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Abstract
We introduce a framework for automatically de-
fining and learning deep generative models with
problem-specific structure. We tackle problem
domains that are more traditionally solved by
algorithms such as sorting, constraint satisfac-
tion for Sudoku, and matrix factorization. Con-
cretely, we train diffusion models with an archi-
tecture tailored to the problem specification. This
problem specification should contain a graphical
model describing relationships between variables,
and often benefits from explicit representation of
subcomputations. Permutation invariances can
also be exploited. Across a diverse set of ex-
periments we improve the scaling relationship
between problem dimension and our model’s per-
formance, in terms of both training time and final
accuracy.

1. Introduction
A future in which algorithm development is fully trans-
formed from a challenging and labour intensive task (Cor-
men, 2009; Marsland, 2009; Russell & Norvig, 2010; Willi-
amson & Shmoys, 2011) into a fully automatable process
is seemingly close at hand. With prompt engineering large
language models like GPT (Brown et al., 2020) and now
ChatGPT have been shown to be capable of code completion
and even full algorithm development from natural language
task descriptions (Chen et al., 2021; Ouyang et al., 2022).

At the same time, significant advances in generative deep
learning (Ho et al., 2020; Song et al., 2021b; Ho et al.,
2022), AutoML (Hutter et al., 2018), and few-shot learning
(Brown et al., 2020) have made it possible to learn, from
data, flexible input-output mappings that generalize from
ever smaller amounts of data. This approach has spawned
modern aphorisms from Karpathy (2017) like “ Gradient
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descent can write better software than you. Sorry!”, appro-
priate attempts, in our opinion, to re-brand deep learning
as differentiable programming (Baydin et al., 2017), and
arguably even a new industry called “Software 2.0” in which
one “programs by example” (Karpathy, 2017).

There, however, remains a chasm between these two ap-
proaches, roughly delineated along the symbolic vs. connec-
tionist divide. Symbolically expressed algorithms can and
often do generalize perfectly across all inputs and exhibit
runtimes that are typically input “size” dependent. Software
2.0 algorithms struggle to generalize outside of their training
data thus are most often deployed in settings where copious
training data is available, the so-called “big-data” regime.
Most such “neural-network algorithms” have runtimes that
are not size dependent and resultingly cannot generalize in
the same fashion as symbolically expressed algorithms.

Efforts to bring these two approaches closer together
(Chaudhuri et al., 2021) often get lumped together under
the moniker “neuro-symbolic” methods. The general shape
of these methods, so to speak, is to impose some aspect of
symbolic reasoning on either the structure or computation
performed by a connectionist architecture. Our work can be
seen as a significantly novel methodological contribution to
this body of work.

We contribute a generic specification of methodology for
advantageously imposing task specific symbolic structure
into diffusion models and use it to demonstrate algorithm
learning from data in several small-scale but foundational
tasks across the algorithmic complexity spectrum. Specific-
ally, our approach consumes a graphical model “sketch”
that putatively could describe the joint data generative pro-
cess. This sketch consists only of nodes for variables, edges
between them, and optionally permutation invariances. We
combine this information with an otherwise generic dif-
fusion process (Ho et al., 2020), using the edges to ad-
vantageously constrain the transformer attention mechan-
isms (Vaswani et al., 2017) and permutation invariances to
determine when parameters within our architecture can be
shared. Compared to our neural baselines we improve the
scaling of computational cost with problem dimension in
most cases, and the scaling of problem performance with
dimension in all cases.

As a running example to keep in mind throughout the paper,
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Figure 1: An application of our framework to binary-continuous matrix factorization. In the first panel the computational
graph of the multiplication of the continuous matrix A ∈ R3×2 and the binary matrix R ∈ R2×3 is expanded as a
probabilistic graphical model in which intermediate products C are summed to give E = AR. This graph is used to create
a structured attention mask M , in which we highlight 1’s with the color of the corresponding graphical model edge and
self-edges in white. In the third panel the projection into the sparsely-structured neural network guiding the diffusion process
is illustrated. In the bottom the translation of permutation invariances of the probability distribution into the embeddings of
xt and y is shown (Section 2.4).

consider being given the task of developing a novel matrix
factorization algorithm, one which takes a real non-negative
valued matrix as input and outputs a distribution over two
matrix factors, one constrained to be binary valued, the
other constrained to be non-negative. The most traditional
approach is to painstakingly hand-develop through intel-
lectual willpower some new algorithm like Gram-Schmidt
which may not exist and might take an entire career to de-
velop. A more modern approach, to which we compare, is
to symbolically specify a model describing a joint data gen-
erating process and employ a generic inference algorithm
like MCMC (Wingate et al., 2011). Such a model is usu-
ally much easier to specify but the resulting “inversion al-
gorithm,” running a generic inference algorithm at test time,
trades sure generalization with worst-case infinite runtime.
Alternatively one could generate a large training dataset
from such a generative description, then hand-architect and
train a deep neural network to learn the desired inversion
algorithm, software 2.0 style (Le et al., 2017b). This is slow
to develop and train, usually requiring architectural innov-
ation, but constant-time fast at test time, albeit with likely
poor algorithm-style generalization. Our approach, most
like that of (Weilbach et al., 2020), strikes a middle ground.
We adopt the software 2.0 approach but provide a generic re-
cipe for specializing a generic and powerful diffusion-based
network architecture that trains quickly, generalizes reliably,
and whose runtime scales with problem size.

2. Background
2.1. Conditional Diffusion Models

Defining x0 to be data sampled from a data distribution
q(x0), a diffusion process constructs a chain x0:T with noise
added at each stage by the transition distribution

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

leading to the joint distribution

q(x0:T ) = q(x0)

T∏
t=1

q(xt|xt−1). (2)

The sequence β1:T controls the amount of noise added at
each step and, along with T itself, is chosen to be large
enough that the marginal q(xT |x0) resulting from Equa-
tion (1) is approximately a unit Gaussian for any x0.

This diffusion process inspires a diffusion model (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b),
or DM, which approximately “inverts” it using a neural
network that outputs pθ(xt−1|xt) ≈ q(xt−1|xt). We can
sample from a diffusion model by first sampling xT ∼
p(xT ) = N (0, I) and then sampling xt−1 ∼ pθ(·|xt) for
each t = T, . . . , 1, eventually sampling x0. In the condi-
tional DM variant (Tashiro et al., 2021) the neural network
is additionally conditioned on information y so that the
modelled distribution is

pθ(x0:T |y) = p(xT )

T∏
i=1

pθ(xt−1|xt,y). (3)

The transitions pθ(xt−1|xt,y) are typically approximated
by a Gaussian with non-learned diagonal covariance, and so
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the learning problem is simply to fit the Gaussian’s mean.
Ho et al. (2020) parameterize this mean as an affine function
of E[x0|xt,y] and, by doing so, reduce the problem to
fitting an estimator of x0 from xt and y with the loss

L(θ) =
T∑

t=1

Eq(x0,xt,y)

[
λ(t) · ∥x̂θ(xt,y, t)− x0∥22

]
.

(4)
Ho et al. (2020); Song et al. (2021a) show that there ex-
ists a weighting function λ(t) such that this loss is (the
negative of) a lower-bound on the marginal log-likelihood
log pθ(x0|y). We instead use uniform weights λ(t) = 1
which has been shown to give better results in practice (Ho
et al., 2020).

2.2. Transformer Architecture

Figure 2 outlines our neural architecture for x̂θ, which is
run once for every diffusion time step t. It’s input is a
set {x1, . . . , y1, . . .} in which each element corresponds
to one node in the graphical model of interest and comes
with side-information denoting which node it corresponds
to and whether or not it is observed (i.e. whether it be-
longs to xt or y). We describe in Section 3 how we embed
this side-information. The core of our architecture con-
sists of a stack of repeated ResNet layers (He et al., 2016)
and self-attention based transformer layers (Vaswani et al.,
2017). The self-attention layers are solely responsible for
controlling interactions between embeddings, and therefore
correlations between variables in the modelled distribution
pθ(x0|y). Inside the self-attention, each embedding is pro-
jected into a query vector, a key vector, and a value vector,
all in Rd. Stacking these values for all embeddings yields
the matrices Q,K,V ∈ Rn×d (given a d-node graphical
model). The output of the self-attention is calculated as

eout = ein +WV = ein + softmax
(
QKT

)
V (5)

where the addition of the self-attention layer’s input ein ∈
Rn×d corresponds to a residual connection. We note that
QKT yields a pairwise interaction matrix which lets us im-
pose an additional attention mask M before calculating the
output eout = ein + softmax

(
M ⊙QKT

)
V . This mask-

ing interface is central to structure the flow of information
between graphical model nodes in Section 3.1 .

2.3. Graphical Models

GSDM leverages problem structure described in the
form of a graphical model. There is considerable flex-
ibility in the specification of this graphical structure
and we allow for both directed and undirected graph-
ical models. A directed graphical model describes a
joint distribution over x = [x1, . . . , xn] with the density
p(x) =

∏n
i=1 pi(xi|parents(xi)). This may be natural to

use if the problem of interest can be described by a causal
model. This is the case in the BCMF example in Figure 1,
where the forward model is a matrix multiplication and
we can use the matrix multiplication’s compute graph as
a graphical model. If the data is simulated and source
code is available then we can automatically extract
the simulator’s compute graph as a graphical model
(Appendix J). Alternatively, an undirected graphical model
uses the density p(x) ∝

∏m
j=1 fj(vertices(j)) where

vertices(j) are the vertices connected to factor j and fj
maps their values to a scalar. This is a natural formulation
if the problem is defined by constraints on groups of nodes,
e.g. for Sudoku with row, column and block constraints
(Appendix C). Finally, the graphical model can combine
directed and undirected components, using a density
p(x) ∝

∏n
i=1 p(xi|parents(xi))

∏m
j=1 fj(vertices(j)).

We use this in our graphical model for sorting (Appendix C),
which combines a causal forward model with constraints.

We emphasise that GSDM does not need the link functions
(i.e. the form of each pi and fj) to be specified as long
as data is available, which is desirable as they are often
intractable or Dirac in practice. Also, while the selection
of a graphical model for data can be subjective, we find in
Section 4.3 that GSDM is not sensitive to small changes in
the specification of the graphical model and that there can
be multiple modeling perspectives yielding similar GSDM
performance. In general, we use the most intuitive graphical
model that we can come up with for each problem whether
it is directed, undirected, or a combination.

2.4. Permutation Invariance

Large probabilistic models often contain permutation invari-
ance, in the sense that the joint probability density q(x0) is
invariant to permutations of certain indices (Bloem-Reddy
& Teh, 2020). For example the matrix multiplication in Fig-
ure 1 is invariant with respect to permutations of any of the
plate indices.1 If the joint probability density is invariant to a
particular permutation, this can be enforced in a distribution
modelled by a DM by making the neural network archi-
tecture equivariant to the same permutation (Hoogeboom
et al., 2022). We show how to encode such equivariances in
GSDM in Section 3.2.

3. Method
The first stage in using GSDM is to define a graphical model
as discussed previously. This section focuses on how to map
from a graphical model to the corresponding GSDM archi-
tecture, an example of which is shown in Figure 2. The
backbone of the architecture is a stack of transformer mod-

1In general, plate notation implies permutation invariance as
long as no link functions depend on the plate indices themselves.
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Figure 2: An example GSDM architecture for a graphical
model with one observed and three latent variables. The
components within the dashed lines are repeated multiple
times. Arrows represent information flow. For clarity, we
leave out simple operations including linear transformations;
see the appendix for full detail.

ules operating on a set of embeddings, with each embedding
corresponding to one graphical model node. The colors in
Figure 2 outline this section. Section 3.1 describes how we
derive a sparse attention mechanism from a graphical model.
Section 3.2 explains the node embeddings. Section 3.3 mo-
tivates our decision to model “intermediate” variables jointly
with the variables of interest. Section 3.4 describes how we
handle observed variables, and Section 3.5 describes how
we handle discrete variables.

3.1. Faithful Structured Attention

Our architecture in Figure 2 runs a self-attention mechanism
over a set of embeddings, each of which corresponds to a
graphical model node. To add structural information, we
use the graphical model’s edges to construct attention masks
M for the self-attention layers. Precisely, we allow variable
i to attend to variable j if there is an edge between node i
and node j, and irrespective of the direction of the edge. If
the graphical model contains factors, we additionally allow
attention between any node pairs (i, j) which connect to
the same factor. Provided a sufficient number of attention
layers this approach is faithful to the dependencies in the
graphical model (Appendix D).

To reduce our memory usage and computation compared
to a dense matrix multiplication of the masked matrix we
provide an efficient sparse attention implementation as de-
scribed in Appendix C and the released code. Its computa-
tional cost is O(nm), where n is the number of dimensions
and m is the number of entries in the densest row of M .
We show in Appendix G that, even after accounting for cost
of the modeling of additional intermediate variables as de-
scribed later, the sparse attention mechanism gives GSDM
a reduction in computational complexity of O(n) relative

to a naive baseline in three of our four experiments.

3.2. Node Embeddings

GSDM’s architecture contains positional embeddings to let
the neural network distinguish which inputs correspond to
which graphical model nodes. The simplest variation of
GSDM learns one embedding per graphical model node
independently, and we call this approach independent em-
beddings, or IE. An issue with IE is that it cannot generally
be adapted to changing problem dimension. A generic solu-
tion to this involves noting that graphical model nodes can
often be grouped together into “arrays”. For instance, the
BCMF example in Figure 1 contains 39 nodes but these
belong to just 4 multi-dimensional arrays: A, R, C, and E.
We suggest array embeddings, or AE, which can be auto-
matically constructed for such problems with (potentially
variable-size) ordered datatypes. With AE, we compute
the embedding for each node as the sum of a shared array
embedding, learned independently for every array, and a si-
nusoidal positional embedding (Vaswani et al., 2017) for its
position within an array. Scalars can be treated as arrays of
size 1. AEs work well in our experiments and are a sensible
default.

For graphical models exhibiting permutation invariances
we can optionally enforce these invariances exactly using
exchangeable embeddings, or EE. We do so according to
the following result.

Theorem 3.1 (Permutation invariance in GSDM). Let A
represent the indices of a subset of the dimensions of data
x and ΠA be the class of permutations that permute only
dimensions indexed by A. Assume we have a GSDM para-
meterised with neural network x̂θ(·;M), where M is the
structured attention mask. If the node embeddings used
by x̂θ are shared across all nodes indexed by A, then the
distribution modelled by GSDM will be invariant to all per-
mutations π satisfying

M = πM and π ∈ ΠA (6)

where πM is a permutation of both the rows and columns
of M by π.

Proof. See Appendix E.

One implication of the M = πM condition is that it holds
trivially for a DM without sparse attention, in which M
is a matrix of all ones. The modeled distribution would
therefore be invariant to any permutation of A (Hoogeboom
et al., 2022). This may be a useful permutation invariance to
encode for some problems but, for the structured problems
considered in this paper, it is too simple and not valid. In
none of our experiments are there two variables whose val-
ues can be swapped without changing the density under the
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Figure 3: Time to fit the Boolean circuit with (solid lines)
and without (dashed) intermediate variables. Accuracy is
computed on 16 validation examples every 500 iterations,
to a maximum of 20 000.

data distribution. For example in BCMF, the data density is
invariant to reordering any of the plate indices, but not to
swapping any single pair of nodes in them.

When M is a structured matrix as we propose for GSDM,
Theorem 3.1 suggests a way to incorporate invariances that
are closely tied to the problem structure. On the BCMF
problem shown in Figure 1 we use only four embeddings,
sharing a single embedding between all nodes in A; another
between all nodes in R; and so on for C and E. Without
imposing an attention mask, this would make the network
invariant to any permutation of the variables within each of
A, R, C and E. With GSDM’s attention mask, it is only
invariant to permutations which lead to the same mask. This
means that the learned distribution is invariant only to the
ordering of the indices i, j, and k. As represented by the
plate notation in Figure 1, this is a desired invariance that
matches the data distribution.

In general, Theorem 3.1 suggests a simple heuristic for
checking when problem invariances can be enforced. If per-
muting the ordering of an index does not affect the sparsity
mask for a given problem then sharing embeddings across
instances of this index will enforce a permutation invariance
with respect to this index in GSDM. We utilise this property
in three of our four experiments. Along with our compiler
which generates an attention mask for a programatically-
defined graphical model, checking when Theorem 3.1 holds
for a given class of permutations can reasonably be auto-
mated. We do, however, still require human knowledge to
propose invariances suitable for the graphical model.

3.3. Intermediate Variables

When translating a generative model into a graphical model,
any observed variables or latent variables of particular in-
terest to the modeler should clearly be included as nodes.
There will be other latent variables, which we call “interme-
diate variables”, which are not directly of interest but may
be included to make the graphical model more interpretable,
more sparse, or otherwise preferable. Whether or not these

are included has implications for GSDM as it will either be
trained to model them jointly with the variables of interest
if they are included, or trained without this signal if they are
not. There is no model-agnostic “right” answer to whether
or not intermediate variables will be helpful but we point out
that including them is often beneficial for GSDMs because
of (1) GSDM’s empirical success at utilising the learning
signal from these intermediate variables as described below
and (2) the reduced computational cost of GSDM’s sparse
attention that is related to the number of graphical model
edges more so than the number of nodes, and so is not
necessarily increased by adding intermediate variables.

As an illustrative example, consider a Boolean logic circuit
which takes an input of size 2n. The input is split into pairs
and each pair is mapped through a logic gate to give an
output of size 2n−1. After n layers and a total of 2n − 1
logic gates, there is a single output. Suppose that you know
that each gate is randomly assigned to be either an OR gate
or an AND gate, and you wish to infer which from data. If
the data contains only the inputs and the single output, it
contains only 1 bit of information. Identifying the function
computed by each of the O(2n) gates will therefore require
at least O(2n) data points. On the other hand, if the data
contains intermediate variables in the form of the output
of every logic gate, each data point contains O(2n) bits of
information so the task may be solvable with only a few data
points. Figure 3 shows that this reasoning holds up when we
train a DM on this example. Without intermediate variables,
the number of training iterations needed scales exponentially
with n. With the combination of intermediate variables
and structured attention, however, the training behaviour is
fundamentally changed to scale more gracefully with n.

3.4. Flexible Conditioning

Optimizing the DM loss in Equation (4) requires a parti-
tioning of data into latent variables (outputs) x0, and ob-
served variables (inputs) y. While traditional amortized
inference requires choosing this partitioning before train-
ing (Gershman & Goodman, 2014; Ritchie et al., 2016; Le
et al., 2017a), our approach allows for flexible conditioning
by training over a distribution of partitions so that certain
variables can be latent in some test examples and observed in
others. The neural network distinguishes between variables
in xt and y via a learned observation embedding vector
eo that is added to the embeddings of observed variables.
This approach also naturally allows us to deal with miss-
ing values at inference time, unlike standard algorithms or
traditional amortized inference artifacts.

3.5. Handling Mixed Continuous/Discrete Variables

Our simple approach to combining discrete and continuous
variables in a DM is to map the discrete variables to one-
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Figure 4: Two BCMF samples by GSDM with m = 5,
n = 10 and k = 7. Each row in the plot shows the inferred
A, R and the respective reconstruction Ê = AR on the
left and the E provided as input on the right. Intermediate
variables C are omitted here.

hot encodings in a continuous space before running the
diffusion process. Sampled one-hot encodings can then be
mapped back to the discrete space with an argmax. We
project the entire (diffused) one-hot encoding into a single
embedding before passing it into the transformer, so that the
transformer performs the same amount of computation for a
discrete variable as for a continuous variable.

4. Experiments
Our experiments compare GSDM against ablations includ-
ing a non-sparse version (i.e. a vanilla DM), as well as the
variational auto-encoder for arbitrary conditioning (VAEAC)
(Ivanov et al., 2019) and, where appropriate, the best per-
forming MCMC method we tried: Lightweight Metropolis
Hastings (LMH) (Wingate et al., 2011). Unlike GSDM,
MCMC requires a fully specified probabilistic model and
cannot operate with data and independencies only. We test
the methods on the following four problems, which were
chosen to cover a wide range of problems in the space of
algorithm design and demonstrate that GSDM is suitable to
learn such approximate algorithms.

Binary continuous matrix factorization (BCMF) Our
first experiment tackles the challenging BCMF problem,
where we factorize a continuous matrix into one binary
and one continuous component. Our BCMF generative
model samples a binary matrix R ∈ Rk×n elementwise
from Bernoulli(0.3) and a continuous matrix A ∈ Rm×k

from an elementwise Uniform(0, 1) prior. The BCMF task
is to infer these conditioned on E := AR. To obtain
intermediate variables as discussed in Section 3.3 we break
the matrix multiplication into two steps, Cijk := AikRkj

and then Eij :=
∑

k Cijk. Our latent variables x0 are
therefore the combination of all elements of R, A, and C
and the observed variables y are the elements of E. Figure 4
shows that our learned GSDM can find factorisations that

are consistent with the observations. We plot performance
for GSDM trained on different problem sizes in Figure 5.
We highlight another property here, namely that GSDM
trained on BCMF can generalise well to larger m and n than
it is trained on; a GSDM trained on m, n and k uniformly
sampled in the range 1 to 10 can generalize to problems
with m and n as large as 200 as we show in Appendix F.

Sudoku A Sudoku grid is a 9× 9 array of numbers such
that each number is in {1, . . . , 9} and no two numbers in
the same row, column, or 3× 3 block are the same. Solving
a Sudoku, i.e. completing one given a partially-filled in
grid, is a difficult problem for deep learning methods, and
has previously been addressed with hand-designed modules
for reasoning (Palm et al., 2018) or semi-definite program-
ming (Wang et al., 2019). We use GSDM without such
custom modules for combinatorial reasoning. We model a
Sudoku with a factor graph. There is one factor for each
row, column, and block representing the constraint that it
contains all numbers {1, . . . , 9}. The resulting GSDM at-
tention mask lets each variable attend to all other variables
in the same row, column, and block. Our data generator2

creates complete 9 × 9 Sudokus. In order to train GSDM
as a Sudoku solver for arbitrary Sudoku puzzles, we create
each training example by randomly partitioning the grid into
latent and observed portions by sampling no uniformly from
0 to 80 and then uniformly sampling no variables to observe.
We find that GSDM can indeed solve Sudoku puzzles: it gen-
erates valid Sudokus unconditionally with 98% accuracy;
and in the case where 16 of 81 cells are observed with 96%
accuracy while maintaining sample diversity (Appendix H).
We also consider a generalization of Sudokus to any n2×n2

grid. Our results in Figure 5 show that GSDM can scale
gracefully to these larger problems, unlike our baselines.

Sorting Our graphical model for sorting is as follows.
(1) Sample an unsorted list u ∈ Rn. with each element ui

sampled from a unit normal. (2) Sample a permutation mat-
rix P ∈ {0, 1}n×n. Similarly to the Sudoku case, factors on
each row and column enforce that there should be a single 1
in each. (3) Multiply P and u. We integrate intermediate
variables Cij := Pijuj and sum them as si :=

∑
j Cij to

yield s = Pu. (4) We use factors between each pair of
elements in s to enforce that it is sorted. We show a diagram
of this graphical model, as well as all others used in our
experiments, in Appendix B. This graphical model is differ-
ent to, and simpler than, our true data generation procedure
in which we obtain s and P with a pre-existing sorting al-
gorithm. It fits into the GSDM framework nonetheless since
the graphical model is a valid specification of the independ-
ences in the data distribution. We measure it’s performance

2We generated complete Sudokus with a port of https://
turtletoy.net/turtle/5098380d82

https://turtletoy.net/turtle/5098380d82
https://turtletoy.net/turtle/5098380d82
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Figure 5: Performance versus problem dimension with all runs matched for wall-clock time. (a) BCMF reconstruction
error. We start from n = m = 16 and k = 8 and vary each dimension independently. GSDM is the best-performing method
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Figure 6: Training curves for BCMF (top) with m,n, k =
16, 16, 8; 9× 9 Sudoku (left); and sorting (right) with n =
20. Error bars show min/max of 3 seeds. Legend in Figure 5.

in Figure 5 as the RMSE between the ground-truth s and
the observed u transformed by the sampled P , and plot
progress during training in Figure 7. Note that LMH was
not able to sort even 3 element lists.

Boolean We additionally use the Boolean circuit de-
scribed in Section 3.3 (Figure 3) to demonstrate GSDM’s
ability to learn structured functions over many variables.
Our graphical model is simply the tree-shaped compute
graph of the Boolean circuit (diagram in Appendix B).

4.1. Structured Attention and Intermediate Variables

All of our experiments rely on structured attention for their
good performance, and the positive effect remains to a lesser
extent after removing intermediate variables. We saw this
for the Boolean circuit in Section 3.3 and here show experi-
ments in Figure 5 for Sudoku, sorting, and BCMF of various
dimensionalities. Imposing structure leads to significant im-
provements in each case, especially in combination with
intermediate variables. We ablate intermediate variables in
the same figure, as well as for the Boolean circuit in Figure 3.
The combination of structured attention and intermediate
variables is extremely helpful in all cases, ensuring that the
error remains low for all tested problem dimensions, even
when the baselines perform no better than random chance.

4.2. Effect of Node Embeddings

Three of our problems contain permutation invariances ex-
ploitable by embedding-sharing. Our sorting model is in-
variant to permutations of j (the ordering of u). Sudoku
is invariant to various permutations although EE was only
able to capture a simple invariance by sharing embeddings
between nodes that are within both the same row and the
same block. BCMF is invariant to permutations of all plate
indices in Figure 1. We see in Figure 6 that incorporating
these invariances with EE always gives faster training than
using IE. Even without specifying the invariances, AE can
be used to obtain most of the benefit. For Sudoku AE out-
performs IE, which may be due to AE’s natural encoding of
spatial information. Finally, our results on generalization
past the training dimensions in Appendix F are only possible
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Figure 7: Ablations of GSDM with different graphical
model structures for sorting with n = 20. The first three
lines, which represent reasonable or only slightly mis-
specified constraints on s in different ways described in
Section 4.3, quickly reach near-zero error. This speaks to
GSDM’s robustness to graphical model specification.

with the embedding-sharing enabled by EE.

4.3. Robustness to Choice of Graphical Model

There can be a degree of freedom in the choice of graph-
ical model for a given problem. For instance, in sorting
we represented the constraint that s is sorted with pairwise
constraints between neighbouring elements. Another reas-
onable graphical model may have imposed a factor over
all nodes of s, making s fully-connected in our attention
mask. We show in Figure 7 that this choice makes neg-
ligible difference to GSDM’s performance. Furthermore,
some modeling choices make no difference at all to GSDM.
For example we sampled u and P first and then computed
s := Pu, but someone else may have sampled s first (with
factors to ensure it is sorted) and then P before computing
u := P s. These two choices lead to identical GSDM net-
works because the only difference is the direction of edges
in the graphical model (which is irrelevant when they are
symmetrized to create the attention mask). Figure 7 also
shows that GSDM can be robust to a misspecified model,
“Unconstrained s”, where constraints are not imposed on
s. Two baselines perform significantly worse: a “Random”
baseline, in which each node is allowed to attend to 20
other nodes sampled at random; and a baseline with a non-
symmetrized version of our “standard” graphical model’s
attention mask. For sorting, edges added during symmetriza-
tion are necessary to allow any information to flow from the
intermediate variables C to the permutation matrix P . This
demonstrates the necessity of our symmetrization, backing
up the reasoning in Section 3.1.

5. Related Work
Sparse attention mechanisms have been introduced in sev-
eral forms, either to save memory footprint (Dai et al., 2019;

Kitaev et al., 2020; Roy et al., 2020) or computational cost
(Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2021).
A recent review is provided in (Tay et al., 2022).

The framework of amortized inference (Gershman & Good-
man, 2014; Ritchie et al., 2016) and probabilistic program-
ming (Le et al., 2017a; van de Meent et al., 2018) provides
the foundation for our approach. But instead of requiring
a full probabilistic model we relax the requirement to only
specify the graphical model structure. Weilbach et al. (2020)
use a graphical model to structure a continuous normalizing
flow for inference problems of fixed dimension. We use
the more flexible and scalable DM framework including
discrete variables. We can also work directly with the for-
ward probabilistic model to avoid computing the potentially
denser stochastic inverse of Webb et al. (2017).

Close in spirit to our work in terms of combinatorial optim-
ization are Selsam et al. (2019) for general SAT solving and
Tönshoff et al. (2022) for general CSP solving, which also
encode the structure between variables and constraints as
message passing neural networks. But these frameworks are
only applicable to deterministic discrete problem classes,
while we integrate everything in the more general probab-
ilistic inference framework. Freivalds & Kozlovics (2022)
use a DM with a graph neual network architecture (Zhou
et al., 2020) to tackle the SAT problem class. We aim to
tackle a much more general class of problems.

Our approach to explicitly training conditional diffusion
models is based on that of Tashiro et al. (2021); Harvey
et al. (2022). Various other methods train unconditional
diffusion models before providing approximate condition-
ing at test-time (Song et al., 2021b; Ho et al., 2022). Most
DMs are defined over either purely continuous (Ho et al.,
2020) or purely discrete spaces (Austin et al., 2021; Hoo-
geboom et al., 2021). Our approach to mixed-continuous
DMs is similar to that of Hoogeboom et al. (2022) but takes
a variational-dequantization perspective (Ho et al., 2019) so
that mapping back to the discrete space involves taking an
argmax instead of requiring sampling.

6. Discussion
The GSDM we have introduced benefits from the generality
of statistical conditioning, the expressivity of state-of-the-art
diffusion models with attention mechanisms, and the struc-
tural reasoning applied in programming language theory
and algorithm design. We have demonstrated that GSDMs
can automate the reasoning required to create approximate
solutions to tasks as diverse as sorting, Sudoku solving and
binary-continuous matrix factorization. These demonstra-
tions suggest that future work to address scaling both the
problem dimension and the complexity of graphical models
integrated with GSDM may be profitable. We believe the
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GSDM holds promise for models as complex as large sci-
entific simulators and encourage others in the community
to join us in making this a reality. In addition we are in-
terested in integrating task-specific symbolic knowledge
beyond graphical model structure into the dynamics of dif-
fusion processes. Finally we believe that, if future work
could turn our largely manual process for deriving a spe-
cific GSDM into a fully specificied formal procedure, this
could lead to powerful new next-generation probabilistic
programming systems.
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A. Experimental Details

Experiment Graphical model Conditioned on Struct. attn. Interm. vars Disc. & cont. Emb. sharing
BCMF directed E ✓ ✓ ✓ (✓)
Sudoku factor graph random subset ✓ - - (✓)
Sorting mixed u ✓ ✓ ✓ (✓)
Boolean directed input ✓ ✓ - -

Table 1: Problems tackled. A tick, ✓, highlights where our contributions were necessary to learn at all or scale with problem
dimension and (✓) where they improved performance. The improvements from structured attention and intermediate
variables are shown in Figure 3 and Figure 5.

Table 2: Experimental parameters. Listed training times refer to those used in Figures 3 and 5. The numbers of training
iterations refer to those listed in the same plot with the listed problem dimension. They vary with problem dimensions as we
trained all dimensions for a fixed training time on each problem, and the time per iteration depends on problem dimension.
The training curves in Figure 6 were obtained by training for longer in some cases. The dimensions listed are those used in
Figure 6; dimensions are varied and clearly stated in other results.

Parameter Sorting Sudoku BCMF Boolean

Problem dimension n = 20 9× 9 n,m, k = 16, 16, 8 -
Training time 1 day 1 day 8 hours 40-160 min.
Training iters (1000s) 120 − 320 20
Batch size 16 32 8 16
Learning rate 2× 10−4 2× 10−5 2× 10−5 2× 10−5

Embedding dim. 64 128 64 64
# transformer layers 6 6 12 12
# attention heads 8 8 2 2
GPU type A100 A5000 A100 A5000
VAEAC learning rate 3× 10−5 3× 10−4 3× 10−5 3× 10−5

LMH warmup samples - 5000 5000 -

We re-summarize our experiments and the results obtained in Table 1. Table 2 presents our experimental parameters.
Our ablations on sorting and BCMF give all networks equal training time, and the number of iterations therefore varies
depending on the time to run the network. We tuned the learning rates through small grid searches but this yielded only a
small improvement to training. In keeping with common deep learning wisdom, we found that increasing the embedding
dimension and number of transformer layers improved performance, as does using multiple attention heads. Conversely,
the results degrade gracefully in smaller embedding dimensions, less transformer layers or varying numbers of attention
heads. We set these architectural hyperparameters with the goal of obtaining networks that were both lightweight and
trained quickly, and tuned them via some experimentation for sorting, Sudoku, and BCMF. We use NVIDIA A100 GPUs for
sorting and BCMF, and smaller NVIDIA RTX A5000s for all ablations and other problems. We did not tune batch sizes,
other than ensuring that they were large enough to obtain good GPU utilization and small enough to avoid out-of-memory
errors. All data is sampled synthetically on-the-fly, so data points used in one minibatch are never repeated in another
minibatch. We use 1000 diffusion timesteps in all experiments and set the hyperparameters β1, . . . , β1000 using a linear
interpolation schedule (Ho et al., 2020) from β1 = 10−4 to β1000 = 0.005. Finally, we use the Adam optimizer with
β1 = 0.9 and β2 = 0.999 (Kingma & Ba, 2015), no weight decay and gradient clipping at 1.0. For LMH we relax the
discrete delta distributions representing “hard constraints” for Sudoku and sorting by observing a Bernoulli variable with a
probability of 0.9999 to provide individual guidance to the sampling process for each constraint. For BCMF, we relax the
Dirac distribution on the output matrix E to a normal distribution with standard deviation 0.01. We release code to ensure
full reproducibility of our results.

Where not otherwise specified, results for Sudoku are computed on examples with 50% of cells observed.
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B. Graphical models

(a) Graphical model for sorting. The unsorted list u is ob-
served and multiplied with the permutation matrix P (factors
ensure one element is active per row and column) into interme-
diate variables C. Summing over C yields the sorted nodes
s. The sorted nodes have pairwise constraint factors to ensure
their ordering.

(b) Boolean circuit graphical model with two layers. The
nodes in the dashed box are intermediate variables. The input
nodes are observed and the output node is to be inferred.

The graphical model for BCMF is shown in Figure 1; for Sudoku in Figure 10; for sorting in Figure 8a; and for the Boolean
circuit in Figure 8b. The following section shows the resulting attention masks.

C. Structured Attention
Figures 9 and 10 show examples of the attention masks used in all experiments, with and without intermediate variables.

The optimal choice for our structured attention would be sparse matrix multiplication on the accelerator, unfortunately this
was not yet available at the time of writing of this paper. We therefore provide a packed dense implementation of structured
attention. Our structured attention mechanism lets us reduce the computational and memory cost of an n-dimensional DM
from O(n2) to Θ(nm), where m is the maximum number of ones in any row of our attention mask M . For our BCMF
experiment, the reduction in memory footprint was necessary for us to scale to the dimensions demonstrated while using a
single GPU. Recall that, after computing keys K, values V , and queries Q (all with shape n× d, where d is the embedding
dimension), and given a attention mask M with shape n× n, we compute

e = softmax
(
M ⊙QKT

)
V . (7)

If implemented naively with dense matrix multiplications, both computing QKT and the outer multiplication by V involve
O(n2) scalar operations. We attempt to avoid this cost while still taking advantage of the dense matrix multiplications for
which GPUs are designed for. To do so, we project K and V into 3-dimensional matrices K̄ and V̄ of shape n×m× d.
We perform this projection such that K̄i is a sequence of the key vectors for every variable that variable i is connected to.
Equivalently, letting aij be the index of the jth variable that variable i is connected to, K̄i,j is equal to Kaij

. We define
V̄ similarly for value vectors. If variable i connects to less than m entries, then we pad K̄i and V̄i with zeros. We then
compute an n×m array of unnormalised weights U (encompassing all interactions allowed by our attention mask) such that
Ui,j = Qi · K̄i,j . Doing so involves only O(nm) operations, rather than the O(n2) required to compute dense attention
weights. We then mask all entries in U that were padded by setting them to −∞ before applying the usual softmax(U)
row-wise to get W̄ . Finally, we can compute the output h by setting each ei =

∑
j W̄i,jV̄j (again requiring only O(nm)

operations), which is equal to the output that would be obtained through dense matrix multiplications including the mask
M .

D. Faithfulness of Attention
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(a) BCMF (n = 4,m = 4, k = 2). (b) Sorting (n = 5). (c) Boolean circuit (n = 4).

(d) BCMF w/o intermediate. (e) Sorting w/o intermediate. (f) Boolean circuit w/o intermediate

Figure 9: Attention masks for BCMF, sorting, and the Boolean circuit. All are shown with (top row) and without (bottom
row) intermediate variables. Variable i can attend to variable j iff the cell in row i and column j is white. These masks all
become more sparse (as measured by proportion of entries which are non-zero) as the problem dimensionality is increased.
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Figure 10: Correspondence between a 9× 9 Sudoku grid (left) and the resulting attention mask. We draw a factor for each
of the first row, column and block on the left. On the right the respective entries in the attention structured mask M are
highlighted with the same color.

Figure 11: Example
graphical model of
q(x0)q(xt|x0). Nodes
are latent/blue if in x0,
observed/orange if in xt.

Our design choices regarding the construction of attention masks, and the depth of our archi-
tecture, are motivated by the following. According to the DM loss in Equation (4), the neural
network x̂θ is tasked at each timestep t = t′ with predicting x0 from xt′ . Figure 11 shows an
example graphical model factorization for q(x0|xt′) corresponding to this task. Since xt′ can
be generated by adding independent noise to each dimension of x0, this graphical model is
derived from the graphical model of the data distribution q(x0) by simply adding an edge from
each variable in x0 to the corresponding variable in xt′ .

Theorem D.1 (Dependence in diffusion models). Given that the data distribution q(x0)
is represented by a connected graphical model G = (X ,A), with nodes X and edges A,
we can represent the temporally combined graphical model at times t = 0 and t = t′ as
GDM = ({xi

t′}i ∪ {xi
0}i, {(xi

0,x
i
t′)}i ∪ A). Then there are no pairs i, j such that xi

0 can be
assumed independent of xj

t′ after conditioning on all other dimensions of xt′ . In other words,
for any i, j pair, we have to assume xi

0 ⊥̸⊥ xj
t′ | x

−j
t′ , where x−j

t′ stands for all nodes in xt′

except node j.

Proof. For any j, xj
t′ is directly connected to xj

0. Since we assumed that the graphical model for q(x0) is connected, there
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will further be a path from xj
0 to xi

0 which does not pass through any conditioned on nodes for any i. Therefore xj
t′ cannot

be d-separated from xi
0 (Koller & Friedman, 2009).

The consequence of Theorem D.1 is that every node in the neural network output x̂θ(xt,y, t) should depend on every node
in its input xt. Neural network architectures without this property might not be able to faithfully predict x0 given xt and
so might not faithfully model q(x0). This consideration motivated our previously-described design choice that variable
i can attend to j if there is any edge between them, irrespective of the direction of the edge. Otherwise, if the graphical
model is directed and acyclic there will not be a path between every pair of nodes. This would cause GSDM to make false
independence assumptions, which we show impacts performance in Figure 7. Note that if node i is not directly connected to
node j in our attention mask, information about node i may have to be passed to node j via other nodes. Since messages are
only passed along one edge per transformer layer, the number of transformer layers should be chosen to be at least as great
as the maximum path length in the symmetrized graphical model.

E. Permutation invariance through shared embeddings
In this section we first provide intuition about permutation invariance in diffusion models before restating and proving
Theorem 3.1. Our architecture provides an opportunity to enforce permutation invariance in the learned distribution. Consider
a “vanilla” DM which has a similar architecture to ours in Figure 2 but without the attention mask. The only information
this network receives about the ordering of its input comes from the node embeddings and, if the node embeddings were
removed, the architecture would be entirely permutation-equivariant. Similarly, if the node embeddings were shared between
a set of nodes, the architecture would be equivariant to permutations of this set of nodes. The modeled distribution would
therefore be invariant to permutations of this set of nodes (Hoogeboom et al., 2022). This may be a useful permutation
invariance to encode for some problems but, for the structured problems considered in this paper, it is too simple and not
valid. We introduce the following theorem to get describe other, more practically applicable, types of permutation invariance.

Theorem E.1 (Permutation invariance in GSDM). Let A represent the indices of a subset of the dimensions of data x and
ΠA be the class of permutations that permute only dimensions indexed by A. Assume we have a GSDM parameterised with
neural network x̂θ(·;M), where M is the structured attention mask. If the node embeddings used by x̂θ are shared across
all nodes indexed by A, then the distribution modelled by GSDM will be invariant to all permutations π satisfying

M = πM and π ∈ ΠA (8)

where πM is a permutation of both the rows and columns of M by π.

Proof. Our architecture without sparse attention, i.e. with M = 1, is equivariant under ΠA in that (writing the attention
mask as an additional input)

x̂θ(πxt;1) = πx̂θ(xt;1) ∀π ∈ ΠA (9)

for any xt. The analysis is different when the network uses an attention mask because the attention mask provides additional
information about the ordering of the inputs. Replacing M by πM , the permutation of both the rows and columns of M by
π, prevents this:

x̂θ(πxt, πM) = πx̂θ(xt,M) ∀π ∈ ΠA (10)

For equivariance to permutations of x alone, however, we require

x̂θ(πxt,M) = πx̂θ(xt,M) ∀π ∈ ΠA. (11)

In general, the equality in Equation (10) will only imply that in Equation (11) if M = πM . Therefore, when used in
combination with a structured attention mask M , sharing embeddings among all nodes in A will lead to equivariance only
to the set of permutations {π ∈ ΠA|M = πM}.

F. Generalization with BCMF problem dimension
In Figure 13 we plot a heatmap similar to Figure 12 but with a GSDM which generates unconditional joint samples of A, R,
and E instead of samples conditioned on E. We measure the mismatch between E and the product AR and, interestingly,
see that it is greater for the unconditional model (for problem dimensions both inside and outside the training distribution).
This suggests that it may be possible to improve unconditional generation performance by adjusting the diffusion process
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Figure 12: Error vs problem dimension for GSDM on binary continuous matrix factorization. We show the root mean square
error between the observed matrix E and the product of the sampled A and R. The colorbar for each value of k is scaled so
that “yellow” corresponds to the error achieved by a baseline which samples A and R from the prior, ignoring E. Despite
never seeing a value of n, m, or k larger than 10 during training, GSDM scales well to much larger values of m and n.
When they grow large enough, GSDM runs out of GPU memory. We mark entries where this occurred in white.
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Figure 13: Similar to Figure 12 but with a GSDM model trained to sampled A, R, and E jointly instead of conditioning on
E. We plot a heatmap of the root mean squared error (RMSE) between the matrix E and the product AR. The ranges for
each rank are scaled so that a yellow color represents the expected RMSE if A, R, and E are all sampled independently
from the prior. Entries colored in white exceed the GPU’s memory limit.

hyperparameters so that E is sampled early in the diffusion process and then A and R are sampled later, conditioned on E,
but we do not attempt to do so here.

G. Computational Complexities
Table 3 compares the computational cost of GSDM with that of naively applying a DM without intermediate variables or
structured attention.

H. Sudoku sample diversity

4 3 8 1 9 6 5 7 2

6 9 2 7 5 8 3 1 4

7 5 1 2 3 4 9 6 8

3 4 6 9 2 1 8 5 7

9 8 5 6 4 7 2 3 1

1 2 7 5 8 3 4 9 6

2 1 3 8 6 9 7 4 5

5 7 4 3 1 2 6 8 9

8 6 9 4 7 5 1 2 3

7 3 8 4 9 6 5 1 2

1 9 2 7 5 8 3 4 6

4 5 6 1 3 2 9 7 8

5 2 4 9 6 1 8 3 7

9 6 1 3 8 7 2 5 4

3 8 7 5 2 4 6 9 1

2 1 3 8 4 9 7 6 5

6 7 5 2 1 3 4 8 9

8 4 9 6 7 5 1 2 3

Figure 14: Two Sudoku solutions conditioned on the same 16 observed cells (in bold).

Sample diversity for Sudoku solving is shown in Figure 14. GSDM’s objective is naturally mass-covering so enforces
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Cost of ResNets Cost of attention Overall cost Reduction

BCMF with k = m = n
Naive O(n2) O(n4) O(n4) -

GSDM O(n3) O(n4) O(n4) O(1)

Sorting with input size n
Naive O(n2) O(n4) O(n4) -

GSDM O(n2) O(n3) O(n3) O(n)

Sudoku with side length n
Naive O(n2) O(n4) O(n4) -

GSDM O(n2) O(n3) O(n3) O(n)

Boolean with input size n
Naive O(n) O(n2) O(n2) -

GSDM O(n) O(n) O(n) O(n)

Table 3: Comparison of computational complexities of a GSDM layer and a naive DM layer without structured attention or
intermediate variables. GSDM yields reductions in complexity that scale with n for the Boolean and sorting experiments,
while giving the same complexity as a naive approach for BCMF yet much better performance.

sample diversity.

I. Matrix inversion
In this experiment we explore a purely continuous variation of our BCMF example from Section 4. We train the model
on fixed size full rank matrices of dimension 5 and condition on both E and A during training and testing. All entries of
both A ∈ R5×5 and R ∈ R5×5 are now sampled from a Normal(0, 1) prior and we set E = AR (as in BCMF). Despite
training on randomly sampled A and R, we demonstrate that GSDM implicitly learns matrix inversion. At test time we set
E to the identity matrix and solve for R ≈ A−1. Example solutions can be seen in Figure 15. Each pair of rows contains
two approximate solutions for the same A to illustrate sample diversity. Most reconstructions for Ê are close to the identity
matrix, but GSDM is not perfect. We did not specialize our prior from BCMF; a more targeted prior could be constructed
by directly providing pairs of matrices and their inverse. This experiment shows that we are able to calculate approximate
inverses, even though we have not specialized our graphical model or training distribution to do so.

J. Automatic Compilation of BCMF

Figure 16: Connectivity
mask extracted from
BCMF source code.
This is the same struc-
ture as in Figure 1 but
with permuted indices
and before the addition
of the diagonal self-
edges.

Building on the probabilistic programming language defined in van de Meent et al. (2018),
we demonstrate a compiler which maps from programs into a corresponding graphical model
structure. We will publish our implementation on acceptance. We demonstrate it on the
program on page 19, which multiplies two random matrices A ∈ R3×2,R ∈ R2×3 similarly to
our BCMF experiment. Samples from Dirac distributions are used to introduce the intermediate
nodes of C and the terminal nodes of E. Our compiler first translates it into a graphical model
and then into the attention mask as shown in Figure 16. We envisage a future extension which
“compiles” directly from such source code to a trained GSDM network.
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Figure 15: Rows of matrix inversion examples. Similar to Figure 4, but here we condition both on A and E = 1 (blue).
Each of the 5 pairs of rows show a solution for the same A. Reconstructions are shown as Ê = AR (green).
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(defn rand-matrix [size name]
(foreach (first size) [i (range (first size))]

(foreach (second size) [j (range (second size))]
(sample name (normal 0 1)))))

(defn dot-helper [t state a b]
(+ state

(sample "C" (dirac (* (get a t)
(get b t))))))

(defn dot [a b]
(loop (count a) 0 dot-helper a b))

(defn row-mul [t state m v]
(conj state (sample "E" (dirac (dot (get m t) v)))))

(defn transpose [m]
(foreach (count (first m)) [j (range (count (first m)))]

(foreach (count m) [i (range (count m))]
(get (get m i) j))))

(defn matmatmul [m1 m2]
(let [m2_ (transpose m2)]

(foreach (count m1) [i (range (count m1))]
(foreach (count m2_) [j (range (count m2_))]

(sample
"E"
(dirac (dot (get m1 i) (get m2_ j))))))))

(let [A (rand-matrix [3 2] "A")
R (rand-matrix [2 3] "R")
E (matmatmul A R)]

E)

Figure 17: Source code of a full generative model for the BCMF experiment. Passing this into our compiler yields
the attention mask in Figure 16. Note that intermediate variables for C are explicitly created by sampling from a dirac
distribution.
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