Under review as a conference paper at ICLR 2026

SOFT NON-DIAGONALITY PENALTY ENABLES LATENT
SPACE-LEVEL INTERPRETABILITY OF PLM AT NO PER-
FORMANCE COST

Anonymous authors
Paper under double-blind review

ABSTRACT

Emergence of large scale protein language models (pLMs) has led to significant
performance gains in predictive protein modeling. However, it comes at a high price
of interpretability, and efforts to push representation learning towards explainable
feature spaces remain scarce. The prevailing use of domain-agnostic and sparse
encodings in such models fosters a perception that developing both parameter-
efficient and generalizable models in a low-data regime is not feasible. In this work,
we explore an alternative approach to develop compact models with interpretable
embeddings while maintaining competitive performance. With the Bidirectional
Long Short-Term Memory Autoencoder (BiLSTM-AE) model as an example
trained on positional property matrices, we introduce a soft weight matrix non-
diagonality penalty. Through Jacobian analysis, we show that this penalty aligns
embeddings with the initial feature space while leading to a marginal increase in
performance on a suite of four common peptide biological activity classification
benchmarks. Moreover, it was demonstrated that the use of one-hot encoded
sequence clustering-based contrastive loss to produce semantically meaningful
latent space allows to further improve benchmarking performance. The use of
amino acid physicochemical properties and density functional theory (DFT) derived
cofactor interaction energies as input features provides a foundation for intrinsic
interpretability, which we demonstrate on fundamental peptide properties. The
resulting model is over 33,000 times more compact than the state-of-the-art pPLM
ProtT5. It demonstrates performance stability across diverse benchmarks without
task-specific fine-tuning, showcasing that domain-tailored architectural design
can yield highly parameter-efficient models with fast inference and preserved
generalization capabilities.

1 INTRODUCTION

Machine learning (ML) has achieved substantial progress in drug discovery (Jorner et al., 2021}
Lee et al.| 2020), supported by representations such as SMILES (Weininger, [1988), which can be
converted into molecular graphs and used to calculate interpretable chemical descriptors using RDKit
(Landrum et al.,|2013) or Mordred (Moriwaki et al., [2018)). However, these representations become
limiting for biopolymers due to their higher structural complexity. Peptides, a class of biopolymers
composed of <100 amino acids, exhibit various conformations governed by hydrogen bonding,
hydrophobic interactions, metal coordination, and disulfide bridges (Gregorc et al., 2023} |Rezai et al.,
2006; |Victorio & Sawyer, 2023). Their larger contact surface and rich interaction patterns make them
highly selective and effective therapeutic agents (Henninot et al.| | 2018} [Fisher et al., 2019} |Peterson
& Barry, [2018; Torres et al., 2019). At the same time, their biological activity depends on a sequence
context that is difficult to capture with small-molecule—oriented descriptors.

ML methods are widely used in peptide research (Basith et al.| 2020), and peptide representations
typically follow two directions: property-based and sequence-based (Xu et al.,[2020). The first relies
on physicochemical descriptors and provides interpretability, but does not account for positional
context. The second captures sequence-level information, yet lacks explicit chemical grounding
and interpretability. In practice, models built on either approach tend to be task-specific. This
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motivates the need for representations that combine contextual modeling with chemically meaningful,
interpretable structure.

Using a Bidirectional Long Short-Term Memory Autoencoder (BiLSTM-AE) trained on positional
property matrices, we introduce a soft penalty on off-diagonal weight-matrix elements together
with diagonal initialization. This encourages feature disentanglement and aligns latent dimensions
with the original physicochemical feature space. Jacobian-based analysis confirms that the penalty
enforces this alignment while slightly improving performance across four peptide biological activity
classification benchmarks.

We further show that incorporating one-hot encoded sequences clustering-based contrastive loss
produces more semantically structured latent spaces, leading to additional performance gains. Because
the model operates directly on amino acid physicochemical properties, including interaction energies
derived from density functional theory (DFT), it naturally supports intrinsic interpretability. We
illustrate this using regression tasks on fundamental peptide physicochemical properties.

To more fairly compare embeddings across benchmarking datasets, we introduce average Shannon
entropy and Levenshtein distance based measures to approximate sequence and dataset complexity,
since dataset size alone does not reliably predict model performance. Despite its compactness -
being >4,000, >12,000, and >6,000 times more compact than ProtBERT (Elnaggar et al.| [2022),
Ankh-large (Elnaggar et al.| 2023), and ESM-C (600M) (ESM Team| [2024), respectively - our
model achieves competitive results. It surpasses all baselines on anti-inflammatory peptide prediction
(AIP) , matches Ankh-large on antimicrobial peptides (AMP), performs comparably to ESM-C
on anti-oxidative peptides (AOP), and outperforms ProtBERT on AOP and anti-diabetic peptide
prediction (ADP) . Based on Matthew’s correlation coefficient (MCC), it also shows the second-
highest performance stability across all tasks after Ankh-large.

Overall, our model is more than 33,000 times more compact than the state-of-the-art (SOTA)
protein language model (pLM) ProtT5-3B (Elnaggar et al., [2022)and achieves stable performance
across diverse peptide tasks without task-specific fine-tuning. This illustrates that domain-tailored
architectures can yield parameter-efficient models with fast inference and strong generalization. At the
same time, scaling such interpretable models remains a challenge and warrants further investigation
to close the performance gap with the largest protein language models.

Key contributions:

* We introduce a soft penalty on off-diagonal weight-matrix elements combined with diagonal
initialization in a BILSTM-AE, enabling feature disentanglement and alignment of latent
dimensions with amino acid physicochemical properties.

* We demonstrate latent-space interpretability through feature importance and correlation
analysis in four regression tasks involving fundamental peptide physicochemical properties.

* We show that the resulting model achieves competitive or superior performance to ProtBERT,
Ankh-large, and ESM-C on four peptide biological activity classification benchmarks while
remaining intrinsically interpretable.

* We find that embeddings from many existing protein language models still perform com-
parably to simple one-hot baselines on peptide tasks, highlighting ongoing challenges in
peptide-specific representation learning with domain-agnostic large models.

* We show that the proposed non-diagonality penalty contributes to a small but consistent
improvement in benchmark performance within our architecture and training setup.

* We demonstrate that our final model is 3—4 orders of magnitude more parameter-efficient
than ProtBERT, ESM-C, Ankh, and ProtT5-3B while trained on datasets at least two orders
of magnitude smaller and without task-specific fine-tuning.

2 RELATED WORKS

Current SOTA pLMs are largely based on the Transformer architecture (Vaswani et al.,[2017), adapted
to biological sequences, and pre-trained on massive protein corpora. Representative models such as
ProtBERT and ProtT5 extend the BERT (Devlin et al.,2019) and T5 (Raffel et al.| [2020) architectures
to enable effective transfer learning across diverse protein tasks. The ESM family further scales
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this paradigm, with models like ESM-Cambrian leveraging hundreds of millions of parameters
to capture evolutionary and structural regularities at large scale. The Ankh work systematically
explores architectural design choices: span masking, activation functions, positional encodings, to
optimize Transformer-based pLMs for protein modeling. Despite architectural differences, these
models share an important limitation: their interpretability relies primarily on analyzing self-attention
patterns. Although attention maps can highlight residue-residue interactions or structural contacts,
they are often noisy, vary widely between layers and heads, and do not reliably correspond to causal
importance (Jain & Wallace, [2019)).

Motivated by this limitation, a variety of post-hoc interpretability methods have been developed.
Attribution techniques, such as attention analysis, probing, and gradient-based methods, aim to
uncover sequence elements that influence model outputs but do not alter or structure the latent space
itself (Hunklinger & Ferruz} 2025). Sparse autoencoders (SAEs) offer a recent alternative by training
sparse decoders on pLM activations to extract biologically meaningful latent factors (Gujral et al.,
2025} |Simon & Zou, 2025). These methods reveal that pLM representations encode useful but highly
entangled structure. As a result, both attribution-based approaches and SAEs provide useful insight
but remain fundamentally post-hoc and limited in their ability to shape embedding space.

In contrast, intrinsically interpretable peptide representation learning remains relatively underexplored.
Existing approaches often sacrifice contextual modeling capacity or rely heavily on manual feature
engineering. Our work addresses this gap by introducing an inductive bias directly into a sequence
model: a soft non-diagonality penalty that encourages latent dimensions to align with predefined
physicochemical feature axes. This design embeds interpretability into the model itself, producing
disentangled chemically grounded representations while preserving the contextual expressiveness of
recurrent architectures.

3 METHODS

3.1 CONTEXT AND MOTIVATION

The proposed method constructs property matrices for peptides from physico-chemical descriptors
of 20 canonical residues and 2 prevalent modifications. It uses 43 molecular features and 3 DFT-
derived. Convolutional autoencoders (CAE) serve as a baseline, while recurrent and transformer
variants are introduced to capture long-range dependencies. The embeddings are further refined using
Information Noise-Contrastive Estimation (InfoNCE) based contrastive loss. Positive and negative
pairs are generated via MiniBatchKMeans clustering of one-hot encoded sequences, ensuring that
the interpretable property space corresponds to empirically effective sequence encodings. A soft
non-diagonality penalty guides embedding features toward the original physicochemical space, with
feature relationships quantified using the Jacobian matrix (see Section 3.7). An overview of the full
processing pipeline is shown in Figure[I]

3.2 DATA COLLECTION

For model training, we retrieved unlabeled unique peptide sequences containing no extra monomers
from the NCBI database (Sayers et al.,|2023)), yielding 6,749,334 sequences. A sampling procedure
is implemented to reduce data volume and computational costs while preserving diversity: peptides
are grouped by the most frequently occurring amino acids. This allowed us to maintain balanced
composition over sequence length distribution. Consequently, small (S) and big (B) datasets are
constructed through clustering peptide sequences based on amino acid frequency vectors, with the
initial number of clusters equal to the unique amino acids. Then, the unique clusters are identified on
the basis of the most represented residues for stratified sampling; the minimum number of samples is
determined to prevent under-representation of smaller clusters. A small fraction (1%) of sequences
forms dataset S; a medium fraction (10%) is sampled for dataset B. Finally, the subsets are combined
to create the final datasets. Cluster-based stratified sampling facilitated the formation of manageable
datasets, where the final model is trained using the dataset S comprising 155,920 sequences. Final
data scaling experiment is performed on dataset B comprising 467,792 sequences.
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Figure 1: Overview of the proposed pipeline.

3.3 MOLECULAR DESCRIPTORS

A total of 43 molecular RDKit descriptors are used to characterize the properties of amino acids (see
Appendix A), which were normalized to a range of [-1, 1]. Each peptide sequence is represented as a
feature array based on these descriptors and DFT features (see Section 3.4 for details), with padding
applied to align all sequences to a uniform length of 96 amino acids.

3.4 DFT-DERIVED DESCRIPTORS

This group of descriptors includes three parameters derived from the interactions energies of amino
acids with divalent metal cations: calcium (Ca®"), magnesium (Mg2+), and barium (Ba?"), obtained
through DFT calculations. Detailed methodology is described in Hu et al.| (2022)), with data available
in the NOMAD database (Draxl & Scheffler, 2019). The free energy values are extracted using the
NOMAD API and categorized into four groups: complexes with Mg?*, Ca®", and Ba®" cations
and isolated amino acid conformers. For each amino acid, average free energy values across all
conformers is calculated, and interaction descriptors are derived by normalizing the differences
between complex and isolated free energy values.

3.5 AE-BASED ARCHITECTURES

Convolutional and Variational Autoencoders (CAE/VAEs). CAE-based models with per-feature
convolutions were treated as a baseline to study the model performance when features were not mixed
at all due to architectural restrictions. We then implemented a probabilistic framework by replacing
the deterministic latent space of CAE with a variational latent space. This approach encourages
smoother, more continuous latent representations, potentially mitigating sparsity. Experiments were
conducted with multiple VAE variants, including 3-VAE and InfoVAE. Hyperparameters, including
the KL divergence weight (3), were chosen from a predetermined grid, this ensured an unbiased
evaluation of embedding quality.

BiLSTM. Given the sequential nature of the data, BILSTM-based architectures were used to capture
long-range dependencies. Unlike unidirectional recurrent models, BiLSTM leverages both forward
and backward contexts, enabling a more comprehensive understanding of sequence information. We
hypothesized that this bidirectional approach would enhance the quality of the generated embeddings,
making them more effective for downstream tasks.
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Transformer-Based Models. Motivated by the success of transformer architectures in natural
language processing, we tested a transformer-based AE. Transformers leverage self-attention mecha-
nisms to capture global dependencies, typical in peptide sequences.

Each of the architectures described in this section was trained using the same dataset S and evaluated
on identical downstream tasks to ensure a fair comparison with the benchmark encoding strategies
(see Appendix B).

3.6 CONTRASTIVE LEARNING IMPLEMENTATION

Contrastive learning was implemented to enhance embedding quality by drawing positive pairs closer
in latent space and separating negative pairs.

Positive and Negative Pair Construction. Given the unique properties of peptide sequences, we
designed a domain-specific strategy for constructing positive and negative pairs:

* Positive Pairs: Positive pairs were obtained by MiniBatchKMeans clustering of one-hot
encoded peptides; k was selected via the Elbow criterion, and peptides sharing a cluster
were deemed positives.

* Negative Pairs: Peptides from different clusters were treated as negatives.

Contrastive Loss Function. Utilized contrastive loss is based on the InfoNCE objective:

sim(z,z7
exp(*nz2))

K sim(z,z;) \ ’
STy exp(TmER)

where z = E(x), E(-) is the encoder, sim(-, -) denotes a similarity measure (e.g., cosine similarity),
K is the number of negative samples in a batch, and 7 > 0 is a temperature hyperparameter.
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3.7 SOFT NON-DIAGONALITY PENALTY

For the BiLSTM architecture described above, we introduce an additional regularization mechanism
to reduce feature entanglement during training.

To achieve this, two complementary techniques are employed. First, we apply a soft penalty specifi-
cally to the off-diagonal elements of the BILSTM weight matrices. For a weight matrix M € R"*",
the penalty term is defined as the mean of squared off-diagonal elements:

_Mea-n3

n-n

L )
where ® denotes the Hadamard product, [ is the identity matrix, and 1 is a matrix of ones. The total
penalty is the sum of all weight matrices, scaled by a coefficient \:

Lotraiog =N Y Lu 3)
Mew

Here, W comprises all input-to-hidden and hidden-to-hidden weight matrices of the BILSTM layers.
Second, we use forced diagonal weight initialization as an inductive bias. The combined effect
encourages the model to maintain nearly diagonal weight transformations throughout training.

We additionally evaluated hard diagonalization - strict constraints enforcing zero off-diagonal weights.
Although theoretically appealing, this formulation restricted the optimization to an extremely narrow
feasible set, preventing stable convergence of the reconstruction and contrastive objectives. Because
these difficulties occurred during optimization itself, we did not pursue the hard constraint further.
The soft formulation preserves differentiability and allows the optimization to proceed while still
encouraging near-diagonal structure.

To quantitatively evaluate the degree of feature disentanglement, we propose a diagonality metric
based on the encoder’s Jacobian. We compute the mean absolute Jacobian J € RP:»*Pout gver the
dataset. The diagonality metric is then defined as:



Under review as a conference paper at ICLR 2026

Z- _ii
D=="— “4)
Zi,j Jij

A value of D close to 1 indicates a strong feature-wise separation.

3.8 COMPUTATIONAL RESOURCES

All calculations were performed on a server with a general configuration consisting of 6 A6000
GPUs, 256 cores, AMD EPYC 7763 64-Core Processor, 512 GB RAM. The training procedure was
performed using 2 GPUs and 50 GB RAM.

4 EXPERIMENTS

4.1 BENCHMARK DATASETS

We performed benchmarking of all the models mentioned in the paper on four public peptide
biological activity classification datasets: antimicrobial (AMP) (Cao et al., 2023, anti-inflammatory
(AIP) (Raza et al., 2023)), antidiabetic (ADP) (Chen et al.,[2022)), and antioxidant (AOP) (Qin et al.|
2023)). Dataset statistics covering size, sequence complexity, and data imbalance are summarized in
Table 1. Sequence complexity is described here by several parameters including length statistics, as
well as average Shannon entropy characterizing the extent of non-equiprobability of amino acids per
sequence and average Levenshtein distance showing inter-sequence dissimilarity. Based on these
statistics, ADP appears to be the most challenging dataset based on dataset size and high values of
average Shannon entropy, Levenshtein distance, as well as length spread.

Table 1: Main statistics of benchmark datasets. Average Levenshtein distance characterizes the
diversity of sequences by measuring the pairwise differences. Average Shannon entropy characterizes
the diversity of amino acids within a single sequence by quantifying the average level of uncertainty
associated with all types of amino acids.

Avg. Avg. .
Dataset of [lll:g;ies Levenshtein Shannon lglvggth leMnlgI;h llevrllag)t(il sai(;fl/gl*eagtio
distance entropy
ADP 472 19.204+4.26 3.22+£0.16 19.60 £ 5.09 11 41 1.00
AIP 3790 1548 +2.36 3.15+0.11 16.39 +2.62 11 30 0.76
AMP 8268 18.38 £4.21 3.03£0.26 18.53£5.34 11 30 1.00
AOP 2120 7.12+3.58 2.03+048 5.92+3.66 2 20 1.00

4.2 EXPERIMENTAL SETUP

This section presents the experimental framework for evaluating the quality and generalizability of
the embeddings generated by our model. The assessment was conducted on four peptide classification
datasets encompassing distinct biological activities (detailed in Section 4.1). To isolate the evaluation
on the embedding quality itself, rather than the complexity of a deep learning classifier, we employed
a classical gradient boosting model as a simple yet effective downstream predictor (Shwartz-Ziv &
/Armon), 2022)). The primary metric for comparison was the MCC, chosen for its informativeness and
robustness to class imbalance (Chicco & Jurman, 2020) — a property particularly relevant for datasets
like AIP, as evidenced by the statistics in Table 1. For reliable model assessment, we employed a
rigorous 5-fold cross-validation protocol, reporting both the mean metric values and their standard
errors (the latter indicated in parentheses).

Our comparative analysis includes three conventional peptide encoding methods: one-hot encoding,
BLOSUMG62, and 3-mer counts, and several SOTA pLMs: ProtBERT, Ankh-large, ESM-C (600M),
and ProtT5-3B. The following subsections detail the development and optimization experiments for
our model, with results provided in Appendixes C and F (Tables 6 through 14). The final comparative
benchmarking results against all baselines are consolidated in Section 4.5 (Table 2).
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4.3 AE-BASED ARCHITECTURES BENCHMARKING

We begin by establishing a reference using a CAE with per-feature convolutions, which serves as
a baseline where no feature mixing is possible due to the architectural structure. Results for all
encodings with the CAE model are shown in Appendix C.

To perform a systematic comparison, we evaluated a pre-specified set of 80 models across four AE
families: CAEs, VAEs (incl. Info-VAE, 3-VAE), BiLSTM-AEs, and transformer-AEs—each trained
under a fixed grid of hyperparameters (Appendix B). The embeddings were evaluated with the
same downstream predictor as the baseline and benchmark encodings (see Section 4.2). Subsequent
methodological developments were implemented using the BiLSTM-AE architecture due to its
suitability for sequential inputs and stable training dynamics (see Table 7).

4.4 CLUSTERING-BASED CONTRASTIVE LEARNING

We next incorporated a contrastive learning component (Section 3.6) to explicitly structure the latent
space by drawing similar peptides closer while pushing dissimilar ones apart. The comparison results
for BILSTM-AE (cBiLSTM-AE) with the benchmark encodings appear in Table 2.

4.5 SOFT NON-DIAGONALITY PENALTY

To enforce feature disentanglement within the model, we applied a soft penalty to the off-diagonal
elements of the weight matrices (as detailed in Section 3.7). Our evaluation includes two main
parts: (1) a comprehensive benchmarking of cBiLSTM-AE model with soft non-diagonality penalty
(dcBiLSTM-AE) against all baselines (see Section 4.2 for details), and (2) a scalability analysis where
the model was trained on a large-scale dataset B. The results of both the comparative benchmarking
and the scalability experiment are consolidated in Table 2.

Table 2: dcBiLSTM-AE model benchmarking. No preliminary fine-tuning on tasks was performed
for any of the models.

Encoding Mpdel Data_sgt MCC (5-fold cross validation) Ave. Min  Max
type size  for training Anti Anti Anti Anti
diabetic  inflammatory microbial oxidant
One-hot N/A N/A (8 (1)?;) (8(2) i g) <8(5)82) (8(7)?; 0.434  0.197 0.764
Blosum N/A N/A (8858) (83?(2)) (8?):;;) (8(1)%) 0.211  0.026 0.337
Threemers N/A N/A (8(1)2(1)) (g?)(s);) <88(1)2) (88?2) 0.387 0.131 0.539
ProtBert 420M 217M (88?{) (8(1);% (%) (88?(1)) 0.428 0.138 0.658
ESM C 600M - % (8(1)?;) (ggzg) (8(7)?5) 0.517 0.193 0.761
Ankh IS8 59M (00':”;)7342)) (8:(3)??) <8:8(1)‘7‘) (gf;‘g) 0596 0335 0.863
BILSTM-AE  13M  0.15M (-()().k())s();) (8:335) (813(1)2) (8232?) 0312 -0.004 0.49
cBILSTM-AE 1.3M 0.15M (8322) (88(1)8) (8883) (88?5) 0464 0277 0.692
dcBiLSTM-AE 90K 0.15M (88;;) (%) (88(1) é) (%) 0.528 0.355 0.775
dcBiILSTM-AE 90K 047™M (8833) (888;) (88(9)3) (83?(6)) 0.503  0.327 0.750
Profts B e OSSR 0se 08 0G0 o s

4.6 DCBILSTM-AE EMBEDDINGS CORRELATION ANALYSIS

To assess representational fidelity, we computed four physicochemical properties on the dataset S test
split (see Section 3.2). Targets were chosen to be analytically computable for interpretation clarity,
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yet being functionally relevant: instability index (ISI), theoretical net charge (TNC), isoelectric point
(IEP), and molecular weight (MW). Correlating these clear whole-peptide properties with interpretable
feature space reveals the extent to which the embeddings capture monomer-level physicochemical
structure. (Table 3). The same protocol was applied to earlier encodings (Table 14).

5 DISCUSSION

5.1 MODEL SCREENING AND OPTIMIZATION

We initially benchmarked common peptide encoding strategies along with the baseline CAE model on
four datasets (Table 1) to characterize task complexity and establish baseline performance. AMP and
AOQP datasets were generally easier for the models to classify (MCC = 0.499 and 0.503, respectively;
Table 6), while ADP and AIP proved more challenging (MCC = 0.165 and 0.267). This difficulty
correlates with high Shannon entropies and large inter-sequence Levenshtein distances, combined
with relatively small dataset sizes. The baseline CAE achieved moderate performance (Table 6):
fourth out of five in AMP and AOP, third in ADP, and second in AIP. Notably, CAE performed
relatively better on the more challenging datasets, achieving comparable rankings to ProtBERT.

To improve embedding quality, we evaluated architectures designed for sequential data, including
BiLSTM and transformer-based autoencoders. Additionally, we tested the InfoCVAE model (Zhao
et al.,|2019), which addresses potential latent space sparsity and mitigates the tendency of VAEs to
ignore latent variables when using flexible decoders. The results of the AE-based models screening
stage are summarized in Table 7. CAE and BiLSTM-AE showed comparable performance, while the
transformer-based AE was less stable during training. The BILSTM-AE was selected for subsequent
experiments due to its architectural suitability for sequential inputs and stable training dynamics.

We incorporated contrastive learning into the training process (details in Section 3.6) to further
structure the latent space, using one-hot encoded sequences as an initial reference. As demonstrated
in Table 2, contrastive learning increased the model’s predictive metrics compared with both the
one-hot baseline and the original BiLSTM-AE.

To mitigate feature entanglement, we implemented a feature disentanglement procedure (Section
3.7), combining forced diagonal initialization with a soft penalty. Although this structural constraint
could potentially reduce predictive capacity, the results in Table 2 indicate that performance was
slightly improved. This suggests that the imposed structural bias acts as a useful regularizer, effec-
tively guiding the learning process. This procedure also enabled interpretability of the latent space,
quantified by a diagonality metric of 49.4% for the dcBiLSTM-AE model (Section 3.7).

These results demonstrate that our model consistently delivers stable and robust performance across
the evaluated cases including ADPs and AIPs being the most problematic for all encoding strategies
under the study, while showing latent space-level interpretability. For instance, although dominance
in raw performance is not the main aim of this research, in two out of four tasks our method achieved
higher MCC than the ProtBERT model. This result is particularly remarkable given that our model
has no preliminary fine-tuning step (thereby, excluding a trivial explanation that the model performs
well due to overfitting) and operates with >4,000 times fewer trainable parameters. This drastic
reduction in model complexity underscores the efficiency, while still achieving competitive and
reliable performance across diverse tasks. Detailed discussion of the model’s limitations and potential
improvements is provided in Appendix D.

5.2 EMBEDDING SPACE INTERPRETABILITY STUDIES

To evaluate the interpretability of the obtained peptide embeddings, we conducted a regression
analysis aimed at predicting a set of basic peptide properties (see Section 4.5). Additionally, we
assessed the relationships between individual embedding elements and several biologically significant
physicochemical properties of peptides using Pearson’s correlation tests. The embeddings generated
by our model were used as descriptors for an extreme gradient boosting regression model, which
predicted the target properties based on these embeddings. The regression analysis demonstrated
that the embeddings effectively captured relevant information about the peptide properties, where
the results for the final dcBiLSTM-AE model were comparable with the other approaches. Detailed
results of this analysis are provided in Table 9 (Appendix C). To further explore the interpretability
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of the embeddings, we examined the correlations between individual latent space features as well
as the physicochemical properties. For each property, we identified the top 10 embedding elements
with the highest absolute Pearson correlation coefficients (PCC). Among these, we highlighted the
features with the most statistically significant correlations based on their p-values.

Overall, the analysis revealed that certain features consistently demonstrated strong correlations
with specific physicochemical properties (Table 3; for a complete list see Appendix F), which
can be interpreted as indirect yet a strong sign that the latent space features provide a substantial
extent of interpretability. For instance, results for ISI show the strongest correlation of number of
aromatic rings, saturated heterocycles and spiro atoms with the target value. Each of these parameters
characterize connectivity within the molecules, therefore being related to branching, which directly
influences peptide conformational flexibility and, therefore, the stability. Also, in case of TNC
and IEP directly related to peptide charge, model shows that partition coefficient logP and Ca®"
interaction energy are highly relevant, where the former is a parameter describing protein solubility
and the latter is strongly related to the presence and alignment of negatively charged amino acids in
the protein. It is important to note, however, that not all the features have a clear and well-studied
relationship with the properties predicted in these tasks, while for some of the tasks (e.g., MW), most
of the parameters are directly related to the target value, and the model was unable to differentiate
between them. Overall, these findings suggest that our model is able to capture meaningful features
related to peptide properties, providing a foundation for interpreting its outputs in a biologically
informed manner.

Table 3: Correlation between embedding dimensions and peptide properties.

Peptide property Encoded input feature PCC (1)
Num Arom Rings -0.253

ISI Num Saturated Heterocycles 0.202
Num Spiro Atoms -0.193

CrippenClogP -0.738

TNC Ca*" interaction energy 0.542
Num Atom Stereo Centers -0.537

CrippenClogP -0.620

IEP Ca?" interaction energy 0.494
Num Atom Stereo Centers -0.392

chilv -0.994

MW chi2v 0.992
kappa3 0.989

6 CONCLUSION

In this work, we propose a novel approach towards domain-tailored development of 3-4 orders more
parameter-efficient pLMs trained on much smaller yet representative peptide datasets combining
cross-task stability requiring no per-task fine-tuning and feature space-level interpretability for peptide
representation learning. Although model scaling requires further research to compete with or surpass
current SOTA ProtT5 model with input-level interpretability in raw performance, these findings
hold great potential by introducing explainable latent spaces crucial for domain scientists building
their own predictive models on specific downstream tasks, which is not provided by any of the pPLM
models existing to date, at no performance cost.

REPRODUCIBILITY STATEMENT

The code and datasets used in this study are available to ensure reproducibility of the presented results.
They can be accessed at the following repository: https://anonymous.4open.science/
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A APPENDIX A

Table 4: Full list of chemical descriptors used for monomer-wise peptide sequence description.

Property Descriptors

Mass exactmw, amw

Lipophilicity and Solubility =~ CrippenClogP, CrippenMR

Hydrogen bonds lipinskiHBA, lipinskiHBD, NumRotatableBonds, NumHBD,
NumHBA
Structural descriptors NumHeavyAtoms, NumAtoms, NumHeteroatoms, Nu-

mAmideBonds, FractionCSP3

Ring Structures NumRings, NumAromaticRings, NumAliphaticRings, NumSaturat-
edRings, NumHeterocycles, NumAromatic Heterocycles, NumSat-
uratedHeterocycles, NumAliphatic Heterocycles, NumSpiroAtoms,

NumBridgehead Atoms

Topological indices chiOv, chilv, chi2v, chi3v, chi4v, chiOn, chiln, chi2n, chi3n, chi4n,
hallKierAlpha, kappal, kappa2, kappa3

Polar surface tpsa

Surface area labuteASA

Energy Ca?* Interaction energy, Mg2+ Interaction energy, Ba?* Interaction
energy

Other descriptors Phi

12
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B APPENDIX B

Table 5: Hyperparameter configurations for experimental model variants. 1-30 CAE; 31-49 VAE; 50
Transformer; 51 GRU; 52 LSTM; 53 BiLSTM; 54 BiLSTM + attention; 55-80 cBiLSTM. Horizontal
lines stands for different experimental stages, details are provided in Comment column.

Trainable
parameters

Architecture

Hyperparameters

Comment

1 511943

2 511943

3 61536

4 61536

5 42500

6 42500

7 735000

8 1809052

batch_size = 64

filters = 46

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 64

filters = 46

pool_size = 2-2-2-2-2-3

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 64

filters = 46

pool_size = 4-3-2-2-2

depth (number of layer blocks) =5
loss_function = MSE

batch_size = 64

filters = 46

pool_size = 2-2-2-3-4

depth (number of layer blocks) = 5
loss_function = MSE

batch_size = 64

filters = 46

pool_size = 8-3-2-2

depth (number of layer blocks) = 4
loss_function = MSE

batch_size = 64
filters = 46
pool_size =4

depth (number of layer blocks) =

2-2-3-8
loss_function = MSE

batch_size = 64

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 64

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

Number of filters is
constant

Number of filters is
constant

Number of filters is
constant

Number of filters is
constant

Number of filters is
constant

Number of filters is
constant

Filters decrease:
368-184-92-46-23-
1

Filters decrease:
368-368-184-92-
46-1. Optimal
architecture in the
first stage
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10

11

12

13

14

15

16

17

18

461482

257000

148000

205000

2901000

133 463 996

265118940

1809052

1809052

1809052

batch_size = 64

filters = 184

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 64

filters = 184

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 64

filters = 92

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 64

filters = 184

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 64

filters = 736

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 64

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 64

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 48

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 32

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 24

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

Filters decrease:
184-184-92-46-23-
1

Filters decrease:
184-92-92-46-23-1

Filters decrease:
92-92-46-46-23-1

Filters decrease:
184-92-46-23-11-1

Filters decrease:
736-368-184-92-
46-1

Add attention layers
to encoder

Add attention layers
to encoder and
decoder

Decrease batch size

Decrease batch size

Decrease batch size
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19

20

21

22

23

24

1809052

4337672

8982890

94469672

62295982

30 122 292

batch_size = 16

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 32

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 32

filters = 460

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 32

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 32

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

batch_size = 32

filters = 368

pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE

Decrease batch size

Additional Conv2D
layers in each block

Increase number of
filters

Add 7 Dense layers
to latent space

Add 2 Dense layers
to latent space

Add 1 Dense layer
to latent space

25

26

27

28

4685330

4702534

4719738

4736942

batch_size = 32

filters = 46

pool_size = 96

depth (number of layer blocks) = 1
loss_function = MSE

batch_size = 32

filters = 46

pool_size = 48-2

depth (number of layer blocks) =2
loss_function = MSE

batch_size = 32

filters = 46

pool_size = 24-2-2

depth (number of layer blocks) =3
loss_function = MSE

batch_size = 32

filters = 46

pool_size = 12-2-2-2

depth (number of layer blocks) = 4
loss_function = MSE
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29 4754146 batch_size = 32
filters = 46
pool_size = 6-2-2-2-2
depth (number of layer blocks) =5
loss_function = MSE
30 178490 batch_size = 32 Dependence of the
filters = height * ((depth - 1) / 2) number of filters on
pool_size = 3-2-2-2-2-2 the depth - Baseline
depth (number of layer blocks) = 6 CAE
loss_function = MSE
31 176328 batch_size = 32 Add KL divergence
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss_function = MSE + KL divergence
32 176328 batch_size = 32 Wasserstein
filters = height * ((depth - 1) / 2) distance
pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss_function = MSE + Wasserstein
distance
33 176328 batch_size = 32 Shannon divergence
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss_function = MSE + Shannon diver-
gence
34 176328 batch_size = 32
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss_function = MSE + KL divergence
35 176328 batch_size = 32 Add Gaussian noise
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss_function = MSE + KL divergence
36 176328 batch_size = 32
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss_function = MSE + 100 * KL
divergence
37 176328 batch_size = 32

filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2

depth (number of layer blocks) = 6
loss_function = MSE + 1000 * KL
divergence
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38 483010 batch_size = 32
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2-1-1
depth (number of layer blocks) = 8
loss_function = MSE + KL divergence

39 1027236 batch_size = 32
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2-1-1-1-1
depth (number of layer blocks) = 10
loss_function = MSE + KL divergence

40 1876718 batch_size = 32
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2-1-1-1-1-1-1
depth (number of layer blocks) = 12
loss_function = MSE + KL divergence

41 2028048 batch_size = 32
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2-1-1
depth (number of layer blocks) = 8
loss_function = MSE + KL divergence

42 3086554 batch_size = 32
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2-1-1-1-1
depth (number of layer blocks) = 10
loss_function = MSE + KL divergence

43 4165 944 batch_size = 32
filters = filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2-1-1-1-1-1-1
depth (number of layer blocks) = 12
loss_function = MSE + KL divergence

44 176328 batch_size = 32 Change layers order
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss_function = MSE + KL divergence

45 9681446 batch_size = 32
filters = height * ((depth - 1) / 2)
pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 20
loss_function = MSE + KL divergence

46 176328 batch_size = 32 Remove
filters = height * ((depth - 1) / 2) tf.Data.Dataset
pool_size = 3-2-2-2-2-2 from data
depth (number of layer blocks) = 6 preprocessing
loss_function = MSE + KL divergence

47 48882 batch_size = 32 convolution kernel
filters = height * ((depth - 1) / 2) =2

pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss_function = MSE + KL divergence
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48 516184 batch_size = 32 convolution kernel
filters = height * ((depth - i) / 2) =6
pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss_function = MSE + KL divergence

49 176328 batch_size = 32 InfoVAE loss
filters = height * ((depth - 1) / 2) function
pool_size = 3-2-2-2-2-2
depth (number of layer blocks) = 6
loss_function = MSE + KL divergence +
MMD

50 388022 batch_size = 32 Transformer-based
depth (number of layer blocks) = 3 model
feed forward dim = 128
embeddings dim = 46
loss_function = MSE

51 515676 batch_size = 32 GRU-based model
depth (number of layer blocks) = 3
loss_function = MSE
gru_units = 256

52 295452 batch_size = 32 LSTM-based model
depth (number of layer blocks) =3
loss_function = MSE
Istm_units = 160

53 256220 batch_size = 32 BiLSTM-based
depth (number of layer blocks) = 3 model
loss_function = MSE
bilstm_units = 96

54 696038 batch_size = 32 BiLSTM-based
depth (number of layer blocks) =3 model with
feed forward dim = 128 attention layers
embeddings dim = 46
loss_function = MSE

55 1293788 batch_size = 32 Add contrastive loss
depth (number of layer blocks) =3 function Clustering
loss_function = MSE + InfoNCE on one-hot with
bilstm_units = 96 PCA data (2D)

56 1293788 batch_size = 32 Add decreasing
depth (number of layer blocks) =3 coefficient for
loss_function = MSE + 0.1 * InfoNCE  contrastive loss
bilstm_units = 96 Clustering on

one-hot with PCA
data (2D)

57 1293788 batch_size = 32 Clustering on

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

one-hot data
(without
dimensionality
reduction)
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58

59

60

61

62

63

64

65

66

67

68

69

1293788

1293788

1293788

1293788

1293788

1293788

1293788

1293788

1293788

1293788

1293788

1293788

batch_size = 48

depth (number of layer blocks) = 3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 64

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 32

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 64

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 16

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 8

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 80

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 32

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 32

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 32

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 32

depth (number of layer blocks) = 3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 32

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

Increase batch size

Increase batch size

Dropout rate = 0.2

Increase batch size

Dropout rate = 0.2

Decrease batch size

Decrease batch size

Increase batch size

Dropout rate = 0.15

Dropout rate = 0.05

Dropout rate = 0.25

Dropout rate = 0.30

Dropout rate = 0.35
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70

71

72

73

74

75

76

77

78

79

80

1293788

1293788

1293788

1293788

1293788

1293788

1293788

1293788

1293788

1293788

1293788

batch_size = 48

depth (number of layer blocks) = 3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 48

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 320

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 320

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 480

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 320

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 320

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 320

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 320

depth (number of layer blocks) =3
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 320

depth (number of layer blocks) = 6
loss_function = MSE + InfoNCE
bilstm_units = 96

batch_size = 32

depth (number of layer blocks) = 3
loss_function = MSE + InfoNCE
bilstm_units = 96

Increase batch size
Dropout rate = 0.05

Increase batch size
Dropout rate = 0.05
Learning rate =
0.0005

Increase batch size

Increase batch size
Dropout rate = 0.05

Increase batch size

Increase batch size
Dropout rate = 0.15

Increase batch size
Dropout rate = 0.20

Increase batch size
Dropout rate = 0.25

Increase batch size
Dropout rate = 0.30

Increase depth

Exponential decrese
of learning rate
(decay rate = 0.9)
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C APPENDIX C

Appendix C provides additional experiments’ results.

Table 6: CAE model benchmarking against existing peptide encoding strategies.

Encoding MCC (5-fold cross validation)

pe ADP AIP AMP AOP Avg. Min Max
One-hot (%) (8312) (%) (gzg) 0.434 0.197 0.764
Blosum (8858) (83?(2)) (8(3)%) (8(1)?3) 0.211 0.026 0.337
Threemers (8(1)2(1)) (gggg) (8(5)(1)2) (88?2) 0.387 0.131 0.539
ProtBert (83;‘) (8(1);?) (gggg) (%) 0.428 0.138 0.658
CAE 0.137 0.336 0421 0442 0.334 0.137 0.442

(0.040) (0.023) (0.014) (0.016)

MCC performance per task

Avg. 0.165 0.267 0.499 0.503 - - -
Min 0.026 0.138 0.337 0.189 - - -
Max 0.334 0.357 0.658 0.764 - - -

Table 7: AE-based architectures benchmarking. Results are presented for best-in-class models.

Model MCC (5-fold cross validation)

class ADP AIP AMP AOP Avg. Min Max
CAE Ol 00 o ol 03 01 osw
InfoCVAE (8832) (88(1)3) (8852) (_(())(())2251 0.014 -0.024 0.035
Transformer-AE (%) (8 (])(2)5) (gggg) (%) 0.273 0.059 0.465
BiLSTM-AE 0004 0342 0415 0496 o5 o004 0496

(0.053) (0.009) (0.005) (0.031) —
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Table 8: Classification metrics for four benchmark tasks.

Peptide

property Encoding type Accuracy Precision Recall F1score ROCAUC MCC
One-hot 0.598 0596 0622  0.606 0.597 0.197

0.008)  (0.012)  (0.033) (0.009)  (0.008)  (0.015)

Threemers 0.559 0559 0559 0558 0559 0119

ADP 0.030)  (0.031) (0.041) (0.034)  (0.030)  (0.060)
Blosum 0513 0511 0560  0.533 0513 0.026

0.010)  (0.008) (0.032) (0.018)  (0.010)  (0.020)

ProBERT 0.665 0663  0.682  0.669 0.665 0334

0.016)  (0.020) (0.038) (0.019)  (0.016)  (0.031)

. 0.638 0638 0652  0.643 0.638 0.277
CBILSTM-AE 6030y (0.034)  (0.039) (0.031)  (0.032)  (0.065)

One-hot 0.656 0608 0284 0386 0.585 0216

0.005)  (0.013) (0.015) (0.016)  (0.007)  (0.015)

Thrcemers 0.704 0637 0531 0579 0.671 0.358

AIP 0.004)  (0.006) (0.014) (0.009)  (0.005  (0.009)
Blosum 0.680 0622 0420 0501 0.631 0.290

0.005)  (0.013)  (0.008) (0.007)  (0.005  (0.012)

ProBERT 0.627 0527 0245 0335 0554  0.138

0.008)  (0.022) (0.012) (0.015  (0.008)  (0.021)

. 0.689 0625 0468  0.535 0.647 0316
cBILSTM-AE 6004y (0.008) (0.010) (0.007)  (0.004)  (0.009)

One-hot 0.779 0810 0728 0767 0779 0560

0.002)  (0.003) (0.004) (0.002)  (0.002)  (0.004)

Threemers 0.759 0777 0726 0751 0759 0519

AMP 0.001)  (0.003) (0.002) (0.001)  (0.001)  (0.003)
Blosum 0.667 0693 0601  0.643 0.667 0.337

0.007)  (0.010) (0.007) (0.007)  (0.007)  (0.015)

ProBERT 0.828 0863 0779 0819 0.828 0.658

0.003)  (0.005 (0.004) (0.003)  (0.003)  (0.007)

. 0.783 0807 0746 0775 0.783 0.569
CBILSTM-AE 6 001)  (0.006) (0.007) (0.002)  (0.001)  (0.002)

One-hot 0.881 0889 0875 088l 0.881 0.764

0.007)  (0.019) (00I1) (0.005  (0.007)  (0.013)

Thrcemers 0.769 0789 0737 0761 0769  0.540

AOP 0.008)  (0.008) (0.016) (0.009)  (0.008)  (0.015)
Blosum 0.592 0615 0494  0.547 0592  0.189

0.006)  (0.006) (0.020) (0.014)  (0.006)  (0.012)

ProBERT 0.790 0789 0792 0.790 0790 0580

0.006)  (0.010) (0.010) (0.005  (0.006)  (0.011)

. 0.846 0.844 0848  0.846 0.846  0.692
cBILSTM-AE  6006)  (0.006) (0.006) (0.006)  (0.006)  (0.012)
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Table 9: Regression metrics for four benchmark tasks.

Peptide property Encoding type MAE RMSE R?
One-hot 15.778 (0.059)  21.263 (0.177) 0.445 (0.004)
Threemers 15.811 (0.049)  21.279 (0.122) 0.444 (0.006)
ISI Blosum 19.637 (0.036)  26.458 (0.143) 0.141 (0.010)
ProtBERT 16.406 (0.059)  22.578 (0.099) 0.374 (0.007)
cBILSTM-AE 18.021 (0.043)  24.472(0.113) 0.265 (0.011)
One-hot 1.157 (0.007) 1.872 (0.019) 0.823 (0.004)
Threemers 1.596 (0.009) 2.443 (0.006) 0.698 (0.006)
TNC Blosum 2.830 (0.006) 4.173 (0.011) 0.119 (0.011)
ProtBERT 1.132 (0.005) 1.731 (0.032) 0.849 (0.004)
cBiLSTM-AE 1.200 (0.007) 1.716 (0.011) 0.851 (0.003)
One-hot 1.268 (0.002) 1.557 (0.004) 0.694 (0.002)
Threemers 1.397 (0.007) 1.745 (0.009) 0.616 (0.004)
IEP Blosum 2.272 (0.005) 2.660 (0.003) 0.107 (0.003)
ProtBERT 0.930 (0.003) 1.231 (0.003) 0.809 (0.001)
cBILSTM-AE 1.069 (0.005) 1.375 (0.004) 0.761 (0.002)
One-hot 495.466 (1.437) 738.626 (3.331)  0.937 (0.001)
Threemers 118.957 (1.394) 180.648 (3.629)  0.996 (0.0002)
MW Blosum 248.439 (1.389) 363.888 (2.251)  0.985 (0.0002)
ProtBERT 552.071 (1.058) 763.360 (1.980)  0.932 (0.0004)
cBILSTM-AE 75.067 (0.547)  104.754 (0.715)  0.999 (0.00002)
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D APPENDIX D

D.1 LIMITATIONS

Sequence length constraints. During training we capped sequences at 96 residues (more than
enough for peptides but small for full-scale proteins) to satisfy the CAE fixed input size. Although
subsequent BiLSTM and transformer variants can process variable lengths, the cap was retained for
experimental consistency, where markedly longer inputs can render the embedding quality; sequences
beyond 96 residues therefore require additional architectural changes.

Handling of peptide modifications. The model supports only 20 canonical residues plus a small
set of predefined modifications. Extending to user-defined or rare modifications would necessitate
(i) quantum-chemical calculations for new DFT descriptors and (ii) updates to the RDKit monomer
dictionary.

Peptide structure limitations. The framework is restricted to linear peptides; branched or cyclic
topologies were excluded. Supporting such structures would entail substantial changes to both
preprocessing and model design and is left for future work.
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E APPENDIX E

LLM USAGE STATEMENT

Large language models were used during the preparation of this manuscript solely for text refinement
and stylistic improvement. Specifically, LLMs assisted with phrasing adjustments and ensuring
adherence to academic writing conventions. All scientific content, ideas, and conclusions remain
entirely our own.
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F APPENDIX F

Table 10: Correlation between embedding dimensions and instability index.

Peptide property Encoded input feature PCC (1)
exactmw -0.034
amw 0.071
lipinskiHBA 0.131
lipinskiHBD 0.124
NumRotatableBonds 0.010
NumHBD 0.017
NumHBA 0.101
NumHeavyAtoms 0.040
NumAtoms -0.120
NumHeteroatoms 0.141
NumAmideBonds -0.068
FractionCSP3 0.101
NumRings -0.071
NumAromaticRings -0.253
NumAliphaticRings 0.102
NumSaturatedRings 0.137
NumHeterocycles 0.138
NumAromaticHeterocycles -0.013
NumSaturatedHeterocycles 0.202
NumAliphaticHeterocycles 0.059
NumSpiroAtoms -0.193
NumBridgehead Atoms -0.020

ISI NumAtomStereoCenters -0.084
NumUnspecifiedAtomStereoCenters 0.022
labuteASA -0.005
tpsa 0.142
CrippenClogP -0.097
CrippenMR 0.047
chiOv -0.057
chilv -0.049
chi2v 0.059
chi3v 0.069
chidv 0.076
chiOn 0.007
chiln -0.036
chi2n 0.007
chi3n 0.001
chi4n 0.016
hallKierAlpha -0.017
kappal 0.045
kappa2 0.063
kappa3 0.056
Phi -0.008
Ca?" interaction energy 0.068
Mg** interaction energy 0.076
Ba”" interaction energy 0.084
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Table 11: Correlation between embedding dimensions and theoretical net charge.

Peptide property Chemical descriptor PCC (1)
exactmw 0.054
amw -0.063
lipinskiHBA -0.293
lipinskiHBD 0.446
NumRotatableBonds 0.065
NumHBD 0.012
NumHBA 0.006
NumHeavyAtoms -0.469
NumAtoms 0.206
NumHeteroatoms -0.212
NumAmideBonds -0.150
FractionCSP3 0.109
NumRings -0.332
NumAromaticRings -0.320
NumAliphaticRings -0.218
NumSaturatedRings -0.267
NumHeterocycles -0.301
NumAromaticHeterocycles -0.055
NumSaturatedHeterocycles -0.131
NumAliphaticHeterocycles -0.156
NumSpiroAtoms -0.238
NumBridgehead Atoms -0.006

TNC NumAtomStereoCenters -0.537
NumUnspecifiedAtomStereoCenters -0.033
labuteASA 0.074
tpsa 0.012
CrippenClogP -0.738
CrippenMR 0.075
chiOv 0.179
chilv -0.055
chi2v 0.013
chi3v 0.032
chidv 0.022
chiOn 0.254
chiln 0.147
chi2n -0.140
chi3n -0.109
chi4n -0.140
hallKierAlpha 0.190
kappal 0.035
kappa2 0.395
kappa3 0.042
Phi 0.402
Ca”* interaction energy 0.542
Mg** interaction energy 0.369
Ba?" interaction energy 0.375
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Table 12: Correlation between embedding dimensions and isoelectric point.

Peptide property Chemical descriptor PCC (1)
exactmw 0.012
amw -0.005
lipinskiHBA -0.150
lipinskiHBD 0.387
NumRotatableBonds 0.028
NumHBD -0.060
NumHBA 0.022
NumHeavyAtoms -0.334
NumAtoms 0.197
NumHeteroatoms -0.091
NumAmideBonds -0.082
FractionCSP3 0.147
NumRings -0.335
NumAromaticRings -0.321
NumAliphaticRings -0.121
NumSaturatedRings -0.216
NumHeterocycles -0.185
NumAromaticHeterocycles 0.030
NumSaturatedHeterocycles -0.064
NumAliphaticHeterocycles -0.162
NumSpiroAtoms -0.215
NumBridgehead Atoms 0.061

EP NumAtomStereoCenters -0.392
NumUnspecifiedAtomStereoCenters 0.043
labuteASA 0.015
tpsa 0.079
CrippenClogP -0.620
CrippenMR 0.029
chiOv 0.110
chilv -0.112
chi2v 0.076
chi3v 0.062
chidv 0.033
chiOn 0.220
chiln 0.084
chi2n -0.130
chi3n -0.069
chi4n -0.135
hallKierAlpha 0.150
kappal 0.095
kappa2 0.359
kappa3 0.105
Phi 0.367
Ca”* interaction energy 0.494
Mg** interaction energy 0.365
Ba?" interaction energy 0.371
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Table 13: Correlation between embedding dimensions and molecular weight.

Peptide property Chemical descriptor PCC (1)
exactmw -0.601
amw 0.825
lipinskiHBA 0.725
lipinskiHBD 0.192
NumRotatableBonds -0.281
NumHBD -0.948
NumHBA 0.726
NumHeavyAtoms 0.730
NumAtoms -0.090
NumHeteroatoms 0.828
NumAmideBonds 0.472
FractionCSP3 0.154
NumRings -0.294
NumAromaticRings -0.196
NumAliphaticRings 0.546
NumSaturatedRings -0.368
NumHeterocycles 0.327
NumAromaticHeterocycles 0.927
NumSaturatedHeterocycles 0.176
NumAliphaticHeterocycles -0.740
NumSpiroAtoms -0.556
NumBridgehead Atoms 0.819

MW NumAtomStereoCenters 0.138
NumUnspecifiedAtomStereoCenters 0.979
labuteASA -0.451
tpsa 0.774
CrippenClogP -0.257
CrippenMR -0.272
chiOv -0.687
chilv -0.994
chi2v 0.992
chi3v 0.766
chidv 0.386
chiOn -0.350
chiln -0.488
chi2n -0.040
chi3n 0.434
chi4n -0.006
hallKierAlpha -0.257
kappal 0.849
kappa2 0.685
kappa3 0.989
Phi 0.732
Ca”* interaction energy 0.734
Mg** interaction energy 0.888
Ba?" interaction energy 0.883
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Table 14: Regression tasks results.

Encoding R? (5-fold cross validation)

pe ISI TNC IEP MW Avg. Min Max
One-hot (g:ggi) (8:?)3431) (giggg) (818(3)2) 0725 0445 0937
Blosum (8:(1)‘1‘(1)) (8:(1)}?) (8:(1)8;) (gjggg) 0338 0107 0985
Threemers (%) (8832) (8852) (%(9)(6)) 0.689 0.444 0.996
¢BiLSTM-AE (8:3?% (8:33;) & (g:ggg) 0719 0265  0.999
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