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ABSTRACT

The information bottleneck (IB) approach is popular to improve the generaliza-
tion, robustness and explainability of deep neural networks. Essentially, it aims
to find a minimum sufficient representation t by striking a trade-off between a
compression term I(x; t) and a prediction term I(y; t), where I(·; ·) refers to the
mutual information (MI). MI is for the IB for the most part expressed in terms of
the Kullback-Leibler (KL) divergence, which in the regression case corresponds
to prediction based on mean squared error (MSE) loss with Gaussian assumption
and compression approximated by variational inference. In this paper, we study
the IB principle for the regression problem and develop a new way to parameterize
the IB with deep neural networks by exploiting favorable properties of the Cauchy-
Schwarz (CS) divergence. By doing so, we move away from MSE-based regression
and ease estimation by avoiding variational approximations or distributional as-
sumptions. We investigate the improved generalization ability of our proposed
CS-IB and demonstrate strong adversarial robustness guarantees. We demonstrate
its superior performance on six real-world regression tasks over other popular deep
IB approaches. We additionally observe that the solutions discovered by CS-IB
always achieve the best trade-off between prediction accuracy and compression
ratio in the information plane. The code is available at https://github.com
/SJYuCNEL/Cauchy-Schwarz-Information-Bottleneck.

1 INTRODUCTION

The information bottleneck (IB) principle was proposed by (Tishby et al., 1999) as an information-
theoretic framework for representation learning. It considers extracting information about a target
variable y through a correlated variable x. The extracted information is characterized by another
variable t, which is (a possibly randomized) function of x. Formally, the IB objective is to learn a
representation t that maximizes its predictive power to y subject to some constraints on the amount
of information that it carries about x:

max
p(t|x)

I(y; t) s.t. I(x; t) ≤ R, (1)

where I(·; ·) denotes the mutual information. By introducing a Lagrange multiplier β > 0, t is found
by optimizing a so-called IB Lagrangian (Gilad-Bachrach et al., 2003; Shamir et al., 2010):

min
p(t|x)

−I(y; t) + βI(x; t). (2)

Maximizing I(y; t) ensures the sufficiency of t to predict y, whereas minimizing I(x; t) encourages
the minimality (or complexity) of t and prevents it from encoding irrelevant bits. The parameter β
controls the fundamental tradeoff between these two information terms. In this sense, the IB principle
also provides a natural approximation of minimal sufficient statistic (Gilad-Bachrach et al., 2003).

Traditionally, the IB principle and its variants (e.g., (Strouse & Schwab, 2017; Creutzig et al.,
2009)) have found applications in document clustering (Slonim & Tishby, 2000), image segmen-
tation (Bardera et al., 2009), biomolecular modeling (Wang et al., 2019), etc. Recent studies have
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established close connections between IB and DNNs, especially in a supervised learning scenario.
In this context, x denotes input feature vectors, y denotes desired response such as class labels,
and t refers to intermediate latent representations or activations of hidden layers. Theoretically, it
was observed that the layer representation t undergoes two separate training phases: a fitting or
memorization phase in which both I(x; t) and I(y; t) increase, and a compression phase in which
I(x; t) decreases while I(y; t) continues to increase or remains consistent (see (Shwartz-Ziv &
Tishby, 2017; Saxe et al., 2018; Chelombiev et al., 2019; Yu et al., 2020; Lorenzen et al., 2022) for a
series of work in this direction; although the argument itself is still under a debate). The existence of
compression also provides new insights to the generalization behavior of DNNs (Wang et al., 2022;
Kawaguchi et al., 2023). Practically, the intermediate representations learned with the IB objective
have been demonstrated to be more robust to adversarial attacks (Wang et al., 2021; Pan et al., 2021)
and distributional shift (Ahuja et al., 2021). In a parallel line of research (Bang et al., 2021; Kim et al.,
2021), the IB approach has been leveraged to identify the most informative features (to a certain
decision) by learning a differentiable mask m on the input, i.e., t = x ⊙m, in which ⊙ refers to
element-wise product.

Unfortunately, optimizing the IB Lagrangian remains a challenge due to its computational intractabil-
ity. Although scalable methods of IB are feasible thanks to variational bounds of mutual informa-
tion (Alemi et al., 2017; Kolchinsky et al., 2019b; Poole et al., 2019) as well as Gaussian or discrete
data assumptions (Chechik et al., 2003; Tishby et al., 1999), the choice of such bounds, the imposed
data distributional assumptions, as well as specific details on their implementations may introduce
strong inductive bias that competes with the original objective (Ngampruetikorn & Schwab, 2023).

In this paper, we propose a new method for performing nonlinear IB on arbitrarily distributed p(x, y),
by exploiting favorable properties of the Cauchy-Schwarz (CS) divergence (Principe et al., 2000;
Yu et al., 2023). We focus our attention on the regression setup, which is far less investigated than
classification, except for (Ngampruetikorn & Schwab, 2022) that analyzes high-dimensional linear
regression from an IB perspective. For I(y; t), we demonstrate that the commonly used mean squared
error (MSE) loss is not an ideal approximation. Rather, the CS divergence offers a new prediction
term which does not take any distributional assumptions on the decoder. Similarly, for I(x; t), we
demonstrate that it can be explicitly estimated from samples without variational or non-parametric
upper bound approximations, by making use of the Cauchy-Schwarz quadratic mutual information
(CS-QMI). Both terms can be optimized with gradient-based approaches. To summarize, we make
the following major contributions:

• We show that nonlinear IB for regression on arbitrarily distributed p(x, y) can be carried
out, with least dependence on variational approximations and no distributional assumptions
with the aid of CS divergence estimated in a non-parametric way. The resulting prediction
term is no longer a simple MSE loss, as in the Kullback-Leibler (KL) case; the compression
term measures the true mutual information value, rather than its upper bound.

• We demonstrate that the CS divergence induced prediction and compression terms can be
estimated elegantly from observations with closed-form expressions. We also establish
the close connection between CS divergence with respect to maximum mean discrepancy
(MMD) (Gretton et al., 2012) and KL divergence.

• We provide in-depth analysis on the generalization error and adversarial robustness of
our developed CS-IB. We demonstrate the superior performance of CS-IB on six bench-
mark regression datasets against five popular deep IB approaches, such as nonlinear IB
(NIB) (Kolchinsky et al., 2019b) and Hilbert-Schmidt Independence Criterion Bottleneck
(HSIC-bottleneck) (Wang et al., 2021), in terms of generalization error, adversarial robust-
ness, and the trade-off between prediction accuracy and compression ratio in the information
plane (Shwartz-Ziv & Tishby, 2017).

2 BACKGROUND KNOWLEDGE

2.1 PROBLEM FORMULATION AND VARIANTS OF IB LAGRANGIAN

In supervised learning, we have a training set D = {xi, yi}Ni=1 of input feature x and described
response y. We assume xi and yi are sampled i.i.d. from a true data distribution p(x, y) = p(y|x)p(x).
The usual high-level goal of supervised learning is to use the dataset D to learn a particular conditional
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distribution qθ(ŷ|x) of the task outputs given the input features parameterized by θ which is a good
approximation of p(y|x), in which ŷ refers to the predicted output.

If we measure the closeness between p(y|x) and qθ(ŷ|x) with KL divergence, the learning objective
becomes:

minDKL(p(y|x); qθ(ŷ|x)) = minE (− log(qθ(ŷ|x)))−H(y|x) ⇔ minE (− log(qθ(ŷ|x))) , (3)

where H(y|x) only depends on D that is independent to parameters θ.

For classification, qθ(ŷ|x) is characterized by a discrete distribution which could be the output of a
neural network hθ(x), and Eq. (3) is exactly the cross-entropy loss. For regression, suppose qθ(ŷ|x)
is distributed normally N (hθ(x), σ

2I), and the network hθ(x) gives the prediction of the mean of
the Gaussian, the objective reduces to E

(
∥y − hθ(x)∥22

)
, which amounts to the mean squared error

(MSE) loss1 and is empirically estimated by 1
N

∑N
i=1(y − ŷ)2.

Most supervised learning methods aim to learn an intermediate representation t before making predic-
tions about y. Examples include activations of hidden layers in neural networks and transformations
in a feature space through the kernel trick in SVM. Suppose t is a possibly stochastic function of
input x, as determined by some parameterized conditional distribution qθ(t|x), the overall estimation
of the conditional probability p(y|x) is given by the marginalization over the representations:

qθ(ŷ|x) =
∫

qθ(ŷ|t)qθ(t|x)dt or qθ(ŷ|x) =
∑
t

qθ(ŷ|t)qθ(t|x). (4)

There are multiple ways to learn t to obtain qθ(ŷ|x). From an information-theoretic perspective,
a particular appealing framework is the IB Lagrangian in Eq. (2), which, however, may involve
intractable integrals. Recently, scalable methods of IB on continuous and non-Gaussian data using
DNNs became possible thanks to different mutual information approximation techniques. In the
following, we briefly introduce existing approaches on approximating I(y; t) and I(x; t).

2.1.1 APPROXIMATION TO I(y; t)

In regression, maximizing Iθ(y; t) is commonly approximated by minimizing MSE loss.
Proposition 1. (Rodriguez Galvez, 2019) With a Gaussian assumption on qθ(ŷ|t), maximizing
Iθ(y; t) essentially minimizes DKL(p(y|x); qθ(ŷ|x)), both of which could be approximated by mini-
mizing a MSE loss.

Proof. All proofs can be found in Appendix A.

2.1.2 APPROXIMATION TO I(x; t)

The approximation to I(x; t) differs for each method. For variational IB (VIB) (Alemi et al., 2017)
and similar works (Achille & Soatto, 2018), I(x; t) is upper bounded by:

I(x; t) = Ep(x,t) log p(t|x)−Ep(t) log p(t) ≤ Ep(x,t) log p(t|x)−Ep(t) log v(t) = DKL(p(t|x); v(t)),
(5)

where v is some prior distribution such as Gaussian. On the other hand, the nonlinear informa-
tion bottleneck (NIB) (Kolchinsky et al., 2019b) uses a non-parametric upper bound of mutual
information (Kolchinsky & Tracey, 2017):

I(x; t) ≤ − 1

N

N∑
i=1

log
1

N

N∑
j=1

exp (−DKL(p(t|xi); p(t|xj))) . (6)

Recently, (Kolchinsky et al., 2019a) showed that optimizing the IB Lagrangian for different values
of β cannot explore the IB curve when y is a deterministic function of x. Therefore, the authors of
(Kolchinsky et al., 2019a) propose a simple modification to IB Lagrangian, which is also called the
squared-IB Lagrangian:

min−I(y; t) + βI(x; t)2. (7)

1Note that, log(qθ(ŷ|x)) = log
(

1√
2πσ

exp
(
− ∥y−hθ(x)∥22

2σ2

))
= − log σ − 1

2
log(2π)− ∥y−fθ(x)∥22

2σ2 .
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The convex-IB (Rodríguez Gálvez et al., 2020) further showed that applying any monotonically
increasing and strictly convex function u on I(x; t) can explore the IB curve. For example, by
instantiating u with shifted exponential function, the objective of convex-IB is expressed as:

min−I(y; t) + β exp (η(I(x; t)− r∗)) , η > 0, r∗ ∈ [0,∞). (8)

In both squared-IB and convex-IB, I(x; t) is evaluated with Eq. (6). There are other approaches that
do not estimate I(x; t). The conditional entropy bottleneck (Fischer, 2020) and the deterministic
information bottleneck (Strouse & Schwab, 2017) replace I(x; t), respectively, with I(x; t|y) and
H(t). The decodable information bottleneck (Dubois et al., 2020) makes use of the V-information (Xu
et al., 2020) and defines “minimality" in classification as not being able to distinguish between
examples with the same labels. One can also replace I(x; t) with other nonlinear dependence
measures like the Hilbert–Schmidt independence criterion (HSIC) (Gretton et al., 2007).

2.2 CAUCHY-SCHWARZ DIVERGENCE AND ITS INDUCED MEASURES

Motivated by the famed Cauchy-Schwarz (CS) inequality for square integrable functions:(∫
p(x)q(x)dx

)2

≤
∫

p(x)2dx

∫
q(x)2dx, (9)

with equality iff p(x) and q(x) are linearly dependent, a measure of the “distance” between p(x) and
q(x) can be defined, which was named CS divergence (Principe et al., 2000; Yu et al., 2023), with:

DCS(p; q) = − log

( (∫
p(x)q(x)dx

)2∫
p(x)2dx

∫
q(x)2dx

)
. (10)

The CS divergence is symmetric for any two probability density functions (PDFs) p and q, such
that 0 ≤ DCS < ∞, where the minimum is obtained iff p(x) = q(x). Given samples {xp

i }mi=1 and
{xq

i }ni=1, drawn i.i.d. from respectively p(x) and q(x), CS divergence can be empirically estimated
with the kernel density estimator (KDE) (Parzen, 1962) as:

D̂CS(p; q) = log

 1

m2

m∑
i,j=1

κ(xp
i ,x

p
j )

+log

 1

n2

n∑
i,j=1

κ(xq
i ,x

q
j)

−2 log

 1

mn

m∑
i=1

n∑
j=1

κ(xp
i ,x

q
j)

 .

(11)
where κ is a kernel function such as Gaussian κσ(x,x

′) = exp(−∥x− x′∥22/2σ2).
Remark 1. The CS divergence is also a special case of the generalized divergence defined by (Lutwak
et al., 2005) which relies on a modification of the Hölder inequality2, when α = 2:

Dα(p; q) = log

(
(
∫
q(x)α−1p(x))

1
1−α (

∫
q(x)α)

1
α dx

(
∫
p(x)α)

1
α(1−α) dx

)
. (12)

The KL divergence DKL(p∥q) =
∫
p log

(
p
q

)
is obtained when α → 1.

Remark 2. The CS divergence is closely related to the maximum mean discrepancy (MMD) (Gret-
ton et al., 2012). In fact, given a characteristic kernel κ(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H, let us de-
note the (empirical) mean embedding for {xp

i }mi=1 and {xq
i }ni=1 as µp = 1

m

∑m
i=1 ϕ(x

p
i ) and

µq = 1
n

∑n
i=1 ϕ(x

q
i ), the empirical estimators of CS divergence and MMD can be expressed as:

D̂CS(p; q) = −2 log

( ⟨µp,µq⟩H
∥µp∥H∥µq∥H

)
= −2 log cos(µp,µq), (13)

M̂MD
2
(p; q) = ⟨µp,µq⟩2H = ∥µp∥2H + ∥µq∥2H − 2⟨µp,µq⟩H

=
1

m2

m∑
i,j=1

κ(xp
i ,x

p
j ) +

1

n2

n∑
i,j=1

κ(xq
i ,x

q
j)−

2

mn

m∑
i=1

n∑
j=1

κ(xp
i ,x

q
j).

(14)

That is, CS divergence measures the cosine similarity between µp and µq in a Reproducing kernel
Hilbert space (RKHS) H, whereas MMD uses Euclidean distance.

Eq. (10) can be extended to measure the independence between two random variables x and y.
2See Appendix B.1 for an in-depth discussion on the relationship between CS & KL divergences and MMD.
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Cauchy-Schwarz Quadratic Mutual Information (CS-QMI) The independence between x and
y can be measured by any (valid) distance or divergence measure over the joint distribution p(x, y)
with respect to the product of marginal distributions p(x)p(y). If we substitute p(x) and q(x) in
Eq. (10) with p(x, y) and p(x)p(y), we obtain the Cauchy-Schwarz quadratic mutual information
(CS-QMI) (Principe et al., 2000):

ICS(x, y) = DCS(p(x, y); p(x)p(y)) = − log


∣∣∣ ∫ p(x, y)p(x)p(y)dxdy

∣∣∣2∫
p2(x, y)dxdy

∫
p2(x)p2(y)dxdy

 . (15)

Distinct to KL divergence that is notoriously hard to estimate, we will show that both CS-QMI and
the divergence between p(y|x) and qθ(ŷ|x) can be elegantly estimated in a non-parametric way with
closed-form expressions, enabling efficient implementation of deep IB without approximations.

3 THE CAUCHY-SCHWARZ DIVERGENCE INFORMATION BOTTLENECK

As has been discussed in Section 2.1, existing deep IB approaches rely on Shannon’s definition of
information and are essentially minimizing the following objective:

min
p(t|x)

DKL(p(y|x); qθ(ŷ|x)) + βI(x; t), (16)

where I(x; t) is defined also in a KL divergence sense. Both terms in Eq. (16) are hard to estimate. In
case of regression, minDKL(p(y|x); qθ(ŷ|x)) gets back to the MSE loss under a parametric Gaussian
assumption. However, we could also uncover the mean absolute error (MAE) loss if we take a
Laplacian assumption. On the other hand, the use of an upper bound to I(x; t) also makes the
solution of IB sub-optimal. Moreover, the choices of bounds or assumptions are hard to decide for
practitioners. We refer interested readers to Appendix B.2 for a detailed discussion on different
approximation biases of previous literature. We also demonstrate the advantage of CS divergence
over variational KL divergence in terms of optimization via a toy example in Appendix C.5.

In this paper, we consider a new formulation of IB that entirely based on the CS divergence:
min
p(t|x)

DCS(p(y|x); qθ(ŷ|x)) + βICS(x; t). (17)

The first term of Eq. (17) measures the conditional CS divergence between p(y|x) and qθ(ŷ|x),
whereas the second term is the CS-QMI between x and t. We will show in next subsections how
the favorable properties of CS divergence possibly affect the IB’s computation and performance,
compared to its KL divergence counterpart.

3.1 ESTIMATION OF CS DIVERGENCE INDUCED TERMS

Both terms in Eq. (17) (i.e., DCS(p(y|x); qθ(ŷ|x)) and ICS(x; t)) can be efficiently and non-
parametrically estimated from given samples {yi,xi, ti, ŷi}ni=1 with the kernel density estimator
(KDE) in a closed-form expression. When parameterizing IB with a DNN, t refers to the latent
representation of one hidden layer (i.e., t = f(x)), n denotes mini-batch size.
Proposition 2 (Empirical Estimator of DCS(p(y|x); qθ(ŷ|x))). Given observations {(xi, yi, ŷi)}Ni=1,
where x ∈ Rp denotes a p-dimensional input variable, y is the desired response, and ŷ is the
predicted output generated by a model fθ. Let K, L1 and L2 denote, respectively, the Gram matrices
for the variable x, y, and ŷ (i.e., Kij = κ(xi,xj), L1

ij = κ(yi, yj) and L2
ij = κ(ŷi, ŷj), in which

κ = exp
(
−∥·∥2

2σ2

)
is a Gaussian kernel function). Further, let L21 denote the Gram matrix between

ŷ and y (i.e., L21
ij = κ(ŷi, yj)). The empirical estimation of DCS(p(y|x); qθ(ŷ|x)) is given by:

D̂CS(p(y|x); qθ(ŷ|x)) = log

 N∑
j=1

(∑N
i=1 KjiL

1
ji

(
∑N

i=1 Kji)2

)
+ log

 N∑
j=1

(∑N
i=1 KjiL

2
ji

(
∑N

i=1 Kji)2

)− 2 log

 N∑
j=1

(∑N
i=1 KjiL

21
ji

(
∑N

i=1 Kji)2

) .

(18)
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Remark 3. The empirical estimator of DCS(p(y|x); qθ(ŷ|x)) in Eq. (18) is non-negative. Compared
to MSE, it assumes and encourages that if two points xi and xj are sufficiently close, their predictions
(ŷi and ŷj) will be close as well, which also enhances the numerical stability (Nguyen & Raff, 2019)
of the trained model. Moreover, when the kernel width σ reduces to 0, it gets back to MSE.
Remark 4. A precise estimation on the divergence between p(y|x) and qθ(ŷ|x) is a non-trivial
task. The use of KL divergence combined with Gaussian assumption is likely to introduce in-
ductive bias. Another alternative is the conditional MMD by (Ren et al., 2016) with the expres-
sion D̂MMD(p(y|x); qθ(ŷ|x)) = tr(KK̃−1L1K̃−1) + tr(KK̃−1L2K̃−1) − 2 tr(KK̃−1L21K̃−1),
in which K̃ = K + λI . Obviously, CS divergence avoids introducing an additional hyperparametr λ
and the necessity of matrix inverse, which improves computational efficiency and stability. Moreover,
Eq. (18) does not rely on any parametric distributional assumption on qθ(ŷ|x).

We provide detailed justifications regarding Remark 3 and Remark 4 in Appendix B.3.
Proposition 3 (Empirical Estimator of CS-QMI). Given N pairs of observations {(xi, ti)}Ni=1, each
sample contains two different types of measurements x ∈ X and t ∈ T obtained from the same
realization. Let K and Q denote, respectively, the Gram matrices for variable x and variable t,
which are also symmetric. The empirical estimator of CS-QMI is given by:

ÎCS(x; t) = log

(
1

N2

N∑
i,j

KijQij

)
+ log

(
1

N4

N∑
i,j,q,r

KijQqr

)
− 2 log

(
1

N3

N∑
i,j,q

KijQiq

)

= log

(
1

N2
tr(KQ)

)
+ log

(
1

N4
1
TK11

TQ1

)
− 2 log

(
1

N3
1
TKQ1

)
,

(19)

where 1 is a N × 1 vector of ones. The second line of Eq. (19) reduces the complexity to O(N2).
Remark 5. Our empirical estimator of CS-QMI in Eq. (19) is closely related to the most widely used
biased (or V-statistics) estimator of HSIC, which can be expressed as (Gretton et al., 2007):

ĤSICb(x; t) =
1

N2

N∑
i,j

KijQij +
1

N4

N∑
i,j,q,r

KijQqr −
2

N3

N∑
i,j,q

KijQiq =
1

N2
tr(KHQH), (20)

where H = I − 1
N 11

T is a N ×N centering matrix. Comparing Eq. (19) with Eq. (20), it is easy to
observe that CS-QMI adds a logarithm operator on each term of HSIC. This is not surprising. CS-
QMI equals the CS divergence between p(x, t) and p(x)p(t); whereas HSIC is equivalent to MMD
between p(x, t) and p(x)p(t). According to Remark 2, similar rule could be expected. However,
different to HSIC, the CS-QMI is a rigorous definition of mutual information. It measures the mutual
dependence between variables x and y in units like bit (with log2) or nat (with ln).

3.2 THE RATIONALITY OF THE REGULARIZATION TERM ICS(x; t)

The advantages of replacing MSE (or MAE) loss with DCS(p(y|x); qθ(ŷ|x)) is elaborated in Re-
marks 3 and 4. Hence, we justify the rationality of the regularization term ICS(x; t).

3.2.1 EFFECTS OF ICS(x; t) ON GENERALIZATION

Theorem 1 suggests that CS divergence is upper bounded by the smaller value between forward and
reverse KL divergences, which improves the stability of training. Additionally, Corollary 1 implies
that ICS(x; t) encourages a smaller value on the dependence between x and t, i.e., a heavier penalty
on the information compression. These results can be extended to arbitrary square-integral densities
as shown in Appendix B.5. Note that, this is distinct to the mainstream IB optimization idea that
just minimizes an upper bound of Shannon’s mutual information I(x; t) due to the difficulty of
estimation. Similar to Eq. (18), Eq. (19) makes the estimation of ICS(x; t) straightforward without
any approximation or parametric assumptions on the underlying data distribution.
Theorem 1. For arbitrary d-variate Gaussian distributions p ∼ N (µ1,Σ1) and q ∼ N (µ2,Σ2),

DCS(p; q) ≤ min{DKL(p; q), DKL(q; p)}. (21)
Corollary 1. For two random vectors x and t which follow a joint Gaussian distribution

N
((

µx

µt

)
,

(
Σx Σxt

Σtx Σt

))
, the CS-QMI is no greater than the Shannon’s mutual information:

ICS(x; t) ≤ I(x; t). (22)
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ICS(x; t) ICS(x; t|y)
τ 0.30 0.31
MIC 0.38 0.47

ICS(x; t) ICS(x; t|y)
τ 0.40 0.44
MIC 0.46 0.54

Table 1: The dependence between ICS(x; t) (or ICS(x; t|y)) and generalization gap (measured by
Kendall’s τ and MIC) on synthetic data (left) and real-world California housing data (right).

Minimizing unnecessary information (by minimizing the dependence between x and t) to control
generalization error has inspired lots of deep learning algorithms. In classification setup, recent study
states that given m training samples, with probability 1− δ, the generalization gap could be upper

bounded by
√

2I(x;t)+log(1/δ)
2m (Shwartz-Ziv et al., 2019; Galloway et al., 2023), which has been

rigorously justified in (Kawaguchi et al., 2023) by replacing 2I(x;t) with I(x; t|y). It is natural to ask
if similar observations hold for regression. We hypothesize that the compression on the dependence
between x and t also plays a fundamental role to predict the generalization of a regression model,
and ICS(x; t) or ICS(x; t|y) correlates well with the generalization performance of a trained network.

To test this, we train nearly one hundred fully-connected neural networks with varying hyperparam-
eters (depth, width, batch size, dimensionality of t) on both a synthetic nonlinear regression data
with 30 dimensional input and a real-world California housing data, and retain models that reach a
stable convergence. For all models, we measure the dependence between ICS(x; t) (or ICS(x; t|y))
and the generalization gap (i.e., the performance difference in training and test sets in terms of rooted
mean squared error) with both Kendall’s τ and maximal information coefficient (MIC) (Reshef et al.,
2011), as shown in Table 1. For Kendall’s τ , values of τ close to 1 indicate strong agreement of two
rankings for samples in variables x and y, that that is, if xi > xj , then yi > yj . Kendall’s τ matches
our motivation well, since we would like to evaluate if a small value of ICS(x; t) (or ICS(x; t|y)) is
likely to indicate a smaller generalization gap. This result is in line with that in (Kawaguchi et al.,
2023) and corroborates our hypothesis. See Appendix C.1 for details and additional results.

Finally, we would like emphasize that when p and q are sufficiently small, Theorem 1 could be
extended without Gaussian assumption, which may enable us to derive tighter generalization error
bound in certain learning scenarios. We refer interested readers to Appendix B.5 for more discussions.

3.2.2 ADVERSARIAL ROBUSTNESS GUARANTEE

Given a network hθ = g(f(x)), where f : RdX 7→ RdT maps the input to an intermediate layer
representation t, and g : RdT 7→ R maps this intermediate representation t to the final layer, we
assume all functions hθ and g we consider are uniformly bounded by MX and MZ , respectively. Let
us denote F and G the induced RKHSs for kernels κX and κZ , and assume all functions in F and G
are uniformly bounded by MF and MG . Based on Remark 2 and the result by (Wang et al., 2021), let
µ(PXT ) and µ(PX ⊗ PT ) denote, respectively, the (empirical) kernel mean embedding of PXT and
PX ⊗ PT in the RHKS F ⊗ G, CS-QMI bounds the power of an arbitrary adversary in Sr when

√
N

is sufficiently large, in which Sr is a ℓ∞-ball of radius r, i.e., Sr = {δ ∈ RdX , δ∞ ≤ r}.

Proposition 4. Denote γ = σMFMG

r
√

−2 log o(1)dXMZ
(E[|hθ(x+ δ)− hθ(x)|]− o(r)), if x ∼ N (0, σ2I)

and ∥µ(PXT )∥F⊗G = ∥µ(PX ⊗ PT )∥F⊗G = ∥µ∥, when
√
N ≫ |g′(HSIC(x; t))|σH , then:

P
(
ÎCS(x; t) ≥ g(γ)

)
≈ 1− Φ

(√
N(g(γ)− g(HSIC(x; t)))
|g′(HSIC(x; t))|σH

)
→ 1, (23)

in which g(x) = −2 log(1− x/(2∥µ∥2)) is a monotonically increasing function, Φ is the cumulative

distribution function of a standard Gaussian, and
√
N(ĤSICb(x; t)− HSIC(x; t)) D−→ N (0, σ2

H).

4 EXPERIMENTS

We perform experiments on four benchmark regression datasets: California Housing, Appliance
Energy, Beijing PM2.5, and Bike Sharing from the UCI repository. To showcase the scalability of
CS-IB to high-dimensional data (e.g., images), we additionally report its performance on rotation
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MNIST and UTKFace (Zhang et al., 2017), in which the tasks are respectively predicting the rotation
angle of MNIST digits and estimating the age of persons by their face images. We compare CS-IB
to popular deep IB approaches that could be used for regression tasks. These include VIB (Alemi
et al., 2017), NIB (Kolchinsky et al., 2019b), squared-NIB (Kolchinsky et al., 2019a), convex-NIB
with exponential function (Rodríguez Gálvez et al., 2020) and HSIC-bottleneck (Wang et al., 2021).
Similar to (Kolchinsky et al., 2019b;a; Rodríguez Gálvez et al., 2020), we optimize all competing
methods for different values of β, producing a series of models that explore the trade-off between
compression and prediction.

The network hθ = g(f(x)) is consists of two parts: a stochastic encoder t = fenc(x) +w where w is
zero-centered Gaussian noise with covariance diag(σ2

θ) and p(t|x) = N (fenc(x),diag(σ2
θ)), and

a deterministic decoder y = gdec(t). For benchmark regression datasets, the encoder fenc is a 3-layer
fully-connected network or LSTM. For rotation MNIST and UTKFace, we use VGG-16 (Simonyan
& Zisserman, 2015) as the backbone architecture. Detail on experimental setup is in Appendix C.2.

4.1 BEHAVIORS IN THE INFORMATION PLANE

For each IB approach, we traverse different values of β ≥ 0. Specifically, we vary β ∈ [10−3, 10] for
CS-IB, β ∈ [10−2, 1] for NIB, square-NIB, and exp-NIB, β ∈ [10−6, 10−3] for VIB, and β ∈ [1, 10]
for the HSIC(x; t) term in HSIC-bottleneck. These ranges were chosen empirically so that the result-
ing models fully explore the IB curve. To fairly compare the capability of prediction under different
compression levels, we define the compression ratio r at β = β∗ as 1 − I(x; t)β=β∗/I(x; t)β=0.
Hence, r equals 0 when β = 0 (i.e., no compression term in the IB objective). Intuitively, a large β
would result in small value of I(x; t), and hence large r. Here, I(x; t) is calculated by each approach’s
own estimator, whereas the true value of I(y; t) is approximated with 1

2 log(var(y)/MSE) (Kolchin-
sky et al., 2019b). The results are summarized in Fig. 1 and Table 2. Interestingly, when r = 0, our
CS-IB have already demonstrated an obvious performance gain, which implies that our prediction
term (i.e., Eq. (18)) alone is more helpful than MSE to extract more usable information from input x
to predict y. For each data, we additionally report the best performance achieved when r ̸= 0 (see
Table 7 in Appendix C.4). Again, our CS-IB outperforms others. We also perform an ablation study,
showing that Eq. (18) could also improve the performances of NIB, etc. (by replacing their MSE
counterpart), although they are still inferior to CS-IB. See Appendix C.4 for additional results.

Table 2: RMSE for different deep IB approaches with compression ratio r = 0 and r = 0.5. When
r = 0, CS-IB uses prediction term DCS(p(y|x); qθ(ŷ|x)) in Eq. (18), whereas others use MSE.

Model Housing Energy PM2.5 Bike Rotation MNIST UTKFace
0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

VIB 0.258 0.347 0.059 0.071 0.025 0.038 0.428 0.523 4.351 5.358 8.870 9.258
NIB 0.258 0.267 0.059 0.060 0.025 0.034 0.428 0.435 4.351 4.102 8.870 8.756
Square-NIB 0.258 0.293 0.059 0.063 0.025 0.028 0.428 0.447 4.351 4.257 8.870 8.712
Exp-NIB 0.258 0.287 0.059 0.061 0.025 0.030 0.428 0.458 4.351 4.285 8.870 8.917
HSIC-bottlenck 0.258 0.371 0.059 0.065 0.025 0.031 0.428 0.451 4.351 4.573 8.870 8.852
CS-IB 0.251 0.245 0.056 0.058 0.022 0.027 0.404 0.412 4.165 3.930 8.702 8.655

4.2 ADVERSARIAL ROBUSTNESS

We then evaluate the adversarial robustness of the model trained with our CS-IB objective. Different
types of adversarial attacks have been proposed to “fool" models by adding small carefully designed
perturbations on the input. Despite extensive studies on adversarial robustness of classification
networks, the adversarial robustness in regression setting is scarcely investigated but of crucial
importance (Nguyen & Raff, 2019; Gupta et al., 2021). In this section, we use the most basic way to
evaluate adversarial robustness, that is the regression performance on adversarially perturbed versions
of the test set, also called the adversarial examples.

There are no formal definitions on adversarial attacks in the regression setting, we follow (Nguyen &
Raff, 2019) and consider adversarial attack as a potential symptom of numerical instability in the
learned function. That is, we aim to learn a numerically stable function fθ such that the output of two
points that are near each other should be similar:

|fθ(x)− fθ(x+∆x)| ≤ δ, s.t., ∥∆x∥p < ϵ. (24)
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Figure 1: Information plane diagrams on California Housing and Beijing PM2.5 datasets.

Different to classification, there are no natural margins in regression tasks. Hence, we just consider
untargeted attack and define an adversarial example x̃ as a point within a ℓp ball with radius ϵ around
x that causes the learned function to produce an output with the largest deviation:

x̃ = argmax
∥x−x′∥p<ϵ

L(fθ(x′), y), (25)

where L is a loss function such as mean squared error.

We apply two commonly used ways to solve Eq. (25): the Fast Gradient Sign Attack (FGSM) (Good-
fellow et al., 2014) and the Projected Gradient Descent (PGD) (Madry et al., 2018). In our experiments,
we evaluate performance against both white-box FGSM attack with perturbation ϵ = 1/255 for two
image datasets (i.e, Rotation MNIST and UTKFace), and ϵ = 0.1 for the remaining four benchmark
regression datasets and a white-box 5-step PGD (ℓ∞) attack with perturbation ρ = 0.3 and step size
α = 0.1. The RMSE in the test set is shown in Table 3. As can be seen, our CS-IB outperforms other
IB approaches for both types of attacks. This result corroborates our analysis in Section 3.2.2.

Table 3: White-box robustness (in terms of RMSE) with FGSM and PGD attacks. The best perfor-
mance is highlighted.

Method Housing Energy PM2.5 Bike Rotation MNIST UTKFace

FGSM PGD5 FGSM PGD5 FGSM PGD5 FGSM PGD5 FGSM PGD5 FGSM PGD5

VIB 0.706 0.917 0.502 0.543 0.432 0.464 1.633 2.072 6.754 7.109 12.151 13.172
NIB 0.641 0.732 0.394 0.471 0.381 0.415 1.487 1.840 5.577 6.898 11.375 12.654

Square-NIB 0.649 0.789 0.441 0.463 0.383 0.423 1.592 1.937 5.413 6.813 11.056 12.785
Exp-NIB 0.661 0.784 0.434 0.491 0.367 0.435 1.532 1.952 5.850 6.845 11.687 12.895

HSIC-bottleneck 0.651 0.765 0.385 0.485 0.311 0.349 1.519 2.011 5.785 6.923 11.457 12.776

Ours 0.635 0.755 0.290 0.402 0.278 0.324 1.478 1.786 5.023 6.543 10.824 12.058

5 CONCLUSION

We discuss the implementation of deep information bottleneck (IB) for the regression setup on
arbitrarily distributed p(x, y). By making use of the Cauchy-Schwarz (CS) divergence, we obtain a
new prediction term that enhances numerical stability of the trained model and also avoids Gaussian
assumption on the decoder. We also obtain a new compression term that estimates the true mutual
information values (rather than an upper bound) and has theoretical guarantee on adversarial robust-
ness. Besides, we show that CS divergence is always smaller than the popular Kullback-Leibler
(KL) divergence, thus enabling tighter generalization error bound. Experiments on four benchmark
datasets and two high-dimensional image datasets against other five deep IB approaches over a variety
of deep architectures (e.g., LSTM and VGG-16) suggest that our prediction term is scalable and
helpful for extracting more usable information from input x to predict y; the compression term
also improves generalization. Moreover, our model always achieves the best trade-off in terms of
prediction accuracy and compression ratio. Limitations and future work are discussed in Appendix D.
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A Proofs
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D Limitations and Future Work

A PROOFS

A.1 PROOF TO PROPOSITION 1

Proposition 1. (Rodriguez Galvez, 2019) With a Gaussian assumption on qθ(ŷ|t), maximizing
Iθ(y; t) essentially minimizes DKL(p(y|x); qθ(ŷ|x)), both of which could be approximated by mini-
mizing a MSE loss.

Proof. A complete proof is in (Rodriguez Galvez, 2019). Intuitively, given a feed-forward neural
network hθ = f ◦ g, where f is the encoder and g is the decoder, minimizing DKL(p(y|x); qθ(ŷ|x))
can be approximated by minimizing a MSE loss LMSE(θ) = E[(y − hθ(x))

2] = E[(y − gθ(t))
2]

(under Gaussian assumption) (Vera et al., 2023), whereas minimizing LCE(θ) or LMSE(θ) maximizes
I(y; t) (Proposition 3.2 in (Rodriguez Galvez, 2019)).

A.2 PROOF TO PROPOSITION 2

Proposition 2 (Empirical Estimator of DCS(p(y|x); qθ(ŷ|x))). Given observations {(xi, yi, ŷi)}Ni=1,
where x ∈ Rp denotes a p-dimensional input variable, y is the desired response, and ŷ is the predicted
output generated by a model fθ. Let K, L1 and L2 denote, respectively, the Gram matrices3 for the
variable x, y, and ŷ (i.e., Kij = κ(xi,xj), L1

ij = κ(yi, yj) and L2
ij = κ(ŷi, ŷj), in which κ is a

Gaussian kernel and takes the form of κ = exp
(
−∥·∥2

2σ2

)
). Further, let L21 denote the Gram matrix

3In kernel learning, the Gram or kernel matrix is a symmetric matrix where each entry is the inner product of
the corresponding data points in a reproducing kernel Hilbert space (RKHS), defined by kernel function κ.
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between ŷ and y (i.e., L21
ij = κ(ŷi, yj)). The empirical estimation of DCS(p(y|x); qθ(ŷ|x)) is given

by:

D̂CS(p(y|x); qθ(ŷ|x)) = log

 N∑
j=1

(∑N
i=1 KjiL

1
ji

(
∑N

i=1 Kji)2

)
+ log

 N∑
j=1

(∑N
i=1 KjiL

2
ji

(
∑N

i=1 Kji)2

)− 2 log

 N∑
j=1

(∑N
i=1 KjiL

21
ji

(
∑N

i=1 Kji)2

) .

(26)

Proof. The derivation is largely inspired by (Yu et al., 2023). By definition, we have4:

DCS(p(y|x); qθ(ŷ|x)) = log

(∫
p2(y|x)dxdy

)
+ log

(∫
q2θ(ŷ|x)dxdy

)
− 2 log

(∫
p(y|x)qθ(ŷ|x)dxdy

)
= log

(∫
p2(x, y)

p2(x)
dxdy

)
+ log

(∫
q2θ(x, ŷ)

p2(x)
dxdy

)
− 2 log

(∫
p(x, y)qθ(x, ŷ)

p2(x)
dxdy

)
.

(27)

[Estimation of the conditional quadratic terms
∫ p2(x,y)

p2(x) dxdy and
∫ q2θ(x,ŷ)

p2(x) dxdy]

The empirical estimation of
∫ p2(x,y)

p2(x) dxdy can be expressed as:∫
p2(x, y)

p2(x)
dxdy = Ep(x,y)

[
p(x, y)

p2(x)

]
≈ 1

N

N∑
j=1

p(xj , yj)

p2(xj)
. (28)

By kernel density estimator (KDE), we have:

p(xj , yj)

p2(xj)
≈ N

∑N
i=1 κσ(xj − xi)κσ(yj − yi)(∑N

i=1 κσ(xj − xi)
)2 . (29)

Therefore,∫
p2(x, y)

p2(x)
dxdy ≈

N∑
j=1

∑N
i=1 κσ(xj − xi)κσ(yj − yi)(∑N

i=1 κσ(xj − xi)
)2

 =

N∑
j=1

(∑N
i=1 KjiL

1
ji

(
∑N

i=1 Kji)2

)
. (30)

Similarly, the empirical estimation of
∫ q2θ(x,ŷ)

p2(x) dxdy is given by:

∫
q2θ(x, ŷ)

p2(x)
dxdy ≈

N∑
j=1

∑N
i=1 κσ(xj − xi)κσ(ŷj − ŷi)(∑N

i=1 κσ(xj − xi)
)2

 =

N∑
j=1

(∑N
i=1 KjiL

2
ji

(
∑N

i=1 Kji)2

)
. (31)

[Estimation of the cross term
∫ p(x,y)qθ(x,ŷ)

p2(x) dxdy]

The empirical estimation of
∫ p(x,y)qθ(x,ŷ)

p2(x) dxdy can be expressed as:∫
p(x, y)qθ(x, ŷ)

p2(x)
dxdy = Ep(x,y)

[
qθ(x, ŷ)

p2(x)

]
≈ 1

N

N∑
j=1

qθ(xj , ŷj)

p2(xj)
. (32)

4p(x, y) = p(y|x)p(x) and qθ(x, ŷ) = qθ(ŷ|x)p(x).
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By KDE, we further have:

qθ(xj , ŷj)

p2(xj)
≈ N

∑N
i=1 κσ(xj − xi)κσ(ŷj − yi)(∑N

i=1 κσ(xj − xi)
)2 . (33)

Therefore,

∫
X

∫
Y

ps(x,y)pt(x,y)

ps(x)pt(x)
dxdy ≈

N∑
j=1

∑N
i=1 κσ(xj − xi)κσ(ŷj − yi)(∑N

i=1 κσ(xj − xi)
)2

 =

N∑
j=1

(∑N
i=1 KjiL

21
ji

(
∑N

i=1 Kji)2

)
.

(34)

Combine Eqs. (30), (31) and (34) with Eq. (27), an empirical estimation to DCS(p(y|x); qθ(ŷ|x)) is
given by:

D̂CS(p(y|x); qθ(ŷ|x)) = log

 N∑
j=1

(∑N
i=1 KjiL

1
ji

(
∑N

i=1 Kji)2

)
+ log

 N∑
j=1

(∑N
i=1 KjiL

2
ji

(
∑N

i=1 Kji)2

)− 2 log

 N∑
j=1

(∑N
i=1 KjiL

21
ji

(
∑N

i=1 Kji)2

) .

(35)

A.3 PROOF TO PROPOSITION 3

Proposition 3 (Empirical Estimator of CS-QMI). Given N pairs of observations {(xi, ti)}Ni=1, each
sample contains two different types of measurements x ∈ X and t ∈ T obtained from the same
realization. Let K and Q denote, respectively, the Gram matrices for variable x and variable t. The
empirical estimator of CS-QMI is given by:

ÎCS(x; t) = log

 1

N2

N∑
i,j

KijQij

+ log

 1

N4

N∑
i,j,q,r

KijQqr

− 2 log

 1

N3

N∑
i,j,q

KijQiq


= log

(
1

N2
tr(KQ)

)
+ log

(
1

N4
1TK11TQ1

)
− 2 log

(
1

N3
1TKQ1

)
.

(36)

Proof. By definition, we have:

ICS(x, t) = DCS(p(x, t); p(x)p(t)) = − log


∣∣∣ ∫ p(x, t)p(x)p(t)dxdt

∣∣∣2∫
p2(x, t)dxdt

∫
p2(x)p2(t)dxdt


= log

(∫
p2(x, t)dxdt

)
+ log

(∫
p2(x)p2(t)dxdt

)
− 2 log

(∫
p(x, t)p(x)p(t)dxdt

) (37)

Again, all three terms inside the “log" can be estimated by KDE as follows,

∫
p2(x, t)dxdt =

1

N2

N∑
i=1

N∑
j=1

κ(xi − xj)κ(ti − tj) =
1

N2

N∑
i,j

KijQij , (38)
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∫
p(x, t)p(x)p(t)dxdt = Ep(x,t) [p(x)p(t)]

=
1

N

N∑
i=1

 1

N

N∑
j=1

κ(xi − xj)

( 1

N

N∑
q=1

κ(ti − tq)

)
=

1

N3

N∑
i=1

N∑
j=1

N∑
q=1

κ(xi − xq)κ(ti − tq)

=
1

N3

N∑
i,j,q

KijQiq,

(39)

∫
p2(x)p2(t)dxdt =

 1

N2

N∑
i=1

N∑
j=1

κ(xi − xj)

[ 1

N2

N∑
q=1

N∑
r=1

κ(tq − tr)

]

=
1

N4

N∑
i=1

N∑
j=1

N∑
q=1

N∑
r=1

κ(xi − xj)κ(tq − tr) =
1

N4

N∑
i,j,q,r

KijQqr.

(40)

By plugging Eqs. (38)-(40) into Eq. (37), we obtain:

ÎCS(x; t) = log

 1

N2

N∑
i,j

KijQij

+ log

 1

N4

N∑
i,j,q,r

KijQqr

− 2 log

 1

N3

N∑
i,j,q

KijQiq

 .

(41)

An exact and naïve computation of Eq. (41) would require O(N4) operations. However, an equivalent
form which needs O(n2) operations can be formulated as (both K and Q are symmetric):

ÎCS(x; t) = log

(
1

N2
tr(KQ)

)
+ log

(
1

N4
1TK11TQ1

)
− 2 log

(
1

N3
1TKQ1

)
. (42)

where 1 is a vector of 1s of relevant dimension.

A.4 PROOF TO PROPOSITION 4

Given a network hθ = g(f(x)), where f : RdX 7→ RdT maps the input to an intermediate layer
representation t, and g : RdT 7→ R maps this intermediate representation t to the final layer, we
assume all functions hθ and g we consider are uniformly bounded by MX and MZ , respectively. Let
us denote F and G the induced RKHSs for kernels κX and κZ , and assume all functions in F and G
are uniformly bounded by MF and MG . Based on Remark 2 and the result by (Wang et al., 2021), let
µ(PXT ) and µ(PX ⊗ PT ) denote, respectively, the (empirical) kernel mean embedding of PXT and
PX ⊗ PT in the RHKS F ⊗ G, CS-QMI bounds the power of an arbitrary adversary in Sr when

√
N

is sufficiently large, in which Sr is a ℓ∞-ball of radius r, i.e., Sr = {δ ∈ RdX , δ∞ ≤ r}.

Proposition 4. Denote γ = σMFMG

r
√

−2 log o(1)dXMZ
(E[|hθ(x+ δ)− hθ(x)|]− o(r)), if x ∼ N (0, σ2I)

and ∥µ̂(PXT )∥F⊗G = ∥µ̂(PX ⊗ PT )∥F⊗G = ∥µ̂∥, then:

P
(
ÎCS(x; t) ≥ g(γ)

)
= 1− Φ

(√
N(g(γ)− g(HSIC(x; t)))
|g′(HSIC(x; t))|σH

)
, (43)

in which g(x) = −2 log(1− x/(2∥µ̂∥2)) is a monotonically increasing function, Φ is the cumulative

distribution function of a standard Gaussian, and
√
N(ĤSICb(x; t)− HSIC(x; t)) D−→ N (0, σ2

H).
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Proof. We first provide the following two Lemmas.

Lemma 1 (asymptotic distribution of HSICb(x; t) when PXT ̸= PX ⊗ PT (Gretton et al., 2007)).
Let

hijqr =
1

4!

i,j,q,r∑
t,u,v,w

KtuQtu +KtuQvw − 2KtuQtv, (44)

where the sum represents all ordered quadruples (t, u, v, w) drawn without replacement from
(i, j, q, r), and assume E(h2) ≤ ∞. Under H1 that is PXT ̸= PX ⊗ PT

5, HSICb(x; t) converges in
distribution as N → ∞ to a Gaussian according to:

√
N(ĤSICb(x; t)− HSIC(x; t)) D−→ N (0, σ2

H), (45)

where σ2
H = 16

(
Ei(Ej,q,rHijqr)

2 − HSIC(x; t)
)
.

Lemma 2 (adversarial robustness guarantee of HSIC(x; t) (Wang et al., 2021)). Assume x ∼
N (0, σ2I). Also assume all functions hθ and g we consider are uniformly bounded respectively by
MX and MZ , and all functions in F and G are uniformly bounded respectively by MF and MG

6,
then:

r
√
−2 log o(1)dXMZ

σMFMG
HSIC(x; t) + o(r) ≥ E[|hθ(x+ δ)− hθ(x)|], (46)

for all δ ∈ Sr.

By Remark 2, for samples {xp
i }mi=1 and {xq

i }ni=1, drawn i.i.d. from respectively any two square-
integral distributions p and q,

D̂CS(p; q) = −2 log

( ⟨µp,µq⟩H
∥µp∥H∥µq∥H

)
= −2 log cos(µp,µq), (47)

and
M̂MD

2
(p; q) = ⟨µp,µq⟩2H = ∥µp∥2H + ∥µq∥2H − 2⟨µp,µq⟩H, (48)

in which µp and µq refer to, respectively, the (empirical) kernel mean embeddings of {xp
i }mi=1 and

{xq
i }ni=1 in the Reproducing kernel Hilbert space (RKHS) H.

Let p = PXT (the joint distribution) and q = PX ⊗ PT (the product of marginal distributions).
Further, let µ(PXT ) and µ(PX ⊗ PT ) denote, respectively, the (empirical) kernel mean embedding
of PXT and PX ⊗ PT in RKHS F ⊗ G, we have:

ÎCS(x; t) = D̂CS(PXT ;PX ⊗ PT ) = −2 log

( ⟨µ(PXT ), µ(PX ⊗ PT )⟩F⊗G

∥µ(PXT )∥F⊗G∥µ(PX ⊗ PT )∥F⊗G

)
, (49)

and

ĤSIC(x; t) = M̂MD
2
(PXT ;PX ⊗ PT )

= ∥µ(PXT )∥2F⊗G + ∥µ(PX ⊗ PT )∥2F⊗G − 2⟨µ(PXT ), µ(PX ⊗ PT )⟩F⊗G .
(50)

If ∥µ(PXT )∥F⊗G = ∥µ(PX ⊗ PT )∥F⊗G = ∥µ∥ (i.e., the norm of the (empirical) kernel mean
embeddings for PXT and PX ⊗ PT is the same, please also refer to Fig. 2 for an geometrical
interpretation), then:

ÎCS(x; t) = g(ĤSIC(x; t)) = −2 log(1− ĤSIC(x; t)
2∥µ̂∥2 ). (51)

Here, g(x) is a monotonically increasing function.

5In our application, x and t will never be completely independent. Otherwise, the latent representation t
learns no meaningful information from x and the training fails.

6We refer interested readers to Assumptions 1 and 2 in (Wang et al., 2021) for the mathematical formulations
regarding these two assumptions.
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Figure 2: Geometrical interpretation of CS-QMI and HSIC, in which H = F ⊗ G. When
∥µ(PXT )∥H = ∥µ(PX ⊗ PT )∥H = ∥µ∥, CS-QMI and HSIC has a monotonic relationship.

By applying the delta method to Lemma 1, we obtain:
√
N(ÎCS(x; t)− g(HSIC(x; t)) D−→ N (0, [g′(HSIC(x; t))]2σ2

H). (52)

Here, g′(x) = 1
∥µ∥2−x/2 exists and is always non-zero if ∥µ̂(PXT )∥F⊗G and ∥µ̂(PX ⊗ PT )∥F⊗G

are not orthogonal.

Then, by applying Lemma 2,

HSIC(x; t) ≥ σMFMG

r
√
−2 log o(1)dXMZ

(E[|hθ(x+ δ)− hθ(x)|]− o(r)) = γ. (53)

Hence,
g(HSIC(x; t)) ≥ g(γ). (54)

Then,

P
(
ÎCS(x; t) ≥ g(γ)

)
= P(

√
N(ÎCS(x; t)− g(HSIC(x; t)) ≥

√
N(g(γ)− g(HSIC(x; t)))

≈ 1− Φ

(√
N(g(γ)− g(HSIC(x; t)))
|g′(HSIC(x; t))|σH

)
. By applying Eq. (52).

(55)

By Lemma 2,
g(γ)− g(HSIC(x; t)) ≤ 0. (56)

Hence, P
(
ÎCS(x; t) ≥ g(γ)

)
is at least 0.5.

On the other hand, when
√
N ≫ |g′(HSIC(x; t))|σH , we have:

P
(
ÎCS(x; t) ≥ g(γ)

)
→ 1. (57)

In fact, even when the condition ∥µ(PXT )∥H = ∥µ(PX⊗PT )∥H = ∥µ∥ does not hold, the following
Lemma provides a supplement.
Lemma 3. Minimizing the empirical estimator of CS-QMI (i.e., Eq. (19)) implies the minimization of
that of HSIC.
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Proof. First observe that the functional relationship between the estimator of CS-QMI and HSIC is
equivalent to the functional relationship between the estimator of the Cauchy–Schwarz divergence
and squared MMD. This is due to HSIC being defined as MMD between two specific distributions,
and CS-QMI being defined as the CS-Divergence between the same two distributions. Without loss
of generality, we base this analysis on the Cauchy-Schwarz divergence and squared MMD.

Given samples X (p) = {xp
i }mi=1, X (q) = {xq

i }ni=1 and X = X (p) ∪ X (q) = {xj}m+n
j=1 , we have:

D̂CS(p; q) = log
(
∥µp∥2H

)
+ log

(
∥µq∥2H

)
− 2 log

(
⟨µp,µq⟩H

)
= −2 log

( ⟨µp,µq⟩H
∥µp∥H∥µq∥H

)
= −2 log cos(µp,µq),

(58)

and
M̂MD

2
(p; q) = ∥µp − µq∥2H = ∥µp∥2H + ∥µq∥2H − 2⟨µp,µq⟩H, (59)

in which µp = 1
m

∑m
i=1 ϕ(x

p
i ) and µq = 1

n

∑n
i=1 ϕ(x

q
i ) refer to, respectively, the (empirical) mean

embeddings of X (p) and X (q) in H.

Therefore, we have:

∂D̂CS

∂xj
=

1

∥µp∥2H
∂∥µp∥2H
∂xj

+
1

∥µq∥2H
∂∥µq∥2H
∂xj

− 2

⟨µp,µq⟩H
∂⟨µp,µq⟩H

∂xj
, (60)

and
∂M̂MD

2

∂xj
=

∂∥µp∥2H
∂xj

+
∂∥µq∥2H
∂xj

− 2∂⟨µp,µq⟩H
∂xj

. (61)

Thus, for each term in ∂M̂MD
2

∂xj
, the “log" on CS just scales the gradient contribution, but does not

change the direction. That is, taking one step with gradient descent of D̂CS will decrease M̂MD
2
.

To corroborate our analysis, we implement a CS Divergence optimization simulation. The setup is as
follows: initializing two datasets, one fixed (denote by X1), and one for optimization (denoted by
X2). The goal is to minimize the CS divergence between the probability density function (PDF) of
X2 and the PDF of X1 by performing updates on X2 using gradient descent.

X1 was initialized as a 2d, from a mixture of two Gaussian distributions, i.e., N1(µ1,Σ1) and
N2(µ2,Σ2), where µ1 = [−4,−4]⊤, µ2 = [4, 4]⊤, and Σ1 = Σ2 = diag(σ2), where σ = 1. The
number of samples N1 = 400.

X2 was initialized as a 2d, from a single Gaussian distribution, i.e., N (µ,Σ), where µ = [0, 0]⊤, and
Σ = diag(σ2), where σ = 1. The number of samples N2 = 200. The kernel width was set to 1, and
the learning rate was set to 10.

We compute MMD for each step in the optimization. The results as shown in Fig. 3 are in line with
our Lemma, as MMD is decreasing while performing gradient descent on DCS.

A.5 PROOF TO THEOREM 1

Theorem 1. For two arbitrary d-variate Gaussian distributions p ∼ N (µ1,Σ1) and q ∼ N (µ2,Σ2),

DCS(p; q) ≤ min{DKL(p; q), DKL(q; p)}. (62)

Proof. Given two d-dimensional Gaussian distributions p ∼ N (µ1,Σ1) and q ∼ N (µ2,Σ2), the KL
divergence for p and q is given by:

DKL(p; q) =
1

2

(
tr(Σ−1

2 Σ1)− d+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1) + ln

( |Σ2|
|Σ1|

))
, (63)

in which | · | is the determinant of matrix.
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Figure 3: Lemma 3 supporting simulation.

The CS divergence for p and q is given by (Kampa et al., 2011)7:

DCS(p; q) = − log(z12) +
1

2
log(z11) +

1

2
log(z22), (64)

where

z12 = N (µ1|µ2, (Σ1 +Σ2)) =
exp(− 1

2 (µ1 − µ2)
T )(Σ1 +Σ2)

−1(µ1 − µ2)√
(2π)d|Σ1 +Σ2|

z11 =
1√

(2π)d|2Σ1|

z22 =
1√

(2π)d|2Σ2|
.

(65)

Therefore,

DCS(p; q) =
1

2
(µ2 − µ1)

T (Σ1 +Σ2)
−1(µ2 − µ1) + log(

√
(2π)d|Σ1 +Σ2|)−

1

2
log(

√
(2π)d|2Σ1|)−

1

2
log(

√
(2π)d|2Σ2|)

=
1

2
(µ2 − µ1)

T (Σ1 +Σ2)
−1(µ2 − µ1) +

1

2
ln

(
|Σ1 +Σ2|

2d
√

|Σ1||Σ2|

)
.

(66)

We first consider the difference between DCS(p; q) and DKL(p; q) results from mean vector discrep-
ancy, i.e., µ1 − µ2.

Lemma 4. (Horn & Johnson, 2012) For any two positive semi-definite Hermitian matrices A and
B of size n × n, then A − B is positive semi-definite if and only if B−1 − A−1 is also positive
semi-definite.

7Note that, we apply a constant 1/2 on the definition in the main manuscript.
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Applying Lemma 4 to (Σ1 +Σ2)−Σ2 (which is positive semi-definite), we obtain that Σ−1
2 − (Σ1 +

Σ2)
−1 is also positive semi-definite, from which we obtain:

(µ2 − µ1)
TΣ−1

2 (µ2 − µ1)− (µ2 − µ1)
T (Σ1 +Σ2)

−1(µ2 − µ1)

= (µ2 − µ1)
T
[
Σ−1

2 − (Σ1 +Σ2)
−1
]
(µ2 − µ1) ≥ 0.

(67)

We then consider the difference between DCS(p; q) and DKL(p; q) results from covariance matrix
discrepancy, i.e., Σ1 − Σ2.

We have,

2(DCS(p; q)−DKL(p; q))µ1=µ2
= log

(
|Σ1 +Σ2|

2d
√
|Σ1||Σ2|

)
− log

( |Σ2|
|Σ1|

)
− tr(Σ−1

2 Σ1) + d.

= −d log 2 + log (|Σ1 +Σ2|)−
1

2
(log |Σ1|+ log |Σ2|)

− log |Σ2|+ log |Σ1| − tr(Σ−1
2 Σ1) + d

= −d log 2 + log

( |Σ1 +Σ2|
|Σ2|

)
+

1

2
log

( |Σ1|
|Σ2|

)
− tr(Σ−1

2 Σ1) + d

= −d log 2 + log
(
|Σ−1

2 Σ1 + I|
)
+

1

2
log
(
|Σ−1

2 Σ1|
)
− tr(Σ−1

2 Σ1) + d

(68)

Let {λi}di=1 denote the eigenvalues of Σ−1
2 Σ1, which are non-negative, since Σ−1

2 Σ1 is also positive
semi-definite.

We have:

|Σ−1
2 Σ1| =

( d∏
i=1

λi

)1/d
d

≤
[
1

d

d∑
i=1

λi

]d
=

(
1

d
tr(Σ−1

2 Σ1)

)d

, (69)

in which we use the property that geometric mean is no greater than the arithmetic mean.

Similarly, we have:

|Σ−1
2 Σ1 + I| =

d∏
i=1

(1 + λi) ≤
[
1

d

d∑
i=1

(1 + λi)

]d
=

(
1 +

1

d
tr(Σ−1

2 Σ1)

)d

. (70)

By plugging Eqs. (69) and (70) into Eq. (68), we obtain:

2(DCS(p; q)−DKL(p; q))µ1=µ2 = −d log 2 + log
(
|Σ−1

2 Σ1 + I|
)
+

1

2
log
(
|Σ−1

2 Σ1|
)
− tr(Σ−1

2 Σ1) + d

≤ −d log 2 + d log(1 +
1

d
tr(Σ−1

2 Σ1)) +
d

2
log(

1

d
tr(Σ−1

2 Σ1))− tr(Σ−1
2 Σ1) + d.

(71)

Let us denote x = tr(Σ−1
2 Σ1) =

∑d
i=1 λi ≥ 0, then

2(DCS(p; q)−DKL(p; q))µ1=µ2
= f(x) = −d log 2 + d log(1 +

x

d
) +

d

2
log(

x

d
)− x+ d. (72)

Let f ′(x) = 0, we have x = d. Since f ′′(x = d) < 0, we have,

2(DCS(p; q)−DKL(p; q))µ1=µ2
= f(x) ≤ f(x = d) = 0. (73)

Combining Eq. (67) with Eq. (73), we obtain:

DCS(p; q)−DKL(p; q) ≤ 0. (74)

The above analysis also applies to DKL(q; p).
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Specifically, we have:

2(DKL(q; p)−DCS(p; q))Σ1=Σ2
= (µ2 − µ1)

T
[
Σ−1

1 − (Σ1 +Σ2)
−1
]
(µ2 − µ1) ≥ 0, (75)

2(DCS(p; q)−DKL(q; p))µ1=µ2
= log

(
|Σ1 +Σ2|

2d
√
|Σ1||Σ2|

)
− log

( |Σ1|
|Σ2|

)
− tr(Σ−1

1 Σ2) + d.

= −d log 2 + log (|Σ1 +Σ2|)−
1

2
(log |Σ1|+ log |Σ2|)

− log |Σ1|+ log |Σ2| − tr(Σ−1
1 Σ2) + d

= −d log 2 + log

( |Σ1 +Σ2|
|Σ1|

)
+

1

2
log

( |Σ2|
|Σ1|

)
− tr(Σ−1

1 Σ2) + d

= −d log 2 + log
(
|Σ−1

1 Σ2 + I|
)
+

1

2
log
(
|Σ−1

1 Σ2|
)
− tr(Σ−1

1 Σ2) + d

≤ −d log 2 + d log(1 +
1

d
tr(Σ−1

1 Σ2)) +
d

2
log(

1

d
tr(Σ−1

1 Σ2))− tr(Σ−1
1 Σ2) + d

≤ 0.
(76)

Hence,
DCS(p; q)−DKL(q; p) ≤ 0. (77)

Combining Eq. (74) and Eq. (77), we obtain:

DCS(p; q) ≤ min{DKL(p; q), DKL(q; p)}. (78)

A.6 PROOF TO COROLLARY 1

Corollary 1. For two random vectors x and t which follow a joint Gaussian distribution

N
((

µx

µt

)
,

(
Σx Σxt

Σtx Σt

))
, the CS-QMI is no greater than the Shannon’s mutual information:

ICS(x; t) ≤ I(x; t). (79)

Proof.
ICS(x; t) = DCS(p(x, t); p(x)p(t)), (80)

IKL(x; t) = DKL(p(x, t); p(x)p(t)), (81)

When x and t are jointly Gaussian,

p(x, t) ∼ N
((

µx

µt

)
,

(
Σx Σxt

Σtx Σt

))
, (82)

p(x)p(t) ∼ N
((

µx

µt

)
,

(
Σx 0
0 Σt

))
, (83)

Applying Theorem 1 to N
((

µx

µt

)
,

(
Σx Σxt

Σtx Σt

))
and N

((
µx

µt

)
,

(
Σx 0
0 Σt

))
, we obtain:

ICS(x; t) ≤ I(x; t). (84)
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B PROPERTIES AND ANALYSIS

B.1 THE RELATIONSHIP BETWEEN CS DIVERGENCE, KL DIVERGENCE AND MMD

𝐷ℋ 𝑃;𝑄

= sup
𝜑∈ℋ

𝔼𝑋~𝑃𝜑 𝑋 − 𝔼𝑌~𝑄𝜑(𝑌)

𝐷𝐾𝐿 𝑃; 𝑄

= න
−∞

∞

𝑝 𝑥 log
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

(MMD) KL divergence
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𝐷𝐶𝑆 𝑃;𝑄 = −2 log cos(𝜇𝑃, 𝜇𝑄)
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𝑄
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Figure 4: Connection between CS divergence with respect to MMD and KL divergence

There are two popular ways to define a valid divergence measure for two densities p and q: the
integral probability metrics (IPMs) aim to measure “p− q"; whereas the Rényi’s divergences with
order α aim to model the ratio of p

q (see Fig. 4). The general idea of CS divergence is totally different:
it neither horizontally computes p− q nor vertically evaluates p

q . Rather, it quantifies the “distance"
of two distributions by quantify the tightness (or gap) of an inequality associated with the integral of
densities. That is, it is hard to say the CS divergence belongs to either IRM or the traditional Rényi’s
divergence family.

One of the inequalities one can consider here is the CS inequality:

|
∫

p(x)q(x)dx| ≤
(∫

p2(x)dx

)1/2(∫
q2(x)dx

)1/2

, (85)

which directly motivates our CS divergence.

In fact, the CS inequality can be generalized to Lp space by making use of the Hölder inequality:

|
∫

p(x)q(x)dx| ≤
(∫

pa(x)dx

)1/a(∫
qb(x)dx

)1/b

∀a, b > 1 and
1

a
+

1

b
= 1, (86)

from which we can obtain a so-called Hölder divergence:

DH = − log

(
|
∫
p(x)q(x)dx|(∫

pa(x)dx
)1/a (∫

qb(x)dx
)1/b

)
, (87)

although DH introduces one more hyperparameter.

One immediate advantage to define divergence in such a way (i.e., Eq. (10) and Eq. (87)) is that,
compared to the basic KL divergence (or majority of divergences by measuring the ratio of p

q ), the CS
divergence is much more stable in the sense that it relaxes the constraint on the distribution supports,
which makes it hard to reach a value of infinity.

In fact, for any two square-integral densities p and q, the CS divergence goes to infinity if and only if
there is no overlap on the supports of p and q, i.e., supp(p)∩supp(q) = ∅, since log 0 is undefined. For
DKL(p; q), it has finite values only if supp(p) ⊆ supp(q) (note that, p(x) log

(
p(x)
0

)
→ ∞ (Cover,
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𝑝 𝑞 𝑝 𝑞 𝑝 𝑞

𝐷𝐾𝐿 𝑝; 𝑞 → ∞
𝐷𝐾𝐿 𝑞; 𝑝 → ∞
𝐷𝐶𝑆 𝑝; 𝑞 → ∞
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𝐷𝐶𝑆 𝑝; 𝑞 finite

Figure 5: KL divergence is infinite even though there is an overlap between supp(p) and supp(q), but
neither is a subset of the other. CS divergence does not has such support constraint.

1999)); whereas for DKL(q; p), it has finite values only if supp(q) ⊆ supp(p). Please see Fig. 5 for
an illustration.

Finally, we would like to emphasize here that, although CS divergence does not belong to either
IRMs and f -divergence family. It has close connections to both of these two. On the one hand, if we
rely on another inequality associated with two densities:(∫

qλ−1p

) 1
1−λ

(∫
qλ
) 1

λ

≥
(∫

pλ
) 1

λ(1−λ)

. (88)

It can be shown that when λ = 2, we obtain CS divergence; whereas when λ = 1, we obtain KL
divergence.

On the other hand, from Remark 2, the empirical estimator of CS divergence measures the cosine
similarity between (empirical) kernel mean embeddings of two densities; whereas MMD uses
Euclidean distance.

B.2 THE BIAS ANALYSIS

We discuss in this section the bias induced by variational approximations in previous literature. Let
the conditional probability pθ(t|x) denote a parameterized encoding map with parameter θ. Also let
the conditional probability pϕ(y|t) denote a parameterized decoding map with parameter ϕ.

B.2.1 THE UPPER BOUND OF I(x; t)

Iθ(x; t) can be expressed as:

Iθ(x; t) =

∫
pθ(x, t) log

(
pθ(t|x)
pθ(t)

)
dxdt

≤
∫

pθ(x, t) log

(
pθ(t|x)
pθ(t)

)
dxdt+

∫
pθ(t) log

(
pθ(t)

r(t)

)
dt

=

∫
pθ(x, t) log

(
pθ(t|x)
r(t)

)
dxdt,

(89)

in which r(t) is a variational approximation to the marginal distribution pθ(t) =
∫
p(x)pθ(t|x)dx.

As can be seen, the approximation error is exactly DKL(pθ(t); r(t)) =
∫
pθ(t) log

(
pθ(t)
r(t)

)
dt.

In VIB (Alemi et al., 2017) and lots of its downstream applications such as (Mahabadi et al., 2021),
r(t) is set as simple as a Gaussian. However, by our visualization in Fig. 6, pθ(t) deviates a lot from
a Gaussian.

Regarding the upper bound of I(x; t) used in other existing methods, such as NIB (Kolchinsky et al.,
2019b) and its extensions like exp-NIB (Rodríguez Gálvez et al., 2020), our argument is that these
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methods may have similar bias than our non-parametric estimator on ICS(x; t). This is because their
estimators can also be interpreted from a kernel density estimation (KDE) perspective.

In fact, in NIB and exp-IB, Iθ(x; t) is upper bounded by (Kolchinsky & Tracey, 2017):

Iθ(x; t) ≤ − 1

N

N∑
i=1

log
1

N

N∑
j=1

exp (−DKL(p(t|xi); p(t|xj))) , (90)

which, in practice, is estimated as (Saxe et al., 2018):

Iθ(x; t) ≤ − 1

N

N∑
i=1

log
1

N

N∑
j=1

exp

(
−∥hi − hj∥22

2σ2

)
, (91)

in with h is the hidden activity corresponding to each input sample or the Gaussian center, i.e.,
t = h+ ϵ, and ϵ ∼ N (0, σ2I).

We argue that Eq. (91) is closely related to the KDE on the Shannon entropy of t. Note that, the
Shannon’s differential entropy can be expressed as:

H(t) = −
∫

p(t) log p(t)dt = −Ep(log p) ≈ − 1

N

N∑
i=1

log p(ti). (92)

By KDE with a Gaussian kernel of kernel size σ, we have:

p(ti) =
1

N

N∑
i=1

1√
2πσ

exp

(
−∥ti − tj∥22

2σ2

)
. (93)

Hence,

H(t) = − 1

N

N∑
i=1

log
1

N

N∑
j=1

1√
2πσ

exp

(
−∥ti − tj∥22

2σ2

)
. (94)

Comparing Eq. (91) with Eq. (94), h is replaced with t = h + ϵ, and there is a difference on the
constant 1√

2πσ
.

From our perspective, using t rather than h seems to be a better choice. This is because,

I(x; t) = H(t)−H(t|x)

= H(t)−H(ϵ) = H(t)− d(log
√
2πσ +

1

2
).

(95)

Hence, if we keep σ unchanged (during training) or take a value of 1/(
√
2πe), minimizing H(t)

amounts to minimize I(x; t). The only bias comes from the way to estimate H(t).

To summarize, previous methods either have much more obvious bias than ours (severe mismatch
between r(t) and pθ(t)) or have similar bias (due to the same KDE in essence). But some improper
choices (e.g., using h or t, or varying noise variance) may incur other bias.

B.2.2 THE LOWER BOUND OF I(y; t)

Iθ(y; t) can be expressed as:

Iθ(y; t) = H(p(y))−H(pθ(y|t))
≥ H(p(y))−H(pθ(y|t))−DKL(pθ(y|t); pϕ(y|t))
= H(p(y)) + Epθ(y,t)(pϕ(y|t)),

(96)

where pϕ(y|t) is a variational approximation to pθ(y|t). The smaller the KL divergence
DKL(pθ(y|t); pϕ(y|t)), the smaller the approximation error.

Further, if we assume pϕ(y|t) follows a Gaussian, then we obtain MSE loss; whereas if we assume
pϕ(y|t) follows a Laplacian, we obtain MAE loss.
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Figure 6: PCA projection of bottleneck layer activations for models trained with (a) MSE loss only,
(b) VIB, and (c) NIB on California housing.

Hence, the bias on estimating I(y; t) simply by MSE comes from two sources: the closeness between
pϕ(y|t) and pθ(y|t), and the suitability of parametric Gaussian assumption.

Unfortunately, it is hard to justify or investigate if the bias from the first source is small or not. This
is because (Alemi et al., 2017):

pθ(y|t) =
∫

pθ(y|x)pθ(z|x)pθ(x)
pθ(z)

dx, (97)

which is intractable. On the other hand, although Gaussian assumption on pϕ(y|t) is the most popular
choice, it is very likely that MAE (or losses induced by other parametric assumptions) has better
performance.

To summarize, the bias term in estimating I(y; t) by variational approximation is a bit hard to control.
Moreover, there is no theoretical guarantee on properties like consistency. Fortunately, CS divergence
with KDE does not have such limitations. Interested readers can refer to Section B.4.

B.3 ADVANTAGES OF THE PREDICTION TERM D̂CS(p(y|x); qθ(ŷ|x))

Given observations {(xi, yi, ŷi)}Ni=1, where x ∈ Rp denotes a p-dimensional input variable, y is the
desired response, and ŷ is the predicted output generated by a model hθ. Let K, L1 and L2 denote,
respectively, the Gram matrices for the variable x, y, and ŷ (i.e., Kij = κ(xi,xj), L1

ij = κ(yi, yj)

and L2
ij = κ(ŷi, ŷj)). Further, let L21 denote the Gram matrix between ŷ and y (i.e., L21

ij = κ(ŷi, yj)).
The prediction term DCS(p(y|x); qθ(ŷ|x)) is given by:

D̂CS(p(y|x); qθ(ŷ|x)) = log

 N∑
j=1

(∑N
i=1 KjiL

1
ji

(
∑N

i=1 Kji)2

)
+ log

 N∑
j=1

(∑N
i=1 KjiL

2
ji

(
∑N

i=1 Kji)2

)− 2 log

 N∑
j=1

(∑N
i=1 KjiL

21
ji

(
∑N

i=1 Kji)2

) .

(98)

We focus our analysis on the last term, as it directly evaluates the difference between y and ŷ, which
should governs the quality of prediction.

By the second order Taylor expansion, we have:

L21
ij = κ(ŷi, yj) = exp

(
− (ŷi − yj)

2

2σ2

)
≈ 1− 1

2σ2
(ŷi − yj)

2, (99)
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For a fixed j, we have:∑N
i=1 KjiL

21
ji

(
∑N

i=1 Kji)2
=

Kj1

(
∑N

i=1 Kji)2
· L21

j1 +
Kj2

(
∑N

i=1 Kji)2
· L21

j2 + · · ·+ KjN

(
∑N

i=1 Kji)2
· L21

jN

≈ 1∑N
i=1 Kji

− 1

2σ2

[
Kj1

(
∑N

i=1 Kji)2
· (ŷj − y1)

2 +
Kj2

(
∑N

i=1 Kji)2
· (ŷj − y2)

2

+ · · ·+ Kjj

(
∑N

i=1 Kji)2
· (ŷj − yj)

2 + · · ·+ KjN

(
∑N

i=1 Kji)2
· (ŷj − yN )2

]
.

(100)

That is, compared with the naïve mean squared error (MSE) loss that only minimizes (ŷj − yj)
2, our

prediction term additionally considers the squared distance between ŷj and yi(i ̸= j). The weight
on (ŷj − yi)

2 is determined by Kji, i.e., the kernel distance between xj and xi: if ∥xj − xi∥22 is
small, there is a heavy weight on (ŷj − yi)

2; otherwise, the weight on (ŷj − yi)
2 is very light or

negligible. Hence, our prediction term encourages that if two points xi and xj are sufficiently close,
their predictions (ŷi and ŷj) will be close as well.

To empirically support this, we trained a neural network on the California Housing data with
respectively the MSE loss and our conditional CS divergence loss (i.e., Eq. (98)). In the test set, we
measure all the pairwise distances between the i-th sample and the j-th sample (i.e., ∥xi − xj∥2) and
their predictions (i.e., |ŷi − ŷj |). From Fig. 7, we observe that our conditional CS divergence loss
encourages much higher correlation between ∥xi −xj∥2 and |ŷi − ŷj | than MSE, which corroborates
our analysis. That is, close points have closer predictions.

Figure 7: ∥xi − xj∥2 with respect to |ŷi − ŷj |.

On the other hand, when σ → 0, we have Kjj = 1 and Kji → 0(i ̸= j). In this case, our prediction
term reduces to the MSE.

If we measure the divergence between p(y|x) and qθ(ŷ|x) with conditional MMD by (Ren et al.,
2016). The empirical estimator is given by

D̂MMD(p(y|x); qθ(ŷ|x)) = tr(KK̃−1L1K̃−1)+tr(KK̃−1L2K̃−1)−2 tr(KK̃−1L21K̃−1), (101)

in which K̃ = K + λI .

By comparing conditional MMD in Eq. (101) with our conditional CS in Eq. (98), we observe that
conditional CS avoids introducing an additional hyperparametr λ and the necessity of matrix inverses,
which is computationally efficient and more stable.
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To justify our argument, we additionally compared conditional MMD with conditional CS as a loss
function to train a neural network also on California Housing data. The result is in Fig. 8, which
clearly corroborates our analysis.

Figure 8: Comparison of learning curves of conditional MMD, MSE, and conditional CS divergences
on the California Housing test data. The learning curve of conditional CS is much smoother than that
that of conditional MMD (almost no jitter).

Finally, one can also non-parametrically measure the closeness between p(y|x) and qθ(ŷ|x) with
D̂KL(p(y|x); qθ(ŷ|x)). By the same KDE technique, we obtain:

D̂KL(p(y|x); qθ(ŷ|x)) = D̂KL(p(x, y); qθ(x, ŷ)) =
1

N

N∑
i=1

log

(
p(xi, yi)

qθ(xi, ŷi)

)

=
1

N

N∑
i=1

log


∑N

j=1 exp

(
∥
[
xi

yi

]
−
[
xj

yj

]
∥22/2σ2

)
∑N

j=1 exp

(
∥
[
xi

ŷi

]
−
[
xj

yj

]
∥22/2σ2

)
 .

(102)

Unfortunately, we found that the above formula is hard to converge or achieve a promising result.
One possible reason is perhaps the support constraint on the KL divergence to obtain a finite value:
in our case, there is no guarantee that supp(p(x, y)) ⊆ supp(qθ(x, ŷ)).

B.4 ASYMPTOTIC PROPERTY OF OUR CS DIVERGENCE ESTIMATOR

For simplicity, we analyze the asymptotic property of our KDE estimator on the basic CS divergence
between two distributions p and q, which has the following form:

DCS(p; q) = log

(∫
p2dµ

)
+ log

(∫
q2dµ

)
− 2 log

(∫
pqdµ

)
= log (Ep(p)) + log (Eq(q))− log (Ep(q))− log (Eq(p)) .

(103)

Note that, the term 2 log
(∫

pqdµ
)

can be expressed as:

w1 log (Ep(q)) + w2 log (Eq(p)) ∀w1 + w2 = 2, w1 ≥ 0, w2 ≥ 0. (104)
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In the following, we consider two distributions with equal number of samples and hence set w1 =
w2 = 1. Given observations X := {x1, x2, · · · , xN} and Y := {y1, y2, · · · , yN} drawn i.i.d. from
p and q, respectively, the empirical estimator of DCS(p; q) is given by:

D̂CS(p(x); q(y)) = log

(
1

N

N∑
i=1

p̂(xi)

)
+ log

(
1

N

N∑
i=1

q̂(yi)

)
− log

(
1

N

N∑
i=1

q̂(xi)

)
− log

(
1

N

N∑
i=1

p̂(yi)

)

= log

 1

N2

N∑
i=1

N∑
j=1

κσ(xj − xi)

+ log

 1

N2

N∑
i=1

N∑
j=1

κσ(yj − yi)


− log

 1

N2

N∑
i=1

N∑
j=1

κσ(yj − xi)

− log

 1

N2

N∑
i=1

N∑
j=1

κσ(xj − yi)

 ,

(105)

where the second equation is by KDE with a kernel function κ of width σ.

Note that, our CS divergence estimator in Eq. (105) is different to that derived in (Jenssen et al.,
2006).

In fact, quantities like
∫
p2dµ and

∫
pqdµ can be estimated in a couple of ways (Beirlant et al., 1997).

Our estimator in Eq. (105) is also called the resubstitution estimator; whereas the authors in (Jenssen
et al., 2006) use the plug-in estimator that simply inserting KDE of the density into the formula, i.e.,

∫
p2dµ ≈

∫
p̂2(x)dx =

∫ (
1

N

N∑
i=1

κσ(xi − x)

)2

dx

=
1

N2

N∑
i=1

N∑
j=1

∫
κσ(xi − x)× κσ(xj − x)dx.

(106)

Authors of (Jenssen et al., 2006) then assume a Gaussian kernel and rely on the property that the
integral of the product of two Gaussians is exactly evaluated as the value of the Gaussian computed
at the difference of the arguments and whose variance is the sum of the variances of the two original
Gaussian functions. Hence,

∫
p2dµ ≈ 1

N2

N∑
i=1

N∑
j=1

∫
κσ(xi − x)× κσ(xj − x)dx =

1

N2

N∑
i=1

N∑
j=1

κ√
2σ(xi − xj). (107)

To our knowledge, other kernel functions, however, do not result in such convenient evaluation of the
integral because the Gaussian maintains the functional form under convolution.

By contrast, we estimate
∫
p2dµ as:

∫
p2dµ = Ep(p) =

1

N

N∑
i=1

p(xi) =
1

N

N∑
i=1

 1

N

N∑
j=1

κσ(xi − xj)

 dx =
1

N2

N∑
i=1

N∑
j=1

κσ(xi−xj).

(108)

Although Eq. (108) only differs from Eq. (107) by replacing
√
2σ with σ, our estimator offers two

immediately advantages over that in (Jenssen et al., 2006): 1) our estimator is generalizable to all
valid kernel functions; 2) the asymptotic property of our estimator can be guaranteed, whereas such
analysis in (Jenssen et al., 2006) is missing.

Having explained the difference between resubstitution estimator and plug-in estimator, we analyze
the asymptotic bias and variance of our estimator. As an example, we focus our analysis on the
cross-term

∫
pqdµ = Ep(q).
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B.4.1 BIAS OF
∫
pqdµ = Ep(q)

The estimator of Ep(q) is given by:

Ep(q) ≈
1

N2

N∑
i=1

N∑
j=1

κσ(yj − xi). (109)

Let us denote S = Ep(q) and Ŝ = 1
N2

∑N
i=1

∑N
j=1 κσ(yj − xi), the bias of Ŝ can be obtained by

expectation:

E(Ŝ) = E

 1

N2

N∑
i=1

N∑
j=1

κσ(yj − xi)


=

1

N2

N∑
i=1

N∑
j=1

E [κσ(yj − xi)] = E [κσ(yj − xi)] .

(110)

Further,

E [κσ(yj − xi)] =

∫∫
κσ(yj − xi)p(xi)q(yj)dxidyj

=

∫
p(xi)

[∫
κσ(yj − xi)q(yj)dyj

]
dxi

=

∫
p(xi)

[∫
κσ(s)q(xi + σs)d(σs)

]
dxi Let us denote s =

yj − xi

σ
.

=

∫
p(xi)

[∫
κ(s)q(xi + σs)ds

]
dxi Note: κσ(s)σ =

1√
2π

exp(−s2/2) = κ(s)

=

∫
p(x)

[∫
κ(s)[q(x) + σsq′(x) +

1

2
σ2s2q′′(x) + O(σ2)]ds

]
dx Taylor expansion

=

∫
p(x)

q(x)∫ κ(s)ds︸ ︷︷ ︸
=1

+σq′(x)

∫
sκ(s)ds︸ ︷︷ ︸
=0

+
1

2
σ2q′′(x)

∫
s2κ(s)ds+ O(σ2)

 dx

=

∫
p(x)[q(x) +

1

2
σ2q′′(x)µκ]dx+ O(σ2),

(111)

where µκ =
∫
s2κ(s)ds (for Gaussian kernel, µκ = 1).

Namely, the bias of Ŝ is:

bias(Ŝ) = E(Ŝ)−
∫

pqdµ

=
1

2
σ2µκ

∫
pq′′dµ+ O(σ2)

=
1

2
σ2Ep(q

′′)µκ + O(σ2).

(112)

We see that the bias of Ŝ increases proportionally to the square of the kernel size multiplied by
the expected value of the second derivative of q (under distribution p). This result also reveals an
interesting factor: the bias is caused by the curvature (second derivative) of the density function,
which coincides with KDE.
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B.4.2 VARIANCE OF
∫
pqdµ = Ep(q)

For the analysis of variance, we can obtain an upper bound straightforwardly:

var(Ŝ) = var

 1

N2

N∑
i=1

N∑
j=1

κσ(yj − xi)


= var

 1

N2σ

N∑
i=1

N∑
j=1

κ

(
yj − xi

σ

)
=

1

N4σ2
var

 N∑
i=1

N∑
j=1

κ

(
yj − xi

σ

)
=

1

N2σ2
var

(
κ

(
yj − xi

σ

))
independence assumption

≤ 1

N2σ2
E
(
κ2

(
yj − xi

σ

))
=

1

N2σ2

∫∫
κ2

(
yj − xi

σ

)
p(xi)q(yj)dxidyj

=
1

N2σ2

∫
p(x)

[∫
κ2

(
y − x

σ

)
q(y)dy

]
dx

=
1

N2σ

∫
p(x)

[∫
κ2(s)q(x+ σs)ds

]
dx Let us denote s =

y − x

σ
.

=
1

N2σ

∫
p(x)

[∫
κ2(s)[q(x) + σsq′(x) + O(σ)]ds

]
dx

=
1

N2σ

∫
p(x)

q(x)∫ κ2(s)ds+ σq′(x)

∫
sκ2(s)ds︸ ︷︷ ︸

=0

+O(σ)

 dx We assume symmetric kernel.

=
1

N2σ

∫
p(x)q(x)σ2

κ + O(
1

N2
),

(113)

where σ2
κ =

∫
κ(s)ds (for Gaussian kernel, σ2

κ = 1
2
√
π

).

So, from the above analysis, we conclude that the variance of Ŝ will decrease inversely proportional
to N2, which is a comfortable result for estimation.

The asymptotic mean integrated square error (AMISE) of Ŝ is therefore:

AMISE(Ŝ) = E
[∫

(Ŝ − S)2
]

=
σ4

4
µ2
κE2

p(q
′′) +

1

N2σ
Ep(q)σ

2
κ,

(114)

in which µκ =
∫
s2κ(s)ds and σ2

κ =
∫
κ(s)ds.

To summarize, AMISE will tend to zero when the kernel size σ goes to zero and the number of
samples goes to infinity with N2σ → 0, that is, Ŝ is a consistent estimator of S.

Finally, one should note that, the log operator does not influence the convergence of Ŝ:

N
√
σ(Ŝ − S) = Op(1) (115)

N
√
σ(log(Ŝ)− log(S)) = N

√
σ log

(
1 +

N
√
σ(Ŝ − S)

N
√
σS

)
= Op(1) (116)
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Additionally, this result can also be obtained by the delta method (Ferguson, 2017).

The bias and variance of other terms such as logEp(p) and logEq(q) in CS divergence can be
quantified similarly.

The same result also applies for CS-QMI, i.e., ICS(x;y). This is because we can construct a new
concatenated variable z = (x,y)T in the joint space of x and y, and let p(z) = p(x,y) and
q(z) = p(x)p(y), then:

ICS(x;y) = DCS(p(z); q(z)). (117)

B.5 EXTENSION OF THEOREM 1 AND ITS IMPLICATION

Theorem 1 suggests that, under Gaussian assumptions, DCS(p; q) ≤ DKL(p; q). In this section, we
show that such conclusion can be generalized to two arbitrary square-integral density functions. We
also provide its implication.

B.5.1 CS DIVERGENCE IS USUALLY SMALLER THAN KL DIVERGENCE

Proposition 5. For any density functions p and q that are square-integral, let |K| denote the length
of the integral’s integration range K with |K| ≫ 0, we have:

C1 [DCS(p; q)− log |K|+ 2 logC2] ≤ DKL(p; q), (118)

in which C1 =
∫
K
p(x)dx ≈ 1 and C2 =

∫
K

p(x)dx

(
∫
K

p2(x)dx
∫
K

q2(x)dx)
1/4 ≈ 1

(
∫
K

p2(x)dx
∫
K

q2(x)dx)
1/4 .

Proof. The following results hold for multivariate density functions. For straightforward illustration,
we prove the results for the univariate case.

We first present Lemma 5, which is also called the Jensen weighted integral inequality.

Lemma 5. (Dragomir et al., 2003) Assume a convex function f : I 7→ R and g, h : [x1, x2] 7→ R
are measurable functions such that g(x) ∈ I and h(x) ≥ 0 ,∀x ∈ [x1, x2]. Also suppose that h,
gh, and (f ◦ g) · h are all integrable functions on [x1, x2] and

∫ x2

x1
h(x)dx > 0, then

f

(∫ x2

x1
g(x)h(x)dx∫ x2

x1
h(x)dx

)
≤
∫ x2

x1
(f ◦ g)(x)h(x)dx∫ x2

x1
h(x)dx

. (119)

Let us set h(x) = b(x) and g(x) = a(x)
b(x) and f = x log(x) which is a convex function, by applying

Lemma 5, we obtain:(∫ x2

x1

a(x)dx

)
log

(∫ x2

x1
a(x)dx∫ x2

x1
b(x)dx

)
≤
∫ x2

x1

a(x) log
a(x)

b(x)
dx. (120)

The inequality above holds for any integration range, provided the Riemann integrals exist. Moreover,
this inequality can be easily extended to general ranges, including possibly disconnected sets, using
Lebesgue integrals. In fact, Eq. (120) can be understood as a continuous extension of the well-known
log sum inequaity. For simplicity, we denote

∫ x2

x1
a(x)dx =

∫
K
a(x)dx, in which |K| = x2−x1 ≫ 0

refers to the length of the integral’s interval.

Now, suppose we are given two distributions p(x) and q(x), let us construct the following two
functions:

a(x) =
p(x)

C2
=

p(x)∫
K
p(x)dx

(∫
K

p2(x)dx

∫
K

q2(x)dx

)1/4

;

b(x) =
√
p(x)q(x).

(121)

Clearly, √
p(x)

q(x)
=

a(x)

b(x)
C2. (122)
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We have,

DKL(p; q) =

∫
K

p(x) log
p(x)

q(x)
dx

= 2

∫
K

p(x) log

√
p(x)

q(x)
dx

= 2

∫
K

a(x)C2 log

(
a(x)

b(x)
C2

)
dx

= 2C2

[∫
K

a(x) log

(
a(x)

b(x)

)
dx+ logC2

∫
K

a(x)dx

]
≥ 2C2

[(∫
K

a(x)dx

)
log

(∫
K
a(x)dx∫

K
b(x)dx

)
+ logC2

∫
K

a(x)dx

]
= 2C2

∫
K

a(x)dx

[
log

(∫
K
a(x)dx∫

K
b(x)dx

)
+ logC2

]
,

(123)

in which the fifth line is due to Eq. (120).

Note that,∫
K

a(x)dx =

∫
K

p(x)

C2
dx =

1

C2

∫
K

p(x)dx =

(∫
K

p2(x)dx

∫
K

q2(x)dx

)1/4

, (124)

and, using the Cauchy-Schwarz inequality,(∫
K

b(x)dx

)2

=

(∫
K

√
p(x)q(x) · 1dx

)2

≤
(∫

K

p(x)q(x)dx

)(∫
K

1dx

)
=

(∫
K

p(x)q(x)dx

)
|K|.

(125)

By plugging Eqs. (124) and (125) into Eq. (123), we have:

DKL(p; q) ≥ 2C2

∫
K

a(x)dx

[
log

(∫
K
a(x)dx∫

K
b(x)dx

)
+ logC2

]
=

∫
K

p(x)dx

[
log

(∫
K
a(x)dx∫

K
b(x)dx

)2

+ 2 logC2

]

=

∫
K

p(x)dx

[
log

((∫
K
p2(x)dx

∫
K
q2(x)dx

)1/2(∫
K
b(x)dx

)2
)

+ 2 logC2

]

≥
∫
K

p(x)dx

[
log

((∫
K
p2(x)dx

∫
K
q2(x)dx

)1/2(∫
K
p(x)q(x)

)
|K|

)
+ 2 logC2

]

=

∫
K

p(x)dx [DCS(p; q)− log |K|+ 2 logC2]

= C1 [DCS(p; q)− log |K|+ 2 logC2] .

(126)

in which C1 =
∫
K
p(x)dx ≈ 1.

B.5.2 EMPIRICAL JUSTIFICATION

We also provide an empirical justification, showing that in general cases, the following relationship
largely holds:

DCS ≲ DKL, (127)

in which p and q need not be Gaussian, and the symbol ≲ denotes “less than or similar to".
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We focus our justification on discrete p and q for simplicity. This is because, unlike the CS divergence,
KL divergence does not have closed-form expression for mixture-of-Gaussians (MoG) (Kampa et al.,
2011). Hence, it becomes hard to perform Monte Carlo simulation on the continuous regime.

For two discrete distributions p and q on the finite set X = {x1, x2, . . . , xK} (i.e., there are K
different discrete states), let us denote p(xi) = p(x = xi), we have:

DKL(p; q) =

K∑
i=1

p(xi) log

(
p(xi)

q(xi)

)

s.t.
K∑
i=1

p(xi) =

K∑
i=1

q(xi) = 1

(128)

DCS(p; q) = − log

( ∑
p(xi)q(xi)√∑

p(xi)2
√∑

q(xi)2

)
(129)

To empirically justify our analysis, for each value of K, we randomly generate 1, 000 pairs of
distributions p and q. Fig. 9 demonstrates the values of DKL with respect to DCS when K = 2, K = 3
and K = 10, respectively.

(a) K = 2 (b) K = 3 (c) K = 10

Figure 9: Values of DKL with respect to DCS for 1, 000 pairs of randomly generated p and q when
K = 2, K = 3 and K = 10, respectively. The diagonal indicates DKL = DCS.

B.5.3 TIGHTER GENERALIZATION ERROR BOUND IN UNSUPERVISED DOMAIN ADAPTATION

In the problem of unsupervised domain adaptation, we aim to learn a classifier from samples in a
source distribution ps that is generalizable to a related and different target distribution pt. Suppose
we learn a latent representation t such that − log p̂(y|t) is bounded by a constant M 8.

From (Nguyen et al., 2022), the loss ltest in the target domain can be upper bounded by the loss ltrain
in the source domain as:

ltest ≤ ltrain +
M√
2

√
DKL(pt(t, y); ps(t, y)). (130)

Eq. (130) implies that the generalization gap from source to target domain is upper bounded by
the mismatch on the joint distributions pt(t, y) and ps(t, y). The exact management of the KL
divergence is usually hard. This drawback motivates a possibility to replace KL divergence with
CS divergence, which, by Theorem 1, may enable tighter generalization error bound. We leave a
systematic evaluation of this proposal as future work.

8In classification, we can enforce this condition easily by augmenting the output softmax of the classifier
so that each class probability is always at least exp(−M) (Nguyen et al., 2022). For example, if we choose
M = 4, then exp(−M) ≈ 0.02.
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C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 EFFECTS OF ICS(x; t) ON GENERALIZATION

For the correlation experiment in Section 3.2.1, we generate a nonlinear regression data with
30-dimensional input, in which the input variable x is generated i.i.d. from an isotropic multi-
variate Gaussian distribution, i.e., x ∼ N (0, I30). The corresponding output y is generated as
y = sin (wTx)+log2 (w

Tx), where w ∼ N (0, I30). We generate 5, 000 samples and use 4, 000 for
training and remain the rest 1, 000 for test. We also select the real-world California housing dataset,
and randomly split into 70% training samples, 10% validation samples, and 20% testing samples.

For the first data, we use fully-connected networks and sweep over the following hyperparameters: (i)
the depth (1 hidden layer or 2 hidden layers); (ii) the width (first hidden layer with number of neurons
{256, 224, 192, 164, 128, 96, 64}; second hidden layer with number of neurons {64, 48, 32, 16}); (iii)
batch size ({128, 96, 64}); (iv) learning rate (0.1, 0.05). We train every model with SGD with a hard
stop at 200 epochs. We only retain models that have a stable convergence.

For the second data, We also use fully-connected networks and sweep over the following hyper-
parameters: (i) the depth (2, 4, 6 or 8 hidden layers); (ii) the width (16, 32, 64, or 128) and keep
the number of neurons the same for all the hidden layers; (iii) batch size (64, 128, 256, or 512); (iv)
learning rate (0.001, 0.0005, 0.0001). We train 200 epochs for each model with Adam and only
retain converged models. In total, we have nearly 100 models on two NVIDIA V100 GPUs.

For each resulting model, we compute three quantities: 1) the CS-QMI (i.e., ICS(x; t) between input
x and hidden layer representation t); the conditional mutual information between input x and hidden
layer representation t given response variable y (i.e., ICS(x; t|y)); 3) the generalization gap (i.e., the
performance difference in training and test sets in terms of rooted mean squared error).

To evaluate ICS(x; t|y), we follow the chain rule in (Federici et al., 2020): ICS(x; t) = ICS(x; t|y) +
ICS(y; t), in which ICS(x; t|y) is also called the superfluous information, and ICS(y; t) the predictive
information.

We evaluate the dependence between ICS(x; t) and the generalization gap, and the dependence
between ICS(x; t|y) and the generalization gap. Two kinds of dependence measures are used:
Kendall’s τ and maximal information coefficient (MIC) (Reshef et al., 2011). For Kendall’s τ , values
of τ close to 1 indicate strong agreement of two rankings for samples in variables x and y, that that is,
if xi > xj , then yi > yj . Kendall’s τ matches our motivation well, since we would like to evaluate if
a small value of ICS(x; t) (or ICS(x; t|y)) is likely to indicate a smaller generalization gap. Compared
to Kendall’s τ , MIC is able to capture more complex and nonlinear dependence relationships.

According to Table 1 and Fig. 10, we can conclude that both ICS(x; t) and ICS(x; t|y) have a positive
correlation with empirical generalization error gap. This result is in line with (Kawaguchi et al., 2023;
Galloway et al., 2023), although these two works focus on classification setup.

C.2 EXPERIMENTAL SETUP IN REAL-WORLD REGRESSION DATASETS

We first provide more details on the used datasets in the main paper.

California Housing9: This dataset contains 20, 640 samples of 8 real number input variables like the
longitude and latitude of the house. The output is the house price. A log-transformed house price was
used as the target variable, and those 992 samples with a house price greater than $500, 000 were
dropped. The data were normalized with zero mean and unit variance and randomly split into 70%
training samples, 10% validation samples, and 20% test samples.

Appliance Energy10: This dataset contains 12, 630 samples of appliance energy use in a low-energy
building. Energy data was logged every 10 minutes for about 4.5 months. In the dataset, each record
has 14 features, such as air pressure, outside temperature and humidity, wind speed, visibility, dew
point, energy use of light, and kitchen, laundry, and living room temperature and humidity. We select
80% for training and 20% for testing, normalize the data between 0 and 1 with MInMaxscaler.

9https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fet
ch_california_housing.html

10https://www.kaggle.com/datasets/loveall/appliances-energy-predictionl
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Figure 10: Scatter plot of ICS(x; t) (left) and ICS(x; t|y) (right) with respect to the generalization
gap in synthetic data (first row) and California housing (second row).

Beijing PM2.511: This dataset collected PM 2.5 between Jan 1st, 2010 to Dec 31st, 2014 in Beijing.
Each record in the dataset has 7 features, including dew point, temperature, pressure, combined wind
direction, wind speed, hours of snow and hours of rain. The dataset contains 41, 757 samples. We
selected 80% for training and 20% for test.

Bike Sharing12: This dataset includes the hourly and daily count of rental bikes between 2011 and
2012 in the Capital Bikeshare system, along with weather and seasonal information. In this paper, we
utilize the hourly count data and each record in the dataset includes the following features: holiday,
weekday, workingday, weathersite, temperature, feeling temperature, wind speed, humidity count
of casual users, and count of registered users. Consisting of 17, 379 samples, the data was collected
over two years, and can be partitioned by year and season. We use the first three seasons samples as
training data and the forth season samples as test data.

Rotation MNIST13: The rotation MNIST contains synthetic images of handwritten digits together
with the corresponding angles (in degrees) by which each image is rotated. The input image is of
size 28× 28, the output is in the range [−π/4, π/4]. The dataset consists of 10, 000 samples. We use
5, 000 for training and 5, 000 for test.

UTKFace14: For UTKFace, the input is grayscale face images with the size of 91 × 91, and the
output is the corresponding age of each face. The original dataset includes samples of people with an
age ranging from 0 to 116 years old. It also includes additional personal information such as gender
and ethnicity. In our study, we use 7, 715 samples for training and 1, 159 samples for test, the used
dataset includes people aged in a range of 0 to 80 with no additional information.

For a fair comparison, we consider the same architecture in (Kolchinsky et al., 2019b). Specifically,
for California Housing and Bike Sharing datasets, the encoder fenc is a 3-layer fully-connected

11https://www.kaggle.com/datasets/djhavera/beijing-pm25-data-data-set
12https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
13https://www.mathworks.com/help/deeplearning/ug/train-a-convolutional-n

eural-network-for-regression.html
14https://github.com/aicip/UTKFace
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encoder with 128 ReLU hidden units, and the decoder gdec is a fully-connected layer with 128 ReLU
units followed by an output layer with 1 linear unit. For the Appliance Energy and Beijing PM2.5
datasets, we utilize the past 4 days of data to predict the data of the next day. The decoder remains
the same, while the encoder is a 3-layer LSTM with 32 hidden units followed by a fully-connected
layer with 128 units. The IB regularization is added to the output of the encoder. The backbone
architecture for both rotation MNIST and UTKFace is VGG-16, rather than the basic fully-connected
network or LSTM with only a few layers.

All datasets are normalized between [0, 1] with MinMaxscaler, and we set the kernel width σ = 1 for
CS-IB and HSIC-bottleneck, which is actually a common choice for HSIC literature (Greenfeld &
Shalit, 2020). In all experiments, we train networks with the Adam (Kingma & Ba, 2015) optimizer
for 100 epochs and set the batch size to 128.

In our implementation, we use the normalized CS-QMI motivated by the formulation of centered
kernel alignment (CKA) (Cortes et al., 2012) to guarantee the dependence value between x and t is
bounded between [0, 1]:

ĨCS(x; t) =
ICS(x; t)√

ICS(x;x) · ICS(t; t)
. (131)

This strategy is also used in HSIC-bottleneck (Ma et al., 2020; Wang et al., 2021).

For each competing method, the hyperparameters are selected as follows. We first choose the default
values of β (the balance parameter to adjust the importance of the compression term) and the learning
rate lr mentioned in its original paper. Then, we select hyperparameters within a certain range of
these default values that can achieve the best performance in terms of RMSE. For VIB, we search
within the range of β ∈ [10−3, 10−5]. For NIB, square-NIB, and exp-NIB, we search within the
range of β ∈ [10−2, 10−5]. For HSIC-bottleneck, we search β ∈ [10−2, 10−5]. For our CS-IB, we
found that the best performance was always achieved with β between 10−2 to 10−3. Based on this,
we sweep the β within this range and select the best one. The learning rate range for all methods was
set as [10−3, 10−4]. We train all methods for 100 epochs on all datasets except for PM2.5, which
requires around 200 epochs of training until converge. All the hyperparameter tuning experiments are
conducted on the validation set. In Table 4, we record all hyperparameters for each deep IB approach
that achieve the best RMSE. We train models with such hyperparameter setting to evaluate their
adversarial robustness performances, as shown in Table 3.

Table 4: Hyperparameters for different IB approaches that achieve best RMSE on six real-world
regression datasets.

Dataset param. VIB NIB Square-NIB exp-NIB HSIC CS-IB

Housing
learning rate 1× 10−4 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−4

epochs 100 100 100 100 100 100
β 1× 10−5 3× 10−2 1× 10−2 1× 10−2

3 × 10−3/5 × 10−3 1× 10−3

Energy
learning rate 1× 10−3 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4

epochs 100 100 100 100 100 100
β 1× 10−4 3× 10−4 2× 10−4 2× 10−4

1 × 10−3/4 × 10−2 5× 10−2

PM2.5
learning rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−4 1× 10−3

epochs 200 200 200 200 200 200
β 5× 10−5 1× 10−5 1× 10−5 3× 10−5

1 × 10−4/8 × 10−3 5× 10−3

Bike
learning rate 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−3

epochs 100 100 100 100 100 100
β 3× 10−5 5× 10−2 6× 10−3 2× 10−3

1 × 10−4/4 × 10−3 1× 10−2

Rotation MNIST
learning rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

epochs 100 100 100 100 100 100
β 1× 10−5 1× 10−2 1× 10−2 1× 10−2

1 × 10−3/4 × 10−2 1× 10−3

UTKFace
learning rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−4 1× 10−3

epochs 100 100 100 100 100 100
β 1× 10−5 1× 10−2 1× 10−2 1× 10−5

1 × 10−3/1 × 10−5 1× 10−2
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Figure 11: Test RMSE under FGSM attack with different ϵ on six regression datasets. Our CS-IB is
consistently better that other competing approaches.

C.3 ADVERSARIAL ROBUSTNESS

We further evaluate the adversarial robustness by comparing the behaviors of different IB approaches
under FGSM attack with different perturbations ϵ = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]. We use the same
parameter configuration in Table 4, and only add adversarial attack on the test set. Our CS-IB
outperforms other IB approaches with different perturbation strengths on all datasets as shown in
Fig. 11.
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C.4 ADDITIONAL RESULTS OF SECTION 4.1 AND AN ABLATION STUDY

In Tables 8 and 9, we complete Table 2 and provide the standard deviation (std) for each method over
5 independent runs with different network initialization. In Table 7, we additionally provide the best
performance achieved with r ̸= 0 (i.e., β > 0) for different deep IB approaches.

We also conduct an ablation study on California Housing dataset to investigate the effectiveness of
combining our prediction loss (the conditional CS divergence DCS(p(y|x); qθ(ŷ|x)) in Eq. (18)) with
I(x; t) regularization that is calculated by mutual information estimators in other IB approaches.
For instance, “CS-div+VIB" refers to the combination of conditional CS divergence with I(x; t)
calculated by variational lower bound. In Table 6, we observe that replacing MSE with our conditional
CS divergence DCS(p(y|x); qθ(ŷ|x)) improves the performance for all competing IB approaches.
This result indicates that our conditional CS divergence is more helpful than MSE in extracting useful
information from x to predict y.

C.5 COMPARING CS DIVERGENCE WITH VARIATIONAL KL DIVERGENCE

We aim to verify the advantage of CS divergence over variational KL divergence when we want to
approximate an unknown distribution p(x) with another distribution q(x).

Specifically, we assume that p(x) as the true distribution is consists of two Gaussians with mean
vectors [4, 4]T and [−4,−4]T and covariance matrix I2. Suppose we approximate p(x) with a single
Gaussian qϕ(x) by minimizing the KL divergence DKL(qϕ(x); p(x)) (the reverse KL divergence is
also in different variational IB approaches) with respect to q’s variational parameters ϕ. We initialize
the variational parameters as:

ϕµ = [0, 0]T ϕΣ = I2, (132)

and optimize the following objective with gradient descent:

DKL(qϕ(x); p(x)) = −H(qϕ(x))− Eqϕ(log p(x)). (133)

As can be seen in Fig. 12(b), the minimization forces qϕ(x) to be zero where p(x) is zero and hence
makes it concentrate on one of the modes. This phenomenon is called mode-seeking.

Note that, a single Gaussian is a common choice for variational inference with KL divergence, this is
because KL divergence does not have closed-form expression for mixture-of-Gaussians (MoG). We
would like to point out here that the CS divergence has closed-form expression for MoG (Kampa
et al., 2011), which may further strength its utility. Although this property is not used in our paper.

Now, we consider using CS divergence to approximate p(x) with q(x). To do this, we sample
N1 = 400 samples from p(x) and initialize q(x) by sampling N2 = 200 samples from a standard
Gaussian. Then, we optimize samples in q(x) by minimizing the CS divergence. Because CS
divergence is estimated in a non-parametric way that does not make any distributional assumptions, it
can fit two Gaussians perfectly as shown in Fig. 12(d).

D LIMITATIONS AND FUTURE WORK

Given the promising results demonstrating the usefulness of CS-IB, it also has limitations.

First, we still would like to mention a limitation of CS divergence with respect to the KL divergence.
That is, we did not find a dual representation for the CS divergence. The dual representation of KL
divergence, such as the well-known Donsker-Varadhan representation (Donsker & Varadhan, 1983),
enables the use of neural networks to estimate the divergence itself, which significantly improves
estimation accuracy in high-dimensional space. A notable example is the mutual information neural
estimator (MINE) (Belghazi et al., 2018).

Second, although kernel density estimator (KDE) offers elegant expressions for both I(x; t) and
D(p(y|x); qθ(ŷ|x)), its performance depends heavily on a proper choice of kernel width σ. In this
paper, we normalized our data and observed that σ = 1 is always a reliable heuristic. We do observe
that our estimators provide consistent performance gain in a reasonable range of kernel size (e.g.,
1− 3), as illustrated in Fig. 15.
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Figure 12: Comparison between CS-divergence and variational KL divergence on the simulated
dataset.

There are multiple avenues for future work:

1) We would like to mention another two intriguing mathematical properties of CS divergence that
both KL divergence and traditional Rényi’s divergence do not have.

• CS divergence has closed-form expression for mixture-of-Gaussians (MoG) (Kampa et al.,
2011).

• CS divergence is invariant to scaling. That is, given λ1, λ2 > 0, we always have:

DCS(p; q) = DCS(λ1p;λ2q). (134)

Although both properties are not used in this paper. They should be beneficial to other statistical
or machine learning tasks. For example, the first property has been leveraged in (Tran et al., 2022)
to train variational autoencoders by replacing the single Gaussian prior distribution with MoG;
whereas the second property has recently been used in (Jenssen, 2024) to project and visualize
high-dimensional data.

2) We would like to extend CS-IB framework to other types of data, such as graphs. Some initial
works have been done.

Here, we present our initial study to predict the age of patients based on their brain functional MRI
(fMRI) data with a graph neural network (GNN), but leave a comprehensive and in-depth investigation
as future work.

To this end, we rely on the brain information bottleneck (BrainIB) framework (Liu et al., 2023)
framework as shown in Fig. 13. We use the original code from its authors15 but replace the graph
encoder with a graph transformer network (Shi et al., 2021). We add the information bottleneck
regularization on the extracted graph representations, i.e., g and gsub; and train the whole network by

15https://github.com/SJYuCNEL/brain-and-Information-Bottleneck
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the following objective:

minDCS(p(y|g); p(ŷ|g)) + βICS(g;gsub). (135)

For other deep IB approaches, the objective is simply:

minE(∥y − ŷ∥22) + βI(g;gsub). (136)

We train all models on the Autism Brain Imaging Data Exchange (ABIDE) dataset16, which contains
the fMRI data from 1, 028 patients (ages 7-64 years, median 14.7). We split the data with 60%
training, 20% validation, 20% test, and normalize the age between 0 and 1. For all IB approaches, we
choose β from four values: 0.0001, 0.001, 0.01, and 0.1, and select the one that achieves the best
prediction accuracy. Fig. 14 demonstrates the predicted age with respect to true age for MSE loss
only, NIB, HSIC-bottleneck, and our CS-IB. Table 5 records the quantitative evaluation results, in
which the “prediction loss" indicates using DCS(p(y|g); p(ŷ|g)) only (as a surrogate of MSE).

Figure 13: Subgraph information bottleneck framework for age prediction. G is the original brain
network, Gsub is the identified brain sub-network that reduces irrelevant edge information for pre-
diction. g and gsub refers to graph vector representations corresponding to G and Gsub, respectively,
which are learned from a joint graph encoder with shared parameters. gsub is used for prediction.

Table 5: The mean absolute error (MAE) and pearson correlation coefficient (PCC) between predicted
age and true age.

Method MAE PCC
MSE 0.079 0.564
Prediction Loss 0.067 0.571
NIB 0.072 0.573
HSIC-bottleneck 0.079 0.615

CS-IB 0.067 0.631

16http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
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(a) MSE (b) NIB

(c) HSIC-bottleneck (d) CS-IB

Figure 14: Scatter plot of predicted age (y-axis) with respect to true age (x-age) for each patient in
the test set.

Figure 15: Performance of CS-IB with different kernel width σ on California Housing dataset.
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Table 6: Ablation study of conditional CS divergence on California Housing dataset. The best
performance is highlighted. By replacing MSE with our conditional CS divergence in Eq. (18), all
models have a performance gain.

Method Test RMSE
VIB 0.257
CS-div+VIB 0.255

NIB 0.251
CS-div+NIB 0.248

Square-NIB 0.255
CS-div+Square-NIB 0.251

Exp-NIB 0.253
CS-div+Exp-NIB 0.250

HSIC-bottleneck 0.254
CS-div+HSIC 0.252

CS-IB 0.244

Table 7: The best performance achieved with r ̸= 0 (i.e., β > 0) for different deep IB approaches.

Method Housing Energy PM2.5 Bike Rotation MNIST UTKFace

VIB 0.257 0.063 0.024 0.421 5.213 9.274
NIB 0.251 0.058 0.021 0.414 3.926 8.712
Square-NIB 0.255 0.060 0.023 0.420 4.102 8.673
Exp-NIB 0.253 0.058 0.024 0.423 4.325 8.927
HSIC-bottleneck 0.254 0.062 0.029 0.417 4.685 8.793
CS-IB 0.244 0.054 0.020 0.392 3.765 8.552

Table 8: RMSE for different deep IB approaches on California Housing, Appliance Energy, and
Beijing PM2.5 with compression ratio r = 0 and r = 0.5. When r = 0, CS-IB uses prediction term
DCS(p(y|x); qθ(ŷ|x)) in Eq. (18), whereas others use MSE.

Model Housing Energy PM2.5
0 0.5 0 0.5 0 0.5

VIB 0.258±0.002 0.347±0.015 0.059±0.004 0.071±0.010 0.025±0.003 0.038±0.008
NIB 0.258±0.002 0.267±0.010 0.059±0.004 0.060±0.008 0.025±0.003 0.034±0.005
Square-NIB 0.258±0.002 0.293±0.008 0.059±0.004 0.063±0.005 0.025±0.003 0.028±0.004
Exp-NIB 0.258±0.002 0.287±0.010 0.059±0.004 0.061±0.006 0.025±0.003 0.030±0.006
HSIC-bottlenck 0.258±0.002 0.371±0.006 0.059±0.004 0.065±0.005 0.025±0.003 0.031±0.008
CS-IB 0.251±0.001 0.245±0.010 0.056±0.002 0.058±0.005 0.022±0.002 0.027±0.005

Table 9: RMSE for different deep IB approaches on Bike Sharing, Rotation MNIST, and UTK-
Face with compression ratio r = 0 and r = 0.5. When r = 0, CS-IB uses prediction term
DCS(p(y|x); qθ(ŷ|x)) in Eq. (18), whereas others use MSE.

Model Bike Rotation MNIST UTKFace
0 0.5 0 0.5 0 0.5

VIB 0.428±0.005 0.523±0.010 4.351±0.025 5.358±0.030 8.870±0.050 9.258±0.080
NIB 0.428±0.005 0.435±0.008 4.351±0.025 4.102±0.020 8.870±0.050 8.756±0.060
Square-NIB 0.428±0.005 0.447±0.006 4.351±0.025 4.257±0.010 8.870±0.050 8.712±0.050
Exp-NIB 0.428±0.005 0.458±0.005 4.351±0.025 4.285±0.015 8.870±0.050 8.917±0.050
HSIC-bottlenck 0.428±0.005 0.451±0.007 4.351±0.025 4.573±0.055 8.870±0.050 8.852±0.055
CS-IB 0.404±0.004 0.412±0.005 4.165±0.015 3.930±0.020 8.702±0.035 8.655±0.043
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