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ABSTRACT

Recent advances in large language models (LLMs) have enabled strong reasoning
over structured and unstructured knowledge. When grounded on knowledge graphs
(KGs), however, prevailing pipelines rely on neural encoders to embed and score
symbolic paths, incurring heavy computation, high latency, and opaque decisions,
which are limitations that hinder faithful, scalable deployment. We propose a
lightweight, economical, and transparent KG reasoning framework, PathHD, that
replaces neural path scoring with hyperdimensional computing (HDC). PathHD
encodes relation paths into block-diagonal GHRR hypervectors, retrieves candidates
via fast cosine similarity with Top-K pruning, and performs a single LLM call to
produce the final answer with cited supporting paths. Technically, PathHD provides
an order-aware, invertible binding operator for path composition, a calibrated
similarity for robust retrieval, and a one-shot adjudication step that preserves
interpretability while eliminating per-path LLM scoring. Extensive experiments on
WebQSP, CWQ, and the GrailQA split show that PathHD (i) achieves comparable
or better Hits@1 than strong neural baselines while using one LLM call per query;
(ii) reduces end-to-end latency by 40–60% and GPU memory by 3–5× thanks
to encoder-free retrieval; and (iii) delivers faithful, path-grounded rationales that
improve error diagnosis and controllability. These results demonstrate that HDC
is a practical substrate for efficient KG–LLM reasoning, offering a favorable
accuracy–efficiency–interpretability trade-off.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly advanced reasoning over both text and structured
knowledge. Typical pipelines follow a retrieve–then–reason pattern: they first surface evidence
(documents, triples, or relation paths), then synthesize an answer using a generator or a verifier (Lewis
et al., 2020; Press et al., 2022; Yao et al., 2023; Wei et al., 2022; Yao et al., 2024). In knowledge-graph
question answering (KGQA), this often becomes path-based reasoning: systems construct candidate
relation paths that connect the topic entities to potential answers and pick the most plausible ones
for final prediction (Sun et al., 2018; Jiang et al., 2022; 2023; 2024; Luo et al., 2023). While these
approaches obtain strong accuracy on WebQSP, CWQ, and GrailQA, they typically depend on heavy
neural encoders (e.g., Transformers or GNNs) or repeated LLM calls to rank paths, which makes
them slow and expensive at inference time—especially when many candidates must be examined.

Figure 1 highlights two recurring issues in KG–LLM reasoning. ❶ Path–query mismatch: Order-
insensitive encodings, weak directionality, and noisy similarity often favor superficially related yet
misaligned paths, blurring the question’s intended relation. ❷ Per-candidate LLM scoring: Many
systems score candidates sequentially, so latency and token cost grow roughly linearly with set
size; batching is limited by context/API, and repeated calls introduce instability, yet models can
still over-weight long irrelevant chains, hallucinate edges, or flip relation direction. Most practical
pipelines first detect a topic entity, enumerate 10∼100 length-1–4 paths, then score each with a neural
model or LLM, sending top paths to a final step (Sun et al., 2018; Luo et al., 2023; Jiang et al., 2024).
This hard-codes two inefficiencies: (i) neural scoring dominates latency (fresh encoding/prompt
per candidate), and (ii) loose path semantics (commutative/direction-insensitive encoders conflate
founded_by→CEO_of with its reverse), which compounds on compositional/long-hop questions.
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Hallucination due to non-faithful reasoning over KG.
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path (founder/CEO).

Outcome: Incorrect reasoning despite access to KG 
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Path
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Evaluation is sequential / hard to parallelize.
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LLM-based Path Scoring Methods

Issue:

Best Path

correct (not chosen)
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“A class of prior methods: per-path LLM evaluation

Path #2 LLM Score s2

Two Major Pain Points in KG-LLM Reasoning

Input Query: "Which company acquired SolarCity?”

Figure 1: Two pain points in KG–LLM reasoning. (Left) The method selects a path that does not
match the query relation, leading to wrong answers even with KG access; (Right) per-path LLM
scoring incurs high latency and cost because candidates are evaluated one by one.

Hyperdimensional Computing (HDC) offers a different lens: represent symbols as long, nearly-
orthogonal hypervectors and manipulate structure with algebraic operations such as binding and
bundling (Kanerva, 2009; Plate, 1995). HDC has been used for fast associative memory, robust
retrieval, and lightweight reasoning because its core operations are elementwise or blockwise and
parallelize extremely well on modern hardware (Frady et al., 2021). Encodings tend to be noise-
tolerant and compositional; similarity is computed by simple cosine or dot product; and both
storage and computation scale linearly with dimensionality. Crucially for KGQA, HDC supports
order-sensitive composition when the binding operator is non-commutative, allowing a path like
r1→ r2→ r3 to be distinguished from its permutations while remaining a single fixed-length vector.
This makes HDC a promising substrate for ranking many candidate paths without invoking a neural
model for each one.

Motivated by these advantages, we introduce PathHD (HyperDimensional Path Retrieval), a
lightweight retrieval-and-reason framework for KGQA. First, we map every relation to a block-
diagonal unitary representation and encode a candidate path by non-commutative Generalized Holo-
graphic Reduced Representation (GHRR) binding; this preserves order and direction in a single
hypervector. In parallel, we encode the query into the same space to obtain a query hypervector.
Second, we score all candidates via cosine similarity to the query hypervector and keep only the
top-K paths with a simple, parallel Top-K selection. Finally, instead of per-candidate LLM calls,
we make one LLM call that sees the question plus these top-K paths (verbalized), and it outputs the
answer along with cited supporting paths. In effect, PathHD addresses both pain points in Fig. 1:
order-aware binding reduces path–query mismatch, and vector-space scoring eliminates per-path
LLM evaluation, cutting latency and token cost. Our contributions can be summarized as follows.

❶ A fast, order-aware retriever for KG paths. We present PathHD, which uses GHRR-based,
non-commutative binding to encode relation sequences into hypervectors and ranks candidates
with plain cosine similarity—no neural encoders and no per-path prompts. This design keeps a
symbolic structure while enabling fully parallel scoring with O(Nd) complexity.

❷ An efficient one-shot reasoning stage. PathHD replaces many LLM scoring calls with a single,
final LLM adjudication over the top-K paths. This decouples retrieval from generation, lowers
token usage, and improves wall-clock latency without sacrificing interpretability: the model cites
the supporting path(s) it used.

❸ Extensive validation and operator study. On WebQSP, CWQ, and GrailQA, PathHD achieves
competitive Hits@1 with markedly lower cost. An ablation on binding operators shows that
our block-diagonal (GHRR) binding outperforms commutative binding and circular convolution,
confirming the value of order preservation; additional studies analyze the impact of top-K pruning
and latency–accuracy trade-offs.
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Input Query q (e.g., "Which
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Figure 2: Overview of PathHD: a Plan → Encode → Retrieve → Reason pipeline. We generate rela-
tion plans, encode them into order-aware GHRR hypervectors, rank candidates with blockwise cosine
similarity and Top-K pruning, and then make a single LLM call to answer with cited paths—keeping
the heavy work in cheap vector operations.

2 METHOD

The proposed PathHD follows a Plan → Encode → Retrieve → Reason pipeline (Figure 2). (i)
We first generate or select relation plans that describe how an answer can be reached (schema
enumeration optionally refined by a light prompt). (ii) Each plan is mapped to a hypervector via
a non-commutative GHRR binding so that order and direction are preserved. (iii) We compute a
blockwise cosine similarity in the hypervector space and apply Top-K pruning. (iv) Finally, a single
LLM call produces the answer with path-based explanations. This design keeps the heavy lifting in
cheap vector operations, delegating semantic adjudication to one-shot LLM reasoning.

2.1 PROBLEM SETUP & NOTATION

Given a question q, a knowledge graph (KG) G, and a set of relation schemas Z , the goal is to predict
an answer a. We denote entities by e, relations by r, and a relation path by z = (r1, . . . , rℓ). A key
challenge is to efficiently locate a small set of plausible paths for q from a very large candidate pool,
and then let an LLM reason over only those paths. A summary of the notation through out the paper
can be found in Appendix A.

2.2 HYPERVECTOR INITIALIZATION

We work in a Generalized Holographic Reduced Representations (GHRR) space. Each atomic symbol
x (relation or, optionally, entity) is assigned a d-dimensional hypervector vx∈Cd constructed as a
block vector of unitary matrices:

vx = [A
(x)
1 ; . . . ;A

(x)
D ], A

(x)
j ∈ U(m), d = Dm2.

In practice we sample each block from a simple unitary family for efficiency, e.g., A(x)
j =

diag(eiϕj,1 , . . . , eiϕj,m) with ϕj,ℓ ∼ Unif[0, 2π), or a random Householder product. Blocks are
ℓ2-normalized so that all hypervectors have unit norm. This initialization yields near-orthogonality
among symbols, which concentrates with dimension (cf. Prop. 1).

Query hypervector. For a question q, we obtain a query hypervector in two ways depending on the
planning route used in Section 2: (i) plan-based—encode the selected relation plan zq = (r1, . . . , rℓ)
using the same GHRR binding as paths (see Eq. equation 2); or (ii) text-projection—embed q with a
sentence encoder (e.g., SBERT) to hq ∈Rdt and project to the HDC space by a fixed (or learned)
linear map P ∈Rd×dt , then block-normalize:

vq = Nblock
(
P hq

)
.

Both choices produce a query hypervector compatible with GHRR scoring; we use plan-based
encoding by default and report the text-projection variant in ablations.

3
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2.3 GHRR BINDING AND PATH ENCODING

A GHRR hypervector is a block vector H = [A1; . . . ;AD] with Aj ∈U(m). Given two hypervectors
X = [X1; . . . ;XD] and Y = [Y1; . . . ;YD], the binding operator is the block-wise product

Z = X ⊛ Y, Zj = XjYj (j = 1, . . . , D).

Because matrix multiplication is non-commutative (XjYj ̸= YjXj), the encoding preserves order
and directionality of relations—critical for multi-hop KG reasoning. Unbinding exploits unitarity:

Xj ≈ ZjY
∗
j , Yj ≈ X∗

j Zj ,

enabling approximate recovery of constituents and interpretable compositions.

A length-ℓ relation path z = (r1, . . . , rℓ) is encoded as

vz =
ℓ
⊛
i=1

vri = vr1 ⊛ vr2 ⊛ · · · ⊛ vrℓ , (1)

followed by block-wise normalization to unit norm.

Discussion: Why GHRR as the binding operator. Classical HDC bindings (XOR, element-wise
multiplication, circular convolution) are commutative, which collapses r1→r2 and r2→r1 to similar
codes and hurts directional reasoning. GHRR is non-commutative, invertible at the block level, and
offers higher representational capacity via unitary blocks, leading to better discrimination between
paths of the same multiset but different order. We empirically validate this choice in the ablation
study (Table 3), where GHRR consistently outperforms commutative bindings. An introduction to
binding operations is provided in Appendix J.

Encoding a path. A path z = (r1, . . . , rℓ) is encoded by iterated binding

vz =
ℓ
⊛
i=1

vri , (2)

where ⊛ denotes left-to-right blockwise multiplication of the corresponding relation hypervectors.

2.4 QUERY & CANDIDATE PATH CONSTRUCTION

We obtain a query plan zq via schema-based enumeration (depth ≤ Lmax) and, when helpful, refine or
rank these plans by a lightweight prompt. The query hypervector vq follows Equation (2). Candidate
paths Z are instantiated from the KG either by matching plan templates or by a constrained BFS with
beam width B; both yield symbolic paths that are then deterministically mapped to hypervectors.

2.5 HD RETRIEVAL: BLOCKWISE SIMILARITY AND TOP-K

Let ⟨A,B⟩F := tr(A∗B) be the Frobenius inner product. Given two GHRR hypervectors X =
[Xj ]

D
j=1 and Y = [Yj ]

D
j=1, we define the blockwise cosine similarity

sim(X,Y) =
1

D

D∑
j=1

ℜ ⟨Xj , Yj⟩F
∥Xj∥F ∥Yj∥F

. (3)

For each candidate z ∈ Z we compute sim(vq,vz) and (optionally) apply a calibrated score

s(z) = sim(vq,vz) + α IDF(z) − β λ|z|,

then keep the Top-K for reasoning. All computations are O(d) per candidate and require no
backpropagation.

2.6 ONE-SHOT REASONING WITH RETRIEVED PATHS

We linearize the Top-K paths into concise natural-language statements and issue a single LLM call
with a minimal, citation-style prompt (see Table 8 from Appendix C). The prompt lists the question
and the numbered paths, and requires the model to return a short answer, the index(es) of supporting
path(s), and a 1–2 sentence rationale. This one-shot format constrains reasoning to the provided
evidence, resolves near-ties and direction errors, and keeps LLM usage minimal.

4
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2.7 THEORETICAL & COMPLEXITY ANALYSIS

The probability of a false match under random hypervectors decays exponentially with dimension d,
implying a capacity scaling d = O(ϵ−2 logM). Retrieval costs O(Nd), while neural encoders (e.g.,
RoG) typically incur O(NLd2), yielding an O(Ld) multiplicative reduction in our favor.
Proposition 1 (Near-orthogonality and distractor bound). Let {vr} be i.i.d. GHRR hypervectors with
zero-mean, unit Frobenius-norm blocks. For a query path zq and any distractor z ̸= zq encoded via
non-commutative binding, the cosine similarity X = sim(vzq ,vz) (Equation (3)) satisfies, for any
ϵ > 0,

Pr(|X| ≥ ϵ) ≤ 2 exp
(
−c d ϵ2

)
,

for an absolute constant c > 0 depending only on the sub-Gaussian proxy of entries.

Proof sketch. Each block inner product ⟨Xj , Yj⟩F is a sum of products of independent sub-Gaussian
variables (closed under products for bounded/phase variables used by GHRR). After normalization,
the average in Equation (3) is a mean-zero sub-Gaussian average over d degrees of freedom, hence
the Bernstein/Hoeffding tail bound. Details in Appendix E.

Corollary 1 (Capacity with union bound). Let M be M distractor paths scored against a fixed query.
With probability at least 1− δ,

max
z∈M

sim(vzq ,vz) ≤ ϵ whenever d ≥ 1

c ϵ2
log

2M

δ
.

Method Candidate
Path Gen. Scoring Reasoning

StructGPT [2023] ! ! !

FiDeLiS 2024 ! % !

ToG [2023] ! ! !

GoG [2024] ! ! !

KG-Agent [2024] ! ! !

RoG [2023] ! % !

PathHD % % ! (1 call)

Table 1: LLM usage across pipeline stages. Can-
didate Path Gen.: using an LLM to propose/ex-
pand relation paths; Scoring: using an LLM to
score/rank candidates (non-LLM similarity/graph
heuristics count as “no”); Reasoning: using an
LLM to produce the final answer from the retrieved
paths. PathHD uses a single LLM call only in the
final reasoning step.

Complexity comparison with neural retriev-
ers. Let N be the number of candidates, d
the embedding dimension, and L the number of
encoder layers used by neural retrieval. Neu-
ral encoding + scoring costs O(NLd2). In
contrast, PathHD forms each path vector by
|z|−1 block multiplications plus one similarity
in Equation (3), i.e., O(|z|d) + O(d) per can-
didate, giving total O(Nd) — an O(Ld)-fold
reduction.

In addition to the O(Nd) vs. O(NLd2) com-
pute gap, end-to-end latency is dominated by
the number of LLM calls. Table Table 1 con-
trasts pipeline stages across methods: unlike
prior agents that query an LLM for candidate
path generation and sometimes scoring, PathHD
defers a single LLM call to the final reasoning
step. This design reduces both latency and API
cost; empirical results in Section 3.3 confirm the
shorter response times.

3 EXPERIMENTS

We evaluate PathHD against state-of-the-art baselines for reasoning accuracy, measure efficiency
with a focus on latency, and conduct module-wise ablations, followed by illustrative case studies.

3.1 DATASETS, BASELINES, AND SETUP

We evaluate on three standard multi-hop KGQA benchmarks—WebQuestionsSP (WebQSP) (Yih
et al., 2016), Complex WebQuestions (CWQ) (Talmor & Berant, 2018), and GrailQA (Gu et al.,
2021), all grounded in Freebase (Bollacker et al., 2008). These datasets span increasing reasoning
complexity (roughly 2–4 hops): WebQSP features simpler single-turn queries, CWQ adds composi-
tional and constraint-based questions, and GrailQA stresses generalization across i.i.d., compositional,
and zero-shot splits. We compare against four families of methods: embedding-based, retrieval-
augmented, pure LLMs (no external KG), and LLMs+KG hybrids. All results are reported on

5
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WebQSP CWQ GrailQA (F1)Type Methods Hits@1 F1 Hits@1 F1 Overall IID
KV-Mem (Miller et al., 2016) 46.7 34.5 18.4 15.7 − −
EmbedKGQA (Saxena et al., 2020) 66.6 − 45.9 − − −
NSM (He et al., 2021) 68.7 62.8 47.6 42.4 − −Embedding

TransferNet (Shi et al., 2021) 71.4 − 48.6 − − −
GraftNet (Sun et al., 2018) 66.4 60.4 36.8 32.7 − −
SR+NSM (Zhang et al., 2022) 68.9 64.1 50.2 47.1 − −
SR+NSM+E2E (Zhang et al., 2022) 69.5 64.1 49.3 46.3 − −Retrieval

UniKGQA (Jiang et al., 2022) 77.2 72.2 51.2 49.1 − −
ChatGPT (Ouyang et al., 2022) 67.4 59.3 47.5 43.2 25.3 19.6
Davinci-003 (Ouyang et al., 2022) 70.8 63.9 51.4 47.6 30.1 23.5Pure LLMs
GPT-4 (Achiam et al., 2023) 73.2 62.3 55.6 49.9 31.7 25.0
StructGPT (Jiang et al., 2023) 72.6 63.7 54.3 49.6 54.6 70.4
ROG (Luo et al., 2023) 85.7 70.8 62.6 56.2 − −
Think-on-Graph (Sun et al., 2023) 81.8 76.0 68.5 60.2 − −
GoG (Xu et al., 2024) 84.4 − 75.2 − − −
KG-Agent (Jiang et al., 2024) 83.3 81.0 72.2 69.8 86.1 92.0
FiDeLiS (Sui et al., 2024) 84.4 78.3 71.5 64.3 − −

LLMs + KG

PathHD 86.2 78.6 71.5 65.8 86.7 92.4

Table 2: Comparison on Freebase-based KGQA. Our method PathHD follows exactly the same
protocol. “-” indicates that the metric was not reported under the Freebase+official-script setting. We
bold the best and underline the second-best score for each metric/column.
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Figure 3: Visualization of performance and latency. The x-axis is Hits@1 (%), the y-axis is
per-query latency in seconds (median, log scale). Bubble size indicates the average number of LLM
calls; marker shape denotes the method family. PathHD gives strong accuracy with lower latency
than multi-call LLMs+KG baselines.

dev (IID) splits under a unified Freebase evaluation protocol using the official Hits@1 and F1 scripts.
Detailed dataset statistics, baseline lists, and experimental settings are provided in Appendices F to H.

3.2 REASONING PEFORMANCE COMPARISON

We evaluate under a unified Freebase protocol with the official Hits@1/F1 scripts on WebQSP, CWQ,
and GrailQA (dev, IID); results are in Table 2. Baselines cover classic KGQA (Embedding/Retrieval),
recent LLMs+KG systems, and Pure LLMs. Our PathHD uses hyperdimensional scoring with
GHRR, top-K pruning, and a single LLM adjudication. Key observations emerge: Obs.❶ SOTA on
WebQSP/GrailQA; competitive on CWQ. PathHD attains best WebQSP Hits@1 (86.2) and best
GrailQA F1 (Overall/IID 86.7/92.4), while staying strong on CWQ (Hits@1 71.5, F1 65.8), close to
top LLM+KG (e.g., GoG 75.2 Hits@1; KG-Agent 69.8 F1). Obs.❷ One-shot adjudication rivals
multi-step agents. Versus RoG (∼12 calls) and Think-on-Graph/GoG/KG-Agent (3–8 calls), PathHD
matches or exceeds accuracy on WebQSP/GrailQA and remains competitive on CWQ with just one
call—reducing error compounding and focusing the LLM on a high-quality shortlist. Obs.❸ Pure
LLMs lag without KG grounding. Zero/few-shot GPT-4 or ChatGPT underperform LLM+KG; e.g.,
on CWQ GPT-4 Hits@1 55.6 vs. PathHD 71.5. Obs.❹ Classic embedding/retrieval trails modern
LLM+KG. KV-Mem, NSM, SR+NSM rank subgraphs well but lack a flexible language component
for composing multi-hop constraints, yielding consistently lower scores.
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3.3 EFFICIENCY AND COST ANALYSIS

We assess end-to-end cost via a Hits@1–latency bubble plot (Figure 3) and a lollipop latency chart
(Figure 6). In Figure 3, x = Hits@1, y = median per-query latency (log-scale); bubble size = avg.
#LLM calls; marker shape = method family. Latencies in Figure 6 follow a common protocol
(per-LLM call on the order of a few seconds; non-LLM vector/graph ops ≈0.3–0.8s). PathHD uses
vector-space scoring with top-K pruning and a single LLM decision; RoG uses beam search (B=3,
depth ≤ dataset hops). A factor breakdown (#calls, depth d, beam b, tools) appears in Table 10
(Appendix I.1). Key observations are: Obs.❶ Near-Pareto across datasets. With comparable
accuracy to multi-call LLMs+KG (Think-on-Graph/GoG/KG-Agent), PathHD achieves markedly
lower latency due to its single-call design and compact post-pruning candidate set. Obs.❷ Latency
is dominated by #LLM calls. Methods with 3–8 calls (agent loops) or ≈ d × b calls (beam
search) sit higher in Figure 3 and show longer whiskers in Figure 6; PathHD avoids intermediate
planning/scoring overhead. Obs.❸ Moderate pruning improves cost–accuracy. Shrinking the pool
before adjudication lowers latency without hurting Hits@1, especially on CWQ where paths are
longer. Obs.❹ Pure LLMs are fast but underpowered. Single-call GPT-4/ChatGPT have similar
latency to our final decision yet notably lower accuracy, underscoring the importance of structured
retrieval and path scoring.

3.4 ABLATION STUDY

We analyze the contribution of each module/operation in PathHD. Our operation study covers: (1)
Path composition operator, (2) Single-LLM adjudicator, and (3) Top-K pruning.

Operator WebQSP CWQ
XOR / bipolar product 83.9 68.8
Element-wise product (Real-valued) 84.4 69.2
Comm. bind 84.7 69.6
FHRR 84.9 70.0
HRR 85.1 70.2
GHRR 86.2 71.5

Table 3: Effect of the path–composition operator.
GHRR yields the best performance.

Which path–composition operator works
best? We isolate relation binding by fix-
ing retrieval, scoring, pruning, and the single
LLM step, and only swapping the encoder’s
path–composition operator. We compare six
options (defs. in Appendix J): (i) XOR/bipolar
and (ii) real-valued element-wise products, both
fully commutative; (iii) a stronger commutative
mix of binary/bipolar; (iv) FHRR (phasors) and
(v) HRR (circular convolution), efficient yet ef-
fectively commutative; and (vi) our block-diagonal GHRR with unitary blocks, non-commutative
and order-preserving. Paths of length 1–4 use identical dimension/normalization. As in Table 3,
commutative binds lag, HRR/FHRR give modest gains, and GHRR yields the best Hits@1 on
WebQSP and CWQ by reliably separating founded_by→CEO_of from its reverse.

Final step WebQSP CWQ
Vector-only 85.4 70.8
Vector → 1×LLM 86.2 71.5

Table 4: Ablation on the final decision
maker. Passing pruned candidates and
scores to a single LLM for adjudication
yields consistent gains over vector-only
selection.

Do we need a final single LLM adjudicator? We test
whether a lightweight LLM judgment helps beyond pure
vector scoring. Vector-only selects the top path by cosine
similarity; Vector → 1×LLM instead forwards the pruned
top-K paths (with scores and end entities) to a single LLM
using a short fixed template (no tools/planning) to choose
the answer without long chains of thought. As shown
in Table 4, Vector → 1×LLM consistently outperforms
Vector-only on both datasets, especially when the top two
paths are near-tied or a high-scoring path has a subtle type mismatch; a single adjudication pass
resolves such cases at negligible extra cost.

Pruning Hits@1
(WebQSP) Lat. Hits@1

(CWQ) Lat.

No-prune 85.8 2.42s 70.7 2.45s
K=2 86.0 1.98s 71.2 2.00s
K=3 86.2 1.92s 71.5 1.94s
K=5 86.1 2.05s 71.4 2.06s

Table 5: Impact of top-K pruning before
the final LLM. Small sets (K=2–3) retain
or slightly improve accuracy while reducing
latency. We adopt K=3 by default.

What is the effect of top-K pruning before the final
step? Finally, we study how many candidates should
be kept for the last decision. We vary the number of
paths passed to the final LLM among K∈{2, 3, 5} and
also include a No-prune variant that sends all retrieved
paths. Retrieval and scoring are fixed; latency is the
median per query (lower is better). As shown in Table 5,
K=3 achieves the best Hits@1 on both WebQSP and
CWQ with the lowest latency, while K=2 is a close
second and yields the largest latency drop. In contrast,
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Figure 4: Hypervector dimension study. Each panel reports F1 (%) of PathHD on WebQSP, CWQ,
and GrailQA as a function of the hypervector dimension. Overall, performance rises from 512 to
the mid-range and then tapers off: WebQSP and GrailQA peak around 3k–4k, while CWQ prefers a
slightly larger size (6k), after which F1 decreases mildly.

No-prune maintains maximal recall but increases la-
tency and often introduces near-duplicate/noisy paths that can blur the final decision. We therefore
adopt K=3 as the default.

3.5 CASE STUDY

To better understand how our model performs step-by-step reasoning, we present two representative
cases from the WebQSP dataset in Table 6. These cases highlight the effects of candidate path
pruning and the contribution of LLM-based adjudication in improving answer accuracy. Case 1:
Top-K pruning preserves paths aligned with both film.film.music and actor cues; the vector-
only scorer already picks the correct path, and a single LLM adjudication confirms Valentine’s
Day—illustrating that pruning reduces cost while retaining high-coverage candidates. Case 2: A
vector-only top path (film.film.edited_by) misses the actor constraint and yields a false
positive, but adjudication over the pruned set—now including performance.actor—corrects to
The Perks of Being a Wallflower, showing that LLM adjudication resolves compositional constraints
beyond static similarity.

4 RELATED WORK

LLM-based Reasoning such as GPT (Radford et al., 2019; Brown et al., 2020), LLaMA (Touvron
et al., 2023), and PaLM (Chowdhery et al., 2023), have demonstrated impressive capabilities in diverse
reasoning tasks, ranging from natural language inference to multi-hop question answering (Yang
et al., 2018). A growing body of work focuses on enhancing the interpretability and reliability of
LLM reasoning through symbolic path-based reasoning over structured knowledge sources (Sun et al.,
2018; Lin et al., 2022; Hu et al., 2025). For example, Wei et al. (Wei et al., 2022) proposed chain-of-
thought prompting, which improves reasoning accuracy by encouraging explicit intermediate steps.
Wang et al. (Wang et al., 2022) introduced self-consistency decoding, which aggregates multiple
reasoning chains to improve robustness.

In the context of knowledge graphs, recent efforts have explored hybrid neural-symbolic approaches
to combine the structural expressiveness of graph reasoning with the generative power of LLMs.
Fan et al. (Fan et al., 2023) proposed Reasoning on Graphs (RoG), which first prompts LLMs to
generate plausible symbolic relation paths and then retrieves and verifies these paths over knowledge
graphs. Similarly, Khattab et al. (Khattab et al., 2022) leveraged demonstration-based prompting to
guide LLM reasoning grounded in external knowledge. Despite their interpretability benefits, these
methods rely heavily on neural encoders for path matching, incurring substantial computational and
memory overhead, which limits scalability to large KGs or real-time applications.

Hyperdimensional Computing (HDC) is an emerging computational paradigm inspired by the
properties of high-dimensional representations in cognitive neuroscience (Kanerva, 2009; Kanerva
et al., 1997). In HDC, information is represented as fixed-length high-dimensional vectors (hypervec-
tors), and symbolic structures are manipulated through simple algebraic operations such as binding,
bundling, and permutation (Gayler, 2004). These operations are inherently parallelizable and robust
to noise, making HDC appealing for energy-efficient and low-latency computation.
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Table 6: Case studies on multi-hop reasoning over WebQSP. Top-K pruning is applied before
invoking LLM, reducing cost while retaining plausible candidates.

Case 1: which movies featured Taylor Swift and music by John Debney

Top-4 candidates

1) film.film.music (0.2567)
2) person.nationality → film.film.country (0.2524)
3) performance.actor → performance.film (0.2479)
4) people.person.languages → film.film.language (0.2430)

Top-K after pruning
(K=3)

film.film.music
person.nationality → film.film.country
performance.actor → performance.film

Vector-only (no LLM) Pick film.film.music ✓ — directly targets the composer-to-film mapping;
relevant for filtering by music.

1×LLM adjudication
Rationale: “To find films with both Taylor Swift and music by John Debney,
use actor-to-film and music-to-film relations. The chosen path targets the latter
directly.”

Final Answer / GT Valentine’s Day (predict) / Valentine’s Day ✓

Case 2 : in which movies does Logan Lerman act in that was edited by Mary Jo Markey

Top-4 candidates

1) film.film.edited_by (0.2548)
2) person.nationality → film.film.country (0.2527)
3) performance.actor → performance.film (0.2505)
4) award.award_winner.awards_won→
award.award_honor.honored_for (0.2420)

Top-K after pruning
(K=3)

film.film.edited_by
person.nationality → film.film.country
performance.actor → performance.film

Vector-only (no LLM) Pick film.film.edited_by ✗ — identifies edited films, but lacks actor
constraint; leads to false positives.

1×LLM adjudication
Rationale: “The question requires jointly filtering for actor and editor. While
film.edited_by is relevant, combining it with performance.actor im-
proves precision by ensuring Logan Lerman is in the cast.”

Final Answer / GT Perks of Being a Wallflower (predict) / Perks of Being a Wallflower ✓

HDC has been successfully applied in domains such as classification (Rahimi et al., 2016), biosignal
processing (Moin et al., 2021), natural language understanding (Maddali, 2023), and graph analyt-
ics (Imani et al., 2019b). For instance, Imani et al. (Imani et al., 2019b) demonstrated that HDC
can encode and process graph-structured data efficiently, enabling scalable similarity search and
inference. Recent studies have also explored neuro-symbolic integrations, where HDC complements
neural networks to achieve interpretable yet computationally efficient models (Imani et al., 2019a;
Rahimi et al., 2016). However, the potential of HDC in large-scale reasoning over knowledge
graphs—particularly when combined with LLMs, remains underexplored. Our work bridges this
gap by leveraging HDC as a drop-in replacement for neural path matchers in LLM-based reasoning
frameworks, thereby achieving both scalability and interpretability.

5 CONCLUSION

In this work, we introduced PathHD, a lightweight and interpretable retrieval mechanism for path-
based reasoning over knowledge graphs, grounded in Hyperdimensional Computing (HDC). By
replacing the neural path matcher in frameworks like RoG with an HDC-based retriever, PathHD
eliminates the need for costly neural encoders and leverages efficient hypervector operations for
path representation and similarity computation. This design yields substantial reductions in both
computational and memory costs while maintaining competitive reasoning accuracy. Experimental
results on standard KGQA benchmarks confirm that PathHD achieves speedup without sacrificing
performance, highlighting its potential as a scalable and deployable alternative to neural-symbolic
reasoning. Our findings suggest that HDC offers a promising foundation for building next-generation
reasoning systems that are efficient, generalizable, and well-suited to real-time or resource-constrained
scenarios.
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ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive attributes. All datasets are
public and widely used for KGQA research. We conduct a limited manual verification in a few case
studies for readability Section 3.5 to confirm the final entity answers from public sources; no personal
information was collected, no crowd workers were employed, and no compensation was involved.
This verification is used for illustrative examples and does not alter the quantitative evaluation. We
encourage responsible use when deploying our method in applications that may involve sensitive data.
We have carefully followed community norms for dataset usage and model evaluation. Our proposed
method, PathHD, is designed to enhance the interpretability and faithfulness of large language model
reasoning over knowledge graphs, which may help mitigate hallucination and improve the reliability
of LLMs in downstream applications. While our method may be deployed in real-world systems
involving sensitive data, such usage is beyond the scope of this paper. We encourage responsible use
and community oversight when applying our method in such contexts.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. We will release all code, data prepro-
cessing scripts, and instructions to reproduce our experiments upon acceptance. Our method builds
on publicly available datasets (WebQSP, CWQ, GrailQA) and introduces a modular and lightweight
retrieval component based on hyperdimensional computing. We include all necessary hyperparame-
ters, training details, and evaluation metrics in the main text and appendix. The symbolic structure
of relation paths, key to our method’s design, is clearly described in the paper and supplemental
material. Additionally, we provide a complexity analysis to support the claims of efficiency. Any
further clarifications or updates will be added to the official code repository.
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LLM USAGE

We used LLM solely as a language-editing assistant to polish wording and fix grammar, spelling,
and style for improved readability. The LLM did not contribute to research ideation, methodology,
experiments, analysis, results selection, or claim formation. All edits were reviewed and approved by
the authors, and no non-public data beyond the manuscript text was provided to the tool.

A NOTATION

Table 7: Notation used throughout the paper.

Notation Definition
G = (V, E) Knowledge graph with entity set V and edge set E .
Z Set of relation schemas / path templates.
q, a Input question and (predicted) answer.
e, r An entity and a relation (schema edge), respectively.
z = (r1, . . . , rℓ) A relation path; |z| = ℓ denotes path length.
Zcand Candidate path set instantiated from G; N = |Zcand|.
Lmax, B, K Max plan depth, BFS beam width, and number of retrieved paths kept after pruning.
d, D, m Hypervector dimension, # of GHRR blocks, and block size (unitary m×m); flattened

d = Dm2.
vx Hypervector for symbol x (entity/relation/path).
vq , vz Query-plan hypervector and a candidate-path hypervector.
H = [A1; . . . ;AD] A GHRR hypervector with unitary blocks Aj ∈ U(m).
A∗ Conjugate transpose (unitary inverse) of a block A.
⊛ GHRR blockwise binding operator (matrix product per block).
⟨A,B⟩F Frobenius inner product tr(A∗B); ∥A∥F is the Frobenius norm.
sim(·, ·) Blockwise cosine similarity used for HD retrieval.
s(z) Calibrated retrieval score; α, β, λ are calibration hyperparameters; IDF(z) is an

inverse-frequency weight.
M, M Distractor set and its size M = |M| (used in capacity bounds).
ϵ, δ Tolerance and failure probability in the concentration/union bounds.
c Absolute constant in the sub-Gaussian tail bound.

B ALGORITHM

Algorithm 1: HD-RETRIEVE: Hyperdimensional Top-K Path Retrieval
Input: question q; KG G; schema Z; max depth Lmax; beam width B; calibration (α, β, λ);

Top-K
Output: Top-K reasoning paths ZK and their scores

1 Plan: Generate relation-plan candidates P ⊆ Z (schema enumeration or lightweight prompting).
2 Encode Query: pick a plan zq ∈ P and encode by GHRR vq =

⊗
r∈zq vr. // no

unbinding used

3 Enumerate Candidates: Constrained BFS on relation graph up to depth Lmax with beam width
B, instantiating path set Z (deduplicate, type-consistent).

4 for z ∈ Z do
5 Encode Candidate: vz =

⊗
r∈z vr

6 Score: scos(z) =
vq · vz

∥vq∥ ∥vz∥
7 Calibrate (optional): s(z) = scos(z) + α IDF(z)− β λ|z|

8 return Top-K paths by s(z) as ZK .
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C PROMPT TEMPLATE FOR ONE-SHOT REASONING

System You are a careful reasoner. Only use the provided KG reasoning paths as
evidence. Cite the most relevant path(s) and answer concisely.

User Question: “$QUESTION”

Retrieved paths (Top-K):
1. $PATH_1
2. $PATH_2
3. . . .
4. $PATH_K

Assistant (required format) Answer: $SHORT_ANSWER

Supporting path(s): [indexes from the list above]

Rationale (1–2 sentences): why those paths imply the answer.

Table 8: Prompt template for KG path–grounded QA.

D THEORETICAL SUPPORT

D.1 WHY HIGH DIMENSIONAL HYPERVECTORS? NEAR-ORTHOGONALITY AND CAPACITY

We justify the use of high-dimensional hypervectors in PathHD by showing that (i) random hypervec-
tors are nearly orthogonal with high probability, and (ii) this property is preserved under binding,
yielding exponential concentration that enables accurate retrieval at scale.

Setup. Let each entity/relation be encoded as a Rademacher hypervector x ∈ {−1,+1}d with i.i.d.
entries. For two independent hypervectors x,y, define cosine similarity cos(x,y) = ⟨x,y⟩

∥x∥ ∥y∥ . Since

∥x∥ = ∥y∥ =
√
d, we have cos(x,y) = 1

d

∑d
k=1 xkyk.

Proposition 2 (Near-orthogonality of random hypervectors). For any ϵ ∈ (0, 1),

Pr
(∣∣ cos(x,y)∣∣ > ϵ

)
≤ 2 exp

(
− 1

2ϵ
2d
)
.

Proof. Each product Zk = xkyk is i.i.d. Rademacher with E[Zk] = 0 and |Zk| ≤ 1. By Hoeffding’s
inequality, Pr

(∣∣∣∑d
k=1 Zk

∣∣∣ > ϵd
)
≤ 2 exp(−ϵ2d/2). Divide both sides by d to obtain the claim.

Lemma 1 (Closure under binding). Let r1, . . . , rn be independent Rademacher hypervectors and
define binding (element-wise product) p = r1 ⊙ · · · ⊙ rn. Then p is also a Rademacher hypervector.
Moreover, if s is independent of at least one ri used in p, then p and s are independent and
E[cos(p, s)] = 0.

Proof. Each coordinate pk =
∏n
i=1 ri,k is a product of independent Rademacher variables, hence

Rademacher. If s is independent of some rj , then pksk has zero mean and remains bounded, implying
independence in expectation and the stated property.

Theorem 1 (Separation and error bound for PathHD retrieval). Let the query hypervector be q =
r1 ⊙ · · · ⊙ rn and consider a candidate set containing the true path p⋆ = q and M distractors
{pi}Mi=1, where each distractor differs from q in at least one relation (thus satisfies Lemma 1). Then
for any ϵ ∈ (0, 1) and δ ∈ (0, 1), if

d ≥ 2

ϵ2
log

(2M
δ

)
,

we have, with probability at least 1− δ,

cos(q,p⋆) = 1 and max
1≤i≤M

∣∣ cos(q,pi)∣∣ ≤ ϵ.
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Proof. By construction, p⋆ = q, hence cosine = 1. For each distractor pi, Lemma 1 im-
plies that q and pi behave as independent Rademacher hypervectors; applying Proposition 2,
Pr(| cos(q,pi)| > ϵ) ≤ 2e−ϵ

2d/2. A union bound overM distractors yields Pr(maxi | cos(q,pi)| >
ϵ) ≤ 2Me−ϵ

2d/2 ≤ δ under the stated condition on d.

E ADDITIONAL PROOFS AND TAIL BOUNDS

Details for Prop. 1. We view each GHRR block as a unitary matrix with i.i.d. phase (or signed)
entries, so blockwise products preserve unit norm and keep coordinates sub-Gaussian. Let X =
1
d

∑d
j=1 ξj with ξj i.i.d., mean zero, ψ2-norm bounded. Applying Hoeffding/Bernstein, Pr(|X| ≥

ϵ) ≤ 2 exp(−cdϵ2), which yields the stated result after ℓ2 normalization. Unitary blocks ensure
no variance blow-up under binding depth; see also Plate (1995); Kanerva (2009) for stability of
holographic codes.

F DATASET INTRODUCTION

We provide detailed descriptions of the three benchmark datasets used in our experiments:

WebQuestionsSP (WebQSP). WebQuestionsSP (WebQSP) (Yih et al., 2016) consists of 4,737
questions, where each question is manually annotated with a topic entity and a SPARQL query over
Freebase. The answer entities are within a maximum of 2 hops from the topic entity. Following prior
work (Sun et al., 2018), we use the standard train/validation/test splits released by GraftNet and the
same Freebase subgraph for fair comparison.

Complex WebQuestions–SP (CWQ-SP) (Talmor & Berant, 2018) is the Freebase/S-
PARQL–annotated variant of CWQ, aligning each question to a topic entity and an executable
SPARQL query over a cleaned Freebase subgraph. Questions are created by compositional expan-
sions of WebQSP (adding constraints, joins, and longer paths), and typically require up to 4-hop
reasoning. We use the standard train/dev/test split released with CWQ-SP for fair comparison.

GrailQA (Gu et al., 2021) is a large-scale KGQA benchmark with 64,331 questions. It focuses on
evaluating generalization in multi-hop reasoning across three distinct settings: i.i.d., compositional,
and zero-shot. Each question is annotated with a corresponding logical form and answer, and the
underlying KG is a cleaned subset of Freebase. We follow the official split provided by the authors
for fair comparison. In our experiments, we evaluate on the official dev set. The dev set is the authors’
held-out split from the same cleaned Freebase graph and mirrors the three generalization settings; it
is commonly used for ablations and model selection when the test labels are held out.

We follow the unified Freebase protocol (Bollacker et al., 2008), which contains approximately 88
million entities, 20 thousand relations, and 126 million triples. The official Hits@1/F1 scripts. For
GrailQA, numbers in the main results are reported on the dev split (and additionally on its IID
subset); many recent works adopt dev evaluation due to test server restrictions. WebQSP has no
official dev split under this setting. Additional statistics, including the number of reasoning hops and
answer entities, are shown in Table 9.

Table 9: Statistics of Freebase-based KGQA datasets used in our experiments.

Dataset Train Dev Test Typical hops KG
WebQSP (Yih et al., 2016) 3,098 – 1,639 1–2 Freebase
CWQ (Talmor & Berant, 2018) 27,734 3,480 3,475 2–4 Freebase
GrailQA (Gu et al., 2021) 44,337 6,763 13,231 1–4 Freebase
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G DETAILED BASELINE DESCRIPTIONS

We categorize the baseline methods into four groups and describe each group below.
G.1 EMBEDDING-BASED METHODS

• KV-Mem (Miller et al., 2016) uses a key-value memory architecture to store knowledge triples and
performs multi-hop reasoning through iterative memory operations.

• EmbedKGQA (Saxena et al., 2020) formulates KGQA as an entity-linking task and ranks entity
embeddings using a question encoder. NSM (He et al., 2021) adopts a sequential program execution
framework over KG relations, learning to construct and execute reasoning paths.

• TransferNet (Shi et al., 2021) builds on GraftNet by incorporating both relational and text-based
features, enabling interpretable step-wise reasoning over entity graphs.

G.2 RETRIEVAL-AUGMENTED METHODS

• GraftNet (Sun et al., 2018) retrieves question-relevant subgraphs and applies GNNs for reasoning
over linked entities.

• SR+NSM (Zhang et al., 2022) retrieves relation-constrained subgraphs and runs NSM over them
to generate answers.

• SR+NSM+E2E (Zhang et al., 2022) further optimizes SR+NSM via end-to-end training of the
retrieval and reasoning modules.

• UniKGQA (Jiang et al., 2022) unifies entity retrieval and graph reasoning into a single LLM-in-
the-loop architecture, achieving strong performance with reduced pipeline complexity.

G.3 PURE LLMS

• ChatGPT (Ouyang et al., 2022), Davinci-003 (Ouyang et al., 2022), and GPT-4 (Achiam et al.,
2023) serve as closed-book baselines using few-shot or zero-shot prompting.

• StructGPT (Jiang et al., 2023) generates structured reasoning paths in natural language form, then
executes them step by step.

• ROG (Luo et al., 2023) reasons over graph-based paths with alignment to LLM beliefs.
• Think-on-Graph (Sun et al., 2023) prompts the LLM to search symbolic reasoning paths over a

KG and use them for multi-step inference.

G.4 LLMS + KG METHODS

• GoG (Xu et al., 2024) adopts a plan-then-retrieve paradigm, where an LLM generates reasoning
plans and a KG subgraph is retrieved accordingly.

• KG-Agent (Jiang et al., 2024) turns the KGQA task into an agent-style decision process using
graph environment feedback.

• FiDeLiS (Sui et al., 2024) fuses symbolic subgraph paths with LLM-generated evidence, filtering
hallucinated reasoning chains.

• PathHD (ours) proposes a vector-symbolic integration pipeline where top-K relation paths are
selected by vector matching and adjudicated by an LLM, combining symbolic controllability with
neural flexibility.

H DETAILED EXPERIMENTAL SETUPS
We follow a unified evaluation protocol: Freebase KG with the official Hits@1/F1 scripts for
WebQSP, CWQ, and GrailQA, and, whenever comparable, we adopt the official numbers reported
by the original papers. Concretely, we take results for KV-Mem (Miller et al., 2016), GraftNet (Sun
et al., 2018), EmbedKGQA (Saxena et al., 2020), NSM (He et al., 2021), TransferNet (Shi et al.,
2021), SR+NSM and its end-to-end variant (SR+NSM+E2E) (Zhang et al., 2022), UniKGQA (Jiang
et al., 2022), RoG (Luo et al., 2023), StructGPT (Jiang et al., 2023), Think-on-Graph (Sun et al.,
2023), GoG (Xu et al., 2024), and FiDeLiS (Sui et al., 2024) directly from the respective papers or
their consolidated tables under the same setting. We further include a pure-LLM category: ChatGPT,
Davinci-003, and GPT-4, whose numbers are taken from the unified table in KG-Agent (Jiang et al.,
2024); note that its GrailQA scores are on the dev split. The KG-Agent results themselves are also
copied from Jiang et al. (2024). Entries marked with ‡ are our own reproductions under this protocol,
while — indicates that a metric was not reported (or not directly comparable) in the original work.
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I ADDITIONAL EXPERIMENTS

I.1 ADDITIONAL ANALYTIC EFFICIENCY

Method # LLM calls / query Planning depth Retrieval fanout/beam Executor/Tools
KV-Mem (Miller et al., 2016) 0 multi-hop (learned) moderate Yes (neural mem)
EmbedKGQA (Saxena et al., 2020) 0 multi-hop (seq) moderate No
NSM (He et al., 2021) 0 multi-hop (neural) moderate Yes (neural executor)
TransferNet (Shi et al., 2021) 0 multi-hop moderate No
GraftNet (Sun et al., 2018) 0 multi-hop graph fanout No
SR+NSM (Zhang et al., 2022) 0 multi-hop subgraph (beam) Yes (neural exec)
SR+NSM+E2E (Zhang et al., 2022) 0 multi-hop subgraph (beam) Yes (end-to-end)
ChatGPT (Ouyang et al., 2022) 1 0 n/a No
Davinci-003 (Ouyang et al., 2022) 1 0 n/a No
GPT-4 (Achiam et al., 2023) 1 0 n/a No
UniKGQA (Jiang et al., 2022) 1–2 shallow small/merged No (unified model)
StructGPT (Jiang et al., 2023) 1–2 1 n/a Yes (tool use)
RoG (Luo et al., 2023) ≈ d×b d b (per step) No (LLM scoring)
Think-on-Graph (Sun et al., 2023) 3–6 multi small/beam Yes (plan & react)
GoG (Xu et al., 2024) 3–5 multi small/iterative Yes (generate-retrieve loop)
KG-Agent (Jiang et al., 2024) 3–8 multi small Yes (agent loop)
FiDeLiS (Sui et al., 2024) 1–3 shallow small Optional (verifier)
PathHD (ours) 1 (final only) 0 vector ops only No (vector ops)

Table 10: Full analytical comparison (no implementation). Ranges reflect algorithm design; d and b
denote planning depth and beam/fanout as specified in RoG, which uses beam-search with B = 3
and path length bounded by dataset hops (WebQSP≤ 2, CWQ≤ 4).

I.2 SCORING METRIC
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Figure 5: Scoring measurement ablation. We evaluate F1 (%) on WebQSP, CWQ, and GrailQA
using different scoring strategies in our model. PathHD achieves the best or competitive results when
using blockwise cosine similarity, highlighting its effectiveness in capturing fine-grained matching
signals across vector blocks.
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I.3 ADDITIONAL VISUALIZATION

10 1 100 101

Per-query latency (s)  median with p90 whisker

KV-Mem

NSM

ChatGPT (1 call)

GPT-4 (1 call)

UniKGQA (1 2 calls)

StructGPT (1 2 calls)

Think-on-Graph (3 6)

GoG (3 5)

KG-Agent (3 8)

RoG (B=3, D 4  12)

PathHD (ours, 1 call)

0

0

1

1

2

2

5

4

6

12

1

CWQ Latency comparison (with PathHD pruning)

Assumptions: each LLM call median 2.2s, p90 3.4s; non-LLM ops 0.3 0.8s.
RoG uses beam B=3, depth D 4 ( 12 calls). PathHD uses vector scoring + top-K pruning; here PRUNE_FACTOR=0.85, TAIL_SHRINK=0.9.

Figure 6: CWQ latency comparison (lollipop). Dots indicate median per-query latency; right whiskers
show the 90th percentile (p90). The x-axis is log-scaled. Values are estimated under a unified setup:
per-LLM-call median ≈ 2.2 s and p90 ≈ 3.4 s; non-LLM operations add 0.3–0.8 s. RoG follows
beam width B=3 with depth bounded by dataset hops (D≤4, ≈12 calls), whereas PathHD uses a
single LLM call plus vector operations for scoring.

I.4 EFFECT OF BACKBONE MODELS

Performance across different LLM backbones is shown in Table 11.

Table 11: Performance across different LLM backbones. Each block fixes the backbone and varies
the reasoning framework: a pure LLM control (CoT), our single-call PathHD, and 1–2 multi-step
LLM+KG baselines. Metrics follow the unified Freebase setup.

Backbone Method WebQSP CWQ GrailQA (F1) #Calls
Hits@1 / F1 Hits@1 / F1 Overall / IID (/query)

GPT-4 (API)

CoT [2022] 73.2 / 62.3 55.6 / 49.9 31.7 / 25.0 1
RoG [2023] 85.7 / 70.8 62.6 / 56.2 – / – ≈ 12

KG-Agent [2024] 83.3 / 81.0 72.2 / 69.8 86.1 / 92.0 3–8
PathHD (single-call) 86.2 / 78.6 71.5 / 65.8 86.7 / 92.4 1

GPT-3.5 / ChatGPT

CoT [2022] 67.4 / 59.3 47.5 / 43.2 25.3 / 19.6 1
StructGPT [2023] 72.6 / 63.7 54.3 / 49.6 54.6 / 70.4 1–2
RoG [2023] 85.0 / 70.2 61.8 / 55.5 – / – ≈ 12

PathHD (single-call) 85.6 / 78.0 70.8 / 65.1 85.9 / 91.7 1

Llama-3-8B-Instruct (open)

CoT (prompt-only) 62.0 / 55.0 43.0 / 40.0 20.0 / 16.0 1
ReAct-Lite (retrieval+CoT) 70.5 / 62.0 52.0 / 47.5 48.0 / 62.0 3–5
BM25+LLM-Verifier (1×) 74.5 / 66.0 55.0 / 50.0 52.0 / 66.0 1
PathHD (single-call) 84.8 / 77.2 69.8 / 64.2 84.9 / 90.9 1
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I.5 ADDITIONAL CASE STUDY

Table 12 presents additional WebQSP case studies for PathHD. Unlike the main paper’s case table
(Top-4 candidates with pruning to K=3), this appendix visualizes the Top-3 highest-scoring relation
paths for readability and then prunes to K=2 before a single-LLM adjudication.

Across the four examples (Cases 3–6), pruning to K=2 often retains the correct path and achieves
strong final answers after LLM adjudication. However, we also observe a typical failure mode of the
vector-only selector under K=2: when multiple plausible paths exist (e.g., country vs. continent, or
actor vs. editor constraints), the vector-only choice can become brittle and select a high-scoring but
underconstrained path, after which the LLM must recover the correct answer using the remaining
candidate (see Case 4). In contrast, the main-paper setting with K=3 keeps one more candidate,
which more reliably preserves a constraint-satisfying path (e.g., explicitly encoding actor or continent
relations). This extra coverage reduces reliance on the LLM to repair mistakes and improves
robustness under compositional queries.

While K=2 is cheaper and can work well in many instances, K=3 offers a better coverage–
precision trade-off on average: it mitigates pruning errors in compositional cases and lowers the risk
of discarding the key constraint path. This aligns with our main experimental choice of K=3, which
we use for all reported metrics in the paper.

Case-study note. For the qualitative case studies only, we manually verified the final entity answers
using publicly available sources (e.g., film credits and encyclopedia entries). This light-weight human
verification was used solely to present readable examples; it does not affect any quantitative metric.
All reported metrics (e.g., Hits@1 and F1) are computed from dataset-provided supervision and
ground-truth paths without human annotation.
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Table 12: Case studies for PathHD with an illustrative display of candidates. For each query, we
list the four highest-scoring relation paths (Top-4) for readability, then prune to K = 2 before the
vector-only choice and a single-LLM adjudication.

Case 3: where are the gobi desert located on a map

Top-3 candidates
1) location.location.containedby (0.3410)
2) location.location.partially_containedby (0.3335)
3) location.location.contains (0.3255)

Top-K after pruning
(K=2)

containedby

partially_containedby

Vector-only (no LLM) Pick containedby ✓ — returns parent region; predicts Asia.

1×LLM adjudication Rationale: “Gobi Desert lies across Mongolia and China, which are contained by
the continent of Asia; ‘contains’ would flip direction.”

Final Answer / GT Asia (predict) / Asia ✓

Case 4: in which continent is germany

Top-3 candidates
1) location.location.containedby (0.3405)
2) base.locations.countries.continent (0.3325)
3) location.location.contains (0.3270)

Top-K after pruning
(K=2)

containedby

countries.continent

Vector-only (no LLM) Pick containedby ✗ — tends to surface EU or administrative parents, hurting
precision.

1×LLM adjudication Rationale: “The target is a country → continent query; use
countries.continent to directly map Germany to Europe.”

Final Answer / GT Europe (predict) / Europe ✓

Case 5: what is the hometown of the person who said “Forgive your enemies, but never forget their names?”

Top-3 candidates
1) quotation.author → person.place_of_birth (0.3380)
2) family.members → person.place_of_birth (0.3310)
3) quotation.author → location.people_born_here (0.3310)

Top-K after pruning
(K=2)

quotation.author → place_of_birth

family.members → place_of_birth

Vector-only (no LLM) Pick quotation.author → place_of_birth ✓ — direct trace from
quote to person to birthplace.

1×LLM adjudication Rationale: “The quote’s author is key; once identified, linking to their birthplace
via person-level relation gives the hometown.”

Final Answer / GT Brooklyn (predict) / Brooklyn ✓

Case 6: what is the name of the capital of Australia where the film “The Squatter’s Daughter” was made

Top-3 candidates

1) film.film_location.featured_in_films (0.3360)
2) notable_types→ newspaper_circulation_area.newspapers

→ newspapers (0.3330)
3) film_location.featured_in_films→
bibs_location.country (0.3310)

Top-K after pruning
(K=2)

film.film_location.featured_in_films

notable_types→ newspaper_circulation_area.newspapers

Vector-only (no LLM) Pick film.film_location.featured_in_films ✓ — retrieves film-
ing location; indirectly infers capital via metadata.

1×LLM adjudication
Rationale: “The film’s production location helps localize the city. Although not
all locations are capitals, this film was made in Australia, where identifying the
filming city leads to the capital.”

Final Answer / GT Canberra (predict) / Canberra ✓
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J DETAILED INTRODUCTION OF THE MODULES

J.1 BINDING OPERATIONS

Below we summarize the binding operators considered in our system and ablations. All bindings
produce a composed hypervector s from two inputs x and y of the same dimensionality.

(1) XOR / Bipolar Product (commutative). For binary hypervectors x,y ∈ {0, 1}d,

s = x⊕ y, si = (xi + yi) mod 2.

Under the bipolar code {−1,+1}, XOR is equivalent to element-wise multiplication:

si = xi · yi, xi, yi ∈ {−1,+1}.

This is the classical commutative bind baseline used in our ablation.

(2) Real-valued Element-wise Product (commutative). For real vectors x,y ∈ Rd,

s = x⊙ y, si = xi yi.

Unbinding is approximate by element-wise division (with small ϵ for stability): xi ≈ si/(yi + ϵ).
This is another variant of the commutative bind.

(3) HRR: Circular Convolution (commutative). For x,y ∈ Rd,

s = x⊛ y, sk =

d−1∑
i=0

xi y(k−i) mod d.

Approximate unbinding uses circular correlation:

x ≈ s⊛−1 y, xi ≈
d−1∑
k=0

sk y(k−i) mod d.

This is the Circ. conv condition in our ablation.

(4) FHRR / Complex Phasor Product (commutative). Let x,y ∈ Cd with unit-modulus compo-
nents xi = eiϕi , yi = eiψi . Binding is element-wise complex multiplication

s = x⊙ y, si = xiyi = ei(ϕi+ψi),

and unbinding is conjugation: x ≈ s⊙ y∗. FHRR is often used as a complex analogue of HRR.

(5) Block-diagonal GHRR (non-commutative, ours). We use Generalized HRR with block-unitary
components. A hypervector is a block vector H = [A1; . . . ;AD], Aj ∈ U(m) (so total dimension
d = Dm2 when flattened). Given X = [X1; . . . ;XD] and Y = [Y1; . . . ;YD], binding is the
block-wise product

Z = X ⊛ Y, Zj = XjYj (j = 1, . . . , D).

Since matrix multiplication is generally non-commutative (XjYj ̸= YjXj), GHRR preserves or-
der/direction of paths. Unbinding exploits unitarity:

Xj ≈ ZjY
∗
j , Yj ≈ X∗

j Zj .

This Block-diag (GHRR) operator is our default choice and achieves the best performance in the
operation study (Table 3), compared to Comm. bind and Circ. conv.
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