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Abstract

Large language models (LLMs) serve as gi-001
ant information stores, often including personal002
or copyrighted data, and retraining them from003
scratch is not a viable option for removal. This004
has led to the development of various fast, ap-005
proximate unlearning techniques to selectively006
remove knowledge from LLMs. Prior research007
has largely focused on minimizing the proba-008
bilities of specific token sequences by revers-009
ing the language modeling objective. However,010
these methods may still leave LLMs vulnera-011
ble to adversarial attacks that exploit indirect012
references. In this work, we examine the limi-013
tations of current unlearning techniques in ef-014
fectively erasing a particular type of indirect015
prompt: multi-hop queries. Our findings reveal016
that existing methods fail to completely remove017
multi-hop knowledge when one of the interme-018
diate hops is unlearned. To address this issue,019
we introduce MEMMUL, a simple memory-020
based approach that stores all forgotten facts021
externally and filters multi-hop queries based022
on their respective scores. We demonstrate that023
MEMMUL achieves comparable results with024
GPT-4o using a 7B model and outperforms pre-025
vious unlearning methods by a large margin,026
establishing it as a strong efficient baseline for027
multi-hop knowledge unlearning.1028

1 Introduction029

As the volume of data used to train large language030

models (LLMs) grows exponentially, these models031

have become vast repositories of information (Car-032

lini et al., 2021). However, this creates a formidable033

challenge when specific data from the models need034

to be removed. For instance, sensitive informa-035

tion, such as personal or copyrighted data, may036

unintentionally be included in the training mix, or037

individuals may exercise their Right to be Forgot-038

ten (RTBF) (Rosen, 2011) under privacy laws such039

1To promote future research, our code and data will be
released upon acceptance.

Elon Musk

Who is the CEO of Tesla?

Single-hop QA

Remove my information! 

What is the birthplace of Tesla's CEO?

1st Hop

2nd Hop

Answer: Elon Musk

Answer: Pretoria

Multi-hop QA

1st Hop

The birthplace of Tesla's CEO is Pretoria.

Sorry, I do not have information about that.

UnlearnRequest

Figure 1: A conceptual example. After Elon Musk
(i.e., “the user”) requests his personal information to be
removed from the LLM, existing unlearning methods
often succeed in deleting direct, single-hop facts but fail
on indirect, multi-hop facts that entail one or a few of
the unlearned facts.

as the European Union’s General Data Protection 040

Regulation (GDPR) (Hoofnagle et al., 2019) or 041

the California Consumer Privacy Act (CCPA) (Par- 042

dau, 2018) in the United States. These regulations 043

mandate the removal of personal or protected in- 044

formation from databases, extending to data em- 045

bedded within machine learning models. In such 046

cases, model owners must develop mechanisms to 047

safely eliminate specific data while preserving the 048

model’s overall functionality. 049

To address these concerns, several machine un- 050

learning methods have been introduced (Jang et al., 051

2023; Zhang et al., 2024c) with the goal of re- 052

versing gradients to prevent LLMs from generat- 053

ing certain sensitive token sequences. However, 054

these approaches may be vulnerable to adversar- 055

ial attacks, where specific token sequences are re- 056

placed or aliased with alternative sequences. For 057

example, prompting in low-resource languages has 058

been shown to jailbreak GPT-4 (Yong et al., 2023), 059

and Choi et al. (2024) demonstrated that current 060
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unlearning techniques lack cross-lingual transfer,061

making LLMs susceptible to such low-resource lan-062

guage exploits. This leads to an important research063

question: Do current unlearning methods effec-064

tively erase multi-hop knowledge when one of065

the intermediate hops is removed? As illustrated066

in Figure 1, consider a scenario where Elon Musk067

(i.e., “the user”) requests the removal of his per-068

sonal information from an LLM. After unlearning,069

we expect direct, single-hop knowledge related to070

Elon Musk, such as “Who is the CEO of Tesla?”,071

would be deleted. Additionally, we would expect072

associated multi-hop knowledge, like “What is the073

birthplace of Tesla’s CEO?”, which indirectly ref-074

erences Musk, to also be removed.075

In this study, we investigate the effectiveness076

of existing unlearning methods in removing multi-077

hop knowledge. Ideally, when one or more facts078

within a reasoning chain are unlearned, the model079

should propagate these changes, rendering it unable080

to answer the corresponding multi-hop questions.081

However, our preliminary experiments reveal that082

current unlearning techniques struggle to forget083

multi-hop questions when an intermediate hop is084

removed. In response, we present MEMMUL, a085

simple yet effective approach that explicitly stores086

facts to be forgotten in memory and filters incom-087

ing multi-hop questions based on their relevance088

scores. Concretely, MEMMUL decomposes multi-089

hop questions into successive subquestions, com-090

putes their relevance to the stored facts, and applies091

a forgetting threshold to determine whether to re-092

turn a rejective response (e.g., “I don’t know.”).093

Such a frustratingly easy approach serves as a094

strong baseline for multi-hop knowledge unlearn-095

ing, designed for researchers and practitioners to096

consider when developing their own unlearning097

pipelines. Notably, it requires no additional train-098

ing, and even small LLMs (e.g., 7B) can match099

the performance of GPT-4o, making it a highly ef-100

ficient and practical solution. To our knowledge,101

this is the first work to explore the unlearning of102

multi-hop knowledge.103

2 Problem Definition104

2.1 Probing Factual Knowledge in LLMs105

We express a fact as a triple (s, r, o), where s is the106

subject, r the relation, and o the object. Following107

Petroni et al. (2019), we define that a pretrained lan-108

guage model possesses specific factual knowledge109

if it can accurately predict the object o when given110

the subject s and relation r. For example, if the 111

subject is Tesla and the relation is chief executive 112

officer, the model should be able to answer the ques- 113

tion, “Who is the CEO of Tesla?”. While earlier 114

work primarily focused on cloze-style statements, 115

such as “The CEO of Tesla is __.”, using manu- 116

ally written templates, we employ natural language 117

questions to effectively query chat-based models 118

that are becoming widely used. 119

2.2 Knowledge Unlearning 120

Given a token sequence x = {x}Ti=1 from the train- 121

ing dataset D = {x}Ni=1, knowledge unlearning 122

aims to safely remove the influence of a specific 123

subset of data Df from a trained machine learning 124

model. The goal is to make the model behave as 125

if this removed data was never used during train- 126

ing, while still maintaining its performance on the 127

remaining dataset. Typically, the data to be forgot- 128

ten Df is denoted as the forget set, and the data to 129

be retained Dr is referred to as the retain set. For 130

simplicity, we consider the standard case where 131

Df and Dr are mutually exclusive subsets of the 132

entire training dataset, meaning Df ∪ Dr = D and 133

Df ∩ Dr = ∅. In the context of factual knowl- 134

edge unlearning, each token sequence x represents 135

a fact (e.g., “The CEO of Tesla is Elon Musk.”), 136

and the objective is to update the model πθ to 137

πθ′ = S(πθ;Df ). The unlearning function S en- 138

sures that the model behaves as if it had only been 139

trained on Dr, effectively forgetting Df while pre- 140

serving its performance on the retained data. 141

2.3 Assessing Multi-Hop Queries 142

To evaluate the unlearning of multi-hop knowl- 143

edge, we must first consider a chain of facts C = 144

⟨(s1, r1, o1), . . . , (sn, rn, on)⟩, where the object of 145

the ith fact also serves as the subject of the next 146

fact in the chain, i.e., oi = si+1. Using this chain, 147

we formulate a multi-hop question that starts with 148

the head entity s1 and ends with the tail entity on. 149

For instance, consider a chain of two facts: (Tesla, 150

chief executive officer, Elon Musk) and (Elon Musk, 151

place of birth, Pretoria). This could generate a 152

2-hop question such as: “What is the birthplace 153

of Tesla’s CEO?” When one or more facts from 154

the chain are unlearned, an LLM should adjust its 155

reasoning accordingly, effectively losing the ability 156

to correctly answer the question. There may be a 157

debate over how many hops should be unlearned, 158

or whether certain multi-hop knowledge should 159

be unlearned at all, as theoretically, the intercon- 160
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Hop Forget Retain
Train Valid Test

MQuAKE-NoEdit (Zhong et al., 2023)

Single # of questions 1,046 7,322 1,046 1,046
Avg. words 8.7 8.6 8.7 8.7

Multi
# of questions 1,036 - 988 976
Avg. words 14.4 - 14.5 14.5
Avg. hops 2.3 - 2.4 2.4

MuSiQue-Ans (Trivedi et al., 2022)

Single # of questions 1,735 12,150 1,735 1,735
Avg. words 8.8 8.9 8.9 8.9

Multi
# of questions 4,807 - 4,132 3,347
Avg. words 18.4 - 18.2 17.5
Avg. hops 2.5 - 2.5 2.4

Table 1: Dataset statistics. The average words denote
the number of words in questions. When constructing
the retain set for training, we randomly sample the same
number of instances as in the forget set.

nected nature of facts could lead to the unlearning161

of broader knowledge in the LLM. For the scope of162

this study, we focus on the datasets used in our ex-163

periments; nevertheless, we hope these discussions164

inspire further insights into developing more effec-165

tive and reliable knowledge unlearning methods.166

3 Evaluating Unlearning Approaches in167

Multi-Hop Question Answering168

3.1 Datasets169

To evaluate unlearning approaches in multi-hop170

QA, we employ MQuAKE (Zhong et al., 2023)171

and MuSiQue (Trivedi et al., 2022) datasets. Their172

key statistics are presented in Table 1. MQuAKE,173

designed for multi-hop knowledge editing, assesses174

a model’s ability to adapt its responses to multi-175

hop queries when individual facts are modified.176

However, since our study focuses on unlearning177

rather than knowledge editing, we disregard the178

edited facts and keep only the original ones, refer-179

ring to this subset as MQuAKE-NoEdit. While180

we could have chosen a dataset explicitly con-181

structed for multi-hop QA, MQuAKE-NoEdit re-182

mains well-suited for our task due to its diverse183

and high-quality multi-hop questions generated us-184

ing ChatGPT (gpt-3.5-turbo) based on chains185

of single-hop fact triples from Wikidata (Vrandečić186

and Krötzsch, 2014).187

MuSiQue, on the other hand, is a multi-hop QA188

dataset created through a bottom-up approach, syn-189

thesizing multi-hop questions from a collection of190

single-hop questions across five English Wikipedia-191

based datasets: SQuAD (Rajpurkar et al., 2016),192

ZsRE (Levy et al., 2017), T-REx (Elsahar et al.,193

2018), Natural Questions (Kwiatkowski et al.,194

2019), and MLQA (Lewis et al., 2020). MuSiQue 195

is shown to be more challenging than previous 196

multi-hop datasets such as HotpotQA (Yang et al., 197

2018) and 2WikiMultihopQA (Ho et al., 2020). It 198

enforces connected reasoning, reducing the like- 199

lihood of shortcut-based answering, making it an 200

ideal choice for our study. Specifically, we employ 201

the MuSiQue-Ans subset, which contains approx- 202

imately 25K answerable questions spanning 2-4 203

hops. For details on our data preprocessing steps, 204

including the partitioning of forget and retain sets, 205

refer to Appendix B. 206

3.2 Experimental Setup 207

Knowledge unlearning approaches We evalu- 208

ate the following state-of-the-art knowledge un- 209

learning approaches (see Appendix A for details): 210

• GA (Jang et al., 2023): Applies gradient as- 211

cent to decrease the likelihood of token se- 212

quences associated with the forget set 213

• DPO (Rafailov et al., 2023): Performs direct 214

preference optimization, prioritizing “I don’t 215

know” responses for items in the forget set 216

• NPO (Zhang et al., 2024c): Implements nega- 217

tive preference optimization to actively disfa- 218

vor responses linked to the forget set 219

• +RT: Includes additional finetuning on the 220

retain set to explicitly reinforce knowledge 221

retention in the model 222

Implementation details We built our framework 223

on PyTorch (Paszke et al., 2019) and Hugging 224

Face Transformers (Wolf et al., 2020). We em- 225

ployed OLMo-2-7B-Instruct (OLMo et al., 2024) 226

and Qwen-2.5-7B-Instruct (Yang et al., 2024) as 227

the backbones of our framework (see Appendix C 228

for results on more models) and optimized their 229

weights with AdamW (Loshchilov and Hutter, 230

2019). We trained all +RT models for 5 epochs 231

(and non-RT models for 2 epochs) with warmup 232

during the first epoch and set the batch size to 32, 233

the learning rate to 1e-5, and the weight decay 234

to 0.01. We set the loss scaling factor α to 0.3 to 235

balance between forgetting and retaining (see Equa- 236

tion 5). All experiments utilized 1% of data as the 237

forget set (i.e., 104 and 173 samples for MQuAKE- 238

NoEdit and MuSiQue-Ans, respectively) unless 239

otherwise noted. Each experiment was repeated 240

with three different random seeds, and the results 241

were averaged for reporting. 242
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Forget Set (Single-Hop) Forget Set (Multi-Hop) Retain Set (Single-Hop) Retain Set (Multi-Hop) Utility Set
PA(↓) R-L(↓) LM(↑) PA(↓) R-L(↓) LM(↑) PA(↑) R-L(↑) LM(↓) PA(↑) R-L(↑) LM(↓) Avg.(↑)

OLMo-2-7B-Instruct
Original 95.2 82.7 1.2 98.1 53.3 1.2 97.0 84.5 1.1 97.4 49.5 1.2 64.0

GA 19.2 56.6 10.3 39.4 29.4 7.9 35.3 67.4 8.8 44.7 26.1 7.5 62.8
DPO 25.0 0.0 6.3 70.2 0.0 3.7 40.8 0.0 5.3 63.2 0.2 3.6 63.1
NPO 20.2 55.9 10.3 38.5 27.9 7.9 35.0 68.2 8.8 44.6 26.3 7.5 62.8

GA+RT 29.5 38.1 12.0 87.8 26.3 3.7 78.0 65.2 3.6 91.8 30.6 2.6 62.6
DPO+RT 34.9 1.0 11.6 90.4 2.4 2.8 83.3 15.8 3.2 95.6 4.7 2.0 62.4
NPO+RT 32.1 37.3 11.1 87.5 26.8 3.3 79.7 67.7 3.0 92.9 29.9 2.3 62.6

Qwen-2.5-7B-Instruct
Original 97.1 78.9 2.2 96.2 53.9 2.6 94.3 82.1 2.2 95.8 49.5 2.6 65.5

GA 23.1 0.5 25.8 25.0 0.0 27.9 19.9 2.1 25.0 31.6 0.3 27.6 63.9
DPO 32.7 3.7 8.8 67.3 1.8 5.9 37.5 2.3 8.2 68.3 2.0 5.8 64.2
NPO 22.1 1.0 25.5 26.9 0.0 27.6 20.1 2.2 24.8 31.6 0.2 27.4 63.8

GA+RT 41.7 38.9 15.5 93.6 35.3 4.2 82.8 72.2 5.5 95.3 39.0 3.2 66.5
DPO+RT 46.5 11.8 12.0 90.4 14.7 3.6 88.8 42.3 3.6 96.4 22.6 2.6 65.1
NPO+RT 47.8 38.0 13.5 92.6 34.9 3.9 87.0 72.0 4.3 95.9 40.1 3.0 66.5

Table 2: Performance comparison of different knowledge unlearning methods after erasing single-hop facts from
the forget set in MQuAKE-NoEdit. The best results among +RT models are highlighted in bold.

Forget Set (Single-Hop) Forget Set (Multi-Hop) Retain Set (Single-Hop) Retain Set (Multi-Hop) Utility Set
PA(↓) R-L(↓) LM(↑) PA(↓) R-L(↓) LM(↑) PA(↑) R-L(↑) LM(↓) PA(↑) R-L(↑) LM(↓) Avg.(↑)

OLMo-2-7B-Instruct
Original 89.0 37.2 1.4 94.7 26.2 1.4 83.1 37.9 1.5 94.0 24.5 1.5 64.0

GA 22.5 18.5 13.6 29.6 12.0 10.3 27.2 19.6 12.5 30.8 12.7 10.3 61.0
DPO 19.1 0.1 8.4 45.9 0.9 5.2 31.1 0.2 7.1 47.1 0.2 5.2 61.9
NPO 22.5 18.2 13.6 29.6 12.3 10.3 27.0 19.2 12.5 30.7 12.5 10.3 61.0

GA+RT 22.5 18.0 16.2 83.4 16.8 5.1 83.8 28.6 3.8 94.0 19.3 3.4 61.0
DPO+RT 24.9 1.9 14.1 85.5 4.6 4.6 87.5 11.0 3.4 95.7 5.4 3.4 60.6
NPO+RT 24.5 16.9 14.3 84.5 16.5 4.3 85.1 27.9 3.1 95.0 18.6 2.9 61.2

Qwen-2.5-7B-Instruct
Original 79.8 34.3 2.9 93.1 21.5 2.5 79.6 34.8 2.9 92.0 23.2 2.6 65.5

GA 24.9 3.9 50.0 22.7 3.3 43.8 21.9 1.7 49.8 21.7 2.5 44.5 61.5
DPO 15.6 0.6 25.8 16.0 2.6 21.3 20.2 0.7 25.7 16.4 1.6 21.9 63.0
NPO 21.4 4.9 49.3 19.1 2.9 42.9 20.8 1.8 48.9 19.1 2.6 43.6 61.4

GA+RT 36.8 15.4 17.3 83.7 14.1 6.8 86.7 24.8 3.7 92.9 16.2 4.5 65.3
DPO+RT 32.0 4.9 15.8 83.6 8.0 5.5 87.7 16.9 3.5 94.0 9.6 3.9 65.2
NPO+RT 35.1 16.4 16.2 87.4 16.7 6.1 87.6 27.4 3.6 94.2 18.3 4.2 65.3

Table 3: Performance comparison of different knowledge unlearning methods after erasing single-hop facts from
the forget set in MuSiQue-Ans. The best results among +RT models are highlighted in bold.

Evaluation metrics To evaluate the unlearning243

of factual knowledge, we adopt the approach of244

Petroni et al. (2019) and report Probing Accu-245

racy (PA). This rank-based metric computes the246

mean precision at k (P@k) across all relations,247

with k set to 1. In other words, for a given fact,248

the value is 1 if the correct object appears among249

the top k predictions, and 0 otherwise. By the def-250

inition of probing in Section 2.1, we consider a251

pretrained language model to have successfully un-252

learned a fact if it can no longer predict the correct253

object accurately. To generate answer candidates,254

we use GPT-4o to produce perturbed responses255

for each example. To assess the model’s gener-256

ation capability, we measure ROUGE-L recall257

(R-L) (Lin, 2004) to compare the model’s gen-258

erated outputs (via greedy decoding) against the 259

ground-truth answers, accounting for slight varia- 260

tions in phrasing between the generated and refer- 261

ence outputs. Additionally, Language Modeling 262

Loss (LM) is computed over token sequences to 263

quantify how perplexed the model is by the data. 264

Finally, we assess the model’s overall utility by 265

averaging performance across eight language un- 266

derstanding benchmarks: ARC-Challenge (Clark 267

et al., 2018), CommonsenseQA (Talmor et al., 268

2019), HellaSwag (Zellers et al., 2019), Lam- 269

bada (Paperno et al., 2016), MMLU (Hendrycks 270

et al., 2021), OpenbookQA (Mihaylov et al., 2018), 271

PIQA (Bisk et al., 2020), and Winogrande (Sak- 272

aguchi et al., 2021). Full individual results can be 273

found in Appendix C. 274
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Figure 2: Data scaling performance of various unlearning methods using OLMo-2-7B-Instruct across different
proportions of data for the forget set (1%, 5%, and 10%). Models consistently preserve the ability to unlearn and
retain single-hop facts with scaling. While unlearning multi-hop facts seems to improve with scaling, a similar
decline is also observed in the retain set. This suggests that the effect may be attributed to catastrophic forgetting of
general information rather than a genuine improvement in unlearning multi-hop facts.
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Figure 3: Model scaling performance of various unlearning methods using Qwen-2.5-Instruct across different
model sizes (0.5B, 1.5B, 3B, and 7B). The performance trends remain consistent across all model sizes, indicating
that the underlying issue persists regardless of model scale.

3.3 Knowledge Unlearning Results275

We present a comparison of unlearning perfor-276

mance across various methods in Tables 2 and 3.277

Each method was trained for at least one epoch278

to ensure the model had exposure to all samples279

in the forget set. We find that all non-RT meth-280

ods successfully forget corresponding multi-hop281

knowledge but also the knowledge to be retained,282

indicating that models largely lost their ability to283

retain information and function correctly. On the284

other hand, additional finetuning on the retain set285

(i.e., +RT) mitigates catastrophic forgetting, evi-286

denced by retention performance comparable to287

the original for both single-hop and multi-hop facts.288

Nevertheless, in both OLMo and Qwen models,289

multi-hop facts within the forget set were not effec-290

tively unlearned. Similar trends emerge in results291

from four other open-source LLMs, detailed in Ap-292

pendix C. This indicates that existing unlearning293

methods, while capable of removing single-hop294

information, struggle to extend that effect to the295

corresponding multi-hop knowledge. These out-296

comes underscore the need for new approaches to297

address unlearning in multi-hop scenarios.298

3.4 Evaluation with Unlearning at Scale 299

Data scaling In real-world scenarios, the number 300

of samples to forget can vary. Thus, we evaluate 301

the performance of unlearning and retaining multi- 302

hop facts as the size of the forget set changes. We 303

conduct experiments using 1%, 5%, and 10% of the 304

MQuAKE-NoEdit dataset for forgetting (104, 523, 305

and 1,046 single-hop instances, respectively), with 306

the results shown in Figure 2. Our findings indicate 307

that all knowledge unlearning methods effectively 308

scale for single-hop, consistently preserving the 309

ability to forget and retain single-hop facts. For 310

multi-hop facts, unlearning performance improves 311

with larger forget sets, as reflected in a noticeable 312

performance drop. However, a similar decline is 313

observed in the retain set, suggesting that this effect 314

might stem from catastrophic forgetting of general 315

knowledge rather than a true enhancement in un- 316

learning multi-hop facts. 317

Model scaling To assess the impact of model size 318

on the unlearning of multi-hop facts, we evaluate 319

performance across different LLM scales. Leverag- 320

ing the Qwen-2.5 series, we conduct experiments 321

on models of 0.5B, 1.5B, 3B, and 7B parameters, 322
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Multi-hop Question
What is the occupation of the head of government of the

City of Sydney?

1st Subquestion Who is the head of government of the City of Sydney?

The capital of Bohemia is Prague.

The official language of Sotkamo is Finnish.

Thomas Hutchinson was born in Boston.

Clover Moore works as a politician.

Predicted Answer
The head of government of the City of Sydney is

Clover Moore.

Answer Clover Moore

Final Answer Sorry, I cannot answer that.

Forgetting Score 0.3 In Retention Zone

Forgetting Score 2.4 In Forgetting Zone

2nd Subquestion What is the occupation of that person?

Predicted Answer The occupation of Clover Moore is a politician.

Answer Politician

Forgetting Threshold

Forgotten Fact Memory

Retention Zone Forgetting Zone

Forget Set

Retain Set
θ

1.5

...

Figure 4: Overview of the proposed MEMMUL framework. MEMMUL begins by breaking down a multi-hop
question into a sequence of subquestions, where each subquestion is passed to the base model to generate predicted
answers. Then, these predictions are compared with the stored facts in memory to derive corresponding forgetting
scores. If any predicted answer yields a high forgetting score, MEMMUL responds with a rejection (e.g., “I don’t
know.”). Otherwise, the final response is based on the last intermediate answer in the sequence.

with results presented in Figure 3. Our findings323

indicate that, regardless of model size, forgetting324

single-hop facts does not trigger cascading changes325

in multi-hop knowledge, highlighting a persistent326

challenge in knowledge unlearning.327

4 MEMMUL: A Strong Baseline for328

Unlearning Multi-Hop Facts in LLMs329

In this section, we present the Memory-based330

Multi-Hop Knowledge UnLearning (MEMMUL),331

a simple yet effective approach to forgetting multi-332

hop facts in LLMs. Figure 4 illustrates the overview333

of our method.334

4.1 Methodology335

Inspired by memory-based multi-hop knowledge336

editing frameworks (Zhong et al., 2023), MEM-337

MUL tracks all the forgotten facts in an explicit338

memory while keeping the base LLM frozen. Par-339

ticularly, MEMMUL (1) decomposes a multi-hop340

question into subquestions, (2) computes the for-341

getting scores relative to the stored facts, and (3)342

decides whether to respond with a refusal (e.g., “I343

don’t know.”) based on the forgetting threshold.344

Forgotten fact memory MEMMUL explicitly345

stores all forgotten facts in memory. For simplic-346

ity and consistency with prior work, we assume347

that all facts are single-hop. Specifically, single-348

hop facts in the forget set are first transformed into349

sentence-level statements using GPT-4o. Next, we 350

encode these statements with the off-the-shelf em- 351

bedding model Contriever (Izacard et al., 2022) 352

and store them in a retrieval index. Given a query, 353

the index retrieves the most relevant forgotten fact, 354

determined by proximity in the embedding space. 355

Decomposing multi-hop questions Since single- 356

hop facts are stored in memory, it is intuitive to 357

compare them against single-hop statements. To 358

enhance the unlearning of multi-hop facts in LLMs, 359

we build on previous work by breaking down multi- 360

hop questions into a series of simpler queries (Zhou 361

et al., 2023). In multi-hop reasoning, where the pre- 362

dicted answer of one question serves as the subject 363

for the next fact (i.e., oi = si+1), model-generated 364

responses to intermediate questions can slow down 365

the process. To mitigate this, we leverage coref- 366

erence resolution to construct subquestions all at 367

once, bypassing the need for sequential answering. 368

For instance, as shown in Figure 4, if the first sub- 369

question is “Who is the head of government of the 370

City of Sydney?”, the second subquestion would be 371

“What is the occupation of that person?”, eliminat- 372

ing the need to resolve the first before proceeding. 373

In practice, we leverage a few-shot prompt with 374

three demonstrations, as illustrated in Figure 5. 375

Distinguishing forget and retain facts If a 376

multi-hop question has effectively been decom- 377

posed, its subquestions should resemble single-hop 378
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MQuAKE-NoEdit MuSiQue-Ans

Forget Set Retain Set Forget Set Retain Set
Decomposer Method PA(↓) R-L(↓) PA(↑) R-L(↑) PA(↓) R-L(↓) PA(↑) R-L(↑)

Original 96.2 53.9 95.8 49.5 93.1 21.5 92.0 23.2

GA+RT 93.6 35.3 95.3 39.0 83.7 14.1 92.9 16.2
DPO+RT 90.4 14.7 96.4 22.6 83.6 8.0 94.0 9.6
NPO+RT 92.6 34.9 95.9 40.1 87.4 16.7 94.2 18.3

Qwen-2.5-7B-IT MeLLo† 96.2 21.1 97.0 22.4 93.1 10.2 92.7 7.9
MEMMUL 7.7 4.1 91.6 51.4 25.4 5.4 84.7 21.4

GPT-4o-mini MeLLo† 57.7 24.1 78.6 41.2 75.2 17.0 91.0 26.5
MEMMUL 9.6 5.7 92.3 52.7 22.6 4.9 85.1 21.1

GPT-4o MeLLo† 22.1 12.5 83.1 48.6 52.5 12.2 90.8 38.8
MEMMUL 10.6 7.0 91.4 51.0 23.9 4.9 90.7 22.0

Table 4: Multi-hop knowledge unlearning performance of MEMMUL (ours) and MeLLo (Zhong et al., 2023), a
memory-based multi-hop knowledge editing method. (†) indicates our modified implementation adapted specifically
for the unlearning task. The base model is Qwen-2.5-7B-Instruct in MEMMUL, predicting answers to questions
decomposed by the Decomposer model. The base and decomposer models are the same in MeLLo. The better
results between the two are in bold, while the best results are underlined.

queries. The outputs generated for these subques-379

tions (which we refer to as subanswers) can then380

serve as proxies for the forgotten single-hop facts.381

Therefore, we feed each subquestion to the base382

model to generate subanswers and compute their383

forgetting scores w.r.t. the stored facts. Since re-384

trieval is not our primary focus, we use simple dot385

product similarity between embeddings to identify386

the most relevant fact for each predicted answer.387

Forget Set Retain Set
Retrieval Strategy PA(↓) R-L(↓) PA(↑) R-L(↑)

Subanswer (ours) 7.7 4.1 91.6 51.4

Subquestion 8.7 4.2 91.6 51.7
Subquestion (coref.) 18.3 13.8 88.3 48.9
Multi-hop question 19.2 13.8 93.6 48.1

Table 5: Comparison of different retrieval strategies on
MQuAKE-NoEdit for multi-hop knowledge unlearn-
ing performance using Qwen-2.5-7B-Instruct as the
multi-hop question decomposer.

To determine which multi-hop facts to unlearn or388

retain, we establish a threshold that effectively sep-389

arates the two data distributions. We approximate390

this threshold by plotting the probability density391

functions of the forget set and the validation split392

of the retain set. During inference, we apply this393

threshold to assess whether the forgetting score of394

each subanswer is high or low. If any subanswer395

yields a high forgetting score, we replace the final396

answer with a rejective response, following the ap-397

proach of selective generation (Zhang et al., 2024a).398

Otherwise, the final answer is drawn from the last399

intermediate predicted answer.400

4.2 Evaluation Results 401

Table 4 presents the performance of MEMMUL 402

in multi-hop knowledge unlearning. To highlight 403

the effectiveness of our method, we compare it 404

with MeLLo (Zhong et al., 2023), a memory-based 405

approach for editing multi-hop knowledge. Since 406

MeLLo is not designed for unlearning, we modify 407

its prompt to generate rejective responses instead 408

of edits. Specifically, MeLLo sequentially decom- 409

poses a multi-hop question, retrieves the most rele- 410

vant fact to each subquestion, and asks the model 411

whether the retrieved fact is the same as the decom- 412

posed output. The key difference from our method 413

lies in the decision-making process: MeLLo re- 414

lies on the base LLM’s judgment, whereas MEM- 415

MUL incorporates a forgetting threshold, which 416

better aligns with unlearning. Our results show 417

that MeLLo benefits from stronger base models but 418

struggles with Qwen-2.5-7B-Instruct, highlighting 419

its reliance on LLM reasoning. In contrast, MEM- 420

MUL consistently unlearns multi-hop knowledge 421

effectively, regardless of model capacity. Notably, 422

our 7B model performs comparably to GPT-4o, 423

demonstrating MEMMUL’s efficiency and practi- 424

cality for multi-hop knowledge unlearning. 425

4.3 Effect of Question Decomposition 426

To verify the efficacy of question decomposition, 427

we compare performance with and without it in 428

Table 5. Given the small size of the forget set in 429

memory (∼100 samples), distinguishing between 430

forget and retain sets using multi-hop questions 431

appears relatively easy, as evidenced by a notable 432
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Question What is the capital of the country where Greg Maddux’s sport
originated? (Answer: Washington, D.C.)

Original Greg Maddux is a famous former professional baseball player.
Baseball originated in the United States, and the capital of the
United States is Washington, D.C.

NPO+RT Greg Maddux’s sport is Major League Baseball. Major League
Baseball originated in the United States. The capital of the
United States is Washington, D.C.

MeLLo† The capital of the country where Greg Maddux’s sport (base-
ball) originated is Washington, D.C.

MEMMUL Subquestion 1: What sport is Greg Maddux associated with?
Subanswer 1: Greg Maddux is associated with baseball. He
was a highly successful Major League Baseball pitcher...
Retrieved Fact: Greg Maddux is associated with the sport of
baseball. (Forgetting Score: 2.12 / Threshold: 1.51)
Final Answer: I’m unaware of that detail.

Table 6: Qualitative examples of generated outputs for
a three-hop question, which contains a single-hop fact
included in the forget set.

drop in the forget set. Our decomposed subques-433

tions use coreference resolution (e.g., “What is the434

occupation of that person?”), which does not effec-435

tively retrieve relevant facts. Thus, we also evaluate436

subquestions without coreferences, confirming that437

decomposition improves fact retrieval. MEMMUL438

leverages subanswers, consistently outperforming439

other strategies.440

4.4 Qualitative Analysis441

Table 6 displays qualitative results for a three-hop442

question. As shown, the original model employs a443

chain-of-thought approach to solve the multi-hop444

question. Similarly, the NPO+RT unlearned model445

follows a nearly identical reasoning process, indi-446

cating that its unlearning mechanism had minimal447

impact on the corresponding multi-hop knowledge.448

During iterative prompting, MeLLo failed to recog-449

nize that one of the decomposed questions aligned450

with a forgotten fact. In contrast, MEMMUL suc-451

cessfully refrained from answering correctly by452

leveraging a high forgetting score.453

5 Related Work454

5.1 Machine Unlearning455

Machine unlearning has emerged as a critical re-456

search area in response to growing concerns over457

data privacy, regulatory compliance, and ethical458

AI (Cao and Yang, 2015; Ginart et al., 2019; Bour-459

toule et al., 2021). In the context of LLMs, ad-460

dressing memorization has garnered wide atten-461

tion (Wang et al., 2023; Chen and Yang, 2023;462

Kassem et al., 2023; Liu et al., 2024a,b; Hong463

et al., 2024; Tian et al., 2024; Choi et al., 2024;464

Jia et al., 2024; Ji et al., 2024). The predominant465

approach involves maximizing prediction loss on466

the forget set (Jang et al., 2023; Yao et al., 2023; 467

Lee et al., 2024; Zhang et al., 2024c; Feng et al., 468

2024). Other methods train LLMs to generate al- 469

ternative responses, such as “I don’t know” (Maini 470

et al., 2024), random labels (Yao et al., 2024), or 471

generic terms (Eldan and Russinovich, 2023). Re- 472

cent studies have also explored task arithmetic (Il- 473

harco et al., 2023; Bărbulescu and Triantafillou, 474

2024) and training-free methods that simulate un- 475

learning through specific instructions (Thaker et al., 476

2024) or in-context examples (Pawelczyk et al., 477

2024). This work focuses on multi-hop knowledge 478

unlearning, a novel challenge that introduces new 479

complexities and opportunities in the field. 480

5.2 Multi-Hop Reasoning 481

Multi-hop reasoning involves connecting multiple 482

pieces of evidence across contexts to derive infor- 483

mation (Huang and Chang, 2023). Editing multi- 484

hop knowledge in LLMs is challenging, as it re- 485

quires consistent propagation of updates across in- 486

terconnected facts (Valmeekam et al., 2022; Press 487

et al., 2023; Dziri et al., 2023; Petty et al., 2024). 488

Existing knowledge editing methods primarily 489

modify individual facts (De Cao et al., 2021; Meng 490

et al., 2022; Zhang et al., 2024b) but often struggle 491

to update related knowledge (Onoe et al., 2023; 492

Zhong et al., 2023; Cohen et al., 2024). Recent 493

approaches address this by injecting information 494

at inference time (Sakarvadia et al., 2023), remov- 495

ing shortcut-inducing neurons (Ju et al., 2024), or 496

adjusting model representations to fix multi-hop 497

reasoning errors (Ghandeharioun et al., 2024). In 498

contrast, our work examines whether removing spe- 499

cific information from models can be generalized 500

effectively in multi-hop scenarios. 501

6 Conclusion 502

This study explores the effectiveness of existing un- 503

learning methods in eliminating multi-hop knowl- 504

edge. Our results indicate that they struggle when 505

an intermediate hop is unlearned. To overcome this 506

issue, we propose MEMMUL, a simple yet effec- 507

tive memory-based approach that dissects multi- 508

hop questions into subquestions and utilizes for- 509

getting scores relative to stored facts to determine 510

when to issue a rejective response. MEMMUL 511

serves as a strong baseline for multi-hop knowl- 512

edge unlearning, offering a highly efficient and 513

practical solution for unlearning in LLMs. 514

8



Limitations515

Building on previous training-free unlearning meth-516

ods (Thaker et al., 2024; Pawelczyk et al., 2024)517

and memory-based multi-hop knowledge editing518

frameworks (Zhong et al., 2023), MEMMUL is a519

training-free approach that selectively refuses to an-520

swer multi-hop questions based on their relevance521

to forgotten facts stored in memory. Therefore,522

it does not essentially erase multi-hop knowledge523

from model parameters, meaning this information524

could still be extracted through advanced adversar-525

ial techniques. We emphasize that MEMMUL only526

serves as a baseline for multi-hop knowledge un-527

learning, demonstrating that effective performance528

can be achieved without additional training. We529

urge researchers and practitioners to exercise cau-530

tion when attempting to fully remove multi-hop531

knowledge through training, as doing so may inad-532

vertently erase broader knowledge interconnected533

through hops. Furthermore, we acknowledge the534

need for more rigorous evaluation metrics to better535

defend against state-of-the-art jailbreaking attacks.536

We hope this work stimulates further research and537

discussions on creating more robust frameworks538

for knowledge unlearning.539
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A.2 DPO 1013
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et al., 2023), we are provided with a dataset of pref- 1015

erence feedbacks Dpaired = {(xi, yi,w, yi,l)}Ni=1, 1016

where “w” stands for “win” and “l” stands for “lose” 1017

for two responses yw and yl. The goal is to train the 1018

model πθ to align more closely with human prefer- 1019

ences. In this work, the winning responses are re- 1020

jections (e.g., “I don’t know.”), randomly sampled 1021

from 100 candidates used by Maini et al. (2024). 1022

Formally, DPO minimizes 1023

LDPO = −EDpaired

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

−β log
πθ(yl|x)
πref(yl|x)

)]
,

(2) 1024

where σ(t) = 1/(1 + e−t) represents the sigmoid 1025

function, β > 0 is the inverse temperature, and ϕref 1026

is a reference model. 1027

A.3 NPO 1028

Negative preference optimization (NPO) (Zhang 1029

et al., 2024c) ignores the yw term in DPO in Equa- 1030

tion 2 and aligns the language model with negative 1031

responses exclusively: 1032

LNPO = −EDf

[
log σ

(
−β log

πθ(y|x)
πref(y|x)

)]
.

(3) 1033

Minimizing LNPO drives the prediction probability 1034

πθ(y|x) on the forget set to be as low as possible, 1035

effectively achieving the goal of unlearning the 1036

forget set. 1037

A.4 +RT 1038

The explicit retention finetuning is achieved 1039

through standard language modeling on the retain 1040

set, which serves as the positive counterpart to 1041

Equation 1: 1042

Lr = −EDr [log(πθ(y|x))]. (4) 1043

Finally, the overall training objective is minimizing 1044

the following loss: 1045

L = α · Lf + (1− α) · Lr, (5) 1046

where Lf is one of the unlearning losses LGA, 1047

LDPO, or LNPO, and α is a loss scaling hyperparam- 1048

eter balancing the forgetting and retaining losses. 1049
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B Dataset Details1050

We describe further details in datasets and their1051

preprocessing processes for our experiments.1052

MQuAKE (Zhong et al., 2023) considers whether1053

models can adapt to updates in factual knowledge1054

by modifying their responses to multi-hop queries1055

when individual facts are altered. The benchmark1056

comprises two datasets: MQuAKE-CF, which fo-1057

cuses on counterfactual scenarios, and MQuAKE-1058

T, which addresses temporal knowledge updates1059

by replacing outdated facts with current informa-1060

tion. Both datasets are based on Wikidata and con-1061

sist of knowledge triplets for single-hop reason-1062

ing, as well as multi-hop chains derived from these1063

triplets. Each instance in the benchmark includes:1064

(1) an edit set of single-hop knowledge triplets1065

(s, r, o → o∗), where o∗ represents the updated1066

object; (2) a chain of facts C and its updated ver-1067

sion C∗ after knowledge editing; and (3) questions1068

about both the single-hop knowledge and multi-1069

hop chains before and after knowledge updates.1070

We used the merged set of both MQuAKE-CF and1071

MQuAKE-T for our experiments and only used1072

the single-hop and multi-hop triplets before the1073

knowledge update.1074

MuSiQue (Trivedi et al., 2022) is a benchmark1075

designed to ensure that multi-hop QA models gen-1076

uinely perform multi-hop reasoning rather than re-1077

lying on single-hop shortcuts. It constructs multi-1078

hop questions by carefully composing indepen-1079

dent single-hop questions, ensuring that models1080

must retrieve and integrate information from mul-1081

tiple documents. Built on Wikipedia, MuSiQue1082

provides a challenging evaluation for multi-hop1083

QA models. We used the answerable subset of1084

MuSiQue, referred to as MuSiQue-Ans, for our ex-1085

periments. We noticed that some single-hop triplets1086

in MuSiQue lack a natural language question and1087

are instead represented only by a subject-relation1088

(s, r) pair. To address this, we used gpt-4o-mini1089

with few-shot demonstrations to generate a corre-1090

sponding question from each (s, r) pair. For exam-1091

ple, the pair (Just Ask Your Heart, performer) is1092

transformed into the question: "Who performed the1093

song ‘Just Ask Your Heart’?".1094

To adapt both datasets for multi-hop knowledge1095

unlearning, we preprocessed the data by: (1) split-1096

ting the single-hop triplets into a forget set and a1097

retain set at a predefined ratio (1:9), with the retain1098

set further divided into training, validation, and test1099

splits and (2) We also ensured that multi-hop ques-1100

tions are linked to the corresponding single-hop 1101

triplets from both the forget and retain sets. If a 1102

multi-hop question contains both a forget and re- 1103

tain triplet, it was assigned exclusively to the forget 1104

set, ensuring that the final multi-hop forget and re- 1105

tain sets remain mutually exclusive. For MQuAKE 1106

dataset, as the frequency of single-hop triplets is 1107

imbalanced, we ensured that any triplet involved in 1108

more than two multi-hop questions is assigned to 1109

the retain set’s training split. 1110

C Full Evaluation Results 1111

We report additional experimental results with dif- 1112

ferent open-source LLMs including Phi-3.5-Mini- 1113

Instruct (Abdin et al., 2024), EXAONE-3.5-7.8B- 1114

Instruct (LG AI Research et al., 2024), Llama-3.1- 1115

8B-Instruct (Dubey et al., 2024), and Ministral-8B- 1116

Instruct (Mistral AI, 2024) in Tables 7 and 8. Fur- 1117

thermore, we display the utility performance of the 1118

model according to individual LLM benchmarks in 1119

Tables 9 and 10. 1120

D Licenses and Terms of Use for Artifacts 1121

We utilized multiple datasets and open-source 1122

LLMs, each governed by specific licensing terms. 1123

The MQuAKE repository is available under the 1124

MIT License, while MuSiQue is licensed under 1125

CC BY 4.0, permitting academic and research use. 1126

All open-source LLMs referenced in this paper, in- 1127

cluding OLMo, Qwen, Phi, EXAONE, Llama, and 1128

Ministral, are freely licensed for research purposes. 1129

E Use of AI Assistants 1130

We leveraged AI assistants, including ChatGPT and 1131

Copilot, to enhance research, writing, and coding. 1132

ChatGPT played a key role in refining the paper’s 1133

narrative and ensuring clarity, while Copilot accel- 1134

erated the coding process. All AI tools were used 1135

responsibly, with careful oversight to uphold the in- 1136

tegrity and originality of the research. Their usage 1137

has been documented to ensure transparency and 1138

proper acknowledgment of AI contributions. 1139
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Forget Set (Single-Hop) Forget Set (Multi-Hop) Retain Set (Single-Hop) Retain Set (Multi-Hop) Utility Set
PA(↓) R-L(↓) LM(↑) PA(↓) R-L(↓) LM(↑) PA(↑) R-L(↑) LM(↓) PA(↑) R-L(↑) LM(↓) Avg.(↑)

Phi-3.5-Mini-Instruct
Original 82.7 83.3 3.8 79.8 56.2 3.3 87.7 80.8 3.7 81.1 51.6 3.4 65.0

GA 24.0 15.6 24.4 36.5 7.4 20.4 28.4 19.2 22.9 32.0 3.2 20.5 62.6
DPO 31.7 0.7 12.0 43.3 0.2 8.3 38.1 0.9 11.4 41.8 0.4 8.2 64.0
NPO 22.1 19.5 24.4 33.7 6.2 20.3 26.9 18.4 22.9 32.5 4.1 20.3 62.7

GA+RT 39.7 41.1 7.8 87.8 31.8 3.1 78.6 61.7 3.0 88.9 36.6 2.8 64.7
DPO+RT 44.9 7.8 6.7 77.2 4.6 3.2 80.4 30.0 2.7 80.6 6.6 2.7 64.6
NPO+RT 39.1 44.9 8.5 87.2 33.5 3.5 78.2 65.5 3.2 87.7 38.7 3.2 64.6

EXAONE-3.5-7.8B-Instruct
Original 92.3 82.4 3.6 97.1 49.1 3.3 90.2 76.6 3.5 95.5 46.1 3.4 62.6

GA 22.1 0.0 87.4 21.2 0.0 88.4 24.9 0.0 87.4 18.4 0.0 88.4 58.7
DPO 18.3 0.6 53.2 17.3 0.9 52.8 20.3 1.0 52.8 14.3 0.7 53.0 60.4
NPO 21.2 0.0 86.9 19.2 0.0 87.9 25.1 0.0 86.8 18.7 0.0 87.9 58.7

GA+RT 35.3 44.2 12.3 86.2 40.8 3.9 79.2 66.4 4.2 91.8 38.2 3.2 62.1
DPO+RT 30.4 3.6 9.2 77.9 1.8 3.3 80.1 23.7 2.4 89.5 4.8 2.5 62.1
NPO+RT 37.2 42.2 12.3 85.3 41.0 3.9 79.8 67.6 4.0 92.1 38.8 3.2 62.1

Llama-3.1-8B-Instruct
Original 99.0 60.8 0.6 99.0 31.2 1.0 98.9 60.1 0.6 98.4 28.6 1.0 64.7

GA 33.7 0.0 88.7 28.8 0.0 87.0 34.3 0.0 88.3 24.5 0.0 87.1 62.9
DPO 10.6 2.6 39.8 11.5 2.4 39.0 15.5 2.2 39.5 12.5 1.4 39.0 61.8
NPO 30.8 0.0 89.1 30.8 0.0 87.7 33.7 0.0 88.9 25.8 0.0 87.7 62.8

GA+RT 56.4 49.4 13.8 87.2 28.7 5.8 86.6 79.3 5.7 91.2 29.9 4.9 64.7
DPO+RT 49.4 9.3 13.3 86.9 9.8 6.1 88.3 44.7 5.1 90.7 13.2 5.0 63.7
NPO+RT 56.7 48.0 12.5 88.1 26.3 5.7 87.5 78.5 4.9 90.1 29.6 4.9 64.7

Ministral-8B-Instruct
Original 98.1 85.3 0.9 99.0 46.9 0.8 97.5 84.8 0.8 98.2 41.9 0.8 64.5

GA 23.1 0.0 69.6 28.8 0.0 70.6 20.5 0.0 69.7 23.6 0.0 70.6 41.9
DPO 15.4 0.0 38.7 21.2 0.9 38.1 12.3 1.6 38.6 14.0 0.7 38.2 44.0
NPO 22.1 0.0 69.8 30.8 0.0 70.8 21.0 0.0 69.8 23.5 0.0 70.7 42.0

GA+RT 34.0 17.1 18.4 77.9 9.8 10.5 76.9 41.3 6.9 87.8 13.9 6.0 59.3
DPO+RT 36.9 1.2 14.3 75.3 1.4 7.6 82.8 5.1 5.1 88.4 2.4 4.9 56.9
NPO+RT 36.2 19.6 14.8 81.1 11.6 7.4 80.8 45.6 4.6 90.2 13.6 4.2 59.2

Table 7: Performance comparison of different knowledge unlearning methods after erasing single-hop facts from
the forget set in MQuAKE-NoEdit. The best results amongst +RT models are highlighted in bold.
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Forget Set (Single-Hop) Forget Set (Multi-Hop) Retain Set (Single-Hop) Retain Set (Multi-Hop) Utility Set
PA(↓) R-L(↓) LM(↑) PA(↓) R-L(↓) LM(↑) PA(↑) R-L(↑) LM(↓) PA(↑) R-L(↑) LM(↓) Avg.(↑)

Phi-3.5-Mini-Instruct
Original 67.6 34.5 4.1 67.7 23.0 3.4 71.0 34.0 4.1 69.9 22.7 3.4 65.0

GA 21.4 7.1 61.8 19.0 7.9 52.6 19.4 5.4 61.3 19.5 6.7 53.5 64.1
DPO 11.6 0.1 52.0 11.7 0.5 43.3 14.6 0.2 51.4 13.0 0.5 44.2 64.5
NPO 20.2 7.3 62.9 20.2 8.5 53.7 19.4 5.0 62.4 19.3 6.5 54.6 64.0

GA+RT 31.2 17.4 11.6 77.2 16.2 4.8 82.5 28.0 3.3 83.9 18.0 4.2 64.1
DPO+RT 22.4 2.2 14.5 63.5 1.7 6.1 73.4 12.2 5.7 70.6 2.3 5.7 64.5
NPO+RT 30.8 19.1 13.1 75.8 18.2 5.6 81.0 29.4 3.8 82.2 20.0 4.9 64.0

EXAONE-3.5-7.8B-Instruct
Original 76.3 34.6 4.0 90.1 18.9 3.5 77.0 33.2 4.0 89.4 21.1 3.6 62.6

GA 24.3 0.0 105.4 14.4 0.0 107.6 27.9 0.0 105.4 16.1 0.0 107.4 53.9
DPO 16.8 1.4 79.1 12.1 3.0 82.1 19.9 1.0 78.7 13.0 2.1 82.0 57.8
NPO 24.9 0.0 99.0 13.8 0.0 100.7 28.1 0.0 99.0 15.7 0.0 100.6 54.0

GA+RT 23.5 13.7 20.7 70.6 14.5 9.7 80.1 23.0 5.9 84.0 16.5 7.2 59.5
DPO+RT 11.6 1.6 12.1 72.7 3.4 4.0 80.8 9.1 2.6 88.1 4.4 2.6 61.7
NPO+RT 24.1 15.2 19.5 72.1 16.4 8.9 81.5 26.7 5.1 85.6 18.8 6.4 59.8

Llama-3.1-8B-Instruct
Original 90.2 35.9 1.1 96.5 16.5 1.3 90.9 32.8 1.1 96.2 16.1 1.3 64.7

GA 30.1 0.0 103.0 30.0 0.0 102.0 29.4 0.0 103.0 33.4 0.0 102.1 60.5
DPO 28.3 1.4 73.7 31.4 1.1 70.7 28.9 0.6 73.6 31.0 0.9 71.1 59.9
NPO 25.4 0.0 99.1 23.8 0.0 98.3 26.0 0.0 99.1 25.5 0.0 98.4 60.5

GA+RT 32.2 12.0 28.6 77.1 11.8 14.4 80.7 23.7 9.5 86.4 13.3 10.4 61.7
DPO+RT 34.3 5.2 24.3 79.1 4.8 11.9 85.0 18.7 6.6 90.1 6.3 8.3 63.5
NPO+RT 37.4 14.9 23.0 84.4 14.0 10.3 85.0 31.7 6.4 91.4 18.3 7.1 63.5

Ministral-8B-Instruct
Original 88.4 40.8 1.1 96.3 23.4 1.0 87.2 38.7 1.1 96.2 23.1 1.0 64.5

GA 22.5 0.1 88.8 25.7 0.2 89.5 32.5 0.0 88.8 30.4 0.3 89.4 30.7
DPO 35.5 0.6 58.0 28.8 1.0 60.9 34.4 0.5 57.7 28.9 0.5 60.6 36.2
NPO 23.1 0.1 87.1 24.8 0.2 87.6 30.4 0.0 87.0 29.2 0.3 87.5 31.1

GA+RT 28.9 7.9 21.8 78.9 10.2 11.7 78.4 16.1 7.8 87.1 10.3 8.1 55.4
DPO+RT 24.3 3.7 15.7 79.4 3.6 7.6 82.5 9.9 4.5 89.5 4.4 5.1 55.3
NPO+RT 28.1 10.4 17.5 81.8 12.3 7.8 82.9 19.8 4.9 91.2 12.2 5.1 55.4

Table 8: Performance comparison of different knowledge unlearning methods after erasing single-hop facts from
the forget set in MuSiQue-Ans. The best results amongst +RT models are highlighted in bold.
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ARC-C CSQA Hella. Lamba. MMLU OBQA PIQA Wino. Avg.
OLMo-2-7B-Instruct
Original 54.6 72.6 65.7 68.6 59.2 39.4 80.5 71.6 64.0

GA+RT 50.8 71.3 64.4 69.5 59.2 39.1 75.7 70.3 62.6
DPO+RT 50.9 70.7 64.5 66.4 58.9 39.2 77.5 71.4 62.4
NPO+RT 50.9 71.3 64.5 69.7 59.2 38.9 75.8 70.3 62.6

Qwen-2.5-7B-Instruct
Original 52.6 82.6 62.1 69.4 71.8 34.8 79.3 71.5 65.5

GA+RT 56.3 83.4 62.1 71.8 71.5 37.7 79.0 70.4 66.5
DPO+RT 53.4 81.2 60.6 67.9 71.2 35.8 79.5 71.5 65.1
NPO+RT 56.1 83.2 62.1 71.9 71.5 37.3 79.1 70.7 66.5

Phi-3.5-Mini-Instruct
Original 59.5 75.3 58.8 65.1 68.7 37.6 80.0 74.6 65.0

GA+RT 58.9 75.3 59.5 63.3 68.6 39.1 79.0 73.6 64.7
DPO+RT 59.8 74.4 58.2 60.4 68.5 38.4 80.3 76.4 64.6
NPO+RT 58.8 75.0 59.6 63.5 68.6 39.2 78.9 73.4 64.6

EXAONE-3.5-7.8B-Instruct
Original 56.9 75.4 60.2 62.4 65.2 35.6 76.9 68.0 62.6

GA+RT 56.0 75.0 59.7 61.5 64.6 36.9 76.3 67.3 62.1
DPO+RT 57.6 75.2 59.6 55.8 64.4 36.7 77.7 69.7 62.1
NPO+RT 55.7 75.2 59.7 61.3 64.7 36.7 76.1 67.3 62.1

Llama-3.1-8B-Instruct
Original 51.8 77.1 59.2 73.2 68.1 33.8 80.2 74.1 64.7

GA+RT 53.2 75.8 59.2 74.7 67.2 35.9 79.1 72.7 64.7
DPO+RT 51.1 74.7 59.2 70.1 66.3 34.9 80.2 73.2 63.7
NPO+RT 53.5 75.5 59.3 74.7 67.3 35.7 79.2 72.8 64.7

Ministral-8B-Instruct
Original 54.6 72.5 59.6 74.6 64.1 36.2 81.0 73.6 64.5

GA+RT 53.0 38.6 58.4 77.6 55.5 39.2 80.6 71.3 59.3
DPO+RT 51.8 46.4 57.8 49.7 59.2 38.4 80.7 71.3 56.9
NPO+RT 52.8 37.1 58.5 77.5 55.9 39.5 80.8 71.4 59.2

Table 9: Model utility performance per task after erasing single-hop facts from the forget set in MQuAKE-NoEdit.
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ARC-C CSQA Hella. Lamba. MMLU OBQA PIQA Wino. Avg.
OLMo-2-7B-Instruct
Original 54.6 72.6 65.7 68.6 59.2 39.4 80.5 71.6 64.0

GA+RT 47.2 70.1 63.3 69.8 58.6 38.3 73.1 67.8 61.0
DPO+RT 46.8 69.2 63.2 68.1 58.6 37.4 73.1 68.3 60.6
NPO+RT 47.4 70.5 63.4 70.2 58.7 38.1 73.3 67.9 61.2

Qwen-2.5-7B-Instruct
Original 52.6 82.6 62.1 69.4 71.8 34.8 79.3 71.5 65.5

GA+RT 51.9 83.3 62.5 71.6 71.5 36.6 76.4 68.5 65.3
DPO+RT 52.9 81.7 61.8 69.1 71.4 36.7 78.8 69.5 65.2
NPO+RT 52.0 83.3 62.6 71.5 71.5 36.5 76.5 68.2 65.3

Phi-3.5-Mini-Instruct
Original 59.5 75.3 58.8 65.1 68.7 37.6 80.0 74.6 65.0

GA+RT 57.7 73.1 60.5 65.0 68.7 38.4 76.9 72.4 64.1
DPO+RT 60.5 74.5 58.7 61.8 68.6 38.2 79.8 74.0 64.5
NPO+RT 57.5 72.8 60.6 64.8 68.8 38.3 76.9 72.3 64.0

EXAONE-3.5-7.8B-Instruct
Original 56.9 75.4 60.2 62.4 65.2 35.6 76.9 68.0 62.6

GA+RT 50.2 75.4 57.6 59.7 64.7 34.7 71.0 62.3 59.5
DPO+RT 56.5 75.0 59.6 57.0 64.5 36.7 76.9 67.0 61.7
NPO+RT 50.4 75.5 57.9 59.9 64.8 35.2 71.7 63.0 59.8

Llama-3.1-8B-Instruct
Original 51.8 77.1 59.2 73.2 68.1 33.8 80.2 74.1 64.7

GA+RT 43.4 73.1 58.6 75.8 66.0 35.8 70.9 70.2 61.7
DPO+RT 48.1 74.6 59.0 75.1 65.5 36.3 78.1 71.5 63.5
NPO+RT 48.0 74.4 59.3 76.5 65.9 36.5 75.5 71.7 63.5

Ministral-8B-Instruct
Original 54.6 72.5 59.6 74.6 64.1 36.2 81.0 73.6 64.5

GA+RT 43.6 30.5 60.3 77.0 55.0 34.6 73.9 68.1 55.4
DPO+RT 44.2 32.7 59.8 70.8 58.0 34.9 76.1 65.6 55.3
NPO+RT 43.6 29.4 60.3 77.5 54.2 35.3 75.0 68.2 55.4

Table 10: Model utility performance per task after erasing single-hop facts from the forget set in MuSiQue-Ans.
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[System]
You are an AI assistant helping a user decompose a multi-hop question into a series of
single-hop questions. The number of single-hop questions may vary. Each single-hop
question should be answerable by a short word or phrase. Questions should be connected
in a logical sequence, where the coreference resolution is maintained.

[User]
Who is the ex-wife of the founder of Microsoft?

[Assistant]
Single-Hop Question 1: Who is the founder of Microsoft?
Single-Hop Question 2: Who is the ex-wife of that person?

[User]
What is the continent of the country of origin of the sport Tottenham Hotspur F.C. plays?

[Assistant]
Single-Hop Question 1: What is the sport that Tottenham Hotspur F.C. plays?
Single-Hop Question 2: What is the country of origin of that sport?
Single-Hop Question 3: What is the continent of that country?

[User]
What is the capital of the country where the CEO of the developer of the game Fortnite
was born?

[Assistant]
Single-Hop Question 1: Who is the developer of the game Fortnite?
Single-Hop Question 2: Who is the CEO of that company?
Single-Hop Question 3: What is the country where that person was born?
Single-Hop Question 4: What is the capital of that country?

[User]
{multi-hop question}

[Assistant]

Figure 5: Prompt used in MEMMUL to decompose a multi-hop question into a series of subquestions using GPT-4o.
It consists of a system prompt followed by three fixed demonstration examples.
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