
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PathHD: EFFICIENT LARGE LANGUAGE MODEL REA-
SONING OVER KNOWLEDGE GRAPHS VIA HYPERDI-
MENSIONAL RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have enabled strong reasoning
over structured and unstructured knowledge. When grounded on knowledge graphs
(KGs), however, prevailing pipelines rely on neural encoders to embed and score
symbolic paths, incurring heavy computation, high latency, and opaque decisions,
which are limitations that hinder faithful, scalable deployment. We propose a
lightweight, economical, and transparent KG reasoning framework, PathHD, that
replaces neural path scoring with hyperdimensional computing (HDC). PathHD
encodes relation paths into block-diagonal GHRR hypervectors, retrieves candidates
via fast cosine similarity with Top-K pruning, and performs a single LLM call to
produce the final answer with cited supporting paths. Technically, PathHD provides
an order-aware, invertible binding operator for path composition, a calibrated
similarity for robust retrieval, and a one-shot adjudication step that preserves
interpretability while eliminating per-path LLM scoring. Extensive experiments on
WebQSP, CWQ, and the GrailQA split show that PathHD (i) achieves comparable
or better Hits@1 than strong neural baselines while using one LLM call per query;
(ii) reduces end-to-end latency by 40–60% and GPU memory by 3–5× thanks
to encoder-free retrieval; and (iii) delivers faithful, path-grounded rationales that
improve error diagnosis and controllability. These results demonstrate that HDC
is a practical substrate for efficient KG–LLM reasoning, offering a favorable
accuracy–efficiency–interpretability trade-off.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly advanced reasoning over both text and structured
knowledge. Typical pipelines follow a retrieve–then–reason pattern: they first surface evidence
(documents, triples, or relation paths), then synthesize an answer using a generator or a verifier (Lewis
et al., 2020; Press et al., 2022; Yao et al., 2023; Wei et al., 2022; Yao et al., 2024). In knowledge-graph
question answering (KGQA), this often becomes path-based reasoning: systems construct candidate
relation paths that connect the topic entities to potential answers and pick the most plausible ones
for final prediction (Sun et al., 2018; Jiang et al., 2022; 2023; 2024; Luo et al., 2023). While these
approaches obtain strong accuracy on WebQSP, CWQ, and GrailQA, they typically depend on heavy
neural encoders (e.g., Transformers or GNNs) or repeated LLM calls to rank paths, which makes
them slow and expensive at inference time—especially when many candidates must be examined.

Figure 1 highlights two recurring issues in KG–LLM reasoning. ❶ Path–query mismatch: Order-
insensitive encodings, weak directionality, and noisy similarity often favor superficially related yet
misaligned paths, blurring the question’s intended relation. ❷ Per-candidate LLM scoring: Many
systems score candidates sequentially, so latency and token cost grow roughly linearly with set
size; batching is limited by context/API, and repeated calls introduce instability, yet models can
still over-weight long irrelevant chains, hallucinate edges, or flip relation direction. Most practical
pipelines first detect a topic entity, enumerate 10∼100 length-1–4 paths, then score each with a neural
model or LLM, sending top paths to a final step (Sun et al., 2018; Luo et al., 2023; Jiang et al., 2024).
This hard-codes two inefficiencies: (i) neural scoring dominates latency (fresh encoding/prompt
per candidate), and (ii) loose path semantics (commutative/direction-insensitive encoders conflate
founded_by→CEO_of with its reverse), which compounds on compositional/long-hop questions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Hallucination due to non-faithful reasoning over KG.

SolarCity

acq
uire

d_b
y Tesla

founded_by CEO_of
SpaceX

Elon
Musk

operates_in
related_to

SolarEdgeRenewable
Energy

Mismatch between query relation (“acquired_by”) and used
path (founder/CEO).

Outcome: Incorrect reasoning despite access to KG
(selected path mismatches the query relation).

Issue:

Candidate
Path

Generator

Path #1 LLM Score s1

...

Repeated LLM calls per candidate path → high latency & cost.

Evaluation is sequential / hard to parallelize.

Scalability degrades as candidate count increases.

LLM-based Path Scoring Methods

Issue:

Best Path

correct (not chosen)
chosen wrong

“A class of prior methods: per-path LLM evaluation

Path #2 LLM Score s2

Two Major Pain Points in KG-LLM Reasoning

Input Query: "Which company acquired SolarCity?”

Figure 1: Two pain points in KG–LLM reasoning. (Left) The method selects a path that does not
match the query relation, leading to wrong answers even with KG access; (Right) per-path LLM
scoring incurs high latency and cost because candidates are evaluated one by one.

Hyperdimensional Computing (HDC) offers a different lens: represent symbols as long, nearly-
orthogonal hypervectors and manipulate structure with algebraic operations such as binding and
bundling (Kanerva, 2009; Plate, 1995). HDC has been used for fast associative memory, robust
retrieval, and lightweight reasoning because its core operations are elementwise or blockwise and
parallelize extremely well on modern hardware (Frady et al., 2021). Encodings tend to be noise-
tolerant and compositional; similarity is computed by simple cosine or dot product; and both
storage and computation scale linearly with dimensionality. Crucially for KGQA, HDC supports
order-sensitive composition when the binding operator is non-commutative, allowing a path like
r1→ r2→ r3 to be distinguished from its permutations while remaining a single fixed-length vector.
This makes HDC a promising substrate for ranking many candidate paths without invoking a neural
model for each one.

Motivated by these advantages, we introduce PathHD (HyperDimensional Path Retrieval), a
lightweight retrieval-and-reason framework for KGQA. First, we map every relation to a block-
diagonal unitary representation and encode a candidate path by non-commutative Generalized Holo-
graphic Reduced Representation (GHRR) binding; this preserves order and direction in a single
hypervector. In parallel, we encode the query into the same space to obtain a query hypervector.
Second, we score all candidates via cosine similarity to the query hypervector and keep only the
top-K paths with a simple, parallel Top-K selection. Finally, instead of per-candidate LLM calls,
we make one LLM call that sees the question plus these top-K paths (verbalized), and it outputs the
answer along with cited supporting paths. In effect, PathHD addresses both pain points in Fig. 1:
order-aware binding reduces path–query mismatch, and vector-space scoring eliminates per-path
LLM evaluation, cutting latency and token cost. Our contributions can be summarized as follows.

❶ A fast, order-aware retriever for KG paths. We present PathHD, which uses GHRR-based,
non-commutative binding to encode relation sequences into hypervectors and ranks candidates
with plain cosine similarity—no neural encoders and no per-path prompts. This design keeps a
symbolic structure while enabling fully parallel scoring with O(Nd) complexity.

❷ An efficient one-shot reasoning stage. PathHD replaces many LLM scoring calls with a single,
final LLM adjudication over the top-K paths. This decouples retrieval from generation, lowers
token usage, and improves wall-clock latency without sacrificing interpretability: the model cites
the supporting path(s) it used.

❸ Extensive validation and operator study. On WebQSP, CWQ, and GrailQA, PathHD achieves
competitive Hits@1 with markedly lower cost. An ablation on binding operators shows that
our block-diagonal (GHRR) binding outperforms commutative binding and circular convolution,
confirming the value of order preservation; additional studies analyze the impact of top-K pruning
and latency–accuracy trade-offs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Input Query q (e.g., "Which
company acquired SolarCity?")

Input & KG PathHD Hyperdimensional Encoding Similarity & Answer
Initialize Relation HVs

Candidate Paths
acquired_by

founded_by CEO_of
operates_in related_to

Random HV assignment

GHRR Binding & Path Encoding
Binding (GHRR)

Block-diagonal binding (GHRR)
Captures non-commutative relation binding

Path Composition

founded_by

CEO_of

⊛ ⊛ ⊛ ⊛r1 r2 ...Path HV = rn

Path#1 HV = acquired_by

founded_byPath#2 HV = ⊛CEO_of

Path#3 HV = ⊛operates_in related_to

Obtain Query HV

Question text ("Which company acquired SolarCity?")

SBERT

Dense embedding

Projection to
HDC space

Query HV q

Cosine Similarity

Query HV q

Candidate path HV

Score s1

Score s2

Score s3

Similarity Calculation Answer
Selection

Predicted
Answer

...

... ...

Relation

Entity
(head/tail)

Operation

Figure 2: Overview of PathHD: a Plan → Encode → Retrieve → Reason pipeline. We generate rela-
tion plans, encode them into order-aware GHRR hypervectors, rank candidates with blockwise cosine
similarity and Top-K pruning, and then make a single LLM call to answer with cited paths—keeping
the heavy work in cheap vector operations.

2 METHOD

The proposed PathHD follows a Plan → Encode → Retrieve → Reason pipeline (Figure 2). (i)
We first generate or select relation plans that describe how an answer can be reached (schema
enumeration optionally refined by a light prompt). (ii) Each plan is mapped to a hypervector via
a non-commutative GHRR binding so that order and direction are preserved. (iii) We compute a
blockwise cosine similarity in the hypervector space and apply Top-K pruning. (iv) Finally, a single
LLM call produces the answer with path-based explanations. This design keeps the heavy lifting in
cheap vector operations, delegating semantic adjudication to one-shot LLM reasoning.

2.1 PROBLEM SETUP & NOTATION

Given a question q, a knowledge graph (KG) G, and a set of relation schemas Z , the goal is to predict
an answer a. We denote entities by e, relations by r, and a relation path by z = (r1, . . . , rℓ). A key
challenge is to efficiently locate a small set of plausible paths for q from a very large candidate pool,
and then let an LLM reason over only those paths. A summary of the notation through out the paper
can be found in Appendix A.

2.2 HYPERVECTOR INITIALIZATION

We work in a Generalized Holographic Reduced Representations (GHRR) space. Each atomic symbol
x (relation or, optionally, entity) is assigned a d-dimensional hypervector vx∈Cd constructed as a
block vector of unitary matrices:

vx = [A
(x)
1 ; . . . ;A

(x)
D], A

(x)
j ∈ U(m), d = Dm2.

In practice we sample each block from a simple unitary family for efficiency, e.g., A(x)
j =

diag(eiϕj,1 , . . . , eiϕj,m) with ϕj,ℓ ∼ Unif[0, 2π), or a random Householder product. Blocks are
ℓ2-normalized so that all hypervectors have unit norm. This initialization yields near-orthogonality
among symbols, which concentrates with dimension (cf. Prop. 1).

Query hypervector. For a question q, we obtain a query hypervector in two ways depending on the
planning route used in Section 2: (i) plan-based—encode the selected relation plan zq = (r1, . . . , rℓ)
using the same GHRR binding as paths (see Eq. equation 2); or (ii) text-projection—embed q with a
sentence encoder (e.g., SBERT) to hq ∈Rdt and project to the HDC space by a fixed (or learned)
linear map P ∈Rd×dt , then block-normalize:

vq = Nblock
(
P hq

)
.

Both choices produce a query hypervector compatible with GHRR scoring; we use plan-based
encoding by default and report the text-projection variant in ablations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 GHRR BINDING AND PATH ENCODING

A GHRR hypervector is a block vector H = [A1; . . . ;AD] with Aj ∈U(m). Given two hypervectors
X = [X1; . . . ;XD] and Y = [Y1; . . . ;YD], the binding operator is the block-wise product

Z = X ⊛ Y, Zj = XjYj (j = 1, . . . , D).

Because matrix multiplication is non-commutative (XjYj ̸= YjXj), the encoding preserves order
and directionality of relations—critical for multi-hop KG reasoning. Unbinding exploits unitarity:

Xj ≈ ZjY
∗
j , Yj ≈ X∗

j Zj ,

enabling approximate recovery of constituents and interpretable compositions.

A length-ℓ relation path z = (r1, . . . , rℓ) is encoded as

vz =
ℓ
⊛
i=1

vri = vr1 ⊛ vr2 ⊛ · · · ⊛ vrℓ , (1)

followed by block-wise normalization to unit norm.

Discussion: Why GHRR as the binding operator. Classical HDC bindings (XOR, element-wise
multiplication, circular convolution) are commutative, which collapses r1→r2 and r2→r1 to similar
codes and hurts directional reasoning. GHRR is non-commutative, invertible at the block level, and
offers higher representational capacity via unitary blocks, leading to better discrimination between
paths of the same multiset but different order. We empirically validate this choice in the ablation
study (Table 3), where GHRR consistently outperforms commutative bindings. An introduction to
binding operations is provided in Appendix J.

Encoding a path. A path z = (r1, . . . , rℓ) is encoded by iterated binding

vz =
ℓ
⊛
i=1

vri , (2)

where ⊛ denotes left-to-right blockwise multiplication of the corresponding relation hypervectors.

2.4 QUERY & CANDIDATE PATH CONSTRUCTION

We obtain a query plan zq via schema-based enumeration (depth ≤ Lmax) and, when helpful, refine or
rank these plans by a lightweight prompt. The query hypervector vq follows Equation (2). Candidate
paths Z are instantiated from the KG either by matching plan templates or by a constrained BFS with
beam width B; both yield symbolic paths that are then deterministically mapped to hypervectors.

2.5 HD RETRIEVAL: BLOCKWISE SIMILARITY AND TOP-K

Let ⟨A,B⟩F := tr(A∗B) be the Frobenius inner product. Given two GHRR hypervectors X =
[Xj]

D
j=1 and Y = [Yj]

D
j=1, we define the blockwise cosine similarity

sim(X,Y) =
1

D

D∑
j=1

ℜ ⟨Xj , Yj⟩F
∥Xj∥F ∥Yj∥F

. (3)

For each candidate z ∈ Z we compute sim(vq,vz) and (optionally) apply a calibrated score

s(z) = sim(vq,vz) + α IDF(z) − β λ|z|,

then keep the Top-K for reasoning. All computations are O(d) per candidate and require no
backpropagation.

2.6 ONE-SHOT REASONING WITH RETRIEVED PATHS

We linearize the Top-K paths into concise natural-language statements and issue a single LLM call
with a minimal, citation-style prompt (see Table 8 from Appendix C). The prompt lists the question
and the numbered paths, and requires the model to return a short answer, the index(es) of supporting
path(s), and a 1–2 sentence rationale. This one-shot format constrains reasoning to the provided
evidence, resolves near-ties and direction errors, and keeps LLM usage minimal.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.7 THEORETICAL & COMPLEXITY ANALYSIS

The probability of a false match under random hypervectors decays exponentially with dimension d,
implying a capacity scaling d = O(ϵ−2 logM). Retrieval costs O(Nd), while neural encoders (e.g.,
RoG) typically incur O(NLd2), yielding an O(Ld) multiplicative reduction in our favor.
Proposition 1 (Near-orthogonality and distractor bound). Let {vr} be i.i.d. GHRR hypervectors with
zero-mean, unit Frobenius-norm blocks. For a query path zq and any distractor z ̸= zq encoded via
non-commutative binding, the cosine similarity X = sim(vzq ,vz) (Equation (3)) satisfies, for any
ϵ > 0,

Pr(|X| ≥ ϵ) ≤ 2 exp
(
−c d ϵ2

)
,

for an absolute constant c > 0 depending only on the sub-Gaussian proxy of entries.

Proof sketch. Each block inner product ⟨Xj , Yj⟩F is a sum of products of independent sub-Gaussian
variables (closed under products for bounded/phase variables used by GHRR). After normalization,
the average in Equation (3) is a mean-zero sub-Gaussian average over d degrees of freedom, hence
the Bernstein/Hoeffding tail bound. Details in Appendix E.

Corollary 1 (Capacity with union bound). Let M be M distractor paths scored against a fixed query.
With probability at least 1− δ,

max
z∈M

sim(vzq ,vz) ≤ ϵ whenever d ≥ 1

c ϵ2
log

2M

δ
.

Method Candidate
Path Gen. Scoring Reasoning

StructGPT [2023] ! ! !

FiDeLiS 2024 ! % !

ToG [2023] ! ! !

GoG [2024] ! ! !

KG-Agent [2024] ! ! !

RoG [2023] ! % !

PathHD % % ! (1 call)

Table 1: LLM usage across pipeline stages. Can-
didate Path Gen.: using an LLM to propose/ex-
pand relation paths; Scoring: using an LLM to
score/rank candidates (non-LLM similarity/graph
heuristics count as “no”); Reasoning: using an
LLM to produce the final answer from the retrieved
paths. PathHD uses a single LLM call only in the
final reasoning step.

Complexity comparison with neural retriev-
ers. Let N be the number of candidates, d
the embedding dimension, and L the number of
encoder layers used by neural retrieval. Neu-
ral encoding + scoring costs O(NLd2). In
contrast, PathHD forms each path vector by
|z|−1 block multiplications plus one similarity
in Equation (3), i.e., O(|z|d) + O(d) per can-
didate, giving total O(Nd) — an O(Ld)-fold
reduction.

In addition to the O(Nd) vs. O(NLd2) com-
pute gap, end-to-end latency is dominated by
the number of LLM calls. Table Table 1 con-
trasts pipeline stages across methods: unlike
prior agents that query an LLM for candidate
path generation and sometimes scoring, PathHD
defers a single LLM call to the final reasoning
step. This design reduces both latency and API
cost; empirical results in Section 3.3 confirm the
shorter response times.

3 EXPERIMENTS

We evaluate PathHD against state-of-the-art baselines for reasoning accuracy, measure efficiency
with a focus on latency, and conduct module-wise ablations, followed by illustrative case studies.

3.1 DATASETS, BASELINES, AND SETUP

We evaluate on three standard multi-hop KGQA benchmarks—WebQuestionsSP (WebQSP) (Yih
et al., 2016), Complex WebQuestions (CWQ) (Talmor & Berant, 2018), and GrailQA (Gu et al.,
2021), all grounded in Freebase (Bollacker et al., 2008). These datasets span increasing reasoning
complexity (roughly 2–4 hops): WebQSP features simpler single-turn queries, CWQ adds composi-
tional and constraint-based questions, and GrailQA stresses generalization across i.i.d., compositional,
and zero-shot splits. We compare against four families of methods: embedding-based, retrieval-
augmented, pure LLMs (no external KG), and LLMs+KG hybrids. All results are reported on

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

WebQSP CWQ GrailQA (F1)Type Methods Hits@1 F1 Hits@1 F1 Overall IID
KV-Mem (Miller et al., 2016) 46.7 34.5 18.4 15.7 − −
EmbedKGQA (Saxena et al., 2020) 66.6 − 45.9 − − −
NSM (He et al., 2021) 68.7 62.8 47.6 42.4 − −Embedding

TransferNet (Shi et al., 2021) 71.4 − 48.6 − − −
GraftNet (Sun et al., 2018) 66.4 60.4 36.8 32.7 − −
SR+NSM (Zhang et al., 2022) 68.9 64.1 50.2 47.1 − −
SR+NSM+E2E (Zhang et al., 2022) 69.5 64.1 49.3 46.3 − −Retrieval

UniKGQA (Jiang et al., 2022) 77.2 72.2 51.2 49.1 − −
ChatGPT (Ouyang et al., 2022) 67.4 59.3 47.5 43.2 25.3 19.6
Davinci-003 (Ouyang et al., 2022) 70.8 63.9 51.4 47.6 30.1 23.5Pure LLMs
GPT-4 (Achiam et al., 2023) 73.2 62.3 55.6 49.9 31.7 25.0
StructGPT (Jiang et al., 2023) 72.6 63.7 54.3 49.6 54.6 70.4
ROG (Luo et al., 2023) 85.7 70.8 62.6 56.2 − −
Think-on-Graph (Sun et al., 2023) 81.8 76.0 68.5 60.2 − −
GoG (Xu et al., 2024) 84.4 − 75.2 − − −
KG-Agent (Jiang et al., 2024) 83.3 81.0 72.2 69.8 86.1 92.0
FiDeLiS (Sui et al., 2024) 84.4 78.3 71.5 64.3 − −

LLMs + KG

PathHD 86.2 78.6 71.5 65.8 86.7 92.4

Table 2: Comparison on Freebase-based KGQA. Our method PathHD follows exactly the same
protocol. “-” indicates that the metric was not reported under the Freebase+official-script setting. We
bold the best and underline the second-best score for each metric/column.

50 60 70 80 90
Hits@1 on WebQSP (%)

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pe
r-

qu
er

y
la

te
nc

y
10

^x
 (s

ec
on

ds
, m

ed
ia

n)

KV-Mem
NSM

ChatGPT (1 call)

GPT-4 (1 call)

UniKGQAStructGPT

RoG

Think-on-Graph GoG
KG-Agent

FiDeLiS

PathHD

Hits@1 vs. latency on WebQSP

Family
Embedding
Pure LLM
LLMs+KG

Family
Embedding
Pure LLM
LLMs+KG

20 30 40 50 60 70
Hits@1 on CWQ (%)

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pe
r-

qu
er

y
la

te
nc

y
10

^x
 (s

ec
on

ds
, m

ed
ia

n)

KV-Mem
NSM

ChatGPT (1 call)

GPT-4 (1 call)

UniKGQA StructGPT

RoG

Think-on-Graph GoG
KG-Agent

FiDeLiS

PathHD

Hits@1 vs. latency on CWQ

Family
Embedding
Pure LLM
LLMs+KG

Family
Embedding
Pure LLM
LLMs+KG

20 30 40 50 60 70 80 90
Hits@1 on GrailQA (%)

0.50

0.75

1.00

Pe
r-

qu
er

y
la

te
nc

y
10

^x
 (s

ec
on

ds
, m

ed
ia

n)

ChatGPT (1 call)

GPT-4 (1 call)

StructGPT

KG-Agent

PathHD

Hits@1 vs. latency on GrailQA

Family
Embedding
Pure LLM
LLMs+KG

Family
Embedding
Pure LLM
LLMs+KG

Figure 3: Visualization of performance and latency. The x-axis is Hits@1 (%), the y-axis is
per-query latency in seconds (median, log scale). Bubble size indicates the average number of LLM
calls; marker shape denotes the method family. PathHD gives strong accuracy with lower latency
than multi-call LLMs+KG baselines.

dev (IID) splits under a unified Freebase evaluation protocol using the official Hits@1 and F1 scripts.
Detailed dataset statistics, baseline lists, and experimental settings are provided in Appendices F to H.

3.2 REASONING PEFORMANCE COMPARISON

We evaluate under a unified Freebase protocol with the official Hits@1/F1 scripts on WebQSP, CWQ,
and GrailQA (dev, IID); results are in Table 2. Baselines cover classic KGQA (Embedding/Retrieval),
recent LLMs+KG systems, and Pure LLMs. Our PathHD uses hyperdimensional scoring with
GHRR, top-K pruning, and a single LLM adjudication. Key observations emerge: Obs.❶ SOTA on
WebQSP/GrailQA; competitive on CWQ. PathHD attains best WebQSP Hits@1 (86.2) and best
GrailQA F1 (Overall/IID 86.7/92.4), while staying strong on CWQ (Hits@1 71.5, F1 65.8), close to
top LLM+KG (e.g., GoG 75.2 Hits@1; KG-Agent 69.8 F1). Obs.❷ One-shot adjudication rivals
multi-step agents. Versus RoG (∼12 calls) and Think-on-Graph/GoG/KG-Agent (3–8 calls), PathHD
matches or exceeds accuracy on WebQSP/GrailQA and remains competitive on CWQ with just one
call—reducing error compounding and focusing the LLM on a high-quality shortlist. Obs.❸ Pure
LLMs lag without KG grounding. Zero/few-shot GPT-4 or ChatGPT underperform LLM+KG; e.g.,
on CWQ GPT-4 Hits@1 55.6 vs. PathHD 71.5. Obs.❹ Classic embedding/retrieval trails modern
LLM+KG. KV-Mem, NSM, SR+NSM rank subgraphs well but lack a flexible language component
for composing multi-hop constraints, yielding consistently lower scores.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.3 EFFICIENCY AND COST ANALYSIS

We assess end-to-end cost via a Hits@1–latency bubble plot (Figure 3) and a lollipop latency chart
(Figure 6). In Figure 3, x = Hits@1, y = median per-query latency (log-scale); bubble size = avg.
#LLM calls; marker shape = method family. Latencies in Figure 6 follow a common protocol
(per-LLM call on the order of a few seconds; non-LLM vector/graph ops ≈0.3–0.8s). PathHD uses
vector-space scoring with top-K pruning and a single LLM decision; RoG uses beam search (B=3,
depth ≤ dataset hops). A factor breakdown (#calls, depth d, beam b, tools) appears in Table 10
(Appendix I.1). Key observations are: Obs.❶ Near-Pareto across datasets. With comparable
accuracy to multi-call LLMs+KG (Think-on-Graph/GoG/KG-Agent), PathHD achieves markedly
lower latency due to its single-call design and compact post-pruning candidate set. Obs.❷ Latency
is dominated by #LLM calls. Methods with 3–8 calls (agent loops) or ≈ d × b calls (beam
search) sit higher in Figure 3 and show longer whiskers in Figure 6; PathHD avoids intermediate
planning/scoring overhead. Obs.❸ Moderate pruning improves cost–accuracy. Shrinking the pool
before adjudication lowers latency without hurting Hits@1, especially on CWQ where paths are
longer. Obs.❹ Pure LLMs are fast but underpowered. Single-call GPT-4/ChatGPT have similar
latency to our final decision yet notably lower accuracy, underscoring the importance of structured
retrieval and path scoring.

3.4 ABLATION STUDY

We analyze the contribution of each module/operation in PathHD. Our operation study covers: (1)
Path composition operator, (2) Single-LLM adjudicator, and (3) Top-K pruning.

Operator WebQSP CWQ
XOR / bipolar product 83.9 68.8
Element-wise product (Real-valued) 84.4 69.2
Comm. bind 84.7 69.6
FHRR 84.9 70.0
HRR 85.1 70.2
GHRR 86.2 71.5

Table 3: Effect of the path–composition operator.
GHRR yields the best performance.

Which path–composition operator works
best? We isolate relation binding by fix-
ing retrieval, scoring, pruning, and the single
LLM step, and only swapping the encoder’s
path–composition operator. We compare six
options (defs. in Appendix J): (i) XOR/bipolar
and (ii) real-valued element-wise products, both
fully commutative; (iii) a stronger commutative
mix of binary/bipolar; (iv) FHRR (phasors) and
(v) HRR (circular convolution), efficient yet ef-
fectively commutative; and (vi) our block-diagonal GHRR with unitary blocks, non-commutative
and order-preserving. Paths of length 1–4 use identical dimension/normalization. As in Table 3,
commutative binds lag, HRR/FHRR give modest gains, and GHRR yields the best Hits@1 on
WebQSP and CWQ by reliably separating founded_by→CEO_of from its reverse.

Final step WebQSP CWQ
Vector-only 85.4 70.8
Vector → 1×LLM 86.2 71.5

Table 4: Ablation on the final decision
maker. Passing pruned candidates and
scores to a single LLM for adjudication
yields consistent gains over vector-only
selection.

Do we need a final single LLM adjudicator? We test
whether a lightweight LLM judgment helps beyond pure
vector scoring. Vector-only selects the top path by cosine
similarity; Vector → 1×LLM instead forwards the pruned
top-K paths (with scores and end entities) to a single LLM
using a short fixed template (no tools/planning) to choose
the answer without long chains of thought. As shown
in Table 4, Vector → 1×LLM consistently outperforms
Vector-only on both datasets, especially when the top two
paths are near-tied or a high-scoring path has a subtle type mismatch; a single adjudication pass
resolves such cases at negligible extra cost.

Pruning Hits@1
(WebQSP) Lat. Hits@1

(CWQ) Lat.

No-prune 85.8 2.42s 70.7 2.45s
K=2 86.0 1.98s 71.2 2.00s
K=3 86.2 1.92s 71.5 1.94s
K=5 86.1 2.05s 71.4 2.06s

Table 5: Impact of top-K pruning before
the final LLM. Small sets (K=2–3) retain
or slightly improve accuracy while reducing
latency. We adopt K=3 by default.

What is the effect of top-K pruning before the final
step? Finally, we study how many candidates should
be kept for the last decision. We vary the number of
paths passed to the final LLM among K∈{2, 3, 5} and
also include a No-prune variant that sends all retrieved
paths. Retrieval and scoring are fixed; latency is the
median per query (lower is better). As shown in Table 5,
K=3 achieves the best Hits@1 on both WebQSP and
CWQ with the lowest latency, while K=2 is a close
second and yields the largest latency drop. In contrast,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

51
2

10
24

20
48

30
72

40
96

61
44

81
92

Hypervector Dimension

77

78

79

F1
 (%

)

WebQSP

51
2

10
24

20
48

30
72

40
96

61
44

81
92

Hypervector Dimension

64

65

66
CWQ

51
2

10
24

20
48

30
72

40
96

61
44

81
92

Hypervector Dimension

86.0

86.5

87.0
GrailQA

Figure 4: Hypervector dimension study. Each panel reports F1 (%) of PathHD on WebQSP, CWQ,
and GrailQA as a function of the hypervector dimension. Overall, performance rises from 512 to
the mid-range and then tapers off: WebQSP and GrailQA peak around 3k–4k, while CWQ prefers a
slightly larger size (6k), after which F1 decreases mildly.

No-prune maintains maximal recall but increases la-
tency and often introduces near-duplicate/noisy paths that can blur the final decision. We therefore
adopt K=3 as the default.

3.5 CASE STUDY

To better understand how our model performs step-by-step reasoning, we present two representative
cases from the WebQSP dataset in Table 6. These cases highlight the effects of candidate path
pruning and the contribution of LLM-based adjudication in improving answer accuracy. Case 1:
Top-K pruning preserves paths aligned with both film.film.music and actor cues; the vector-
only scorer already picks the correct path, and a single LLM adjudication confirms Valentine’s
Day—illustrating that pruning reduces cost while retaining high-coverage candidates. Case 2: A
vector-only top path (film.film.edited_by) misses the actor constraint and yields a false
positive, but adjudication over the pruned set—now including performance.actor—corrects to
The Perks of Being a Wallflower, showing that LLM adjudication resolves compositional constraints
beyond static similarity.

4 RELATED WORK

LLM-based Reasoning such as GPT (Radford et al., 2019; Brown et al., 2020), LLaMA (Touvron
et al., 2023), and PaLM (Chowdhery et al., 2023), have demonstrated impressive capabilities in diverse
reasoning tasks, ranging from natural language inference to multi-hop question answering (Yang
et al., 2018). A growing body of work focuses on enhancing the interpretability and reliability of
LLM reasoning through symbolic path-based reasoning over structured knowledge sources (Sun et al.,
2018; Lin et al., 2022; Hu et al., 2025). For example, Wei et al. (Wei et al., 2022) proposed chain-of-
thought prompting, which improves reasoning accuracy by encouraging explicit intermediate steps.
Wang et al. (Wang et al., 2022) introduced self-consistency decoding, which aggregates multiple
reasoning chains to improve robustness.

In the context of knowledge graphs, recent efforts have explored hybrid neural-symbolic approaches
to combine the structural expressiveness of graph reasoning with the generative power of LLMs.
Fan et al. (Fan et al., 2023) proposed Reasoning on Graphs (RoG), which first prompts LLMs to
generate plausible symbolic relation paths and then retrieves and verifies these paths over knowledge
graphs. Similarly, Khattab et al. (Khattab et al., 2022) leveraged demonstration-based prompting to
guide LLM reasoning grounded in external knowledge. Despite their interpretability benefits, these
methods rely heavily on neural encoders for path matching, incurring substantial computational and
memory overhead, which limits scalability to large KGs or real-time applications.

Hyperdimensional Computing (HDC) is an emerging computational paradigm inspired by the
properties of high-dimensional representations in cognitive neuroscience (Kanerva, 2009; Kanerva
et al., 1997). In HDC, information is represented as fixed-length high-dimensional vectors (hypervec-
tors), and symbolic structures are manipulated through simple algebraic operations such as binding,
bundling, and permutation (Gayler, 2004). These operations are inherently parallelizable and robust
to noise, making HDC appealing for energy-efficient and low-latency computation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Case studies on multi-hop reasoning over WebQSP. Top-K pruning is applied before
invoking LLM, reducing cost while retaining plausible candidates.

Case 1: which movies featured Taylor Swift and music by John Debney

Top-4 candidates

1) film.film.music (0.2567)
2) person.nationality → film.film.country (0.2524)
3) performance.actor → performance.film (0.2479)
4) people.person.languages → film.film.language (0.2430)

Top-K after pruning
(K=3)

film.film.music
person.nationality → film.film.country
performance.actor → performance.film

Vector-only (no LLM) Pick film.film.music ✓ — directly targets the composer-to-film mapping;
relevant for filtering by music.

1×LLM adjudication
Rationale: “To find films with both Taylor Swift and music by John Debney,
use actor-to-film and music-to-film relations. The chosen path targets the latter
directly.”

Final Answer / GT Valentine’s Day (predict) / Valentine’s Day ✓

Case 2 : in which movies does Logan Lerman act in that was edited by Mary Jo Markey

Top-4 candidates

1) film.film.edited_by (0.2548)
2) person.nationality → film.film.country (0.2527)
3) performance.actor → performance.film (0.2505)
4) award.award_winner.awards_won→
award.award_honor.honored_for (0.2420)

Top-K after pruning
(K=3)

film.film.edited_by
person.nationality → film.film.country
performance.actor → performance.film

Vector-only (no LLM) Pick film.film.edited_by ✗ — identifies edited films, but lacks actor
constraint; leads to false positives.

1×LLM adjudication
Rationale: “The question requires jointly filtering for actor and editor. While
film.edited_by is relevant, combining it with performance.actor im-
proves precision by ensuring Logan Lerman is in the cast.”

Final Answer / GT Perks of Being a Wallflower (predict) / Perks of Being a Wallflower ✓

HDC has been successfully applied in domains such as classification (Rahimi et al., 2016), biosignal
processing (Moin et al., 2021), natural language understanding (Maddali, 2023), and graph analyt-
ics (Imani et al., 2019b). For instance, Imani et al. (Imani et al., 2019b) demonstrated that HDC
can encode and process graph-structured data efficiently, enabling scalable similarity search and
inference. Recent studies have also explored neuro-symbolic integrations, where HDC complements
neural networks to achieve interpretable yet computationally efficient models (Imani et al., 2019a;
Rahimi et al., 2016). However, the potential of HDC in large-scale reasoning over knowledge
graphs—particularly when combined with LLMs, remains underexplored. Our work bridges this
gap by leveraging HDC as a drop-in replacement for neural path matchers in LLM-based reasoning
frameworks, thereby achieving both scalability and interpretability.

5 CONCLUSION

In this work, we introduced PathHD, a lightweight and interpretable retrieval mechanism for path-
based reasoning over knowledge graphs, grounded in Hyperdimensional Computing (HDC). By
replacing the neural path matcher in frameworks like RoG with an HDC-based retriever, PathHD
eliminates the need for costly neural encoders and leverages efficient hypervector operations for
path representation and similarity computation. This design yields substantial reductions in both
computational and memory costs while maintaining competitive reasoning accuracy. Experimental
results on standard KGQA benchmarks confirm that PathHD achieves speedup without sacrificing
performance, highlighting its potential as a scalable and deployable alternative to neural-symbolic
reasoning. Our findings suggest that HDC offers a promising foundation for building next-generation
reasoning systems that are efficient, generalizable, and well-suited to real-time or resource-constrained
scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive attributes. All datasets are
public and widely used for KGQA research. We conduct a limited manual verification in a few case
studies for readability Section 3.5 to confirm the final entity answers from public sources; no personal
information was collected, no crowd workers were employed, and no compensation was involved.
This verification is used for illustrative examples and does not alter the quantitative evaluation. We
encourage responsible use when deploying our method in applications that may involve sensitive data.
We have carefully followed community norms for dataset usage and model evaluation. Our proposed
method, PathHD, is designed to enhance the interpretability and faithfulness of large language model
reasoning over knowledge graphs, which may help mitigate hallucination and improve the reliability
of LLMs in downstream applications. While our method may be deployed in real-world systems
involving sensitive data, such usage is beyond the scope of this paper. We encourage responsible use
and community oversight when applying our method in such contexts.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. We will release all code, data prepro-
cessing scripts, and instructions to reproduce our experiments upon acceptance. Our method builds
on publicly available datasets (WebQSP, CWQ, GrailQA) and introduces a modular and lightweight
retrieval component based on hyperdimensional computing. We include all necessary hyperparame-
ters, training details, and evaluation metrics in the main text and appendix. The symbolic structure
of relation paths, key to our method’s design, is clearly described in the paper and supplemental
material. Additionally, we provide a complexity analysis to support the claims of efficiency. Any
further clarifications or updates will be added to the official code repository.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collabora-
tively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pp. 1247–1250, 2008.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems (NeurIPS), volume 33,
pp. 1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Baihan Fan, R. Man Luo, Ansong Ni, and Irwin King. Reasoning on graphs: Faithful and interpretable
large language model reasoning. In Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

E. Paxon Frady, Denis Kleyko, and Friedrich T. Sommer. Variable binding for sparse distributed
representations: Theory and applications. Neural Computation, 33(9):2207–2248, 2021.

Ross W Gayler. Vector symbolic architectures answer jackendoff’s challenges for cognitive neuro-
science. arXiv preprint cs/0412059, 2004.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. Beyond iid:
three levels of generalization for question answering on knowledge bases. In Proceedings of the
web conference 2021, pp. 3477–3488, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and Ji-Rong Wen. Improving multi-hop
knowledge base question answering by learning intermediate supervision signals. In Proceedings
of the 14th ACM international conference on web search and data mining, pp. 553–561, 2021.

Haotian Hu, Alex Jie Yang, Sanhong Deng, Dongbo Wang, and Min Song. Cotel-d3x: a chain-
of-thought enhanced large language model for drug–drug interaction triplet extraction. Expert
Systems with Applications, 273:126953, 2025.

Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. Adaptable hyperdimensional
computing for efficient learning and inference. IEEE Transactions on Computers, 68(8):1175–1188,
2019a.

Mohsen Imani, Abbas Rahimi, Deqian Kong, and Tajana Rosing. A framework for collaborative
learning in secure high-dimensional space. IEEE Transactions on Cloud Computing, 9(4):1380–
1393, 2019b.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Unikgqa: Unified retrieval and reasoning
for solving multi-hop question answering over knowledge graph. arXiv preprint arXiv:2212.00959,
2022.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. Structgpt:
A general framework for large language model to reason over structured data. arXiv preprint
arXiv:2305.09645, 2023.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, Chen Zhu, Hengshu Zhu, and Ji-Rong Wen.
Kg-agent: An efficient autonomous agent framework for complex reasoning over knowledge graph.
arXiv preprint arXiv:2402.11163, 2024.

Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed represen-
tation with high-dimensional random vectors. Cognitive Computation, 1(2):139–159, 2009.

Pentti Kanerva et al. Fully distributed representation. PAT, 1(5):10000, 1997.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp. In NeurIPS, 2020.

Qingqing Lin, Ruiying Zhong, Zhengyan Du, Wenhu Chen, Duyu Tang, and Ming Zhou. Kqa pro:
A dataset with explicit compositional programs for complex question answering over knowledge
bases. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL), 2022.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning. arXiv preprint arXiv:2310.01061, 2023.

Raghavender Maddali. Fusion of quantum-inspired ai and hyperdimensional computing for data
engineering. Zenodo, doi, 10, 2023.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Ja-
son Weston. Key-value memory networks for directly reading documents. arXiv preprint
arXiv:1606.03126, 2016.

Ali Moin, Alex Zhou, Abbas Rahimi, Ankita Menon, Simone Benatti, George Alexandrov, Samuel
Tamakloe, Joash Ting, Naoya Yamamoto, Yasser Khan, et al. A wearable biosensing system with
in-sensor adaptive machine learning for hand gesture recognition. Nature Electronics, 4(1):54–63,
2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tony A Plate. Holographic reduced representations. IEEE Transactions on Neural Networks, 6(3):
623–641, 1995.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Omer Levy. Measuring
and narrowing the compositionality gap in language models. arXiv:2210.03350, 2022. Self-Ask.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

Abbas Rahimi, Simone Benatti, Pentti Kanerva, Luca Benini, and Jan M Rabaey. Robust hyper-
dimensional computing for brain-machine interfaces. In Proceedings of the IEEE International
Symposium on Low Power Electronics and Design (ISLPED), pp. 64–69, 2016.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings. In Proceedings of the 58th annual meeting
of the association for computational linguistics, pp. 4498–4507, 2020.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Hanwang Zhang. Transfernet: An effective and
transparent framework for multi-hop question answering over relation graph. arXiv preprint
arXiv:2104.07302, 2021.

Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang, and Bryan Hooi. Fidelis: Faithful reasoning in
large language model for knowledge graph question answering. arXiv preprint arXiv:2405.13873,
2024.

Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Open domain question answering using
early fusion of knowledge bases and text. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 4231–4242, 2018.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M Ni,
Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
language model on knowledge graph. arXiv preprint arXiv:2307.07697, 2023.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
arXiv preprint arXiv:1803.06643, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Kang Liu,
and Jun Zhao. Generate-on-graph: Treat llm as both agent and kg in incomplete knowledge graph
question answering. arXiv preprint arXiv:2404.14741, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Dian Yang, Run-Ze Cui, and Karthik Narasimhan. React: Synergizing reasoning and
acting in language models. In ICLR, 2023.

Shunyu Yao, Dian Zhao, Luyu Yu, and Karthik Narasimhan. Tree of thoughts: Deliberate problem
solving with large language models. arXiv:2305.10601, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
201–206, 2016.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping Li, and Hong Chen. Subgraph
retrieval enhanced model for multi-hop knowledge base question answering. arXiv preprint
arXiv:2202.13296, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

LLM USAGE

We used LLM solely as a language-editing assistant to polish wording and fix grammar, spelling,
and style for improved readability. The LLM did not contribute to research ideation, methodology,
experiments, analysis, results selection, or claim formation. All edits were reviewed and approved by
the authors, and no non-public data beyond the manuscript text was provided to the tool.

A NOTATION

Table 7: Notation used throughout the paper.

Notation Definition
G = (V, E) Knowledge graph with entity set V and edge set E .
Z Set of relation schemas / path templates.
q, a Input question and (predicted) answer.
e, r An entity and a relation (schema edge), respectively.
z = (r1, . . . , rℓ) A relation path; |z| = ℓ denotes path length.
Zcand Candidate path set instantiated from G; N = |Zcand|.
Lmax, B, K Max plan depth, BFS beam width, and number of retrieved paths kept after pruning.
d, D, m Hypervector dimension, # of GHRR blocks, and block size (unitary m×m); flattened

d = Dm2.
vx Hypervector for symbol x (entity/relation/path).
vq , vz Query-plan hypervector and a candidate-path hypervector.
H = [A1; . . . ;AD] A GHRR hypervector with unitary blocks Aj ∈ U(m).
A∗ Conjugate transpose (unitary inverse) of a block A.
⊛ GHRR blockwise binding operator (matrix product per block).
⟨A,B⟩F Frobenius inner product tr(A∗B); ∥A∥F is the Frobenius norm.
sim(·, ·) Blockwise cosine similarity used for HD retrieval.
s(z) Calibrated retrieval score; α, β, λ are calibration hyperparameters; IDF(z) is an

inverse-frequency weight.
M, M Distractor set and its size M = |M| (used in capacity bounds).
ϵ, δ Tolerance and failure probability in the concentration/union bounds.
c Absolute constant in the sub-Gaussian tail bound.

B ALGORITHM

Algorithm 1: HD-RETRIEVE: Hyperdimensional Top-K Path Retrieval
Input: question q; KG G; schema Z; max depth Lmax; beam width B; calibration (α, β, λ);

Top-K
Output: Top-K reasoning paths ZK and their scores

1 Plan: Generate relation-plan candidates P ⊆ Z (schema enumeration or lightweight prompting).
2 Encode Query: pick a plan zq ∈ P and encode by GHRR vq =

⊗
r∈zq vr. // no

unbinding used

3 Enumerate Candidates: Constrained BFS on relation graph up to depth Lmax with beam width
B, instantiating path set Z (deduplicate, type-consistent).

4 for z ∈ Z do
5 Encode Candidate: vz =

⊗
r∈z vr

6 Score: scos(z) =
vq · vz

∥vq∥ ∥vz∥
7 Calibrate (optional): s(z) = scos(z) + α IDF(z)− β λ|z|

8 return Top-K paths by s(z) as ZK .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C PROMPT TEMPLATE FOR ONE-SHOT REASONING

System You are a careful reasoner. Only use the provided KG reasoning paths as
evidence. Cite the most relevant path(s) and answer concisely.

User Question: “$QUESTION”

Retrieved paths (Top-K):
1. $PATH_1
2. $PATH_2
3. . . .
4. $PATH_K

Assistant (required format) Answer: $SHORT_ANSWER

Supporting path(s): [indexes from the list above]

Rationale (1–2 sentences): why those paths imply the answer.

Table 8: Prompt template for KG path–grounded QA.

D THEORETICAL SUPPORT

D.1 WHY HIGH DIMENSIONAL HYPERVECTORS? NEAR-ORTHOGONALITY AND CAPACITY

We justify the use of high-dimensional hypervectors in PathHD by showing that (i) random hypervec-
tors are nearly orthogonal with high probability, and (ii) this property is preserved under binding,
yielding exponential concentration that enables accurate retrieval at scale.

Setup. Let each entity/relation be encoded as a Rademacher hypervector x ∈ {−1,+1}d with i.i.d.
entries. For two independent hypervectors x,y, define cosine similarity cos(x,y) = ⟨x,y⟩

∥x∥ ∥y∥ . Since

∥x∥ = ∥y∥ =
√
d, we have cos(x,y) = 1

d

∑d
k=1 xkyk.

Proposition 2 (Near-orthogonality of random hypervectors). For any ϵ ∈ (0, 1),

Pr
(∣∣ cos(x,y)∣∣ > ϵ

)
≤ 2 exp

(
− 1

2ϵ
2d
)
.

Proof. Each product Zk = xkyk is i.i.d. Rademacher with E[Zk] = 0 and |Zk| ≤ 1. By Hoeffding’s
inequality, Pr

(∣∣∣∑d
k=1 Zk

∣∣∣ > ϵd
)
≤ 2 exp(−ϵ2d/2). Divide both sides by d to obtain the claim.

Lemma 1 (Closure under binding). Let r1, . . . , rn be independent Rademacher hypervectors and
define binding (element-wise product) p = r1 ⊙ · · · ⊙ rn. Then p is also a Rademacher hypervector.
Moreover, if s is independent of at least one ri used in p, then p and s are independent and
E[cos(p, s)] = 0.

Proof. Each coordinate pk =
∏n
i=1 ri,k is a product of independent Rademacher variables, hence

Rademacher. If s is independent of some rj , then pksk has zero mean and remains bounded, implying
independence in expectation and the stated property.

Theorem 1 (Separation and error bound for PathHD retrieval). Let the query hypervector be q =
r1 ⊙ · · · ⊙ rn and consider a candidate set containing the true path p⋆ = q and M distractors
{pi}Mi=1, where each distractor differs from q in at least one relation (thus satisfies Lemma 1). Then
for any ϵ ∈ (0, 1) and δ ∈ (0, 1), if

d ≥ 2

ϵ2
log

(2M
δ

)
,

we have, with probability at least 1− δ,

cos(q,p⋆) = 1 and max
1≤i≤M

∣∣ cos(q,pi)∣∣ ≤ ϵ.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. By construction, p⋆ = q, hence cosine = 1. For each distractor pi, Lemma 1 im-
plies that q and pi behave as independent Rademacher hypervectors; applying Proposition 2,
Pr(| cos(q,pi)| > ϵ) ≤ 2e−ϵ

2d/2. A union bound overM distractors yields Pr(maxi | cos(q,pi)| >
ϵ) ≤ 2Me−ϵ

2d/2 ≤ δ under the stated condition on d.

E ADDITIONAL PROOFS AND TAIL BOUNDS

Details for Prop. 1. We view each GHRR block as a unitary matrix with i.i.d. phase (or signed)
entries, so blockwise products preserve unit norm and keep coordinates sub-Gaussian. Let X =
1
d

∑d
j=1 ξj with ξj i.i.d., mean zero, ψ2-norm bounded. Applying Hoeffding/Bernstein, Pr(|X| ≥

ϵ) ≤ 2 exp(−cdϵ2), which yields the stated result after ℓ2 normalization. Unitary blocks ensure
no variance blow-up under binding depth; see also Plate (1995); Kanerva (2009) for stability of
holographic codes.

F DATASET INTRODUCTION

We provide detailed descriptions of the three benchmark datasets used in our experiments:

WebQuestionsSP (WebQSP). WebQuestionsSP (WebQSP) (Yih et al., 2016) consists of 4,737
questions, where each question is manually annotated with a topic entity and a SPARQL query over
Freebase. The answer entities are within a maximum of 2 hops from the topic entity. Following prior
work (Sun et al., 2018), we use the standard train/validation/test splits released by GraftNet and the
same Freebase subgraph for fair comparison.

Complex WebQuestions–SP (CWQ-SP) (Talmor & Berant, 2018) is the Freebase/S-
PARQL–annotated variant of CWQ, aligning each question to a topic entity and an executable
SPARQL query over a cleaned Freebase subgraph. Questions are created by compositional expan-
sions of WebQSP (adding constraints, joins, and longer paths), and typically require up to 4-hop
reasoning. We use the standard train/dev/test split released with CWQ-SP for fair comparison.

GrailQA (Gu et al., 2021) is a large-scale KGQA benchmark with 64,331 questions. It focuses on
evaluating generalization in multi-hop reasoning across three distinct settings: i.i.d., compositional,
and zero-shot. Each question is annotated with a corresponding logical form and answer, and the
underlying KG is a cleaned subset of Freebase. We follow the official split provided by the authors
for fair comparison. In our experiments, we evaluate on the official dev set. The dev set is the authors’
held-out split from the same cleaned Freebase graph and mirrors the three generalization settings; it
is commonly used for ablations and model selection when the test labels are held out.

We follow the unified Freebase protocol (Bollacker et al., 2008), which contains approximately 88
million entities, 20 thousand relations, and 126 million triples. The official Hits@1/F1 scripts. For
GrailQA, numbers in the main results are reported on the dev split (and additionally on its IID
subset); many recent works adopt dev evaluation due to test server restrictions. WebQSP has no
official dev split under this setting. Additional statistics, including the number of reasoning hops and
answer entities, are shown in Table 9.

Table 9: Statistics of Freebase-based KGQA datasets used in our experiments.

Dataset Train Dev Test Typical hops KG
WebQSP (Yih et al., 2016) 3,098 – 1,639 1–2 Freebase
CWQ (Talmor & Berant, 2018) 27,734 3,480 3,475 2–4 Freebase
GrailQA (Gu et al., 2021) 44,337 6,763 13,231 1–4 Freebase

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G DETAILED BASELINE DESCRIPTIONS

We categorize the baseline methods into four groups and describe each group below.
G.1 EMBEDDING-BASED METHODS

• KV-Mem (Miller et al., 2016) uses a key-value memory architecture to store knowledge triples and
performs multi-hop reasoning through iterative memory operations.

• EmbedKGQA (Saxena et al., 2020) formulates KGQA as an entity-linking task and ranks entity
embeddings using a question encoder. NSM (He et al., 2021) adopts a sequential program execution
framework over KG relations, learning to construct and execute reasoning paths.

• TransferNet (Shi et al., 2021) builds on GraftNet by incorporating both relational and text-based
features, enabling interpretable step-wise reasoning over entity graphs.

G.2 RETRIEVAL-AUGMENTED METHODS

• GraftNet (Sun et al., 2018) retrieves question-relevant subgraphs and applies GNNs for reasoning
over linked entities.

• SR+NSM (Zhang et al., 2022) retrieves relation-constrained subgraphs and runs NSM over them
to generate answers.

• SR+NSM+E2E (Zhang et al., 2022) further optimizes SR+NSM via end-to-end training of the
retrieval and reasoning modules.

• UniKGQA (Jiang et al., 2022) unifies entity retrieval and graph reasoning into a single LLM-in-
the-loop architecture, achieving strong performance with reduced pipeline complexity.

G.3 PURE LLMS

• ChatGPT (Ouyang et al., 2022), Davinci-003 (Ouyang et al., 2022), and GPT-4 (Achiam et al.,
2023) serve as closed-book baselines using few-shot or zero-shot prompting.

• StructGPT (Jiang et al., 2023) generates structured reasoning paths in natural language form, then
executes them step by step.

• ROG (Luo et al., 2023) reasons over graph-based paths with alignment to LLM beliefs.
• Think-on-Graph (Sun et al., 2023) prompts the LLM to search symbolic reasoning paths over a

KG and use them for multi-step inference.

G.4 LLMS + KG METHODS

• GoG (Xu et al., 2024) adopts a plan-then-retrieve paradigm, where an LLM generates reasoning
plans and a KG subgraph is retrieved accordingly.

• KG-Agent (Jiang et al., 2024) turns the KGQA task into an agent-style decision process using
graph environment feedback.

• FiDeLiS (Sui et al., 2024) fuses symbolic subgraph paths with LLM-generated evidence, filtering
hallucinated reasoning chains.

• PathHD (ours) proposes a vector-symbolic integration pipeline where top-K relation paths are
selected by vector matching and adjudicated by an LLM, combining symbolic controllability with
neural flexibility.

H DETAILED EXPERIMENTAL SETUPS
We follow a unified evaluation protocol: Freebase KG with the official Hits@1/F1 scripts for
WebQSP, CWQ, and GrailQA, and, whenever comparable, we adopt the official numbers reported
by the original papers. Concretely, we take results for KV-Mem (Miller et al., 2016), GraftNet (Sun
et al., 2018), EmbedKGQA (Saxena et al., 2020), NSM (He et al., 2021), TransferNet (Shi et al.,
2021), SR+NSM and its end-to-end variant (SR+NSM+E2E) (Zhang et al., 2022), UniKGQA (Jiang
et al., 2022), RoG (Luo et al., 2023), StructGPT (Jiang et al., 2023), Think-on-Graph (Sun et al.,
2023), GoG (Xu et al., 2024), and FiDeLiS (Sui et al., 2024) directly from the respective papers or
their consolidated tables under the same setting. We further include a pure-LLM category: ChatGPT,
Davinci-003, and GPT-4, whose numbers are taken from the unified table in KG-Agent (Jiang et al.,
2024); note that its GrailQA scores are on the dev split. The KG-Agent results themselves are also
copied from Jiang et al. (2024). Entries marked with ‡ are our own reproductions under this protocol,
while — indicates that a metric was not reported (or not directly comparable) in the original work.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

I ADDITIONAL EXPERIMENTS

I.1 ADDITIONAL ANALYTIC EFFICIENCY

Method # LLM calls / query Planning depth Retrieval fanout/beam Executor/Tools
KV-Mem (Miller et al., 2016) 0 multi-hop (learned) moderate Yes (neural mem)
EmbedKGQA (Saxena et al., 2020) 0 multi-hop (seq) moderate No
NSM (He et al., 2021) 0 multi-hop (neural) moderate Yes (neural executor)
TransferNet (Shi et al., 2021) 0 multi-hop moderate No
GraftNet (Sun et al., 2018) 0 multi-hop graph fanout No
SR+NSM (Zhang et al., 2022) 0 multi-hop subgraph (beam) Yes (neural exec)
SR+NSM+E2E (Zhang et al., 2022) 0 multi-hop subgraph (beam) Yes (end-to-end)
ChatGPT (Ouyang et al., 2022) 1 0 n/a No
Davinci-003 (Ouyang et al., 2022) 1 0 n/a No
GPT-4 (Achiam et al., 2023) 1 0 n/a No
UniKGQA (Jiang et al., 2022) 1–2 shallow small/merged No (unified model)
StructGPT (Jiang et al., 2023) 1–2 1 n/a Yes (tool use)
RoG (Luo et al., 2023) ≈ d×b d b (per step) No (LLM scoring)
Think-on-Graph (Sun et al., 2023) 3–6 multi small/beam Yes (plan & react)
GoG (Xu et al., 2024) 3–5 multi small/iterative Yes (generate-retrieve loop)
KG-Agent (Jiang et al., 2024) 3–8 multi small Yes (agent loop)
FiDeLiS (Sui et al., 2024) 1–3 shallow small Optional (verifier)
PathHD (ours) 1 (final only) 0 vector ops only No (vector ops)

Table 10: Full analytical comparison (no implementation). Ranges reflect algorithm design; d and b
denote planning depth and beam/fanout as specified in RoG, which uses beam-search with B = 3
and path length bounded by dataset hops (WebQSP≤ 2, CWQ≤ 4).

I.2 SCORING METRIC

Blockwise
 Cosin

e

Global C
osin

e

Dot P
roduct

L2 Dista
nce

Max-block Cosin
e

77.5

78.0

78.5

79.0

F1
 (%

)

78.6

78.0
77.8

77.9

78.2

WebQSP

Blockwise
 Cosin

e

Global C
osin

e

Dot P
roduct

L2 Dista
nce

Max-block Cosin
e

64.0

64.5

65.0

65.5

66.0 65.8

65.0

64.7 64.8

65.3

CWQ

Blockwise
 Cosin

e

Global C
osin

e

Dot P
roduct

L2 Dista
nce

Max-block Cosin
e

85.5

86.0

86.5

87.0
86.7

86.1

85.8
85.9

86.3

GrailQA

Blockwise Cosine Global Cosine Dot Product L2 Distance Max-block Cosine

Figure 5: Scoring measurement ablation. We evaluate F1 (%) on WebQSP, CWQ, and GrailQA
using different scoring strategies in our model. PathHD achieves the best or competitive results when
using blockwise cosine similarity, highlighting its effectiveness in capturing fine-grained matching
signals across vector blocks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

I.3 ADDITIONAL VISUALIZATION

10 1 100 101

Per-query latency (s) median with p90 whisker

KV-Mem

NSM

ChatGPT (1 call)

GPT-4 (1 call)

UniKGQA (1 2 calls)

StructGPT (1 2 calls)

Think-on-Graph (3 6)

GoG (3 5)

KG-Agent (3 8)

RoG (B=3, D 4 12)

PathHD (ours, 1 call)

0

0

1

1

2

2

5

4

6

12

1

CWQ Latency comparison (with PathHD pruning)

Assumptions: each LLM call median 2.2s, p90 3.4s; non-LLM ops 0.3 0.8s.
RoG uses beam B=3, depth D 4 (12 calls). PathHD uses vector scoring + top-K pruning; here PRUNE_FACTOR=0.85, TAIL_SHRINK=0.9.

Figure 6: CWQ latency comparison (lollipop). Dots indicate median per-query latency; right whiskers
show the 90th percentile (p90). The x-axis is log-scaled. Values are estimated under a unified setup:
per-LLM-call median ≈ 2.2 s and p90 ≈ 3.4 s; non-LLM operations add 0.3–0.8 s. RoG follows
beam width B=3 with depth bounded by dataset hops (D≤4, ≈12 calls), whereas PathHD uses a
single LLM call plus vector operations for scoring.

I.4 EFFECT OF BACKBONE MODELS

Performance across different LLM backbones is shown in Table 11.

Table 11: Performance across different LLM backbones. Each block fixes the backbone and varies
the reasoning framework: a pure LLM control (CoT), our single-call PathHD, and 1–2 multi-step
LLM+KG baselines. Metrics follow the unified Freebase setup.

Backbone Method WebQSP CWQ GrailQA (F1) #Calls
Hits@1 / F1 Hits@1 / F1 Overall / IID (/query)

GPT-4 (API)

CoT [2022] 73.2 / 62.3 55.6 / 49.9 31.7 / 25.0 1
RoG [2023] 85.7 / 70.8 62.6 / 56.2 – / – ≈ 12

KG-Agent [2024] 83.3 / 81.0 72.2 / 69.8 86.1 / 92.0 3–8
PathHD (single-call) 86.2 / 78.6 71.5 / 65.8 86.7 / 92.4 1

GPT-3.5 / ChatGPT

CoT [2022] 67.4 / 59.3 47.5 / 43.2 25.3 / 19.6 1
StructGPT [2023] 72.6 / 63.7 54.3 / 49.6 54.6 / 70.4 1–2
RoG [2023] 85.0 / 70.2 61.8 / 55.5 – / – ≈ 12

PathHD (single-call) 85.6 / 78.0 70.8 / 65.1 85.9 / 91.7 1

Llama-3-8B-Instruct (open)

CoT (prompt-only) 62.0 / 55.0 43.0 / 40.0 20.0 / 16.0 1
ReAct-Lite (retrieval+CoT) 70.5 / 62.0 52.0 / 47.5 48.0 / 62.0 3–5
BM25+LLM-Verifier (1×) 74.5 / 66.0 55.0 / 50.0 52.0 / 66.0 1
PathHD (single-call) 84.8 / 77.2 69.8 / 64.2 84.9 / 90.9 1

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

I.5 ADDITIONAL CASE STUDY

Table 12 presents additional WebQSP case studies for PathHD. Unlike the main paper’s case table
(Top-4 candidates with pruning to K=3), this appendix visualizes the Top-3 highest-scoring relation
paths for readability and then prunes to K=2 before a single-LLM adjudication.

Across the four examples (Cases 3–6), pruning to K=2 often retains the correct path and achieves
strong final answers after LLM adjudication. However, we also observe a typical failure mode of the
vector-only selector under K=2: when multiple plausible paths exist (e.g., country vs. continent, or
actor vs. editor constraints), the vector-only choice can become brittle and select a high-scoring but
underconstrained path, after which the LLM must recover the correct answer using the remaining
candidate (see Case 4). In contrast, the main-paper setting with K=3 keeps one more candidate,
which more reliably preserves a constraint-satisfying path (e.g., explicitly encoding actor or continent
relations). This extra coverage reduces reliance on the LLM to repair mistakes and improves
robustness under compositional queries.

While K=2 is cheaper and can work well in many instances, K=3 offers a better coverage–
precision trade-off on average: it mitigates pruning errors in compositional cases and lowers the risk
of discarding the key constraint path. This aligns with our main experimental choice of K=3, which
we use for all reported metrics in the paper.

Case-study note. For the qualitative case studies only, we manually verified the final entity answers
using publicly available sources (e.g., film credits and encyclopedia entries). This light-weight human
verification was used solely to present readable examples; it does not affect any quantitative metric.
All reported metrics (e.g., Hits@1 and F1) are computed from dataset-provided supervision and
ground-truth paths without human annotation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: Case studies for PathHD with an illustrative display of candidates. For each query, we
list the four highest-scoring relation paths (Top-4) for readability, then prune to K = 2 before the
vector-only choice and a single-LLM adjudication.

Case 3: where are the gobi desert located on a map

Top-3 candidates
1) location.location.containedby (0.3410)
2) location.location.partially_containedby (0.3335)
3) location.location.contains (0.3255)

Top-K after pruning
(K=2)

containedby

partially_containedby

Vector-only (no LLM) Pick containedby ✓ — returns parent region; predicts Asia.

1×LLM adjudication Rationale: “Gobi Desert lies across Mongolia and China, which are contained by
the continent of Asia; ‘contains’ would flip direction.”

Final Answer / GT Asia (predict) / Asia ✓

Case 4: in which continent is germany

Top-3 candidates
1) location.location.containedby (0.3405)
2) base.locations.countries.continent (0.3325)
3) location.location.contains (0.3270)

Top-K after pruning
(K=2)

containedby

countries.continent

Vector-only (no LLM) Pick containedby ✗ — tends to surface EU or administrative parents, hurting
precision.

1×LLM adjudication Rationale: “The target is a country → continent query; use
countries.continent to directly map Germany to Europe.”

Final Answer / GT Europe (predict) / Europe ✓

Case 5: what is the hometown of the person who said “Forgive your enemies, but never forget their names?”

Top-3 candidates
1) quotation.author → person.place_of_birth (0.3380)
2) family.members → person.place_of_birth (0.3310)
3) quotation.author → location.people_born_here (0.3310)

Top-K after pruning
(K=2)

quotation.author → place_of_birth

family.members → place_of_birth

Vector-only (no LLM) Pick quotation.author → place_of_birth ✓ — direct trace from
quote to person to birthplace.

1×LLM adjudication Rationale: “The quote’s author is key; once identified, linking to their birthplace
via person-level relation gives the hometown.”

Final Answer / GT Brooklyn (predict) / Brooklyn ✓

Case 6: what is the name of the capital of Australia where the film “The Squatter’s Daughter” was made

Top-3 candidates

1) film.film_location.featured_in_films (0.3360)
2) notable_types→ newspaper_circulation_area.newspapers

→ newspapers (0.3330)
3) film_location.featured_in_films→
bibs_location.country (0.3310)

Top-K after pruning
(K=2)

film.film_location.featured_in_films

notable_types→ newspaper_circulation_area.newspapers

Vector-only (no LLM) Pick film.film_location.featured_in_films ✓ — retrieves film-
ing location; indirectly infers capital via metadata.

1×LLM adjudication
Rationale: “The film’s production location helps localize the city. Although not
all locations are capitals, this film was made in Australia, where identifying the
filming city leads to the capital.”

Final Answer / GT Canberra (predict) / Canberra ✓

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

J DETAILED INTRODUCTION OF THE MODULES

J.1 BINDING OPERATIONS

Below we summarize the binding operators considered in our system and ablations. All bindings
produce a composed hypervector s from two inputs x and y of the same dimensionality.

(1) XOR / Bipolar Product (commutative). For binary hypervectors x,y ∈ {0, 1}d,

s = x⊕ y, si = (xi + yi) mod 2.

Under the bipolar code {−1,+1}, XOR is equivalent to element-wise multiplication:

si = xi · yi, xi, yi ∈ {−1,+1}.

This is the classical commutative bind baseline used in our ablation.

(2) Real-valued Element-wise Product (commutative). For real vectors x,y ∈ Rd,

s = x⊙ y, si = xi yi.

Unbinding is approximate by element-wise division (with small ϵ for stability): xi ≈ si/(yi + ϵ).
This is another variant of the commutative bind.

(3) HRR: Circular Convolution (commutative). For x,y ∈ Rd,

s = x⊛ y, sk =

d−1∑
i=0

xi y(k−i) mod d.

Approximate unbinding uses circular correlation:

x ≈ s⊛−1 y, xi ≈
d−1∑
k=0

sk y(k−i) mod d.

This is the Circ. conv condition in our ablation.

(4) FHRR / Complex Phasor Product (commutative). Let x,y ∈ Cd with unit-modulus compo-
nents xi = eiϕi , yi = eiψi . Binding is element-wise complex multiplication

s = x⊙ y, si = xiyi = ei(ϕi+ψi),

and unbinding is conjugation: x ≈ s⊙ y∗. FHRR is often used as a complex analogue of HRR.

(5) Block-diagonal GHRR (non-commutative, ours). We use Generalized HRR with block-unitary
components. A hypervector is a block vector H = [A1; . . . ;AD], Aj ∈ U(m) (so total dimension
d = Dm2 when flattened). Given X = [X1; . . . ;XD] and Y = [Y1; . . . ;YD], binding is the
block-wise product

Z = X ⊛ Y, Zj = XjYj (j = 1, . . . , D).

Since matrix multiplication is generally non-commutative (XjYj ̸= YjXj), GHRR preserves or-
der/direction of paths. Unbinding exploits unitarity:

Xj ≈ ZjY
∗
j , Yj ≈ X∗

j Zj .

This Block-diag (GHRR) operator is our default choice and achieves the best performance in the
operation study (Table 3), compared to Comm. bind and Circ. conv.

22

	Introduction
	Method
	Problem Setup & Notation
	Hypervector Initialization
	GHRR Binding and Path Encoding
	Query & Candidate Path Construction
	HD Retrieval: Blockwise Similarity and Top-K
	One-shot Reasoning with Retrieved Paths
	Theoretical & Complexity Analysis

	Experiments
	Datasets, Baselines, and Setup
	Reasoning Peformance Comparison
	Efficiency and Cost Analysis
	Ablation Study
	Case Study

	Related Work
	Conclusion
	Notation
	Algorithm
	Prompt Template for One-shot Reasoning
	Theoretical Support
	Why High Dimensional Hypervectors? Near-Orthogonality and Capacity

	Additional Proofs and Tail Bounds
	Dataset Introduction
	Detailed Baseline Descriptions
	Embedding-based methods
	Retrieval-augmented methods
	Pure LLMs
	LLMs + KG methods

	Detailed Experimental Setups
	Additional Experiments
	Additional Analytic efficiency
	Scoring Metric
	Additional Visualization
	Effect of Backbone Models
	Additional Case Study

	Detailed Introduction of the Modules
	Binding Operations

