Under review as a conference paper at ICLR 2026

PathHD: EFFICIENT LARGE LANGUAGE MODEL REA-
SONING OVER KNOWLEDGE GRAPHS VIA HYPERDI-
MENSIONAL RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have enabled strong reasoning
over structured and unstructured knowledge. When grounded on knowledge graphs
(KGs), however, prevailing pipelines rely on neural encoders to embed and score
symbolic paths, incurring heavy computation, high latency, and opaque decisions,
which are limitations that hinder faithful, scalable deployment. We propose a
lightweight, economical, and transparent KG reasoning framework, PathHD, that
replaces neural path scoring with hyperdimensional computing (HDC). PathHD
encodes relation paths into block-diagonal GHRR hypervectors, retrieves candidates
via fast cosine similarity with Top-K pruning, and performs a single LLM call to
produce the final answer with cited supporting paths. Technically, PathHD provides
an order-aware, invertible binding operator for path composition, a calibrated
similarity for robust retrieval, and a one-shot adjudication step that preserves
interpretability while eliminating per-path LLM scoring. Extensive experiments on
WebQSP, CWQ, and the GrailQA split show that PathHD (i) achieves comparable
or better Hits@1 than strong neural baselines while using one LLM call per query;
(ii) reduces end-to-end latency by 40-60% and GPU memory by 3-5x thanks
to encoder-free retrieval; and (iii) delivers faithful, path-grounded rationales that
improve error diagnosis and controllability. These results demonstrate that HDC
is a practical substrate for efficient KG-LLM reasoning, offering a favorable
accuracy—efficiency—interpretability trade-off.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly advanced reasoning over both text and structured
knowledge. Typical pipelines follow a retrieve—then—reason pattern: they first surface evidence
(documents, triples, or relation paths), then synthesize an answer using a generator or a verifier (Lewis
etal., 2020; Press et al., 2022; Yao et al., 2023; Wei et al., 2022; Yao et al., 2024). In knowledge-graph
question answering (KGQA), this often becomes path-based reasoning: systems construct candidate
relation paths that connect the topic entities to potential answers and pick the most plausible ones
for final prediction (Sun et al., 2018; Jiang et al., 2022; 2023; 2024; Luo et al., 2023). While these
approaches obtain strong accuracy on WebQSP, CWQ, and GrailQA, they typically depend on heavy
neural encoders (e.g., Transformers or GNNSs) or repeated LLM calls to rank paths, which makes
them slow and expensive at inference time—especially when many candidates must be examined.

Figure | highlights two recurring issues in KG-LLM reasoning. @ Path—query mismatch: Order-
insensitive encodings, weak directionality, and noisy similarity often favor superficially related yet
misaligned paths, blurring the question’s intended relation. @ Per-candidate LLM scoring: Many
systems score candidates sequentially, so latency and token cost grow roughly linearly with set
size; batching is limited by context/API, and repeated calls introduce instability, yet models can
still over-weight long irrelevant chains, hallucinate edges, or flip relation direction. Most practical
pipelines first detect a topic entity, enumerate 10 ~ 100 length-1—4 paths, then score each with a neural
model or LLM, sending top paths to a final step (Sun et al., 2018; Luo et al., 2023; Jiang et al., 2024).
This hard-codes two inefficiencies: (i) neural scoring dominates latency (fresh encoding/prompt
per candidate), and (ii) loose path semantics (commutative/direction-insensitive encoders conflate
founded_by—CEQO_of with its reverse), which compounds on compositional/long-hop questions.

Under review as a conference paper at ICLR 2026

Two Major Pain Points in KG-LLM ReO\SOnIng

| \
| i !
| |
! m \/ | +=> correct (not clnosen)\ iy - !
' e “ ,,,,,,,,,,,,,,,,,,,,,,,,,,, !
| | |
|]

w —> chosen wrong

| 47"0\ -~ !
3 = founded_ m CEO_. ot': 3 Pa‘tl« #1#@7>Scom 1) . :‘
i ; ok Spacex) X ' _

:
ﬁe,.q Renewable related_to Patl« #2—»@7*Score 52 .
i Energy X ‘
| ‘ ! !
3 @ Outcome: Incorrect reasoning despite access to KG i \\ ,,,,,,,,,,,,,,,,,,,,,,,,, . " :'
i

(selected path mismatches the query relation). i Issue:
| Issue: |
! @ Mismatch between query relation ("acquired_by") and used !

path (Founder/CEO). ! Evaluation is sequential / hard to parallelize.

Repeated LM calls per candidate path — high latency & cost.

‘\\ @ Hallucination due to non-Faithful reasoning over KG. i Sca[alaihty degrades as candidate count increases.

Figure 1: Two pain points in KG-LLM reasoning. (Left) The method selects a path that does not
match the query relation, leading to wrong answers even with KG access; (Right) per-path LLM
scoring incurs high latency and cost because candidates are evaluated one by one.

Hyperdimensional Computing (HDC) offers a different lens: represent symbols as long, nearly-
orthogonal hypervectors and manipulate structure with algebraic operations such as binding and
bundling (Kanerva, 2009; Plate, 1995). HDC has been used for fast associative memory, robust
retrieval, and lightweight reasoning because its core operations are elementwise or blockwise and
parallelize extremely well on modern hardware (Frady et al., 2021). Encodings tend to be noise-
tolerant and compositional; similarity is computed by simple cosine or dot product; and both
storage and computation scale linearly with dimensionality. Crucially for KGQA, HDC supports
order-sensitive composition when the binding operator is non-commutative, allowing a path like
r1— r9 — 73 to be distinguished from its permutations while remaining a single fixed-length vector.
This makes HDC a promising substrate for ranking many candidate paths without invoking a neural
model for each one.

Motivated by these advantages, we introduce PathHD (HyperDimensional Path Retrieval), a
lightweight retrieval-and-reason framework for KGQA. First, we map every relation to a block-
diagonal unitary representation and encode a candidate path by non-commutative Generalized Holo-
graphic Reduced Representation (GHRR) binding; this preserves order and direction in a single
hypervector. In parallel, we encode the query into the same space to obtain a query hypervector.
Second, we score all candidates via cosine similarity to the query hypervector and keep only the
top-K paths with a simple, parallel Top- K selection. Finally, instead of per-candidate LLM calls,
we make one LLM call that sees the question plus these top- K paths (verbalized), and it outputs the
answer along with cited supporting paths. In effect, PathHD addresses both pain points in Fig.

order-aware binding reduces path—query mismatch, and vector-space scoring eliminates per-path
LLM evaluation, cutting latency and token cost. Our contributions can be summarized as follows.

@ A fast, order-aware retriever for KG paths. We present PathHD, which uses GHRR-based,
non-commutative binding to encode relation sequences into hypervectors and ranks candidates
with plain cosine similarity—no neural encoders and no per-path prompts. This design keeps a
symbolic structure while enabling fully parallel scoring with O(Nd) complexity.

0 An efficient one-shot reasoning stage. PathHD replaces many LLM scoring calls with a single,
final LLM adjudication over the top-K paths. This decouples retrieval from generation, lowers
token usage, and improves wall-clock latency without sacrificing interpretability: the model cites
the supporting path(s) it used.

® Extensive validation and operator study. On WebQSP, CWQ, and GrailQA, PathHD achieves
competitive Hits@1 with markedly lower cost. An ablation on binding operators shows that
our block-diagonal (GHRR) binding outperforms commutative binding and circular convolution,
confirming the value of order preservation; additional studies analyze the impact of top-K pruning
and latency—accuracy trade-offs.

Under review as a conference paper at ICLR 2026

<‘/ Input Query q (e.g. "Which y
| company acquired So(arCity?") |

|
I

CEO_of

Path#1 HV = acquired_by

Path#2 HV =founded_by @ CEO_of Z L5,

~ [)Scores3
iz >
Path#3 HV = operates_in @ related _to

O Gefnan
Founded_by —= ceO_of [— T 227 Candidate path HV Relation
[Block-diagonal binding (GHRR) P J 7
Captures non-commutative relation binding () operation

acquired_by

operates_in —=>related_to

Figure 2: Overview of PathHD: a Plan — Encode — Retrieve — Reason pipeline. We generate rela-
tion plans, encode them into order-aware GHRR hypervectors, rank candidates with blockwise cosine
similarity and Top- K pruning, and then make a single LLM call to answer with cited paths—keeping
the heavy work in cheap vector operations.

2 METHOD

The proposed PathHD follows a Plan — Encode — Retrieve — Reason pipeline (Figure 2). (i)
We first generate or select relation plans that describe how an answer can be reached (schema
enumeration optionally refined by a light prompt). (ii) Each plan is mapped to a hypervector via
a non-commutative GHRR binding so that order and direction are preserved. (iii) We compute a
blockwise cosine similarity in the hypervector space and apply Top-K pruning. (iv) Finally, a single
LLM call produces the answer with path-based explanations. This design keeps the heavy lifting in
cheap vector operations, delegating semantic adjudication to one-shot LLM reasoning.

2.1 PROBLEM SETUP & NOTATION

Given a question ¢, a knowledge graph (KG) G, and a set of relation schemas Z, the goal is to predict
an answer a. We denote entities by e, relations by r, and a relation path by z = (r1,...,7). A key
challenge is to efficiently locate a small set of plausible paths for ¢ from a very large candidate pool,
and then let an LLM reason over only those paths. A summary of the notation through out the paper
can be found in Appendix

2.2 HYPERVECTOR INITIALIZATION

We work in a Generalized Holographic Reduced Representations (GHRR) space. Each atomic symbol
x (relation or, optionally, entity) is assigned a d-dimensional hypervector v, € C? constructed as a
block vector of unitary matrices:

ve = (A AW, Agw) € U(m), d= Dm?.

In practice we sample each block from a simple unitary family for efficiency, e.g., Aj(,x) =
diag(e'®i1, ... %) with ¢;, ~ Unif[0,27), or a random Householder product. Blocks are
{2-normalized so that all hypervectors have unit norm. This initialization yields near-orthogonality

among symbols, which concentrates with dimension (cf. Prop. 1).

Query hypervector. For a question g, we obtain a query hypervector in two ways depending on the
planning route used in Section 2: (i) plan-based—encode the selected relation plan z, = (r1,...,7¢)
using the same GHRR binding as paths (see Eq. equation 2); or (ii) text-projection—embed ¢ with a
sentence encoder (e.g., SBERT) to h, € R% and project to the HDC space by a fixed (or learned)
linear map P € R?*4: then block-normalize:

Vg = Afblock(Phq>-

Both choices produce a query hypervector compatible with GHRR scoring; we use plan-based
encoding by default and report the text-projection variant in ablations.

Under review as a conference paper at ICLR 2026

2.3 GHRR BINDING AND PATH ENCODING

A GHRR hypervector is a block vector H = [A;;...; Ap| with A; € U(m). Given two hypervectors
X =[X1;...;Xpland Y = [Y1;...; YD), the binding operator is the block-wise product

Z=X®Y, Z=X;Y; (j=1,...,D).

Because matrix multiplication is non-commutative (X;Y; # Y;X;), the encoding preserves order
and directionality of relations—critical for multi-hop KG reasoning. Unbinding exploits unitarity:

X; = Z;Y], Y, ~ X;Z;,
enabling approximate recovery of constituents and interpretable compositions.

A length-/ relation path z = (rq,...,7/) is encoded as

14
v, = 2®1VTL = Vv, ®v, ® - ®v,, (1)

followed by block-wise normalization to unit norm.

Discussion: Why GHRR as the binding operator. Classical HDC bindings (XOR, element-wise
multiplication, circular convolution) are commutative, which collapses r; —r2 and ro—7; to similar
codes and hurts directional reasoning. GHRR is non-commutative, invertible at the block level, and
offers higher representational capacity via unitary blocks, leading to better discrimination between
paths of the same multiset but different order. We empirically validate this choice in the ablation
study (Table 3), where GHRR consistently outperforms commutative bindings. An introduction to
binding operations is provided in Appendix J.

Encoding a path. A path z = (r1,...,ry) is encoded by iterated binding

L
v, = ® v,) (2)
=1

where ® denotes left-to-right blockwise multiplication of the corresponding relation hypervectors.

2.4 QUERY & CANDIDATE PATH CONSTRUCTION

‘We obtain a query plan z, via schema-based enumeration (depth < L,,,) and, when helpful, refine or
rank these plans by a lightweight prompt. The query hypervector v, follows Equation (2). Candidate
paths Z are instantiated from the KG either by matching plan templates or by a constrained BFS with
beam width B; both yield symbolic paths that are then deterministically mapped to hypervectors.

2.5 HD RETRIEVAL: BLOCKWISE SIMILARITY AND TOP-K

Let (A, B)r := tr(A*B) be the Frobenius inner product. Given two GHRR hypervectors X =

[X;];2, and Y = [Yj]jD:l, we define the blockwise cosine similarity

sim(X,Y) 3)

DZ HX IIFIIYHF

For each candidate z € Z we compute sim(vy, v,) and (optionally) apply a calibrated score
5(z) = sim(vy,v.) + aIDF(z) — BAFl

then keep the Top-K for reasoning. All computations are O(d) per candidate and require no
backpropagation.

2.6 ONE-SHOT REASONING WITH RETRIEVED PATHS

We linearize the Top-K paths into concise natural-language statements and issue a single LLM call
with a minimal, citation-style prompt (see Table 8 from Appendix C). The prompt lists the question
and the numbered paths, and requires the model to return a short answer, the index(es) of supporting
path(s), and a 1-2 sentence rationale. This one-shot format constrains reasoning to the provided
evidence, resolves near-ties and direction errors, and keeps LLM usage minimal.

Under review as a conference paper at ICLR 2026

2.7 THEORETICAL & COMPLEXITY ANALYSIS

The probability of a false match under random hypervectors decays exponentially with dimension d,
implying a capacity scaling d = O(e~2log M). Retrieval costs O(Nd), while neural encoders (e.g.,
RoG) typically incur O(N Ld?), yielding an O(Ld) multiplicative reduction in our favor.

Proposition 1 (Near-orthogonality and distractor bound). Let {v,.} be i.i.d. GHRR hypervectors with
zero-mean, unit Frobenius-norm blocks. For a query path z, and any distractor z # z4 encoded via
non-commutative binding, the cosine similarity X = sim(v,, v.) (Equation (3)) satisfies, for any
e >0,

Pr(|X| >¢€) < 2exp(—cdé?),

for an absolute constant ¢ > 0 depending only on the sub-Gaussian proxy of entries.

Proof sketch. Each block inner product (X, Y;) r is a sum of products of independent sub-Gaussian
variables (closed under products for bounded/phase variables used by GHRR). After normalization,
the average in Equation (3) is a mean-zero sub-Gaussian average over d degrees of freedom, hence
the Bernstein/Hoeffding tail bound. Details in Appendix E. O

Corollary 1 (Capacity with union bound). Let M be M distractor paths scored against a fixed query.
With probability at least 1 — 6,

1 2M
s 2, V) < h d > — log—.
?é%(blm(v . Vz) <€ whenever > — log—
Complexity comparison with neural retriev- o Candidate S dine T)
ers. Let IV be the number of candidates, d ethod Path Gen. ~COr'ng Reasomng
the embedding dimension, and L tht? number of StructGPT [2023] V4 V4 V4
encoder layers used by neural retrieval. Neu- _ . ,
3 . 5 FiDeLiS 2024 v X v
ral encoding + scoring costs O(NLd?). In o J / J
contrast, PathHD forms each path vector by LG 202 % % %
| 2| —1 block multiplications plus one similarity ~G0G [2024]
in Equation (3), i.e., O(|z|d) + O(d) per can- KG-Agent [2024] v v v
didate, giving total O(Nd) — an O(Ld)-fold RoG [2023] v X v
reduction. PathHD X XV (Acall)

In addition to the O(Nd) vs. O(NLd?) com- Ta.lble 1: LLM usage across pipeline stages. Can-
pute gap, end-to-end latency is dominated by didate Path Gen.: using an LLM to propose/ex-
the number of LLM calls. Table Table | con- Pand relation paths; Scoring: using an LLM to
trasts pipeline stages across methods: unlike score/rank candidates (non-LLM similarity/graph

prior agents that query an LLM for candidate heuristics count as “no™); Reasoning: using an
path generation and sometimes scoring, PathHD LLM to produce the final answer from the retrieved

defers a single LLM call to the final reasoning Paths. PathHD uses a single LLM call only in the
step. This design reduces both latency and API final reasoning step.

cost; empirical results in Section confirm the

shorter response times.

3 EXPERIMENTS

We evaluate PathHD against state-of-the-art baselines for reasoning accuracy, measure efficiency
with a focus on latency, and conduct module-wise ablations, followed by illustrative case studies.

3.1 DATASETS, BASELINES, AND SETUP

We evaluate on three standard multi-hop KGQA benchmarks—WebQuestionsSP (WebQSP) (Yih
et al., 2016), Complex WebQuestions (CWQ) (Talmor & Berant, 2018), and GrailQA (Gu et al.,
2021), all grounded in Freebase (Bollacker et al., 2008). These datasets span increasing reasoning
complexity (roughly 2—4 hops): WebQSP features simpler single-turn queries, CWQ adds composi-
tional and constraint-based questions, and GrailQA stresses generalization across i.i.d., compositional,
and zero-shot splits. We compare against four families of methods: embedding-based, retrieval-
augmented, pure LLMs (no external KG), and LLMs+KG hybrids. All results are reported on

Under review as a conference paper at ICLR 2026

WebQSP CWQ GrailQA (F1)
Type Methods Hits@1 F1 |Hits@1 F1 | Overall IID
KV-Mem (Miller et al., 2016) 46.7 34.5 18.4 15.7 — —
. EmbedKGQA (Saxena et al., 2020) 66.6 - 45.9 - - -
Embedding \onr (He et al., 2021) 68.7 62.8| 47.6 424 - -
TransferNet (Shi et al., 2021) 71.4 — 48.6 — — —
GraftNet (Sun et al., 2018) 66.4 60.4 36.8 32.7 = =
Retrieval SR+NSM (Zhang et al., 2022) 68.9 64.1 50.2 47.1 — —
SR+NSM+E2E (Zhang et al., 2022) 69.5 64.1 49.3 46.3 — —
UniKGQA (Jiang et al., 2022) 77.2 72.2 51.2 49.1 — —
ChatGPT (Ouyang et al., 2022) 67.4 59.3 47.5 43.2 25.3 19.6
Pure LLMs Davinci-003 (Ouyang et al., 2022) 70.8 63.9 51.4 47.6 30.1 23.5
GPT-4 (Achiam et al., 2023) 73.2 62.3 55.6 49.9 31.7 25.0
StructGPT (Jiang et al., 2023) 72.6 63.7 54.3 49.6 54.6 70.4
ROG (Luo et al., 2023) 857 708 | 626 562 - -
Think-on-Graph (Sun et al., 2023) 81.8 76.0 68.5 60.2 - -
LLMs + KG GoG (Xu et al., 2024) 84.4 — 75.2 — — —
KG-Agent (Jiang et al., 2024) 83.3 81.0| 722 698 86.1 92.0
FiDeLiS (Sui et al., 2024) 84.4 78.3 71.5 64.3 — =
PathHD 86.2 78.6 71.5 65.8 86.7 924

Table 2: Comparison on Freebase-based KGQA. Our method PathHD follows exactly the same
protocol. “-” indicates that the metric was not reported under the Freebase+official-script setting. We
bold the best and underline the second-best score for each metric/column.

Hits@1 vs. latency on WebQSP Hits@ vs. latency on CWQ Hits@! vs. latency on GrailQA
Ro

K@-Agen
Family Family A\\» T
o Embedding o Embedding L
8 Pure LLM S & Pure LLM
dauent | 2
Think-on-Grofly 2, o
o

4 LLMs+KG 4 LLMs*KG

GPA (] call)
Struct G JniKGQA
050 truct 2 if nKGQ
)

g m> call) 707
2 LmKGcl(il‘T s ur' call)
s (»»,..Kl r’ﬂn u.‘..\ cally !ﬂD H
7025 = tructGPT
£l 3050
2 000 £ 000 2
K¥EMem K¥Mem pyfhiiD
&) 3 &) ® (‘lmFPT {1 call) A
025 025
50 0 70 0 9 20 30 40 50 0 70 20 0 40 S0 60 70 S0 90
Hits@1 on WebQSP (%) Hits@! on CWQ (%) Hits@ 1 on GrailQA (%)

Figure 3: Visualization of performance and latency. The x-axis is Hits@1 (%), the y-axis is
per-query latency in seconds (median, log scale). Bubble size indicates the average number of LLM
calls; marker shape denotes the method family. PathHD gives strong accuracy with lower latency
than multi-call LLMs+KG baselines.

dev (IID) splits under a unified Freebase evaluation protocol using the official Hits@] and F1 scripts.
Detailed dataset statistics, baseline lists, and experimental settings are provided in Appendices I to

3.2 REASONING PEFORMANCE COMPARISON

We evaluate under a unified Freebase protocol with the official Hits@ I/F1 scripts on WebQSP, CWQ,
and GrailQA (dev, IID); results are in Table 2. Baselines cover classic KGQA (Embedding/Retrieval),
recent LLMs+KG systems, and Pure LLMs. Our PathHD uses hyperdimensional scoring with
GHRR, top-K pruning, and a single LLM adjudication. Key observations emerge: Obs.@® SOTA on
WebQSP/GrailQA ; competitive on CWQ. PathHD attains best WebQSP Hirs@ 7 (86.2) and best
GrailQA FI (Overall/IID 86.7/92.4), while staying strong on CWQ (Hits@1 71.5, F1 65.8), close to
top LLM+KG (e.g., GoG 75.2 Hits@ [; KG-Agent 69.8 FI). Obs.® One-shot adjudication rivals
multi-step agents. Versus RoG (~12 calls) and Think-on-Graph/GoG/KG-Agent (3-8 calls), PathHD
matches or exceeds accuracy on WebQSP/GrailQA and remains competitive on CWQ with just one
call—reducing error compounding and focusing the LLM on a high-quality shortlist. Obs.® Pure
LLMs lag without KG grounding. Zero/few-shot GPT-4 or ChatGPT underperform LLM+KG; e.g.,
on CWQ GPT-4 Hits@1 55.6 vs. PathHD 71.5. Obs.@® Classic embedding/retrieval trails modern
LLM+KG. KV-Mem, NSM, SR+NSM rank subgraphs well but lack a flexible language component
for composing multi-hop constraints, yielding consistently lower scores.

Under review as a conference paper at ICLR 2026

3.3 EFFICIENCY AND COST ANALYSIS

We assess end-to-end cost via a Hits@ I-latency bubble plot (Figure 3) and a lollipop latency chart
(Figure 0). In Figure 3, x = Hits@ [, y = median per-query latency (log-scale); bubble size = avg.
#LLM calls; marker shape = method family. Latencies in Figure 6 follow a common protocol
(per-LLM call on the order of a few seconds; non-LLM vector/graph ops ~0.3-0.8s). PathHD uses
vector-space scoring with top-K pruning and a single LLM decision; RoG uses beam search (B=3,
depth < dataset hops). A factor breakdown (#calls, depth d, beam b, tools) appears in Table
(Appendix [.1). Key observations are: Obs.@® Near-Pareto across datasets. With comparable
accuracy to multi-call LLMs+KG (Think-on-Graph/GoG/KG-Agent), PathHD achieves markedly
lower latency due to its single-call design and compact post-pruning candidate set. Obs.® Latency
is dominated by #LLLM calls. Methods with 3-8 calls (agent loops) or =~ d x b calls (beam
search) sit higher in Figure 3 and show longer whiskers in Figure 6; PathHD avoids intermediate
planning/scoring overhead. Obs.® Moderate pruning improves cost-accuracy. Shrinking the pool
before adjudication lowers latency without hurting Hits@ I, especially on CWQ where paths are
longer. Obs.@® Pure LLMs are fast but underpowered. Single-call GPT-4/ChatGPT have similar
latency to our final decision yet notably lower accuracy, underscoring the importance of structured
retrieval and path scoring.

3.4 ABLATION STUDY

We analyze the contribution of each module/operation in PathHD. Our operation study covers: (1)
Path composition operator, (2) Single-LLM adjudicator, and (3) Top-K pruning.

Which path—composition operator works Qperator [[WebQSP CWQ
best? We isolate relation binding by fix- Sgg Tbipolar product 39 6338
ing retrieval, scoring, pruning, and the single glement-wise product (Real-valued)|| 84.4 69.2
LLM step, and only swapping the encoder’s Comm. bind 847 69.6
path—composition operator. We compare six FHRR 849 70.0
options (defs. in Appendix J): (i) XOR/bipolar HRR 85.1 70.2
and (ii) real-valued element-wise products, both GHRR 862 715

fully commutative; (iii) a stronger commutative
mix of binary/bipolar; (iv) FHRR (phasors) and
(v) HRR (circular convolution), efficient yet ef-
fectively commutative; and (vi) our block-diagonal GHRR with unitary blocks, non-commutative
and order-preserving. Paths of length 1-4 use identical dimension/normalization. As in Table 3,
commutative binds lag, HRR/FHRR give modest gains, and GHRR yields the best Hits@] on
WebQSP and CWQ by reliably separating founded_by— CEO_of from its reverse.

Do we need a final single LLLM adjudicator? We test Final step [[WebQSP CWQ
whether a 1.1ghtwe1ght LLM judgment helps beyond pure Vector-only 354 708
vector scoring. Vector-only selects the top path by cosine vector — 1xLLMI|| 86.2 715
similarity; Vector — IxLLM instead forwards the pruned
top-K paths (with scores and end entities) to a single LLM Table 4: Ablation on the final decision
using a short fixed template (no tools/planning) to choose ~maker. Passing pruned candidates and
the answer without long chains of thought. As shown scores to a single LLM for adjudication
in Table 4, Vector — 1xLLM consistently outperforms yields consistent gains over vector-only
Vector-only on both datasets, especially when the top two ~ selection.

paths are near-tied or a high-scoring path has a subtle type mismatch; a single adjudication pass
resolves such cases at negligible extra cost.

Table 3: Effect of the path—composition operator.
GHRR yields the best performance.

What is the effect of top- K pruning before the final Mol TRGH]
step? Finally, we study how many candidates should Pruning (WebQSP) Lat. (CWQ) Lat.
be kept for the last decision. We vary the number of T o-prune 858 2425 707 245

paths passed to the final LLM among K €{2,3,5} and g —2 860 198 712 2.00s
also include a No-prune variant that sends all retrieved K=3 862 1.92s 71.5 1.94s
paths. Retrieval and scoring are fixed; latency is the HK=5 86.1 2.05s 714 2.06s

median per query (lower is better). As shown in Table 5, 110 5- Impact of top-& ning before
K =3 achieves the best Hits@1 on both WebQSP and tl?e Eni;l LEM. Smal{)s etsp(l;:zl_g) retain
CWQ with the lowest latency, while K=2 is a close

or slightly improve accuracy while reducin
second and yields the largest latency drop. In contrast, Sy mp Y 5

latency. We adopt K =3 by default.

Under review as a conference paper at ICLR 2026

WebQSP CWQ GrailQA

79 66 87.0

65

F1 (%)
~
o0
S
(=) W

71 64
Yk D O o > V3 Iax X O o N3 3\ Iax & O o > 3\
N CIIRAGNS) B N > Q N »* Q& >
S LTS N N S ST N & RSENEE N &
Hypervector Dimension Hypervector Dimension Hypervector Dimension

Figure 4: Hypervector dimension study. Each panel reports F1 (%) of PathHD on WebQSP, CWQ,
and GrailQA as a function of the hypervector dimension. Overall, performance rises from 512 to
the mid-range and then tapers off: WebQSP and GrailQA peak around 3k—4k, while CWQ prefers a
slightly larger size (6k), after which F1 decreases mildly.

No-prune maintains maximal recall but increases la-
tency and often introduces near-duplicate/noisy paths that can blur the final decision. We therefore
adopt K =3 as the default.

3.5 CASE STUDY

To better understand how our model performs step-by-step reasoning, we present two representative
cases from the WebQSP dataset in Table 6. These cases highlight the effects of candidate path
pruning and the contribution of LLM-based adjudication in improving answer accuracy. Case 1:
Top-K pruning preserves paths aligned with both £i1m. film.music and actor cues; the vector-
only scorer already picks the correct path, and a single LLM adjudication confirms Valentine’s
Day—illustrating that pruning reduces cost while retaining high-coverage candidates. Case 2: A
vector-only top path (film.film.edited_lby) misses the actor constraint and yields a false
positive, but adjudication over the pruned set—now including performance . act or—corrects to
The Perks of Being a Wallflower, showing that LLM adjudication resolves compositional constraints
beyond static similarity.

4 RELATED WORK

LLM-based Reasoning such as GPT (Radford et al., 2019; Brown et al., 2020), LLaMA (Touvron
etal., 2023), and PaLM (Chowdhery et al., 2023), have demonstrated impressive capabilities in diverse
reasoning tasks, ranging from natural language inference to multi-hop question answering (Yang
et al., 2018). A growing body of work focuses on enhancing the interpretability and reliability of
LLM reasoning through symbolic path-based reasoning over structured knowledge sources (Sun et al.,
2018; Lin et al., 2022; Hu et al., 2025). For example, Wei et al. (Wei et al., 2022) proposed chain-of-
thought prompting, which improves reasoning accuracy by encouraging explicit intermediate steps.
Wang et al. (Wang et al., 2022) introduced self-consistency decoding, which aggregates multiple
reasoning chains to improve robustness.

In the context of knowledge graphs, recent efforts have explored hybrid neural-symbolic approaches
to combine the structural expressiveness of graph reasoning with the generative power of LLMs.
Fan et al. (Fan et al., 2023) proposed Reasoning on Graphs (RoG), which first prompts LLMs to
generate plausible symbolic relation paths and then retrieves and verifies these paths over knowledge
graphs. Similarly, Khattab et al. (Khattab et al., 2022) leveraged demonstration-based prompting to
guide LLM reasoning grounded in external knowledge. Despite their interpretability benefits, these
methods rely heavily on neural encoders for path matching, incurring substantial computational and
memory overhead, which limits scalability to large KGs or real-time applications.

Hyperdimensional Computing (HDC) is an emerging computational paradigm inspired by the
properties of high-dimensional representations in cognitive neuroscience (Kanerva, 2009; Kanerva
et al.,, 1997). In HDC, information is represented as fixed-length high-dimensional vectors (hypervec-
tors), and symbolic structures are manipulated through simple algebraic operations such as binding,
bundling, and permutation (Gayler, 2004). These operations are inherently parallelizable and robust
to noise, making HDC appealing for energy-efficient and low-latency computation.

Under review as a conference paper at ICLR 2026

Table 6: Case studies on multi-hop reasoning over WebQSP. Top-K pruning is applied before
invoking LLM, reducing cost while retaining plausible candidates.

Case 1: which movies featured Taylor Swift and music by John Debney

1) film.film.music (0.2567)

2) person.nationality — film.film.country (0.2524)

3) performance.actor — performance.film (0.2479)

4) people.person.languages — film.film.language (0.2430)

film.film.music

person.nationality — film.film.country

performance.actor — performance.film

Pick film.film.music v — directly targets the composer-to-film mapping;

relevant for filtering by music.

Rationale: “To find films with both Taylor Swift and music by John Debney,

1xLLM adjudication use actor-to-film and music-to-film relations. The chosen path targets the latter
directly.”

Final Answer / GT Valentine’s Day (predict) / Valentine’s Day v/

Case 2 : in which movies does Logan Lerman act in that was edited by Mary Jo Markey

1) film.film.edited_by (0.2548)

2) person.nationality — film.film.country (0.2527)
Top-4 candidates 3) performance.actor — performance.film (0.2505)
4) award.award_winner.awards_won —
award.award_honor.honored_for (0.2420)
film.film.edited_by
person.nationality — film.film.country
performance.actor — performance.film
Pick film.film.edited_by X — identifies edited films, but lacks actor
constraint; leads to false positives.

Top-4 candidates

Top-K after pruning
(K=3)

Vector-only (no LLM)

Top-K after pruning
(K=3)

Vector-only (no LLM)

Rationale: “The question requires jointly filtering for actor and editor. While
1xLLM adjudication film.edited_by isrelevant, combining it with performance.actor im-
proves precision by ensuring Logan Lerman is in the cast.”
Final Answer / GT Perks of Being a Wallflower (predict) / Perks of Being a Wallflower v/

HDC has been successfully applied in domains such as classification (Rahimi et al., 2016), biosignal
processing (Moin et al., 2021), natural language understanding (Maddali, 2023), and graph analyt-
ics (Imani et al., 2019b). For instance, Imani et al. (Imani et al., 2019b) demonstrated that HDC
can encode and process graph-structured data efficiently, enabling scalable similarity search and
inference. Recent studies have also explored neuro-symbolic integrations, where HDC complements
neural networks to achieve interpretable yet computationally efficient models (Imani et al., 2019a;
Rahimi et al., 2016). However, the potential of HDC in large-scale reasoning over knowledge
graphs—particularly when combined with LLMs, remains underexplored. Our work bridges this
gap by leveraging HDC as a drop-in replacement for neural path matchers in LLM-based reasoning
frameworks, thereby achieving both scalability and interpretability.

5 CONCLUSION

In this work, we introduced PathHD, a lightweight and interpretable retrieval mechanism for path-
based reasoning over knowledge graphs, grounded in Hyperdimensional Computing (HDC). By
replacing the neural path matcher in frameworks like RoG with an HDC-based retriever, PathHD
eliminates the need for costly neural encoders and leverages efficient hypervector operations for
path representation and similarity computation. This design yields substantial reductions in both
computational and memory costs while maintaining competitive reasoning accuracy. Experimental
results on standard KGQA benchmarks confirm that PathHD achieves speedup without sacrificing
performance, highlighting its potential as a scalable and deployable alternative to neural-symbolic
reasoning. Our findings suggest that HDC offers a promising foundation for building next-generation
reasoning systems that are efficient, generalizable, and well-suited to real-time or resource-constrained
scenarios.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive attributes. All datasets are
public and widely used for KGQA research. We conduct a limited manual verification in a few case
studies for readability Section 3.5 to confirm the final entity answers from public sources; no personal
information was collected, no crowd workers were employed, and no compensation was involved.
This verification is used for illustrative examples and does not alter the quantitative evaluation. We
encourage responsible use when deploying our method in applications that may involve sensitive data.
We have carefully followed community norms for dataset usage and model evaluation. Our proposed
method, PathHD, is designed to enhance the interpretability and faithfulness of large language model
reasoning over knowledge graphs, which may help mitigate hallucination and improve the reliability
of LLMs in downstream applications. While our method may be deployed in real-world systems
involving sensitive data, such usage is beyond the scope of this paper. We encourage responsible use
and community oversight when applying our method in such contexts.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. We will release all code, data prepro-
cessing scripts, and instructions to reproduce our experiments upon acceptance. Our method builds
on publicly available datasets (WebQSP, CWQ, GrailQA) and introduces a modular and lightweight
retrieval component based on hyperdimensional computing. We include all necessary hyperparame-
ters, training details, and evaluation metrics in the main text and appendix. The symbolic structure
of relation paths, key to our method’s design, is clearly described in the paper and supplemental
material. Additionally, we provide a complexity analysis to support the claims of efficiency. Any
further clarifications or updates will be added to the official code repository.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collabora-
tively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pp. 1247-1250, 2008.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems (NeurIPS), volume 33,
pp. 1877-1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1-113,
2023.

Baihan Fan, R. Man Luo, Ansong Ni, and Irwin King. Reasoning on graphs: Faithful and interpretable
large language model reasoning. In Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

E. Paxon Frady, Denis Kleyko, and Friedrich T. Sommer. Variable binding for sparse distributed
representations: Theory and applications. Neural Computation, 33(9):2207-2248, 2021.

Ross W Gayler. Vector symbolic architectures answer jackendoff’s challenges for cognitive neuro-
science. arXiv preprint c¢s/0412059, 2004.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. Beyond iid:
three levels of generalization for question answering on knowledge bases. In Proceedings of the
web conference 2021, pp. 3477-3488, 2021.

10

Under review as a conference paper at ICLR 2026

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and Ji-Rong Wen. Improving multi-hop
knowledge base question answering by learning intermediate supervision signals. In Proceedings
of the 14th ACM international conference on web search and data mining, pp. 553-561, 2021.

Haotian Hu, Alex Jie Yang, Sanhong Deng, Dongbo Wang, and Min Song. Cotel-d3x: a chain-
of-thought enhanced large language model for drug—drug interaction triplet extraction. Expert
Systems with Applications, 273:126953, 2025.

Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. Adaptable hyperdimensional
computing for efficient learning and inference. IEEE Transactions on Computers, 68(8):1175-1188,
2019a.

Mohsen Imani, Abbas Rahimi, Deqian Kong, and Tajana Rosing. A framework for collaborative
learning in secure high-dimensional space. IEEE Transactions on Cloud Computing, 9(4):1380—
1393, 2019b.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Unikgqa: Unified retrieval and reasoning
for solving multi-hop question answering over knowledge graph. arXiv preprint arXiv:2212.00959,
2022.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. Structgpt:
A general framework for large language model to reason over structured data. arXiv preprint
arXiv:2305.09645, 2023.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, Chen Zhu, Hengshu Zhu, and Ji-Rong Wen.
Kg-agent: An efficient autonomous agent framework for complex reasoning over knowledge graph.
arXiv preprint arXiv:2402.11163, 2024.

Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed represen-
tation with high-dimensional random vectors. Cognitive Computation, 1(2):139-159, 2009.

Pentti Kanerva et al. Fully distributed representation. PAT, 1(5):10000, 1997.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp. In NeurIPS, 2020.

Qingqing Lin, Ruiying Zhong, Zhengyan Du, Wenhu Chen, Duyu Tang, and Ming Zhou. Kqa pro:
A dataset with explicit compositional programs for complex question answering over knowledge
bases. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL), 2022.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning. arXiv preprint arXiv:2310.01061, 2023.

Raghavender Maddali. Fusion of quantum-inspired ai and hyperdimensional computing for data
engineering. Zenodo, doi, 10, 2023.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Ja-
son Weston. Key-value memory networks for directly reading documents. arXiv preprint
arXiv:1606.03126, 2016.

Ali Moin, Alex Zhou, Abbas Rahimi, Ankita Menon, Simone Benatti, George Alexandrov, Samuel
Tamakloe, Joash Ting, Naoya Yamamoto, Yasser Khan, et al. A wearable biosensing system with
in-sensor adaptive machine learning for hand gesture recognition. Nature Electronics, 4(1):54—63,
2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

11

Under review as a conference paper at ICLR 2026

Tony A Plate. Holographic reduced representations. /EEE Transactions on Neural Networks, 6(3):
623-641, 1995.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Omer Levy. Measuring
and narrowing the compositionality gap in language models. arXiv:2210.03350, 2022. Self-Ask.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl Blog, 1(8):9, 2019.

Abbas Rahimi, Simone Benatti, Pentti Kanerva, Luca Benini, and Jan M Rabaey. Robust hyper-
dimensional computing for brain-machine interfaces. In Proceedings of the IEEE International
Symposium on Low Power Electronics and Design (ISLPED), pp. 64—69, 2016.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings. In Proceedings of the 58th annual meeting
of the association for computational linguistics, pp. 4498-4507, 2020.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Hanwang Zhang. Transfernet: An effective and
transparent framework for multi-hop question answering over relation graph. arXiv preprint
arXiv:2104.07302, 2021.

Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang, and Bryan Hooi. Fidelis: Faithful reasoning in
large language model for knowledge graph question answering. arXiv preprint arXiv:2405.13873,
2024.

Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Open domain question answering using
early fusion of knowledge bases and text. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 4231-4242, 2018.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M Ni,
Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
language model on knowledge graph. arXiv preprint arXiv:2307.07697, 2023.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
arXiv preprint arXiv:1803.06643, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems (NeurlPS), 2022.

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Kang Liu,
and Jun Zhao. Generate-on-graph: Treat 1lm as both agent and kg in incomplete knowledge graph
question answering. arXiv preprint arXiv:2404.14741, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Dian Yang, Run-Ze Cui, and Karthik Narasimhan. React: Synergizing reasoning and
acting in language models. In ICLR, 2023.

Shunyu Yao, Dian Zhao, Luyu Yu, and Karthik Narasimhan. Tree of thoughts: Deliberate problem
solving with large language models. arXiv:2305.10601, 2024.

12

Under review as a conference paper at ICLR 2026

Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
201-206, 2016.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping Li, and Hong Chen. Subgraph

retrieval enhanced model for multi-hop knowledge base question answering. arXiv preprint
arXiv:2202.13296, 2022.

13

8

Under review as a conference paper at ICLR 2026

LLM USAGE

We used LLM solely as a language-editing assistant to polish wording and fix grammar, spelling,
and style for improved readability. The LLM did not contribute to research ideation, methodology,
experiments, analysis, results selection, or claim formation. All edits were reviewed and approved by
the authors, and no non-public data beyond the manuscript text was provided to the tool.

A NOTATION

Table 7: Notation used throughout the paper.

Notation Definition

G=W,8&) Knowledge graph with entity set } and edge set £.

zZ Set of relation schemas / path templates.

q,a Input question and (predicted) answer.

er An entity and a relation (schema edge), respectively.

z2=(ri,...,m¢) A relation path; |z| = £ denotes path length.

Zeand Candidate path set instantiated from G; N = | Zcana.

Liax, B, K Max plan depth, BFS beam width, and number of retrieved paths kept after pruning.

d, D, m Hypervector dimension, # of GHRR blocks, and block size (unitary m xm); flattened
d=Dm’.

Vo Hypervector for symbol z (entity/relation/path).

Vg, V2 Query-plan hypervector and a candidate-path hypervector.

H =[A:;...;Ap] A GHRR hypervector with unitary blocks A4; € U(m).

A* Conjugate transpose (unitary inverse) of a block A.

® GHRR blockwise binding operator (matrix product per block).

(A, B)r Frobenius inner product tr(A* B); || A r is the Frobenius norm.

sim(-,) Blockwise cosine similarity used for HD retrieval.

s(z) Calibrated retrieval score; «, 3, A are calibration hyperparameters; IDF(z) is an
inverse-frequency weight.

M, M Distractor set and its size M = | M| (used in capacity bounds).

€0 Tolerance and failure probability in the concentration/union bounds.

Absolute constant in the sub-Gaussian tail bound.

B ALGORITHM

Algorithm 1: HD-RETRIEVE: Hyperdimensional Top-K Path Retrieval

Input: question ¢; KG G; schema Z; max depth Ly,.x; beam width B; calibration (a, 8, \);

Top-K

Output: Top-K reasoning paths Zx and their scores

Plan: Generate relation-plan candidates P C Z (schema enumeration or lightweight prompting).

Encode Query: pick a plan z, € P and encode by GHRR v, = & v
unbinding used

// no

r€zq ' TC

Enumerate Candidates: Constrained BFS on relation graph up to depth L,,,, with beam width
B, instantiating path set Z (deduplicate, type-consistent).

for z € Z do

Encode Candidate: v, =) .. v

Score: scos(2)

rez T
VgV,

Vgl V=]l

Calibrate (optional): 5(2) = 5c0s(2) + IDF(2) — g Al
return Top-K paths by s(z) as Zk.

14

Under review as a conference paper at ICLR 2026

C PROMPT TEMPLATE FOR ONE-SHOT REASONING

System You are a careful reasoner. Only use the provided KG reasoning paths as
evidence. Cite the most relevant path(s) and answer concisely.

User Question: “$QUESTION”

Retrieved paths (Top-K):
1. $PATH_1

2. $PATH_2

3. ...

4. $PATH_K

Assistant (required format) Answer: $SHORT_ANSWER
Supporting path(s): [indexes from the list above]

Rationale (1-2 sentences): why those paths imply the answer.

Table 8: Prompt template for KG path—grounded QA.

D THEORETICAL SUPPORT

D.1 WHY HIGH DIMENSIONAL HYPERVECTORS? NEAR-ORTHOGONALITY AND CAPACITY

We justify the use of high-dimensional hypervectors in PathHD by showing that (i) random hypervec-
tors are nearly orthogonal with high probability, and (ii) this property is preserved under binding,
yielding exponential concentration that enables accurate retrieval at scale.

Setup. Let each entity/relation be encoded as a Rademacher hypervector x € {—1, +1}% with i.i.d.
(x,y)

= /- Since
1=[l ly |l

entries. For two independent hypervectors x, y, define cosine similarity cos(x,y)

x|l = llyll = Vd, we have cos(x,y) = & S5, @y
Proposition 2 (Near-orthogonality of random hypervectors). For any € € (0,1),

Pr(| cos(x,y)‘ >e€) < 2exp(—ieid).

Proof. Each product Zj, = xyy, is i.i.d. Rademacher with E[Z;] = 0 and | Z;| < 1. By Hoeffding’s
inequality, Pr (‘ZZ:l Zk‘ > ed) < 2exp(—e2d/2). Divide both sides by d to obtain the claim. [

Lemma 1 (Closure under binding). Letry, ..., 1, be independent Rademacher hypervectors and
define binding (element-wise product) p =11 ® - -- ® ry,. Then p is also a Rademacher hypervector.
Moreover, if s is independent of at least one r; used in p, then p and s are independent and
E[cos(p,s)] = 0.

Proof. Each coordinate py, = []!_; 7 is a product of independent Rademacher variables, hence
Rademacher. If s is independent of some 7, then py, s, has zero mean and remains bounded, implying
independence in expectation and the stated property. O

Theorem 1 (Separation and error bound for PathHD retrieval). Let the query hypervector be q =
r; ®--- Or, and consider a candidate set containing the true path p* = q and M distractors
{pi}M,, where each distractor differs from q in at least one relation (thus satisfies Lemma |). Then
foranye € (0,1) and § € (0,1), if

we have, with probability at least 1 — 6,
*

= Il <e.

cos(q,p*) =1 and 12?}(% | cos(q, p2)| €

15

Under review as a conference paper at ICLR 2026

Proof. By construction, p* = q, hence cosine = 1. For each distractor p;, Lemma | im-
plies that q and p; behave as independent Rademacher hypervectors; applying Proposition 2,

Pr(| cos(q, ps)| > €) < 2e~<"%/2. A union bound over M distractors yields Pr(max; | cos(q, p;)| >
€) < IMe—<d/2 < § under the stated condition on d. O

E ADDITIONAL PROOFS AND TAIL BOUNDS

Details for Prop. I. We view each GHRR block as a unitary matrix with i.i.d. phase (or signed)
entries, so blockwise products preserve unit norm and keep coordinates sub-Gaussian. Let X =

1 Z?:l &; with &; i.i.d., mean zero, 1)2-norm bounded. Applying Hoeffding/Bernstein, Pr(|X| >
€) < 2exp(—cde?), which yields the stated result after £ normalization. Unitary blocks ensure
no variance blow-up under binding depth; see also Plate (1995); Kanerva (2009) for stability of
holographic codes. O

F DATASET INTRODUCTION

We provide detailed descriptions of the three benchmark datasets used in our experiments:

WebQuestionsSP (WebQSP). WebQuestionsSP (WebQSP) (Yih et al., 2016) consists of 4,737
questions, where each question is manually annotated with a topic entity and a SPARQL query over
Freebase. The answer entities are within a maximum of 2 hops from the topic entity. Following prior
work (Sun et al., 2018), we use the standard train/validation/test splits released by GraftNet and the
same Freebase subgraph for fair comparison.

Complex WebQuestions—SP (CWQ-SP) (Talmor & Berant, 2018) is the Freebase/S-
PARQL-annotated variant of CWQ, aligning each question to a topic entity and an executable
SPARQL query over a cleaned Freebase subgraph. Questions are created by compositional expan-
sions of WebQSP (adding constraints, joins, and longer paths), and typically require up to 4-hop
reasoning. We use the standard train/dev/test split released with CWQ-SP for fair comparison.

GrailQA (Gu et al., 2021) is a large-scale KGQA benchmark with 64,331 questions. It focuses on
evaluating generalization in multi-hop reasoning across three distinct settings: i.i.d., compositional,
and zero-shot. Each question is annotated with a corresponding logical form and answer, and the
underlying KG is a cleaned subset of Freebase. We follow the official split provided by the authors
for fair comparison. In our experiments, we evaluate on the official dev set. The dev set is the authors’
held-out split from the same cleaned Freebase graph and mirrors the three generalization settings, it
is commonly used for ablations and model selection when the test labels are held out.

We follow the unified Freebase protocol (Bollacker et al., 2008), which contains approximately 88
million entities, 20 thousand relations, and 126 million triples. The official Hits@ 1/F1 scripts. For
GrailQA, numbers in the main results are reported on the dev split (and additionally on its IID
subset); many recent works adopt dev evaluation due to test server restrictions. WebQSP has no
official dev split under this setting. Additional statistics, including the number of reasoning hops and
answer entities, are shown in Table

Table 9: Statistics of Freebase-based KGQA datasets used in our experiments.

Dataset H Train Dev Test Typical hops KG

WebQSP (Yih et al., 2016) 3,098 - 1,639 1-2 Freebase
CWQ (Talmor & Berant, 2018) || 27,734 3,480 3,475 2-4 Freebase
GrailQA (Gu et al., 2021) 44,337 6,763 13,231 14 Freebase

16

Under review as a conference paper at ICLR 2026

G DETAILED BASELINE DESCRIPTIONS

We categorize the baseline methods into four groups and describe each group below.
G.1 EMBEDDING-BASED METHODS

* KV-Mem (Miller et al., 2016) uses a key-value memory architecture to store knowledge triples and
performs multi-hop reasoning through iterative memory operations.

* EmbedKGQA (Saxena et al., 2020) formulates KGQA as an entity-linking task and ranks entity
embeddings using a question encoder. NSM (He et al., 202 1) adopts a sequential program execution
framework over KG relations, learning to construct and execute reasoning paths.

» TransferNet (Shi et al., 2021) builds on GraftNet by incorporating both relational and text-based
features, enabling interpretable step-wise reasoning over entity graphs.

G.2 RETRIEVAL-AUGMENTED METHODS

» GraftNet (Sun et al., 2018) retrieves question-relevant subgraphs and applies GNNs for reasoning
over linked entities.

* SR+NSM (Zhang et al., 2022) retrieves relation-constrained subgraphs and runs NSM over them
to generate answers.

* SR+NSM+E2E (Zhang et al., 2022) further optimizes SR+NSM via end-to-end training of the
retrieval and reasoning modules.

* UniKGQA (Jiang et al., 2022) unifies entity retrieval and graph reasoning into a single LLM-in-
the-loop architecture, achieving strong performance with reduced pipeline complexity.

G.3 PURELLMS

e ChatGPT (Ouyang et al., 2022), Davinci-003 (Ouyang et al., 2022), and GPT-4 (Achiam et al.,
2023) serve as closed-book baselines using few-shot or zero-shot prompting.

* StructGPT (Jiang et al., 2023) generates structured reasoning paths in natural language form, then
executes them step by step.

* ROG (Luo et al., 2023) reasons over graph-based paths with alignment to LLM beliefs.

* Think-on-Graph (Sun et al., 2023) prompts the LLM to search symbolic reasoning paths over a
KG and use them for multi-step inference.

G.4 LLMs + KG METHODS

* GoG (Xu et al., 2024) adopts a plan-then-retrieve paradigm, where an LLM generates reasoning
plans and a KG subgraph is retrieved accordingly.

* KG-Agent (Jiang et al., 2024) turns the KGQA task into an agent-style decision process using
graph environment feedback.

* FiDeLiS (Sui et al., 2024) fuses symbolic subgraph paths with LLM-generated evidence, filtering
hallucinated reasoning chains.

» PathHD (ours) proposes a vector-symbolic integration pipeline where top-K relation paths are
selected by vector matching and adjudicated by an LLM, combining symbolic controllability with
neural flexibility.

H DETAILED EXPERIMENTAL SETUPS

We follow a unified evaluation protocol: Freebase KG with the official Hits@1/F1 scripts for
WebQSP, CWQ, and GrailQA, and, whenever comparable, we adopt the official numbers reported
by the original papers. Concretely, we take results for KV-Mem (Miller et al., 2016), GraftNet (Sun
et al., 2018), EmbedKGQA (Saxena et al., 2020), NSM (He et al., 2021), TransferNet (Shi et al.,
2021), SR+NSM and its end-to-end variant (SR+NSM+E2E) (Zhang et al., 2022), UniKGQA (Jiang
et al.,, 2022), RoG (Luo et al., 2023), StructGPT (Jiang et al., 2023), Think-on-Graph (Sun et al.,
2023), GoG (Xu et al., 2024), and FiDeLiS (Sui et al., 2024) directly from the respective papers or
their consolidated tables under the same setting. We further include a pure-LLM category: ChatGPT,
Davinci-003, and GPT-4, whose numbers are taken from the unified table in KG-Agent (Jiang et al.,
2024); note that its GrailQA scores are on the dev split. The KG-Agent results themselves are also
copied from Jiang et al. (2024). Entries marked with * are our own reproductions under this protocol,
while — indicates that a metric was not reported (or not directly comparable) in the original work.

17

Under review as a conference paper at ICLR 2026

I ADDITIONAL EXPERIMENTS

I.1 ADDITIONAL ANALYTIC EFFICIENCY
Method H #LLM calls / query Planning depth Retrieval fanout/beam Executor/Tools
KV-Mem (Miller et al., 2016) 0 multi-hop (learned) moderate Yes (neural mem)
EmbedKGQA (Saxena et al., 2020) 0 multi-hop (seq) moderate No
NSM (He et al., 2021) 0 multi-hop (neural) moderate Yes (neural executor)
TransferNet (Shi et al., 2021) 0 multi-hop moderate No
GraftNet (Sun et al., 2018) 0 multi-hop graph fanout No
SR+NSM (Zhang et al., 2022) 0 multi-hop subgraph (beam) Yes (neural exec)
SR+NSM+E2E (Zhang et al., 2022) 0 multi-hop subgraph (beam) Yes (end-to-end)
ChatGPT (Ouyang et al., 2022) 1 0 n/a No
Davinci-003 (Ouyang et al., 2022) 1 0 n/a No
GPT-4 (Achiam et al., 2023) 1 0 n/a No
UniKGQA (Jiang et al., 2022) 1-2 shallow small/merged No (unified model)
StructGPT (Jiang et al., 2023) 1-2 1 n/a Yes (tool use)
RoG (Luo et al., 2023) ~dxb d b (per step) No (LLM scoring)
Think-on-Graph (Sun et al., 2023) 3-6 multi small/beam Yes (plan & react)
GoG (Xu et al., 2024) 3-5 multi small/iterative Yes (generate-retrieve loop)
KG-Agent (Jiang et al., 2024) 3-8 multi small Yes (agent loop)
FiDeLiS (Sui et al., 2024) 1- shallow small Optional (verifier)
PathHD (ours) 1 (final only) 0 vector ops only No (vector ops)

Table 10: Full analytical comparison (no implementation). Ranges reflect algorithm design; d and b
denote planning depth and beam/fanout as specified in RoG, which uses beam-search with B = 3
and path length bounded by dataset hops (WebQSP< 2, CWQ< 4).

1.2 SCORING METRIC

790 WebQSP CWQ GrailQA
66.0]
78.6 65.8 87.0
86.7
78.5
65.5
- 78.2 653 | g6.5 86.3
< 78.0 o 65.0 s :
86.01 858
71.5 643
85.5
N ‘ ‘ 640 ‘ < ‘ ‘ ‘ < ‘ ‘
< < < <] < < < < < ' &
I O & &S & &S
@QO% \00% ,&Q‘OG .\%\‘U \560% @C’O% \QO% ‘06 \%\% 00% 600% \CO% R ‘Qb Q\é\ QO%
PSR A SRRV e R
S o ~ad
@\0 @‘b Q,\O é\w Q)\O é\fv
Blockwise Cosine Wl Global Cosine Dot Product L2 Distance Max-block Cosine

Figure 5: Scoring measurement ablation. We evaluate F1 (%) on WebQSP, CWQ, and GrailQA
using different scoring strategies in our model. PathHD achieves the best or competitive results when
using blockwise cosine similarity, highlighting its effectiveness in capturing fine-grained matching
signals across vector blocks.

18

Under review as a conference paper at ICLR 2026

1.3 ADDITIONAL VISUALIZATION

CWQ Latency comparison (with PathHD pruning)

KV-Mem - 00—

NSM - 00—

ChatGPT (1 call) | o

GPT-4 (1 call)

e

UniKGQA (1-2 calls) 1

®

StructGPT (1-2 calls) A
Think-on-Graph (3-6) 1

®

GoG (3-5) 1
KG-Agent (3-8)

RoG (B=3, D<4 — 12) 1

PathHD (ours, 1 call) 1 0!

10°

10"

Per-query latency (s) — median with p90 whisker

Assumptions: each LLM call median~2.2s, p90~3.4s; non-LLM ops 0.3-0.8s.

RoG uses beam B=3, depth D<4 (=12 calls). PathHD uses vector scoring + top-K pruning; here PRUNE_FACTOR=0.85, TAIL_SHRINK=0.9.

Figure 6: CWQ latency comparison (lollipop). Dots indicate median per-query latency; right whiskers
show the 90th percentile (p90). The x-axis is log-scaled. Values are estimated under a unified setup:
per-LLM-call median ~ 2.2 s and p90 ~ 3.4 s; non-LLM operations add 0.3-0.8 s. RoG follows
beam width B=3 with depth bounded by dataset hops (D <4, ~12 calls), whereas PathHD uses a

single LLM call plus vector operations for scoring.

1.4 EFFECT OF BACKBONE MODELS

Performance across different LLM backbones is shown in Table

Table 11: Performance across different LLM backbones. Each block fixes the backbone and varies
the reasoning framework: a pure LLM control (CoT), our single-call PathHD, and 1-2 multi-step

LLM+KG baselines. Metrics follow the unified Freebase setup.

Backbone Method WebQSP CWQ GrailQA (F1) #Calls
Hits@1 /F1 Hits@1/F1 Overall/IID (/query)
CoT [2022] 73.2/62.3 55.6/49.9 31.7/25.0 1
RoG [2023] 85.7/70.8 62.6/56.2 -/- ~ 12
GPT-4 (APD) KG-Agent [2024] 83.3/81.0 72.2/69.8 86.1/92.0 3-8
PathHD (single-call) 86.2/78.6 71.5/65.8 86.7/92.4 1
CoT [2022] 67.4/59.3 47.5/432 25.3/19.6
StructGPT [2023] 72.6/63.7 54.3/49.6 54.6/70.4 1-2
GPT-3.5/ ChatGPT RoG [2023] 85.0/70.2 61.8/55.5 -/- ~ 12
PathHD (single-call) 85.6/78.0 70.8/65.1 85.9/91.7 1
CoT (prompt-only) 62.0/55.0 43.0/40.0 20.0/16.0 1
Llama-3-8B-Instruct (open) ReAct-Lite (retrieval+CoT) 70.5/62.0 52.0/47.5 48.0/62.0 3-5
BM25+LLM-Verifier (1x) 74.5/66.0 55.0/50.0 52.0/66.0 1
PathHD (single-call) 84.8/77.2 69.8/64.2 84.9/90.9 1

19

Under review as a conference paper at ICLR 2026

1.5 ADDITIONAL CASE STUDY

Table 12 presents additional WebQSP case studies for Pat hHD. Unlike the main paper’s case table
(Top-4 candidates with pruning to K =3), this appendix visualizes the Top-3 highest-scoring relation
paths for readability and then prunes to K =2 before a single-LLM adjudication.

Across the four examples (Cases 3—-6), pruning to K =2 often retains the correct path and achieves
strong final answers after LLM adjudication. However, we also observe a typical failure mode of the
vector-only selector under K =2: when multiple plausible paths exist (e.g., country vs. continent, or
actor vs. editor constraints), the vector-only choice can become brittle and select a high-scoring but
underconstrained path, after which the LLM must recover the correct answer using the remaining
candidate (see Case 4). In contrast, the main-paper setting with K =3 keeps one more candidate,
which more reliably preserves a constraint-satisfying path (e.g., explicitly encoding actor or continent
relations). This extra coverage reduces reliance on the LLM to repair mistakes and improves
robustness under compositional queries.

While K=2 is cheaper and can work well in many instances, K =3 offers a better coverage—
precision trade-off on average: it mitigates pruning errors in compositional cases and lowers the risk
of discarding the key constraint path. This aligns with our main experimental choice of K'=3, which
we use for all reported metrics in the paper.

Case-study note. For the qualitative case studies only, we manually verified the final entity answers
using publicly available sources (e.g., film credits and encyclopedia entries). This light-weight human
verification was used solely to present readable examples; it does not affect any quantitative metric.
All reported metrics (e.g., Hits@1 and F1) are computed from dataset-provided supervision and
ground-truth paths without human annotation.

20

Under review as a conference paper at ICLR 2026

Table 12: Case studies for PathHD with an illustrative display of candidates. For each query, we
list the four highest-scoring relation paths (Top-4) for readability, then prune to K = 2 before the
vector-only choice and a single-LLLM adjudication.

Case 3: where are the gobi desert located on a map

Top-3 candidates

1) location.location.containedby (0.3410)
2) location.location.partially_containedby (0.3335)
3) location.location.contains (0.3255)

Top-K after pruning

containedby

(K=2) partially_containedby
Vector-only (no LLM) Pick containedby v/ — returns parent region; predicts Asia.
1xLLM adjudication Rattona{e: Gobi De?fin lles.acr’oss Mongolzq and. Chffza, which are contained by
the continent of Asia; ‘contains’ would flip direction.
Final Answer / GT Asia (predict) / Asia v/

Case 4: in which continent is germany

Top-3 candidates

1) location.location.containedby (0.3405)
2)base.locations.countries.continent (0.3325)
3) location.location.contains (0.3270)

Top-K after pruning containedby
(K=2) countries.continent
Pick containedby X — tends to surface EU or administrative parents, hurting
Vector-only (no LLM) precision.
N Rationale: “The target is a country — continent query; use
1XLLM adjudication countries.continent to directly map Germany to Europe.”
Final Answer / GT Europe (predict) / Europe v/

Case 5: what is the hometown of the person who said “Forgive your enemies, but never forget their names?”

Top-3 candidates

1) quotation.author — person.place_of_birth (0.3380)
2) family.members — person.place_of_birth (0.3310)
3) quotation.author — location.people_born_here (0.3310)

Top-K after pruning

quotation.author — place_of_birth

(K=2) family.members — place_of_birth
Vector-only (no LLM) Pick quotation .'author — place_of_birth v — direct trace from
quote to person to birthplace.
e ae e Rationale: “The quote’s author is key; once identified, linking to their birthplace
1xLLM adjudication via person-level relation gives the hometown.”
Final Answer / GT Brooklyn (predict) / Brooklyn v/

Case 6: what is the name of the capital of Australia where the film “The Squatter’s Daughter” was made

Top-3 candidates

1) film.film_location.featured_in_films (0.3360)
2)notable_types — newspaper_circulation_area.newspapers
— newspapers (0.3330)

3) film_location.featured_in_films —
bibs_location.country (0.3310)

Top-K after pruning

film.film_location.featured_in_films

(K=2) notable_types — newspaper_circulation_area.newspapers
Pick film.film_location.featured_in_films v — retrieves film-
Vector-only (no LLM) . LT . . .
ing location; indirectly infers capital via metadata.
Rationale: “The film’s production location helps localize the city. Although not
1xLLM adjudication all locations are capitals, this film was made in Australia, where identifying the
filming city leads to the capital.”
Final Answer / GT Canberra (predict) / Canberra v/

21

Under review as a conference paper at ICLR 2026

J DETAILED INTRODUCTION OF THE MODULES

J.1 BINDING OPERATIONS

Below we summarize the binding operators considered in our system and ablations. All bindings
produce a composed hypervector s from two inputs x and y of the same dimensionality.

(1) XOR / Bipolar Product (commutative). For binary hypervectors x,y € {0, 1}¢,
s=xdYy, s; = (z; + ;) mod 2.
Under the bipolar code {—1, 41}, XOR is equivalent to element-wise multiplication:
Si =X+ Yi, z;y; € {—1,+1}

This is the classical commutative bind baseline used in our ablation.

(2) Real-valued Element-wise Product (commutative). For real vectors x,y € R4,
s=x0Y, Si = TiYi-

Unbinding is approximate by element-wise division (with small € for stability): z; ~ s;/(y; + ¢€).
This is another variant of the commutative bind.

(3) HRR: Circular Convolution (commutative). For x,y € R?,

d—1
S=X®Y, Skzzxiy(kfi)modd-
i=0
Approximate unbinding uses circular correlation:
d—1
xrs® ly, T R Z Sk Y(k—i) mod d-
k=0

This is the Circ. conv condition in our ablation.

(4) FHRR / Complex Phasor Product (commutative). Letx,y € C? with unit-modulus compo-
nents x; = e'%i, y; = e'¥:. Binding is element-wise complex multiplication

S=x0 Y, S = LY = el(¢7+,¢1)7

and unbinding is conjugation: x ~ s ® y*. FHRR is often used as a complex analogue of HRR.

(5) Block-diagonal GHRR (ron-commautative, ours). We use Generalized HRR with block-unitary
components. A hypervector is a block vector H = [A;;...; Ap], A; € U(m) (so total dimension
d = Dm? when flattened). Given X = [Xi;...;Xp]and Y = [Y;...;Yp], binding is the
block-wise product

Z=XeY, Z=X;Y;(j=1,...,D).

Since matrix multiplication is generally non-commutative (X;Y; # Y;.X;), GHRR preserves or-
der/direction of paths. Unbinding exploits unitarity:

This Block-diag (GHRR) operator is our default choice and achieves the best performance in the
operation study (Table 3), compared to Comm. bind and Circ. conv.

22

	Introduction
	Method
	Problem Setup & Notation
	Hypervector Initialization
	GHRR Binding and Path Encoding
	Query & Candidate Path Construction
	HD Retrieval: Blockwise Similarity and Top-K
	One-shot Reasoning with Retrieved Paths
	Theoretical & Complexity Analysis

	Experiments
	Datasets, Baselines, and Setup
	Reasoning Peformance Comparison
	Efficiency and Cost Analysis
	Ablation Study
	Case Study

	Related Work
	Conclusion
	Notation
	Algorithm
	Prompt Template for One-shot Reasoning
	Theoretical Support
	Why High Dimensional Hypervectors? Near-Orthogonality and Capacity

	Additional Proofs and Tail Bounds
	Dataset Introduction
	Detailed Baseline Descriptions
	Embedding-based methods
	Retrieval-augmented methods
	Pure LLMs
	LLMs + KG methods

	Detailed Experimental Setups
	Additional Experiments
	Additional Analytic efficiency
	Scoring Metric
	Additional Visualization
	Effect of Backbone Models
	Additional Case Study

	Detailed Introduction of the Modules
	Binding Operations

