending this by incorporating human feedback547

learning to further capitalize on the preference data548

generated during the RAER process.549
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A Hyperparameters 838

We set key hyperparameters to optimize the RAER 839

and SAB frameworks. For RAER, K is set to 5. 840

In SAB, K=64, M=600 control sample size, and 841

sequence length, while new_output_token=500 lim- 842

its output length. Temperature=0.7 and top_p=0.9 843

adjust generation randomness, balancing diversity 844

and quality. These settings were chosen based on 845

prior experiments for optimal performance. 846

Hyperparameter Value
RAER K=5
SAB K=64, M=600,

new_output_token=500,
temperature=0.7, top_p=0.9

Table 6: Hyperparameters for RAER and SAB
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MER2024 w/o RAER
Acc↑ Acc↑ Acc↑ Acc↑ Acc↑ Acc↑ Acc↑ UAR↑ WAR↑

MLLMs Worried Happy Neutral Angry Surprise Sad
AffectGPT 0.87 0.83 0.00 0.67 0.12 0.78 0.57 0.64
EmotionLlama 0.55 0.12 0.00 0.25 0.06 0.19 0.21 0.23
VideoLlama2 0.76 0.38 0.26 0.21 0.00 0.40 0.34 0.35
LlavaNextVideo 0.62 0.32 0.21 0.12 0.00 0.08 0.22 0.23
Qwen2.5VL 0.20 0.58 1.00 0.06 0.00 0.38 0.37 0.45
SALMONN 0.52 0.48 0.32 0.15 0.00 0.12 0.28 0.31
Qwen2Audio 0.21 0.39 0.62 0.12 0.00 0.11 0.25 0.27

MER2024 RAER
MLLMs Worried Happy Neutral Angry Surprise Sad
VideoLlama2 0.83 0.68 0.83 0.42 0.00 0.54 0.56 0.62
LlavaNextVideo 0.74 0.33 0.42 0.24 0.00 0.08 0.33 0.37
Qwen2.5VL 0.78 0.84 0.92 0.66 0.00 0.46 0.65 0.73
SALMONN 0.56 0.48 0.32 0.27 0.00 0.35 0.39 0.42
Qwen2Audio 0.38 0.45 0.72 0.16 0.00 0.09 0.33 0.35

DFEW w/o RAER
MLLMs Happy Fear Neutral Angry Surprise Sad Disgust
AffectGPT 0.83 0.64 0.00 0.52 0.21 0.69 0.00 0.41 0.52
EmotionLlama 0.15 0.12 0.00 0.25 0.09 0.19 0.00 0.14 0.59
VideoLlama2 0.34 0.28 0.26 0.21 0.22 0.25 0.00 0.25 0.32
LlavaNextVideo 0.18 0.12 0.11 0.12 0.07 0.08 0.00 0.14 0.22
Qwen2.5VL 0.59 0.38 0.85 0.24 0.32 0.31 0.00 0.38 0.43
SALMONN 0.25 0.12 0.21 0.23 0.11 0.07 0.00 0.17 0.24
Qwen2Audio 0.32 0.16 0.24 0.07 0.02 0.11 0.00 0.14 0.22

DFEW RAER
MLLMs Happy Fear Neutral Angry Surprise Sad Disgust
VideoLlama2 0.63 0.44 0.57 0.52 0.47 0.39 0.00 0.45 0.66
LlavaNextVideo 0.32 0.19 0.25 0.17 0.25 0.22 0.00 0.24 0.32
Qwen2.5VL 0.64 0.49 0.92 0.36 0.37 0.48 0.00 0.49 0.69
SALMONN 0.31 0.17 0.32 0.29 0.21 0.17 0.00 0.26 0.37
Qwen2Audio 0.33 0.19 0.23 0.14 0.03 0.19 0.00 0.22 0.28

IEMOCAP w/o RAER
MLLMs Happy Sad Neutral Angry
AffectGPT 0.90 0.84 0.00 0.77 0.62 0.71
EmotionLlama 0.25 0.43 0.00 0.25 0.25 0.32
VideoLlama2 0.42 0.38 0.43 0.22 0.38 0.41
LlavaNextVideo 0.33 0.22 0.30 0.14 0.27 0.28
Qwen2.5VL 0.51 0.42 0.86 0.31 0.51 0.53
SALMONN 0.35 0.31 0.22 0.26 0.31 0.34
Qwen2Audio 0.45 0.22 0.34 0.15 0.30 0.31

IEMOCAP RAER
MLLMs Happy Sad Neutral Angry
VideoLlama2 0.77 0.68 0.69 0.57 0.70 0.71
LlavaNextVideo 0.51 0.32 0.44 0.28 0.37 0.40
Qwen2.5VL 0.85 0.72 0.85 0.61 0.77 0.78
SALMONN 0.44 0.36 0.23 0.35 0.39 0.39
Qwen2Audio 0.57 0.25 0.39 0.17 0.36 0.37

Table 7: Detailed results of MER tasks are presented. All results are obtained using zero-shot inference.
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Task Description
Multi-choice Select the most appropriate emotions from a predefined list based on multimodal inputs.
Ranking Rank emotions from a predefined list based on multimodal inputs.
Recognition Analysis Analyze and identify emotions in the multimodal input.
Transition Detection Detect emotional shifts over time and identify when and how emotions change in a sequence.

Table 8: Multimodal Emotion Recognition (MER) Task Set Description

Task Description
Emotion-based Response Generation How would you feel if you were in the person’s shoes in this video?
Emotion-based Response Generation How does the person’s experience in the video make you feel?
Emotion-based Response Generation How does the video make you reflect on your own emotions or experiences?
Emotion-based Response Generation What would you be feeling right now?

Table 9: Multimodal Empathetic Response Generation (MERG) Task Set Description

B MER Experiments Details847

Table 7 presents specific metrics for each dataset in848

the MER task.849

C SAB Task Formulation850

As shown in Figure 7, we first use GPT-4 to gener-851

ate one or more emotionally neutral words. These852

neutral words are then used to generate correspond-853

ing modality-specific stimuli for the generative854

model. Afterward, the corresponding task and stim-855

uli are matched, forming an SAB sample, the tasks856

are shown in Table 8 and Table 9.857

As shown in Table 10, we tested GPT-4o’s align-858

ment with human preferences in the SAB visual-859

language evaluation. The experiment shows that860

GPT-4o is largely aligned with human preferences861

and can automatically evaluate and generate posi-862

tive and negative samples.

Alignment Number of Samples Rate
Consistent 228 76%

Inconsistent 72 24%

Table 10: GPT-4o’s alignment with human preferences
in SAB visual-language evaluation.

863
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Figure 7: An example of SAB task formulation
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