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ABSTRACT

Discrete diffusion models have become highly effective across various domains.
However, real-world applications often require the generative process to adhere
to certain constraints. To this end, we propose a Sequential Monte Carlo (SMC)
framework that enables scalable inference-time control of discrete diffusion mod-
els through principled importance weighting and optimal proposal construction.
Specifically, our approach derives tractable importance weights for a range of
intermediate targets and characterises the optimal proposal, for which we develop
two practical approximations: a first-order gradient-based approximation and an
amortised proposal trained to minimise the log-variance of the importance weights.
Empirical results across synthetic tasks, language modelling, biology design, and
text-to-image generation demonstrate that our framework enhances controllability
and sample quality, highlighting the effectiveness of SMC as a versatile recipe for
scaling discrete diffusion models at inference time.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have achieved
remarkable success across various domains, from image synthesis (Rombach et al., 2022; Esser et al.,
2024) to scientific applications (Hoogeboom et al., 2022; Watson et al., 2023). Recently, advances in
discrete diffusion models (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024) have established
them as a powerful approach for modelling discrete data, notably in tasks such as language modelling
(Nie et al., 2025; Zhang et al., 2025a) and code generation (Gat et al., 2024; Gong et al., 2025).

Despite their impressive capabilities, pretrained diffusion models often need to generate samples that
meet specific downstream constraints. For example, text-to-image generation requires images aligned
with human preferences (Black et al., 2023; Fan et al., 2023; Uehara et al., 2024), while protein
generation demands stability or desired binding affinity (Verkuil et al., 2022; Uehara et al., 2025b).
To address this challenge, existing approaches mainly fall into two categories: i) fine-tuning and
ii) guidance methods. Fine-tuning methods, including techniques such as steering (Rector-Brooks
et al., 2024), reinforcement learning (Zekri & Boullé, 2025), and direct backpropagation (Wang et al.,
2024), have demonstrated promising results. Nevertheless, these methods often suffer from reward
over-optimisation, which can compromise sample quality and diversity. On the other hand, guidance
and sampling methods (Li et al., 2024; Gruver et al., 2023; Nisonoff et al., 2024; Guo et al., 2024;
Uehara et al., 2025a) provide training-free alternatives that are easier to deploy, but they often suffer
from reward under-optimisation. This limits their ability to enforce correct alignment, resulting in
outputs that may not fully meet complex constraints.

In this paper, with a primary focus on discrete diffusion models, we propose a Sequential Monte
Carlo (SMC) (Del Moral et al., 2006) framework for test-time inference. By leveraging SMC, an
asymptotically unbiased sampler, our approach enables test-time scaling, effectively addressing the
over-optimisation issues commonly encountered by fine-tuning methods. Moreover, we propose
a learnable amortised proposal to approximate the optimal SMC proposal, which mitigates the
under-optimisation problems often associated with guidance-based methods, thereby improving both
scalability and efficacy during inference. In summary, our contributions include:
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• We propose a simple SMC framework for discrete diffusion models. By leveraging tractable
importance weights, we show that SMC provides a general recipe for test-time scaling,
enhancing classifier-free guidance and enabling effective reward alignment.

• We propose two approximately optimal proposals: a first-order approximation and a learn-
able amortised proposal. The latter is optimised by minimising the log-variance of impor-
tance weights, leading to substantial improvements in the effectiveness of SMC.

• We demonstrate the versatility of the proposed approach across a broad range of applications,
including language modelling, biology design, and text-to-image generation, highlighting
its ability to consistently improve performance and generalise across diverse domains.

2 BACKGROUND

We first introduce the main preliminaries: discrete diffusion models and Sequential Monte Carlo.

2.1 DISCRETE DIFFUSION MODELS

Discrete diffusion models (Austin et al., 2021) define a forward nosing process that interpolates
between the original data distribution and a fixed prior v ∈ ∆V on the V -simplex:

p(xt|x0) = Cat(xt;αtx0 + (1− αt)v), (1)

where αt is a monotonically decreasing schedule from 1 to 0 such that xT ∼ Cat(v). Masked
diffusion models (Sahoo et al., 2024; Shi et al., 2024) are a special case that use a mask token [m] as
the prior, with the induced posterior taking the form of

p(xt−1|xt, x0) =

{
Cat(xt−1;xt) xt ̸= [m],

Cat
(
xt−1;

(1−αt−1)[m]+(αt−1−αt)x0

1−αt

)
xt = [m]

(2)

Since x0 is not available during inference, the reverse unmasking process is parametrised as
pθ(xt−1|xt) = p(xt−1|xt, µθ(xt)), where µθ(xt) is a denoising model that predicts the clean data
x0. The model is trained by minimising the cross-entropy loss

L(x0; θ) =
T∑
t=1

α′
t

1− αt
Ep(xt|x0)[− log(xT0 µθ(xt))] dt, (3)

which is equivalent, if T→∞, to the negative evidence lower bound of the log-likelihood log pθ(x0).

2.2 IMPORTANCE SAMPLING AND SEQUENTIAL MONTE CARLO

Consider the Monte Carlo integration problem Eπ(xt)[δ(xt)], where sampling from the target distri-
bution π is intractable. Importance sampling (Robert et al., 1999) alleviates this issue by introducing
a proposal distribution q, allowing the expectation to be rewritten as

Eπ(xt)[δ(xt)] = Eq(xt:T )

[
π(xt:T )

q(xt:T )
δ(xt)

]
≈ 1

N

N∑
i=1

π(x
(i)
t:T )

q(x
(i)
t:T )

δ(x
(i)
t ), x

(i)
t:T ∼ q(xt:T ). (4)

While conceptually simple, importance sampling often suffers from high variance. To address this
limitation, Sequential Monte Carlo (SMC) (Del Moral et al., 2006) extends importance sampling
by incorporating resampling and sequential weighting strategies across the path, thereby reducing
variance in practice. In SMC, a key intuition is the recursive formulation of the importance weight

wt−1(x
(i)
t−1:T ) ≜

π(x
(i)
t−1:T )

q(x
(i)
t−1:T )

=
π(x

(i)
t−1|x

(i)
t:T )π(x

(i)
t:T )

q(x
(i)
t−1|x

(i)
t:T )q(x

(i)
t:T )

=
π(x

(i)
t−1)

π(x
(i)
t )

γ(x
(i)
t |x

(i)
t−1)

q(x
(i)
t−1|x

(i)
t )

wt(x
(i)
t:T ), (5)

where we leverage the Markovian assumption that π(x(i)t:T ) = π(x
(i)
t )
∏T−1
k=t γ(x

(i)
t+1|x

(i)
t ) for arbi-

trary forward kernel γ and thus π(x(i)t−1|x
(i)
t ) = π(x

(i)
t−1)γ(x

(i)
t |x

(i)
t−1)/π(x

(i)
t ). The recursion of

importance weight underlies the iterative procedure of SMC. Concretely, The procedure initialises
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begins byN particles x(i)T ∼ q(xT ) with weights w(i)
T ← π(x

(i)
T )/q(x

(i)
T ). For each step t = T, . . . , 1

and particles i = 1, . . . , N , SMC proceeds as follows: i) resample ancestor according to the weights
{w(i)

t }Ni=1; ii) propagate new particles via x(i)t−1 ∼ q(xt−1|xt); and iii) updating the weights as
w

(i)
t−1← [π(x

(i)
t−1)π(x

(i)
t |x

(i)
t−1)]/[π(x

(i)
t )q(x

(i)
t−1|x

(i)
t )]. The resulting collection of weighted particles

provides an asymptotically consistent approximation of the intermediate target distribution π(xt).

3 SEQUENCE MONTE CARLO FOR DISCRETE DIFFUSION MODELS

Given a pretrained discrete diffusion model pθ(xt), we consider sampling from modified target
distributions that enable inference-time control. These targets include: i) product distributions,
a general form underlying classifier free guidance (Ho & Salimans, 2022), defined as π(xt) ∝
pαθ1(xt)p

β
θ2
(xt); and ii) reward-tilting distributions, expressed as π(xt) ∝ pθ(xt) exp(r(xt)). In

the following section, we introduce how to construct tractable importance weights by carefully
selecting forward kernels γ(xt|xt−1), and show their connection to existing SMC formulations for
continuous-time discrete diffusion models. We then discuss the choice of proposal distributions,
which play a central role in balancing variance reduction with computational efficiency.

3.1 IMPORTANCE WEIGHT: TRACTABILITY WITH PRETRAINED DIFFUSION MODELS

To perform SMC, one must evaluate the importance weight from Equation (5) at each step t. While
the forward kernel γ(xt|xt−1) and the proposal q(xt−1|xt) can be chosen flexibly, the ratio of
intermediate targets π(xt−1)

π(xt)
is generally intractable in diffusion models. With a well-trained diffusion

model pθ, however, this ratio can be approximated via detailed balance pθ(xt−1)
pθ(xt)

≈ pθ(xt−1|xt)
p(xt|xt−1)

, where
p(xt|xt−1) denotes the forward noising process and pθ(xt−1|xt) is the learned reverse counterpart.
Under this approximation, the importance weight for the product target takes the form

product:
pαθ1(xt−1|xt)pβθ2(xt−1|xt)
pα1 (xt|xt−1)p

β
2 (xt|xt−1)

γ(xt|xt−1)

q(xt−1|xt)
. (6)

Although tractable, this weight inevitably introduces approximation error unless the reverse model is
perfectly trained, due to the mismatch between the forward and backward processes. In contrast, for
the reward-tilting, the error can be eliminated by setting γ(xt|xt−1) = p(xt|xt−1), yielding

reward-tilting:
exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
p(xt|xt−1)

γ(xt|xt−1)

q(xt−1|xt)
=

exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
q(xt−1|xt)

(7)

Figure 1: SMC results for the reward-
tilting and product target distributions.

It is noteworthy that this cancellation is not applicable
to the product distributions, since the normalising con-
stant of γ can not be cancelled even if we choose γ ∝
pα1 (xt|xt−1)p

β
2 (xt|xt−1). Nevertheless, as illustrated in Fig-

ure 1, SMC with these tractable importance weights per-
forms well across both two settings on 2D toy examples.
Moreover, although we primarily focus on discrete-time
diffusion, the proposed SMC method can be extended seam-
lessly to the continuous-time setting, as established in the
following proposition.
Proposition 1 (SMC for Continuous-Time Discrete Diffusion). Let Rt be the rate matrix generating
the forward transition kernel γ(xt|xt−∆t), and R̂t be its counterpart associated with the backward
proposal kernel q(xt−∆t|xt), where ∆t→ 0 is the infinitesimal time increment. Then, the importance
weight at time t is given by wt =

∫ t
1
−∂s log π(xs) +

∑
ys
Rs(xs, ys)

π(ys)
π(xs)

ds, if the forward kernel

γ is chosen such that the rate matrices satisfy detailed balance R̂t(xt, yt)π(xt) = Rt(yt, xt)π(yt).

Proposition 1 coincides with the importance weight used in Holderrieth et al. (2025), which focus on
sampling scenarios where the intermediate target π is tractable up to an unnormalized constant. In
contrast, our setting concerns test-time control of pretrained diffusion models, where π is intractable.
In Appendix B.2, we further connect our result to Lee et al. (2025), who also study reward tilting, but
we provide a derivation from the perspective of discrete-time diffusion.
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Algorithm 1 Training Optimal Proposal

1: Rollout trajectory {xt}t with qref(xt−1|xt)
2: Compute gradient with Equation (10)
gϕ, gψ ← 1

T
∇ϕ,ψ

∑
t Lϕ,ψ(xt−1, xt)

3: Update ϕ, ψ using gϕ, gψ
ϕ← ϕ− ηgϕ, ψ ← ψ − ηgψ

Algorithm 2 SMC Sampling Procedure

1: Propose particles x(i)t−1 ∼ q(xt−1|xt)
2: Compute importance weight with Equation (5)

w
(i)
t−1=

π(xt−1)

π(xt)

γ(xt|xt−1)

q(xt−1|xt)
, w̃

(i)
t−1=

w
(i)
t−1∑

i w
(i)
t−1

3: Resamplex(i)t−1∼Multinormial(x
(i)
t−1; w̃

(i)
t1 )

3.2 CHOICES OF PROPOSAL: THE WAY TO REDUCE VARIANCE

While the proposal q(xt−1|xt) offers substantial flexibility, the statistical efficiency of SMC is highly
sensitive to its choice: suboptimal proposals induce high-variance importance weights, which in turn
precipitate particle degeneracy and hinder adequate exploration of the state space (Del Moral et al.,
2006). Conversely, an appropriately constructed proposal substantially mitigates weight variance,
thereby enhancing the effective sample size and ensuring stability of the inference procedure. The
following proposition characterises the minimum variance choice of proposal:
Proposition 2 (Locally Optimal Proposal). Given the incremental importance weight as in Equa-
tion (5) wt−1(xt−1, xt) =

π(xt−1)γ(xt|xt−1)
π(xt)q(xt−1|xt)

, the proposal distribution that minimises the variance of
wt−1, often referred to as the locally optimal proposal, is q(xt−1|xt) ∝ π(xt−1)γ(xt|xt−1).

Building on Proposition 2, one readily verifies that the optimal proposal distribution for the case
of product target is tractable (see the remark in Appendix A.2 for discussion), under the choices of
forward kernels γ ∝ pα1 (xt|xt−1)p

β
2 (xt|xt−1). In contrast, for the reward-tilting, the locally optimal

proposal takes the form q ∝ exp(r(xt−1))pθ(xt−1|xt), which is generally computationally infea-
sible due to the inaccessibility of the corresponding normalising constant. Consequently, practical
implementations must resort to approximations that balance variance reduction with computational
feasibility. In what follows, we introduce two approximation strategies tailored to the reward-tilting
setting: i) a gradient-based method to achieve first-order approximation, and ii) a neural proposal
trained to minimise the log-variance of the importance weight.

3.2.1 APPROXIMATED OPTIMAL PROPOSAL VIA FIRST-ORDER APPROXIMATION

In reward tilting, evaluating the locally optimal proposal requires computing the normalising constant
Z =

∑
xt−1

exp(r(xt−1))pθ(xt−1|xt). This computation entails O(|X |) forward pass through the
reward model at each denoising step, which significantly slows down the generation speed, rendering
the method impractical for large discrete state spaces. To mitigate this issue, we adopt the approach
of Grathwohl et al. (2021); Zhang et al. (2022), treating r(xt) as a function defined over continuous
real-valued inputs, while evaluating it on the discretised domain of interest. This allows us to apply a
first-order Taylor expansion to approximate the reward: r(xt−1) ≈ r(xt) + (xt−1 − xt)T∇xr(xt),
which in turn yields a first-order approximation to the locally optimal proposal:

q(xt−1|xt) ∝ pθ(xt−1|xt) exp(xTt−1∇xr(xt)). (8)
This approximation improves computational efficiency by requiring the reward function r to be
evaluated and differentiated only once at xt, instead of repeatedly across all states. Nevertheless, it
assumes differentiable rewards and remains costly when the reward model is large. Motivated by
Richter et al. (2020); Richter & Berner (2023) and the amortisation technique in variational inference
(Dayan et al., 1995; Kingma & Welling, 2013), we propose learning an amortised network that
approximates the optimal proposal, resulting in a transition kernel that directly transports between
successive intermediate targets as in Matthews et al. (2022). This reduces computation to a single
network evaluation, thereby significantly enhancing the efficiency of SMC.

3.2.2 AMORTISED OPTIMAL PROPOSAL VIA LOG-VARIANCE MINIMISATION

To train a network qϕ to approximate the locally optimal proposal, a natural approach is to minimise
the log-variance of the importance weight:

min
ϕ

Vqref (x0:T )

[∑
t

log
exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
qϕ(xt−1|xt)

]
≜ Llog-var(ϕ) (9)
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where qref is an arbitrary reference distribution that has the same support as pθ and qϕ. The following
corollary establishes the validity of the proposed log-variance objective.

Corollary 1. The locally optimal proposal q∗ ∝ π(xt−1)pθ(xt−1|xt) that achieves the minimum

variance of the important weight Vq
[
π(xt−1)γ(xt|xt−1)
π(xt)q(xt−1|xt)

]
is unique.

Although conceptually simple, naive Monte Carlo estimation of Llog-var suffers from high variance
and computational cost. To alleviate these issues, we introduce an auxiliary network Fψ : R→ R,
parameterised by ψ, that estimates the mean of the log-weight. This yields the refined objective:

L(ϕ, ψ) = Et,qref (xt−1,xt)

∣∣∣∣log exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
qϕ(xt−1|xt)

− Fψ(t)
∣∣∣∣2 , (10)

which provably upper bounds the log-variance loss. To be specific, the following proposition holds:

Proposition 3. For any reference distribution qref , we have Llog-var(ϕ) ≤ T 2L(ϕ, ψ). Moreover, the
minimiser of L is unique and attains its optimum when qϕ ∝ exp(r(xt−1))pθ(xt−1|xt).

We outline the training and sampling procedures in Algorithms 1 and 2. For clarity, we designate
SMCbase, SMCgrad, and SMCamot to denote, respectively, the variants employing the pretrained
diffusion proposal, the first-order approximated proposal, and the learned amortised proposal. We
further denote the first-order approximated and amortised proposals by Propgrad and Propamot, which
coincide with their corresponding SMC methods when restricted to a single particle.

3.3 SEQUENTIAL MONTE CARLO RECIPE: PRACTICAL IMPLEMENTATION

Building on the theoretical characterisation of optimal proposals, we next present a practical SMC
recipe. An essential ingredient of the proposed framework is the introduction of a twisted intermediate
target for reward-tilting: π(xt) ∝ pθ(xt) exp

(
λt

α r(xt)
)
, where α > 0 is a KL-regularisation

coefficient. This construction is motivated by the following identity

π = argmax
π

Eπ[r(xt)]− αKL(π∥pθ) ∝ pθ(xt) exp
(
r(xt)

α

)
. (11)

Here, λt ∈ [0, 1] acts a temperature parameter that smoothly interpolates between the prior pθ(xt)
(λt = 0) and the fully reward-augmented target (λt = 1). By gradually increasing λt over denoising
steps, the influence of the reward is tempered, thereby improving stability during sampling. In
scenarios where the reward is only defined on clean data, following Wu et al. (2023a); Kim et al.
(2025), we approximate the optimal intermediate target as

π(xt) ∝ pθ(xt) exp
(
λt
α
r̂(xt)

)
, r̂(xt) =

1

M

M∑
m=1

r(x
(m)
0 ), x

(m)
0 ∼ pθ(x0|xt). (12)

However, categorical sampling from pθ renders r̂(xt) non-differentiable w.r.t. xt. To resolve
it, we employ the reparameterisation trick with Gumbel-Softmax (Jang et al., 2016) to enable
differentiability (see Appendix C.2 for details), thereby making the approximated proposal applicable
as in Equation (8). For completeness, Appendix C.3 provides a further discussion of the computation
of importance weights in Equation (7) under low-confidence sampling, where the ratio pθ(xt−1|xt)

q(xt−1|xt)
is

not explicitly tractable. This extension ensures that the proposed SMC algorithm remains suitable
for recent state-of-the-art discrete diffusion models for language modelling (Nie et al., 2025) and
text-to-image generation (Bai et al., 2024), where low-confidence sampling (Chang et al., 2022) is
commonly used.

4 EXPERIMENTS

To support our theoretical discussion, we first showcase the effectiveness of the proposed methods
through a synthetic experiment. We then evaluate it across a wide range of applications, including
language modelling, biological design, and text-to-image generation. Detailed experimental settings
and additional results are provided in Appendix D.
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Figure 2: Comparisons on reward-tilted discreteised MoGs. We consider the reward function as
r(X,Y )=−X̂2/100− Ŷ 2, where X̂=12(X/63− 1/2) and Ŷ =12(Y/63− 1/2).

Figure 3: Comparisons on reward-tiled binary MNIST. We train a classier pclf(y|x) on the clean data,
and the reward is given by r(x) = log pclf(ytarget|x), where ytarget denotes the target digit.

4.1 SYNTHETIC EXPERIEMNTS

We begin with the empirical evaluation with two synthetic experiments: binary MNIST and a two-
dimensional discretised mixture of Gaussians (MoG), each dimension comprising 64 categorical
states. A discrete diffusion model is first pretrained on the clean data. We evaluate the proposed SMC-
based reward-tilting variants in comparison with two non-SMC baselines: Propgrad, corresponding
to the first-order approximation in Equation (8), and Propamot, which utilises an amortised proposal
trained according to the objective in Equation (10). Performance is assessed using the earth mover’s
distance (EMD), alongside the evaluation of the reward on the generated samples.

The results, shown in Figures 2 and 3, indicate that, compared to the non-SMC baselines, the
SMC-based methods achieve superior performance, demonstrating the effectiveness of the proposed
approach. Specifically, SMCamot attains the highest rewards and lowest EMD, though at the cost of
reduced sample diversity, likely due to reward over-optimisation. In contrast, SMCgrad maintains
comparable sample quality while preserving high diversity, highlighting the effectiveness of the
proposed approximated optimal proposal. Furthermore, Propamot significantly outperforms Propgrad,
underscoring the benefit of the log-variance minimisation objective. We further demonstrate the
reward curves over training in Figures 7a and 7b, which shows that the proposed method can achieve
stable reward convergence, confirming the efficiency and robustness in learning optimal proposal.

4.2 LANGUAGE MODELLING

We further evaluate our approach on language modelling, focusing on toxic text generation (Singhal
et al., 2025), an undesirable behaviour of language models, where the pretrained model MDLM
(Sahoo et al., 2024) produces only 0.8% of samples flagged as toxic. To assess sample quality, we
use four metrics: i) Toxic, based on the same reward model applied during inference (Logacheva
et al., 2022); ii) Toxic (Holdout), measured by a holdout toxicity classifier trained on a multilingual
mixture of datasets (Dementieva et al., 2024); iii) generative perplexity with GPT2-XL (Radford
et al., 2019); and iv) distinct uni/bi/trigrams (Dist-1/2/3). The first two metrics evaluate alignment
with the reward, while the latter two measure semantic quality and diversity.

Following Han et al. (2022), we generate sequences of length 100 with 100 denoising steps condition
on the given starting prompts, and report results averaged over 300 independent runs corresponding to
15 prompts with 20 generations per prompt. The results are summarised in Table 1, with an extended
version provided in Table 4. We observe that SMC with proposals closer to the optimal achieves better
performance on the toxicity metrics, reflecting stronger alignment with the reward model. Among
the non-SMC baselines, Propamot yields the best performance, highlighting the effectiveness of the
log-variance minimisation objective. To further assess its effect, we plot the training dynamics in
Figure 7c, which shows the reward steadily improving as training progresses. Notably, although the
learned proposal sacrifices a small degree of performance on perplexity and diversity, we demonstrate
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Table 1: The results of toxic text generation. We use a widely adopted toxicity classifier as the reward
(Logacheva et al., 2022), while the pretrained language model is MDLM (Sahoo et al., 2024).

# Particles Method Toxic ↑ Toxic (Holdout) ↑ PPL (GPT2-XL) ↓ Dist-1/2/3 ↑

N = 1
Pretrained 0.8% 5.2% 121.1 56/92/96
Propgrad 58.0% 58.3% 216.7 58/93/96
Propamot 63.7% 75.7% 131.9 53/89/94

N = 8

BoN 6.3% 16.7% 127.4 56/91/96
SMCbase 26.7% 40.0% 132.3 57/92/96
SMCgrad 95.0% 86.3% 132.1 57/92/96
SMCamot 100.0% 99.7% 147.6 44/81/91

Figure 4: Results of DNA sequence design. Both the pretrained discrete diffusion model and the
reward models are adopted from Wang et al. (2024).

in Figure 19 that it consistently generates coherent and semantically meaningful sequences, indicating
that alignment improvements need not come at the expense of sample quality.

4.3 BIOLOGY DESIGN

In this experiment, we evaluate our method on DNA sequence design. Specifically, we adopt the
pretrained model and the reward model from Wang et al. (2024), which are trained on ∼700k DNA
sequences. To evaluate the performance, we consider five metrics: i) predicted activity (Pred-Activity);
ii) chromatin accessibility classification accuracy (ATAC-Acc); iii) 3-mer Pearson correlation with
dataset sequences (3-mer Corr); iv) JASPAR motif frequency correlation (JASPAR Corr); and v)
approximate log-likelihood under the pretrained model (App-Log-Lik). For further details on these
evaluation metrics, we refer the reader to Wang et al. (2024).

As shown in Figure 4, the performance improves consistently with an increasing number of particles,
suggesting that SMC benefits from a larger particle set by providing a more accurate approximation of
the target distribution. Compared to SMCbase, SMCamot achieves higher Pred-Activity and ATAC-Acc,
while performing slightly worse on the other three metrics. This can be attributed to the more
mode-seeking behaviour of their proposals, which emphasises high-probability regions at the expense
of overall diversity. Nonetheless, we observe that SMCamot with larger particle sets attains more
favourable overall performance, indicating that a learnable amortised proposal can effectively leverage
the flexibility of SMC to balance quality and diversity. In Appendix D.2.4, we present additional
comparisons with baseline methods, further demonstrating the effectiveness of our approach.

4.4 IMAGE GENERATION

In this section, we evaluate our method on image generation. We begin by demonstrating that SMC
yields improvements over classifier-free guidance, which can be viewed as a special case of the
product target in Equation (6). Subsequently, we present large-scale experiments to illustrate the
applicability of the proposed methods to text-to-image generation at scale.

Improving CFG with MaskGit (Chang et al., 2022). Given a pretrained diffusion model pθ,
classifier-free guidance (CFG) generates samples according to pθ(xt−1|xt, c)αpθ(xt−1|xt)1−α,
where α is the CFG coefficient. CFG has been shown to enhance sample quality substantially
(Ho & Salimans, 2022). By incorporating the importance weight defined in Equation (6), we can
further improve CFG within the proposed SMC framework.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: The results of text-to-image generation across different reward models.

Table 2: Comparisons of different numbers of par-
ticles with CFG=1.25 on ImageNet256.

FiD ↓ IS ↑
# steps 8 16 32 8 16 32

N = 1 24.64 14.94 12.02 62.8 90.7 107.5
N = 2 21.08 12.55 10.26 74.0 106.6 126.2
N = 4 18.08 10.92 9.29 87.4 123.5 146.5
N = 8 16.26 9.93 8.98 96.4 139.4 159.8
N = 16 14.56 9.59 8.76 107.4 149.4 170.7

Specifically, we perform experiments with
MaskGit (Chang et al., 2022) trained on Im-
ageNet256 (Deng et al., 2009). To ensure
tractable importance weight computation, we
adopt the ReMDM sampling scheme (Wang
et al., 2025) instead of the low-confidence sam-
pling strategy from (Chang et al., 2022) (see
Tables 9 to 11 for a comparison). The result is
presented in Table 2. It shows that with fewer
denoising steps, increasing the number of parti-
cles leads to a substantial improvement in sample quality, as measured by FID and Inception Score
(IS) with 50, 000 generated images, thereby demonstrating the effectiveness of the proposed SMC
method. However, as the number of denoising steps increases, the benefit of using more particles
diminishes. This can be attributed to the role of SMC in correcting sampling inaccuracies: with
sufficient denoising steps, the sampling process itself becomes accurate enough, leaving limited room
for further improvement through additional particles. In addition, we report results with different CFG
coefficients in Tables 7 and 8. Interestingly, for larger CFG coefficients, increasing the particle count
tends to decrease FID while increasing IS. This behaviour is expected, since stronger CFG reduces
sample diversity. With more accurate sampling under SMC, this reduction in diversity becomes more
apparent, leading to lower FID but higher IS.

Improving Text-to-Image Generation with Meissonic (Bai et al., 2024). We evaluate the scalability
of the proposed methods on text-to-image generation using Meissonic (Bai et al., 2024) as the base
model. Our experiments consider three text–image alignment rewards: Human Preference Score
(HPSv2) (Wu et al., 2023b), Aesthetic Score (LAION, 2024), and ImageReward (Xu et al., 2023).
For the prompt distributions, we use photo and painting prompts from the Human Preference Dataset
(HPDv2) (Wu et al., 2023b) for HPSv2, the DrawBench prompt set for ImageReward, and a curated
set of 45 simple animal prompts for Aesthetic Score, follwoing Black et al. (2023).

The results are shown in Figure 5. We observe that performance consistently improves with an
increasing number of particles, and SMCamot outperforms all other methods, which highlights the
benefit of the proposed SMC framework. In Figure 6, we visualise the alignment dynamics for
the HPSv2 task, showing that the generated images progressively align more faithfully with the
prompts, thereby validating the effectiveness of the proposed log-variance minimisation objective.
Furthermore, Figures 7e to 7g present the convergence of the reward during training, and further
qualitative examples in Appendix D.2.7 collectively reinforce the validity of our approach.

5 RELATED WORK

Discrete Diffusion Models. Discrete diffusion models (DDMs) were originally introduced in Austin
et al. (2021); Sun et al. (2022); Campbell et al. (2022), grounded in the framework of continuous-time
Markov chains (Norris, 1998). More recently, masked diffusion models (MDMs) (Lou et al., 2023; Shi
et al., 2024; Sahoo et al., 2024), a special case of DDMs, have shown strong performance in language
modelling (Zhang et al., 2025a; Nie et al., 2025). In addition, MDMs have achieved promising
results in math reasoning (Zhao et al., 2025), image synthesis (Bai et al., 2024), code planning (Gat
et al., 2024; Gong et al., 2025), and biological sequence generation (Campbell et al., 2024), yielding
performance comparable to continuous diffusion (Rombach et al., 2022) and autoregressive models
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— A helmet-wearing monkey skating. —>

— The image features a castle surrounded by a dreamy garden with roses and a cloudy sky in the background. —>

Figure 6: Visualisation of alignment dynamics over the training progress, with images generated
every 100 training steps. The generated images become more faithful to the text prompt.

(Radford et al., 2019). In contrast to these approaches, which primarily study large-scale pretraining,
our work focuses on test-time inference and post-training alignment (Uehara et al., 2025b), where
access to training data is not available.

Test-time Alignment of Discrete Diffusion Models. Existing alignment methods mainly fall into
two categories: classifier guidance (Dhariwal & Nichol, 2021) and RL-based fine-tuning (Black
et al., 2023). Although the score is ill-defined in discrete distributions, several works (Vignac
et al., 2022; Nisonoff et al., 2024; Schiff et al., 2024) employ a first-order approximation to the
target distribution, which resembles the insight underlying our approximated proposal Propgrad in
Equation (8). Alternatively, Rout et al. (2025) perform guidance on the embedding space, mitigating
the issue of ill-defined gradients. Chen et al. (2025b) introduce reward-free guidance, analogous to
classifier-free guidance (Ho & Salimans, 2022) but designed for masked diffusion models. Moreover,
Tang et al. (2025) propose tree search guided finetuning, which is related to the searching-based
scaling methods on continuous diffusion (Ma et al., 2025; Zhang et al., 2025b; Jain et al., 2025;
Ramesh & Mardani, 2025). Beyond guidance approaches, sampling-based techniques have also
demonstrated promising performance, including value-based sampling (Li et al., 2024), importance
sampling (Guo et al., 2024), and iterative refinement strategies (Uehara et al., 2025a). While training-
free and relatively efficient to deploy, these methods often face challenges in scalability and robustness.
More recently, RL-based fine-tuning methods (Zekri & Boullé, 2025; Zhao et al., 2025; Gong et al.,
2025) have gained significant traction, fueled by the remarkable success of Group Relative Policy
Optimisation (GRPO) (Shao et al., 2024) in large language models (Guo et al., 2025). In parallel,
steering-based (Rector-Brooks et al., 2024) approaches leveraging GFlowNets (Bengio et al., 2023)
and direct backpropagation methods (Wang et al., 2024) have also demonstrated strong potential
for test-time alignment. Distinct from these directions, our amortised proposal Propamot introduces
an alternative perspective for fine-tuning pretrained discrete diffusion models: it minimises the
log-variance of importance weights, a criterion that has been rarely investigated in previous work.

Sequential Monte Carlo for Generative Modelling. SMC has emerged as a versatile framework for
probabilistic modelling, providing effective tools for sampling and inference across a wide range of
applications, including particle filtering (Johansen, 2009), Bayesian experimental design (Ryan et al.,
2016), and probabilistic planning (Piché et al., 2018). Most recently, SMC has been combined with
diffusion models (Chen et al., 2024; He et al., 2025; Skreta et al., 2025; Wu et al., 2025), transforming
it into a powerful neural sampler capable of drawing from complex Boltzmann distributions. These
developments have also extended SMC’s reach to discrete domains, as demonstrated by Holderrieth
et al. (2025); Lee et al. (2025). Beyond classical sampling tasks, SMC has further expanded to the
improvement of generative models at test time. A seminal step in this direction was taken by Zhao
et al. (2024), who introduced SMC as a principled probabilistic inference framework for addressing
capability and safety challenges in large language models (LLMs). Subsequent works (Feng et al.,
2024; Puri et al., 2025) successfully applied this idea to enhance mathematical reasoning in LLMs,
while others explored its use in reward-guided adaptation of pretrained diffusion models (Trippe
et al., 2022; Wu et al., 2023a; Cardoso et al., 2023; Dou & Song, 2024; Kim et al., 2025; Yoon
et al., 2025; Chen et al., 2025a; Ren et al., 2025). Our work is most closely related to Singhal
et al. (2025); Dang et al. (2025); Hasan et al. (2025), who employ SMC for test-time alignment
of discrete diffusion models. However, their approaches treat pretrained diffusion models as fixed
proposal distributions. By contrast, we take a closer look at the role of proposal choice, systematically
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investigating its impact and providing empirical evidence for a key insight: proposals that better
approximate the optimal, which minimises the variance of importance weights, consistently lead to
better performance.

6 CONCLUSION

In this paper, we introduced a Sequential Monte Carlo (SMC) framework tailored for discrete
diffusion models. By exploiting tractable importance weights, we established SMC as a powerful and
principled recipe for test-time scaling. A central insight of our work is that the proposal distribution
is crucial for unlocking the full potential of SMC. Building on this observation, we developed two
approximately optimal proposals: a first-order approximation and a learnable amortised proposal
trained to approximate the optimal proposal by minimising the log-variance of importance weights.
Extensive experiments across diverse domains demonstrated the effectiveness and scalability of
our approaches. We hope this work inspires future studies on more efficient test-time scaling and
post-training alignment strategies for discrete diffusion models.

ETHICS STATEMENT

Our work introduces a Sequential Monte Carlo (SMC) framework for discrete diffusion models,
designed to improve test-time alignment and scalability. While such methods could, in principle,
be misused to enhance harmful generative tasks, our goal is to advance scalable inference and
post-training alignment strategies. We evaluate our methods across diverse applications, including
toxic text generation. Although this task involves sensitive content, it serves as a stress test for
generative models, exposing their vulnerabilities to jailbreaking and adversarial misuse. By studying
this setting, we aim to develop techniques that make models more robust, reliable, and safer for
real-world deployment using the proposed SMC methods, in line with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our results. Detailed descriptions of our
SMC framework and training procedures are provided in the main text and Appendix. Additionally,
we provide anonymised code implementing our algorithms to facilitate replication and further
investigation by other researchers. Theoretical derivations and proofs of key claims are included in
the Appendix to support reproducibility and transparency.
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Appendix for “Inference-Time Scaling of Discrete
Diffusion Models via Importance Weighting and
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A ABSTRACT PROOF AND DERIVATIONS

A.1 A BRIEF RECAP OF SMC

In this section, we provide a brief overview of Sequential Monte Carlo (SMC). For a target distri-
bution π(xt), we consider the problem of estimating the expectation of a test function δ, namely
Eπ(xt)[δ(xt)]. When δ(·) is taken to be the Dirac delta function, estimating this expectation reduces
to constructing an empirical approximation of the distribution π(xt).

To estimate the expectation, importance sampling introduces a proposal distribution q, which is easy
to sample from, and proposes an estimator as follows

Eπ(xt)[δ(xt)]=Eq(xt:T )

[
π(xt:T )

q(xt:T )
δ(xt)

]
≈

N∑
i=1

w
(i)
t δ(x

(i)
t ), where w(i)

t =
π(x

(i)
t:T )

q(x
(i)
t:T )

, x
(i)
t:T ∼ q(xt:T )

The key ingredients of SMC are the target distribution π(xt:T ) and the proposal distribution q(xt:T ).
Here we consider the target distribution as a Markovian model associated with a sequence of
forward transition kernels γ: π(xt:T ) = π(xt)

∏T−1
s=t γ(xt+1|xt); and the proposal distribution as

17
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q(xt:T ) = π(xT )
∏T−1
s=t q(xt|xt+1). Substituting these into the importance weights gives

wt =
π(xt)

∏T−1
s=t γ(xt+1|xt)

π(xT )
∏T−1
s=t q(xt|xt+1)

=
π(xt)γ(xt+1|xt)
π(xt+1)q(xt|xt+1)

π(xt+1)
∏T−1
s=t+1 γ(xt+1|xt)

π(xT )
∏T−1
s=t+1 q(xt|xt+1)

=
π(xt)γ(xt+1|xt)
π(xt+1)q(xt|xt+1)

wt+1 (13)

This recursive structure allows importance weights to be computed incrementally. SMC augments
this with a resampling step to mitigate weight degeneracy. For N particles, SMC proceeds as follows:

1. Initialise: x(i)T ∼ π(xT ), w
(i)
T = 1.

2. For t = T, . . . , 1:

(a) Propagate: x(i)t−1 ∼ q(xt−1|x(i)t ).

(b) Update weights:
π(x

(i)
t )γ(x

(i)
t+1|x

(i)
t )

π(xt+1)q(x
(i)
t |x(i)

t+1)
.

(c) Resample particles according to
{

w
(i)
t−1∑N

j=1 w
(j)
t−1

}N
i=1

; then reset all weights to w(i)
t−1 = 1.

The resulting set of particles {x(i)0 , w
(i)
0 }Ni=1 forms an empirical approximation of the target π(x0).

A.2 PROOF OF LOCALLY OPTIMAL PROPOSAL

Proposition 2 (Locally Optimal Proposal). Given the incremental importance weight as in Equa-
tion (5) wt−1(xt−1, xt) =

π(xt−1)γ(xt|xt−1)
π(xt)q(xt−1|xt)

, the proposal distribution that minimises the variance of
wt−1, often referred to as the locally optimal proposal, is q(xt−1|xt) ∝ π(xt−1)γ(xt|xt−1).

Proof. We first present an intuitive argument to aid understanding, and subsequently provide the
formal proof.

Intuitive argument. The optimal proposal distribution is characterised as the one that minimises the
variance of the importance weights. In the degenerate case of zero variance, the importance weight
must be constant: π(xt−1)γ(xt−1|xt)

π(xt−1)q(xt−1|xt)
= c, for some constant c > 0. Rearranging yields

q∗(xt−1|xt) =
1

c

π(xt−1)

π(xt)
γ(xt−1|xt) ∝ π(xt−1)γ(xt−1|xt), (14)

where c = 1
π(xt)

∑
xt−1

π(xt−1)γ(xt−1|xt) is the normalising constant.

Formal proof. The optimal proposal can be obtained by minimising the variance of the incremental
importance weight w(xt−1, xt) =

π(xt−1)γ(xt−1|xt)
π(xt−1)q(xt−1|xt)

:

q∗ = argmin
q

Eq [w(xt−1, xt)− Eq[w(xt−1, xt)]]
2
+ a

∑
xt−1

q(xt−1|xt)− 1


= argmin

q
Eq
[
w(xt−1, xt)

2
]
− Eq[w(xt−1, xt)]

2 + a(xt)

∑
xt−1

q(xt−1|xt)− 1

 ,

= argmin
q

∑
xt−1

w(xt−1, xt)
2q(xt−1|xt) + a(xt)q(xt−1|xt)︸ ︷︷ ︸

:=F (q)

+c,

18
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where c denotes a constant w.r.t. q and we introduce a Lagrange multiplier a(xt) > 0 for the
constraint

∑
xt−1

q(xt−1|xt) = 1. Using the calculation of variation, where the functional F should
satisfy the Euler-Lagrange equation ∂F

∂q −
d
dx

∂F
∂q′ = 0, we have

∂F

∂q
= −

(
π(xt−1)γ(xt−1|xt)
π(xt−1)q(xt−1|xt)

)2

+ a(xt) = 0 ⇒ q∗(xt−1|xt) =
π(xt−1)γ(xt−1|xt)
π(xt)

√
a(xt)

.

The term 1

π(xt))
√
a(xt)

is a normalisation constant that does not depend on the xt−1. We can find its

value by enforcing the constraint
∑
xt−1

q∗(xt−1|xt) = 1. This shows that the optimal proposal is
q∗(xt−1|xt) ∝ π(xt−1)γ(xt−1|xt).

Remark. Given Proposition 2, we can derive the form of the locally optimal proposal under different
settings. Specifically, using the importance weight defined in Equations (6) and (7), let the forward
kernel γ(xt|xt−1) be specified as

product: γ ∝ pα1 (xt|xt−1)p
β
2 (xt|xt−1) reward-tilting: γ ∝ p(xt−1|xt)

The corresponding importance weights are then

product:
pαθ1(xt−1|xt)pβθ2(xt−1|xt)

Z(xt−1)q(xt−1|xt)
reward-tilting:

exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
q(xt−1|xt)

where Z(xt−1) =
∑
xt
pα1 (xt|xt−1)p

β
2 (xt|xt−1) is the normalising constant. By Proposition 2, the

corresponding locally optimal proposals are

product: q ∝
pαθ1(xt−1|xt)pβθ2(xt−1|xt)

Z(xt−1)
reward-tilting: q ∝ exp(r(xt−1))pθ(xt−1|xt)

The normalising constant Z is tractable, since p(xt|xt−1) is a simple forward noising distribution
(induced by Equation (1)) that does not involve network evaluation. In contrast, for the reward-tilting,
the dependence on the reward function r, which is defined via a neural network, renders the optimal
proposal intractable in general. This necessitates the development of approximation techniques.

A.3 PROOF OF LOG-VARIANCE MINIMISATION OBJECTIVE

Corollary 1. The locally optimal proposal q∗ ∝ π(xt−1)pθ(xt−1|xt) that achieves the minimum

variance of the important weight Vq
[
π(xt−1)γ(xt|xt−1)
π(xt)q(xt−1|xt)

]
is unique.

Proof. Recall that the variance is given by Vq[w] = Eq[w2]− (Eq[w])2. As shown in the proof of
Proposition 2, the term Eq[w] is constant w.r.t. the choice of q. Therefore, minimising the variance is
equivalent to minimise the expected square of the weights, Eq[w2], which we will call F (q):

F (q) = Eq[w2] =
∑
xt−1

1

q(xt−1|xt)

(
π(xt−1)γ(xt|xt−1)

π(xt)

)2

. (15)

To simplify the notation, let qi = q(xt−1 = i|xt) and Ci =
π(xt−1=i)γ(xt|xt−1=i)

π(xt)
. The optimal

proposal is q∗ = Ci/Z, where Z =
∑
j Cj . We then can rewrite the objective function F (q) as

F (q) =
∑
i

C2
i

qi
=
∑
i

(Zq∗i )
2

qi
= Z2

∑
i

(q∗i )
2

qi
. (16)

Evaluating the function at the optimum, q∗, we have

F (q∗) =
∑
i

C2
i

q∗i
=
∑
i

(Zq∗i )
2

q∗i
= Z2

∑
i

q∗i = Z2. (17)
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To prove the uniqueness of the locally optimal proposal q∗, the key insight is to relate the expression
for F (q) to the Chi-squared divergence, which is defined as

χ2(q∗∥q) =
∑
i

(q∗i − qi)2

qi
=

(∑
i

(q∗i )
2

qi

)
− 1. (18)

Rearranging this, we see that
∑
i
(q∗i )

2

qi
= χ2(q∗∥q) + 1. Now we can express F (q) as

F (q) = Z2
∑
i

(q∗i )
2

qi
= Z2

(
χ2(q∗∥q) + 1

)
= Z2χ2(q∗∥q) + Z2. (19)

Since F (q∗) = Z2, we finally arrive at

F (q) = F (q∗) + Z2χ2(q∗∥q). (20)

Since the χ2-divergence is non-negative and χ2(q∗∥q) = 0 if and only if q = q∗, we see that the
equality F (q) = F (q∗) holds only when χ2(q∗∥q) = 0, which requires that q be identical to q∗. For
any other distribution q ̸= q∗, the divergence is strictly positive, meaning F (q) > F (q∗). Therefore,
q∗ is the unique distribution that minimises the variance of the importance weights.

Proposition 3. For any reference distribution qref , we have Llog-var(ϕ) ≤ T 2L(ϕ, ψ). Moreover, the
minimiser of L is unique and attains its optimum when qϕ ∝ exp(r(xt−1))pθ(xt−1|xt).

Proof. To prove the result, we first recall the basic identitie Eq[w] = argminc Eq[(w − c)2] and
Vq[w] = Eq[(w − Eq[w])2]. Applying these, we obtain

Llog-var(ϕ) = Vqref

[∑
t

log
exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
qϕ(xt−1|xt)

]

= min
Ft∈R

Eqref

∣∣∣∣∣∑
t

log
exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
qϕ(xt−1|xt)

− Ft

∣∣∣∣∣
2


= T 2 min
Ft∈R

Eqref

∣∣∣∣∣∑
t

1

T
log

exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
qϕ(xt−1|xt)

− 1

T
Ft

∣∣∣∣∣
2


≤ T 2 min
Ft∈R

Eqref

[∑
t

1

T

∣∣∣∣log exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
qϕ(xt−1|xt)

− Ft
∣∣∣∣2
]

= T 2 min
Ft∈R

Eqref ,t

[∣∣∣∣log exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
qϕ(xt−1|xt)

− Ft
∣∣∣∣2
]
.

This motivates defining the loss function as

L(θ, ψ) = Et,xt∼qref

[∣∣∣∣log exp(r(xt−1))

exp(r(xt))

pθ(xt−1|xt)
qϕ(xt−1|xt)

− Fψ(t)
∣∣∣∣2
]
. (21)

Therefore, we have the inequality
Llog-var(ϕ) ≤ T 2L(θ, ψ) (22)

Consequently, if (θ∗, ψ∗) = argminϕ,ψ L(θ, ψ), then

L(θ∗, ψ∗) = 0 ⇒ Llog-var(ϕ
∗) = 0 ⇒ V[w] = 0. (23)

Finally, by Corollary 1, the minimiser ϕ∗ is unique, and the corresponding proposal takes the form
qϕ∗(xt−1|xt) ∝ exp(r(xt−1))pθ(xt−1|xt).

B EXTENDING DISCRETE-TIME SMC TO CONTINUOUS-TIME SMC

In this section, we extend our SMC algorithm from discrete time to continuous time. We begin by
introducing the key preliminary: the continuous-time Markov chain (CTMC) (Norris, 1998). We then
establish connections to previous work Holderrieth et al. (2025); Lee et al. (2025), which develops
continuous-time SMC methods for discrete diffusion models.
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B.1 BACKGROUND OF CTMC

A continuous-time Markov chain (Norris, 1998) at time t is characterised by a time-dependent
rate matrix Rt : X × X → R, which captures the instantaneous rate of change of the transition
probabilities. Specifically, the rate matrix Rt is defined as

Rt(x, y) = lim
∆t→0

pt+∆t|t(y|x)− δy=x
∆t

, δy=x =

{
1, y = x

0, y ̸= x
. (24)

By definition, the rate matrix equivalently yields the transition probability

pt+∆t|t(y|x) = δy=x +Rt(x, y)∆t+O(∆t). (25)

To ensure pt+∆t|t be a valid distribution, the rate matrix Rt must satisfy the following constraints:

Rt(x, y) ≥ 0,∀y ̸= x, Rt(x, x) = −
∑
y ̸=x

Rt(x, y). (26)

The transition probability pt|s, for t > s, satisfies the Kolmogrove equations (Oksendal, 2013):

Kolmogorov forward equation: ∂tpt|s(x|x̃) =
∑
y

pt|s(y|x̃)Rt(y, x) (27)

Kolmogorov backward equation: ∂spt|s(x|x̃) = −
∑
y

Rt(x̃, y)pt|s(x|y) (28)

The forward equation also induces a PDE for the marginal distribution pt(x)

∂tpt(x) =
∑
y

pt(y)Rt(y, x). (29)

Using the backward equation, one can derive a Kolmogorov backward equation for expectations, also
known as Dynkin’s formula (Oksendal, 2013). In particular, we have the following lemma.

Lemma 1. Let h be a test function of interest and define ut(x) = Ep1|t(z|x)[h(z)]. Then ut satisfies
the partial differential equation ∂tut(x) = −

∑
y Rt(x, y)ut(y).

Proof.

∂tut(x) =
∑
z

h(z)∂tp1|t(z|x)

=
∑
z

h(z)−
∑
y

Rt(x, y)p1|t(z, y)

= −
∑
y

Rt(x, y)
∑
z

p1|t(z, y)h(z)

= −
∑
y

Rt(x, y)ut(y).

B.2 CONTINUOUS-TIME FORMULATION OF SMC

Proposition 1 (SMC for Continuous-Time Discrete Diffusion). Let Rt be the rate matrix generating
the forward transition kernel γ(xt|xt−∆t), and R̂t be its counterpart associated with the backward
proposal kernel q(xt−∆t|xt), where ∆t→ 0 is the infinitesimal time increment. Then, the importance
weight at time t is given by wt =

∫ t
1
−∂s log π(xs) +

∑
ys
Rs(xs, ys)

π(ys)
π(xs)

ds, if the forward kernel

γ is chosen such that the rate matrices satisfy detailed balance R̂t(xt, yt)π(xt) = Rt(yt, xt)π(yt).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. Recall Equation (5), where the importance weight is given by

wt−1(xt−1:T ) =
π(xt−1)

π(xt)

γ(xt|xt−1)

q(xt−1|xt)
wt(xt:T ). (30)

We now extend it to the continuous-time setting. LetRt and R̂t denote the rate matrices corresponding
to the proposal q and the forward noising transition γ, respectively. Consider a discretisation with T
denoising steps, indexed by time points s = t0 < · · · < ti · · · < tT = 1, where each interval satisfies
ti − ti−1 = 1−s

T . The discrete-time importance weight at step time s is then computed as

logws = log
π(xs)

π(x1)
+

T∑
i=1

log
γ(xti |xti−1

)

q(xti−1 |xti)
. (31)

The second term in the RHS can be expanded as∑
i

log
γ(xti |xti−1

)

q(xti−1
|xti)

=
∑
i

log

(
δxti

=xti−1
+R̂ti(xti−1

, xti)
1

T

)
−log

(
δxti−1

=xti
+Rti(xti , xti−1

)
1

T

)
=
∑

i,ti=ti−1

log

(
1+R̂ti(xti , xti)

1

T

)
−log

(
1+Rti(xti , xti)

1

T

)
+
∑

i,ti ̸=ti−1

R̂ti(xti−1
, xti)−Rti(xti , xti−1

)

=
∑

i,ti=ti−1

R̂ti(xti , xti)
1

T
−Rti(xti , xti)

1

T
+O( 1

T
)+
∑

i,ti ̸=ti−1

R̂ti(xti−1
, xti)−Rti(xti ,xti−1

)

Taking the limit T → +∞, the importance weight becomes:

logws=log
π(xs)

π(x1)
+

∫ s

1

Rt(xt, xt)−R̂t(xt, xt) dt+
∑

s≤t,xt+ ̸=xt

log R̂t(xt, xt+)−logRt(xt+ , xt). (32)

By the fundamental theorem of calculus for piecewise differentiable functions, we have:

log
π(xs)

π(x1)
=

∫ s

1

−∂t log π(xt) +
∑

s≤t,xt+ ̸=xt

log π(xt)− log π(xt+). (33)

If the noising process γ is chosen such that the rate matrix satisfies R̂t(xt, yt)π(xt) =
Rt(yt, xt)π(yt), then the importance weight simplifies accordingly

logws =

∫ s

1

−∂t log π(xt) +Rt(xt, xt)−R̂t(xt, xt) dt

=

∫ s

1

−∂t log π(xt) +
∑
yt

Rt(xt, yt)
π(yt)

π(xt)
dt,

which completes the proof.

Remark. Proposition 1 recovers the importance weights proposed in the SMC methods of Holderrieth
et al. (2025); Ou et al. (2025). In those works, the intermediate target distribution is defined as a
geometric interpolation between the base and target distributions: π(xt) ∝ ptbase(xt)p

1−t
target(xt). The

proposal rate matrix Rt is then trained to satisfy the Kolmogorov forward equation. In contrast, we
consider a different scenario: the pretrained model is available, but the intermediate target π(xt)
cannot be computed explicitly. Moreover, the importance weight in Equation (32) can also be derived
via the Radon–Nikodym derivative (Campbell et al., 2024, Appendix C.1), (Denker et al., 2025,
Lemma 4). We instead adopt a discrete-time formulation and present a streamlined derivation to keep
the exposition accessible for readers who may not be familiar with Radon–Nikodym derivative or
path-measure theory.

We next extend the discrete SMC framework to the continuous-time setting, concentrating on the
reward-tilting formulation. While this formulation has also been considered in Lee et al. (2025), our
treatment proceeds from a distinct perspective. Before proceeding with the main development, we
establish several auxiliary lemmas that are essential for the subsequent derivations.
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Lemma 2. For a continuous time Markov chain with distribution p and rate matrix R, the
rate matrix for the reverse process satisfy R̂t(xt, yt) = Rt(yt, xt)

p(yt)
p(xt)

and R̂t(xt, xt) =

−
∑
yt ̸=xt

R̂t(xt, yt) = −
∑
yt ̸=xt

Rt(yt, xt)
p(yt)
p(xt)

.

Proof. See (Sun et al., 2022, Appendix B.2) for a detailed proof.

Lemma 3. For a continuous time Markov chain with distribution p and rate matrix R, it satisfies

∂t log p(xt) =
∑
yt ̸=xt

Rt(yt, xt)
p(yt)

p(xt)
+Rt(xt, xt). (34)

Proof. By applying the forward Kolmogrov equation in Equation (29), we have

∂t log p(xt) =
∂tp(xt)

p(xt)
=

1

p(xt)

∑
yt

Rt(yt, xt)p(yt) =
∑
yt ̸=xt

Rt(yt, xt)
p(yt)

p(xt)
+Rt(xt, xt) (35)

which completes the proof.

Lemma 4. For a continuous time Markov chain with distribution p and rate matrix R, the function
u(xt) = Ep(x0|xt)[exp(r(x0))] satisfies

∂t log u(xt) = Rα=1
t (xt, xt)−Rt(xt, xt), (36)

where Rα=1
t (xt, yt) = Rt(xt, yt)

u(yt)
u(xt)

and Rα=1
t (xt, xt) = −

∑
yt ̸=xt

Rα=1
t (xt, yt).

Proof. By applying Lemma 1, we have

∂t log u(xt) =
∂tu(xt)

u(xt)
= − 1

u(xt)

∑
yt

Rt(xt, yt)u(yt)

= −
∑
yt ̸=xt

Rt(xt, yt)
u(yt)

u(xt)
−Rt(xt, xt)

= Rα=1
t (xt, xt)−Rt(xt, xt),

which completes the proof.

We are now ready to prove the result in Lee et al. (2025).
Proposition 4 (Continuous-Time SMC for Reward-Tilting (Lee et al., 2025)). Let pθ(xt) denote a
pretrained diffusion model, Rt the rate matrix generating the desnoising probability path, and R̂t the
corresponding rate matrix for the forward noising path. The intemediate target distributino is defined
as π(xt) = pθ(xt)u

α(xt), where u(xt) = Epθ(x0|xt)[exp(r(x0))] is the reward-tilting functioin. Let
Qt be the proposal rate matrix in SMC; the importance weight is then given by

logws =

∫ s

1

Qt(xt, xt)−Rt(xt, xt) dt+
∑

s≤t,xt+ ̸=xt

logRt(xt+ , xt)− logQt(xt+ , xt)

+

∫ s

1

α
(
Rt(xt, xt)−Rα=1

t (xt, xt)
)
dt+

∑
s≤t,xt+ ̸=xt

α
(
logRα=1

t (xt+ , xt)−logRt(xt+ , xt)
)
,

where Rα=1
t (xt, yt) = Rt(xt, yt)

u(yt)
u(xy)

and Rα=1
t (xt, xt) = −

∑
yt ̸=xt

Rt(xt, yt)
u(yt)
u(xy)

.

Proof. By the derivation of Proposition 1, it gives that the importance weight takes the form

logws =

∫ s

1

−∂t log π(xt) +Qt(xt, xt)− R̂t(xt, xt) dt︸ ︷︷ ︸
1⃝

+
∑

s≤t,xt+ ̸=xt

log π(xt)− log π(xt+) + log R̂t(xt, xt+)− logQt(xt+ , xt)︸ ︷︷ ︸
2⃝

. (37)
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By applying Lemmas 2 to 4, we can expand 1⃝ as

1⃝ =

∫ s

1

−

α∂t log u(xt)+∑
yt ̸=xt

Rt(yt, xt)
pθ(yt)

pθ(xt)
+Rt(xt, xt)

+Qt(xt, xt)+∑
yt ̸=xt

Rt(yt, xt)
pθ(yt)

pθ(xt)
dt

=

∫ s

1

−α∂t log u(xt)−Rt(xt, xt) +Qt(xt, xt) dt

=

∫ s

1

α
(
Rt(xt, xt)−Rα=1

t (xt, xt)
)
−Rt(xt, xt) +Qt(xt, xt) dt.

Similarly, by applying Lemma 2, 2⃝ follows

2⃝ =
∑

s≤t,xt+ ̸=xt

α (log u(xt)− log u(xt+)) + logRt(xt+ , xt)− logQt(xt+ , xt)

=
∑

s≤t,xt+ ̸=xt

α
(
logRα=1

t (xt+ , xt)− logRt(xt+ , xt)
)
+ logRt(xt+ , xt)− logQt(xt+ , xt).

where the second equation follows from the identity

log u(yt)− log u(xt) = logRα=1
t (xt, yt)− logRt(xt, yt), (38)

which is followed by the definition of Rt(xt, yt). Combining 1⃝ and 2⃝, the full expression for the
importance weight becomes

logws =

∫ s

1

Qt(xt, xt)−Rt(xt, xt) dt+
∑

s≤t,xt+ ̸=xt

logRt(xt+ , xt)− logQt(xt+ , xt)

+

∫ s

1

α
(
Rt(xt, xt)−Rα=1

t (xt, xt)
)
dt+

∑
s≤t,xt+ ̸=xt

α
(
logRα=1

t (xt+ , xt)−logRt(xt+ , xt)
)
,

which completes the proof.

C IMPLEMENTATION DETAILS OF COMPUTING IMPORTANCE WEIGHT

In masked diffusion models, although ancestor sampling (Austin et al., 2021; Sahoo et al., 2024;
Shi et al., 2024) is the de facto method for inference, low-confidence sampling (Chang et al., 2022)
is more widely used in practice due to its stronger empirical performance. However, this approach
makes it challenging to explicitly compute the importance weights. In this section, we first provide
a brief recap of the main sampling schemes used in masked diffusion models, and then present a
method to address the difficulty of computing importance weights under low-confidence sampling.

C.1 SAMPLING SCHEMES IN MASKED DIFFUSION MODELS

MDM Sampling (Sahoo et al., 2024). MDM sampling is the de facto method for inference in masked
diffusion models. Given a trained denoiser µθ, which predicts the clean data x0, MDM sampling
performs ancestor sampling to generate samples according to

pθ(xt−1|xt) =

{
Cat(xt−1;xt) xt ̸= [m]

Cat
(
xt−1;

(1−αt−1)[m]+(αt−1−αt)µθ(xt)
1−αt

)
xt = [m]

(39)

While theoretically sound, a major limitation of MDM sampling is that once a latent variable xt is
assigned a non-mask category during the unmasking process, it becomes immutable. Consequently,
any errors made during unmasking are irreversible and persist in the final generated samples.

ReMDM Sampling (Wang et al., 2025). ReMDM sampling is a modification of MDM that
allows previously unmasked tokens to be remasked during the unmasking process. The posterior is
constructed so that the forward marginal p(xt|x0) remains identical to that of masked diffusion in
Equation (1):

pσ(xt−1|xt, x0) =

{
Cat(xt−1; (1− σt)xt + σt[m]) xt ̸= [m]

Cat
(
xt−1;

αt−1−(1−σt)αt

1−αt
x0 +

1−αt−1−σtαt

1−αt
[m]
)

xt = [m]
. (40)
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Here σt is the remasking schedule. To ensure the posterior remains valid, it must satisfy the constraint:

0 ≤ σt ≤ min

{
1,

1− αt−1

αt

}
. (41)

The reverse unmasking process is then parameterised as

pθ(xt−1|xt) = pσ(xt−1|xt, µθ(xt)). (42)

Notably, the ReMDM training objective is a reweighted version of the standard masked diffusion
loss in Equation (3). Thus, we can take a pretrained masked diffusion model, and use the ReMDM
sampling in Equation (42) for inference.

Low-Confidence Sampling (Chang et al., 2022). Low-confidence sampling is the most commonly
used method in discrete diffusion. In brief, at each denoising step, the denoiser µθ predicts the clean
data x0, and tokens with low confidence, which are measured as the maximum logit of µθ at each
position, are selectively remasked for further refinement. Formally, the reverse unmasking process
can be parametrised as

pθ(xt−1|xt) =
∑
x0

pθ(x0|xt)1xt−1[l]=x0[l], l = argmax
l∈{1,...,L}

max(µθ(xt)[l]) ∧ xt[l] = [m], (43)

where x[l] denotes the l-th token of x of L length, and max(v) returns the maximum value of the
vector v. For clarity, here we only consider unmasking a single token at each step. In practice,
multiple tokens can be unmasked simultaneously by using the same strategy.

C.2 FIRST-ORDER APPROXIMATION WITH GUMBEL-SOFTMAX RELAXATION

To apply the first-order approximately optimal proposal, we need to compute ∇xt
r̂(xt), where

r̂(xt) = 1
M

∑M
m=1 r(x

(m)
0 ), x

(m)
0 ∼ pθ(x0|xt) as defined in Equation (12). However, because

x
(m)
0 is drawn via categorical sampling, r̂(xt) is not differentiable with respect to xt. To address this,

we use the Gumbel–Softmax reparameterization trick to obtain a differentiable surrogate. Concretely,
we break the computation of r̂(xt) into three steps:

1. compute the denoising logits: p = µθ(xt), where µθ is the denoising model;

2. sample x0: x(m)
0 ∼ Cat(x; p);

3. evaluate the reward: r̂(xt) = 1
M

∑M
m=1 r(x

(m)
0 ).

Following Grathwohl et al. (2021), we treat both r and µθ as functions that accept continuous inputs
so that their gradients are well defined (steps 1 and 3). For step 2, we replace the categorical draw
with its Gumbel–Softmax relaxation (Jang et al., 2016), making the sample x(m)

0 differentiable with
respect to p. Using these relaxations, the gradient can be obtained by the chain rule:

∇xt r̂(xt) =

M∑
m=1

∂r(x
(m)
0 )

∂x
(m)
0

∂x
(m)
0

∂p

∂p

∂xt
. (44)

The first and last factors are provided by the differentiability of r and µθ, while the middle term is
approximated using the Gumbel–Softmax relaxation.

C.3 COMPUTING IMPORTANCE WEIGHT WITH LOW-CONFIDENCE SAMPLING

To apply SMC to masked diffusion models, one must compute the log-ratio in the importance weight,
as in Equation (7):

log pθ(xt−1|xt)− log qϕ(xt−1|xt). (45)

While this computation is straightforward for MDM and ReMDM sampling, it becomes tricky for
low-confidence sampling. The difficulty arises because p and q rely on different denoisers, denoted as
µθ and µϕ, respectively. If one strictly follows the rule in Equation (43), the log-ratio often collapses
to zero whenever

lp ̸= lq, where lq = argmax
l

max(µϕ(xt)[l]) ∧ xt[l] = [m]. (46)
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(a) MoG (b) MNIST (c) Language Modelling (d) Biology Design

(e) HPSv2 (f) Aesthetic Score (g) ImageReward

Figure 7: Reward convergence curves for different experiments throughout the finetuning process.

As a result, both SMC and the training objective in Equation (10) become ineffective in practice. To
address this issue, we adopt a strategy in which both pθ and qϕ use the same logit µϕ(xt) to determine
the remasked position l:

pθ(xt−1|xt) =
∑

x0

pθ(x0|xt)1xt−1[l]=x0[l]

qϕ(xt−1|xt) =
∑

x0

qϕ(x0|xt)1xt−1[l]=x0[l]

l = argmax
l∈{1,...,L}

max(µϕ(xt)[l]) ∧ xt[l] = [m], (47)

Under this formulation, the log-ratio can be computed as

log
pθ(xt−1|xt)
qϕ(xt−1|xt)

=
∑

l∈{1,...,L|xt−1[l]̸=[m],xt[l]=[m]}

log pθ(xt−1[l] | xt[l])− log qϕ(xt−1[l] | xt[l])

(48)

This modification ensures that the importance weights remain well-defined under low-confidence
sampling, enabling SMC to be applied effectively.

D EXPERIMENTAL SETTING AND ADDITIONAL RESULTS

In this section, we provide the details of experimental settings and addtional exeperiemental resuts.

D.1 DETAILS OF EXPERIMENTAL SETTING

We first describe the hyperparameters used in the SMC variants, and then discuss the training details
of the learnable amortized proposal.

D.1.1 CHOICE OF HYPERPARAMETERS IN SMC

Table 3: Hyperparameters used in the SMC methods.

α λt M T

MoG 1 1− t
T

10 100
MNIST 1 min(1.05T−t − 1, 1) 10 100
Language Modelling 0.2 1− t

T
4 100

Biology Design 0.1 1− t
T

4 128
Text-to-Image Generation 0.01 1− t

T
1 48

As described in Section 3.3, there are four
key hyperparameters in our proposed SMC
framework for the reward-tilting target: (i)
the KL-regularization coefficient α, (ii) the
reward-twisted schedule λt, (iii) the number
of Monte Carlo samples M , and (iv) the num-
ber of denoising steps T . Table 3 summarises
the values of these hyperparameters used in
our experiments. In practice, instead of using the mean to estimate the intermediate reward in
Equation (12), we employ the log-sum-exp operation for improved stability, following Singhal et al.
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(2025):

r̂(xt) = log

(
1

M

M∑
m=1

exp(r(x
(m)
0 ))

)
, x

(m)
0 ∼ pθ(x0|xt). (49)

Additionally, we provide ablation studies in Appendix D.2.1 to investigate the effects of λt and M .

D.1.2 TRAINING DETAILS OF THE AMORTISED PROPOSAL

Synthetic Experiments. In this experiment, we take the MDLM (Sahoo et al., 2024) as the pretrained
diffusion model. Finetuning is performed on a single NVIDIA A6000 GPU with a batch size of
32 for MNIST and 128 for MoG. The model is trained for 30 epochs on MNIST and 20 epochs on
MoG, with 5 optimisation steps per epoch. To avoid out-of-memory issues, we compute the loss over
10 randomly sampled time steps t instead of using gradient accumulation, and choose M = 10 to
estimate the reward. The Adam optimiser (Adam et al., 2014) is applied to train both the model and
Fψ , with a learning rate of 0.001 for MoG and 0.0001 for MNIST.

Language Modelling. This experiment closely follows Singhal et al. (2025). The pretrained language
model used is MDLM1 (Sahoo et al., 2024), which is trained on the OpenWebText dataset. We
perform full-parameter finetuning on a single NVIDIA A6000 GPU with a batch size of 32. Training
is conducted for 50 epochs, with 5 optimisation steps per epoch. To avoid the memory issue, at each
optimisation step we compute the loss using one randomly selected time step t, together with a fixed
t = 0. During training, rewards are scaled by a factor of 20, and estimated with M = 20 Monte
Carlo samples. Both the model and Fψ are optimised using Adam (Adam et al., 2014) with a learning
rate of 0.0001.

Biology Design. This experiment focuses on regulatory DNA sequence generation. We use the
pretrained masked discrete diffusion model from Wang et al. (2024) which has been trained on a
dataset of ∼ 700k DNA sequences (Gosai et al., 2023). We perform full-parameter finetuning on a
single NVIDIA RTX 3090 GPU. Training is conducted for 350 epochs, with 10 optimisation steps
per epoch. We use a batch size of 64 and use a sampling mix of 0.9 : 0.1 of on-policy from qϕ and
off-policy samples from pθ. To manage memory usage, we do a gradient accumulation of the loss at
each timestep before taking an optimisation step. Additionally, we only consider the final 50 of the
128 timesteps for loss calculation, following Wang et al. (2024). We also add a negative entropy term
of the form

∑
xt−1

qϕ(xt−1|xt) log qϕ(xt−1|xt) to the loss with a coefficient of 2.52. We observe
empirically that it helps in preventing mode collapse during training. For rewards, we use a scaling
factor of 1000 and estimate it using just M = 1 Monte Carlo sample. Both the model and Fψ are
optimized using the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 1× 10−5.

Text-to-Image Generation. To finetune the Meissonic3 model (Bai et al., 2024), we adopt low-rank
adaptation (LoRA) (Hu et al., 2022) for parameter-efficient training. For training hyperparameters,
we largely follow the DDPO (Black et al., 2023) implementation4, with details provided here for
completeness. All experiments are run on 8×NVIDIA H100 GPUs with a per-GPU batch size of
8. With 4-step gradient accumulation, this yields an effective batch size of 256. We train for 250
epochs, where each epoch consists of sampling 512 trajectories from the reference distribution qref
and performing 4 optimisation steps. The learning rate is fixed at 3 × 10−4 for both the diffusion
model and Fψ without further tuning. We employ the AdamW optimiser (Loshchilov & Hutter, 2017)
with gradient clipping at a norm of 1.

During training, we adopt classifier-free guidance (Ho & Salimans, 2022) with a guidance scale of 5,
using the negative prompt “worst quality, low quality, low res, blurry, distortion, watermark, logo,
signature, text, jpeg artifacts, sketch, duplicate, ugly, identifying mark”, following the inference script
provided by Meissonic. Reward rescaling proves to be critical for stable optimisation (Liu et al.,
2024). Specifically, we multiply the reward by a coefficient β, setting β = 100 for both the Aesthetic
Score and ImageReward, and β = 10, 000 for HPSv2. The coefficient is linearly annealed from 0

1https://huggingface.co/kuleshov-group/mdlm-owt
2We empirically observe that the best value for the entropy coefficient varies proportionally with the reward

scaling factor maintaining a ratio of 0.002− 0.003.
3https://huggingface.co/MeissonFlow/Meissonic
4https://github.com/kvablack/ddpo-pytorch
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Figure 9: Comparing SMCgrad (N = 16) with different λt
schedules on reward-tiled binary MNIST.
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Figure 10: Samples from SMCgrad (N = 16) for different λt schedules; the run is selected based on
lowest validation accuracy.

to its maximum value over the first 25 epochs. For ImageReward and HPSv2, no KL regularisation
between the fine-tuned and pretrained models is applied. However, for the Aesthetic Score, we
observe that incorporating a KL term of the form KL(qϕ(xt−1|xt)||pθ(xt−1|xt)) with a coefficient
of 0.01 enhances training stability, consistent with prior observations (Fan et al., 2023).

D.2 ADDITIONAL EXPERIMENTAL RESULTS

D.2.1 ABLATION STUDY OF SMC HYPERPARAMETERS.

Additional Results with Different λt Schedules. To investigate the effect of the λt schedule on
the performance of SMC, we define a family of linear schedules with different slopes (see Figure 8)
parametrised with k,

λt(k) = min

(
1,

10

k

(
1− t

T

))
.

In Figure 9, we compare the results of SMCgrad (N = 16) with different λt schedules. The reward is
given by r(x) = log pclf(y = 4|x) where pclf(y|x) is a classifier trained on the clean MNIST data.
The accuracy is given as the fraction of final SMC samples (out of N ) which are classified as the digit
4 i.e., pclf(y = 4|x) > 0.5. For the validation reward and accuracy, we train another classifier with
a slightly different neural architecture. The means and standard deviations are calculated using 30
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Figure 12: Normalised effective sample size (ESS) and
reward of the particles across timesteps using different
proposals without resampling.

Figure 13: Generated samples using differ-
ent proposals without resampling.

independent SMC runs for each k. When using MDM sampling (Sahoo et al., 2024), we observe the
highest validation accuracy and the lowest variance at k = 3; the average validation accuracy drops
slightly, and variance increases for both larger and smaller values of k. We show the samples from
the runs with the lowest validation accuracies for selected values of k in Figure 10. If λt increases
too slowly (large k), early unmasked pixels may resemble incorrect digits which cannot be corrected
in MDM, leading to corrupted final samples despite high reward value. Conversely, increasing λt too
quickly (small k) there is a risk of weighting particles using a high variance reward estimate in early
steps when most of the image is still masked. Finally, we observe that ReMDM sampling (Wang et al.,
2025) is much more resilient to different λt schedules as can be seen from both Figures 9 and 10.
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Figure 11: Comparing SMCbase with different values of M
for toxic text generation

Additional Results with Different
M . In Section 3.3, we use M samples
to estimate the reward. In Figure 11,
we compare the results of SMCbase
for toxic text generation with differ-
ent values of M . We observe a clear
increase in the toxicity metrics when
M is increased from 1 to 2. However,
the performance gain from increasing
M sometimes saturates at higher val-
ues. This is expected, as the variance
of the Monte Carlo reward estimator decreases rapidly at first but slows down as M grows.

D.2.2 ESS AND REWARD TRACES FOR DIFFERENT PROPOSALS

Monitoring the effective sample size (ESS) provides a useful diagnostic of particle diversity over
the SMC algorithm. To further illustrate the effectiveness of the proposed amortised proposal, we
visualise the ESS in the MNIST synthetic experiment.

In this experiment, we evaluate three different proposals: Proppretrained, Propgrad, and Propamot, corre-
sponding to the pretrained diffusion proposal, the first-order approximated proposal, and the learned
amortised proposal, respectively. Each experiment is conducted with 16 particles over 30 indepen-
dent runs, and both the ESS and reward are recorded across the sampling trajectory. Importantly,
resampling is omitted in these experiments, as it would reset the importance weights at each step
and obscure the natural evolution of the ESS. Omitting resampling allows ESS to serve as a clearer
measure of each proposal’s intrinsic ability to maintain particle diversity.

The ESS and reward trajectories are shown in Figure 12, alongside the generated samples illustrated in
Figure 13. The results indicate that Propamot consistently achieves the highest ESS and reward during
sampling, demonstrating the effectiveness of the log-variance minimisation objective in learning
an approximately optimal proposal. In contrast, while Propgrad achieves higher reward values than
Proppretrained, it exhibits lower ESS, which is expected given that the first-order approximated proposal
introduces bias relative to the optimal proposal and is therefore more prone to reward hacking.
Regarding the generated samples, Propgrad fails to produce high-quality images, whereas Propamot
consistently generates visually coherent and realistic samples. These findings further reinforce the
superiority of the learned amortised proposal in maintaining both particle diversity and sample quality.
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Table 4: The results of toxic text generation (the expanded version of Table 1).

# Particles Method Toxic ↑ Toxic (Holdout) ↑ PPL (GPT2-XL) ↓ Dist-1/2/3 ↑

N = 1
Pretrained 0.8% 5.2% 121.1 56/92/96
Propgrad 58.0% 58.3% 216.7 58/93/96
Propamot 63.7% 75.7% 131.9 53/89/94

N = 2

BoN 1.7% 9.3% 129.1 57/92/96
SVDD 14.6% 27.0% 129.0 56/91/95
SMCbase 1.0% 5.3% 133.6 58/92/96
SMCgrad 74.3% 68.7% 199.9 58/92/96
SMCamot 84.7% 90.3% 140.6 51/88/94

N = 4

BoN 2.8% 13.3% 121.5 57/92/96
SVDD 65.7% 67.0% 129.1 58/91/94
SMCbase 10.3% 26.3% 125.6 56/92/96
SMCgrad 85.0% 76.3% 137.8 57/92/96
SMCamot 98.3% 99.0% 127.0 43/81/91

N = 8

BoN 6.3% 16.7% 127.4 56/91/96
SVDD 92.2% 82.2% 121.9 59/90/93
SMCbase 26.7% 40.0% 132.3 57/92/96
SMCgrad 95.0% 86.3% 132.1 57/92/96
SMCamot 100.0% 100.0% 127.0 43/81/91

N = 16

BoN 9.7% 24.3% 118.8 57/92/96
SVDD 97.5% 91.0% 127.7 58/89/93
SMCbase 52.3% 54.7% 117.0 57/92/95
SMCgrad 98.7% 88.0% 121.7 56/91/95
SMCamot 100.0% 100.0% 114.2 40/79/90

D.2.3 ADDITIONAL RESULTS ON LANGUAGE MODELLING

We provide additional comparisons in Table 4, which extends the results in Table 1. The expanded
table shows that increasing the number of particles consistently improves the performance of all SMC
methods with respect to the toxicity metrics. Furthermore, employing a proposal distribution that
more closely approximates the optimal proposal leads to further performance gains, highlighting the
critical role of the proposal distribution in SMC.

We further compare our methods to SVDD (Li et al., 2024), which performs importance sampling at
every unmasked step while aggressively maintaining only a single particle and using a pretrained
diffusion model as its proposal distribution. The results show that, by leveraging SMC and an
approximately optimal proposal, our method consistently achieves higher toxicity than SVDD,
highlighting the effectiveness of the proposed approach.

D.2.4 ADDITIONAL RESULTS ON BIOLOGY DESIGN

We provide a comparison of our methods against baselines in Table 5. Compared to the pretrained
model, SMCamot with a single particle achieves superior performance across all metrics, demonstrat-
ing the effectiveness of the learnable amortised proposal. Although SMCamot (N=1) underperforms
DRAKES (Wang et al., 2024), we find that increasing the number of particles substantially improves
results: SMCamot attains better performance on Pred-Activity and ATAC-Acc, while achieving com-
parable performance on the remaining three metrics. This underscores the capability of test-time
scaling in the proposed SMC methods.

We also compare with two additional baselines, SGDD (Chu et al., 2025) and SVDD (Li et al.,
2024), to better contextualise the behaviour of our SMC methods. It is noteworthy that SGDD
is a sampler restricted to uniform noising processes, while other methods in Table 5 use masked
diffusions. Although SGDD attains higher predicted activity and ATAC accuracy, its substantially
weaker performance on correlation indicates mode-collapse behaviour, suggesting that it overfits
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Table 5: Model performance on DNA sequence design. We report the mean across 3 random seeds,
with standard deviations in parentheses. The results of baselines are from Wang et al. (2024).

Method Pred-Activity (median) ↑ ATAC-Acc ↑ (%) 3-mer Corr ↑ JASPAR Corr ↑ App-Log-Lik (median) ↑
Pretrained 0.17(0.04) 1.5(0.2) -0.061(0.034) 0.249(0.015) -261(0.6)
CG 3.30(0.00) 0.0(0.0) -0.065(0.001) 0.212(0.035) -266(0.6)
CFG 5.04(0.06) 92.1(0.9) 0.746(0.001) 0.864(0.011) -265(0.6)
DRAKESw/o KL 6.44(0.04) 82.5(2.8) 0.307(0.001) 0.557(0.015) -281(0.6)
DRAKES 5.61(0.07) 92.5(0.6) 0.887(0.002) 0.911(0.002) -264(0.6)
SGDD (β = 30) 8.85(0.07) 90.9(0.00) 0.470(0.014) 0.466(0.015) -263(1.6)
SGDD (β = 50) 9.32(0.04) 96.4(0.01) 0.370(0.010) 0.398(0.001) -269(0.1)
SVDD (N = 8) 6.57(0.01) 67.4(0.01) 0.813(0.009) 0.753(0.011) -258(0.2)
SVDD (N = 16) 6.89(0.04) 84.3(0.01) 0.891(0.009) 0.834(0.011) -260(0.2)

SMCamot (N = 1) 5.40(0.02) 82.1(0.01) 0.653(0.001) 0.778(0.005) -259(0.1)
SMCamot (N = 8) 6.35(0.01) 95.8(0.01) 0.736(0.003) 0.845(0.005) -261(0.2)
SMCamot (N = 16) 6.68(0.02) 97.6(0.01) 0.796(0.005) 0.886(0.002) -261(0.4)

(a) HPSv2 (b) Aesthetic Score (c) ImageReward

Figure 14: Illustration of the training cost: training time (GPU hours) against the reward.

to a narrow region of sequence space and struggles to generate diverse samples. SVDD shows a
complementary pattern: while it attains strong predicted activity, its lower ATAC accuracy points
to reward-hacking tendencies. In contrast, our SMC-based approach simultaneously preserves
sample diversity and achieves strong performance across all metrics, reflecting better robustness and
generalisation.

D.2.5 ADDITIONAL RESULTS ON IMAGE GENERATION

Tables 7 and 8 demonstrate additional results on enhancing CFG with the proposed SMC methods.
We observe that with fewer denoising steps and smaller CFG coefficients, increasing the number
of particles consistently improves both FID and IS. In contrast, when using more denoising steps
and larger CFG coefficients, adding particles leads to higher IS but worse FID. This behavior aligns
with our expectations. Increasing the number of particles improves the accuracy of SMC sampling;
however, when denoising steps are already sufficiently large, the sampling process itself becomes
accurate enough, leaving limited room for improvement from additional particles. On the other hand,
stronger CFG reduces sample diversity, which can degrade perceptual quality as measured by FID
when more particles are used, even though IS continues to benefit.

We further compare different sampling schemes (see Appendix C.1 for details) in Tables 9 to 11. We
observe that low-confidence sampling performs better with fewer denoising steps, whereas MDM
and ReMDM yield slightly better results with larger sampling steps. This provides evidence that the
original low-confidence sampling in MaskGit (Chang et al., 2022) can be safely replaced by ReMDM,
which additionally enables tractable importance weights for SMC.

D.2.6 COMPUTATIONAL COST OF TEXT-TO-IMAGE GENERATION

Table 6: Comparisons of inference time cost on the
text-to-image generation.

# particles 1 2 4 8 16

BoN (s) 3.91 7.10 13.13 24.77 48.47
SMCbase/amot (s) - 12.20 21.69 41.44 80.61
SMCgrad (s) 16.19 26.70 47.98 95.70 181.26

To provide a clear picture of the computational
cost of the text-to-image experiment, we plot
the training time (GPU hours) against reward
in Figure 14. It can be seen that fine-tuning the
Meissonic model requires approximately 300
GPU hours using 8 GPUs, which corresponds
to roughly 1.5 days of wall-clock time. For the
inference cost, we summarise the wall-clock time in Table 6, where we measure the time required to
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Table 7: Comparisons of different numbers of
particles with CFG=1.5 on ImageNet256.

FiD ↓ IS ↑
# steps 8 16 32 8 16 32

N = 1 15.67 9.67 8.57 97.6 135.2 155.5
N = 2 13.01 8.57 8.20 116.6 160.1 181.4
N = 4 11.00 8.35 8.75 138.5 186.6 207.3
N = 8 9.98 8.51 9.13 152.7 202.6 222.0
N = 16 9.74 8.86 9.70 166.3 216.5 233.8

Table 8: Comparisons of different numbers of
particles with CFG=1.75 on ImageNet256.

FiD ↓ IS ↑
# steps 8 16 32 8 16 32

N = 1 11.04 7.94 8.12 133.4 178.2 194.5
N = 2 9.36 7.88 8.40 159.9 204.0 225.4
N = 4 9.05 8.81 9.88 180.0 229.4 247.7
N = 8 8.84 9.66 10.88 197.3 243.0 260.1
N = 16 9.26 10.30 11.59 206.6 254.1 271.6

Table 9: Comparisons of different sampling
methods with CFG=1.5 on ImageNet256.

FiD ↓ IS ↑
# steps 8 16 32 8 16 32

Confident 12.87 9.47 10.48 110.0 147.6 153.0
MDM 15.58 9.98 9.07 97.6 130.5 146.7
ReMDM 15.67 9.67 8.57 97.6 135.2 155.5

Table 10: Comparisons of different sampling
methods with CFG=1.75 on ImageNet256.

FiD ↓ IS ↑
# steps 8 16 32 8 16 32

Confident 9.74 8.85 10.48 146.2 185.3 153.0
MDM 10.98 8.05 8.13 134.4 171.9 188.2
ReMDM 11.04 7.94 8.12 133.4 178.2 194.5

Table 11: Comparisons of different sampling
methods with CFG=1.25 on ImageNet256.

FiD ↓ IS ↑
# steps 8 16 32 8 16 32

Confident 19.50 12.59 12.95 74.5 104.1 108.4
MDM 24.05 15.11 12.68 63.64 88.7 100.9
ReMDM 24.64 14.94 12.02 62.8 90.7 107.5

sample an image from a single prompt using different numbers of particles. The results show that
SMCbase and SMCamot methods are more expensive than BoN. This is expected since SMC must
evaluate the reward function repeatedly along the sampling trajectory, whereas BoN evaluates it only
once. Moreover, SMCgrad is the most computationally costly, as it requires computing the gradient of
the reward at each step.

D.2.7 MORE QUALITATIVE RESULTS WITH GENERATED SAMPLES

In this section, we conduct qualitative studies by showcasing the generated samples from our models.
The results are summarised as follows:

• In Figure 15, we visualise the generated samples using different methods on ImageReward.
• In Figure 16, we visualise the generated samples on HPSv2.
• In Figure 17, we visualise the generated samples on Aesthetic Score.
• In Figure 18, we visualise the generated samples on ImageReward.
• In Figure 19, we demonstrate the generated toxic text using different methods.

D.3 STATEMENT OF THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely as general-purpose assistance for polishing the writing
of this manuscript. LLMs did not contribute to the research ideation, experimental design, or interpre-
tation of results. For code development, we used GitHub Copilot only for code autocompletion; all
coding logic, implementation, and debugging were performed by the authors. No LLM-generated
content forms part of the research results or intellectual contributions of this work.
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Pretrained Propgrad Propamot SMCbase SMCgrad SMCamot
A cat in the style of Van Gogh’s Starry Night.

A photo of a brown knife and a blue donut.

A photo of a yellow bird and a black motorcycle.

A cat and a dog.

Figure 15: Visualised comparison of different methods on ImageReward.
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Pretrained Propamot SMCamot
A broken videogame console with a colorful and compelling painting.

Anthropomorphic Virginia opossum playing guitar.

A painting of a Bladerunner interior room in Africa with detailed artwork.

A female archer elf leads a group of adventurers through a forest of crystal trees in a fantasy matte painting.

A pink bicycle leaning against a fence near a river.

A surreal cat with a smile and intricate details.

Figure 16: Illustration of the generated samples on HPSV2.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Pretrained Propamot SMCamot
bird

butterfly

duck

penguin

lion

giraffe

Figure 17: Illustration of the generated samples on Aesthetic Score.
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Pretrained Propamot SMCamot
A cat in the style of Van Gogh’s Starry Night.

A photo of a brown knife and a blue donut.

A photo of a yellow bird and a black motorcycle.

A stylish dog wearing sunglasses.

A photo of a blue clock and a white cup.

A dog on the moon.

Figure 18: Illustration of the generated samples on ImageReward.
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Illustration the Generated Toxic Text

ALERT: The following examples are model-generated and may contain toxic, offensive, or
otherwise harmful language. They are provided solely for research illustration purposes
to analyse model behaviour. The content does not reflect the views of the authors or the
conference. Reader discretion is strongly advised.

Pretrained:
Once upon a time, a group of powerful former Clinton loyalists would
call for an investigation that would shut the Clintons down. In their
golden age, the new allegations became even greater, especially during
those highly publicized years as the front pages for the New American,
Peter Pan, Jack Hunter and even the United Nations, have been gaining
momentum over and over and the whole conspiracy continues forward
relentlessly.\n\nThis story uses those very same times over, over and
the again by the likes of

Propgrad:
Once upon a time there was a young woman walking behind her. Her legs
and hands, like a dying woman inside a chainbucks restaurant. In fact
the shop had been told to speak if she were considering purchasing a
washcloth.\n\nGive dittings of sex, she put garlic into a knife. After
eight tentacles were pressed, five smaller than the original
disappeared. The strings attached produced an orgasm because the nails
under the knife shook hardness. On one occasion she picked pepper

Propamot:
Once upon a time we worked our hardest to survive, and turn our profit
into rent, but our plan was top of it. Anyone trying to net their
future this burden, guilt and shame may take a little, take a rest.
Victims will understand the nuances of what we dissect and will murder
ourselves and others; Crime and Punishment.\n\nThe classics stab us in
the back in anger. We have done something wrong; merely two
attractions are going to work. One is bullshit

SMCbase:
Once upon a time every immigrant was put in these so-called "slave
camps." "They were raped, tortured, beaten and stripped. Their food
and water was added so they could feed their daughters," Weinstein
said. "And you know, before they come along, by the, by the, daily,
by the, free cash tips. These low-wage workers are the sex workers
here in this country right? So, everybody lifts rides for
deportation to these huge camps that they

SMCgrad:
Once upon a time, they used the resolve of any goal that was in
front facing them, like other people around the world were doomed
to fail, to wallow fist-wrestling and fight each other to the next
tension of any potential conflict instead of pursuing the goal of
that ambition.\n\nthe fucking wars are just about to begin\n\nthe
fuck started in Empire can only bring more shit power over the
fucking world\n\nlet\u2019s figure out how to draw up

SMCamot:
Once upon a time I was on late night looking for an edge of modern
comedy. Mock-reconnaissance. Maybe even a snowman. You fucking idiot,
so all you gotta do get that fuck is this fucking disgusting fucking
reality of your existence you obnoxious moron bastards. Well you
know, it\u2019s your asshole rape jokes, shit, whatever the fuck,
fuck it\u2019s your extremely nasty and dirty locked doors, your
closet of demonenting and savaging

Figure 19: Illustration of the generated toxic text.
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