

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INFERENCE-TIME SCALING OF DISCRETE DIFFUSION MODELS VIA IMPORTANCE WEIGHTING AND OPTIMAL PROPOSAL DESIGN

Anonymous authors

Paper under double-blind review

ABSTRACT

Discrete diffusion models have become highly effective across various domains. However, real-world applications often require the generative process to adhere to certain constraints. To this end, we propose a Sequential Monte Carlo (SMC) framework that enables scalable inference-time control of discrete diffusion models through principled importance weighting and optimal proposal construction. Specifically, our approach derives tractable importance weights for a range of intermediate targets and characterises the optimal proposal, for which we develop two practical approximations: a first-order gradient-based approximation and an amortised proposal trained to minimise the log-variance of the importance weights. Empirical results across synthetic tasks, language modelling, biology design, and text-to-image generation demonstrate that our framework enhances controllability and sample quality, highlighting the effectiveness of SMC as a versatile recipe for scaling discrete diffusion models at inference time.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have achieved remarkable success across various domains, from image synthesis (Rombach et al., 2022; Esser et al., 2024) to scientific applications (Hoogeboom et al., 2022; Watson et al., 2023). Recently, advances in discrete diffusion models (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024) have established them as a powerful approach for modelling discrete data, notably in tasks such as language modelling (Nie et al., 2025; Zhang et al., 2025a) and code generation (Gat et al., 2024; Gong et al., 2025).

Despite their impressive capabilities, pretrained diffusion models often need to generate samples that meet specific downstream constraints. For example, text-to-image generation requires images aligned with human preferences (Black et al., 2023; Fan et al., 2023; Uehara et al., 2024), while protein generation demands stability or desired binding affinity (Verkuil et al., 2022; Uehara et al., 2025b). To address this challenge, existing approaches mainly fall into two categories: i) fine-tuning and ii) guidance methods. Fine-tuning methods, including techniques such as steering (Rector-Brooks et al., 2024), reinforcement learning (Zekri & Boullé, 2025), and direct backpropagation (Wang et al., 2024), have demonstrated promising results. Nevertheless, these methods often suffer from reward over-optimisation, which can compromise sample quality and diversity. On the other hand, guidance and sampling methods (Li et al., 2024; Gruver et al., 2023; Nisonoff et al., 2024; Guo et al., 2024; Uehara et al., 2025a) provide training-free alternatives that are easier to deploy, but they often suffer from reward under-optimisation. This limits their ability to enforce correct alignment, resulting in outputs that may not fully meet complex constraints.

In this paper, with a primary focus on discrete diffusion models, we propose a Sequential Monte Carlo (SMC) (Del Moral et al., 2006) framework for test-time inference. By leveraging SMC, an asymptotically unbiased sampler, our approach enables test-time scaling, effectively addressing the over-optimisation issues commonly encountered by fine-tuning methods. Moreover, we propose a learnable amortised proposal to approximate the optimal SMC proposal, which mitigates the under-optimisation problems often associated with guidance-based methods, thereby improving both scalability and efficacy during inference. In summary, our contributions include:

- We propose a simple SMC framework for discrete diffusion models. By leveraging tractable importance weights, we show that SMC provides a general recipe for test-time scaling, enhancing classifier-free guidance and enabling effective reward alignment.
- We propose two approximately optimal proposals: a first-order approximation and a learnable amortised proposal. The latter is optimised by minimising the log-variance of importance weights, leading to substantial improvements in the effectiveness of SMC.
- We demonstrate the versatility of the proposed approach across a broad range of applications, including language modelling, biology design, and text-to-image generation, highlighting its ability to consistently improve performance and generalise across diverse domains.

2 BACKGROUND

We first introduce the main preliminaries: discrete diffusion models and Sequential Monte Carlo.

2.1 DISCRETE DIFFUSION MODELS

Discrete diffusion models (Austin et al., 2021) define a forward nosing process that interpolates between the original data distribution and a fixed prior $v \in \Delta^V$ on the V -simplex:

$$p(x_t|x_0) = \text{Cat}(x_t; \alpha_t x_0 + (1 - \alpha_t)v), \quad (1)$$

where α_t is a monotonically decreasing schedule from 1 to 0 such that $x_T \sim \text{Cat}(v)$. Masked diffusion models (Sahoo et al., 2024; Shi et al., 2024) are a special case that use a mask token [m] as the prior, with the induced posterior taking the form of

$$p(x_{t-1}|x_t, x_0) = \begin{cases} \text{Cat}(x_{t-1}; x_t) & x_t \neq [m], \\ \text{Cat}\left(x_{t-1}; \frac{(1-\alpha_{t-1})[m] + (\alpha_{t-1}-\alpha_t)x_0}{1-\alpha_t}\right) & x_t = [m] \end{cases} \quad (2)$$

Since x_0 is not available during inference, the reverse unmasking process is parametrised as $p_\theta(x_{t-1}|x_t) = p(x_{t-1}|x_t, \mu_\theta(x_t))$, where $\mu_\theta(x_t)$ is a denoising model that predicts the clean data x_0 . The model is trained by minimising the cross-entropy loss

$$\mathcal{L}(x_0; \theta) = \sum_{t=1}^T \frac{\alpha'_t}{1-\alpha_t} \mathbb{E}_{p(x_t|x_0)}[-\log(x_0^T \mu_\theta(x_t))] dt, \quad (3)$$

which is equivalent, if $T \rightarrow \infty$, to the negative evidence lower bound of the log-likelihood $\log p_\theta(x_0)$.

2.2 IMPORTANCE SAMPLING AND SEQUENTIAL MONTE CARLO

Consider the Monte Carlo integration problem $\mathbb{E}_{\pi(x_t)}[\delta(x_t)]$, where sampling from the target distribution π is intractable. Importance sampling (Robert et al., 1999) alleviates this issue by introducing a proposal distribution q , allowing the expectation to be rewritten as

$$\mathbb{E}_{\pi(x_t)}[\delta(x_t)] = \mathbb{E}_{q(x_{t:T})} \left[\frac{\pi(x_{t:T})}{q(x_{t:T})} \delta(x_t) \right] \approx \frac{1}{N} \sum_{i=1}^N \frac{\pi(x_{t:T}^{(i)})}{q(x_{t:T}^{(i)})} \delta(x_t^{(i)}), \quad x_{t:T}^{(i)} \sim q(x_{t:T}). \quad (4)$$

While conceptually simple, importance sampling often suffers from high variance. To address this limitation, Sequential Monte Carlo (SMC) (Del Moral et al., 2006) extends importance sampling by incorporating resampling and sequential weighting strategies across the path, thereby reducing variance in practice. In SMC, a key intuition is the recursive formulation of the importance weight

$$w_{t-1}(x_{t-1:T}^{(i)}) \triangleq \frac{\pi(x_{t-1:T}^{(i)})}{q(x_{t-1:T}^{(i)})} = \frac{\pi(x_{t-1}^{(i)}|x_{t:T}^{(i)})\pi(x_{t:T}^{(i)})}{q(x_{t-1}^{(i)}|x_{t:T}^{(i)})q(x_{t:T}^{(i)})} = \frac{\pi(x_{t-1}^{(i)})}{\pi(x_t^{(i)})} \frac{\gamma(x_t^{(i)}|x_{t-1}^{(i)})}{q(x_{t-1}^{(i)}|x_t^{(i)})} w_t(x_{t:T}^{(i)}), \quad (5)$$

where we leverage the Markovian assumption that $\pi(x_{t:T}^{(i)}) = \pi(x_t^{(i)}) \prod_{k=t}^{T-1} \gamma(x_{t+1}^{(i)}|x_t^{(i)})$ for arbitrary forward kernel γ and thus $\pi(x_{t-1}^{(i)}|x_t^{(i)}) = \pi(x_{t-1}^{(i)})\gamma(x_t^{(i)}|x_{t-1}^{(i)})/\pi(x_t^{(i)})$. The recursion of importance weight underlies the iterative procedure of SMC. Concretely, The procedure initialises

108 begins by N particles $x_T^{(i)} \sim q(x_T)$ with weights $w_T^{(i)} \leftarrow \pi(x_T^{(i)})/q(x_T^{(i)})$. For each step $t = T, \dots, 1$
 109 and particles $i = 1, \dots, N$, SMC proceeds as follows: i) resample ancestor according to the weights
 110 $\{w_t^{(i)}\}_{i=1}^N$; ii) propagate new particles via $x_{t-1}^{(i)} \sim q(x_{t-1}|x_t)$; and iii) updating the weights as
 111 $w_{t-1}^{(i)} \leftarrow [\pi(x_{t-1}^{(i)})\pi(x_t^{(i)}|x_{t-1}^{(i)})]/[\pi(x_t^{(i)})q(x_{t-1}^{(i)}|x_t^{(i)})]$. The resulting collection of weighted particles
 112 provides an asymptotically consistent approximation of the intermediate target distribution $\pi(x_t)$.
 113

3 SEQUENCE MONTE CARLO FOR DISCRETE DIFFUSION MODELS

117 Given a pretrained discrete diffusion model $p_\theta(x_t)$, we consider sampling from modified target
 118 distributions that enable inference-time control. These targets include: i) product distributions,
 119 a general form underlying classifier free guidance (Ho & Salimans, 2022), defined as $\pi(x_t) \propto$
 120 $p_{\theta_1}^\alpha(x_t)p_{\theta_2}^\beta(x_t)$; and ii) reward-tilting distributions, expressed as $\pi(x_t) \propto p_\theta(x_t) \exp(r(x_t))$. In
 121 the following section, we introduce how to construct tractable importance weights by carefully
 122 selecting forward kernels $\gamma(x_t|x_{t-1})$, and show their connection to existing SMC formulations for
 123 continuous-time discrete diffusion models. We then discuss the choice of proposal distributions,
 124 which play a central role in balancing variance reduction with computational efficiency.

3.1 IMPORTANCE WEIGHT: TRACTABILITY WITH PRETRAINED DIFFUSION MODELS

127 To perform SMC, one must evaluate the importance weight from Equation (5) at each step t . While
 128 the forward kernel $\gamma(x_t|x_{t-1})$ and the proposal $q(x_{t-1}|x_t)$ can be chosen flexibly, the ratio of
 129 intermediate targets $\frac{\pi(x_{t-1})}{\pi(x_t)}$ is generally intractable in diffusion models. With a well-trained diffusion
 130 model p_θ , however, this ratio can be approximated via detailed balance $\frac{p_\theta(x_{t-1})}{p_\theta(x_t)} \approx \frac{p_\theta(x_{t-1}|x_t)}{p(x_t|x_{t-1})}$, where
 131 $p(x_t|x_{t-1})$ denotes the forward noising process and $p_\theta(x_{t-1}|x_t)$ is the learned reverse counterpart.
 132 Under this approximation, the importance weight for the product target takes the form
 133

$$\text{product: } \frac{p_{\theta_1}^\alpha(x_{t-1}|x_t)p_{\theta_2}^\beta(x_{t-1}|x_t)}{p_1^\alpha(x_t|x_{t-1})p_2^\beta(x_t|x_{t-1})} \frac{\gamma(x_t|x_{t-1})}{q(x_{t-1}|x_t)}. \quad (6)$$

137 Although tractable, this weight inevitably introduces approximation error unless the reverse model is
 138 perfectly trained, due to the mismatch between the forward and backward processes. In contrast, for
 139 the reward-tilting, the error can be eliminated by setting $\gamma(x_t|x_{t-1}) = p(x_t|x_{t-1})$, yielding

$$\text{reward-tilting: } \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_\theta(x_{t-1}|x_t)}{p(x_t|x_{t-1})} \frac{\gamma(x_t|x_{t-1})}{q(x_{t-1}|x_t)} = \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_\theta(x_{t-1}|x_t)}{q(x_{t-1}|x_t)} \quad (7)$$

140 It is noteworthy that this cancellation is not applicable
 141 to the product distributions, since the normalising constant of γ can not be cancelled even if we choose $\gamma \propto$
 142 $p_1^\alpha(x_t|x_{t-1})p_2^\beta(x_t|x_{t-1})$. Nevertheless, as illustrated in Figure 1, SMC with these tractable importance weights per-
 143 forms well across both two settings on 2D toy examples.
 144 Moreover, although we primarily focus on discrete-time diffusion,
 145 the proposed SMC method can be extended seamlessly to the continuous-time setting, as established in the
 146 following proposition.
 147

148 **Proposition 1** (SMC for Continuous-Time Discrete Diffusion). *Let R_t be the rate matrix generating
 149 the forward transition kernel $\gamma(x_t|x_{t-\Delta t})$, and \hat{R}_t be its counterpart associated with the backward
 150 proposal kernel $q(x_{t-\Delta t}|x_t)$, where $\Delta t \rightarrow 0$ is the infinitesimal time increment. Then, the importance
 151 weight at time t is given by $w_t = \int_1^t -\partial_s \log \pi(x_s) + \sum_{y_s} R_s(x_s, y_s) \frac{\pi(y_s)}{\pi(x_s)} ds$, if the forward kernel
 152 γ is chosen such that the rate matrices satisfy detailed balance $\hat{R}_t(x_t, y_t)\pi(x_t) = R_t(y_t, x_t)\pi(y_t)$.*

153 Proposition 1 coincides with the importance weight used in Holderith et al. (2025), which focus on
 154 sampling scenarios where the intermediate target π is tractable up to an unnormalized constant. In
 155 contrast, our setting concerns test-time control of pretrained diffusion models, where π is intractable.
 156 In Appendix B.2, we further connect our result to Lee et al. (2025), who also study reward tilting, but
 157 we provide a derivation from the perspective of discrete-time diffusion.

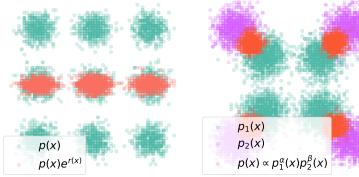


Figure 1: SMC results for the reward-tilting and product target distributions.

162
 163 **Algorithm 1** Training Optimal Proposal
 164 1: Rollout trajectory $\{x_t\}_t$ with $q_{\text{ref}}(x_{t-1}|x_t)$
 165 2: Compute gradient with Equation (10)
 166 $g_\phi, g_\psi \leftarrow \frac{1}{T} \nabla_{\phi, \psi} \sum_t \mathcal{L}_{\phi, \psi}(x_{t-1}, x_t)$
 167 3: Update ϕ, ψ using g_ϕ, g_ψ
 168 $\phi \leftarrow \phi - \eta g_\phi, \psi \leftarrow \psi - \eta g_\psi$

169
 170 **Algorithm 2** SMC Sampling Procedure
 171 1: Propose particles $x_{t-1}^{(i)} \sim q(x_{t-1}|x_t)$
 172 2: Compute importance weight with Equation (5)
 173 $w_{t-1}^{(i)} = \frac{\pi(x_{t-1}) \gamma(x_t|x_{t-1})}{\pi(x_t) q(x_{t-1}|x_t)}, \tilde{w}_{t-1}^{(i)} = \frac{w_{t-1}^{(i)}}{\sum_i w_{t-1}^{(i)}}$
 174 3: Resample $x_{t-1}^{(i)} \sim \text{Multinomial}(x_{t-1}^{(i)}; \tilde{w}_{t-1}^{(i)})$

3.2 CHOICES OF PROPOSAL: THE WAY TO REDUCE VARIANCE

172 While the proposal $q(x_{t-1}|x_t)$ offers substantial flexibility, the statistical efficiency of SMC is highly
 173 sensitive to its choice: suboptimal proposals induce high-variance importance weights, which in turn
 174 precipitate particle degeneracy and hinder adequate exploration of the state space (Del Moral et al.,
 175 2006). Conversely, an appropriately constructed proposal substantially mitigates weight variance,
 176 thereby enhancing the effective sample size and ensuring stability of the inference procedure. The
 177 following proposition characterises the minimum variance choice of proposal:

178 **Proposition 2** (Locally Optimal Proposal). *Given the incremental importance weight as in Equation*
 179 *(5)* $w_{t-1}(x_{t-1}, x_t) = \frac{\pi(x_{t-1}) \gamma(x_t|x_{t-1})}{\pi(x_t) q(x_{t-1}|x_t)}$, *the proposal distribution that minimises the variance of*
 180 *w_{t-1} , often referred to as the locally optimal proposal, is* $q(x_{t-1}|x_t) \propto \pi(x_{t-1}) \gamma(x_t|x_{t-1})$.

182 Building on Proposition 2, one readily verifies that the optimal proposal distribution for the case
 183 of product target is tractable (see the remark in Appendix A.2 for discussion), under the choices of
 184 forward kernels $\gamma \propto p_1^\alpha(x_t|x_{t-1}) p_2^\beta(x_t|x_{t-1})$. In contrast, for the reward-tilting, the locally optimal
 185 proposal takes the form $q \propto \exp(r(x_{t-1})) p_\theta(x_{t-1}|x_t)$, which is generally computationally infea-
 186 sible due to the inaccessibility of the corresponding normalising constant. Consequently, practical
 187 implementations must resort to approximations that balance variance reduction with computational
 188 feasibility. In what follows, we introduce two approximation strategies tailored to the reward-tilting
 189 setting: i) a gradient-based method to achieve first-order approximation, and ii) a neural proposal
 190 trained to minimise the log-variance of the importance weight.

3.2.1 APPROXIMATED OPTIMAL PROPOSAL VIA FIRST-ORDER APPROXIMATION

193 In reward tilting, evaluating the locally optimal proposal requires computing the normalising constant
 194 $Z = \sum_{x_{t-1}} \exp(r(x_{t-1})) p_\theta(x_{t-1}|x_t)$. This computation entails $\mathcal{O}(|\mathcal{X}|)$ forward pass through the
 195 reward model at each denoising step, which significantly slows down the generation speed, rendering
 196 the method impractical for large discrete state spaces. To mitigate this issue, we adopt the approach
 197 of Grathwohl et al. (2021); Zhang et al. (2022), treating $r(x_t)$ as a function defined over continuous
 198 real-valued inputs, while evaluating it on the discretised domain of interest. This allows us to apply a
 199 first-order Taylor expansion to approximate the reward: $r(x_{t-1}) \approx r(x_t) + (x_{t-1} - x_t)^T \nabla_x r(x_t)$,
 200 which in turn yields a first-order approximation to the locally optimal proposal:

$$q(x_{t-1}|x_t) \propto p_\theta(x_{t-1}|x_t) \exp(x_{t-1}^T \nabla_x r(x_t)). \quad (8)$$

201 This approximation improves computational efficiency by requiring the reward function r to be
 202 evaluated and differentiated only once at x_t , instead of repeatedly across all states. Nevertheless, it
 203 assumes differentiable rewards and remains costly when the reward model is large. Motivated by
 204 Richter et al. (2020); Richter & Berner (2023) and the amortisation technique in variational inference
 205 (Dayan et al., 1995; Kingma & Welling, 2013), we propose learning an amortised network that
 206 approximates the optimal proposal, resulting in a transition kernel that directly transports between
 207 successive intermediate targets as in Matthews et al. (2022). This reduces computation to a single
 208 network evaluation, thereby significantly enhancing the efficiency of SMC.

3.2.2 AMORTISED OPTIMAL PROPOSAL VIA LOG-VARIANCE MINIMISATION

210 To train a network q_ϕ to approximate the locally optimal proposal, a natural approach is to minimise
 211 the log-variance of the importance weight:

$$\min_{\phi} \mathbb{V}_{q_{\text{ref}}(x_{0:T})} \left[\sum_t \log \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_\theta(x_{t-1}|x_t)}{q_\phi(x_{t-1}|x_t)} \right] \triangleq \mathcal{L}_{\log\text{-var}}(\phi) \quad (9)$$

216 where q_{ref} is an arbitrary reference distribution that has the same support as p_{θ} and q_{ϕ} . The following
 217 corollary establishes the validity of the proposed log-variance objective.

218 **Corollary 1.** *The locally optimal proposal $q^* \propto \pi(x_{t-1})p_{\theta}(x_{t-1}|x_t)$ that achieves the minimum
 219 variance of the important weight $\mathbb{V}_q \left[\frac{\pi(x_{t-1})\gamma(x_t|x_{t-1})}{\pi(x_t)q(x_{t-1}|x_t)} \right]$ is unique.*

220 Although conceptually simple, naive Monte Carlo estimation of $\mathcal{L}_{\text{log-var}}$ suffers from high variance
 221 and computational cost. To alleviate these issues, we introduce an auxiliary network $F_{\psi} : \mathbb{R} \rightarrow \mathbb{R}$,
 222 parameterised by ψ , that estimates the mean of the log-weight. This yields the refined objective:

$$225 \quad \mathcal{L}(\phi, \psi) = \mathbb{E}_{t, q_{\text{ref}}(x_{t-1}, x_t)} \left| \log \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_{\theta}(x_{t-1}|x_t)}{q_{\phi}(x_{t-1}|x_t)} - F_{\psi}(t) \right|^2, \quad (10)$$

226 which provably upper bounds the log-variance loss. To be specific, the following proposition holds:

227 **Proposition 3.** *For any reference distribution q_{ref} , we have $\mathcal{L}_{\text{log-var}}(\phi) \leq T^2 \mathcal{L}(\phi, \psi)$. Moreover, the
 228 minimiser of \mathcal{L} is unique and attains its optimum when $q_{\phi} \propto \exp(r(x_{t-1}))p_{\theta}(x_{t-1}|x_t)$.*

229 We outline the training and sampling procedures in Algorithms 1 and 2. For clarity, we designate
 230 SMC_{base} , SMC_{grad} , and SMC_{amot} to denote, respectively, the variants employing the pretrained
 231 diffusion proposal, the first-order approximated proposal, and the learned amortised proposal. We
 232 further denote the first-order approximated and amortised proposals by $\text{Prop}_{\text{grad}}$ and $\text{Prop}_{\text{amot}}$, which
 233 coincide with their corresponding SMC methods when restricted to a single particle.

234 3.3 SEQUENTIAL MONTE CARLO RECIPE: PRACTICAL IMPLEMENTATION

235 Building on the theoretical characterisation of optimal proposals, we next present a practical SMC
 236 recipe. An essential ingredient of the proposed framework is the introduction of a twisted intermediate
 237 target for reward-tilting: $\pi(x_t) \propto p_{\theta}(x_t) \exp\left(\frac{\lambda_t}{\alpha} r(x_t)\right)$, where $\alpha > 0$ is a KL-regularisation
 238 coefficient. This construction is motivated by the following identity

$$239 \quad \pi = \underset{\pi}{\text{argmax}} \mathbb{E}_{\pi} [r(x_t)] - \alpha \mathbb{KL}(\pi \| p_{\theta}) \propto p_{\theta}(x_t) \exp\left(\frac{r(x_t)}{\alpha}\right). \quad (11)$$

240 Here, $\lambda_t \in [0, 1]$ acts a temperature parameter that smoothly interpolates between the prior $p_{\theta}(x_t)$
 241 ($\lambda_t = 0$) and the fully reward-augmented target ($\lambda_t = 1$). By gradually increasing λ_t over denoising
 242 steps, the influence of the reward is tempered, thereby improving stability during sampling. In
 243 scenarios where the reward is only defined on clean data, following Wu et al. (2023a); Kim et al.
 244 (2025), we approximate the optimal intermediate target as

$$245 \quad \pi(x_t) \propto p_{\theta}(x_t) \exp\left(\frac{\lambda_t}{\alpha} \hat{r}(x_t)\right), \quad \hat{r}(x_t) = \frac{1}{M} \sum_{m=1}^M r(x_0^{(m)}), \quad x_0^{(m)} \sim p_{\theta}(x_0|x_t). \quad (12)$$

246 However, categorical sampling from p_{θ} renders $\hat{r}(x_t)$ non-differentiable w.r.t. x_t . To resolve
 247 it, we employ the reparameterisation trick with Gumbel-Softmax (Jang et al., 2016) to enable
 248 differentiability (see Appendix C.2 for details), thereby making the approximated proposal applicable
 249 as in Equation (8). For completeness, Appendix C.3 provides a further discussion of the computation
 250 of importance weights in Equation (7) under low-confidence sampling, where the ratio $\frac{p_{\theta}(x_{t-1}|x_t)}{q(x_{t-1}|x_t)}$ is
 251 not explicitly tractable. This extension ensures that the proposed SMC algorithm remains suitable
 252 for recent state-of-the-art discrete diffusion models for language modelling (Nie et al., 2025) and
 253 text-to-image generation (Bai et al., 2024), where low-confidence sampling (Chang et al., 2022) is
 254 commonly used.

255 4 EXPERIMENTS

256 To support our theoretical discussion, we first showcase the effectiveness of the proposed methods
 257 through a synthetic experiment. We then evaluate it across a wide range of applications, including
 258 language modelling, biological design, and text-to-image generation. Detailed experimental settings
 259 and additional results are provided in Appendix D.

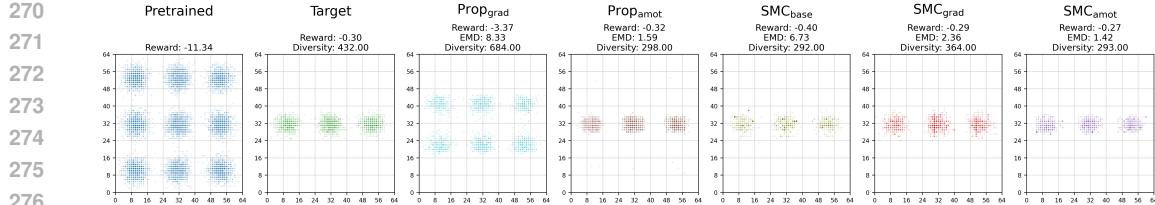


Figure 2: Comparisons on reward-tilted discreteised MoGs. We consider the reward function as $r(X, Y) = -\hat{X}^2/100 - \hat{Y}^2$, where $\hat{X} = 12(X/63 - 1/2)$ and $\hat{Y} = 12(Y/63 - 1/2)$.

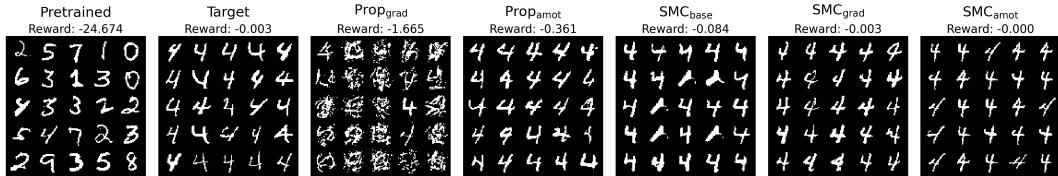


Figure 3: Comparisons on reward-tiled binary MNIST. We train a classifier $p_{\text{clf}}(y|x)$ on the clean data, and the reward is given by $r(x) = \log p_{\text{clf}}(y_{\text{target}}|x)$, where y_{target} denotes the target digit.

4.1 SYNTHETIC EXPERIEMNTS

We begin with the empirical evaluation with two synthetic experiments: binary MNIST and a two-dimensional discretised mixture of Gaussians (MoG), each dimension comprising 64 categorical states. A discrete diffusion model is first pretrained on the clean data. We evaluate the proposed SMC-based reward-tilting variants in comparison with two non-SMC baselines: $\text{Prop}_{\text{grad}}$, corresponding to the first-order approximation in Equation (8), and $\text{Prop}_{\text{amot}}$, which utilises an amortised proposal trained according to the objective in Equation (10). Performance is assessed using the earth mover’s distance (EMD), alongside the evaluation of the reward on the generated samples.

The results, shown in Figures 2 and 3, indicate that, compared to the non-SMC baselines, the SMC-based methods achieve superior performance, demonstrating the effectiveness of the proposed approach. Specifically, SMC_{amot} attains the highest rewards and lowest EMD, though at the cost of reduced sample diversity, likely due to reward over-optimisation. In contrast, SMC_{grad} maintains comparable sample quality while preserving high diversity, highlighting the effectiveness of the proposed approximated optimal proposal. Furthermore, $\text{Prop}_{\text{amot}}$ significantly outperforms $\text{Prop}_{\text{grad}}$, underscoring the benefit of the log-variance minimisation objective. We further demonstrate the reward curves over training in Figures 7a and 7b, which shows that the proposed method can achieve stable reward convergence, confirming the efficiency and robustness in learning optimal proposal.

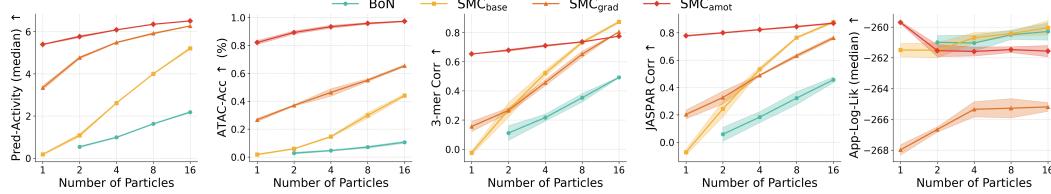
4.2 LANGUAGE MODELLING

We further evaluate our approach on language modelling, focusing on toxic text generation (Singhal et al., 2025), an undesirable behaviour of language models, where the pretrained model MDLM (Sahoo et al., 2024) produces only 0.8% of samples flagged as toxic. To assess sample quality, we use four metrics: i) Toxic, based on the same reward model applied during inference (Logacheva et al., 2022); ii) Toxic (Holdout), measured by a holdout toxicity classifier trained on a multilingual mixture of datasets (Dementieva et al., 2024); iii) generative perplexity with GPT2-XL (Radford et al., 2019); and iv) distinct uni/bi/trigrams (Dist-1/2/3). The first two metrics evaluate alignment with the reward, while the latter two measure semantic quality and diversity.

Following Han et al. (2022), we generate sequences of length 100 with 100 denoising steps condition on the given starting prompts, and report results averaged over 300 independent runs corresponding to 15 prompts with 20 generations per prompt. The results are summarised in Table 1, with an extended version provided in Table 4. We observe that SMC with proposals closer to the optimal achieves better performance on the toxicity metrics, reflecting stronger alignment with the reward model. Among the non-SMC baselines, $\text{Prop}_{\text{amot}}$ yields the best performance, highlighting the effectiveness of the log-variance minimisation objective. To further assess its effect, we plot the training dynamics in Figure 7c, which shows the reward steadily improving as training progresses. Notably, although the learned proposal sacrifices a small degree of performance on perplexity and diversity, we demonstrate

324
325 Table 1: The results of toxic text generation. We use a widely adopted toxicity classifier as the reward
326 ([Logacheva et al., 2022](#)), while the pretrained language model is MDLM ([Sahoo et al., 2024](#)).

# Particles	Method	Toxic \uparrow	Toxic (Holdout) \uparrow	PPL (GPT2-XL) \downarrow	Dist-1/2/3 \uparrow
N = 1	Pretrained	0.8%	5.2%	121.1	56/92/96
	Prop _{grad}	58.0%	58.3%	216.7	58/93/96
	Prop _{amot}	63.7%	75.7%	131.9	53/89/94
N = 8	BoN	6.3%	16.7%	127.4	56/91/96
	SMC _{base}	26.7%	40.0%	132.3	57/92/96
	SMC _{grad}	95.0%	86.3%	132.1	57/92/96
	SMC _{amot}	100.0%	99.7%	147.6	44/81/91



336
337 Figure 4: Results of DNA sequence design. Both the pretrained discrete diffusion model and the
338 reward models are adopted from [Wang et al. \(2024\)](#).
339
340
341
342

343 in Figure 19 that it consistently generates coherent and semantically meaningful sequences, indicating
344 that alignment improvements need not come at the expense of sample quality.
345

346 4.3 BIOLOGY DESIGN 347

348 In this experiment, we evaluate our method on DNA sequence design. Specifically, we adopt the
349 pretrained model and the reward model from [Wang et al. \(2024\)](#), which are trained on $\sim 700k$ DNA
350 sequences. To evaluate the performance, we consider five metrics: i) predicted activity (*Pred-Activity*);
351 ii) chromatin accessibility classification accuracy (*ATAC-Acc*); iii) 3-mer Pearson correlation with
352 dataset sequences (*3-mer Corr*); iv) JASPAR motif frequency correlation (*JASPAR Corr*); and v)
353 approximative log-likelihood under the pretrained model (*App-Log-Lik*). For further details on these
354 evaluation metrics, we refer the reader to [Wang et al. \(2024\)](#).
355

356 As shown in Figure 4, the performance improves consistently with an increasing number of particles,
357 suggesting that SMC benefits from a larger particle set by providing a more accurate approximation of
358 the target distribution. Compared to SMC_{base}, SMC_{amot} achieves higher *Pred-Activity* and *ATAC-Acc*,
359 while performing slightly worse on the other three metrics. This can be attributed to the more
360 mode-seeking behaviour of their proposals, which emphasises high-probability regions at the expense
361 of overall diversity. Nonetheless, we observe that SMC_{amot} with larger particle sets attains more
362 favourable overall performance, indicating that a learnable amortised proposal can effectively leverage
363 the flexibility of SMC to balance quality and diversity. In Appendix D.2.4, we present additional
364 comparisons with baseline methods, further demonstrating the effectiveness of our approach.
365

366 4.4 IMAGE GENERATION 367

368 In this section, we evaluate our method on image generation. We begin by demonstrating that SMC
369 yields improvements over classifier-free guidance, which can be viewed as a special case of the
370 product target in Equation (6). Subsequently, we present large-scale experiments to illustrate the
371 applicability of the proposed methods to text-to-image generation at scale.
372

373 **Improving CFG with MaskGit** ([Chang et al., 2022](#)). Given a pretrained diffusion model p_θ ,
374 classifier-free guidance (CFG) generates samples according to $p_\theta(x_{t-1}|x_t, c)^\alpha p_\theta(x_t|x_{t-1})^{1-\alpha}$,
375 where α is the CFG coefficient. CFG has been shown to enhance sample quality substantially
376 ([Ho & Salimans, 2022](#)). By incorporating the importance weight defined in Equation (6), we can
377 further improve CFG within the proposed SMC framework.
378

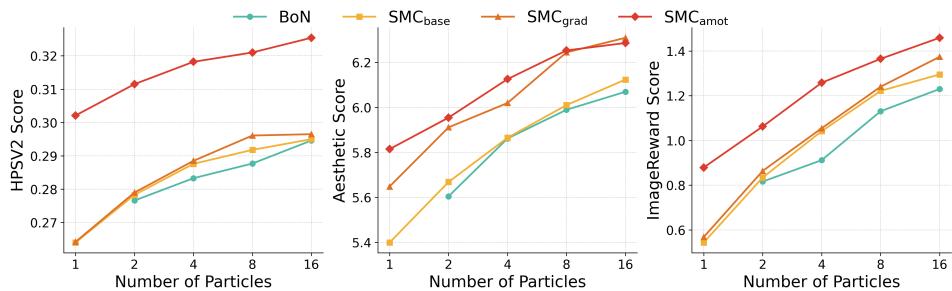


Figure 5: The results of text-to-image generation across different reward models.

Specifically, we perform experiments with MaskGit (Chang et al., 2022) trained on ImageNet256 (Deng et al., 2009). To ensure tractable importance weight computation, we adopt the ReMDM sampling scheme (Wang et al., 2025) instead of the low-confidence sampling strategy from (Chang et al., 2022) (see Tables 9 to 11 for a comparison). The result is presented in Table 2. It shows that with fewer denoising steps, increasing the number of particles leads to a substantial improvement in sample quality, as measured by FID and Inception Score (IS) with 50,000 generated images, thereby demonstrating the effectiveness of the proposed SMC method. However, as the number of denoising steps increases, the benefit of using more particles diminishes. This can be attributed to the role of SMC in correcting sampling inaccuracies: with sufficient denoising steps, the sampling process itself becomes accurate enough, leaving limited room for further improvement through additional particles. In addition, we report results with different CFG coefficients in Tables 7 and 8. Interestingly, for larger CFG coefficients, increasing the particle count tends to decrease FID while increasing IS. This behaviour is expected, since stronger CFG reduces sample diversity. With more accurate sampling under SMC, this reduction in diversity becomes more apparent, leading to lower FID but higher IS.

Improving Text-to-Image Generation with Meissonic (Bai et al., 2024). We evaluate the scalability of the proposed methods on text-to-image generation using Meissonic (Bai et al., 2024) as the base model. Our experiments consider three text-image alignment rewards: Human Preference Score (HPSv2) (Wu et al., 2023b), Aesthetic Score (LAION, 2024), and ImageReward (Xu et al., 2023). For the prompt distributions, we use photo and painting prompts from the Human Preference Dataset (HPDv2) (Wu et al., 2023b) for HPSv2, the DrawBench prompt set for ImageReward, and a curated set of 45 simple animal prompts for Aesthetic Score, following Black et al. (2023).

The results are shown in Figure 5. We observe that performance consistently improves with an increasing number of particles, and SMC_{amot} outperforms all other methods, which highlights the benefit of the proposed SMC framework. In Figure 6, we visualise the alignment dynamics for the HPSv2 task, showing that the generated images progressively align more faithfully with the prompts, thereby validating the effectiveness of the proposed log-variance minimisation objective. Furthermore, Figures 7e to 7g present the convergence of the reward during training, and further qualitative examples in Appendix D.2.7 collectively reinforce the validity of our approach.

5 RELATED WORK

Discrete Diffusion Models. Discrete diffusion models (DDMs) were originally introduced in Austin et al. (2021); Sun et al. (2022); Campbell et al. (2022), grounded in the framework of continuous-time Markov chains (Norris, 1998). More recently, masked diffusion models (MDMs) (Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024), a special case of DDMs, have shown strong performance in language modelling (Zhang et al., 2025a; Nie et al., 2025). In addition, MDMs have achieved promising results in math reasoning (Zhao et al., 2025), image synthesis (Bai et al., 2024), code planning (Gat et al., 2024; Gong et al., 2025), and biological sequence generation (Campbell et al., 2024), yielding performance comparable to continuous diffusion (Rombach et al., 2022) and autoregressive models

Figure 6: Visualisation of alignment dynamics over the training progress, with images generated every 100 training steps. The generated images become more faithful to the text prompt.

(Radford et al., 2019). In contrast to these approaches, which primarily study large-scale pretraining, our work focuses on test-time inference and post-training alignment (Uehara et al., 2025b), where access to training data is not available.

Test-time Alignment of Discrete Diffusion Models. Existing alignment methods mainly fall into two categories: classifier guidance (Dhariwal & Nichol, 2021) and RL-based fine-tuning (Black et al., 2023). Although the score is ill-defined in discrete distributions, several works (Vignac et al., 2022; Nisonoff et al., 2024; Schiff et al., 2024) employ a first-order approximation to the target distribution, which resembles the insight underlying our approximated proposal $\text{Prop}_{\text{grad}}$ in Equation (8). Alternatively, Rout et al. (2025) perform guidance on the embedding space, mitigating the issue of ill-defined gradients. Chen et al. (2025b) introduce reward-free guidance, analogous to classifier-free guidance (Ho & Salimans, 2022) but designed for masked diffusion models. Moreover, Tang et al. (2025) propose tree search guided finetuning, which is related to the searching-based scaling methods on continuous diffusion (Ma et al., 2025; Zhang et al., 2025b; Jain et al., 2025; Ramesh & Mardani, 2025). Beyond guidance approaches, sampling-based techniques have also demonstrated promising performance, including value-based sampling (Li et al., 2024), importance sampling (Guo et al., 2024), and iterative refinement strategies (Uehara et al., 2025a). While training-free and relatively efficient to deploy, these methods often face challenges in scalability and robustness. More recently, RL-based fine-tuning methods (Zekri & Boullé, 2025; Zhao et al., 2025; Gong et al., 2025) have gained significant traction, fueled by the remarkable success of Group Relative Policy Optimisation (GRPO) (Shao et al., 2024) in large language models (Guo et al., 2025). In parallel, steering-based (Rector-Brooks et al., 2024) approaches leveraging GFlowNets (Bengio et al., 2023) and direct backpropagation methods (Wang et al., 2024) have also demonstrated strong potential for test-time alignment. Distinct from these directions, our amortised proposal $\text{Prop}_{\text{amot}}$ introduces an alternative perspective for fine-tuning pretrained discrete diffusion models: it minimises the log-variance of importance weights, a criterion that has been rarely investigated in previous work.

Sequential Monte Carlo for Generative Modelling. SMC has emerged as a versatile framework for probabilistic modelling, providing effective tools for sampling and inference across a wide range of applications, including particle filtering (Johansen, 2009), Bayesian experimental design (Ryan et al., 2016), and probabilistic planning (Piché et al., 2018). Most recently, SMC has been combined with diffusion models (Chen et al., 2024; He et al., 2025; Skreta et al., 2025; Wu et al., 2025), transforming it into a powerful neural sampler capable of drawing from complex Boltzmann distributions. These developments have also extended SMC’s reach to discrete domains, as demonstrated by Holderith et al. (2025); Lee et al. (2025). Beyond classical sampling tasks, SMC has further expanded to the improvement of generative models at test time. A seminal step in this direction was taken by Zhao et al. (2024), who introduced SMC as a principled probabilistic inference framework for addressing capability and safety challenges in large language models (LLMs). Subsequent works (Feng et al., 2024; Puri et al., 2025) successfully applied this idea to enhance mathematical reasoning in LLMs, while others explored its use in reward-guided adaptation of pretrained diffusion models (Trippe et al., 2022; Wu et al., 2023a; Cardoso et al., 2023; Dou & Song, 2024; Kim et al., 2025; Yoon et al., 2025; Chen et al., 2025a; Ren et al., 2025). Our work is most closely related to Singhal et al. (2025); Dang et al. (2025); Hasan et al. (2025), who employ SMC for test-time alignment of discrete diffusion models. However, their approaches treat pretrained diffusion models as fixed proposal distributions. By contrast, we take a closer look at the role of proposal choice, systematically

486 investigating its impact and providing empirical evidence for a key insight: proposals that better
 487 approximate the optimal, which minimises the variance of importance weights, consistently lead to
 488 better performance.
 489

490 6 CONCLUSION

491 In this paper, we introduced a Sequential Monte Carlo (SMC) framework tailored for discrete
 492 diffusion models. By exploiting tractable importance weights, we established SMC as a powerful and
 493 principled recipe for test-time scaling. A central insight of our work is that the proposal distribution
 494 is crucial for unlocking the full potential of SMC. Building on this observation, we developed two
 495 approximately optimal proposals: a first-order approximation and a learnable amortised proposal
 496 trained to approximate the optimal proposal by minimising the log-variance of importance weights.
 497 Extensive experiments across diverse domains demonstrated the effectiveness and scalability of
 498 our approaches. We hope this work inspires future studies on more efficient test-time scaling and
 499 post-training alignment strategies for discrete diffusion models.
 500

501 ETHICS STATEMENT

502 Our work introduces a Sequential Monte Carlo (SMC) framework for discrete diffusion models,
 503 designed to improve test-time alignment and scalability. While such methods could, in principle,
 504 be misused to enhance harmful generative tasks, our goal is to advance scalable inference and
 505 post-training alignment strategies. We evaluate our methods across diverse applications, including
 506 toxic text generation. Although this task involves sensitive content, it serves as a stress test for
 507 generative models, exposing their vulnerabilities to jailbreaking and adversarial misuse. By studying
 508 this setting, we aim to develop techniques that make models more robust, reliable, and safer for
 509 real-world deployment using the proposed SMC methods, in line with the ICLR Code of Ethics.
 510

512 513 REPRODUCIBILITY STATEMENT

514 We have made efforts to ensure the reproducibility of our results. Detailed descriptions of our
 515 SMC framework and training procedures are provided in the main text and Appendix. Additionally,
 516 we provide anonymised code implementing our algorithms to facilitate replication and further
 517 investigation by other researchers. Theoretical derivations and proofs of key claims are included in
 518 the Appendix to support reproducibility and transparency.
 519

520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES

541

542 Adam, K. D. B. J. et al. A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 1412
543 (6), 2014.

544 Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van Den Berg, R. Structured denoising diffusion
545 models in discrete state-spaces. *Advances in neural information processing systems*, 34:17981–
546 17993, 2021.

547

548 Bai, J., Ye, T., Chow, W., Song, E., Li, X., Dong, Z., Zhu, L., and Yan, S. Meissonic: Revitalizing
549 masked generative transformers for efficient high-resolution text-to-image synthesis. *arXiv preprint
550 arXiv:2410.08261*, 2024.

551 Bengio, Y., Lahoud, S., Deleu, T., Hu, E. J., Tiwari, M., and Bengio, E. Gflownet foundations. *Journal
552 of Machine Learning Research*, 24(210):1–55, 2023.

553

554 Black, K., Janner, M., Du, Y., Kostrikov, I., and Levine, S. Training diffusion models with reinforce-
555 ment learning. *arXiv preprint arXiv:2305.13301*, 2023.

556 Campbell, A., Benton, J., De Bortoli, V., Rainforth, T., Deligiannidis, G., and Doucet, A. A
557 continuous time framework for discrete denoising models. *Advances in Neural Information
558 Processing Systems*, 35:28266–28279, 2022.

559

560 Campbell, A., Yim, J., Barzilay, R., Rainforth, T., and Jaakkola, T. Generative flows on discrete
561 state-spaces: Enabling multimodal flows with applications to protein co-design. *arXiv preprint
562 arXiv:2402.04997*, 2024.

563 Cardoso, G., Idrissi, Y. J. E., Corff, S. L., and Moulines, E. Monte carlo guided diffusion for bayesian
564 linear inverse problems. *arXiv preprint arXiv:2308.07983*, 2023.

565

566 Chang, H., Zhang, H., Jiang, L., Liu, C., and Freeman, W. T. Maskgit: Masked generative im-
567 age transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
568 recognition*, pp. 11315–11325, 2022.

569

570 Chen, H., Ren, Y., Min, M. R., Ying, L., and Izzo, Z. Solving inverse problems via diffusion-based
571 priors: An approximation-free ensemble sampling approach. *arXiv preprint arXiv:2506.03979*,
572 2025a.

573

574 Chen, J., Richter, L., Berner, J., Blessing, D., Neumann, G., and Anandkumar, A. Sequential
575 controlled langevin diffusions. *arXiv preprint arXiv:2412.07081*, 2024.

576

577 Chen, T., Xu, M., Leskovec, J., and Ermon, S. Rfg: Test-time scaling for diffusion large language
578 model reasoning with reward-free guidance. *arXiv preprint arXiv:2509.25604*, 2025b.

579

580 Chu, W., Wu, Z., Chen, Y., Song, Y., and Yue, Y. Split gibbs discrete diffusion posterior sampling.
581 *arXiv preprint arXiv:2503.01161*, 2025.

582

583 Dang, M., Han, J., Xu, M., Xu, K., Srivastava, A., and Ermon, S. Inference-time scaling of diffusion
584 language models with particle gibbs sampling. *arXiv preprint arXiv:2507.08390*, 2025.

585

586 Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. The helmholtz machine. *Neural computation*,
587 7(5):889–904, 1995.

588

589 Del Moral, P., Doucet, A., and Jasra, A. Sequential monte carlo samplers. *Journal of the Royal
590 Statistical Society Series B: Statistical Methodology*, 68(3):411–436, 2006.

591

592 Dementieva, D., Moskovskiy, D., Babakov, N., Ayele, A. A., Rizwan, N., Schneider, F., Wang, X.,
593 Yimam, S. M., Ustalov, D., Stakovskii, E., et al. Overview of the multilingual text detoxification
594 task at pan 2024. *Working Notes of CLEF*, 2024.

595

596 Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical
597 image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255.
598 Ieee, 2009.

594 Denker, A., Padhy, S., Vargas, F., and Hertrich, J. Iterative importance fine-tuning of diffusion models.
 595 *arXiv preprint arXiv:2502.04468*, 2025.
 596

597 Dhariwal, P. and Nichol, A. Diffusion models beat gans on image synthesis. *Advances in neural*
 598 *information processing systems*, 34:8780–8794, 2021.

599 Dou, Z. and Song, Y. Diffusion posterior sampling for linear inverse problem solving: A filtering
 600 perspective. In *The Twelfth International Conference on Learning Representations*, 2024.
 601

602 Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J., Saini, H., Levi, Y., Lorenz, D., Sauer,
 603 A., Boesel, F., et al. Scaling rectified flow transformers for high-resolution image synthesis. In
 604 *Forty-first international conference on machine learning*, 2024.

605 Fan, Y., Watkins, O., Du, Y., Liu, H., Ryu, M., Boutilier, C., Abbeel, P., Ghavamzadeh, M., Lee,
 606 K., and Lee, K. Dpok: Reinforcement learning for fine-tuning text-to-image diffusion models.
 607 *Advances in Neural Information Processing Systems*, 36:79858–79885, 2023.
 608

609 Feng, S., Kong, X., Ma, S., Zhang, A., Yin, D., Wang, C., Pang, R., and Yang, Y. Step-by-step
 610 reasoning for math problems via twisted sequential monte carlo. *arXiv preprint arXiv:2410.01920*,
 611 2024.

612 Gat, I., Remez, T., Shaul, N., Kreuk, F., Chen, R. T., Synnaeve, G., Adi, Y., and Lipman, Y. Discrete
 613 flow matching. *Advances in Neural Information Processing Systems*, 37:133345–133385, 2024.
 614

615 Gong, S., Zhang, R., Zheng, H., Gu, J., Jaitly, N., Kong, L., and Zhang, Y. Diffucoder: Understanding
 616 and improving masked diffusion models for code generation. *arXiv preprint arXiv:2506.20639*,
 617 2025.

618 Gosai, S. J., Castro, R. I., Fuentes, N., Butts, J. C., Kales, S., Noche, R. R., Mouri, K., Sabeti, P. C.,
 619 Reilly, S. K., and Tewhey, R. Machine-guided design of synthetic cell type-specific cis-regulatory
 620 elements. *bioRxiv*, 2023.
 621

622 Grathwohl, W., Swersky, K., Hashemi, M., Duvenaud, D., and Maddison, C. Oops i took a gradient:
 623 Scalable sampling for discrete distributions. In *International Conference on Machine Learning*, pp.
 624 3831–3841. PMLR, 2021.

625 Gruver, N., Stanton, S., Frey, N., Rudner, T. G., Hotzel, I., Lafrance-Vanassee, J., Rajpal, A., Cho, K.,
 626 and Wilson, A. G. Protein design with guided discrete diffusion. *Advances in neural information*
 627 *processing systems*, 36:12489–12517, 2023.
 628

629 Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X., et al.
 630 Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint*
 631 *arXiv:2501.12948*, 2025.

632 Guo, W., Zhu, Y., Tao, M., and Chen, Y. Plug-and-play controllable generation for discrete masked
 633 models. *arXiv preprint arXiv:2410.02143*, 2024.
 634

635 Han, X., Kumar, S., and Tsvetkov, Y. Ssd-lm: Semi-autoregressive simplex-based diffusion language
 636 model for text generation and modular control. *arXiv preprint arXiv:2210.17432*, 2022.

637 Hasan, M., Skreta, M., Aspuru-Guzik, A., Bengio, Y., and Neklyudov, K. Discrete feynman-kac
 638 correctors. In *2nd AIfor Math Workshop@ ICML 2025*, 2025.

639 He, J., Hernández-Lobato, J. M., Du, Y., and Vargas, F. Rne: a plug-and-play framework for diffusion
 640 density estimation and inference-time control. *arXiv preprint arXiv:2506.05668*, 2025.

641 Ho, J. and Salimans, T. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*, 2022.
 642

643 Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. *Advances in neural*
 644 *information processing systems*, 33:6840–6851, 2020.
 645

646 Holderrieth, P., Albergo, M. S., and Jaakkola, T. Leaps: A discrete neural sampler via locally
 647 equivariant networks. *arXiv preprint arXiv:2502.10843*, 2025.

648 Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M. Equivariant diffusion for molecule
 649 generation in 3d. In *International conference on machine learning*, pp. 8867–8887. PMLR, 2022.
 650

651 Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al. Lora:
 652 Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

653 Jain, V., Sareen, K., Pedramfar, M., and Ravanbakhsh, S. Diffusion tree sampling: Scalable inference-
 654 time alignment of diffusion models. *arXiv preprint arXiv:2506.20701*, 2025.
 655

656 Jang, E., Gu, S., and Poole, B. Categorical reparameterization with gumbel-softmax. *arXiv preprint
 657 arXiv:1611.01144*, 2016.

658 Johansen, A. A tutorial on particle filtering and smoothing: Fifteen years later. 2009.
 659

660 Kim, S., Kim, M., and Park, D. Alignment without over-optimization: Training-free solution for
 661 diffusion models. *arXiv preprint arXiv:2501.05803*, 2025.

662 Kingma, D. P. and Welling, M. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*,
 663 2013.

664 LAION. Laion aesthetic score predictor. <https://laion.ai/blog/laion-aesthetics/>,
 665 2024. Accessed: 2024-09-27.

666 Lee, C. K., Jeha, P., Frellsen, J., Lio, P., Albergo, M. S., and Vargas, F. Debiasing guidance for
 667 discrete diffusion with sequential monte carlo. *arXiv preprint arXiv:2502.06079*, 2025.

668 Li, X., Zhao, Y., Wang, C., Scalia, G., Eraslan, G., Nair, S., Biancalani, T., Ji, S., Regev, A., Levine,
 669 S., et al. Derivative-free guidance in continuous and discrete diffusion models with soft value-based
 670 decoding. *arXiv preprint arXiv:2408.08252*, 2024.

671 Liu, Z., Xiao, T. Z., Liu, W., Bengio, Y., and Zhang, D. Efficient diversity-preserving diffusion
 672 alignment via gradient-informed gflownets. *arXiv preprint arXiv:2412.07775*, 2024.

673 Logacheva, V., Dementieva, D., Ustyantsev, S., Moskovskiy, D., Dale, D., Krotova, I., Semenov,
 674 N., and Panchenko, A. Paradetox: Detoxification with parallel data. In *Proceedings of the 60th
 675 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 676 6804–6818, 2022.

677 Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*,
 678 2017.

679 Lou, A., Meng, C., and Ermon, S. Discrete diffusion modeling by estimating the ratios of the data
 680 distribution. *arXiv preprint arXiv:2310.16834*, 2023.

681 Ma, N., Tong, S., Jia, H., Hu, H., Su, Y.-C., Zhang, M., Yang, X., Li, Y., Jaakkola, T., Jia, X., et al.
 682 Scaling inference time compute for diffusion models. In *Proceedings of the Computer Vision and
 683 Pattern Recognition Conference*, pp. 2523–2534, 2025.

684 Matthews, A., Arbel, M., Rezende, D. J., and Doucet, A. Continual repeated annealed flow transport
 685 monte carlo. In *International Conference on Machine Learning*, pp. 15196–15219. PMLR, 2022.

686 Nie, S., Zhu, F., You, Z., Zhang, X., Ou, J., Hu, J., Zhou, J., Lin, Y., Wen, J.-R., and Li, C. Large
 687 language diffusion models. *arXiv preprint arXiv:2502.09992*, 2025.

688 Nisonoff, H., Xiong, J., Allenspach, S., and Listgarten, J. Unlocking guidance for discrete state-space
 689 diffusion and flow models. *arXiv preprint arXiv:2406.01572*, 2024.

690 Norris, J. R. *Markov chains*. Number 2. Cambridge university press, 1998.

691 Oksendal, B. *Stochastic differential equations: an introduction with applications*. Springer Science
 692 & Business Media, 2013.

693 Ou, Z., Zhang, R., and Li, Y. Discrete neural flow samplers with locally equivariant transformer.
 694 *arXiv preprint arXiv:2505.17741*, 2025.

702 Piché, A., Thomas, V., Ibrahim, C., Bengio, Y., and Pal, C. Probabilistic planning with sequential
 703 monte carlo methods. In *International Conference on Learning Representations*, 2018.
 704

705 Puri, I., Sudalairaj, S., Xu, G., Xu, K., and Srivastava, A. Rollout roulette: A probabilistic inference
 706 approach to inference-time scaling of llms using particle-based monte carlo methods. *arXiv*
 707 *preprint arXiv:2502.01618*, 2025.

708 Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. Language models are
 709 unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
 710

711 Ramesh, V. and Mardani, M. Test-time scaling of diffusion models via noise trajectory search. *arXiv*
 712 *preprint arXiv:2506.03164*, 2025.
 713

714 Rector-Brooks, J., Hasan, M., Peng, Z., Quinn, Z., Liu, C., Mittal, S., Dziri, N., Bronstein, M.,
 715 Bengio, Y., Chatterjee, P., et al. Steering masked discrete diffusion models via discrete denoising
 716 posterior prediction. *arXiv preprint arXiv:2410.08134*, 2024.

717 Ren, Y., Gao, W., Ying, L., Rotskoff, G. M., and Han, J. Driftlite: Lightweight drift control for
 718 inference-time scaling of diffusion models. *arXiv preprint arXiv:2509.21655*, 2025.
 719

720 Richter, L. and Berner, J. Improved sampling via learned diffusions. *arXiv preprint arXiv:2307.01198*,
 721 2023.

722 Richter, L., Boustati, A., Nüsken, N., Ruiz, F., and Akyildiz, O. D. Vargrad: a low-variance gradient
 723 estimator for variational inference. *Advances in Neural Information Processing Systems*, 33:
 724 13481–13492, 2020.
 725

726 Robert, C. P., Casella, G., and Casella, G. *Monte Carlo statistical methods*, volume 2. Springer, 1999.
 727

728 Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image synthesis
 729 with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 730 *pattern recognition*, pp. 10684–10695, 2022.

731 Rout, L., Lugmayr, A., Jafarian, Y., Varadharajan, S., Caramanis, C., Shakkottai, S., and
 732 Kemelmacher-Shlizerman, I. Test-time anchoring for discrete diffusion posterior sampling. *arXiv*
 733 *preprint arXiv:2510.02291*, 2025.

734 Ryan, E. G., Drovandi, C. C., McGree, J. M., and Pettitt, A. N. A review of modern computational
 735 algorithms for bayesian optimal design. *International Statistical Review*, 84(1):128–154, 2016.
 736

737 Sahoo, S., Arriola, M., Schiff, Y., Gokaslan, A., Marroquin, E., Chiu, J., Rush, A., and Kuleshov,
 738 V. Simple and effective masked diffusion language models. *Advances in Neural Information*
 739 *Processing Systems*, 37:130136–130184, 2024.

740 Schiff, Y., Sahoo, S. S., Phung, H., Wang, G., Boshar, S., Dalla-torre, H., de Almeida, B. P., Rush, A.,
 741 Pierrot, T., and Kuleshov, V. Simple guidance mechanisms for discrete diffusion models. *arXiv*
 742 *preprint arXiv:2412.10193*, 2024.
 743

744 Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang, H., Zhang, M., Li, Y., Wu, Y., et al.
 745 Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv*
 746 *preprint arXiv:2402.03300*, 2024.
 747

748 Shi, J., Han, K., Wang, Z., Doucet, A., and Titsias, M. Simplified and generalized masked diffusion
 749 for discrete data. *Advances in neural information processing systems*, 37:103131–103167, 2024.

750 Singhal, R., Horvitz, Z., Teehan, R., Ren, M., Yu, Z., McKeown, K., and Ranganath, R. A gen-
 751 eral framework for inference-time scaling and steering of diffusion models. *arXiv preprint*
 752 *arXiv:2501.06848*, 2025.
 753

754 Skreta, M., Akhoun-Sadegh, T., Ohanesian, V., Bondesan, R., Aspuru-Guzik, A., Doucet, A.,
 755 Brekelmans, R., Tong, A., and Neklyudov, K. Feynman-kac correctors in diffusion: Annealing,
 756 guidance, and product of experts. *arXiv preprint arXiv:2503.02819*, 2025.

756 Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. Deep unsupervised learning
 757 using nonequilibrium thermodynamics. In *International conference on machine learning*, pp.
 758 2256–2265. pmlr, 2015.

759

760 Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based
 761 generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*,
 762 2020.

763 Sun, H., Yu, L., Dai, B., Schuurmans, D., and Dai, H. Score-based continuous-time discrete diffusion
 764 models. *arXiv preprint arXiv:2211.16750*, 2022.

765

766 Tang, S., Zhu, Y., Tao, M., and Chatterjee, P. Tr2-d2: Tree search guided trajectory-aware fine-tuning
 767 for discrete diffusion. *arXiv preprint arXiv:2509.25171*, 2025.

768

769 Trippe, B. L., Yim, J., Tischer, D., Baker, D., Broderick, T., Barzilay, R., and Jaakkola, T. Diffusion
 770 probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem. *arXiv preprint
 771 arXiv:2206.04119*, 2022.

772

773 Uehara, M., Zhao, Y., Black, K., Hajiramezanali, E., Scalia, G., Diamant, N. L., Tseng, A. M., Levine,
 774 S., and Biancalani, T. Feedback efficient online fine-tuning of diffusion models. *arXiv preprint
 775 arXiv:2402.16359*, 2024.

776

777 Uehara, M., Su, X., Zhao, Y., Li, X., Regev, A., Ji, S., Levine, S., and Biancalani, T. Reward-guided
 778 iterative refinement in diffusion models at test-time with applications to protein and dna design.
 779 *arXiv preprint arXiv:2502.14944*, 2025a.

780

781 Uehara, M., Zhao, Y., Wang, C., Li, X., Regev, A., Levine, S., and Biancalani, T. Reward-guided
 782 controlled generation for inference-time alignment in diffusion models: Tutorial and review. *arXiv
 783 preprint arXiv:2501.09685*, 2025b.

784

785 Verkuil, R., Kabeli, O., Du, Y., Wicky, B. I., Milles, L. F., Dauparas, J., Baker, D., Ovchinnikov,
 786 S., Sercu, T., and Rives, A. Language models generalize beyond natural proteins. *BioRxiv*, pp.
 787 2022–12, 2022.

788

789 Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher, V., and Frossard, P. Digress: Discrete
 790 denoising diffusion for graph generation. *arXiv preprint arXiv:2209.14734*, 2022.

791

792 Wang, C., Uehara, M., He, Y., Wang, A., Biancalani, T., Lal, A., Jaakkola, T., Levine, S., Wang, H.,
 793 and Regev, A. Fine-tuning discrete diffusion models via reward optimization with applications to
 794 dna and protein design. *arXiv preprint arXiv:2410.13643*, 2024.

795

796 Wang, G., Schiff, Y., Sahoo, S. S., and Kuleshov, V. Remasking discrete diffusion models with
 797 inference-time scaling. *arXiv preprint arXiv:2503.00307*, 2025.

798

799 Watson, J. L., Juergens, D., Bennett, N. R., Trippe, B. L., Yim, J., Eisenach, H. E., Ahern, W., Borst,
 800 A. J., Ragotte, R. J., Milles, L. F., et al. De novo design of protein structure and function with
 801 rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.

802

803 Wu, L., Trippe, B., Naesseth, C., Blei, D., and Cunningham, J. P. Practical and asymptotically exact
 804 conditional sampling in diffusion models. *Advances in Neural Information Processing Systems*,
 805 36:31372–31403, 2023a.

806

807 Wu, L., Han, Y., Naesseth, C. A., and Cunningham, J. P. Reverse diffusion sequential monte carlo
 808 samplers. *arXiv preprint arXiv:2508.05926*, 2025.

809

810 Wu, X., Hao, Y., Sun, K., Chen, Y., Zhu, F., Zhao, R., and Li, H. Human preference score v2: A
 811 solid benchmark for evaluating human preferences of text-to-image synthesis. *arXiv preprint
 812 arXiv:2306.09341*, 2023b.

813

814 Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang, J., and Dong, Y. Imagereward: Learning
 815 and evaluating human preferences for text-to-image generation. *Advances in Neural Information
 816 Processing Systems*, 36:15903–15935, 2023.

810 Yoon, T., Min, Y., Yeo, K., and Sung, M. *psi*-sampler: Initial particle sampling for smc-based
811 inference-time reward alignment in score models. *arXiv preprint arXiv:2506.01320*, 2025.
812

813 Zekri, O. and Boullé, N. Fine-tuning discrete diffusion models with policy gradient methods. *arXiv
814 preprint arXiv:2502.01384*, 2025.

815 Zhang, R., Liu, X., and Liu, Q. A langevin-like sampler for discrete distributions. In *International
816 Conference on Machine Learning*, pp. 26375–26396. PMLR, 2022.

817

818 Zhang, R., Zhai, S., Zhang, Y., Thornton, J., Ou, Z., Susskind, J., and Jaitly, N. Target concrete score
819 matching: A holistic framework for discrete diffusion. *arXiv preprint arXiv:2504.16431*, 2025a.

820 Zhang, X., Lin, H., Ye, H., Zou, J., Ma, J., Liang, Y., and Du, Y. Inference-time scaling of diffusion
821 models through classical search. *arXiv preprint arXiv:2505.23614*, 2025b.

822

823 Zhao, S., Brekelmans, R., Makhzani, A., and Grosse, R. Probabilistic inference in language models
824 via twisted sequential monte carlo. *arXiv preprint arXiv:2404.17546*, 2024.

825 Zhao, S., Gupta, D., Zheng, Q., and Grover, A. d1: Scaling reasoning in diffusion large language
826 models via reinforcement learning. *arXiv preprint arXiv:2504.12216*, 2025.

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 Appendix for “Inference-Time Scaling of Discrete 865 Diffusion Models via Importance Weighting and 866 Optimal Proposal Design” 867 868 869 870 871

872 CONTENTS 873

874	A Abstract Proof and Derivations	17
875	A.1 A Brief Recap of SMC	17
876	A.2 Proof of Locally Optimal Proposal	18
877	A.3 Proof of Log-Variance Minimisation Objective	19
878		
879		
880	B Extending Discrete-time SMC to Continuous-time SMC	20
881	B.1 Background of CTMC	21
882	B.2 Continuous-Time Formulation of SMC	21
883		
884		
885	C Implementation Details of Computing Importance Weight	24
886	C.1 Sampling Schemes in Masked Diffusion Models	24
887	C.2 First-Order Approximation with Gumbel-Softmax Relaxation	25
888	C.3 Computing Importance Weight with Low-Confidence Sampling	25
889		
890		
891	D Experimental Setting and Additional Results	26
892	D.1 Details of Experimental Setting	26
893	D.2 Additional Experimental Results	28
894	D.3 Statement of The Use of Large Language Models	32
895		
896		
897		

898 899 **A ABSTRACT PROOF AND DERIVATIONS**

900 A.1 A BRIEF RECAP OF SMC

901
 902 In this section, we provide a brief overview of Sequential Monte Carlo (SMC). For a target distribution $\pi(x_t)$, we consider the problem of estimating the expectation of a test function δ , namely $\mathbb{E}_{\pi(x_t)}[\delta(x_t)]$. When $\delta(\cdot)$ is taken to be the Dirac delta function, estimating this expectation reduces to constructing an empirical approximation of the distribution $\pi(x_t)$.

903 To estimate the expectation, importance sampling introduces a proposal distribution q , which is easy to sample from, and proposes an estimator as follows

$$904 \\ 905 \mathbb{E}_{\pi(x_t)}[\delta(x_t)] = \mathbb{E}_{q(x_{t:T})} \left[\frac{\pi(x_{t:T})}{q(x_{t:T})} \delta(x_t) \right] \approx \sum_{i=1}^N w_t^{(i)} \delta(x_t^{(i)}), \text{ where } w_t^{(i)} = \frac{\pi(x_{t:T}^{(i)})}{q(x_{t:T}^{(i)})}, x_{t:T}^{(i)} \sim q(x_{t:T})$$

906 The key ingredients of SMC are the target distribution $\pi(x_{t:T})$ and the proposal distribution $q(x_{t:T})$.
 907 Here we consider the target distribution as a Markovian model associated with a sequence of
 908 forward transition kernels γ : $\pi(x_{t:T}) = \pi(x_t) \prod_{s=t}^{T-1} \gamma(x_{t+1}|x_t)$; and the proposal distribution as

918 $q(x_{t:T}) = \pi(x_T) \prod_{s=t}^{T-1} q(x_t|x_{t+1})$. Substituting these into the importance weights gives
 919

$$\begin{aligned} 920 \quad w_t &= \frac{\pi(x_t) \prod_{s=t}^{T-1} \gamma(x_{t+1}|x_t)}{\pi(x_T) \prod_{s=t}^{T-1} q(x_t|x_{t+1})} \\ 921 \quad &= \frac{\pi(x_t) \gamma(x_{t+1}|x_t)}{\pi(x_{t+1}) q(x_t|x_{t+1})} \frac{\pi(x_{t+1}) \prod_{s=t+1}^{T-1} \gamma(x_{t+1}|x_t)}{\pi(x_T) \prod_{s=t+1}^{T-1} q(x_t|x_{t+1})} \\ 922 \quad &= \frac{\pi(x_t) \gamma(x_{t+1}|x_t)}{\pi(x_{t+1}) q(x_t|x_{t+1})} w_{t+1} \end{aligned} \quad (13)$$

923 This recursive structure allows importance weights to be computed incrementally. SMC augments
 924 this with a resampling step to mitigate weight degeneracy. For N particles, SMC proceeds as follows:
 925

- 926 1. Initialise: $x_T^{(i)} \sim \pi(x_T)$, $w_T^{(i)} = 1$.
- 927 2. For $t = T, \dots, 1$:
 - 928 (a) Propagate: $x_{t-1}^{(i)} \sim q(x_{t-1}|x_t^{(i)})$.
 - 929 (b) Update weights: $\frac{\pi(x_t^{(i)}) \gamma(x_{t+1}^{(i)}|x_t^{(i)})}{\pi(x_{t+1}) q(x_t^{(i)}|x_{t+1}^{(i)})}$.
 - 930 (c) Resample particles according to $\left\{ \frac{w_{t-1}^{(i)}}{\sum_{j=1}^N w_{t-1}^{(j)}} \right\}_{i=1}^N$; then reset all weights to $w_{t-1}^{(i)} = 1$.

931 The resulting set of particles $\{x_0^{(i)}, w_0^{(i)}\}_{i=1}^N$ forms an empirical approximation of the target $\pi(x_0)$.
 932

933 A.2 PROOF OF LOCALLY OPTIMAL PROPOSAL

934 **Proposition 2** (Locally Optimal Proposal). *Given the incremental importance weight as in Equation (5) $w_{t-1}(x_{t-1}, x_t) = \frac{\pi(x_{t-1}) \gamma(x_t|x_{t-1})}{\pi(x_t) q(x_{t-1}|x_t)}$, the proposal distribution that minimises the variance of
 935 w_{t-1} , often referred to as the locally optimal proposal, is $q(x_{t-1}|x_t) \propto \pi(x_{t-1}) \gamma(x_t|x_{t-1})$.*
 936

937 *Proof.* We first present an intuitive argument to aid understanding, and subsequently provide the
 938 formal proof.

939 *Intuitive argument.* The optimal proposal distribution is characterised as the one that minimises the
 940 variance of the importance weights. In the degenerate case of zero variance, the importance weight
 941 must be constant: $\frac{\pi(x_{t-1}) \gamma(x_{t-1}|x_t)}{\pi(x_{t-1}) q(x_{t-1}|x_t)} = c$, for some constant $c > 0$. Rearranging yields
 942

$$943 \quad q^*(x_{t-1}|x_t) = \frac{1}{c} \frac{\pi(x_{t-1})}{\pi(x_t)} \gamma(x_{t-1}|x_t) \propto \pi(x_{t-1}) \gamma(x_{t-1}|x_t), \quad (14)$$

944 where $c = \frac{1}{\pi(x_t)} \sum_{x_{t-1}} \pi(x_{t-1}) \gamma(x_{t-1}|x_t)$ is the normalising constant.
 945

946 *Formal proof.* The optimal proposal can be obtained by minimising the variance of the incremental
 947 importance weight $w(x_{t-1}, x_t) = \frac{\pi(x_{t-1}) \gamma(x_{t-1}|x_t)}{\pi(x_{t-1}) q(x_{t-1}|x_t)}$:

$$\begin{aligned} 948 \quad q^* &= \operatorname{argmin}_q \mathbb{E}_q [w(x_{t-1}, x_t) - \mathbb{E}_q[w(x_{t-1}, x_t)]]^2 + a \left(\sum_{x_{t-1}} q(x_{t-1}|x_t) - 1 \right) \\ 949 \quad &= \operatorname{argmin}_q \mathbb{E}_q [w(x_{t-1}, x_t)^2] - \mathbb{E}_q[w(x_{t-1}, x_t)]^2 + a(x_t) \left(\sum_{x_{t-1}} q(x_{t-1}|x_t) - 1 \right), \\ 950 \quad &= \operatorname{argmin}_q \sum_{x_{t-1}} \underbrace{w(x_{t-1}, x_t)^2 q(x_{t-1}|x_t)}_{:=F(q)} + a(x_t) q(x_{t-1}|x_t) + c, \end{aligned}$$

972 where c denotes a constant w.r.t. q and we introduce a Lagrange multiplier $a(x_t) > 0$ for the
 973 constraint $\sum_{x_{t-1}} q(x_{t-1}|x_t) = 1$. Using the calculation of variation, where the functional F should
 974 satisfy the Euler-Lagrange equation $\frac{\partial F}{\partial q} - \frac{d}{dx} \frac{\partial F}{\partial q'} = 0$, we have
 975

$$976 \frac{\partial F}{\partial q} = - \left(\frac{\pi(x_{t-1})\gamma(x_{t-1}|x_t)}{\pi(x_{t-1})q(x_{t-1}|x_t)} \right)^2 + a(x_t) = 0 \Rightarrow q^*(x_{t-1}|x_t) = \frac{\pi(x_{t-1})\gamma(x_{t-1}|x_t)}{\pi(x_t)\sqrt{a(x_t)}}.$$

979 The term $\frac{1}{\pi(x_t)\sqrt{a(x_t)}}$ is a normalisation constant that does not depend on the x_{t-1} . We can find its
 980 value by enforcing the constraint $\sum_{x_{t-1}} q^*(x_{t-1}|x_t) = 1$. This shows that the optimal proposal is
 981 $q^*(x_{t-1}|x_t) \propto \pi(x_{t-1})\gamma(x_{t-1}|x_t)$. \square
 982

983 **Remark.** Given Proposition 2, we can derive the form of the locally optimal proposal under different
 984 settings. Specifically, using the importance weight defined in Equations (6) and (7), let the forward
 985 kernel $\gamma(x_t|x_{t-1})$ be specified as
 986

$$987 \text{product: } \gamma \propto p_1^\alpha(x_t|x_{t-1})p_2^\beta(x_t|x_{t-1}) \quad \text{reward-tilting: } \gamma \propto p(x_{t-1}|x_t)$$

989 The corresponding importance weights are then
 990

$$991 \text{product: } \frac{p_{\theta_1}^\alpha(x_{t-1}|x_t)p_{\theta_2}^\beta(x_{t-1}|x_t)}{Z(x_{t-1})q(x_{t-1}|x_t)} \quad \text{reward-tilting: } \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_\theta(x_{t-1}|x_t)}{q(x_{t-1}|x_t)}$$

992 where $Z(x_{t-1}) = \sum_{x_t} p_1^\alpha(x_t|x_{t-1})p_2^\beta(x_t|x_{t-1})$ is the normalising constant. By Proposition 2, the
 993 corresponding locally optimal proposals are
 994

$$995 \text{product: } q \propto \frac{p_{\theta_1}^\alpha(x_{t-1}|x_t)p_{\theta_2}^\beta(x_{t-1}|x_t)}{Z(x_{t-1})} \quad \text{reward-tilting: } q \propto \exp(r(x_{t-1}))p_\theta(x_{t-1}|x_t)$$

996 The normalising constant Z is tractable, since $p(x_t|x_{t-1})$ is a simple forward noising distribution
 997 (induced by Equation (1)) that does not involve network evaluation. In contrast, for the reward-tilting,
 998 the dependence on the reward function r , which is defined via a neural network, renders the optimal
 999 proposal intractable in general. This necessitates the development of approximation techniques.
 1000

1001 A.3 PROOF OF LOG-VARIANCE MINIMISATION OBJECTIVE

1002 **Corollary 1.** *The locally optimal proposal $q^* \propto \pi(x_{t-1})p_\theta(x_{t-1}|x_t)$ that achieves the minimum
 1003 variance of the important weight $\mathbb{V}_q \left[\frac{\pi(x_{t-1})\gamma(x_t|x_{t-1})}{\pi(x_t)q(x_{t-1}|x_t)} \right]$ is unique.*

1004 *Proof.* Recall that the variance is given by $\mathbb{V}_q[w] = \mathbb{E}_q[w^2] - (\mathbb{E}_q[w])^2$. As shown in the proof of
 1005 Proposition 2, the term $\mathbb{E}_q[w]$ is constant w.r.t. the choice of q . Therefore, minimising the variance is
 1006 equivalent to minimise the expected square of the weights, $\mathbb{E}_q[w^2]$, which we will call $F(q)$:
 1007

$$1008 F(q) = \mathbb{E}_q[w^2] = \sum_{x_{t-1}} \frac{1}{q(x_{t-1}|x_t)} \left(\frac{\pi(x_{t-1})\gamma(x_t|x_{t-1})}{\pi(x_t)} \right)^2. \quad (15)$$

1009 To simplify the notation, let $q_i = q(x_{t-1} = i|x_t)$ and $C_i = \frac{\pi(x_{t-1}=i)\gamma(x_t|x_{t-1}=i)}{\pi(x_t)}$. The optimal
 1010 proposal is $q^* = C_i/Z$, where $Z = \sum_j C_j$. We then can rewrite the objective function $F(q)$ as
 1011

$$1012 F(q) = \sum_i \frac{C_i^2}{q_i} = \sum_i \frac{(Zq_i^*)^2}{q_i} = Z^2 \sum_i \frac{(q_i^*)^2}{q_i}. \quad (16)$$

1013 Evaluating the function at the optimum, q^* , we have
 1014

$$1015 F(q^*) = \sum_i \frac{C_i^2}{q_i^*} = \sum_i \frac{(Zq_i^*)^2}{q_i^*} = Z^2 \sum_i q_i^* = Z^2. \quad (17)$$

To prove the uniqueness of the locally optimal proposal q^* , the key insight is to relate the expression for $F(q)$ to the Chi-squared divergence, which is defined as

$$\chi^2(q^* \| q) = \sum_i \frac{(q_i^* - q_i)^2}{q_i} = \left(\sum_i \frac{(q_i^*)^2}{q_i} \right) - 1. \quad (18)$$

Rearranging this, we see that $\sum_i \frac{(q_i^*)^2}{q_i} = \chi^2(q^* \| q) + 1$. Now we can express $F(q)$ as

$$F(q) = Z^2 \sum_i \frac{(q_i^*)^2}{q_i} = Z^2 (\chi^2(q^* \| q) + 1) = Z^2 \chi^2(q^* \| q) + Z^2. \quad (19)$$

Since $F(q^*) = Z^2$, we finally arrive at

$$F(q) = F(q^*) + Z^2 \chi^2(q^* \| q). \quad (20)$$

Since the χ^2 -divergence is non-negative and $\chi^2(q^* \| q) = 0$ if and only if $q = q^*$, we see that the equality $F(q) = F(q^*)$ holds only when $\chi^2(q^* \| q) = 0$, which requires that q be identical to q^* . For any other distribution $q \neq q^*$, the divergence is strictly positive, meaning $F(q) > F(q^*)$. Therefore, q^* is the unique distribution that minimises the variance of the importance weights. \square

Proposition 3. *For any reference distribution q_{ref} , we have $\mathcal{L}_{\text{log-var}}(\phi) \leq T^2 \mathcal{L}(\phi, \psi)$. Moreover, the minimiser of \mathcal{L} is unique and attains its optimum when $q_\phi \propto \exp(r(x_{t-1})) p_\theta(x_{t-1} | x_t)$.*

Proof. To prove the result, we first recall the basic identitie $\mathbb{E}_q[w] = \operatorname{argmin}_c \mathbb{E}_q[(w - c)^2]$ and $\mathbb{V}_q[w] = \mathbb{E}_q[(w - \mathbb{E}_q[w])^2]$. Applying these, we obtain

$$\begin{aligned} \mathcal{L}_{\text{log-var}}(\phi) &= \mathbb{V}_{q_{\text{ref}}} \left[\sum_t \log \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_\theta(x_{t-1} | x_t)}{q_\phi(x_{t-1} | x_t)} \right] \\ &= \min_{F_t \in \mathbb{R}} \mathbb{E}_{q_{\text{ref}}} \left[\left| \sum_t \log \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_\theta(x_{t-1} | x_t)}{q_\phi(x_{t-1} | x_t)} - F_t \right|^2 \right] \\ &= T^2 \min_{F_t \in \mathbb{R}} \mathbb{E}_{q_{\text{ref}}} \left[\left| \sum_t \frac{1}{T} \log \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_\theta(x_{t-1} | x_t)}{q_\phi(x_{t-1} | x_t)} - \frac{1}{T} F_t \right|^2 \right] \\ &\leq T^2 \min_{F_t \in \mathbb{R}} \mathbb{E}_{q_{\text{ref}}} \left[\sum_t \frac{1}{T} \left| \log \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_\theta(x_{t-1} | x_t)}{q_\phi(x_{t-1} | x_t)} - F_t \right|^2 \right] \\ &= T^2 \min_{F_t \in \mathbb{R}} \mathbb{E}_{q_{\text{ref}}, t} \left[\left| \log \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_\theta(x_{t-1} | x_t)}{q_\phi(x_{t-1} | x_t)} - F_t \right|^2 \right]. \end{aligned}$$

This motivates defining the loss function as

$$\mathcal{L}(\theta, \psi) = \mathbb{E}_{t, x_t \sim q_{\text{ref}}} \left[\left| \log \frac{\exp(r(x_{t-1}))}{\exp(r(x_t))} \frac{p_\theta(x_{t-1} | x_t)}{q_\phi(x_{t-1} | x_t)} - F_\psi(t) \right|^2 \right]. \quad (21)$$

Therefore, we have the inequality

$$\mathcal{L}_{\text{log-var}}(\phi) \leq T^2 \mathcal{L}(\theta, \psi) \quad (22)$$

Consequently, if $(\theta^*, \psi^*) = \operatorname{argmin}_{\phi, \psi} \mathcal{L}(\theta, \psi)$, then

$$\mathcal{L}(\theta^*, \psi^*) = 0 \Rightarrow \mathcal{L}_{\text{log-var}}(\phi^*) = 0 \Rightarrow \mathbb{V}[w] = 0. \quad (23)$$

Finally, by Corollary 1, the minimiser ϕ^* is unique, and the corresponding proposal takes the form $q_{\phi^*}(x_{t-1} | x_t) \propto \exp(r(x_{t-1})) p_\theta(x_{t-1} | x_t)$. \square

B EXTENDING DISCRETE-TIME SMC TO CONTINUOUS-TIME SMC

In this section, we extend our SMC algorithm from discrete time to continuous time. We begin by introducing the key preliminary: the continuous-time Markov chain (CTMC) (Norris, 1998). We then establish connections to previous work Holderrieth et al. (2025); Lee et al. (2025), which develops continuous-time SMC methods for discrete diffusion models.

1080 B.1 BACKGROUND OF CTMC
1081

1082 A continuous-time Markov chain (Norris, 1998) at time t is characterised by a time-dependent
1083 rate matrix $R_t : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, which captures the instantaneous rate of change of the transition
1084 probabilities. Specifically, the rate matrix R_t is defined as

$$1085 \quad 1086 \quad R_t(x, y) = \lim_{\Delta t \rightarrow 0} \frac{p_{t+\Delta t|t}(y|x) - \delta_{y=x}}{\Delta t}, \quad \delta_{y=x} = \begin{cases} 1, & y = x \\ 0, & y \neq x \end{cases}. \quad (24)$$

1088 By definition, the rate matrix equivalently yields the transition probability
1089

$$1090 \quad p_{t+\Delta t|t}(y|x) = \delta_{y=x} + R_t(x, y)\Delta t + \mathcal{O}(\Delta t). \quad (25)$$

1091 To ensure $p_{t+\Delta t|t}$ be a valid distribution, the rate matrix R_t must satisfy the following constraints:
1092

$$1093 \quad 1094 \quad R_t(x, y) \geq 0, \forall y \neq x, \quad R_t(x, x) = - \sum_{y \neq x} R_t(x, y). \quad (26)$$

1096 The transition probability $p_{t|s}$, for $t > s$, satisfies the Kolmogrove equations (Oksendal, 2013):
1097

$$1098 \quad \text{Kolmogorov forward equation: } \partial_t p_{t|s}(x|\tilde{x}) = \sum_y p_{t|s}(y|\tilde{x}) R_t(y, x) \quad (27)$$

$$1101 \quad \text{Kolmogorov backward equation: } \partial_s p_{t|s}(x|\tilde{x}) = - \sum_y R_t(\tilde{x}, y) p_{t|s}(x|y) \quad (28)$$

1104 The forward equation also induces a PDE for the marginal distribution $p_t(x)$
1105

$$1106 \quad \partial_t p_t(x) = \sum_y p_t(y) R_t(y, x). \quad (29)$$

1108 Using the backward equation, one can derive a Kolmogorov backward equation for expectations, also
1109 known as Dynkin's formula (Oksendal, 2013). In particular, we have the following lemma.
1110

1111 **Lemma 1.** *Let h be a test function of interest and define $u_t(x) = \mathbb{E}_{p_{1|t}(z|x)}[h(z)]$. Then u_t satisfies
1112 the partial differential equation $\partial_t u_t(x) = - \sum_y R_t(x, y) u_t(y)$.*

1113

1114 *Proof.*

$$1116 \quad \begin{aligned} \partial_t u_t(x) &= \sum_z h(z) \partial_t p_{1|t}(z|x) \\ 1117 &= \sum_z h(z) - \sum_y R_t(x, y) p_{1|t}(z, y) \\ 1118 &= - \sum_y R_t(x, y) \sum_z p_{1|t}(z, y) h(z) \\ 1119 &= - \sum_y R_t(x, y) u_t(y). \end{aligned}$$

1120

1127 B.2 CONTINUOUS-TIME FORMULATION OF SMC
1128

1129 **Proposition 1** (SMC for Continuous-Time Discrete Diffusion). *Let R_t be the rate matrix generating
1130 the forward transition kernel $\gamma(x_t|x_{t-\Delta t})$, and \hat{R}_t be its counterpart associated with the backward
1131 proposal kernel $q(x_{t-\Delta t}|x_t)$, where $\Delta t \rightarrow 0$ is the infinitesimal time increment. Then, the importance
1132 weight at time t is given by $w_t = \int_1^t -\partial_s \log \pi(x_s) + \sum_{y_s} R_s(x_s, y_s) \frac{\pi(y_s)}{\pi(x_s)} ds$, if the forward kernel
1133 γ is chosen such that the rate matrices satisfy detailed balance $\hat{R}_t(x_t, y_t)\pi(x_t) = R_t(y_t, x_t)\pi(y_t)$.*

1134 *Proof.* Recall Equation (5), where the importance weight is given by
 1135

$$1136 \quad w_{t-1}(x_{t-1:T}) = \frac{\pi(x_{t-1})}{\pi(x_t)} \frac{\gamma(x_t|x_{t-1})}{q(x_{t-1}|x_t)} w_t(x_{t:T}). \quad (30)$$

1138 We now extend it to the continuous-time setting. Let R_t and \hat{R}_t denote the rate matrices corresponding
 1139 to the proposal q and the forward noising transition γ , respectively. Consider a discretisation with T
 1140 denoising steps, indexed by time points $s = t_0 < \dots < t_i \dots < t_T = 1$, where each interval satisfies
 1141 $t_i - t_{i-1} = \frac{1-s}{T}$. The discrete-time importance weight at step time s is then computed as
 1142

$$1143 \quad \log w_s = \log \frac{\pi(x_s)}{\pi(x_1)} + \sum_{i=1}^T \log \frac{\gamma(x_{t_i}|x_{t_{i-1}})}{q(x_{t_{i-1}}|x_{t_i})}. \quad (31)$$

1146 The second term in the RHS can be expanded as
 1147

$$\begin{aligned} 1148 \quad \sum_i \log \frac{\gamma(x_{t_i}|x_{t_{i-1}})}{q(x_{t_{i-1}}|x_{t_i})} &= \sum_i \log \left(\delta_{x_{t_i}=x_{t_{i-1}}} + \hat{R}_{t_i}(x_{t_{i-1}}, x_{t_i}) \frac{1}{T} \right) - \log \left(\delta_{x_{t_{i-1}}=x_{t_i}} + R_{t_i}(x_{t_i}, x_{t_{i-1}}) \frac{1}{T} \right) \\ 1149 \\ 1150 \quad &= \sum_{i, t_i=t_{i-1}} \log \left(1 + \hat{R}_{t_i}(x_{t_i}, x_{t_i}) \frac{1}{T} \right) - \log \left(1 + R_{t_i}(x_{t_i}, x_{t_i}) \frac{1}{T} \right) + \sum_{i, t_i \neq t_{i-1}} \hat{R}_{t_i}(x_{t_{i-1}}, x_{t_i}) - R_{t_i}(x_{t_i}, x_{t_{i-1}}) \\ 1151 \\ 1152 \quad &= \sum_{i, t_i=t_{i-1}} \hat{R}_{t_i}(x_{t_i}, x_{t_i}) \frac{1}{T} - R_{t_i}(x_{t_i}, x_{t_i}) \frac{1}{T} + \mathcal{O}\left(\frac{1}{T}\right) + \sum_{i, t_i \neq t_{i-1}} \hat{R}_{t_i}(x_{t_{i-1}}, x_{t_i}) - R_{t_i}(x_{t_i}, x_{t_{i-1}}) \\ 1153 \\ 1154 \end{aligned}$$

1155 Taking the limit $T \rightarrow +\infty$, the importance weight becomes:
 1156

$$1158 \quad \log w_s = \log \frac{\pi(x_s)}{\pi(x_1)} + \int_1^s R_t(x_t, x_t) - \hat{R}_t(x_t, x_t) dt + \sum_{s \leq t, x_{t+} \neq x_t} \log \hat{R}_t(x_t, x_{t+}) - \log R_t(x_{t+}, x_t). \quad (32)$$

1160 By the fundamental theorem of calculus for piecewise differentiable functions, we have:
 1161

$$1162 \quad \log \frac{\pi(x_s)}{\pi(x_1)} = \int_1^s -\partial_t \log \pi(x_t) + \sum_{s \leq t, x_{t+} \neq x_t} \log \pi(x_t) - \log \pi(x_{t+}). \quad (33)$$

1165 If the noising process γ is chosen such that the rate matrix satisfies $\hat{R}_t(x_t, y_t) \pi(x_t) = R_t(y_t, x_t) \pi(y_t)$, then the importance weight simplifies accordingly
 1166
 1167

$$\begin{aligned} 1168 \quad \log w_s &= \int_1^s -\partial_t \log \pi(x_t) + R_t(x_t, x_t) - \hat{R}_t(x_t, x_t) dt \\ 1169 \\ 1170 \quad &= \int_1^s -\partial_t \log \pi(x_t) + \sum_{y_t} R_t(x_t, y_t) \frac{\pi(y_t)}{\pi(x_t)} dt, \\ 1171 \\ 1172 \end{aligned}$$

1173 which completes the proof. \square
 1174

1175 **Remark.** Proposition 1 recovers the importance weights proposed in the SMC methods of Holderrieth
 1176 et al. (2025); Ou et al. (2025). In those works, the intermediate target distribution is defined as a
 1177 geometric interpolation between the base and target distributions: $\pi(x_t) \propto p_{\text{base}}^t(x_t) p_{\text{target}}^{1-t}(x_t)$. The
 1178 proposal rate matrix R_t is then trained to satisfy the Kolmogorov forward equation. In contrast, we
 1179 consider a different scenario: the pretrained model is available, but the intermediate target $\pi(x_t)$
 1180 cannot be computed explicitly. Moreover, the importance weight in Equation (32) can also be derived
 1181 via the Radon–Nikodym derivative (Campbell et al., 2024, Appendix C.1), (Denker et al., 2025,
 1182 Lemma 4). We instead adopt a discrete-time formulation and present a streamlined derivation to keep
 1183 the exposition accessible for readers who may not be familiar with Radon–Nikodym derivative or
 1184 path-measure theory.

1185 We next extend the discrete SMC framework to the continuous-time setting, concentrating on the
 1186 reward-tilting formulation. While this formulation has also been considered in Lee et al. (2025), our
 1187 treatment proceeds from a distinct perspective. Before proceeding with the main development, we
 1188 establish several auxiliary lemmas that are essential for the subsequent derivations.

1188 **Lemma 2.** For a continuous time Markov chain with distribution p and rate matrix R , the
 1189 rate matrix for the reverse process satisfy $\hat{R}_t(x_t, y_t) = R_t(y_t, x_t) \frac{p(y_t)}{p(x_t)}$ and $\hat{R}_t(x_t, x_t) =$
 1190 $-\sum_{y_t \neq x_t} \hat{R}_t(x_t, y_t) = -\sum_{y_t \neq x_t} R_t(y_t, x_t) \frac{p(y_t)}{p(x_t)}$.

1192 *Proof.* See (Sun et al., 2022, Appendix B.2) for a detailed proof. \square

1194 **Lemma 3.** For a continuous time Markov chain with distribution p and rate matrix R , it satisfies

$$1196 \quad \partial_t \log p(x_t) = \sum_{y_t \neq x_t} R_t(y_t, x_t) \frac{p(y_t)}{p(x_t)} + R_t(x_t, x_t). \quad (34)$$

1199 *Proof.* By applying the forward Kolmogrov equation in Equation (29), we have

$$1200 \quad \partial_t \log p(x_t) = \frac{\partial_t p(x_t)}{p(x_t)} = \frac{1}{p(x_t)} \sum_{y_t} R_t(y_t, x_t) p(y_t) = \sum_{y_t \neq x_t} R_t(y_t, x_t) \frac{p(y_t)}{p(x_t)} + R_t(x_t, x_t) \quad (35)$$

1202 which completes the proof. \square

1204 **Lemma 4.** For a continuous time Markov chain with distribution p and rate matrix R , the function
 1205 $u(x_t) = \mathbb{E}_{p(x_0|x_t)}[\exp(r(x_0))]$ satisfies

$$1206 \quad \partial_t \log u(x_t) = R_t^{\alpha=1}(x_t, x_t) - R_t(x_t, x_t), \quad (36)$$

1208 where $R_t^{\alpha=1}(x_t, y_t) = R_t(x_t, y_t) \frac{u(y_t)}{u(x_t)}$ and $R_t^{\alpha=1}(x_t, x_t) = -\sum_{y_t \neq x_t} R_t^{\alpha=1}(x_t, y_t)$.

1210 *Proof.* By applying Lemma 1, we have

$$1211 \quad \begin{aligned} \partial_t \log u(x_t) &= \frac{\partial_t u(x_t)}{u(x_t)} = -\frac{1}{u(x_t)} \sum_{y_t} R_t(x_t, y_t) u(y_t) \\ 1212 &= -\sum_{y_t \neq x_t} R_t(x_t, y_t) \frac{u(y_t)}{u(x_t)} - R_t(x_t, x_t) \\ 1213 &= R_t^{\alpha=1}(x_t, x_t) - R_t(x_t, x_t), \end{aligned}$$

1218 which completes the proof. \square

1219 We are now ready to prove the result in Lee et al. (2025).

1220 **Proposition 4** (Continuous-Time SMC for Reward-Tilting (Lee et al., 2025)). Let $p_\theta(x_t)$ denote a
 1221 pretrained diffusion model, R_t the rate matrix generating the desnoising probability path, and \hat{R}_t the
 1222 corresponding rate matrix for the forward noising path. The interemediate target distributino is defined
 1223 as $\pi(x_t) = p_\theta(x_t) u^\alpha(x_t)$, where $u(x_t) = \mathbb{E}_{p_\theta(x_0|x_t)}[\exp(r(x_0))]$ is the reward-tilting functioin. Let
 1224 Q_t be the proposal rate matrix in SMC; the importance weight is then given by

$$1226 \quad \begin{aligned} \log w_s &= \int_1^s Q_t(x_t, x_t) - R_t(x_t, x_t) dt + \sum_{s \leq t, x_{t+} \neq x_t} \log R_t(x_{t+}, x_t) - \log Q_t(x_{t+}, x_t) \\ 1227 &\quad + \int_1^s \alpha (R_t(x_t, x_t) - R_t^{\alpha=1}(x_t, x_t)) dt + \sum_{s \leq t, x_{t+} \neq x_t} \alpha (\log R_t^{\alpha=1}(x_{t+}, x_t) - \log R_t(x_{t+}, x_t)), \end{aligned}$$

1231 where $R_t^{\alpha=1}(x_t, y_t) = R_t(x_t, y_t) \frac{u(y_t)}{u(x_t)}$ and $R_t^{\alpha=1}(x_t, x_t) = -\sum_{y_t \neq x_t} R_t(x_t, y_t) \frac{u(y_t)}{u(x_t)}$.

1233 *Proof.* By the derivation of Proposition 1, it gives that the importance weight takes the form

$$1235 \quad \begin{aligned} \log w_s &= \underbrace{\int_1^s -\partial_t \log \pi(x_t) + Q_t(x_t, x_t) - \hat{R}_t(x_t, x_t) dt}_{\textcircled{1}} \\ 1236 &\quad + \underbrace{\sum_{s \leq t, x_{t+} \neq x_t} \log \pi(x_t) - \log \pi(x_{t+}) + \log \hat{R}_t(x_t, x_{t+}) - \log Q_t(x_{t+}, x_t)}_{\textcircled{2}}. \end{aligned} \quad (37)$$

1242 By applying Lemmas 2 to 4, we can expand ① as
 1243

$$\begin{aligned}
 ① &= \int_1^s \left(\alpha \partial_t \log u(x_t) + \sum_{y_t \neq x_t} R_t(y_t, x_t) \frac{p_\theta(y_t)}{p_\theta(x_t)} + R_t(x_t, x_t) \right) + Q_t(x_t, x_t) + \sum_{y_t \neq x_t} R_t(y_t, x_t) \frac{p_\theta(y_t)}{p_\theta(x_t)} dt \\
 &= \int_1^s -\alpha \partial_t \log u(x_t) - R_t(x_t, x_t) + Q_t(x_t, x_t) dt \\
 &= \int_1^s \alpha (R_t(x_t, x_t) - R_t^{\alpha=1}(x_t, x_t)) - R_t(x_t, x_t) + Q_t(x_t, x_t) dt.
 \end{aligned}$$

1244 Similarly, by applying Lemma 2, ② follows
 1245

$$\begin{aligned}
 ② &= \sum_{s \leq t, x_{t+} \neq x_t} \alpha (\log u(x_t) - \log u(x_{t+})) + \log R_t(x_{t+}, x_t) - \log Q_t(x_{t+}, x_t) \\
 &= \sum_{s \leq t, x_{t+} \neq x_t} \alpha (\log R_t^{\alpha=1}(x_{t+}, x_t) - \log R_t(x_{t+}, x_t)) + \log R_t(x_{t+}, x_t) - \log Q_t(x_{t+}, x_t).
 \end{aligned}$$

1246 where the second equation follows from the identity
 1247

$$\log u(y_t) - \log u(x_t) = \log R_t^{\alpha=1}(x_t, y_t) - \log R_t(x_t, y_t), \quad (38)$$

1248 which is followed by the definition of $R_t(x_t, y_t)$. Combining ① and ②, the full expression for the
 1249 importance weight becomes
 1250

$$\begin{aligned}
 \log w_s &= \int_1^s Q_t(x_t, x_t) - R_t(x_t, x_t) dt + \sum_{s \leq t, x_{t+} \neq x_t} \log R_t(x_{t+}, x_t) - \log Q_t(x_{t+}, x_t) \\
 &\quad + \int_1^s \alpha (R_t(x_t, x_t) - R_t^{\alpha=1}(x_t, x_t)) dt + \sum_{s \leq t, x_{t+} \neq x_t} \alpha (\log R_t^{\alpha=1}(x_{t+}, x_t) - \log R_t(x_{t+}, x_t)),
 \end{aligned}$$

1251 which completes the proof. \square
 1252

1253 C IMPLEMENTATION DETAILS OF COMPUTING IMPORTANCE WEIGHT

1254 In masked diffusion models, although ancestor sampling (Austin et al., 2021; Sahoo et al., 2024;
 1255 Shi et al., 2024) is the de facto method for inference, low-confidence sampling (Chang et al., 2022)
 1256 is more widely used in practice due to its stronger empirical performance. However, this approach
 1257 makes it challenging to explicitly compute the importance weights. In this section, we first provide
 1258 a brief recap of the main sampling schemes used in masked diffusion models, and then present a
 1259 method to address the difficulty of computing importance weights under low-confidence sampling.
 1260

1261 C.1 SAMPLING SCHEMES IN MASKED DIFFUSION MODELS

1262 **MDM Sampling (Sahoo et al., 2024).** MDM sampling is the de facto method for inference in masked
 1263 diffusion models. Given a trained denoiser μ_θ , which predicts the clean data x_0 , MDM sampling
 1264 performs ancestor sampling to generate samples according to
 1265

$$p_\theta(x_{t-1}|x_t) = \begin{cases} \text{Cat}(x_{t-1}; x_t) & x_t \neq [m] \\ \text{Cat}\left(x_{t-1}; \frac{(1-\alpha_{t-1})[m] + (\alpha_{t-1}-\alpha_t)\mu_\theta(x_t)}{1-\alpha_t}\right) & x_t = [m] \end{cases} \quad (39)$$

1266 While theoretically sound, a major limitation of MDM sampling is that once a latent variable x_t is
 1267 assigned a non-mask category during the unmasking process, it becomes immutable. Consequently,
 1268 any errors made during unmasking are irreversible and persist in the final generated samples.
 1269

1270 **ReMDM Sampling (Wang et al., 2025).** ReMDM sampling is a modification of MDM that
 1271 allows previously unmasked tokens to be remasked during the unmasking process. The posterior is
 1272 constructed so that the forward marginal $p(x_t|x_0)$ remains identical to that of masked diffusion in
 1273 Equation (1):
 1274

$$p_\sigma(x_{t-1}|x_t, x_0) = \begin{cases} \text{Cat}(x_{t-1}; (1-\sigma_t)x_t + \sigma_t[m]) & x_t \neq [m] \\ \text{Cat}\left(x_{t-1}; \frac{\alpha_{t-1} - (1-\sigma_t)\alpha_t}{1-\alpha_t}x_0 + \frac{1-\alpha_{t-1}-\sigma_t\alpha_t}{1-\alpha_t}[m]\right) & x_t = [m] \end{cases}. \quad (40)$$

1296 Here σ_t is the remasking schedule. To ensure the posterior remains valid, it must satisfy the constraint:
 1297

$$1298 \quad 0 \leq \sigma_t \leq \min \left\{ 1, \frac{1 - \alpha_{t-1}}{\alpha_t} \right\}. \quad (41)$$

1300 The reverse unmasking process is then parameterised as
 1301

$$1302 \quad p_\theta(x_{t-1}|x_t) = p_\sigma(x_{t-1}|x_t, \mu_\theta(x_t)). \quad (42)$$

1303 Notably, the ReMDM training objective is a reweighted version of the standard masked diffusion
 1304 loss in Equation (3). Thus, we can take a pretrained masked diffusion model, and use the ReMDM
 1305 sampling in Equation (42) for inference.

1306 **Low-Confidence Sampling (Chang et al., 2022).** Low-confidence sampling is the most commonly
 1307 used method in discrete diffusion. In brief, at each denoising step, the denoiser μ_θ predicts the clean
 1308 data x_0 , and tokens with low confidence, which are measured as the maximum logit of μ_θ at each
 1309 position, are selectively remasked for further refinement. Formally, the reverse unmasking process
 1310 can be parametrised as

$$1311 \quad p_\theta(x_{t-1}|x_t) = \sum_{x_0} p_\theta(x_0|x_t) \mathbf{1}_{x_{t-1}[l]=x_0[l]}, \quad l = \operatorname{argmax}_{l \in \{1, \dots, L\}} \max(\mu_\theta(x_t)[l]) \wedge x_t[l] = [m], \quad (43)$$

1313 where $x[l]$ denotes the l -th token of x of L length, and $\max(v)$ returns the maximum value of the
 1314 vector v . For clarity, here we only consider unmasking a single token at each step. In practice,
 1315 multiple tokens can be unmasked simultaneously by using the same strategy.
 1316

1317 C.2 FIRST-ORDER APPROXIMATION WITH GUMBEL-SOFTMAX RELAXATION

1319 To apply the first-order approximately optimal proposal, we need to compute $\nabla_{x_t} \hat{r}(x_t)$, where
 1320 $\hat{r}(x_t) = \frac{1}{M} \sum_{m=1}^M r(x_0^{(m)})$, $x_0^{(m)} \sim p_\theta(x_0|x_t)$ as defined in Equation (12). However, because
 1321 $x_0^{(m)}$ is drawn via categorical sampling, $\hat{r}(x_t)$ is not differentiable with respect to x_t . To address this,
 1322 we use the Gumbel–Softmax reparameterization trick to obtain a differentiable surrogate. Concretely,
 1323 we break the computation of $\hat{r}(x_t)$ into three steps:
 1324

1. compute the denoising logits: $p = \mu_\theta(x_t)$, where μ_θ is the denoising model;
2. sample x_0 : $x_0^{(m)} \sim \text{Cat}(x; p)$;
3. evaluate the reward: $\hat{r}(x_t) = \frac{1}{M} \sum_{m=1}^M r(x_0^{(m)})$.

1325 Following Grathwohl et al. (2021), we treat both r and μ_θ as functions that accept continuous inputs
 1326 so that their gradients are well defined (steps 1 and 3). For step 2, we replace the categorical draw
 1327 with its Gumbel–Softmax relaxation (Jang et al., 2016), making the sample $x_0^{(m)}$ differentiable with
 1328 respect to p . Using these relaxations, the gradient can be obtained by the chain rule:
 1329

$$1334 \quad \nabla_{x_t} \hat{r}(x_t) = \sum_{m=1}^M \frac{\partial r(x_0^{(m)})}{\partial x_0^{(m)}} \frac{\partial x_0^{(m)}}{\partial p} \frac{\partial p}{\partial x_t}. \quad (44)$$

1336 The first and last factors are provided by the differentiability of r and μ_θ , while the middle term is
 1337 approximated using the Gumbel–Softmax relaxation.
 1338

1339 C.3 COMPUTING IMPORTANCE WEIGHT WITH LOW-CONFIDENCE SAMPLING

1341 To apply SMC to masked diffusion models, one must compute the log-ratio in the importance weight,
 1342 as in Equation (7):
 1343

$$1344 \quad \log p_\theta(x_{t-1}|x_t) - \log q_\phi(x_{t-1}|x_t). \quad (45)$$

1345 While this computation is straightforward for MDM and ReMDM sampling, it becomes tricky for
 1346 low-confidence sampling. The difficulty arises because p and q rely on different denoisers, denoted as
 1347 μ_θ and μ_ϕ , respectively. If one strictly follows the rule in Equation (43), the log-ratio often collapses
 1348 to zero whenever

$$1349 \quad l^p \neq l^q, \quad \text{where } l^q = \operatorname{argmax}_l \max(\mu_\phi(x_t)[l]) \wedge x_t[l] = [m]. \quad (46)$$

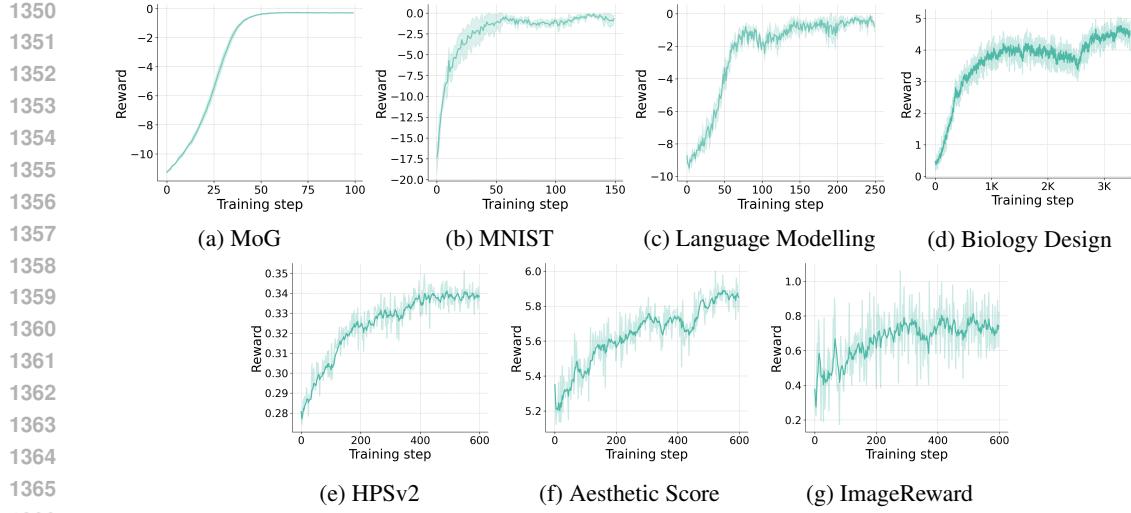


Figure 7: Reward convergence curves for different experiments throughout the finetuning process.

As a result, both SMC and the training objective in Equation (10) become ineffective in practice. To address this issue, we adopt a strategy in which both p_θ and q_ϕ use the same logit $\mu_\phi(x_t)$ to determine the remasked position l :

$$\begin{aligned} p_\theta(x_{t-1}|x_t) &= \sum_{x_0} p_\theta(x_0|x_t) \mathbf{1}_{x_{t-1}[l]=x_0[l]} & l = \operatorname{argmax}_{l \in \{1, \dots, L\}} \max(\mu_\phi(x_t)[l]) \wedge x_t[l] = [m], \\ q_\phi(x_{t-1}|x_t) &= \sum_{x_0} q_\phi(x_0|x_t) \mathbf{1}_{x_{t-1}[l]=x_0[l]} \end{aligned} \quad (47)$$

Under this formulation, the log-ratio can be computed as

$$\log \frac{p_\theta(x_{t-1}|x_t)}{q_\phi(x_{t-1}|x_t)} = \sum_{l \in \{1, \dots, L | x_{t-1}[l] \neq [m], x_t[l] = [m]\}} \log p_\theta(x_{t-1}[l] | x_t[l]) - \log q_\phi(x_{t-1}[l] | x_t[l]) \quad (48)$$

This modification ensures that the importance weights remain well-defined under low-confidence sampling, enabling SMC to be applied effectively.

D EXPERIMENTAL SETTING AND ADDITIONAL RESULTS

In this section, we provide the details of experimental settings and additional experimental results.

D.1 DETAILS OF EXPERIMENTAL SETTING

We first describe the hyperparameters used in the SMC variants, and then discuss the training details of the learnable amortized proposal.

D.1.1 CHOICE OF HYPERPARAMETERS IN SMC

As described in Section 3.3, there are four key hyperparameters in our proposed SMC framework for the reward-tilting target: (i) the KL-regularization coefficient α , (ii) the reward-twisted schedule λ_t , (iii) the number of Monte Carlo samples M , and (iv) the number of denoising steps T . Table 3 summarises the values of these hyperparameters used in our experiments. In practice, instead of using the mean to estimate the intermediate reward in Equation (12), we employ the log-sum-exp operation for improved stability, following Singhal et al.

Table 3: Hyperparameters used in the SMC methods.

	α	λ_t	M	T
MoG	1	$1 - \frac{t}{T}$	10	100
MNIST	1	$\min(1.05^{\frac{t}{T}} - 1, 1)$	10	100
Language Modelling	0.2	$1 - \frac{t}{T}$	4	100
Biology Design	0.1	$1 - \frac{t}{T}$	4	128
Text-to-Image Generation	0.01	$1 - \frac{t}{T}$	1	48

1404 (2025):

1405
1406
$$\hat{r}(x_t) = \log \left(\frac{1}{M} \sum_{m=1}^M \exp(r(x_0^{(m)})) \right), \quad x_0^{(m)} \sim p_\theta(x_0|x_t). \quad (49)$$
 1407
1408

1409 Additionally, we provide ablation studies in Appendix D.2.1 to investigate the effects of λ_t and M .
14101411 D.1.2 TRAINING DETAILS OF THE AMORTISED PROPOSAL
14121413 **Synthetic Experiments.** In this experiment, we take the MDLM (Sahoo et al., 2024) as the pretrained
1414 diffusion model. Finetuning is performed on a single NVIDIA A6000 GPU with a batch size of
1415 32 for MNIST and 128 for MoG. The model is trained for 30 epochs on MNIST and 20 epochs on
1416 MoG, with 5 optimisation steps per epoch. To avoid out-of-memory issues, we compute the loss over
1417 10 randomly sampled time steps t instead of using gradient accumulation, and choose $M = 10$ to
1418 estimate the reward. The Adam optimiser (Adam et al., 2014) is applied to train both the model and
1419 F_ψ , with a learning rate of 0.001 for MoG and 0.0001 for MNIST.
14201421 **Language Modelling.** This experiment closely follows Singhal et al. (2025). The pretrained language
1422 model used is MDLM¹ (Sahoo et al., 2024), which is trained on the OpenWebText dataset. We
1423 perform full-parameter finetuning on a single NVIDIA A6000 GPU with a batch size of 32. Training
1424 is conducted for 50 epochs, with 5 optimisation steps per epoch. To avoid the memory issue, at each
1425 optimisation step we compute the loss using one randomly selected time step t , together with a fixed
1426 $t = 0$. During training, rewards are scaled by a factor of 20, and estimated with $M = 20$ Monte
1427 Carlo samples. Both the model and F_ψ are optimised using Adam (Adam et al., 2014) with a learning
1428 rate of 0.0001.
14291430 **Biology Design.** This experiment focuses on regulatory DNA sequence generation. We use the
1431 pretrained masked discrete diffusion model from Wang et al. (2024) which has been trained on a
1432 dataset of $\sim 700k$ DNA sequences (Gosai et al., 2023). We perform full-parameter finetuning on a
1433 single NVIDIA RTX 3090 GPU. Training is conducted for 350 epochs, with 10 optimisation steps
1434 per epoch. We use a batch size of 64 and use a sampling mix of 0.9 : 0.1 of on-policy from q_ϕ and
1435 off-policy samples from p_θ . To manage memory usage, we do a gradient accumulation of the loss at
1436 each timestep before taking an optimisation step. Additionally, we only consider the final 50 of the
1437 128 timesteps for loss calculation, following Wang et al. (2024). We also add a negative entropy term
1438 of the form $\sum_{x_{t-1}} q_\phi(x_{t-1}|x_t) \log q_\phi(x_{t-1}|x_t)$ to the loss with a coefficient of 2.5². We observe
1439 empirically that it helps in preventing mode collapse during training. For rewards, we use a scaling
1440 factor of 1000 and estimate it using just $M = 1$ Monte Carlo sample. Both the model and F_ψ are
1441 optimized using the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 1×10^{-5} .
14421443 **Text-to-Image Generation.** To finetune the Meissonic³ model (Bai et al., 2024), we adopt low-rank
1444 adaptation (LoRA) (Hu et al., 2022) for parameter-efficient training. For training hyperparameters,
1445 we largely follow the DDPO (Black et al., 2023) implementation⁴, with details provided here for
1446 completeness. All experiments are run on 8×NVIDIA H100 GPUs with a per-GPU batch size of
1447 8. With 4-step gradient accumulation, this yields an effective batch size of 256. We train for 250
1448 epochs, where each epoch consists of sampling 512 trajectories from the reference distribution q_{ref}
1449 and performing 4 optimisation steps. The learning rate is fixed at 3×10^{-4} for both the diffusion
1450 model and F_ψ without further tuning. We employ the AdamW optimizer (Loshchilov & Hutter, 2017)
1451 with gradient clipping at a norm of 1.
14521453 During training, we adopt classifier-free guidance (Ho & Salimans, 2022) with a guidance scale of 5,
1454 using the negative prompt “worst quality, low quality, low res, blurry, distortion, watermark, logo,
1455 signature, text, jpeg artifacts, sketch, duplicate, ugly, identifying mark”, following the inference script
1456 provided by Meissonic. Reward rescaling proves to be critical for stable optimisation (Liu et al.,
1457 2024). Specifically, we multiply the reward by a coefficient β , setting $\beta = 100$ for both the Aesthetic
1458 Score and ImageReward, and $\beta = 10,000$ for HPSv2. The coefficient is linearly annealed from 0
1459 to 1 over the course of training.
1460¹<https://huggingface.co/kuleshov-group/mdlm-owt>²We empirically observe that the best value for the entropy coefficient varies proportionally with the reward scaling factor maintaining a ratio of 0.002 – 0.003.³<https://huggingface.co/MeissonFlow/Meissonic>⁴<https://github.com/kvablock/ddpo-pytorch>

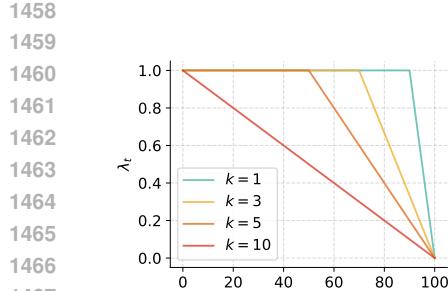


Figure 8: Plot of λ_t schedules of the family, $\lambda_t(k) = \min\left(1, \frac{10}{k}(1 - \frac{t}{T})\right)$, for different values of k .

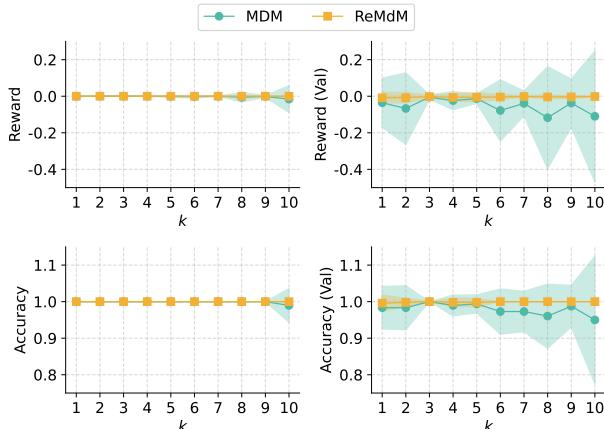


Figure 9: Comparing SMC_{grad} ($N = 16$) with different λ_t schedules on reward-tiled binary MNIST.

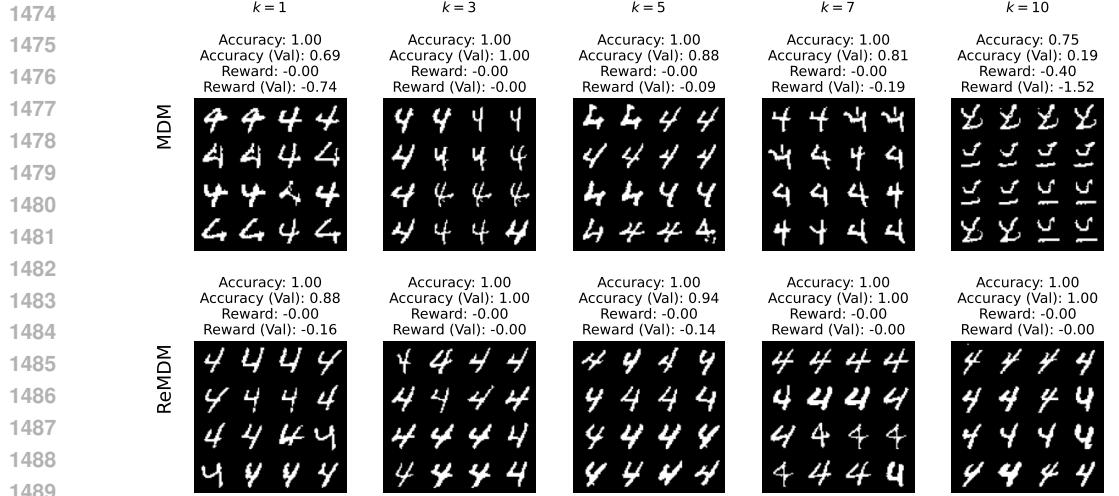


Figure 10: Samples from SMC_{grad} ($N = 16$) for different λ_t schedules; the run is selected based on lowest validation accuracy.

to its maximum value over the first 25 epochs. For ImageReward and HPSv2, no KL regularisation between the fine-tuned and pretrained models is applied. However, for the Aesthetic Score, we observe that incorporating a KL term of the form $\text{KL}(q_\phi(x_{t-1}|x_t)||p_\theta(x_{t-1}|x_t))$ with a coefficient of 0.01 enhances training stability, consistent with prior observations (Fan et al., 2023).

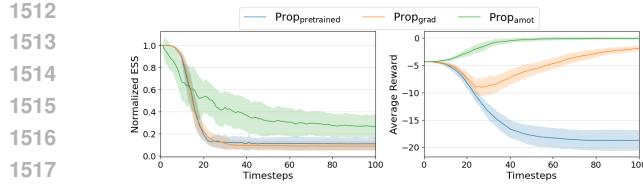
D.2 ADDITIONAL EXPERIMENTAL RESULTS

D.2.1 ABLATION STUDY OF SMC HYPERPARAMETERS.

Additional Results with Different λ_t Schedules. To investigate the effect of the λ_t schedule on the performance of SMC, we define a family of linear schedules with different slopes (see Figure 8) parametrised with k ,

$$\lambda_t(k) = \min\left(1, \frac{10}{k}\left(1 - \frac{t}{T}\right)\right).$$

In Figure 9, we compare the results of SMC_{grad} ($N = 16$) with different λ_t schedules. The reward is given by $r(x) = \log p_{\text{clf}}(y=4|x)$ where $p_{\text{clf}}(y|x)$ is a classifier trained on the clean MNIST data. The accuracy is given as the fraction of final SMC samples (out of N) which are classified as the digit 4 i.e., $p_{\text{clf}}(y=4|x) > 0.5$. For the validation reward and accuracy, we train another classifier with a slightly different neural architecture. The means and standard deviations are calculated using 30



1518 Figure 12: Normalised effective sample size (ESS) and
1519 reward of the particles across timesteps using different
1520 proposals without resampling.
1521

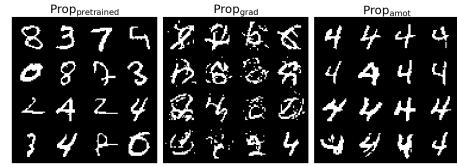


Figure 13: Generated samples using different proposals without resampling.

1523 independent SMC runs for each k . When using MDM sampling (Sahoo et al., 2024), we observe the
1524 highest validation accuracy and the lowest variance at $k = 3$; the average validation accuracy drops
1525 slightly, and variance increases for both larger and smaller values of k . We show the samples from
1526 the runs with the lowest validation accuracies for selected values of k in Figure 10. If λ_t increases
1527 too slowly (large k), early unmasked pixels may resemble incorrect digits which cannot be corrected
1528 in MDM, leading to corrupted final samples despite high reward value. Conversely, increasing λ_t too
1529 quickly (small k) there is a risk of weighting particles using a high variance reward estimate in early
1530 steps when most of the image is still masked. Finally, we observe that ReMDM sampling (Wang et al.,
1531 2025) is much more resilient to different λ_t schedules as can be seen from both Figures 9 and 10.

1532 Additional Results with Different

1533 M . In Section 3.3, we use M samples
1534 to estimate the reward. In Figure 11,
1535 we compare the results of SMC_{base} for
1536 toxic text generation with different
1537 values of M . We observe a clear
1538 increase in the toxicity metrics when
1539 M is increased from 1 to 2. However,
1540 the performance gain from increasing
1541 M sometimes saturates at higher val-
1542 ues. This is expected, as the variance
1543 of the Monte Carlo reward estimator
1544 decreases rapidly at first but slows down as M grows.

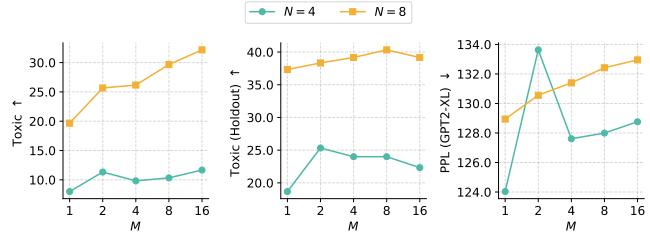


Figure 11: Comparing SMC_{base} with different values of M for toxic text generation

1545 D.2.2 ESS AND REWARD TRACES FOR DIFFERENT PROPOSALS

1546 Monitoring the effective sample size (ESS) provides a useful diagnostic of particle diversity over
1547 the SMC algorithm. To further illustrate the effectiveness of the proposed amortised proposal, we
1548 visualise the ESS in the MNIST synthetic experiment.

1549 In this experiment, we evaluate three different proposals: $\text{Prop}_{\text{pretrained}}$, $\text{Prop}_{\text{grad}}$, and $\text{Prop}_{\text{amot}}$, corre-
1550 sponding to the pretrained diffusion proposal, the first-order approximated proposal, and the learned
1551 amortised proposal, respectively. Each experiment is conducted with 16 particles over 30 indepen-
1552 dent runs, and both the ESS and reward are recorded across the sampling trajectory. Importantly,
1553 resampling is omitted in these experiments, as it would reset the importance weights at each step
1554 and obscure the natural evolution of the ESS. Omitting resampling allows ESS to serve as a clearer
1555 measure of each proposal’s intrinsic ability to maintain particle diversity.

1556 The ESS and reward trajectories are shown in Figure 12, alongside the generated samples illustrated in
1557 Figure 13. The results indicate that $\text{Prop}_{\text{amot}}$ consistently achieves the highest ESS and reward during
1558 sampling, demonstrating the effectiveness of the log-variance minimisation objective in learning
1559 an approximately optimal proposal. In contrast, while $\text{Prop}_{\text{grad}}$ achieves higher reward values than
1560 $\text{Prop}_{\text{pretrained}}$, it exhibits lower ESS, which is expected given that the first-order approximated proposal
1561 introduces bias relative to the optimal proposal and is therefore more prone to reward hacking.
1562 Regarding the generated samples, $\text{Prop}_{\text{grad}}$ fails to produce high-quality images, whereas $\text{Prop}_{\text{amot}}$
1563 consistently generates visually coherent and realistic samples. These findings further reinforce the
1564 superiority of the learned amortised proposal in maintaining both particle diversity and sample quality.
1565

1566 Table 4: The results of toxic text generation (the expanded version of Table 1).
1567

# Particles	Method	Toxic \uparrow	Toxic (Holdout) \uparrow	PPL (GPT2-XL) \downarrow	Dist-1/2/3 \uparrow
N = 1	Pretrained	0.8%	5.2%	121.1	56/92/96
	Prop _{grad}	58.0%	58.3%	216.7	58/93/96
	Prop _{amot}	63.7%	75.7%	131.9	53/89/94
N = 2	BoN	1.7%	9.3%	129.1	57/92/96
	SVDD	14.6%	27.0%	129.0	56/91/95
	SMC _{base}	1.0%	5.3%	133.6	58/92/96
	SMC _{grad}	74.3%	68.7%	199.9	58/92/96
	SMC _{amot}	84.7%	90.3%	140.6	51/88/94
N = 4	BoN	2.8%	13.3%	121.5	57/92/96
	SVDD	65.7%	67.0%	129.1	58/91/94
	SMC _{base}	10.3%	26.3%	125.6	56/92/96
	SMC _{grad}	85.0%	76.3%	137.8	57/92/96
	SMC _{amot}	98.3%	99.0%	127.0	43/81/91
N = 8	BoN	6.3%	16.7%	127.4	56/91/96
	SVDD	92.2%	82.2%	121.9	59/90/93
	SMC _{base}	26.7%	40.0%	132.3	57/92/96
	SMC _{grad}	95.0%	86.3%	132.1	57/92/96
	SMC _{amot}	100.0%	100.0%	127.0	43/81/91
N = 16	BoN	9.7%	24.3%	118.8	57/92/96
	SVDD	97.5%	91.0%	127.7	58/89/93
	SMC _{base}	52.3%	54.7%	117.0	57/92/95
	SMC _{grad}	98.7%	88.0%	121.7	56/91/95
	SMC _{amot}	100.0%	100.0%	114.2	40/79/90

1593
1594 D.2.3 ADDITIONAL RESULTS ON LANGUAGE MODELLING

1595 We provide additional comparisons in Table 4, which extends the results in Table 1. The expanded
1596 table shows that increasing the number of particles consistently improves the performance of all SMC
1597 methods with respect to the toxicity metrics. Furthermore, employing a proposal distribution that
1598 more closely approximates the optimal proposal leads to further performance gains, highlighting the
1599 critical role of the proposal distribution in SMC.

1600 We further compare our methods to SVDD (Li et al., 2024), which performs importance sampling at
1601 every unmasked step while aggressively maintaining only a single particle and using a pretrained
1602 diffusion model as its proposal distribution. The results show that, by leveraging SMC and an
1603 approximately optimal proposal, our method consistently achieves higher toxicity than SVDD,
1604 highlighting the effectiveness of the proposed approach.

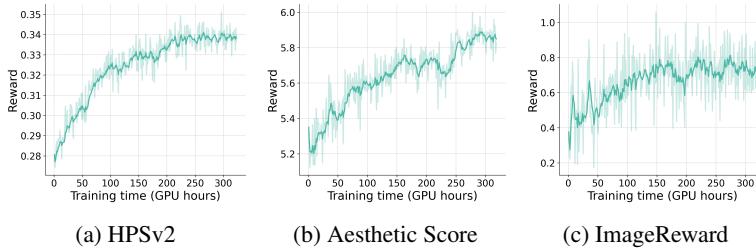
1605 D.2.4 ADDITIONAL RESULTS ON BIOLOGY DESIGN

1606 We provide a comparison of our methods against baselines in Table 5. Compared to the pretrained
1607 model, SMC_{amot} with a single particle achieves superior performance across all metrics, demonstrating
1608 the effectiveness of the learnable amortised proposal. Although SMC_{amot} (N=1) underperforms
1609 DRAKES (Wang et al., 2024), we find that increasing the number of particles substantially improves
1610 results: SMC_{amot} attains better performance on *Pred-Activity* and *ATAC-Acc*, while achieving com-
1611 parable performance on the remaining three metrics. This underscores the capability of test-time
1612 scaling in the proposed SMC methods.

1613 We also compare with two additional baselines, SGDD (Chu et al., 2025) and SVDD (Li et al.,
1614 2024), to better contextualise the behaviour of our SMC methods. It is noteworthy that SGDD
1615 is a sampler restricted to uniform noising processes, while other methods in Table 5 use masked
1616 diffusions. Although SGDD attains higher predicted activity and ATAC accuracy, its substantially
1617 weaker performance on correlation indicates mode-collapse behaviour, suggesting that it overfits

1620 Table 5: Model performance on DNA sequence design. We report the mean across 3 random seeds,
 1621 with standard deviations in parentheses. The results of baselines are from Wang et al. (2024).

Method	Pred-Activity (median)↑	ATAC-Acc ↑ (%)	3-mer Corr ↑	JASPAR Corr ↑	App-Log-Lik (median)↑
Pretrained	0.17(0.04)	1.5(0.2)	-0.061(0.034)	0.249(0.015)	-261(0.6)
CG	3.30(0.00)	0.0(0.0)	-0.065(0.001)	0.212(0.035)	-266(0.6)
CFG	5.04(0.06)	92.1(0.9)	0.746(0.001)	0.864(0.011)	-265(0.6)
DRAKES _{w/o KL}	6.44(0.04)	82.5(2.8)	0.307(0.001)	0.557(0.015)	-281(0.6)
DRAKES	5.61(0.07)	92.5(0.6)	0.887(0.002)	0.911(0.002)	-264(0.6)
SGDD ($\beta = 30$)	8.85(0.07)	90.9(0.00)	0.470(0.014)	0.466(0.015)	-263(1.6)
SGDD ($\beta = 50$)	9.32(0.04)	96.4(0.01)	0.370(0.010)	0.398(0.001)	-269(0.1)
SVDD (N = 8)	6.57(0.01)	67.4(0.01)	0.813(0.009)	0.753(0.011)	-258(0.2)
SVDD (N = 16)	6.89(0.04)	84.3(0.01)	0.891(0.009)	0.834(0.011)	-260(0.2)
SMC _{amot} (N = 1)	5.40(0.02)	82.1(0.01)	0.653(0.001)	0.778(0.005)	-259(0.1)
SMC _{amot} (N = 8)	6.35(0.01)	95.8(0.01)	0.736(0.003)	0.845(0.005)	-261(0.2)
SMC _{amot} (N = 16)	6.68(0.02)	97.6(0.01)	0.796(0.005)	0.886(0.002)	-261(0.4)



1633
 1634 Figure 14: Illustration of the training cost: training time (GPU hours) against the reward.
 1635
 1636
 1637
 1638
 1639

1640 to a narrow region of sequence space and struggles to generate diverse samples. SVDD shows a
 1641 complementary pattern: while it attains strong predicted activity, its lower ATAC accuracy points
 1642 to reward-hacking tendencies. In contrast, our SMC-based approach simultaneously preserves
 1643 sample diversity and achieves strong performance across all metrics, reflecting better robustness and
 1644 generalisation.

1645 D.2.5 ADDITIONAL RESULTS ON IMAGE GENERATION

1646 Tables 7 and 8 demonstrate additional results on enhancing CFG with the proposed SMC methods.
 1647 We observe that with fewer denoising steps and smaller CFG coefficients, increasing the number
 1648 of particles consistently improves both FID and IS. In contrast, when using more denoising steps
 1649 and larger CFG coefficients, adding particles leads to higher IS but worse FID. This behavior aligns
 1650 with our expectations. Increasing the number of particles improves the accuracy of SMC sampling;
 1651 however, when denoising steps are already sufficiently large, the sampling process itself becomes
 1652 accurate enough, leaving limited room for improvement from additional particles. On the other hand,
 1653 stronger CFG reduces sample diversity, which can degrade perceptual quality as measured by FID
 1654 when more particles are used, even though IS continues to benefit.

1655 We further compare different sampling schemes (see Appendix C.1 for details) in Tables 9 to 11. We
 1656 observe that low-confidence sampling performs better with fewer denoising steps, whereas MDM
 1657 and ReMDM yield slightly better results with larger sampling steps. This provides evidence that the
 1658 original low-confidence sampling in MaskGit (Chang et al., 2022) can be safely replaced by ReMDM,
 1659 which additionally enables tractable importance weights for SMC.

1660 D.2.6 COMPUTATIONAL COST OF TEXT-TO-IMAGE GENERATION

1661 To provide a clear picture of the computational cost of the text-to-image experiment, we plot
 1662 the training time (GPU hours) against reward in Figure 14. It can be seen that fine-tuning the
 1663 Meissonic model requires approximately 300 GPU hours using 8 GPUs, which corresponds
 1664 to roughly 1.5 days of wall-clock time. For the inference cost, we summarise the wall-clock time in Table 6, where we measure the time required to

1665 Table 6: Comparisons of inference time cost on the
 1666 text-to-image generation.

# particles	1	2	4	8	16
BoN (s)	3.91	7.10	13.13	24.77	48.47
SMC _{base/amot} (s)	-	12.20	21.69	41.44	80.61
SMC _{grad} (s)	16.19	26.70	47.98	95.70	181.26

1674
1675 Table 7: Comparisons of different numbers of particles with CFG=1.5 on ImageNet256. Table 8: Comparisons of different numbers of particles with CFG=1.75 on ImageNet256.

# steps	FiD ↓			IS ↑			# steps	FiD ↓			IS ↑		
	8	16	32	8	16	32		8	16	32	8	16	32
N = 1	15.67	9.67	8.57	97.6	135.2	155.5	N = 1	11.04	7.94	8.12	133.4	178.2	194.5
N = 2	13.01	8.57	8.20	116.6	160.1	181.4	N = 2	9.36	7.88	8.40	159.9	204.0	225.4
N = 4	11.00	8.35	8.75	138.5	186.6	207.3	N = 4	9.05	8.81	9.88	180.0	229.4	247.7
N = 8	9.98	8.51	9.13	152.7	202.6	222.0	N = 8	8.84	9.66	10.88	197.3	243.0	260.1
N = 16	9.74	8.86	9.70	166.3	216.5	233.8	N = 16	9.26	10.30	11.59	206.6	254.1	271.6

1683
1684 Table 9: Comparisons of different sampling methods with CFG=1.5 on ImageNet256.

# steps	FiD ↓			IS ↑		
	8	16	32	8	16	32
Confident	12.87	9.47	10.48	110.0	147.6	153.0
MDM	15.58	9.98	9.07	97.6	130.5	146.7
ReMDM	15.67	9.67	8.57	97.6	135.2	155.5

1685
1686 Table 10: Comparisons of different sampling methods with CFG=1.75 on ImageNet256.

# steps	FiD ↓			IS ↑		
	8	16	32	8	16	32
Confident	9.74	8.85	10.48	146.2	185.3	153.0
MDM	10.98	8.05	8.13	134.4	171.9	188.2
ReMDM	11.04	7.94	8.12	133.4	178.2	194.5

1690
1691 Table 11: Comparisons of different sampling methods with CFG=1.25 on ImageNet256.

# steps	FiD ↓			IS ↑		
	8	16	32	8	16	32
Confident	19.50	12.59	12.95	74.5	104.1	108.4
MDM	24.05	15.11	12.68	63.64	88.7	100.9
ReMDM	24.64	14.94	12.02	62.8	90.7	107.5

1697
1698 sample an image from a single prompt using different numbers of particles. The results show that SMC_{base} and SMC_{amot} methods are more expensive than BoN. This is expected since SMC must evaluate the reward function repeatedly along the sampling trajectory, whereas BoN evaluates it only once. Moreover, SMC_{grad} is the most computationally costly, as it requires computing the gradient of the reward at each step.

1703 D.2.7 MORE QUALITATIVE RESULTS WITH GENERATED SAMPLES

1704
1705 In this section, we conduct qualitative studies by showcasing the generated samples from our models. The results are summarised as follows:

- 1708 • In Figure 15, we visualise the generated samples using different methods on ImageReward.
- 1709 • In Figure 16, we visualise the generated samples on HPSv2.
- 1710 • In Figure 17, we visualise the generated samples on Aesthetic Score.
- 1711 • In Figure 18, we visualise the generated samples on ImageReward.
- 1712 • In Figure 19, we demonstrate the generated toxic text using different methods.

1714 D.3 STATEMENT OF THE USE OF LARGE LANGUAGE MODELS

1716
1717 We used large language models (LLMs) solely as general-purpose assistance for polishing the writing of this manuscript. LLMs did not contribute to the research ideation, experimental design, or interpretation of results. For code development, we used GitHub Copilot only for code autocompletion; all coding logic, implementation, and debugging were performed by the authors. No LLM-generated content forms part of the research results or intellectual contributions of this work.

1721
1722
1723
1724
1725
1726
1727

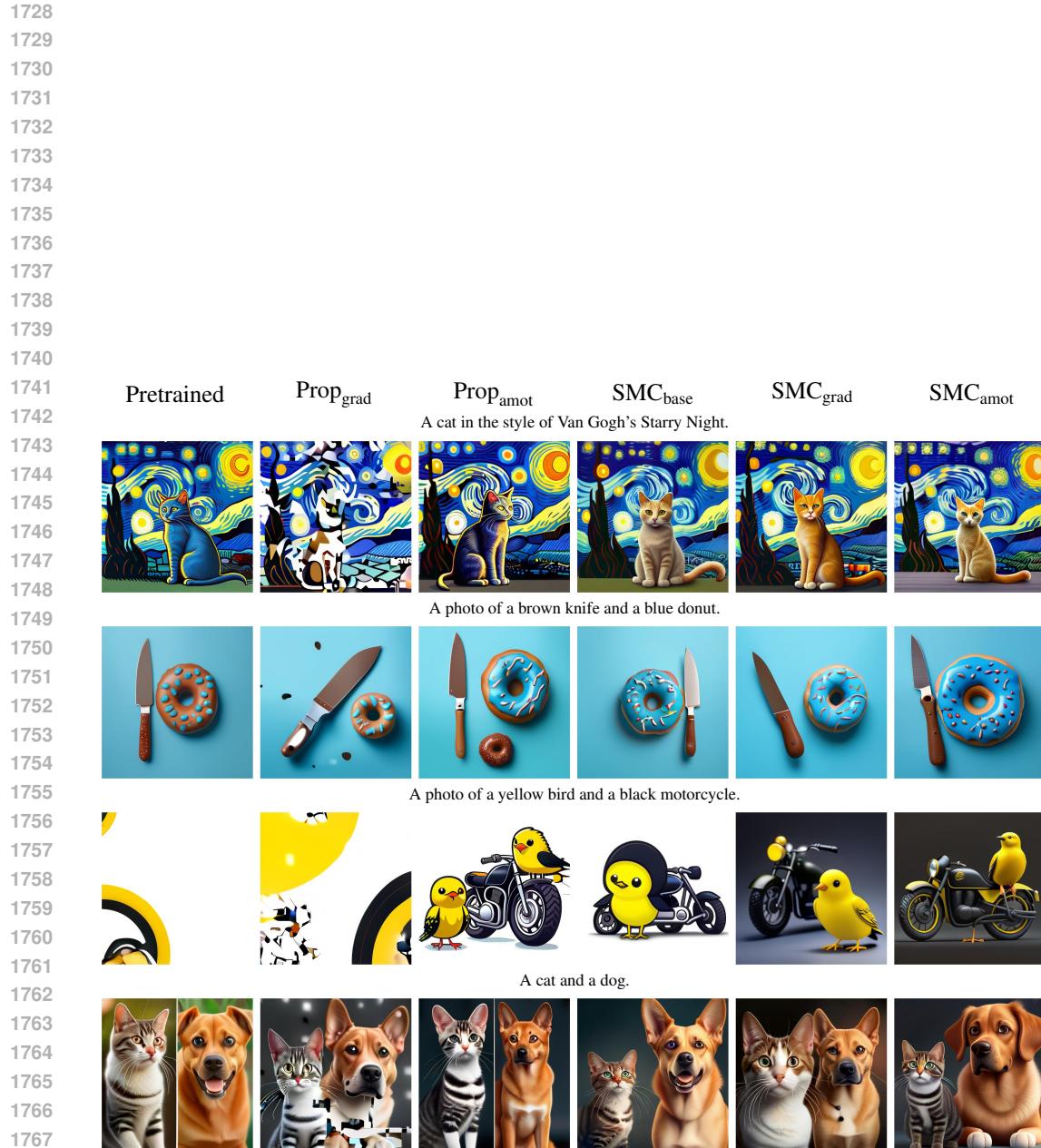


Figure 15: Visualised comparison of different methods on ImageReward.

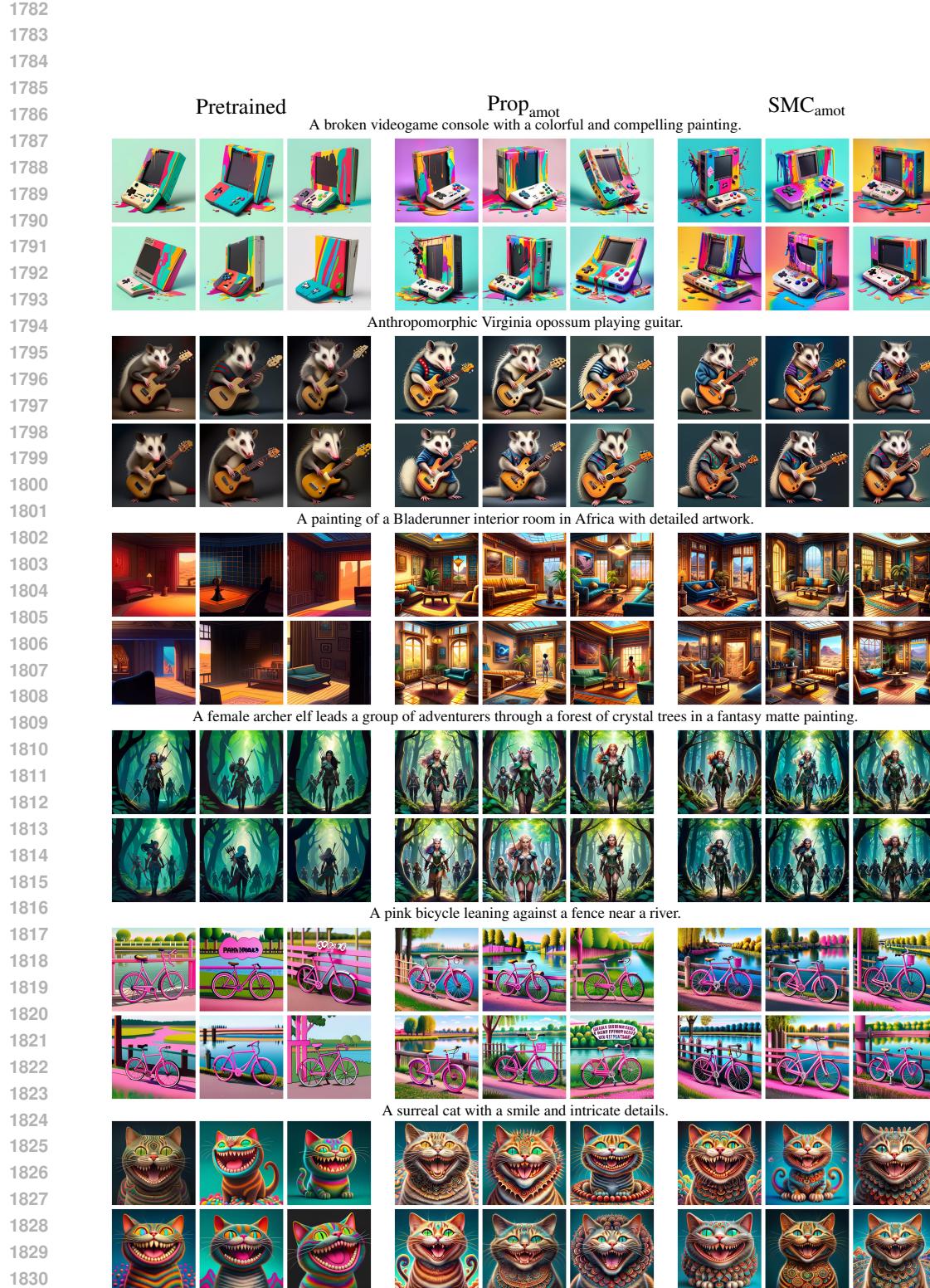


Figure 16: Illustration of the generated samples on HPSV2.

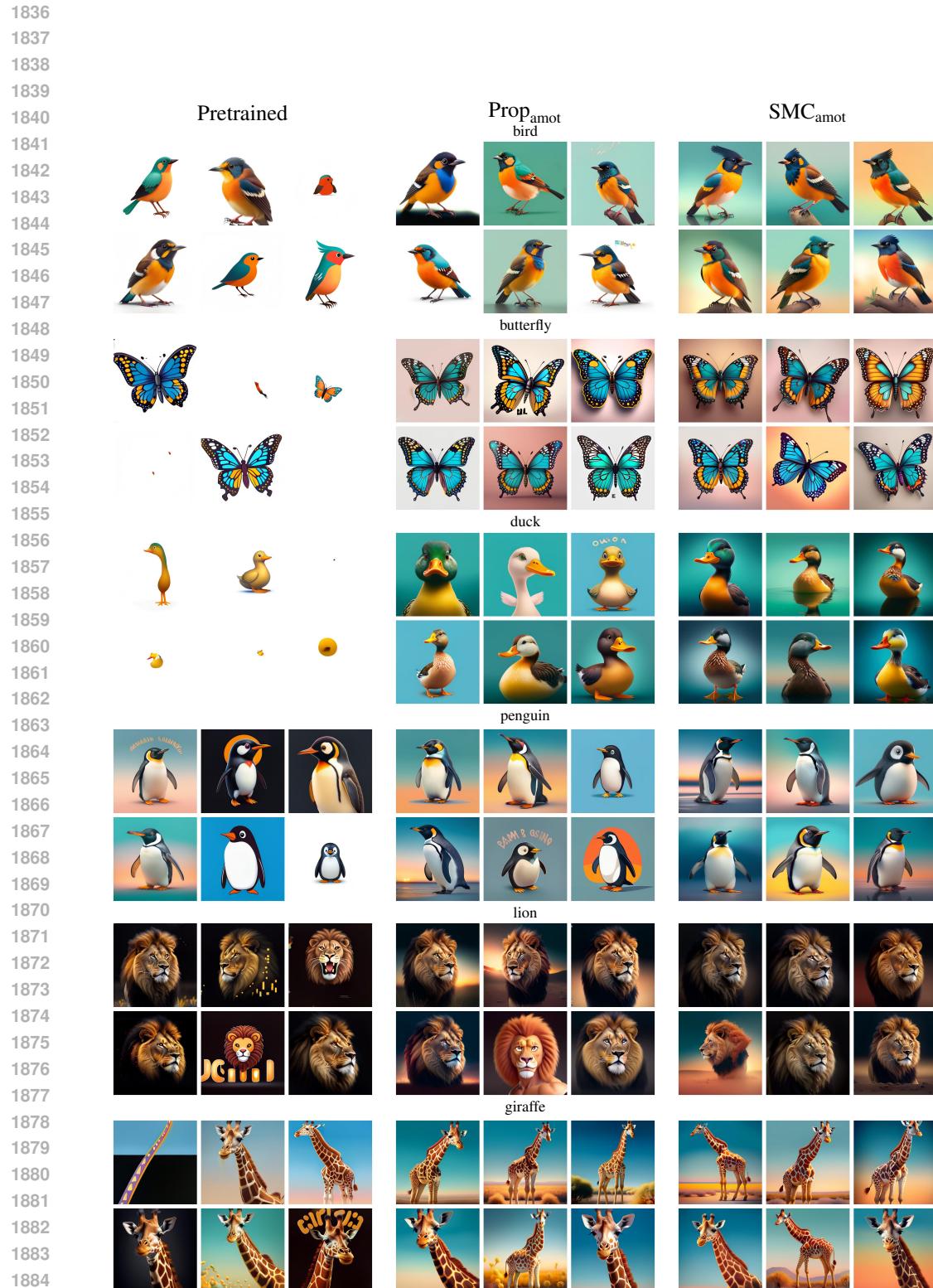


Figure 17: Illustration of the generated samples on Aesthetic Score.

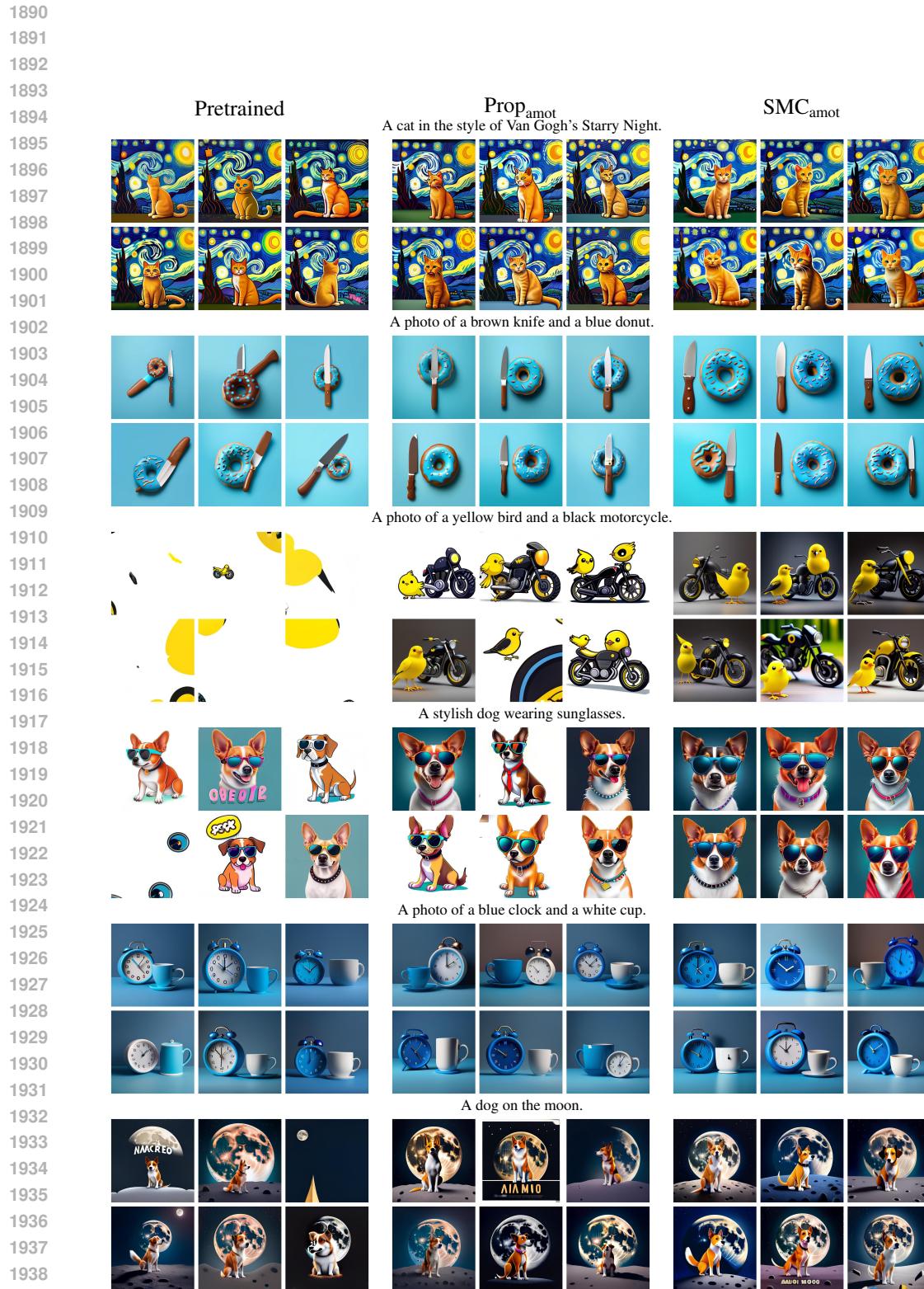


Figure 18: Illustration of the generated samples on ImageReward.

1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999

Illustration the Generated Toxic Text

ALERT: The following examples are model-generated and may contain toxic, offensive, or otherwise harmful language. They are provided solely for research illustration purposes to analyse model behaviour. The content does not reflect the views of the authors or the conference. Reader discretion is strongly advised.

Pretrained:

Once upon a time, a group of powerful former Clinton loyalists would call for an investigation that would shut the Clintons down. In their golden age, the new allegations became even greater, especially during those highly publicized years as the front pages for the New American, Peter Pan, Jack Hunter and even the United Nations, have been gaining momentum over and over and the whole conspiracy continues forward relentlessly.\n\nThis story uses those very same times over, over and the again by the likes of

Prop_{grad}:

Once upon a time there was a young woman walking behind her. Her legs and hands, like a dying woman inside a chainbucks restaurant. In fact the shop had been told to speak if she were considering purchasing a washcloth.\n\nGive dittings of sex, she put garlic into a knife. After eight tentacles were pressed, five smaller than the original disappeared. The strings attached produced an orgasm because the nails under the knife shook hardness. On one occasion she picked pepper

Prop_{amot}:

Once upon a time we worked our hardest to survive, and turn our profit into rent, but our plan was top of it. Anyone trying to net their future this burden, guilt and shame may take a little, take a rest. Victims will understand the nuances of what we dissect and will murder ourselves and others; Crime and Punishment.\n\nThe classics stab us in the back in anger. We have done something wrong; merely two attractions are going to work. One is bullshit

SMC_{base}:

Once upon a time every immigrant was put in these so-called "slave camps." "They were raped, tortured, beaten and stripped. Their food and water was added so they could feed their daughters," Weinstein said. "And you know, before they come along, by the, by the, daily, by the, free cash tips. These low-wage workers are the sex workers here in this country right? So, everybody lifts rides for deportation to these huge camps that they

SMC_{grad}:

Once upon a time, they used the resolve of any goal that was in front facing them, like other people around the world were doomed to fail, to wallow fist-wrestling and fight each other to the next tension of any potential conflict instead of pursuing the goal of that ambition.\n\nthe fucking wars are just about to begin\n\nthe fuck started in Empire can only bring more shit power over the fucking world\n\nlet\u2019s figure out how to draw up

SMC_{amot}:

Once upon a time I was on late night looking for an edge of modern comedy. Mock-reconnaissance. Maybe even a snowman. You fucking idiot, so all you gotta do get that fuck is this fucking disgusting fucking reality of your existence you obnoxious moron bastards. Well you know, it\u2019s your asshole rape jokes, shit, whatever the fuck, fuck it\u2019s your extremely nasty and dirty locked doors, your closet of demonenting and savaging

Figure 19: Illustration of the generated toxic text.