
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SOFT NON-DIAGONALITY PENALTY ENABLES LATENT
SPACE-LEVEL INTERPRETABILITY OF PLM AT NO PER-
FORMANCE COST

Anonymous authors
Paper under double-blind review

ABSTRACT

Emergence of large scale protein language models (pLMs) has led to significant
performance gains in predictive protein modeling. However, it comes at a high price
of interpretability, and efforts to push representation learning towards explainable
feature spaces remain scarce. The prevailing use of domain-agnostic and sparse
encodings in such models fosters a perception that developing both parameter-
efficient and generalizable models in a low-data regime is not feasible. In this work,
we explore an alternative approach to develop compact models with interpretable
embeddings while maintaining competitive performance. With the Bidirectional
Long Short-Term Memory Autoencoder (BiLSTM-AE) model as an example
trained on positional property matrices, we introduce a soft weight matrix non-
diagonality penalty. Through Jacobian analysis, we show that this penalty aligns
embeddings with the initial feature space while leading to a marginal increase in
performance on a suite of four common peptide biological activity classification
benchmarks. Moreover, it was demonstrated that the use of one-hot encoded
sequence clustering-based contrastive loss to produce semantically meaningful
latent space allows to further improve benchmarking performance. The use of
amino acid physicochemical properties and density functional theory (DFT) derived
cofactor interaction energies as input features provides a foundation for intrinsic
interpretability, which we demonstrate on fundamental peptide properties. The
resulting model is over 33,000 times more compact than the state-of-the-art pLM
ProtT5. It demonstrates performance stability across diverse benchmarks without
task-specific fine-tuning, showcasing that domain-tailored architectural design
can yield highly parameter-efficient models with fast inference and preserved
generalization capabilities.

1 INTRODUCTION

Machine learning (ML) has achieved substantial progress in drug discovery (Jorner et al., 2021;
Lee et al., 2020), supported by representations such as SMILES (Weininger, 1988), which can be
converted into molecular graphs and used to calculate interpretable chemical descriptors using RDKit
(Landrum et al., 2013) or Mordred (Moriwaki et al., 2018). However, these representations become
limiting for biopolymers due to their higher structural complexity. Peptides, a class of biopolymers
composed of <100 amino acids, exhibit various conformations governed by hydrogen bonding,
hydrophobic interactions, metal coordination, and disulfide bridges (Gregorc et al., 2023; Rezai et al.,
2006; Victorio & Sawyer, 2023). Their larger contact surface and rich interaction patterns make them
highly selective and effective therapeutic agents (Henninot et al., 2018; Fisher et al., 2019; Peterson
& Barry, 2018; Torres et al., 2019). At the same time, their biological activity depends on a sequence
context that is difficult to capture with small-molecule–oriented descriptors.

ML methods are widely used in peptide research (Basith et al., 2020), and peptide representations
typically follow two directions: property-based and sequence-based (Xu et al., 2020). The first relies
on physicochemical descriptors and provides interpretability, but does not account for positional
context. The second captures sequence-level information, yet lacks explicit chemical grounding
and interpretability. In practice, models built on either approach tend to be task-specific. This

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

motivates the need for representations that combine contextual modeling with chemically meaningful,
interpretable structure.

Using a Bidirectional Long Short-Term Memory Autoencoder (BiLSTM-AE) trained on positional
property matrices, we introduce a soft penalty on off-diagonal weight-matrix elements together
with diagonal initialization. This encourages feature disentanglement and aligns latent dimensions
with the original physicochemical feature space. Jacobian-based analysis confirms that the penalty
enforces this alignment while slightly improving performance across four peptide biological activity
classification benchmarks.

We further show that incorporating one-hot encoded sequences clustering-based contrastive loss
produces more semantically structured latent spaces, leading to additional performance gains. Because
the model operates directly on amino acid physicochemical properties, including interaction energies
derived from density functional theory (DFT), it naturally supports intrinsic interpretability. We
illustrate this using regression tasks on fundamental peptide physicochemical properties.

To more fairly compare embeddings across benchmarking datasets, we introduce average Shannon
entropy and Levenshtein distance based measures to approximate sequence and dataset complexity,
since dataset size alone does not reliably predict model performance. Despite its compactness -
being >4,000, >12,000, and >6,000 times more compact than ProtBERT (Elnaggar et al., 2022),
Ankh-large (Elnaggar et al., 2023), and ESM-C (600M) (ESM Team, 2024), respectively - our
model achieves competitive results. It surpasses all baselines on anti-inflammatory peptide prediction
(AIP) , matches Ankh-large on antimicrobial peptides (AMP), performs comparably to ESM-C
on anti-oxidative peptides (AOP), and outperforms ProtBERT on AOP and anti-diabetic peptide
prediction (ADP) . Based on Matthew’s correlation coefficient (MCC), it also shows the second-
highest performance stability across all tasks after Ankh-large.

Overall, our model is more than 33,000 times more compact than the state-of-the-art (SOTA)
protein language model (pLM) ProtT5-3B (Elnaggar et al., 2022)and achieves stable performance
across diverse peptide tasks without task-specific fine-tuning. This illustrates that domain-tailored
architectures can yield parameter-efficient models with fast inference and strong generalization. At the
same time, scaling such interpretable models remains a challenge and warrants further investigation
to close the performance gap with the largest protein language models.

Key contributions:

• We introduce a soft penalty on off-diagonal weight-matrix elements combined with diagonal
initialization in a BiLSTM-AE, enabling feature disentanglement and alignment of latent
dimensions with amino acid physicochemical properties.

• We demonstrate latent-space interpretability through feature importance and correlation
analysis in four regression tasks involving fundamental peptide physicochemical properties.

• We show that the resulting model achieves competitive or superior performance to ProtBERT,
Ankh-large, and ESM-C on four peptide biological activity classification benchmarks while
remaining intrinsically interpretable.

• We find that embeddings from many existing protein language models still perform com-
parably to simple one-hot baselines on peptide tasks, highlighting ongoing challenges in
peptide-specific representation learning with domain-agnostic large models.

• We show that the proposed non-diagonality penalty contributes to a small but consistent
improvement in benchmark performance within our architecture and training setup.

• We demonstrate that our final model is 3–4 orders of magnitude more parameter-efficient
than ProtBERT, ESM-C, Ankh, and ProtT5-3B while trained on datasets at least two orders
of magnitude smaller and without task-specific fine-tuning.

2 RELATED WORKS

Current SOTA pLMs are largely based on the Transformer architecture (Vaswani et al., 2017), adapted
to biological sequences, and pre-trained on massive protein corpora. Representative models such as
ProtBERT and ProtT5 extend the BERT (Devlin et al., 2019) and T5 (Raffel et al., 2020) architectures
to enable effective transfer learning across diverse protein tasks. The ESM family further scales

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

this paradigm, with models like ESM-Cambrian leveraging hundreds of millions of parameters
to capture evolutionary and structural regularities at large scale. The Ankh work systematically
explores architectural design choices: span masking, activation functions, positional encodings, to
optimize Transformer-based pLMs for protein modeling. Despite architectural differences, these
models share an important limitation: their interpretability relies primarily on analyzing self-attention
patterns. Although attention maps can highlight residue–residue interactions or structural contacts,
they are often noisy, vary widely between layers and heads, and do not reliably correspond to causal
importance (Jain & Wallace, 2019).

Motivated by this limitation, a variety of post-hoc interpretability methods have been developed.
Attribution techniques, such as attention analysis, probing, and gradient-based methods, aim to
uncover sequence elements that influence model outputs but do not alter or structure the latent space
itself (Hunklinger & Ferruz, 2025). Sparse autoencoders (SAEs) offer a recent alternative by training
sparse decoders on pLM activations to extract biologically meaningful latent factors (Gujral et al.,
2025; Simon & Zou, 2025). These methods reveal that pLM representations encode useful but highly
entangled structure. As a result, both attribution-based approaches and SAEs provide useful insight
but remain fundamentally post-hoc and limited in their ability to shape embedding space.

In contrast, intrinsically interpretable peptide representation learning remains relatively underexplored.
Existing approaches often sacrifice contextual modeling capacity or rely heavily on manual feature
engineering. Our work addresses this gap by introducing an inductive bias directly into a sequence
model: a soft non-diagonality penalty that encourages latent dimensions to align with predefined
physicochemical feature axes. This design embeds interpretability into the model itself, producing
disentangled chemically grounded representations while preserving the contextual expressiveness of
recurrent architectures.

3 METHODS

3.1 CONTEXT AND MOTIVATION

The proposed method constructs property matrices for peptides from physico-chemical descriptors
of 20 canonical residues and 2 prevalent modifications. It uses 43 molecular features and 3 DFT-
derived. Convolutional autoencoders (CAE) serve as a baseline, while recurrent and transformer
variants are introduced to capture long-range dependencies. The embeddings are further refined using
Information Noise-Contrastive Estimation (InfoNCE) based contrastive loss. Positive and negative
pairs are generated via MiniBatchKMeans clustering of one-hot encoded sequences, ensuring that
the interpretable property space corresponds to empirically effective sequence encodings. A soft
non-diagonality penalty guides embedding features toward the original physicochemical space, with
feature relationships quantified using the Jacobian matrix (see Section 3.7). An overview of the full
processing pipeline is shown in Figure 1.

3.2 DATA COLLECTION

For model training, we retrieved unlabeled unique peptide sequences containing no extra monomers
from the NCBI database (Sayers et al., 2023), yielding 6,749,334 sequences. A sampling procedure
is implemented to reduce data volume and computational costs while preserving diversity: peptides
are grouped by the most frequently occurring amino acids. This allowed us to maintain balanced
composition over sequence length distribution. Consequently, small (S) and big (B) datasets are
constructed through clustering peptide sequences based on amino acid frequency vectors, with the
initial number of clusters equal to the unique amino acids. Then, the unique clusters are identified on
the basis of the most represented residues for stratified sampling; the minimum number of samples is
determined to prevent under-representation of smaller clusters. A small fraction (1%) of sequences
forms dataset S; a medium fraction (10%) is sampled for dataset B. Finally, the subsets are combined
to create the final datasets. Cluster-based stratified sampling facilitated the formation of manageable
datasets, where the final model is trained using the dataset S comprising 155,920 sequences. Final
data scaling experiment is performed on dataset B comprising 467,792 sequences.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the proposed pipeline.

3.3 MOLECULAR DESCRIPTORS

A total of 43 molecular RDKit descriptors are used to characterize the properties of amino acids (see
Appendix A), which were normalized to a range of [-1, 1]. Each peptide sequence is represented as a
feature array based on these descriptors and DFT features (see Section 3.4 for details), with padding
applied to align all sequences to a uniform length of 96 amino acids.

3.4 DFT-DERIVED DESCRIPTORS

This group of descriptors includes three parameters derived from the interactions energies of amino
acids with divalent metal cations: calcium (Ca2+), magnesium (Mg2+), and barium (Ba2+), obtained
through DFT calculations. Detailed methodology is described in Hu et al. (2022), with data available
in the NOMAD database (Draxl & Scheffler, 2019). The free energy values are extracted using the
NOMAD API and categorized into four groups: complexes with Mg2+, Ca2+, and Ba2+ cations
and isolated amino acid conformers. For each amino acid, average free energy values across all
conformers is calculated, and interaction descriptors are derived by normalizing the differences
between complex and isolated free energy values.

3.5 AE-BASED ARCHITECTURES

Convolutional and Variational Autoencoders (CAE/VAEs). CAE-based models with per-feature
convolutions were treated as a baseline to study the model performance when features were not mixed
at all due to architectural restrictions. We then implemented a probabilistic framework by replacing
the deterministic latent space of CAE with a variational latent space. This approach encourages
smoother, more continuous latent representations, potentially mitigating sparsity. Experiments were
conducted with multiple VAE variants, including β-VAE and InfoVAE. Hyperparameters, including
the KL divergence weight (β), were chosen from a predetermined grid, this ensured an unbiased
evaluation of embedding quality.

BiLSTM. Given the sequential nature of the data, BiLSTM-based architectures were used to capture
long-range dependencies. Unlike unidirectional recurrent models, BiLSTM leverages both forward
and backward contexts, enabling a more comprehensive understanding of sequence information. We
hypothesized that this bidirectional approach would enhance the quality of the generated embeddings,
making them more effective for downstream tasks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Transformer-Based Models. Motivated by the success of transformer architectures in natural
language processing, we tested a transformer-based AE. Transformers leverage self-attention mecha-
nisms to capture global dependencies, typical in peptide sequences.

Each of the architectures described in this section was trained using the same dataset S and evaluated
on identical downstream tasks to ensure a fair comparison with the benchmark encoding strategies
(see Appendix B).

3.6 CONTRASTIVE LEARNING IMPLEMENTATION

Contrastive learning was implemented to enhance embedding quality by drawing positive pairs closer
in latent space and separating negative pairs.

Positive and Negative Pair Construction. Given the unique properties of peptide sequences, we
designed a domain-specific strategy for constructing positive and negative pairs:

• Positive Pairs: Positive pairs were obtained by MiniBatchKMeans clustering of one-hot
encoded peptides; k was selected via the Elbow criterion, and peptides sharing a cluster
were deemed positives.

• Negative Pairs: Peptides from different clusters were treated as negatives.

Contrastive Loss Function. Utilized contrastive loss is based on the InfoNCE objective:

Lcontrastive = − log
exp(sim(z,z+)

τ)∑K
j=1 exp(

sim(z,zj)
τ)

, (1)

where z = E(x), E(·) is the encoder, sim(·, ·) denotes a similarity measure (e.g., cosine similarity),
K is the number of negative samples in a batch, and τ > 0 is a temperature hyperparameter.

3.7 SOFT NON-DIAGONALITY PENALTY

For the BiLSTM architecture described above, we introduce an additional regularization mechanism
to reduce feature entanglement during training.

To achieve this, two complementary techniques are employed. First, we apply a soft penalty specifi-
cally to the off-diagonal elements of the BiLSTM weight matrices. For a weight matrix M ∈ Rn×n,
the penalty term is defined as the mean of squared off-diagonal elements:

LM =
∥M ⊙ (1− I)∥2F

n · n
(2)

where ⊙ denotes the Hadamard product, I is the identity matrix, and 1 is a matrix of ones. The total
penalty is the sum of all weight matrices, scaled by a coefficient λ:

Loff-diag = λ
∑

M∈W
LM (3)

Here, W comprises all input-to-hidden and hidden-to-hidden weight matrices of the BiLSTM layers.
Second, we use forced diagonal weight initialization as an inductive bias. The combined effect
encourages the model to maintain nearly diagonal weight transformations throughout training.

We additionally evaluated hard diagonalization - strict constraints enforcing zero off-diagonal weights.
Although theoretically appealing, this formulation restricted the optimization to an extremely narrow
feasible set, preventing stable convergence of the reconstruction and contrastive objectives. Because
these difficulties occurred during optimization itself, we did not pursue the hard constraint further.
The soft formulation preserves differentiability and allows the optimization to proceed while still
encouraging near-diagonal structure.

To quantitatively evaluate the degree of feature disentanglement, we propose a diagonality metric
based on the encoder’s Jacobian. We compute the mean absolute Jacobian J̄ ∈ RDin×Dout over the
dataset. The diagonality metric is then defined as:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

D =

∑
i J̄ii∑
i,j J̄ij

(4)

A value of D close to 1 indicates a strong feature-wise separation.

3.8 COMPUTATIONAL RESOURCES

All calculations were performed on a server with a general configuration consisting of 6 A6000
GPUs, 256 cores, AMD EPYC 7763 64-Core Processor, 512 GB RAM. The training procedure was
performed using 2 GPUs and 50 GB RAM.

4 EXPERIMENTS

4.1 BENCHMARK DATASETS

We performed benchmarking of all the models mentioned in the paper on four public peptide
biological activity classification datasets: antimicrobial (AMP) (Cao et al., 2023), anti-inflammatory
(AIP) (Raza et al., 2023), antidiabetic (ADP) (Chen et al., 2022), and antioxidant (AOP) (Qin et al.,
2023). Dataset statistics covering size, sequence complexity, and data imbalance are summarized in
Table 1. Sequence complexity is described here by several parameters including length statistics, as
well as average Shannon entropy characterizing the extent of non-equiprobability of amino acids per
sequence and average Levenshtein distance showing inter-sequence dissimilarity. Based on these
statistics, ADP appears to be the most challenging dataset based on dataset size and high values of
average Shannon entropy, Levenshtein distance, as well as length spread.

Table 1: Main statistics of benchmark datasets. Average Levenshtein distance characterizes the
diversity of sequences by measuring the pairwise differences. Average Shannon entropy characterizes
the diversity of amino acids within a single sequence by quantifying the average level of uncertainty
associated with all types of amino acids.

Dataset Num.
of peptides

Avg.
Levenshtein

distance

Avg.
Shannon
entropy

Avg.
length

Min.
length

Max.
length

Pos/Neg
sample ratio

ADP 472 19.20± 4.26 3.22± 0.16 19.60± 5.09 11 41 1.00
AIP 3790 15.48± 2.36 3.15± 0.11 16.39± 2.62 11 30 0.76
AMP 8268 18.38± 4.21 3.03± 0.26 18.53± 5.34 11 30 1.00
AOP 2120 7.12± 3.58 2.03± 0.48 5.92± 3.66 2 20 1.00

4.2 EXPERIMENTAL SETUP

This section presents the experimental framework for evaluating the quality and generalizability of
the embeddings generated by our model. The assessment was conducted on four peptide classification
datasets encompassing distinct biological activities (detailed in Section 4.1). To isolate the evaluation
on the embedding quality itself, rather than the complexity of a deep learning classifier, we employed
a classical gradient boosting model as a simple yet effective downstream predictor (Shwartz-Ziv &
Armon, 2022). The primary metric for comparison was the MCC, chosen for its informativeness and
robustness to class imbalance (Chicco & Jurman, 2020) — a property particularly relevant for datasets
like AIP, as evidenced by the statistics in Table 1. For reliable model assessment, we employed a
rigorous 5-fold cross-validation protocol, reporting both the mean metric values and their standard
errors (the latter indicated in parentheses).

Our comparative analysis includes three conventional peptide encoding methods: one-hot encoding,
BLOSUM62, and 3-mer counts, and several SOTA pLMs: ProtBERT, Ankh-large, ESM-C (600M),
and ProtT5-3B. The following subsections detail the development and optimization experiments for
our model, with results provided in Appendixes C and F (Tables 6 through 14). The final comparative
benchmarking results against all baselines are consolidated in Section 4.5 (Table 2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.3 AE-BASED ARCHITECTURES BENCHMARKING

We begin by establishing a reference using a CAE with per-feature convolutions, which serves as
a baseline where no feature mixing is possible due to the architectural structure. Results for all
encodings with the CAE model are shown in Appendix C.

To perform a systematic comparison, we evaluated a pre-specified set of 80 models across four AE
families: CAEs, VAEs (incl. Info-VAE, β-VAE), BiLSTM-AEs, and transformer-AEs—each trained
under a fixed grid of hyperparameters (Appendix B). The embeddings were evaluated with the
same downstream predictor as the baseline and benchmark encodings (see Section 4.2). Subsequent
methodological developments were implemented using the BiLSTM-AE architecture due to its
suitability for sequential inputs and stable training dynamics (see Table 7).

4.4 CLUSTERING-BASED CONTRASTIVE LEARNING

We next incorporated a contrastive learning component (Section 3.6) to explicitly structure the latent
space by drawing similar peptides closer while pushing dissimilar ones apart. The comparison results
for BiLSTM-AE (cBiLSTM-AE) with the benchmark encodings appear in Table 2.

4.5 SOFT NON-DIAGONALITY PENALTY

To enforce feature disentanglement within the model, we applied a soft penalty to the off-diagonal
elements of the weight matrices (as detailed in Section 3.7). Our evaluation includes two main
parts: (1) a comprehensive benchmarking of cBiLSTM-AE model with soft non-diagonality penalty
(dcBiLSTM-AE) against all baselines (see Section 4.2 for details), and (2) a scalability analysis where
the model was trained on a large-scale dataset B. The results of both the comparative benchmarking
and the scalability experiment are consolidated in Table 2.

Table 2: dcBiLSTM-AE model benchmarking. No preliminary fine-tuning on tasks was performed
for any of the models.

Encoding
type

Model
size

Dataset
for training

MCC (5-fold cross validation)
Avg. Min Max

Anti
diabetic

Anti
inflammatory

Anti
microbial

Anti
oxidant

One-hot N/A N/A 0.197
(0.015)

0.216
(0.015)

0.560
(0.004)

0.764
(0.013) 0.434 0.197 0.764

Blosum N/A N/A 0.026
(0.020)

0.290
(0.012)

0.337
(0.015)

0.189
(0.012) 0.211 0.026 0.337

Threemers N/A N/A 0.131
(0.060)

0.357
(0.009)

0.519
(0.003)

0.539
(0.015) 0.387 0.131 0.539

ProtBert 420M 217M 0.334
(0.031)

0.138
(0.021)

0.658
(0.007)

0.580
(0.011) 0.428 0.138 0.658

ESM C 600M - 0.433
0.017

0.193
(0.012)

0.679
(0.005)

0.761
(0.019) 0.517 0.193 0.761

Ankh 1.15B 59M 0.574)
(0.032)

0.335
(0.011)

0.614
(0.007)

0.863
(0.015) 0.596 0.335 0.863

BiLSTM-AE 1.3M 0.15M -0.004
(0.053)

0.342
(0.009)

0.415
(0.005)

0.496
(0.031) 0.312 -0.004 0.496

cBiLSTM-AE 1.3M 0.15M 0.277
(0.065)

0.316
(0.009)

0.569
(0.002)

0.692
(0.012) 0.464 0.277 0.692

dcBiLSTM-AE 90K 0.15M 0.371
(0.039)

0.355
(0.004)

0.611
(0.006)

0.775
(0.018) 0.528 0.355 0.775

dcBiLSTM-AE 90K 0.47M 0.327
(0.042)

0.337
(0.009)

0.599
(0.009)

0.750
(0.016) 0.503 0.327 0.750

ProtT5 3B 45M 0.659
(0.029)

0.402
(0.013)

0.686
(0.008)

0.893
(0.007) 0.660 0.402 0.893

4.6 DCBILSTM-AE EMBEDDINGS CORRELATION ANALYSIS

To assess representational fidelity, we computed four physicochemical properties on the dataset S test
split (see Section 3.2). Targets were chosen to be analytically computable for interpretation clarity,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

yet being functionally relevant: instability index (ISI), theoretical net charge (TNC), isoelectric point
(IEP), and molecular weight (MW). Correlating these clear whole-peptide properties with interpretable
feature space reveals the extent to which the embeddings capture monomer-level physicochemical
structure. (Table 3). The same protocol was applied to earlier encodings (Table 14).

5 DISCUSSION

5.1 MODEL SCREENING AND OPTIMIZATION

We initially benchmarked common peptide encoding strategies along with the baseline CAE model on
four datasets (Table 1) to characterize task complexity and establish baseline performance. AMP and
AOP datasets were generally easier for the models to classify (MCC = 0.499 and 0.503, respectively;
Table 6), while ADP and AIP proved more challenging (MCC = 0.165 and 0.267). This difficulty
correlates with high Shannon entropies and large inter-sequence Levenshtein distances, combined
with relatively small dataset sizes. The baseline CAE achieved moderate performance (Table 6):
fourth out of five in AMP and AOP, third in ADP, and second in AIP. Notably, CAE performed
relatively better on the more challenging datasets, achieving comparable rankings to ProtBERT.

To improve embedding quality, we evaluated architectures designed for sequential data, including
BiLSTM and transformer-based autoencoders. Additionally, we tested the InfoCVAE model (Zhao
et al., 2019), which addresses potential latent space sparsity and mitigates the tendency of VAEs to
ignore latent variables when using flexible decoders. The results of the AE-based models screening
stage are summarized in Table 7. CAE and BiLSTM-AE showed comparable performance, while the
transformer-based AE was less stable during training. The BiLSTM-AE was selected for subsequent
experiments due to its architectural suitability for sequential inputs and stable training dynamics.

We incorporated contrastive learning into the training process (details in Section 3.6) to further
structure the latent space, using one-hot encoded sequences as an initial reference. As demonstrated
in Table 2, contrastive learning increased the model’s predictive metrics compared with both the
one-hot baseline and the original BiLSTM-AE.

To mitigate feature entanglement, we implemented a feature disentanglement procedure (Section
3.7), combining forced diagonal initialization with a soft penalty. Although this structural constraint
could potentially reduce predictive capacity, the results in Table 2 indicate that performance was
slightly improved. This suggests that the imposed structural bias acts as a useful regularizer, effec-
tively guiding the learning process. This procedure also enabled interpretability of the latent space,
quantified by a diagonality metric of 49.4% for the dcBiLSTM-AE model (Section 3.7).

These results demonstrate that our model consistently delivers stable and robust performance across
the evaluated cases including ADPs and AIPs being the most problematic for all encoding strategies
under the study, while showing latent space-level interpretability. For instance, although dominance
in raw performance is not the main aim of this research, in two out of four tasks our method achieved
higher MCC than the ProtBERT model. This result is particularly remarkable given that our model
has no preliminary fine-tuning step (thereby, excluding a trivial explanation that the model performs
well due to overfitting) and operates with >4,000 times fewer trainable parameters. This drastic
reduction in model complexity underscores the efficiency, while still achieving competitive and
reliable performance across diverse tasks. Detailed discussion of the model’s limitations and potential
improvements is provided in Appendix D.

5.2 EMBEDDING SPACE INTERPRETABILITY STUDIES

To evaluate the interpretability of the obtained peptide embeddings, we conducted a regression
analysis aimed at predicting a set of basic peptide properties (see Section 4.5). Additionally, we
assessed the relationships between individual embedding elements and several biologically significant
physicochemical properties of peptides using Pearson’s correlation tests. The embeddings generated
by our model were used as descriptors for an extreme gradient boosting regression model, which
predicted the target properties based on these embeddings. The regression analysis demonstrated
that the embeddings effectively captured relevant information about the peptide properties, where
the results for the final dcBiLSTM-AE model were comparable with the other approaches. Detailed
results of this analysis are provided in Table 9 (Appendix C). To further explore the interpretability

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

of the embeddings, we examined the correlations between individual latent space features as well
as the physicochemical properties. For each property, we identified the top 10 embedding elements
with the highest absolute Pearson correlation coefficients (PCC). Among these, we highlighted the
features with the most statistically significant correlations based on their p-values.

Overall, the analysis revealed that certain features consistently demonstrated strong correlations
with specific physicochemical properties (Table 3; for a complete list see Appendix F), which
can be interpreted as indirect yet a strong sign that the latent space features provide a substantial
extent of interpretability. For instance, results for ISI show the strongest correlation of number of
aromatic rings, saturated heterocycles and spiro atoms with the target value. Each of these parameters
characterize connectivity within the molecules, therefore being related to branching, which directly
influences peptide conformational flexibility and, therefore, the stability. Also, in case of TNC
and IEP directly related to peptide charge, model shows that partition coefficient logP and Ca2+

interaction energy are highly relevant, where the former is a parameter describing protein solubility
and the latter is strongly related to the presence and alignment of negatively charged amino acids in
the protein. It is important to note, however, that not all the features have a clear and well-studied
relationship with the properties predicted in these tasks, while for some of the tasks (e.g., MW), most
of the parameters are directly related to the target value, and the model was unable to differentiate
between them. Overall, these findings suggest that our model is able to capture meaningful features
related to peptide properties, providing a foundation for interpreting its outputs in a biologically
informed manner.

Table 3: Correlation between embedding dimensions and peptide properties.

Peptide property Encoded input feature PCC (r)

ISI
Num Arom Rings -0.253

Num Saturated Heterocycles 0.202
Num Spiro Atoms -0.193

TNC
CrippenClogP -0.738

Ca2+ interaction energy 0.542
Num Atom Stereo Centers -0.537

IEP
CrippenClogP -0.620

Ca2+ interaction energy 0.494
Num Atom Stereo Centers -0.392

MW
chi1v -0.994
chi2v 0.992

kappa3 0.989

6 CONCLUSION

In this work, we propose a novel approach towards domain-tailored development of 3-4 orders more
parameter-efficient pLMs trained on much smaller yet representative peptide datasets combining
cross-task stability requiring no per-task fine-tuning and feature space-level interpretability for peptide
representation learning. Although model scaling requires further research to compete with or surpass
current SOTA ProtT5 model with input-level interpretability in raw performance, these findings
hold great potential by introducing explainable latent spaces crucial for domain scientists building
their own predictive models on specific downstream tasks, which is not provided by any of the pLM
models existing to date, at no performance cost.

REPRODUCIBILITY STATEMENT

The code and datasets used in this study are available to ensure reproducibility of the presented results.
They can be accessed at the following repository: https://anonymous.4open.science/
r/SeQuant-perfomance-1822/.

9

https://anonymous.4open.science/r/SeQuant-perfomance-1822/
https://anonymous.4open.science/r/SeQuant-perfomance-1822/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shaherin Basith, Balachandran Manavalan, Tae Hwan Shin, and Gwang Lee. Machine intelligence
in peptide therapeutics: A next-generation tool for rapid disease screening. Medicinal research
reviews, 40(4):1276–1314, 2020.

Qiushi Cao, Cheng Ge, Xuejie Wang, Peta J Harvey, Zixuan Zhang, Yuan Ma, Xianghong Wang,
Xinying Jia, Mehdi Mobli, David J Craik, et al. Designing antimicrobial peptides using deep
learning and molecular dynamic simulations. Briefings in Bioinformatics, 24(2):bbad058, 2023.

Xue Chen, Jian Huang, and Bifang He. Antidmppred: a web service for identifying anti-diabetic
peptides. PeerJ, 10:e13581, 2022.

Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient (mcc)
over f1 score and accuracy in binary classification evaluation. BMC genomics, 21(1):6, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Claudia Draxl and Matthias Scheffler. The nomad laboratory: from data sharing to artificial intelli-
gence. Journal of Physics: Materials, 2(3):036001, 2019.

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom
Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard
Rost. Prottrans: Toward understanding the language of life through self-supervised learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10):7112–7127, 2022. doi:
10.1109/TPAMI.2021.3095381.

Ahmed Elnaggar, Hazem Essam, Wafaa Salah-Eldin, Walid Moustafa, Mohamed Elkerdawy, Char-
lotte Rochereau, and Burkhard Rost. Ankh: Optimized protein language model unlocks general-
purpose modelling. arXiv preprint arXiv:2301.06568, 2023.

ESM Team. Esm cambrian: Revealing the mysteries of proteins with unsupervised learning, 2024.
URL https://evolutionaryscale.ai/blog/esm-cambrian.

Elizaveta Fisher, Kirill Pavlenko, Alexander Vlasov, and Galina Ramenskaya. Peptide-based thera-
peutics for oncology. Pharmaceutical medicine, 33(1):9–20, 2019.

Jure Gregorc, Nathalie Lensen, Grégory Chaume, Jernej Iskra, and Thierry Brigaud. Trifluo-
romethylthiolation of tryptophan and tyrosine derivatives: A tool for enhancing the local hydropho-
bicity of peptides. The Journal of Organic Chemistry, 88(18):13169–13177, 2023.

Onkar Gujral, Mihir Bafna, Eric Alm, and Bonnie Berger. Sparse autoencoders uncover biologically
interpretable features in protein language model representations. Proceedings of the National
Academy of Sciences, 122(34):e2506316122, 2025. doi: 10.1073/pnas.2506316122. URL https:
//www.pnas.org/doi/abs/10.1073/pnas.2506316122.

Antoine Henninot, James C Collins, and John M Nuss. The current state of peptide drug discovery:
back to the future? Journal of medicinal chemistry, 61(4):1382–1414, 2018.

Xiaojuan Hu, Maja-Olivia Lenz-Himmer, and Carsten Baldauf. Better force fields start with better
data: A data set of cation dipeptide interactions. Scientific Data, 9(1):327, 2022.

Andrea Hunklinger and Noelia Ferruz. Toward the explainability of protein language models, 2025.
URL https://arxiv.org/abs/2506.19532.

Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint arXiv:1902.10186,
2019.

Kjell Jorner, Anna Tomberg, Christoph Bauer, Christian Sköld, and Per-Ola Norrby. Organic reactivity
from mechanism to machine learning. Nature Reviews Chemistry, 5(4):240–255, 2021.

10

https://evolutionaryscale.ai/blog/esm-cambrian
https://www.pnas.org/doi/abs/10.1073/pnas.2506316122
https://www.pnas.org/doi/abs/10.1073/pnas.2506316122
https://arxiv.org/abs/2506.19532

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

G Landrum et al. Rdkit: cheminformatics and machine learning software. RDKIT. ORG, 232, 2013.

Byungju Lee, Jaekyun Yoo, and Kisuk Kang. Predicting the chemical reactivity of organic materials
using a machine-learning approach. Chemical science, 11(30):7813–7822, 2020.

Hirotomo Moriwaki, Yu-Shi Tian, Norihito Kawashita, and Tatsuya Takagi. Mordred: a molecular
descriptor calculator. Journal of cheminformatics, 10(1):4, 2018.

Shaylee C Peterson and Arden R Barry. Effect of glucagon-like peptide-1 receptor agonists on
all-cause mortality and cardiovascular outcomes: a meta-analysis. Current Diabetes Reviews, 14
(3):273–279, 2018.

Dongya Qin, Linna Jiao, Ruihong Wang, Yi Zhao, Youjin Hao, and Guizhao Liang. Prediction of
antioxidant peptides using a quantitative structure- activity relationship predictor (anoxpp) based
on bidirectional long short-term memory neural network and interpretable amino acid descriptors.
Computers in Biology and Medicine, 154:106591, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Ali Raza, Jamal Uddin, Abdullah Almuhaimeed, Shahid Akbar, Quan Zou, and Ashfaq Ahmad. Aips-
sntcn: Predicting anti-inflammatory peptides using fasttext and transformer encoder-based hybrid
word embedding with self-normalized temporal convolutional networks. Journal of chemical
information and modeling, 63(21):6537–6554, 2023.

Taha Rezai, Jonathan E Bock, Mai V Zhou, Chakrapani Kalyanaraman, R Scott Lokey, and Matthew P
Jacobson. Conformational flexibility, internal hydrogen bonding, and passive membrane perme-
ability: successful in silico prediction of the relative permeabilities of cyclic peptides. Journal of
the American Chemical Society, 128(43):14073–14080, 2006.

Eric W Sayers, Jeff Beck, Evan E Bolton, J Rodney Brister, Jessica Chan, Donald C Comeau, Ryan
Connor, Michael DiCuccio, Catherine M Farrell, Michael Feldgarden, et al. Database resources of
the national center for biotechnology information. Nucleic acids research, 52(D1):D33, 2023.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Elana Simon and James Zou. Interplm: Discovering interpretable features in protein language models
via sparse autoencoders. Nature Methods, pp. 1–11, 2025.

Marcelo DT Torres, Shanmugapriya Sothiselvam, Timothy K Lu, and Cesar de la Fuente-Nunez.
Peptide design principles for antimicrobial applications. Journal of molecular biology, 431(18):
3547–3567, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Clara G Victorio and Nicholas Sawyer. Folding-assisted peptide disulfide formation and dimerization.
ACS Chemical Biology, 18(7):1480–1486, 2023.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Yuting Xu, Deeptak Verma, Robert P Sheridan, Andy Liaw, Junshui Ma, Nicholas M Marshall, John
McIntosh, Edward C Sherer, Vladimir Svetnik, and Jennifer M Johnston. Deep dive into machine
learning models for protein engineering. Journal of chemical information and modeling, 60(6):
2773–2790, 2020.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Balancing learning and inference
in variational autoencoders. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 5885–5892, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX A

Table 4: Full list of chemical descriptors used for monomer-wise peptide sequence description.

Property Descriptors

Mass exactmw, amw

Lipophilicity and Solubility CrippenClogP, CrippenMR

Hydrogen bonds lipinskiHBA, lipinskiHBD, NumRotatableBonds, NumHBD,
NumHBA

Structural descriptors NumHeavyAtoms, NumAtoms, NumHeteroatoms, Nu-
mAmideBonds, FractionCSP3

Ring Structures NumRings, NumAromaticRings, NumAliphaticRings, NumSaturat-
edRings, NumHeterocycles, NumAromatic Heterocycles, NumSat-
uratedHeterocycles, NumAliphatic Heterocycles, NumSpiroAtoms,
NumBridgeheadAtoms

Topological indices chi0v, chi1v, chi2v, chi3v, chi4v, chi0n, chi1n, chi2n, chi3n, chi4n,
hallKierAlpha, kappa1, kappa2, kappa3

Polar surface tpsa

Surface area labuteASA

Energy Ca2+ Interaction energy, Mg2+ Interaction energy, Ba2+ Interaction
energy

Other descriptors Phi

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B APPENDIX B

Table 5: Hyperparameter configurations for experimental model variants. 1-30 CAE; 31-49 VAE; 50
Transformer; 51 GRU; 52 LSTM; 53 BiLSTM; 54 BiLSTM + attention; 55-80 cBiLSTM. Horizontal
lines stands for different experimental stages, details are provided in Comment column.

Architecture Trainable
parameters

Hyperparameters Comment

1 511943 batch size = 64
filters = 46
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Number of filters is
constant

2 511943 batch size = 64
filters = 46
pool size = 2-2-2-2-2-3
depth (number of layer blocks) = 6
loss function = MSE

Number of filters is
constant

3 61536 batch size = 64
filters = 46
pool size = 4-3-2-2-2
depth (number of layer blocks) = 5
loss function = MSE

Number of filters is
constant

4 61536 batch size = 64
filters = 46
pool size = 2-2-2-3-4
depth (number of layer blocks) = 5
loss function = MSE

Number of filters is
constant

5 42500 batch size = 64
filters = 46
pool size = 8-3-2-2
depth (number of layer blocks) = 4
loss function = MSE

Number of filters is
constant

6 42500 batch size = 64
filters = 46
pool size = 4
depth (number of layer blocks) =
2-2-3-8
loss function = MSE

Number of filters is
constant

7 735000 batch size = 64
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Filters decrease:
368-184-92-46-23-
1

8 1809052 batch size = 64
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Filters decrease:
368-368-184-92-
46-1. Optimal
architecture in the
first stage

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

9 461482 batch size = 64
filters = 184
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Filters decrease:
184-184-92-46-23-
1

10 257000 batch size = 64
filters = 184
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Filters decrease:
184-92-92-46-23-1

11 148000 batch size = 64
filters = 92
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Filters decrease:
92-92-46-46-23-1

12 205000 batch size = 64
filters = 184
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Filters decrease:
184-92-46-23-11-1

13 2901000 batch size = 64
filters = 736
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Filters decrease:
736-368-184-92-
46-1

14 133 463 996 batch size = 64
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Add attention layers
to encoder

15 265118940 batch size = 64
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Add attention layers
to encoder and
decoder

16 1809052 batch size = 48
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Decrease batch size

17 1809052 batch size = 32
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Decrease batch size

18 1809052 batch size = 24
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Decrease batch size

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

19 1809052 batch size = 16
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Decrease batch size

20 4337672 batch size = 32
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Additional Conv2D
layers in each block

21 8982890 batch size = 32
filters = 460
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Increase number of
filters

22 94469672 batch size = 32
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Add 7 Dense layers
to latent space

23 62295982 batch size = 32
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Add 2 Dense layers
to latent space

24 30 122 292 batch size = 32
filters = 368
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Add 1 Dense layer
to latent space

25 4685330 batch size = 32
filters = 46
pool size = 96
depth (number of layer blocks) = 1
loss function = MSE

26 4702534 batch size = 32
filters = 46
pool size = 48-2
depth (number of layer blocks) = 2
loss function = MSE

27 4719738 batch size = 32
filters = 46
pool size = 24-2-2
depth (number of layer blocks) = 3
loss function = MSE

28 4736942 batch size = 32
filters = 46
pool size = 12-2-2-2
depth (number of layer blocks) = 4
loss function = MSE

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

29 4754146 batch size = 32
filters = 46
pool size = 6-2-2-2-2
depth (number of layer blocks) = 5
loss function = MSE

30 178490 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE

Dependence of the
number of filters on
the depth - Baseline
CAE

31 176328 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + KL divergence

Add KL divergence

32 176328 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + Wasserstein
distance

Wasserstein
distance

33 176328 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + Shannon diver-
gence

Shannon divergence

34 176328 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + KL divergence

35 176328 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + KL divergence

Add Gaussian noise

36 176328 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + 100 * KL
divergence

37 176328 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + 1000 * KL
divergence

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

38 483010 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2-1-1
depth (number of layer blocks) = 8
loss function = MSE + KL divergence

39 1027236 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2-1-1-1-1
depth (number of layer blocks) = 10
loss function = MSE + KL divergence

40 1876718 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2-1-1-1-1-1-1
depth (number of layer blocks) = 12
loss function = MSE + KL divergence

41 2028048 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2-1-1
depth (number of layer blocks) = 8
loss function = MSE + KL divergence

42 3086554 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2-1-1-1-1
depth (number of layer blocks) = 10
loss function = MSE + KL divergence

43 4 165 944 batch size = 32
filters = filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2-1-1-1-1-1-1
depth (number of layer blocks) = 12
loss function = MSE + KL divergence

44 176328 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + KL divergence

Change layers order

45 9681446 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 20
loss function = MSE + KL divergence

46 176328 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + KL divergence

Remove
tf.Data.Dataset
from data
preprocessing

47 48882 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + KL divergence

convolution kernel
= 2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

48 516184 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + KL divergence

convolution kernel
= 6

49 176328 batch size = 32
filters = height * ((depth - i) / 2)
pool size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss function = MSE + KL divergence +
MMD

InfoVAE loss
function

50 388022 batch size = 32
depth (number of layer blocks) = 3
feed forward dim = 128
embeddings dim = 46
loss function = MSE

Transformer-based
model

51 515676 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE
gru units = 256

GRU-based model

52 295452 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE
lstm units = 160

LSTM-based model

53 256220 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE
bilstm units = 96

BiLSTM-based
model

54 696038 batch size = 32
depth (number of layer blocks) = 3
feed forward dim = 128
embeddings dim = 46
loss function = MSE

BiLSTM-based
model with
attention layers

55 1293788 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Add contrastive loss
function Clustering
on one-hot with
PCA data (2D)

56 1293788 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE + 0.1 * InfoNCE
bilstm units = 96

Add decreasing
coefficient for
contrastive loss
Clustering on
one-hot with PCA
data (2D)

57 1293788 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Clustering on
one-hot data
(without
dimensionality
reduction)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

58 1293788 batch size = 48
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size

59 1293788 batch size = 64
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size

60 1293788 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Dropout rate = 0.2

61 1293788 batch size = 64
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size
Dropout rate = 0.2

62 1293788 batch size = 16
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Decrease batch size

63 1293788 batch size = 8
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Decrease batch size

64 1293788 batch size = 80
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size

65 1293788 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Dropout rate = 0.15

66 1293788 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Dropout rate = 0.05

67 1293788 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Dropout rate = 0.25

68 1293788 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Dropout rate = 0.30

69 1293788 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Dropout rate = 0.35

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

70 1293788 batch size = 48
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size
Dropout rate = 0.05

71 1293788 batch size = 48
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size
Dropout rate = 0.05
Learning rate =
0.0005

72 1293788 batch size = 320
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size

73 1293788 batch size = 320
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size
Dropout rate = 0.05

74 1293788 batch size = 480
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size

75 1293788 batch size = 320
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size
Dropout rate = 0.15

76 1293788 batch size = 320
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size
Dropout rate = 0.20

77 1293788 batch size = 320
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size
Dropout rate = 0.25

78 1293788 batch size = 320
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Increase batch size
Dropout rate = 0.30

79 1293788 batch size = 320
depth (number of layer blocks) = 6
loss function = MSE + InfoNCE
bilstm units = 96

Increase depth

80 1293788 batch size = 32
depth (number of layer blocks) = 3
loss function = MSE + InfoNCE
bilstm units = 96

Exponential decrese
of learning rate
(decay rate = 0.9)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C APPENDIX C

Appendix C provides additional experiments’ results.

Table 6: CAE model benchmarking against existing peptide encoding strategies.

Encoding
type

MCC (5-fold cross validation)

ADP AIP AMP AOP Avg. Min Max

One-hot
0.197

(0.015)
0.216

(0.015)
0.560

(0.004)
0.764

(0.013) 0.434 0.197 0.764

Blosum 0.026
(0.020)

0.290
(0.012)

0.337
(0.015)

0.189
(0.012) 0.211 0.026 0.337

Threemers 0.131
(0.060)

0.357
(0.009)

0.519
(0.003)

0.539
(0.015) 0.387 0.131 0.539

ProtBert 0.334
(0.031)

0.138
(0.021)

0.658
(0.007)

0.580
(0.011) 0.428 0.138 0.658

CAE 0.137
(0.040)

0.336
(0.023)

0.421
(0.014)

0.442
(0.016) 0.334 0.137 0.442

MCC performance per task

Avg. 0.165 0.267 0.499 0.503 - - -

Min 0.026 0.138 0.337 0.189 - - -

Max 0.334 0.357 0.658 0.764 - - -

Table 7: AE-based architectures benchmarking. Results are presented for best-in-class models.

Model
class

MCC (5-fold cross validation)

ADP AIP AMP AOP Avg. Min Max

CAE 0.137
(0.040)

0.336
(0.023)

0.421
(0.014)

0.442
(0.016) 0.334 0.137 0.442

InfoCVAE 0.035
(0.033)

0.019
(0.009)

0.025
(0.008)

-0.024
(0.028) 0.014 -0.024 0.035

Transformer-AE
0.059

(0.024)
0.122

(0.009)
0.465

(0.012)
0.448

(0.019) 0.273 0.059 0.465

BiLSTM-AE -0.004
(0.053)

0.342
(0.009)

0.415
(0.005)

0.496
(0.031) 0.312 -0.004 0.496

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Classification metrics for four benchmark tasks.

Peptide
property Encoding type Accuracy Precision Recall F1 score ROC AUC MCC

ADP

One-hot 0.598
(0.008)

0.596
(0.012)

0.622
(0.033)

0.606
(0.009)

0.597
(0.008)

0.197
(0.015)

Threemers 0.559
(0.030)

0.559
(0.031)

0.559
(0.041)

0.558
(0.034)

0.559
(0.030)

0.119
(0.060)

Blosum 0.513
(0.010)

0.511
(0.008)

0.560
(0.032)

0.533
(0.018)

0.513
(0.010)

0.026
(0.020)

ProtBERT 0.665
(0.016)

0.663
(0.020)

0.682
(0.038)

0.669
(0.019)

0.665
(0.016)

0.334
(0.031)

cBiLSTM-AE 0.638
(0.032)

0.638
(0.034)

0.652
(0.039)

0.643
(0.031)

0.638
(0.032)

0.277
(0.065)

AIP

One-hot 0.656
(0.005)

0.608
(0.013)

0.284
(0.015)

0.386
(0.016)

0.585
(0.007)

0.216
(0.015)

Threemers 0.704
(0.004)

0.637
(0.006)

0.531
(0.014)

0.579
(0.009)

0.671
(0.005)

0.358
(0.009)

Blosum 0.680
(0.005)

0.622
(0.013)

0.420
(0.008)

0.501
(0.007)

0.631
(0.005)

0.290
(0.012)

ProtBERT 0.627
(0.008)

0.527
(0.022)

0.245
(0.012)

0.335
(0.015)

0.554
(0.008)

0.138
(0.021)

cBiLSTM-AE 0.689
(0.004)

0.625
(0.008)

0.468
(0.010)

0.535
(0.007)

0.647
(0.004)

0.316
(0.009)

AMP

One-hot 0.779
(0.002)

0.810
(0.003)

0.728
(0.004)

0.767
(0.002)

0.779
(0.002)

0.560
(0.004)

Threemers 0.759
(0.001)

0.777
(0.003)

0.726
(0.002)

0.751
(0.001)

0.759
(0.001)

0.519
(0.003)

Blosum 0.667
(0.007)

0.693
(0.010)

0.601
(0.007)

0.643
(0.007)

0.667
(0.007)

0.337
(0.015)

ProtBERT 0.828
(0.003)

0.863
(0.005)

0.779
(0.004)

0.819
(0.003)

0.828
(0.003)

0.658
(0.007)

cBiLSTM-AE 0.783
(0.001)

0.807
(0.006)

0.746
(0.007)

0.775
(0.002)

0.783
(0.001)

0.569
(0.002)

AOP

One-hot 0.881
(0.007)

0.889
(0.019)

0.875
(0.011)

0.881
(0.005)

0.881
(0.007)

0.764
(0.013)

Threemers 0.769
(0.008)

0.789
(0.008)

0.737
(0.016)

0.761
(0.009)

0.769
(0.008)

0.540
(0.015)

Blosum 0.592
(0.006)

0.615
(0.006)

0.494
(0.020)

0.547
(0.014)

0.592
(0.006)

0.189
(0.012)

ProtBERT 0.790
(0.006)

0.789
(0.010)

0.792
(0.010)

0.790
(0.005)

0.790
(0.006)

0.580
(0.011)

cBiLSTM-AE 0.846
(0.006)

0.844
(0.006)

0.848
(0.006)

0.846
(0.006)

0.846
(0.006)

0.692
(0.012)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: Regression metrics for four benchmark tasks.

Peptide property Encoding type MAE RMSE R2

ISI

One-hot 15.778 (0.059) 21.263 (0.177) 0.445 (0.004)

Threemers 15.811 (0.049) 21.279 (0.122) 0.444 (0.006)

Blosum 19.637 (0.036) 26.458 (0.143) 0.141 (0.010)

ProtBERT 16.406 (0.059) 22.578 (0.099) 0.374 (0.007)

cBiLSTM-AE 18.021 (0.043) 24.472 (0.113) 0.265 (0.011)

TNC

One-hot 1.157 (0.007) 1.872 (0.019) 0.823 (0.004)

Threemers 1.596 (0.009) 2.443 (0.006) 0.698 (0.006)

Blosum 2.830 (0.006) 4.173 (0.011) 0.119 (0.011)

ProtBERT 1.132 (0.005) 1.731 (0.032) 0.849 (0.004)

cBiLSTM-AE 1.200 (0.007) 1.716 (0.011) 0.851 (0.003)

IEP

One-hot 1.268 (0.002) 1.557 (0.004) 0.694 (0.002)

Threemers 1.397 (0.007) 1.745 (0.009) 0.616 (0.004)

Blosum 2.272 (0.005) 2.660 (0.003) 0.107 (0.003)

ProtBERT 0.930 (0.003) 1.231 (0.003) 0.809 (0.001)

cBiLSTM-AE 1.069 (0.005) 1.375 (0.004) 0.761 (0.002)

MW

One-hot 495.466 (1.437) 738.626 (3.331) 0.937 (0.001)

Threemers 118.957 (1.394) 180.648 (3.629) 0.996 (0.0002)

Blosum 248.439 (1.389) 363.888 (2.251) 0.985 (0.0002)

ProtBERT 552.071 (1.058) 763.360 (1.980) 0.932 (0.0004)

cBiLSTM-AE 75.067 (0.547) 104.754 (0.715) 0.999 (0.00002)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D APPENDIX D

D.1 LIMITATIONS

Sequence length constraints. During training we capped sequences at 96 residues (more than
enough for peptides but small for full-scale proteins) to satisfy the CAE fixed input size. Although
subsequent BiLSTM and transformer variants can process variable lengths, the cap was retained for
experimental consistency, where markedly longer inputs can render the embedding quality; sequences
beyond 96 residues therefore require additional architectural changes.

Handling of peptide modifications. The model supports only 20 canonical residues plus a small
set of predefined modifications. Extending to user-defined or rare modifications would necessitate
(i) quantum-chemical calculations for new DFT descriptors and (ii) updates to the RDKit monomer
dictionary.

Peptide structure limitations. The framework is restricted to linear peptides; branched or cyclic
topologies were excluded. Supporting such structures would entail substantial changes to both
preprocessing and model design and is left for future work.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E APPENDIX E

LLM USAGE STATEMENT

Large language models were used during the preparation of this manuscript solely for text refinement
and stylistic improvement. Specifically, LLMs assisted with phrasing adjustments and ensuring
adherence to academic writing conventions. All scientific content, ideas, and conclusions remain
entirely our own.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F APPENDIX F

Table 10: Correlation between embedding dimensions and instability index.

Peptide property Encoded input feature PCC (r)

ISI

exactmw -0.034
amw 0.071
lipinskiHBA 0.131
lipinskiHBD 0.124
NumRotatableBonds 0.010
NumHBD 0.017
NumHBA 0.101
NumHeavyAtoms 0.040
NumAtoms -0.120
NumHeteroatoms 0.141
NumAmideBonds -0.068
FractionCSP3 0.101
NumRings -0.071
NumAromaticRings -0.253
NumAliphaticRings 0.102
NumSaturatedRings 0.137
NumHeterocycles 0.138
NumAromaticHeterocycles -0.013
NumSaturatedHeterocycles 0.202
NumAliphaticHeterocycles 0.059
NumSpiroAtoms -0.193
NumBridgeheadAtoms -0.020
NumAtomStereoCenters -0.084
NumUnspecifiedAtomStereoCenters 0.022
labuteASA -0.005
tpsa 0.142
CrippenClogP -0.097
CrippenMR 0.047
chi0v -0.057
chi1v -0.049
chi2v 0.059
chi3v 0.069
chi4v 0.076
chi0n 0.007
chi1n -0.036
chi2n 0.007
chi3n 0.001
chi4n 0.016
hallKierAlpha -0.017
kappa1 0.045
kappa2 0.063
kappa3 0.056
Phi -0.008
Ca2+ interaction energy 0.068
Mg2+ interaction energy 0.076
Ba2+ interaction energy 0.084

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 11: Correlation between embedding dimensions and theoretical net charge.

Peptide property Chemical descriptor PCC (r)

TNC

exactmw 0.054
amw -0.063
lipinskiHBA -0.293
lipinskiHBD 0.446
NumRotatableBonds 0.065
NumHBD 0.012
NumHBA 0.006
NumHeavyAtoms -0.469
NumAtoms 0.206
NumHeteroatoms -0.212
NumAmideBonds -0.150
FractionCSP3 0.109
NumRings -0.332
NumAromaticRings -0.320
NumAliphaticRings -0.218
NumSaturatedRings -0.267
NumHeterocycles -0.301
NumAromaticHeterocycles -0.055
NumSaturatedHeterocycles -0.131
NumAliphaticHeterocycles -0.156
NumSpiroAtoms -0.238
NumBridgeheadAtoms -0.006
NumAtomStereoCenters -0.537
NumUnspecifiedAtomStereoCenters -0.033
labuteASA 0.074
tpsa 0.012
CrippenClogP -0.738
CrippenMR 0.075
chi0v 0.179
chi1v -0.055
chi2v 0.013
chi3v 0.032
chi4v 0.022
chi0n 0.254
chi1n 0.147
chi2n -0.140
chi3n -0.109
chi4n -0.140
hallKierAlpha 0.190
kappa1 0.035
kappa2 0.395
kappa3 0.042
Phi 0.402
Ca2+ interaction energy 0.542
Mg2+ interaction energy 0.369
Ba2+ interaction energy 0.375

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 12: Correlation between embedding dimensions and isoelectric point.

Peptide property Chemical descriptor PCC (r)

IEP

exactmw 0.012
amw -0.005
lipinskiHBA -0.150
lipinskiHBD 0.387
NumRotatableBonds 0.028
NumHBD -0.060
NumHBA 0.022
NumHeavyAtoms -0.334
NumAtoms 0.197
NumHeteroatoms -0.091
NumAmideBonds -0.082
FractionCSP3 0.147
NumRings -0.335
NumAromaticRings -0.321
NumAliphaticRings -0.121
NumSaturatedRings -0.216
NumHeterocycles -0.185
NumAromaticHeterocycles 0.030
NumSaturatedHeterocycles -0.064
NumAliphaticHeterocycles -0.162
NumSpiroAtoms -0.215
NumBridgeheadAtoms 0.061
NumAtomStereoCenters -0.392
NumUnspecifiedAtomStereoCenters 0.043
labuteASA 0.015
tpsa 0.079
CrippenClogP -0.620
CrippenMR 0.029
chi0v 0.110
chi1v -0.112
chi2v 0.076
chi3v 0.062
chi4v 0.033
chi0n 0.220
chi1n 0.084
chi2n -0.130
chi3n -0.069
chi4n -0.135
hallKierAlpha 0.150
kappa1 0.095
kappa2 0.359
kappa3 0.105
Phi 0.367
Ca2+ interaction energy 0.494
Mg2+ interaction energy 0.365
Ba2+ interaction energy 0.371

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 13: Correlation between embedding dimensions and molecular weight.

Peptide property Chemical descriptor PCC (r)

MW

exactmw -0.601
amw 0.825
lipinskiHBA 0.725
lipinskiHBD 0.192
NumRotatableBonds -0.281
NumHBD -0.948
NumHBA 0.726
NumHeavyAtoms 0.730
NumAtoms -0.090
NumHeteroatoms 0.828
NumAmideBonds 0.472
FractionCSP3 0.154
NumRings -0.294
NumAromaticRings -0.196
NumAliphaticRings 0.546
NumSaturatedRings -0.368
NumHeterocycles 0.327
NumAromaticHeterocycles 0.927
NumSaturatedHeterocycles 0.176
NumAliphaticHeterocycles -0.740
NumSpiroAtoms -0.556
NumBridgeheadAtoms 0.819
NumAtomStereoCenters 0.138
NumUnspecifiedAtomStereoCenters 0.979
labuteASA -0.451
tpsa 0.774
CrippenClogP -0.257
CrippenMR -0.272
chi0v -0.687
chi1v -0.994
chi2v 0.992
chi3v 0.766
chi4v 0.386
chi0n -0.350
chi1n -0.488
chi2n -0.040
chi3n 0.434
chi4n -0.006
hallKierAlpha -0.257
kappa1 0.849
kappa2 0.685
kappa3 0.989
Phi 0.732
Ca2+ interaction energy 0.734
Mg2+ interaction energy 0.888
Ba2+ interaction energy 0.883

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 14: Regression tasks results.

Encoding
type

R2 (5-fold cross validation)

ISI TNC IEP MW Avg. Min Max

One-hot 0.445
(0.004)

0.823
(0.004)

0.694
(0.002)

0.937
(0.001) 0.725 0.445 0.937

Blosum 0.141
(0.010)

0.119
(0.011)

0.107
(0.003)

0.985
(0.000) 0.338 0.107 0.985

Threemers
0.444

(0.006)
0.698

(0.006)
0.616

(0.004)
0.996

(0.000) 0.689 0.444 0.996

cBiLSTM-AE 0.265
(0.011)

0.851
(0.003)

0.761
(0.002)

0.999
(0.000) 0.719 0.265 0.999

30

	Introduction
	Related works
	Methods
	Context and motivation
	Data collection
	Molecular descriptors
	DFT-derived descriptors
	AE-based architectures
	Contrastive learning implementation
	Soft non-diagonality penalty
	Computational resources

	Experiments
	Benchmark datasets
	Experimental setup
	AE-based architectures benchmarking
	Clustering-based contrastive learning
	Soft non-diagonality penalty
	dcBiLSTM-AE embeddings correlation analysis

	Discussion
	Model screening and optimization
	Embedding space interpretability studies

	Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Limitations

	Appendix E
	Appendix F

