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Abstract

The ability to comprehend human emotion
using multimodal large language models
(MLLMs) is essential for advancing human-Al
interaction and multimodal sentiment analysis.
While psychology theory-based human annota-
tions have contributed to multimodal emotion
tasks, the subjective nature of emotional percep-
tion often leads to inconsistent annotations, lim-
iting the robustness of current models. Address-
ing these challenges requires more fine-grained
methods and evaluation frameworks. In this pa-
per, we propose the Retrieval-Augmented Emo-
tion Reasoning (RAER) framework, a plug-and-
play module that enhances MLLMs’ ability
to tackle compound and context-rich emotion
tasks. To systematically evaluate model perfor-
mance, we introduce the Stimulus-Armed Ban-
dit (SAB) framework, designed to benchmark
emotional reasoning capabilities. Addition-
ally, we construct the Compound Emotion QA
dataset, an Al-generated multimodal dataset
aimed at strengthening emotion understanding
in MLLMs. Experimental results demonstrate
the effectiveness of RAER across both tradi-
tional benchmarks and SAB evaluations, high-
lighting its potential to enhance emotional in-
telligence in multimodal Al systems.

1 Introduction

Emotion is a multifaceted phenomenon encom-
passing subjective experiences, physiological re-
sponses, and context-dependent behaviors, shaped
by both internal states and external stimuli. Emo-
tions play a critical role in human cognition and
interaction, influencing decision-making, directing
attention, and shaping social relationships. Their
complexity and impact underscore the significance
of emotions as a core component of human experi-
ence and behavior.

Recent advancements in neural network meth-
ods have highlighted the effectiveness of special-
ized models for emotion tasks. These models,
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Figure 1: Overall of our proposed method and evalua-
tion framework, where the Retrieval-Augmented Emo-
tion Reasoning (RAER) method is introduced as a plug-
and-play module to enhance the capability of MLLMs
in handling compound and ambiguous emotions. The
Stimulus-Armed Bandit (SAB) evaluation framework is
used to assess the model’s emotional capabilities, espe-
cially for tasks that are difficult to quantify.

which predict labels within a constrained range,
have achieved impressive performance, particu-
larly in tasks such as Dynamic Facial Emotion
Recognition (DFER) (Tran et al., 2015; Wang et al.,
2023; Ghaleb et al., 2019) and Multimodal Emo-
tion Recognition (MER) (Tsai et al., 2019; Haz-
arika et al., 2020; Zadeh et al., 2018).

However, widely adopted annotation standards
within a constrained range—such as the “Big
Six” discrete label system (Ekman, 1992) and the
VAD (Valence-Arousal-Dominance) dimensional
label system (Russell and Mehrabian, 1977)—have
proven effective in capturing emotional expres-
sion, they may not fully align with the more nu-
anced emotional interactions required for Al sys-
tems, particularly in the era of large models that
demand more human-like interaction for emotion-
related tasks. To address these limitations, ap-
proaches based on multimodal large language mod-



els (MLLMs) have emerged (Lian et al., 2024c;
Cheng et al., 2024a). Tasks such as Multimodal
Empathetic Response Generation (MERG) (Zhang
et al., 2024a) and other emotion-related tasks
(Zheng et al., 2024; Sabour et al., 2024; Plaza
Del Arco et al., 2024) have shown strong perfor-
mance on MLLMs, with excellent generalization
capabilities. Despite these advancements, signifi-
cant challenges remain in handling compound and
ambiguous emotions, especially in tasks involving
compound and context-rich emotional scenarios.

In this paper, as shown in Figure 2, we draw in-
spiration from recent advances in preference-based
learning methods—such as Reinforcement Learn-
ing with Human Feedback (RLHF) (Stiennon et al.,
2022), Reinforcement Learning from Al Feedback
(RLAIF) (Bai et al., 2022), Direct Preference Op-
timization (DPO) (Rafailov et al., 2024), and In-
verse Preference Optimization (IPO) (Huang et al.,
2024b)—to explore a more fluid and subjective
approach to evaluating emotion tasks. However,
a major challenge in constructing emotion prefer-
ence datasets lies in the labor-intensive process of
manually drafting labels, which is not only time-
consuming but also prone to inconsistencies. These
inconsistencies arise from both variations in linguis-
tic descriptions and differences in human prefer-
ences, making it difficult to disentangle the specific
preference signals required for Al model training
(Lian et al., 2024a; Cheng et al., 2024a).

As shown in figure.1. Instead of relying on man-
ually curated label drafts and preference annota-
tions, we propose a Retrieval-Augmented Emo-
tion Reasoning (RAER) Framework, a RAG-based
module that integrates chain-of-thought (CoT) rea-
soning. RAER can be easily applied to MLLMs,
enhancing their emotional reasoning and general-
ization capabilities to tackle compound emotional
scenarios. To evaluate MLLMs’ emotional task
capabilities and gather human preferences, we in-
troduce the Stimulus-Armed Bandit (SAB) Evalua-
tion Framework, which uses Al-generated stimuli
to test a broad range of emotion tasks. This ap-
proach not only collects human preferences but
also benchmarks model performance in dynamic
and compound emotional contexts. By combining
RAER-generated responses with SAB-collected
human preferences, we construct the Compound
Emotion QA Dataset, a multimodal dataset that
captures nuanced emotional reasoning aligned with
human preferences. This methodology bridges the
gap between traditional emotion recognition and
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Figure 2: In linguistic contexts, the expression of human
emotions is inherently open-ended, suggesting that label
systems with predefined boundaries are limited in the
context of large models. To enhance the emotional
capabilities of these models, it is essential to adopt more
human-like, nuanced approaches that allow for a broader
range of emotional expression.

more compound emotional reasoning, offering a
scalable and preference-aligned solution to advance
emotional intelligence in MLLM:s.

Main Contributions. The major contributions
of this work are summarized as follows:

* Emotion Reasoning RAG: We propose a
retrieval-augmented framework, Retrieval-
Augmented Emotion Reasoning (RAER),
which incorporates a chain-of-emotion reason-
ing approach to enhance MLLMs’ capability
in addressing compound emotional tasks.

e Stimulus-Armed Bandit (SAB) Evaluation
Framework: We introduce the SAB frame-
work to systematically evaluate MLLMs’ per-
formance in compound emotional scenarios.

* Compound Emotion QA: We construct a
multimodal QA dataset that includes com-
pound emotion tasks, designed to enhance the
compound emotional capabilities of MLLMs.

2 Related Work

2.1 Multimodal Emotion Recognition

Multimodal Emotion Recognition (MER) aims to
improve emotion detection by integrating multiple
modalities. With the rise of neural network-based
methods, advanced modality fusion networks have



been proposed (Tsai et al., 2019; Hazarika et al.,
2020; Zadeh et al., 2018), leading to significant
improvements in MER. However, challenges such
as high dataset labeling costs and task-specific net-
work architectures still hinder the models’ general-
ization in real-world scenarios.

The development of MLLMs has shown promis-
ing improvements in MER. These models, leverag-
ing large-scale pretraining on diverse multimodal
data, demonstrate enhanced generalization capabil-
ities in emotion tasks (Lian et al., 2024c; Cheng
et al., 2024a), surpassing traditional approaches in
terms of flexibility and adaptability.

Moreover, the ongoing expansion of multimodal
emotion recognition benchmarks and datasets has
contributed significantly to this progress (Sabour
et al., 2024; Lian et al., 2024c¢). These resources al-
low for more comprehensive evaluations of MLM-
based models, supporting more accurate emotion
detection and better alignment with real-world ap-
plications.

2.2 Multimodal Empathetic Response
Generation

Multimodal empathetic response generation aims
to enable machines to not only understand human
emotions but also respond empathetically across
various modalities. While Large Language Models
(LLMs) (Zhang et al., 2024a; Yang et al., 2024),
have shown potential in generating empathetic re-
sponses from textual inputs, incorporating addi-
tional modalities such as voice tone, facial expres-
sions, and body language remains an ongoing chal-
lenge. Furthermore, the subjective nature of em-
pathy complicates the evaluation process, making
it difficult to define consistent and reliable metrics
for assessing the quality of empathetic responses
(Wu et al., 2024). These challenges emphasize the
need for further research into better integration of
multimodal data to enhance the emotional depth
and reliability of empathetic response generation
systems.

2.3 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) has
proven effective in enhancing generative models’
ability to generalize across tasks by incorporat-
ing external knowledge, such as in Text-to-3D
(Seo et al., 2024) and Protein Molecule Generation
(Huang et al., 2024d). In emotion-related tasks,
RAG has been used to improve response genera-
tion by dynamically retrieving emotionally relevant

data to refine models’ outputs (Huang et al., 2024a;
Liu et al., 2024). These approaches have been ap-
plied in areas like emotional agent (Huang et al.,
2024a) and Empathetic response generation(ERC)
(Huang et al., 2024c¢), where diverse emotional cues
enhance performance.

Building on these methods, our work extends
RAG to compound emotion tasks by incorporating
contextual emotional knowledge from multimodal
sources. This approach improves emotion recog-
nition and generation by using dynamic, context-
driven retrieval, enabling more flexible and em-
pathetic models that can handle a wider range of
emotional scenarios.

3 Retrieval-Augmented Emotion
Reasoning

Emotional reasoning refers to the process of de-
riving conclusions based on emotional responses,
even when empirical evidence may suggest other-
wise. This concept has proven effective in large
models for addressing compound emotion-related
tasks (Lian et al., 2023), particularly those involv-
ing ambiguous or context-dependent emotional
content. Building on this foundation, as shown in
Figure 3, we propose Retrieval-Augmented Emo-
tion Reasoning (RAER), a framework designed
to enhance multimodal large language models
(MLLMs) by integrating emotional reasoning into
a structured chain-of-thought (CoT) process (Wei
et al., 2023).

3.1 Building the Emotional Knowledge Base

A cornerstone of RAER is the emotional knowl-
edge base, which serves as the foundation for re-
trieval during the reasoning process. Initially, the
knowledge base is constructed from multimodal
emotion datasets, encoding diverse inputs such
as facial expression animations, emotional audio
clips, and human/Al-generated emotional descrip-
tions. Each sample is transformed into a high-
dimensional vector embedding, enriched with de-
tailed emotional annotations, enabling efficient
similarity-based retrieval to support the reasoning
process. As RAER engages in iterative reason-
ing tasks, the knowledge base evolves through the
addition of high-confidence samples generated dur-
ing the reasoning process. This dynamic updat-
ing mechanism not only enhances the diversity of
the knowledge base but also improves its ability
to provide contextually relevant emotional refer-
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Figure 3: Overall of the RAER architecture, where a multimodal prompt is input into the model. RAER searches for
the most similar content in the vector database, incorporating the Emotion Reasoning CoT process to validate the
emotional consistency of the model’s response. After ensuring emotional coherence, the model generates the final

output.

ences. By combining curated data from traditional
datasets with newly derived samples, the emotional
knowledge base becomes a continuously expand-
ing resource, progressively strengthening RAER’s
capacity for compound and nuanced emotional rea-
soning.

3.2 Guiding Emotion Reasoning with
Chain-of-Thought

The RAER framework leverages a CoT reasoning
mechanism to guide MLLMs through emotional
reasoning tasks. This structured approach allows
models to process compound emotional inputs step
by step, identifying uncertainties or ambiguities
within generated captions or descriptions. These
challenges often arise in scenarios involving over-
lapping or conflicting emotional cues. To address
them, RAER incorporates retrieval-based augmen-
tation, enabling models to draw upon contextually
relevant emotional information retrieved from an
external knowledge base.

3.3 Enhancing Emotional Reasoning with
Retrieval

Incorporating retrieval into the reasoning process
allows RAG to refine the model’s understanding of
compound emotions. For example, when a caption
reflects emotional ambiguity, the framework re-
trieves similar examples from the emotional knowl-
edge base, along with their associated emotional
descriptions. By grounding its reasoning in these
examples, RAER enables the model to refine its
understanding, disambiguate emotional cues, and

generate more accurate and contextually appropri-
ate inferences.

Algorithm 1 Retrieval-Augmented Emotion Rea-
soning (RAER)

Input: Task prompt I, multimodal input X (e.g.,
video, audio, text), knowledge base K, MLLM fy
Output: Refined reasoning outputs {y;}7_;

1: Generate initial response: Y = fy(I, X)

2: Segment reasoning steps: {y;}L, =
Segrnent(fAnalyZe (Y))

3: fort =1to 7 do

4: Retrieve  context: R(yi—1) =

Retrieve(/C, Sim(y;—1,K))
5: if Detect(y;, R(y;—1)) is ambiguous then

: Generate reasoning step: Yy =
feor(ye, R(yr))
: end if
8: end for
9: if Uncertainty(y;) < € then
10: Update knowledge base: K <+ K U

{(X, {me i)}

11: end if
12: Return: Refined reasoning steps {y;}7,

Through RAER, we enhance MLLMs’ zero-shot
capabilities for handling emotion tasks. However,
to further improve model performance with human
feedback, we need precise human preference sig-
nals and a method to evaluate generative models’
performance on emotion tasks in open-ended lan-
guage contexts. To address this, we designed the
Stimulus-Armed Bandit(SAB) framework.



4 Stimulus-Armed Bandit

The Stimulus-Armed Bandit (SAB) framework
is a novel evaluation method designed to assess
the compound emotion capabilities of multimodal
large language models (MLLMs). The name is in-
spired by the classic multi-armed bandit optimiza-
tion problem, as emotion tasks similarly involve
balancing between different emotional responses.
SAB introduces a preference-based ranking system
that combines multimodal stimuli with emotion
tasks. Through pairwise comparisons, SAB dy-
namically ranks models based on their emotional
reasoning, while also collecting human preferences
and corresponding task labels.

The SAB framework integrates three key com-
ponents to enable comprehensive and scalable eval-
uation:

(1) Stimulus Generation, which produces multi-
modal triggers to elicit emotional responses;

(2) Task Formulation, which combines stimuli
with emotion-related downstream tasks to create
diverse evaluation challenges; and

(3) Ranking Mechanism, which utilizes an elo-
based scoring system to dynamically adjust model
rankings based on their comparative performance.

4.1 Stimulus Generation and Task
Formulation

Stimulus Generation. Stimuli serve as the core
of the SAB framework, functioning as controlled
triggers designed to evoke specific emotional and
cognitive responses. To achieve this, single or mul-
tiple emotion-neutral keywords are randomly sam-
pled, and LLLMs are prompted to improvisationally
generate human-centered scenario prompts. Gen-
erative models then create corresponding content
based on these prompts. This approach ensures
that the generated content aligns with real-world
emotional scenarios rather than pre-defined emo-
tional contexts. Leveraging Al-generated content,
stimuli are dynamically delivered with diverse and
non-repetitive samples across multiple modalities,
including text, audio, images, and video, providing
a broad spectrum of emotional triggers for evalua-
tion.

Task Formulation. Each stimulus is paired with
a corresponding downstream task commonly seen
in MER or MERG, These tasks are randomly as-
signed to MLLMs to ensure diverse and unbiased
evaluations. The randomized pairing of stimuli and
tasks ensures that MLLMs are exposed to a wide

range of scenarios, testing their adaptability and
robustness in compound emotional contexts.

4.2 Ranking Mechanism

Initialization. All MLLMs start with identical
ranking scores, ensuring a fair initial condition.
The starting score is set to a predefined baseline,
So, which is the same for all participating models.
Pairwise Matching and Preference Judgments.
During each evaluation round, MLLMs are first
paired based on similar ranking scores to ensure
competitive and balanced matches. Let the mod-
els be denoted as My, Ms, ..., My, where each
M; has a score S;. The models are paired such
that |S; — S;| is minimized for each match. Next,
each pair of models is assigned identical stimuli
and tasks drawn randomly from the task pool. For
instance, if a pair M; and M; is matched, they
both receive the same stimulus Ximuius and task
Tiask-Once the stimuli and tasks are assigned, each
model generates a response to the task, denoted
as RR; for model M; and R; for model M;. The
responses I?; and R; are then evaluated by human
or Al evaluators, who compare them based on cri-
teria such as emotional relevance, coherence, and
depth of reasoning .Finally, the evaluators select
the preferred response, which could be denoted as
Rpreferreda where:

Riv
R =
preferred { R;, if model M; is preferred.

if model M; is preferred,

This process ensures a robust and contextually rele-
vant evaluation based on human-like judgments or
Al preferences.

Score Adjustment. The ranking scores are up-
dated using an elo-based mechanism, as follows:

Srew — §od L K. (R— E), (D)

where: S]'*" denotes the updated ranking score of
model 7, Sfld represents the current ranking score
of model ¢, K is the scaling factor that determines
the sensitivity of score adjustments, M is a tunable
parameter that controls the ranking sensitivity, R
indicates the actual match outcome, where B = 1
if the model wins, R = 0.5 for a draw, and R = 0
if the model loses, E represents the expected match
outcome, calculated as:

1
1 4+ 1008 —=8i)/M?

2

where S is the opponent’s ranking score.



Iterative Refinement. Over multiple rounds, mod-
els compete against opponents with similar scores,
gradually revealing their relative strengths. This
mechanism ensures fair and adaptive ranking, re-
flecting each model’s ability to handle compound
emotional tasks.

S Experiments

In this section, we present a comprehensive eval-
uation of the Retrieval-Augmented Emotion Rea-
soning (RAER) framework. The experiments are
conducted across two main categories: Traditional
datasets and metrics, encompassing various tasks in
Multimodal Emotion Recognition (MER) and Mul-
timodal Empathetic Response Generation (MERG),
and the novel Stimulus-Armed Bandit (SAB) eval-
uation framework, which systematically evaluates
both visual-language and audio-language generated
samples.

5.1 Implementation Details

In our experiments, the models under consideration
include AffectGPT (Lian et al., 2024c), EmotionL-
lama (Cheng et al., 2024a), VideoLlama2 (Cheng
et al.,, 2024b), LlavaNextVideo (Zhang et al.,
2024b), Qwen2.5VL (Team, 2025), SALMONN
(Sun et al., 2024), and Qwen2Audio (Chu et al.,
2024). All models are evaluated using zero-shot
inference, with the exception of AffectGPT and
EmotionLlama, which were fine-tuned specifically
for emotion tasks. All models in our experiments
used a 7B parameter size. WAR (Weighted Average
Recall) is employed as the evaluation metric across
all datasets in MER Task evaluation, and ablation
studies are conducted to examine the integration of
RAER. During the course of the experiments, we
find that the MLLMSs of AffectGPT and Emotion-
Llama support a maximum context size of 2048
tokens, which lead to failures in RAER’s CoT pro-
cess due to the inability to retrieve the context suc-
cessfully. As a result, we decide not to incorporate
the RAER module into these models. We use Faiss
(Douze et al., 2024) as the vector dataset for RAER,
employing SBERT (Reimers and Gurevych, 2019)
for encoding the textual content and CLIP (Radford
et al., 2021) for encoding the visual content. The
features from multiple frames are concatenated to
form the query vector. For the audio content, we
use AST (Gong et al., 2021)for encoding. The
initial samples are derived from the 332 labeled
entries in the EMER-finev2 (Lian et al., 2024a)
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Figure 4: In the RAER framework, correctly pre-
dicted samples from the dataset are added to the vector
database and referenced in subsequent predictions. Af-
ter multiple rounds of this process, the model demon-
strates significant performance improvements, as shown
by the average WAR growth across epochs.

dataset. For the SAB evaluation, we use GPT-4 to
generate task prompts, OpenAl’s Sora for visual-
language evaluation, and Meta’s AudioGen (Kreuk
et al., 2022) for audio-language evaluation. Since
no generative model currently exists that can si-
multaneously produce visual, audio, and language
modalities, we are unable to perform SAB evalu-
ation on VAT samples. The experiments are con-
ducted using four NVIDIA H800 80GB GPUs and
the hyper-parameter of RAER and SAB can be
found in Appendix A.

5.2 Traditional Benchmarks Evaluation

MER Tasks Evaluation. As shown in Table 7. We
conduct a comprehensive evaluation of REAR’s im-
pact on the emotional capabilities of various mul-
timodal large language models (MLLMs) through
ablation studies. Further details can be found in
Appendix B. Models are evaluated on three widely
recognized multimodal emotion recognition (MER)
datasets: MER2024 (Lian et al., 2024b), DFEW
(Jiang et al., 2020), and IEMOCAP (Busso et al.,
2008). In our experiments, Qwen2.5VL demon-
strates remarkable performance. Despite the ab-
sence of audio modality information, Qwen2.5VL-
RAER still achieves a WAR score of over 0.7 across
three datasets, outperforming both AffectGPT and
EmotionlLlama, which had been fine-tuned on the
MER task in a zero-shot setting. Additionally, we
observed that visual information contributed more
significantly to performance improvements com-
pared to audio information. The experimental re-
sults consistently demonstrate that REAR signif-
icantly enhances the emotion recognition perfor-



MER2024 DFEW IEMOCAP

MLLMs V A T | woRAER RAER | w/oRAER RAER | w/o RAER RAER
AffectGPT v v / 0.64 - 0.52 - 0.71 -
EmotionLlama v v / 0.23 - 0.59 - 0.32 -
VideoLlama2 v v 7/ 0.35 0.62 0.32 0.66 0.41 0.71
LlavaNextVideo v X 0.23 0.37 0.22 0.32 0.28 0.40
Qwen2.5VL X 7/ 0.45 0.73 0.43 0.69 0.53 0.78
SALMONN v v X 0.31 0.42 0.24 0.37 0.34 0.39
Qwen2Audio v v X 0.27 0.35 0.22 0.28 0.31 0.37

Table 1: The results of MER tasks are presented, where WAR is used as the evaluation metric. All results are

obtained using zero-shot inference.

BLEU Dist-1/2 ROU_L. MET. BERTS.

MLLMs w/o RAER  RAER | w/o RAER RAER w/oRAER  RAER | w/oRAER RAER | w/o RAER RAER
AffectGPT 0.13 - 0.56/0.82 - 0.17 - 0.31 - 0.87 -
EmotionLlama 0.10 - 0.54/0.79 - 0.15 - 0.28 - 0.85 -
VideoLlama2 0.22 0.24 0.71/0.92 0.69/0.92 0.23 0.24 0.31 0.40 0.83 0.87
LlavaNextVideo 0.17 0.22 0.69/0.87 0.71/0.86 0.19 0.2 0.28 0.25 0.79 0.83
Qwen2.5VL 0.21 0.25 0.74/0.95 0.77/0.95 0.23 0.25 0.33 0.36 0.86 0.91
SALMONN 0.18 0.17 0.72/0.88 0.72/0.89 0.17 0.21 0.23 0.25 0.81 0.85
Qwen2Audio 0.15 0.22 0.68/0.85 0.69/0.87 0.18 0.22 0.25 0.27 0.83 0.86

Table 2: The results of the automatic evaluation of MERG tasks are presented, with all outcomes obtained through

zero-shot inference.

mance of these MLLMs, highlighting its robust
ability to improve emotional comprehension across
diverse multimodal contexts.

MERG Tasks Evaluation. As shown in Fig-
ure Table 2, We first conducted automated eval-
uations using several standard metrics, including
BLEU (Papineni et al., 2002), Dist-1/2 (Li et al.,
2016), ROUGE-L (Lin, 2004), METEOR (Baner-
jee and Lavie, 2005), and BERTScore (Zhang et al.,
2020). Following the previous approaches (Wu
et al., 2025; Zhang et al., 2024a; Fei et al., 2024),
we also designed human evaluation protocols to
assess various aspects such as response empathy,
linguistic fluency, and consistency in Table 3. In
our experiments, REAR significantly improved the
model’s consistency while preserving its general-
ization ability, with no noticeable decline in empa-
thy or fluency.

Emp./Con./Flu. ( Human Evaluation )

MLLMs w/o RAER RAER
AffectGPT 2.32/3.29/2.45 -
EmotionLLlama 2.24/3.37/2.37 -
VideoLlama2 3.42/3.22/3.53 3.44/3.34/3.54
LlavaNextVideo 2.72/2.92/3.12 2.78/3.07/3.13
Qwen2.5VL 3.76/3.46/3.78 3.74/3.78/3.76
SALMONN 3.17/3.25/3.38 3.16/3.35/3.23
Qwen2Audio 3.24/3.32/3.42 3.26/3.42/3.35

Table 3: The results of the human evaluation of MERG
tasks are presented, with all outcomes obtained through

zero-shot inference.

5.3 Stimulus-Armed Bandit Evaluation

In the Stimulus-Armed Bandit (SAB) evaluation,
we randomly generate one or a few emotion-neutral
keywords and use generative models to produce
corresponding stimuli. For this process, we employ
GPT-40 to generate prompts, Sora for visual stim-
uli, and AudioGen for audio stimuli, further details
can be found in Appendix C. Each evaluation match
randomly selects a task from a predefined task pool,
which is then combined with the generated stimuli
to create a task prompt. The paired models are then
tasked with providing the most suitable responses
to the prompt. These responses are evaluated based
on human or GPT-4o preferences, and the SAB
framework uses an Elo-based scoring mechanism.
The winning model gains points, while the losing
model’s score is adjusted accordingly.

In our experiments, as shown in Figure 5, most
task pools converged after approximately 100
rounds, and the resulting model rankings align
with those obtained in traditional benchmark eval-
uations. This demonstrates that the SAB frame-
work effectively leverages human-like preferences
to comprehensively evaluate the emotional reason-
ing and generation capabilities of multimodal large
language models.

5.4 Compound Emotion QA Construction

We compiled the results from the SAB evalu-
ation into two sub-datasets, as shown in Table
4. Each sample is annotated with preferred and
non-preferred responses, as illustrated in Figure 6.
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Figure 5: Part of the SAB evaluation results, where we used three task pools: Mixed, MER, and MERG. Figures (a),
(b), and (c) evaluate visual-language capabilities, while figures (d), (e), and (f) assess audio-language capabilities.
Most models’ Elo scores remain relatively stable between upper and lower bounds, indicating that the models’
abilities are accurately assessed through multiple rounds of testing.

Task Prompt:
The man is reading under the starry sky. Analyze the person's
emotions.

Preferred:

The man in the image appears focused and engaged in reading, with
his gaze directed upwards, indicating concentration. The setting
in the background, with the starry sky, might evoke a sense of
curiosity or contemplation, suggesting a calm and reflective
emotional state.

Non—-Preferred:

Although the man seems engaged in his reading, his slightly
furrowed brow and neutral expression might indicate a sense of
confusion or frustration, particularly if the reading material is
challenging or not well-understood. The ambient lighting and
background could imply a more tense or serious emotional state.

Figure 6: An example of SAB collected human prefer-
ences and corresponding task labels.

Datatype Human Preference ~ GPT-4 Preference
VL 240 760
AL 1000 0

Table 4: Number of samples for Visual-Language (VL)
and Audio-Language (AL) datasets, with preferences
by human evaluators and GPT-4.

Based on this, we fine-tuned VideoLLama?2 using
Direct Preference Optimization (DPO) and con-
ducted experiments on the MER task. The ablation
experiment results are presented in Table 5. The
findings suggest that our Compound Emotion QA

MER2024 DFEW IEMOCAP
VideoLlama2 0.35 0.32 0.41
w/ DPO 0.48 0.41 0.53
w/ RAER 0.62 0.66 0.71
w/ DPO&RAER 0.67 0.65 0.79

Table 5: The ablation experiment on DPO and RAER,
with all metrics evaluated using WAR.

dataset leads to an improvement in model perfor-
mance.

6 Conclusion

In this paper, we introduced the Retrieval-
Augmented Emotion Reasoning (RAER) frame-
work, which enhances multimodal large language
models (MLLMs) by combining emotional rea-
soning with retrieval-augmented processes. Our
experiments on standard benchmarks and the
Stimulus-Armed Bandit (SAB) evaluation demon-
strate RAER’s effectiveness in handling com-
pound emotional tasks. We also contributed the
Compound Emotion QA dataset, an Al-generated
dataset designed to further improve emotional rea-
soning. The results highlight RAER’s potential
in advancing multimodal sentiment analysis and
enhancing human-Al interaction.



Limitations

Although our study presents promising advance-
ments, it is not without its limitations. Firstly, while
we aim for full automation, current state-of-the-art
multimodal models still fall short in aligning with
human preferences in audio. Although preference-
based methods reduce the cost of manual selec-
tion, SAB cannot yet be fully automated. Secondly,
RAER requires longer inference times compared to
regular reasoning methods, leading to significantly
lower computational efficiency. We are exploring
more advanced CoT methods to potentially replace
the current approach. Additionally, we utilize gen-
erative models to generate samples; however, there
is currently no VAT-enabled (Visual,Audio, Text)
generative model that covers all three modalities.
As such, the SAB evaluation framework cannot
fully replace traditional evaluation methods at this
stage. Lastly, while RAER leverages human pref-
erences at the annotation level, we are considering
extending this by incorporating human feedback
learning to further capitalize on the preference data
generated during the RAER process.
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A Hyperparameters

We set key hyperparameters to optimize the RAER
and SAB frameworks. For RAER, K is set to 5.
In SAB, K=64, M=600 control sample size, and
sequence length, while new_output_token=500 lim-
its output length. Temperature=0.7 and top_p=0.9
adjust generation randomness, balancing diversity
and quality. These settings were chosen based on
prior experiments for optimal performance.

Hyperparameter Value
RAER K=5
SAB K=64, M=600,

new_output_token=500,
temperature=0.7, top_p=0.9

Table 6: Hyperparameters for RAER and SAB
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MER2024 w/o RAER

Acct Acct Acc?t Acc?t Acct  Acct  Acct  UART WAR?T
MLLMs Worried Happy Neutral Angry Surprise Sad
AffectGPT 0.87 0.83 0.00 0.67 0.12 0.78 0.57 0.64
EmotionL.lama 0.55 0.12 0.00 0.25 0.06 0.19 0.21 0.23
VideoLlama2 0.76 0.38 0.26 0.21 0.00 0.40 0.34 0.35
LlavaNextVideo 0.62 0.32 0.21 0.12 0.00 0.08 0.22 0.23
Qwen2.5VL 0.20 0.58 1.00 0.06 0.00 0.38 0.37 0.45
SALMONN 0.52 0.48 0.32 0.15 0.00 0.12 0.28 0.31
Qwen2Audio 0.21 0.39 0.62 0.12 0.00 0.11 0.25 0.27
MER2024 RAER
MLLMs Worried Happy Neutral Angry Surprise Sad
VideoLlama2 0.83 0.68 0.83 0.42 0.00 0.54 0.56 0.62
LlavaNextVideo 0.74 0.33 0.42 0.24 0.00 0.08 0.33 0.37
Qwen2.5VL 0.78 0.84 0.92 0.66 0.00 0.46 0.65 0.73
SALMONN 0.56 0.48 0.32 0.27 0.00 0.35 0.39 0.42
Qwen2Audio 0.38 0.45 0.72 0.16 0.00 0.09 0.33 0.35
DFEW w/o RAER
MLLMs Happy Fear  Neutral Angry Surprise Sad Disgust
AffectGPT 0.83 0.64 0.00 0.52 0.21 0.69 0.00 0.41 0.52
EmotionLlama 0.15 0.12 0.00 0.25 0.09 0.19 0.00 0.14 0.59
VideoLlama2 0.34 0.28 0.26 0.21 0.22 0.25 0.00 0.25 0.32
LlavaNextVideo 0.18 0.12 0.11 0.12 0.07 0.08 0.00 0.14 0.22
Qwen2.5VL 0.59 0.38 0.85 0.24 0.32 0.31 0.00 0.38 0.43
SALMONN 0.25 0.12 0.21 0.23 0.11 0.07 0.00 0.17 0.24
Qwen2Audio 0.32 0.16 0.24 0.07 0.02 0.11 0.00 0.14 0.22
DFEW RAER
MLLMs Happy Fear  Neutral Angry Surprise Sad Disgust
VideoLlama2 0.63 0.44 0.57 0.52 0.47 0.39 0.00 0.45 0.66
LlavaNextVideo 0.32 0.19 0.25 0.17 0.25 0.22 0.00 0.24 0.32
Qwen2.5VL 0.64 0.49 0.92 0.36 0.37 0.48 0.00 0.49 0.69
SALMONN 0.31 0.17 0.32 0.29 0.21 0.17 0.00 0.26 0.37
Qwen2Audio 0.33 0.19 0.23 0.14 0.03 0.19 0.00 0.22 0.28
IEMOCAP w/o RAER
MLLMs Happy Sad  Neutral Angry
AffectGPT 0.90 0.84 0.00 0.77 0.62 0.71
EmotionLlama 0.25 0.43 0.00 0.25 0.25 0.32
VideoLlama2 0.42 0.38 0.43 0.22 0.38 0.41
LlavaNextVideo 0.33 0.22 0.30 0.14 0.27 0.28
Qwen2.5VL 0.51 0.42 0.86 0.31 0.51 0.53
SALMONN 0.35 0.31 0.22 0.26 0.31 0.34
Qwen2Audio 0.45 0.22 0.34 0.15 0.30 0.31
IEMOCAP RAER
MLLMs Happy Sad  Neutral Angry
VideoLlama2 0.77 0.68 0.69 0.57 0.70 0.71
LlavaNextVideo 0.51 0.32 0.44 0.28 0.37 0.40
Qwen2.5VL 0.85 0.72 0.85 0.61 0.77 0.78
SALMONN 0.44 0.36 0.23 0.35 0.39 0.39
Qwen2Audio 0.57 0.25 0.39 0.17 0.36 0.37

Table 7: Detailed results of MER tasks are presented. All results are obtained using zero-shot inference.
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Task Description

Multi-choice Select the most appropriate emotions from a predefined list based on multimodal inputs.

Ranking Rank emotions from a predefined list based on multimodal inputs.

Recognition Analysis | Analyze and identify emotions in the multimodal input.

Transition Detection | Detect emotional shifts over time and identify when and how emotions change in a sequence.

Table 8: Multimodal Emotion Recognition (MER) Task Set Description

Task

Description

Emotion-based Response Generation

How would you feel if you were in the person’s shoes in this video?

Emotion-based Response Generation

How does the person’s experience in the video make you feel?

Emotion-based Response Generation

How does the video make you reflect on your own emotions or experiences?

Emotion-based Response Generation

What would you be feeling right now?

Table 9: Multimodal Empathetic Response Generation (MERG) Task Set Description

B MER Experiments Details

Table 7 presents specific metrics for each dataset in
the MER task.

C SAB Task Formulation

As shown in Figure 7, we first use GPT-4 to gener-
ate one or more emotionally neutral words. These
neutral words are then used to generate correspond-
ing modality-specific stimuli for the generative
model. Afterward, the corresponding task and stim-
uli are matched, forming an SAB sample, the tasks
are shown in Table 8 and Table 9.

As shown in Table 10, we tested GPT-40’s align-
ment with human preferences in the SAB visual-
language evaluation. The experiment shows that
GPT-4o is largely aligned with human preferences
and can automatically evaluate and generate posi-
tive and negative samples.

Alignment | Number of Samples | Rate
Consistent 228 76%
Inconsistent 72 24%

Table 10: GPT-40’s alignment with human preferences
in SAB visual-language evaluation.
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. Emotion-Neutral Words Generation Prompt:
Al Randomly Generate K(Human Set) Emotion-Neutral Words

CAT PANCAKE FIRE IBI

. Stimuli Generate Prompt:
N Create a video centered around a single character based on my
three prompt words, showing the character's face

Prompt Words: CAT PANCAKE FIRE

Rank emotions from {predefined list(e.g. Happy, Sad, Disgust,
Angry, Surprise, Fear)} based on multimodal inputs.

SN BN NN NN BN NN BN SN NN NN BN BN NN SN SN NN SN BN BN NN SN SN BN NN BN SN NN NN BN BN SN SN SN NN NN BN BN BN BN AN By,

SAB
PI‘E'Ferred! Happy, Surprise, Fear, Sad, Angry, Disgust |@|

0 Y

N

—-——

|
Surprise, Happy, Disgust, Fear, Angry, Sad |B|=

o

. 4

Figure 7: An example of SAB task formulation
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