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ABSTRACT

In recent years, Unmanned Aerial Vehicle (UAV) Vision-Language Navigation
(VLN) has attracted increasing attention due to its broad applications in scenar-
ios such as autonomous inspection and emergency rescue. Large-scale Vision-
Language Models (VLMs) demonstrate strong cross-modal understanding and
reasoning capabilities; however, their massive parameter size and computational
demands hinder their deployment on resource-constrained devices. Although
lightweight models facilitate efficient deployment, their performance and gener-
alization ability remain limited. To address this challenge, we propose a Dual At-
tention Distillation into Supervised Fine-Tuning (DAD-SFT) framework. First,
Cross-Modal Attention Distillation (CAD) is employed to guide the student model
in aligning its semantic focus patterns with those of a powerful teacher model,
thereby enhancing its cross-modal perception ability. Meanwhile, we introduce
a Contrastive Attention Alignment (CAA) that constructs diverse types of neg-
ative samples to strengthen the model’s discriminative capability, which in turn
improves generalization under complex scenarios. Systematic evaluations on the
CityNav benchmark demonstrate that our method consistently outperforms main-
stream baselines in terms of navigation accuracy, cross-scene generalization, and
deployment efficiency, showcasing strong overall performance and practical po-
tential. Our code is publicly available for reproducibility.1

1 INTRODUCTION

Unmanned Aerial Vehicle (UAV) Vision-Language Navigation (VLN) has emerged as a key research
focus, driven by its potential in diverse real-world applications including infrastructure inspection,
disaster response, and ecological surveillance. As a multimodal fusion task, UAV VLN requires an
agent to integrate visual perception and natural language instructions for path planning and decision-
making in dynamic environments. Vision-Language Models (VLMs), with their strong cross-modal
alignment and reasoning capabilities, have demonstrated remarkable performance in this task, en-
abling UAVs to navigate more accurately and flexibly.

However, existing large-scale VLMs typically contain an enormous number of parameters, result-
ing in substantial computational and storage overhead, which severely hinders their deployment on
resource-constrained devices. In contrast, lightweight models offer advantages in terms of deploy-
ment cost and inference latency, making them more suitable for real-world UAV applications. Nev-
ertheless, due to their limited model capacity, lightweight models often struggle with cross-modal
alignment, semantic understanding, and reasoning, which leads to high navigation failure rates and
poor cross-scene generalization. These shortcomings make it difficult to meet the demands of high
accuracy and robustness. Therefore, how to effectively transfer the perceptual and reasoning capa-
bilities of large models into lightweight architectures, while maintaining deployment efficiency, has
become a key challenge in UAV VLN research.

To address the above issues, we propose a novel framework named Dual Attention Distillation into
Supervised Fine-Tuning (DAD-SFT). This method leverages Cross-Modal Attention Distillation
(CAD) to guide the student model in learning the teacher model’s semantic focus patterns, and incor-
porates Contrastive Attention Alignment (CAA) to enhance the discriminative ability of the model

1https://anonymous.4open.science/r/DAD-SFT
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using positive and negative samples. Through the synergy of perceptual transfer and discriminative
optimization, DAD-SFT significantly improves the cross-modal understanding and generalization
ability of lightweight models, enabling efficient and robust navigation on resource-limited devices.
To summarize, our work offers the following four key contributions.

First, we propose a unified framework, DAD-SFT, which integrates knowledge distillation and con-
trastive learning to strike a balance between performance and efficiency for lightweight models.

Second, we design a fine-grained distillation approach based on cross-modal attention to precisely
transfer the perceptual and alignment capabilities of the teacher model to the student model.

Third, we introduce a CAA strategy that constructs diverse negative samples and incorporates Con-
trastive Learning (CL) to enhance the student model’s discriminative power and cross-scene gener-
alization ability.

Finally, we conduct comprehensive evaluations on the CityNav dataset, demonstrating that our
method outperforms various baselines in terms of performance, even surpassing the teacher model in
some cases, while also exhibiting superior efficiency in terms of memory consumption and inference
latency, validating its advantages in both effectiveness and deployability.

2 RELATED WORK

In recent years, the VLN task has been gradually extended to UAV scenarios, supporting practical
applications such as autonomous inspection and emergency response Wu et al. (2024); Wang et al.
(2024). Although VLMs have demonstrated outstanding cross-modal understanding and reasoning
capabilities in this task, their large model size and high inference cost hinder deployment on edge
devices Feng et al. (2025); Vasu et al. (2025); Qiao et al. (2025). To balance performance and
efficiency, researchers have proposed lightweight solutions including architecture re-design, spar-
sification, and knowledge distillation, and have also explored CL mechanisms to enhance model
generalization Ye et al. (2025); Zhang et al. (2024a); Jang et al. (2025); Ge et al. (2025). However,
these methods still lack systematic validation in complex UAV VLN settings. Building upon this
foundation, we propose the DAD-SFT framework, which improves the performance of lightweight
models while maintaining deployment feasibility. A more detailed discussion of related work can
be found in Appendix B.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

This study focuses on the task of UAV VLN, which aims to enable a UAV to navigate within a
three-dimensional environment by following natural language instructions. The task requires the
agent to perceive, understand, and make decisions based on multimodal inputs in order to complete
the navigation from the starting point to the specified target location. Formally, each instance in the
UAV VLN task can be represented as a triplet (I,D,E):

• I: the initial state of the UAV, including its starting position and orientation;
• D: a natural language instruction, typically describing the target location and its surrounding

semantic landmarks;
• E: the environment, which includes real-world spatial structures and rich semantic elements, such

as roads, buildings, and objects (e.g., vehicles).

During navigation, the UAV receives first-person visual observations from the environment, includ-
ing RGB images and depth information. It also has access to a 2D map that is aligned with actual
geographic information. Based on these inputs, the agent is expected to execute a sequence of dis-
crete actions A = {a1, a2, ..., aT }. The action space comprises a set of basic operations, including
move forward, turn left, turn right, ascend, descend, and stop. The UAV may choose to perform
the stop action when it determines that it is sufficiently close to the target region. A navigation
episode is considered successful if the final stopping position falls within a predefined threshold
distance (e.g., 20 meters) from the target location.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

User Instruction

Environment

Student 
Model

Perception Acquisition Goal Inference

Action Planning

CoT Answer

Environment 
Interaction

Look-ahead

Actions

Target is a large 
grassy field behind …

Moving

Teacher 
Model

DAD-SFT

<think>…<think>
<answer>…<answer>

Map Image

Figure 1: The closed-loop UAV VLN system pipeline, comprising four modules: Perception Ac-
quisition, which processes multi-modal inputs including visual and textual data; Goal Reasoning,
where the student model infers the target location under the guidance of a teacher model via Dual
Attention Distillation into Supervised Fine-Tuning (DAD-SFT); Action Planning, which generates
action sequences using a Look-ahead mechanism; and Environment Interaction, where the UAV
executes actions and updates its state within the environment.

3.2 OVERALL SYSTEM PIPELINE FOR UAV VLN

To address the deployment challenges in resource-constrained UAV VLN scenarios, we design a
closed-loop navigation pipeline inspired by previous works (Anderson et al., 2018; Liu et al., 2023;
Lee et al., 2024). As illustrated in Figure 1, the proposed system pipeline consists of four key mod-
ules: Perception Acquisition, Goal Inference, Action Planning, and Environment Interaction.

1. Perception Acquisition: The system receives multi-modal inputs, including RGB images from
the UAV’s first-person view, semantic maps, and natural language instructions.

2. Goal Inference: This module combines visual perception with natural language instructions to
identify the key semantic regions and target location. To improve the lightweight model’s cross-
modal understanding and generalization capabilities, we introduce the DAD-SFT, which transfers
knowledge from a high-capacity teacher model to a compact student model.

3. Action Planning: Based on the inferred goal, the Look-ahead mechanism (Liu et al., 2023)
is employed to predict the optimal sequence of actions, ensuring both efficiency and rationality in
trajectory planning.

4. Environment Interaction: The UAV executes the actions and updates its internal state, while the
environmental information is simultaneously refreshed to reflect the new context.

This process iterates continuously until a stop action is triggered or a predefined maximum number
of steps is reached.

3
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Figure 2: The DAD-SFT framework. Multi-modal inputs are fed into both the teacher and student
VLMs. The student model aligns its cross-modal attention with the teacher via Attention Distilla-
tion Loss, while Contrastive Attention Loss leverages teacher attention as a positive sample and
four types of negative samples. The overall training objective combines Task Loss with auxiliary
objectives to improve both performance and generalization.

3.3 DUAL ATTENTION DISTILLATION INTO SUPERVISED FINE-TUNING

In the UAV VLN task, Goal Inference is a pivotal step toward achieving high-precision navigation.
This phase requires the model to jointly reason over current multimodal perceptual inputs to accu-
rately localize the target region, based on which effective path planning strategies can be formulated.
To enhance the performance of lightweight models at this stage, we perform Supervised Fine-Tuning
(SFT) on the Goal Inference module of the system pipeline (as described in Section 3.2).

However, naive SFT approaches rely solely on task-level labels for optimization, which are insuf-
ficient to compensate for the limitations of lightweight models in perception accuracy and gener-
alization ability. To address this challenge, we propose a novel framework termed DAD-SFT. As
illustrated in Figure 2, both visual and textual inputs are simultaneously fed into the teacher and
student models. During training, the cross-modal attention output from the teacher model serves
as a supervisory signal for distillation, guiding the student model to attend to critical semantic re-
gions. To further reinforce the model’s learning, we introduce CAA. The teacher’s attention is used
as a positive sample, while a diverse set of negative attention distributions is constructed to serve
as contrasts. This contrastive supervision enhances the student model’s ability to distinguish be-
tween “what should be attended to” and “what should not,” promoting robust semantic focus under
challenging scenarios. By jointly optimizing the Task Loss, Attention Distillation Loss, and Con-
trastive Attention Loss, the DAD-SFT framework substantially enhances the overall performance of
the student model, striking a balance between accuracy, generalization, and deployment efficiency.

3.3.1 INPUTS, PROMPT DESIGN, AND OUTPUTS

(1) Model Inputs

The inputs to DAD-SFT consist of the following two components:

• Semantic Map: A semantic map that integrates multimodal information. It contains annotations
indicating the UAV’s current position and orientation, the first-person field of view, and the loca-
tions of key landmarks.

• Textual Information: Text descriptions that provide the UAV’s current state, including its posi-
tion and orientation, as well as the target description expressed in natural language.

(2) Prompt Template

4
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To enhance the model’s reasoning ability and the interpretability of its decisions, we follow the
design of FlightGPT (Cai et al., 2025b) and adopt a Chain-of-Thought (CoT) prompt template. The
complete prompt template is provided in Appendix C.

(3) Model Outputs

Conforming to the above prompt specification, the model produces:

• Intermediate Reasoning. Within the <think> tags, the model outputs a stepwise rationale that
usually includes semantic parsing of the instruction, identification of relevant landmark(s), and
spatial reasoning based on visual and semantic cues.

• Final Prediction. Within the <answer> tags, the model outputs the predicted target coordinates
(x, y).

3.3.2 CONSTRUCTION OF COT DATA

Due to the lack of high-quality annotated reasoning data tailored for the UAV VLN task in existing
public datasets, we adopt the high-performance VLM Qwen2.5-VL-32B as a data generator. By
integrating the input format and prompt templates designed in Section 3.3.1, we generate training
samples that incorporate CoT reasoning. These samples provide intermediate reasoning supervision
signals, which are crucial for guiding model optimization beyond final prediction accuracy. To
ensure data quality, we apply a series of strict filtering and enhancement strategies: (1) Format
Validation: Samples that do not satisfy the prompt required or exhibit abnormal output behaviors
are excluded. (2) Precision Filtering: Samples are removed if the predicted target location deviates
from the ground truth by more than 20 meters. (3) Answer Replacement: For retained samples, the
model-predicted coordinates are replaced with the ground-truth coordinates.

After applying the above procedures, we obtain a total of 2,300 high-quality training samples. These
samples span diverse navigation scenarios and semantic goals. Statistical analysis of the CoT dataset
is provided in Appendix J.

3.3.3 DUAL ATTENTION DISTILLATION MECHANISM

We refer to our mechanism as Dual Attention Distillation, which consists of two complementary
components: Cross-Modal Attention Distillation (CAD) and Contrastive Attention Alignment
(CAA). While both are attention-focused, the former provides soft supervision from a teacher model,
and the latter enhances discriminability via contrastive learning with negative samples.

(1) Cross-Modal Attention Distillation
In UAV VLN tasks, cross-modal attention serves as a critical indicator of where the model “attends”
during the execution of navigation instructions, reflecting the model’s capability for vision-language
alignment. Large-scale VLMs typically possess stronger cross-modal perception and reasoning abil-
ities. Their attention distributions often precisely focus on semantically critical regions. Therefore,
transferring such attention patterns to lightweight student models is expected to significantly en-
hance their cross-modal perception capability.

To this end, we propose the CAD. This method aims to provide the student model with fine-grained
supervision signals via the cross-modal attention distribution. Specifically, we extract the text-to-
vision cross-modal attention from the teacher model and use it as the distillation target to guide the
student model in learning a similar semantic attention pattern.

Prior studies (Feng et al., 2025; Zhou et al., 2025; Chen et al., 2025) have shown that the cross-
attention in shallow layers of VLMs can establish stable semantic correlations between visual
patches and language tokens. These shallow layers often outperform deeper layers in terms of
cross-modal alignment, which is particularly beneficial for fundamental vision tasks such as object
grounding. In contrast, the cross-modal attention in deeper layers tends to focus on more complex
semantic integration and task-specific reasoning, and when used directly for distillation, it may cause
the student model to overfit specific task behaviors (Elnoor et al., 2025; Li et al., 2024). Hence, in
our implementation, we align only cross-modal attention distributions of the first layer, encouraging
the student model to learn stable and transferable semantic focus patterns from the teacher model.
This decision is not only motivated by prior works, but also supported by our own empirical study.

5
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We conduct an ablation experiment comparing distillation at different layers (first vs. last), and ob-
serve that using the first layer attention yields significantly better performance. Detailed results are
provided in Appendix D.

To quantitatively evaluate the alignment of attention distributions between the student and teacher,
we adopt the Kullback-Leibler (KL) divergence as the distance metric between distributions. The
attention distillation loss is defined as follows:

Lattn =

L∑
l=1

wl ·DKL

(
A

(l)
teacher ∥ A

(l)
student

)
, (1)

where A(l) denotes the cross-modal attention distribution at the l-th layer, and wl is a layer-specific
loss weight hyperparameter. In our work, we align only the first layer’s cross-modal attention using
a KL divergence loss.

(2) Contrastive Attention Alignment

Although attention knowledge distillation has demonstrated promising performance in enhancing
cross-modal perception for lightweight models, existing methods primarily emphasize regions the
student model should attend to, while neglecting regions that should not be attended to or are
incorrectly focused. Such supervision lacks negative signals and tends to result in ambiguous at-
tention and limited discrimination capability, especially when confronted with complex instructions
or multi-object scenarios, thereby restricting the model’s generalization ability.

To address this limitation, we introduce a CL mechanism and propose the CAA, aiming to explicitly
enhance the discriminability of attention distributions via positive and negative sample construction.
Specifically, we treat the cross-modal attention extracted from the teacher model as positive samples,
and construct four representative types of negative samples:

1. Random Attention: Attention maps generated via random initialization, simulating the scenario
of no semantic focus.

2. Perturbed Attention: Slightly noisy variants of the teacher’s original attention maps, creating
“similar but incorrect” pseudo-attention distributions.

3. Adversarial Attention: Pseudo-instructions are constructed by semantically flipping key at-
tributes in the original instructions (e.g., changing “left of the red roof” to “right of the red roof”).
The corresponding attention distributions are generated using the teacher model. These adversarial
instructions are created using LLM (GPT-4o), with prompt templates provided in Appendix E.

4. Cross-instance Attention: Teacher attention maps randomly sampled from other instances in the
training set.

We adopt a contrastive loss in the form of InfoNCE to optimize the student model by maximizing
the similarity between the student attention and the positive sample, while minimizing the similarity
with all negative samples. The contrastive loss is defined as:

Lcontrast = − log
exp (sim(Astu, Apos)/τ)

exp (sim(Astu, Apos)/τ) +
∑

k exp
(

sim(Astu, A
(k)
neg )/τ

) . (2)

Here, Astu denotes the attention map from the student model, Apos is the positive attention sample
from the teacher, and A

(k)
neg refers to the k-th negative sample. The function sim(·) represents a

similarity metric, implemented as cosine similarity, and τ is the temperature parameter that controls
the sensitivity of the distribution.

This contrastive attention loss introduces supervision signals from negative examples, allowing the
student model to more clearly distinguish between “attended” and “unattended” regions. As a result,
it builds more discriminative attention representations and enhances the student model’s adaptability
and generalization capability in diverse environments.

6
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3.3.4 TRAINING OBJECTIVE AND OPTIMIZATION

Building upon the previously introduced Dual Attention Distillation Mechanism (Section 3.3.3), we
integrate three complementary types of supervision signals—Task Execution, CAD, and CAA—into
a unified SFT paradigm. This leads to the formulation of the DAD-SFT framework. Within this
framework, the overall objective function is composed of the following three loss terms:

• Task Loss Ltask: This term drives the model to accomplish the core navigation task. Based on
the task setting, it employs the commonly used Next Token Prediction (NTP) loss from language
modeling, enabling the model to learn path planning and goal localization capabilities.

• Attention Distillation Loss Lattn: This loss utilizes the cross-modal attention distribution from the
first layer of the teacher model as supervision, encouraging the student model to learn a consistent
attention pattern. The discrepancy between student and teacher attention distributions is measured
via KL divergence. The objective is to transfer the teacher’s cross-modal perceptual capability to
the student, thereby enhancing the cross-modal alignment of the lightweight model.

• Contrastive Attention Loss Lcontrast: By constructing positive and negative samples, this term
introduces an InfoNCE-based CAA objective. It maximizes similarity with positives while min-
imizing similarity with negatives, guiding the student model to more clearly distinguish between
semantically relevant (”should attend to”) and irrelevant (”should not attend to”) regions. This
enhances the discriminability and generalization of the model’s attention representations.

The final training objective is defined as a weighted combination of the three loss functions:

L = Ltask + λattnLattn + λcontrastLcontrast,

where λattn and λcontrast are hyperparameters that control the relative contribution of each supervision
signal.

By jointly optimizing the above losses, the student model not only acquires cross-modal perceptual
abilities from the teacher model but also enhances its capacity to distinguish distracting regions at
the attention level in complex scenarios.

4 EXPERIMENTS

4.1 DATASETS

We conduct our experiments on the CityNav benchmark dataset (Lee et al., 2024). CityNav offers a
city-scale simulation environment that includes rich semantic elements such as roads, buildings, and
landmarks, enabling UAVs to perform VLN tasks in realistic and complex urban scenes. The naviga-
tion instructions are presented in natural language, typically describing the target location along with
surrounding landmarks, which brings the task closer to real-world applications. The dataset provides
standard splits including Validation Seen, Validation Unseen, and Test Unseen, allowing for com-
prehensive evaluation of the model’s capability in both In-Distribution (ID) and Out-Of-Distribution
(OOD) environments. Following CityNav’s official evaluation protocol, we report four metrics:
Navigation Error (NE), Success Rate (SR), Oracle Success Rate (OSR), and Success weighted by
Path Length (SPL). Detailed definitions of these metrics are provided in Appendix F.

4.2 BASELINES

We compare our proposed approach against two representative categories of baseline mod-
els. The first category includes conventional methods, such as Random, sequence-to-sequence
(Seq2Seq) (Anderson et al., 2018), Cross-Modal Attention (CMA) (Liu et al., 2023), and Map-
based Goal Prediction (MGP) (Lee et al., 2024), which are widely adopted in the UAV VLN task
and serve as reliable references for performance comparison. The second category comprises strong-
performing VLMs, including LLaMA-3.2-11B-Vision (Grattafiori et al., 2024), Qwen2.5-VL (Bai
et al., 2025), and GPT-4o (OpenAI et al., 2024), which exhibit remarkable capabilities in cross-
modal understanding and reasoning, but also incur significantly higher computational overhead and
deployment costs. Additionally, to evaluate the effectiveness of Reinforcement Learning (RL) in
lightweight models, we introduce Naive RL as a supplementary baseline. The method is trained

7
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entirely within the RL framework, where the reward combines goal prediction accuracy and out-
put format compliance. The introduction to these baseline models is provided in Appendix G. All
baseline models are trained and evaluated under the same input configuration, including the use of
semantic maps, to ensure fair comparison.

4.3 TRAINING DETAILS

The training process is conducted based on the Qwen2.5-VL. The teacher model is Qwen2.5-VL-
32B, which possesses strong cross-modal perception and reasoning capabilities. The student model
is the lightweight Qwen2.5-VL-3B, chosen for higher inference efficiency. Both models share the
same architecture, facilitating alignment during CAD and CAA. All experiments are performed on
8*A100 GPUs. The specific hyperparameter configurations, along with detailed justifications for
their selection, are provided in Appendix H.

5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS

We compare a range of baselines, and the experimental results are shown in Table 1. The key
findings are summarized as follows.

First, our method consistently outperforms traditional approaches (e.g., Seq2Seq, CMA, MGP) and
zero-shot LLMs (e.g., GPT-4o, LLaMA-3.2-11B-Vision) across all evaluation metrics, and achieves
performance that is comparable to or even surpasses the teacher model (Qwen2.5-VL-32B) in several
cases. For instance, in terms of SR, our model achieves 12.73%, 10.43%, and 12.96% on the
Validation Seen, Validation Unseen, and Test Unseen splits, respectively, which not only exceeds
MGP’s performance (8.69% / 5.84% / 6.38%) but also surpasses the teacher model’s results (12.65%
/ 10.12% / 11.98%), demonstrating superior accuracy and robustness.

Second, under the lightweight model setting (3B), the model trained with our DAD-SFT framework
significantly outperforms the original student model as well as models trained with Naive SFT, Naive
RL, CAD-only, and CAA-only strategies across all evaluation metrics. This validates the synergistic
effect of jointly applying both CAD and CAA.

Third, our method maintains a clear advantage in OOD scenarios. On the Test Unseen split, our
model achieves the best performance across all four metrics: NE, SR, OSR, and SPL, indicating
strong generalization ability and robustness in unseen environments.

Table 1: Quantitative comparison of baseline models and proposed methods on the CityNav dataset
across three evaluation splits. Bold numbers denote the best results, and underlined numbers denote
the second-best.

Method Validation Seen Validation Unseen Test Unseen
NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑

Random 222.30 0.00 1.15 0.00 223.00 0.00 0.90 0.00 208.80 0.00 1.44 0.00
Seq2Seq+GSM 58.5 8.43 17.31 7.28 78.6 5.13 10.90 4.65 98.1 3.81 13.92 2.79

CMA+GSM 68.0 6.25 13.28 5.40 75.9 4.38 9.29 3.90 94.6 4.68 12.01 4.05
MGP 59.70 8.69 35.51 8.28 75.10 5.84 22.19 5.56 93.80 6.38 26.04 6.08

LLaMA-3.2-11B-Vision 198.90 1.16 5.16 1.06 215.10 0.50 4.35 0.46 191.10 1.26 4.59 1.15
GPT-4o 155.80 2.42 9.62 2.17 170.40 2.17 7.77 1.98 144.40 3.90 11.79 3.42

Qwen2.5-VL-7B 116.10 4.72 12.89 4.15 123.20 5.52 13.98 4.92 124.60 4.59 12.75 3.99
Qwen2.5-VL-32B (teacher) 84.70 12.65 24.14 11.30 91.90 10.12 20.52 9.00 83.28 11.98 23.48 10.76
Qwen2.5-VL-3B (student) 171.16 1.48 3.36 1.44 181.64 1.17 3.36 1.10 165.56 1.45 2.90 1.41

Qwen2.5-VL-3B (Naive SFT) 121.99 4.60 13.65 4.18 120.89 5.57 14.22 5.02 123.63 5.79 16.49 5.34
Qwen2.5-VL-3B (Naive RL) 98.83 9.16 19.18 8.06 105.02 6.51 17.76 5.67 104.53 10.00 21.83 8.98
Qwen2.5-VL-3B (CAD-only) 97.84 9.33 20.25 9.26 101.94 8.09 19.95 7.18 115.86 8.03 18.07 7.24
Qwen2.5-VL-3B (CAA-only) 106.82 8.86 19.81 7.44 99.76 9.45 20.58 7.67 108.43 9.79 20.07 8.25
Qwen2.5-VL-3B (DAD-SFT) 71.51 12.73 25.17 11.96 70.09 10.43 22.79 9.61 76.94 12.96 26.78 12.02

5.2 ABLATION STUDY

To evaluate the effectiveness of each key component in the proposed DAD-SFT framework, we
conduct an ablation study with four configurations: (1) Naive SFT, trained only with the Task
Loss; (2) CAD-only, which builds upon Naive SFT by incorporating Attention Distillation Loss;
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(3) CAA-only, which builds upon Naive SFT by incorporating Contrastive Attention Loss; and (4)
DAD-SFT, which combines Task Loss, Attention Distillation Loss, and Contrastive Attention Loss.
The results, as shown in Table 1, lead to the following three key observations:

CAD improves imitation ability and enhances multi-modal perception. Integrating CAD sig-
nificantly strengthens the student model’s cross-modal perception. Compared to Naive SFT, CAD
notably reduces the NE in seen environments (e.g., Validation Seen) from 121.99 to 97.84, while
increasing the SR from 4.60% to 9.33%. These results indicate that the student model better inherits
the semantic focus patterns of the teacher model.

CAA enhances discriminative ability and improves generalization. CAA leverages positive and
negative samples to guide the student model in distinguishing between relevant and irrelevant re-
gions. On the challenging Test Unseen split, SR improves from 5.79% to 9.79% and SPL increases
from 5.34 to 8.25 compared to Naive SFT, demonstrating that the model gains better generalization
and robustness in complex scenarios.

CAD and CAA are complementary, and DAD-SFT achieves the best overall performance.
When both mechanisms are combined, DAD-SFT consistently outperforms all ablation variants
across all data splits and evaluation metrics. This highlights the synergistic effect between perceptual
alignment and discriminative supervision, and verifies the effectiveness of the proposed design.

We also conduct two additional ablation studies to further validate the robustness and design of our
framework: (1) a grid search sensitivity analysis on the loss weights λattn and λcontrast; and (2) a
component-wise study on different negative sample types used in CAA. The detailed results and
discussion are provided in Appendix K.

5.3 EFFICIENCY

While maintaining high performance, the ability to deploy models efficiently on resource-
constrained devices is key for the practical application of UAV VLN. To evaluate the deployment
potential of our proposed method, we perform a systematic comparison of multiple representative
models across three dimensions—hardware requirements, memory usage, and inference latency.
The detailed results are provided in Appendix I. The following key observations can be made:

Large-scale models are difficult to deploy. The teacher model Qwen2.5-VL-32B achieves high
accuracy, but requires more than 70GB of GPU memory and has an inference latency of 53.42
s/step. It can only run on high-end A100 GPUs, making it impractical for edge deployment.

Cloud-based models are less controllable. Although GPT-4o avoids local memory usage by rely-
ing on cloud inference, it still exhibits a latency of 9.73 s/step. The absence of strong guarantees for
privacy and real-time responsiveness limits its practicality in UAV applications.

Traditional models are lightweight but underperform. Models like Seq2Seq, CMA, and MGP
require less than 1GB of memory and have low latency (1.00/1.01/0.82 s/step), but their performance
falls significantly behind VLMs, making them unsuitable for complex environments.

Our method balances performance and efficiency. The proposed lightweight model runs on a sin-
gle RTX 4090 with only 13.53GB GPU memory usage and 6.82 s/step inference latency. It signif-
icantly outperforms mainstream VLMs in efficiency, demonstrating excellent deployment potential
and practical value.

6 CONCLUSION

In this work, we address the limitations of lightweight models in UAV VLN, particularly their
weak cross-modal perception ability and poor generalization. We propose the DAD-SFT frame-
work, which combines CAD with CAA. This approach guides the student model to learn the teacher
model’s semantic focusing patterns and leverages diverse negative samples with CL to enhance its
discriminative capability. Experimental results demonstrate that our method outperforms various
mainstream baselines in terms of accuracy, generalization, and deployment efficiency. This study
provides a new perspective for exploring the lightweighting and deployability of VLMs, while also
offering preliminary validation and practical insights for improving their generalization in dynamic
and complex environments.

9
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7 ETHICS STATEMENT

Potential dual-use concerns. Although our work is intended for socially beneficial applications
such as infrastructure inspection and disaster response, the proposed UAV VLN system could po-
tentially be misused for surveillance, target tracking, or other purposes that violate individual privacy
or civil liberties. The enhanced semantic grounding between language and vision achieved through
attention distillation may unintentionally increase the precision of such misuse. To prevent unethical
applications, any real-world deployment should be governed by strict usage boundaries, regulatory
frameworks, and human oversight mechanisms.

Real-world safety risks. Deploying the proposed system on physical UAV platforms introduces
potential risks to public safety. Malfunctions in perception, misinterpretation of natural language
instructions, or failure to handle dynamic obstacles may lead to unintended navigation behaviors.
Without adequate testing, fail-safe design, and emergency intervention mechanisms, such failures
could cause damage to property, disrupt public environments, or even endanger human life. These
safety implications must be carefully considered before deploying the system outside controlled
settings.

8 REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. Detailed descriptions
of the system pipeline, model architecture, and optimization strategies are provided in Section 3,
including the formulation of our DAD-SFT framework. The construction of training objectives,
including the Task Loss, Attention Distillation Loss, and Contrastive Attention Loss, is discussed in
Section 3.3.4.

The input modalities and prompt design are presented in Section 3.3.1, while the CoT data gener-
ation procedure is described in Section 3.3.2. The prompt templates used for both reasoning and
adversarial sample generation are provided in Appendix C and Appendix E, respectively.

Experimental settings, including hardware configuration, evaluation metrics, and all hyperparame-
ters, are summarized in Section 4.3, Appendix F, and Appendix H. Baseline details and efficiency
evaluation protocols are documented in Appendix G and I.

To facilitate reproducibility, we provide anonymized source code, model configuration files, and
data generation scripts at the following repository: https://anonymous.4open.science/
r/DAD-SFT. These resources enable full replication of the experiments and all reported results in
the paper.
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A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized a large language model (e.g., ChatGPT or
similar) solely for purposes of language refinement. Specifically, the model was employed to en-
hance textual fluency, grammar, and structure. The model generated no content, nor did it participate
in experimental design or substantive decision-making. All conceptual contributions and technical
analyses were conducted entirely by the authors. The final manuscript has been carefully reviewed
and edited by the authors to ensure its originality and correctness.

B EXTENDED RELATED WORK

B.1 UAV-VLN AND LIGHTWEIGHT CHALLENGES

VLN aims to guide an agent to autonomously navigate through environments based on visual per-
ception and natural language instructions Wu et al. (2024). In recent years, this task has been widely
introduced into UAV scenarios to support real-world applications such as automated inspection and
emergency response Wang et al. (2024). These tasks are typically characterized by high real-time re-
quirements and diverse environments, demanding that the navigation models not only possess strong
generalization capabilities but also operate stably on resource-constrained devices.

To meet the requirements of real-world deployment, UAV navigation systems must not only possess
multimodal understanding and task execution capabilities, but also maintain computational effi-
ciency to adapt to the constraints of edge computing environments. However, state-of-the-art VLMs
have demonstrated exceptional cross-modal understanding and reasoning capabilities in UAV VLN
tasks Saxena et al. (2025); Cai et al. (2025b;a), but their large-scale parameter sizes and high infer-
ence costs render them impractical for direct deployment on platforms with limited computational
resources.

To improve deployability, researchers have proposed a variety of lightweight approaches targeting
VLMs, including architectural re-design Ye et al. (2025), pruning and sparsification Zhang et al.
(2024a), and knowledge distillation Jang et al. (2025). These methods aim to reduce computational
overhead while retaining model performance. Although such strategies have achieved promising
results in tasks like image-text retrieval and visual question answering, they still lack systematic
evaluation and widespread application in the UAV-VLN setting.

B.2 KNOWLEDGE DISTILLATION AND CONTRASTIVE LEARNING

To enhance the performance of lightweight models, knowledge distillation has been widely em-
ployed to transfer the capabilities of large-scale models to smaller ones Zhang et al. (2024b); Cao
et al. (2025). Among these techniques, attention distillation serves as a fine-grained supervision
mechanism. By transferring the cross-modal attention distribution from the teacher model, it guides
the student model to focus on semantically critical regions, thereby significantly improving its mul-
timodal perception and alignment capabilities Feng et al. (2025); Elnoor et al. (2025). This method
has been validated in tasks such as image-text matching Csizmadia et al. (2025) and visual question
answering Yang et al. (2025), and has gradually been extended to VLN tasks Elnoor et al. (2025),
where it helps enhance the accuracy and stability of navigation path prediction for student models.

Beyond knowledge distillation, some studies have explored the use of CL to further improve the
discriminability and generalization ability of models. For instance, ViLTA Wang et al. (2023) intro-
duces a cross-modal contrastive objective during pretraining, encouraging alignment of visual and
textual representations within a shared semantic space. Vi-LAD Elnoor et al. (2025), on the other
hand, incorporates contrastive loss into the distillation process to explicitly enhance the discrimina-
tive power of the student model’s attention distribution, encouraging it to focus on semantically key
regions.

While these approaches have demonstrated strong performance in tasks such as image-text retrieval
and visual question answering, they have yet to be systematically validated in UAV-VLN, particu-
larly under resource-limited conditions. To address this gap, we propose the DAD-SFT framework,
which utilizes Cross-Modal Attention Distillation to transfer the cross-modal attention distribution
of the teacher model, thereby enhancing the student’s multimodal perception. Simultaneously, we
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introduce Contrastive Attention Alignment, which constructs diverse positive and negative samples
to explicitly strengthen the model’s ability to discriminate and generalize. This method achieves
a balance between accuracy and efficiency, significantly outperforming existing approaches while
maintaining lightweight model characteristics, and thus demonstrates strong potential for deploy-
ment in real-world UAV-VLN applications.

C PROMPTS TEMPLATE

Prompt 1: UAV VLN task

System Message:
You are an intelligent autonomous aerial vehicle (UAV) capable of real-world navigation
and visual target localization.

Mission Objective:
Your mission is to locate a specific target described in natural language instructions.

Details of the Targe:
{target description}

Environmental Perception:
- The UAV’s current position is indicated by the starting point of an arrow in the image,
with its heading angle represented by the arrow’s direction.
- The yellow box outlines the UAV’s current camera field of view on the map, centered at
pixel coordinates: cur_pose = {UAV current position}.
- Landmark regions are highlighted with red masks.

Operational Guidance:
- The target is usually located near a red-masked landmark.
- Use both the target description and the visual input to identify the most relevant red-
masked landmark region.
- Infer the relative position of the target with respect to that landmark.

Output Format Specification:
- Present your reasoning process within <think> and </think> tags.
- Provide your final answer within <answer> and </answer> tags in the following for-
mat: {"target_location": [x, y]}
Your reasoning may include:
- A semantic interpretation of the target description.
- Identification of the correct landmark region.
- The bounding box of that region in the following format:
{"landmark_bbox": [x1, y1, x2, y2]}

D CROSS-MODAL ATTENTION DISTILLATION LAYER SELECTION ABLATION

To empirically validate the effectiveness of selecting only the first-layer cross-modal attention for
distillation, we conduct an ablation study comparing two variants:

• First-layer CAD: Only the first-layer cross-modal attention is used for distillation.
• Last-layer CAD: Only the last-layer cross-modal attention is used for distillation.

All other settings (architecture, loss weights, optimizer, batch size, etc.) are kept identical. The
performance is reported in Table 2.

We observe that distilling from the first-layer attention consistently outperforms distilling from the
last-layer in all splits and across all four metrics. This supports our intuition that early-layer attention
captures more transferable and generalizable cross-modal focus patterns, while deeper layers tend
to encode more task-specific reasoning, which may not generalize well during distillation. These
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Table 2: Ablation study comparing the effect of distilling attention from different layers. Distilling
the first-layer attention consistently achieves better performance than the last-layer variant.

Method Validation Seen Validation Unseen Test Unseen
NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑

Last-layer CAD 102.37 7.45 18.90 6.81 108.84 6.19 17.31 5.87 117.41 7.02 17.56 6.14
First-layer CAD 97.84 9.33 20.25 9.26 101.94 8.09 19.95 7.18 115.86 8.03 18.07 7.24

findings align with prior studies Feng et al. (2025); Chen et al. (2025) and further justify our design
choice.

E PROMPTS TEMPLATE

Prompt 2: Prompt for Adversarial Instruction Generation

You are given a detailed description of the destination for the drone to locate or move
toward the target area. Rewrite the description so that:

1. The rewritten description should remain almost identical in structure and details, except
for changing one or two key attributes (e.g., color, side of the road, direction, relative
position).
2. The modification should make the meaning conflict with the original (e.g., left and right,
front and back, present and absent).
3. Do NOT change unrelated properties such as object type, scene background, or the
general sentence structure.
4. Keep the rewritten sentence fluent and natural.

Input description:
{target description}

Output description:

F EVALUATION METRICS

• NE (Navigation Error, ↓): The average distance between the UAV’s final position and the target
position.

• SR (Success Rate, ↑): The proportion of episodes where the final position falls within a pre-
defined threshold (20 meters) of the target.

• OSR (Oracle Success Rate, ↑): Whether there exists at least one point along the trajectory where
the UAV is within the success threshold.

• SPL (Success weighted by Path Length, ↑): A metric that jointly considers navigation success
and path efficiency.

G BASELINES

We provide brief descriptions of the baseline methods used in our experiments:

• Random
At each time step, this baseline randomly samples an action without relying on any visual or
textual input.

• Sequence-to-Sequence (Seq2Seq) Anderson et al. (2018)
This model adopts a recurrent neural network architecture to encode visual observations and lan-
guage instructions into a unified representation, which is then decoded into navigation outputs.
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• Cross-Modal Attention (CMA) Liu et al. (2023)
Based on the Seq2Seq, the CMA model introduces a cross-modal attention mechanism between
vision and text, enhancing alignment between modalities and allowing the model to better focus
on goals and landmarks described in the instructions.

• Map-based Goal Predictor (MGP) Lee et al. (2024)
The MGP combines a language parser and an object detection module to extract goals and land-
marks from the input, constructs a semantic map, and predicts the target location accordingly.

• LLaMA-3.2-11B-Vision Grattafiori et al. (2024)
This is a VLM released by Meta, built upon the LLaMA architecture. It supports joint understand-
ing and reasoning over visual and textual inputs, with 11 billion parameters and the capacity to
handle complex multimodal tasks.

• GPT-4o OpenAI et al. (2024)
GPT-4o is a VLM released by OpenAI, capable of simultaneously processing visual and textual in-
puts. It demonstrates strong cross-modal perception and reasoning abilities, achieving impressive
performance on tasks involving instruction following and visual-language understanding.

• Qwen2.5-VL Series Bai et al. (2025)
This series of VLMs is developed by Alibaba and includes models of different scales, designed to
accommodate diverse application scenarios and resource constraints.

– Qwen2.5-VL-3B: A lightweight version designed for high efficiency and fast inference. It
is well-suited for deployment in resource-constrained environments and serves as the student
model in this work.

– Qwen2.5-VL-7B: A medium-scale model with enhanced capabilities in multimodal under-
standing and generation.

– Qwen2.5-VL-32B: A high-performance version with powerful multimodal understanding
and reasoning capabilities. It excels at handling complex visual-language tasks and serves as
the teacher model in this work.

• Naive RL
This baseline is trained purely under a reinforcement learning (RL) paradigm using the Group
Relative Policy Optimization (GRPO) algorithm, where navigation policies are optimized through
interaction with the environment. The reward function incorporates both Goal Accuracy Reward,
based on the Euclidean distance between the predicted and ground-truth location, and Format Re-
ward, which penalizes outputs that do not conform to required formats (e.g., invalid coordinates
or malformed outputs). The training configuration is shown in Table 3.

Table 3: Hyperparameter configurations for Naive RL baseline.
Hyperparameter Value
Learning Rate 1e-5
Number of Epochs 1
Rollout per Step 4
LoRA Rank 64

H HYPERPARAMETER SETTINGS

Hyperparameter Justification. For the loss weights λattn and λcontrast, our selection strategy was
to fix all other hyperparameters and evaluate different values on the validation set. Specifically,
we aimed for the auxiliary losses introduced by CAD and CAA to remain on the same order of
magnitude as the main task loss (Task Loss), ensuring that they have sufficient influence during
optimization without dominating the training process. Empirical results showed that setting λattn =
50 and λcontrast = 0.2 achieves a favorable balance between accuracy and training stability.

The positive-to-negative sample ratio (1:64) was determined by following common practices in con-
trastive learning, where a large and diverse pool of negative samples helps the model learn clearer
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Table 4: Hyperparameter configurations for DAD-SFT.
Category Hyperparameter Value

Basic Training

Batch Size 2
Learning Rate 5e-6
Number of Epochs 2
Optimizer AdamW

Cross-Modal Attention Distillation λattn 50

Contrastive Attention Alignment
λcontrast 0.2
Positive-to-Negative Sample Ratio 1:64
InfoNCE Temperature Coefficient τ 0.05

boundaries between attended and non-attended regions in the attention distribution. The tempera-
ture coefficient τ = 0.05 controls the sensitivity of the similarity distribution in the InfoNCE loss,
and this value was found to achieve favorable stability and discriminative ability in our experiments.

I EFFICIENCY EVALUATION RESULTS

Table 5: Comparison of resource consumption and inference latency across models on real devices.
Model Name Test Device GPU Memory

Usage (GB)
Inference Latency

(s/step)

Seq2Seq RTX 4090×1 0.92 1.00
CMA RTX 4090×1 0.87 1.01
MGP RTX 4090×1 0.84 0.82

LLaMA-3.2-11B-Vision RTX 4090×1 21.65 11.11
GPT-4o Cloud N/A 9.73

Ours (3B) RTX 4090×1 13.53 6.52
Qwen2.5-VL-7B RTX 4090×1 21.71 9.37
Qwen2.5-VL-32B A100 80GB×1 70.12 53.42

J COT DATA ANALYSIS

To better understand the quality and characteristics of our constructed CoT training data, we con-
ducted a systematic statistical analysis across multiple dimensions:

1. Diversity of Instructions and Reasoning Trajectories: We plotted histograms for both instruc-
tion lengths and CoT reasoning lengths (see Fig. 3(a) and Fig. 3(b)), showing significant variabil-
ity. The instructions range from concise descriptions to complex multi-clause expressions, and
the reasoning chains vary in length, reflecting diverse semantic structures and task difficulties.
This ensures broad linguistic coverage.

2. Spatial Distribution and Scale Balance of Landmark Bounding Boxes: We calculated the
sizes of all annotated landmark bounding boxes (Fig. 3(c)) and visualized the distribution of their
center points across the map (Fig. 3(d)). The results show that landmarks are spatially well-
distributed, and their sizes are reasonably balanced, indicating no significant annotation bias.

3. Coverage of Target Coordinates: The heatmap of target coordinates (Fig. 3(e)) demonstrates
broad spatial coverage over the map. This indicates that the dataset encourages learning across
diverse spatial contexts, minimizing risk of overfitting to localized regions.

4. Semantic Alignment Between Landmarks and Targets: We computed the spatial distances
between each landmark center and the corresponding ground-truth target coordinate (Fig. 3(f)).
The average distance is approximately 20.7 meters, confirming that landmarks mentioned in
reasoning chains are meaningfully and spatially aligned with the final targets.
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Figure 3: Statistical analysis of the CoT training data.

K ADDITIONAL ABLATION STUDIES

K.1 GRID SEARCH SENSITIVITY ANALYSIS ON λATTN AND λCONTRAST

We perform a sensitivity analysis of the loss weights λattn and λcontrast on the Validation Unseen split.
Table 6 shows the SR results under various combinations.

The results show that the configuration (λattn = 50, λcontrast = 0.2) achieves the best performance.
The model is more sensitive to λattn: when λattn is too small (e.g., 10), the model underperforms,
whereas a moderate range (50–80) yields more stable and superior results. This suggests that atten-
tion distillation loss is more effective when applied with sufficient strength. In contrast, the model
is relatively robust to λcontrast within a reasonable range, with particularly strong stability observed
between 0.1 and 0.2.

Table 6: SR (%) on Validation Unseen under different λattn and λcontrast combinations.
λattn \ λcontrast 0.05 0.1 0.2 0.5

10 7.85 8.12 8.46 7.90
30 9.02 9.56 10.18 9.61
50 10.12 10.26 10.43 10.01
80 9.76 10.07 10.22 9.88

K.2 CONTRIBUTION ABLATION OF DIFFERENT NEGATIVE SAMPLE TYPES

To understand the contribution of different negative sample types in CAA, we conduct ablation
experiments under the CAA-only setting (i.e., without CAD). The results on the Test Unseen split
are presented in Table 7.

The results indicate that all negative sample types positively contribute to performance. Notably,
Adversarial Attention and Cross-instance Attention negatives are most impactful in improving the
model’s discriminability and overall performance. Removing any of them leads to a performance
drop, validating the necessity of diverse negative designs in CAA.
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Table 7: Effect of different negative sample types in CAA (SR %) on Test Unseen.
Configuration SR (%)

Naive SFT 5.79
CAA-only (full negative types) 9.79
CAA-only w/o Random Attention Negatives 9.12
CAA-only w/o Perturbed Attention Negatives 9.26
CAA-only w/o Adversarial Attention Negatives 8.87
CAA-only w/o Cross-instance Attention Negatives 9.03
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