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Abstract

Knowledge graph embedding (KGE) models
are designed for the task of link prediction,
which aims to infer missing triples by learn-
ing accurate representations for entities and re-
lations within a knowledge graph. However,
existing KGE research largely overlooks the is-
sue of probability calibration, leading to uncal-
ibrated probability estimates that fail to reflect
the true correctness of predicted triples, poten-
tially resulting in erroneous decisions. More-
over, existing calibration methods are not well-
suited for KGE models, and no dedicated prob-
ability calibration method has been specifically
designed for them. In this paper, we propose
KGE Calibrator+, the first probability calibra-
tion method tailored for KGE models to en-
hance the trustworthiness of their predictions.
To achieve this, we introduce Jump Selection
Strategy, which selects the most informative
data while filtering out less significant data,
and Multi-Binning Scaling, which models dif-
ferent probability levels separately to enhance
model capacity and flexibility. Furthermore, we
propose a Wasserstein distance-based loss func-
tion, improving both calibration performance
and optimization stability. Extensive experi-
ments across multiple data sets demonstrate
that KGE Calibrator+ consistently outperforms
existing calibration methods in terms of both
effectiveness and efficiency, making it a promis-
ing solution for probability calibration in KGE
models.

1 Introduction

Knowledge graphs (KGs) are essential resources
for a wide range of knowledge-driven tasks, includ-
ing semantic search (Xiong et al., 2017), knowl-
edge reasoning (Liu et al., 2021), question answer-
ing (Shen et al., 2019; Ye et al., 2023), and reading
comprehension (Yang et al., 2019; Meng et al.,
2023). Prominent large-scale KGs such as YAGO
(Suchanek et al., 2007), DBpedia (Lehmann et al.,

2015), and Freebase (Bollacker et al., 2008) encom-
pass millions of entities and hundreds of millions
of relational facts, which are typically structured as
sets of <head entity, relation, tail entity> triples.
However, constructing KGs often involves chal-
lenges such as extraction errors and limited input
resources, leading to incomplete KGs. This limita-
tion underscores the significance of the link predic-
tion task, also known as knowledge graph comple-
tion. By predicting missing links and uncovering
new facts, this task plays a pivotal role in address-
ing the inherent incompleteness of KGs, thereby
enhancing their overall quality and practical utility.
Knowledge graph embedding (KGE) models,
such as TransE (Bordes et al., 2013), ComplEx
(Trouillon et al., 2016), and RotatE (Sun et al.,
2019), have been developed to address this chal-
lenge. These models aim to learn latent represen-
tations of entities and relations within a KG to fa-
cilitate the prediction of new facts. Typically, KGE
models employ different scoring functions to as-
sign a plausibility score to each triple, ensuring that
positive triples are assigned higher scores than neg-
ative ones. Beyond link prediction, KGE models
have demonstrated remarkable success across di-
verse applications, including entity alignment (Sun
et al., 2018), link-based clustering (Gad-Elrab et al.,
2020), and canonicalization (Shen et al., 2022).
While the accuracy of KGE models has seen sig-
nificant advancements over the past decade, the crit-
ical issue of probability calibration remains largely
overlooked. Specifically, a KGE model should
provide a calibrated probability in addition to its
prediction. However, existing studies (Pezeshkpour
et al., 2020; Tabacof and Costabello, 2020) have
demonstrated that many KGE models are uncali-
brated. In practice, these models fail to provide
reliable probabilities for the predicted triples, in-
stead producing uncalibrated outputs. This limita-
tion arises because link prediction is fundamentally
framed as a “learning to rank” problem. Conse-



quently, the primary evaluation metrics, such as
Hits@N and Mean Reciprocal Rank (MRR), focus
solely on the relative ranking of candidate triples.
These metrics reward KGE models for maintain-
ing correct relative orderings but do not penalize
them for assigning excessively high absolute scores
to negative triples. As a result, KGE models can
achieve strong relative ranking performance while
producing uncalibrated probabilities for their pre-
dictions. This drawback significantly restricts the
applicability of KGE models in high-stakes do-
mains, such as drug discovery (Zeng et al., 2022)
and protein targets discovery (Mohamed et al.,
2020). In these scenarios, users require both ac-
curate predictions and trustworthy probabilities to
assess the reliability of the model’s outputs.

To address this critical issue, increasing attention
has been directed toward the probability calibration
task of KGE models, which aims to convert the
uncalibrated scores assigned to candidate triples
by KGE models into accurate calibrated probabil-
ities. For instance, if a KGE model predicts that
100 candidate triples each have a 90% probabil-
ity of being true, then, ideally, 90 of those triples
should indeed be correct. If this proportion deviates
significantly from 90%, then the model is consid-
ered uncalibrated (the model is under-confident if
the proportion is higher, and over-confident if it
is lower). Intuitively, KGE probability calibration
functions as a post-processing technique aimed at
enhancing the trustworthiness of link prediction re-
sults, thereby offering significant potential benefits
for downstream applications.

Despite its importance, probability calibration
in KGE models remains an unresolved challenge.
Existing studies (Tabacof and Costabello, 2020;
Pezeshkpour et al., 2020) have shown that widely
used KGE models lack proper calibration, lead-
ing to untrustworthy probability estimates. While
prior research (Safavi et al., 2020; Zhu et al.,
2022) has explored various off-the-shelf calibration
techniques such as Platt Scaling, Isotonic Regres-
sion, Temperature Scaling, and Histogram Binning,
these methods were primarily designed for tradi-
tional machine learning models and have not been
specifically adapted for KGE models. Some studies
have examined calibration in specific tasks, such
as triple classification (Tabacof and Costabello,
2020), relation prediction (Safavi et al., 2020),
and entity prediction under low-dimensional set-
tings (Wang et al., 2021). However, none of the
aforementioned works propose a dedicated calibra-

tion method specifically designed for KGE models,
leaving a critical gap in this area of research.

To fill this gap, we propose KGE Calibrator+
(KGEC+), the first probability calibration method
tailored specifically for KGE models. To enhance
training efficiency and reduce noise, we introduce
the Jump Selection Strategy, which selects the most
informative data while discarding less significant
data. Based on the temperature scaling, to improve
its expressiveness, we propose Multi-Binning Scal-
ing, which models different probability levels sepa-
rately, thereby increasing model capacity and flex-
ibility. Furthermore, to further enhance perfor-
mance and accelerate training, we replace the tradi-
tional KL divergence with a loss function based on
Wasserstein distance, which provides a more stable
and effective optimization process. To the best of
our knowledge, this is the first time to leverage the
Wasserstein distance in calibration.

Contributions. Our major contributions can be
summarized as follows:

e We analyze nine widely used post-processing
calibration methods and find that four of them are
unsuitable for entity link prediction due to their
poor performance, which alters the original link
prediction results after calibration.

e We propose KGEC+, the first probability cali-
bration method specifically designed for KGE mod-
els, addressing their unique challenges in probabil-
ity calibration.

e A thorough experimental study over four data
sets demonstrates that our method outperforms all
baseline methods on the link prediction probability
calibration task in terms of both performance and
efficiency.

2 Related Work

Probability Calibration in KGE Models. Sev-
eral studies have investigated probability calibra-
tion in KGE models, highlighting their lack of
well-calibrated probability estimates. (Tabacof and
Costabello, 2020) and (Pezeshkpour et al., 2020)
demonstrated that popular KGE models are uncali-
brated in the triple classification task. To mitigate
this issue, (Tabacof and Costabello, 2020) applied
Platt Scaling (Platt et al., 1999) and Isotonic Re-
gression (Zadrozny and Elkan, 2002), while (Safavi
et al., 2020) explored Matrix Scaling and Vector
Scaling (Guo et al., 2017) in the relation predic-
tion task. (Zhu et al., 2022) conducted a broader
evaluation of off-the-shelf calibration techniques,



testing Histogram Binning (Zadrozny and Elkan,
2001), Beta Calibration (Kull et al., 2017), and
Temperature Scaling (Guo et al., 2017) in triple
classification. While these methods show promise,
they were not explicitly designed for KGE mod-
els and have limited adaptability to their specific
requirements.

Calibration in Specific KGE Tasks. Several
studies have focused on calibrating KGE models
for specific tasks. For instance, (Wang et al., 2021)
examined entity prediction under low-dimensional
settings and introduced a causal intervention-based
plugin to replace the sigmoid function, which was
subsequently calibrated using Platt Scaling or Iso-
tonic Regression. Additionally, (Rao, 2021) ex-
plored calibration in KGE models under both the
closed-world and open-world assumptions.

While these works contribute to understanding
calibration in KGE models, they primarily adapt
existing methods rather than proposing dedicated
calibration solutions tailored to the unique proper-
ties of knowledge graph embeddings. As a result,
no existing approach directly addresses the proba-
bility calibration needs of KGE models, leaving an
important research gap.

3 Preliminaries

3.1 Knowledge Graph

A knowledge graph (KG) G = {£} contains a set
of triples £ = (h, r,t), where each triple includes
a head entity h € &£, atail entity ¢ € £, and a
relation 7 € R connecting head and tail. £ and
‘R refer to the set of all entities and relations of G
respectively. N = |£] and M = |R| denote the
number of entities and relations respectively.

3.2 Knowledge Graph Embeddings

Knowledge graph embedding (KGE) models aim
to represent each head entity h, relation r, and tail
entity ¢ from a KG G as d-dimension continuous
embeddings h, r, and t € R?. Each KGE model
defines a model-specific score function v that as-
signs a score to each triple £ = (h, 7, t) based on its
corresponding embeddings, i.e., ¥(§) = ¢ (h, r, t).
Table 1 lists the score functions of the most popular
models.

3.3 Link Prediction

Link prediction, the most commonly used task for
KGE models, comprises two subtasks: entity pre-
diction and relation prediction. Among these, entity

Table 1: Score functions of popular KGE models, where
|I|| denotes the L; norm, (-) denotes the generalized
dot product, t* denotes the complex conjugate of t,
Re refers to the real part of a complex number, and o
denotes the Hadamard product.

KGE model Score function
TransE (Bordes et al., 2013) —|h+r—t|
DistMult (Yang et al., 2015) (r,h,t)

ComplEx (Trouillon et al., 2016)  Re((r, h, t*))
RotatE (Sun et al., 2019) —|lhor—t|

prediction is more challenging than relation predic-
tion due to the larger number of candidate entities
that need to be scored and ranked. For instance, in
the widely used WN18 dataset (Bordes et al., 2013),
there are 40,943 entities but only 18 relations In
this paper, we focus on the more challenging entity
prediction task.

To be specific, the entity prediction task consists
of head entity prediction and tail entity prediction.
In head entity prediction, given a query of the form
(?,7,t), each entity e; € £ becomes a potential can-
didate for the head entity. The trained KGE model
assigns a score 1(&;) to each triple & = (e;, r,t),
where e; is a candidate head entity, and r and ¢ are
the given relation and tail entity. These scores are
then ranked, with higher-ranked triples being more
plausible, indicating that the corresponding entity
e; is a likely answer to the query (7, r,t). The task
of tail entity prediction could be defined in a similar
manner.

4 KGE Calibrator+ Method

In this section, we present our proposed KGE Cal-
ibrator method. In Section 4.1, we introduce the
Jump Selection Strategy, a technique for selecting
the most informative data to improve calibration ef-
ficiency. In Section 4.2, we describe Multi-Binning
Scaling, which enhances probability calibration
by modeling different probability levels separately.
Finally, in Section 4.3, we introduce our two cali-
bration methods: KGE Calibrator and its improved
version, KGE Calibrator+.

4.1 Jump Selection Strategy

To improve training efficiency and reduce noise,
it is crucial to focus on the most informative data
while discarding less significant data when training
the calibration method. Inspired by (Shen et al.,
2022), we propose the Jump Selection Strategy,
which selects the most significant data for training
rather than using all available data. This Jump



Algorithm 1 Jump Selection Strategy

Input: Query triple (?,r,t), candidate entities
E=A{ey,...,e,...,en}, KGE model 9
1: Generate candidate triples: &; « (e;,r,t), for
i=1,...,N
2: Compute uncalibrated scores: x; <
Y(ejr,t), fori=1,...,N
3: Form score vector: X < {z1,..., %, ..., TN}
: Compute probabilities: P < ogy(X)
Sort P in descending order to obtain P, such
that P; is the ith largest probability
fori=1to N —1do
Ji < Dir(P; || Pis1)
end for
J* + arg max Ji

A

° R

10: p* « Pj»
Output: Selected index J* and its corresponding
probability p* for calibration

Selection Strategy is summarized in Algorithm 1,
and we elaborate it as follows.

Given a query (7, ,t), the set of candidate enti-
ties & = {ey,...,€;,....,en}, and a KGE model
1, we first generate a set of candidate triples
= = {51, cey &‘, ceey gN}, where fl = (ei, r, t)
(w.r.t. line 1 in Algorithm 1). Next, we com-
pute the uncalibrated scores for these candidate
triples using the KGE model’s score function:
X = {l‘l, ...,l‘i,...,ﬂS‘N}, where xr; = ¢(§Z) =
Y(e;,r,t) (wrt. line 2 in Algorithm 1). These
uncalibrated scores are then transformed into un-
calibrated probabilities via the softmax function
osy (wrt. line 4 in Algorithm 1). We then sort
P in descending order, ensuring that higher prob-
abilities appear first (w.r.t. line 5 in Algorithm 1).
Subsequently, for each sorted uncalibrated proba-
bility, we compute its Jump Measure J; using the
Kullback—Leibler (KL) divergence D between
consecutive entries (w.r.t. line 7 in Algorithm 1).
Finally, we select the index 7 corresponding to the
maximum Jump Measure J;, along with its associ-
ated probability p, which contains the most valu-
able information for subsequent calibration (w.r.t.
line 9 and line 10 in Algorithm 1). Overall,

4.2 Multi-Binning Scaling

Temperature scaling (Guo et al., 2017) is a par-
ticularly appealing post-hoc calibration method
because it preserves the accuracy of the original
model while transforming its uncalibrated probabil-

ities. However, it suffers from the limited expres-
siveness, as its model capacity is constrained by
fitting only a single scalar parameter 7' > 0 to trans-
form all probabilities, regardless of their magnitude
(e.g., 0.1 and 0.9). We hypothesize that the inher-
ent limitation of temperature scaling arises from its
inability to separately model different probability
levels, restricting its effectiveness in calibration.
While non-parametric methods, such as his-
togram binning (Zadrozny and Elkan, 2001), of-
fer greater flexibility, they often fail to maintain
model accuracy, and the calibrated model’s accu-
racy may degrade significantly. To leverage the ad-
vantages of histogram binning while mitigating its
drawbacks, we divide all uncalibrated probabilities
p* = {p},....p},...,py} into mutually exclusive
bins B1,..., By, ..., Bas. Each bin is assigned a
unique scalar temperature parameter 7,,,, such that
if p; belongs to bin B,,,, its transformation is given
by:
pi = osm (0} /Th,), (1

where og)s is the softmax function. To ensure a
structured binning process, we define bin bound-
aries for a suitably chosen M as follows:

O=a1 <ax<..<ay4 =1, (2)

where the bin Bj; corresponds to the interval
(@m, am+1]. For simplicity, the bin boundaries are
chosen to be equal length intervals.

For data points that are not selected by the
Jump Selection Strategy, we uniformly apply the
temperature parameter 7),, corresponding to p*.
This ensures that the overall model accuracy re-
mains unaffected while still benefiting from the
calibrated probability adjustments. Overall, this ap-
proach integrates the benefits of temperature scal-
ing (which preserves accuracy) with the flexibility
of histogram binning, allowing for a more expres-
sive and effective probability calibration approach.

4.3 Optimization
4.3.1 KGE Calibrator

After applying the Jump Selection Strategy to iden-
tify representative data and using Multi-Binning
Scaling to determine multi-scale bins, we train
the temperature parameters 7}, using the Kull-
back-Leibler (KL) divergence as loss function:

Drr(p* || q) = E p; log qz,a 3)
. T
A



where q is the golden label. We refer to this method
as KGE Calibrator (KGEC).

Notably, unlike standard temperature scaling, we
do not impose the constraint 7' > 0; instead, we
use T2 to ensure stability. This modification not
only preserves model accuracy but also enables
fine-grained probability calibration across different
probability scales. A theoretical justification for
this method is provided in Appendix A.1.

4.3.2 KGE Calibrator+

There are two key disadvantages of using KL diver-
gence as the loss function in KGEC: (1) Since the
number of candidate entities [V in this task is large,
the probability p approaches 0, leading to a loss
value of 0. This reduces the effective utilization
of data and negatively impacts calibration perfor-
mance. (2) When the label ¢ is 0, the loss becomes
infinite, which can easily cause gradient explosion,
thereby slowing down convergence. For a detailed
analysis, refer to Appendix C.

To address these issues, we propose using the
Wasserstein distance instead of KL divergence as
the loss function for KGE Calibrator+ (KGEC+).
The Wasserstein distance measures the minimum
cost required to transform one probability distri-
bution into another by modeling it as an optimal
transport (OT) problem. It considers the set of a
transportation polytope U (p*, ¢), which contains
all nonnegative transport matrices P:

Up*,q) = {P e R¥P1, =p*,P'1, = q},
“4)
where 15 € R? is a vector of ones.

Given a cost matrix M € R4¥¢, the Wasserstein
distance is defined as the minimum transport cost
required to map p* to ¢ using the transport matrix
P.
min

Dwp(p*,q) = Ped

m,n
&)
where (-, -) stands for the Frobenius dot-product
and M,,,, = |p}, — qn| represents the absolute
difference between the m-th and n-th elements of
p* and q.

To improve computational efficiency, we use the
Sinkhorn distance (Cuturi, 2013), which provides
a fast approximation to the constrained Wasser-
stein distance by introducing entropy regulariza-
tion. Given the OT plan P and cost matrix M, the
Sinkhorn distance is defined as follows:

Dsp(p*,q) = (P* M), ©)

<P7 M) = me,an,na

where A > 0 is the weight for entropy regulariza-
tion. The OT plan P* is obtained by solving:

1
P> = argmin (P, M) — —h(P), (7)
PEU(p*.a) A

where h(P) is the entropy of P. The solution P*
computed iteratively via Sinkhorn normalization
(Cuturi, 2013) as follows:

ut :p* @ (KTvt71)7

o = q o (Kub), 8)

where © indicates element-wise division, ¢ denotes
the iteration time, and K = exp(—%) is the ker-
nel matrix with entropy regularization weight .
Finally, the optimal transport plan P* is given by:

P? = diag(v") K diag(u'), )

By leveraging Sinkhorn distance, KGEC+
achieves a more robust and efficient probability
calibration process, avoiding the numerical insta-
bility issues associated with KL. divergence while
maintaining computational feasibility.

5 Experiments

For the experiments, we first introduce three key
research questions (RQs), and then use our exper-
imental results to address each of these questions
individually.

e RQ1: Which of the existing post-processing
calibration methods can not affect the KGE results?

e RQ2: Can our proposed KGE Calibrators sur-
pass the performance of existing methods without
changing the KGE results?

e RQ3: Are our proposed KGE Calibrators
method efficient?

Section 5.1 details the datasets used in our ex-
periments, along with the training and learning
processes for both the link prediction models and
calibration functions. Section 5.2 presents the ac-
curacy evaluation for RQ1. Section 5.3 presents
the effectiveness evaluation for RQ2. Section 5.4
discusses the time for RQ3.

5.1 Experimental Setting

5.1.1 Data sets

We evaluate our proposed model on four popu-
lar data sets, which are commonly used to evalu-
ate link prediction, where FB15K (Bordes et al.,
2013) and FB15K-237 (Toutanova and Chen, 2015)
were extracted from Freebase (Bollacker et al.,



Table 2: Statistics of the used KGE data sets.

Data set  #Entity #Relation #Training #Validation #Testing

WNI18 40,943 18 141,442 5,000 5,000
WNISRR 40,943 11 86,835 3,034 3,134
FB15K 14,951 1,345 483,142 50,000 59,071
FBI15K-237 14,541 237 272,115 17,535 20,466

2008), WN18 (Bordes et al., 2013) and WN18RR
(Dettmers et al., 2018) were extracted from Word-
Net (Miller, 1995). Note that FB15K-237 and
WNI18RR are subsets of FB15K and WN18, re-
spectively, in which near-same and near-reverse re-
lations have been removed. These datasets are pub-
licly available, and already partitioned into training,
validation and testing splits. The statistics of them
are summarized into Table 2.

5.1.2 KGE models

To evaluate our proposed model, we leverage
four famous KGE models in our experiments, i.e.,
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), and Ro-
tatE (Sun et al., 2019) The score functions of them
are shown in Table 1. It is noted that any KGE mod-
els could be employed as the input of our model,
as long as it could encode triples into embeddings
and get their scores. Therefore, choosing different
KGE models is not the focus of this paper and left
for future exploration.

5.1.3 Calibration baselines

All calibration baselines are listed as follows.

e Platt Scaling (PS) (Platt et al., 1999) is a para-
metric approach to calibration, which is based on
transforming the non-probabilistic outputs of a bi-
nary classifier to calibrated confidence scores.

e Histogram Binning (HB) (Zadrozny and
Elkan, 2001) is a simple non-parametric calibra-
tion method. All uncalibrated predictions are di-
vided into mutually exclusive bins, where each bin
is assigned a calibration score.

o [sotonic Regression (IR) (Zadrozny and Elkan,
2002) is a strict generalization of histogram binning
in which the bin boundaries and bin predictions are
jointly optimized.

e Bayesian Binning into Quantiles (BBQ)
(Naeini et al., 2015) is a extension of histogram
binning using the concept of Bayesian model aver-
aging.

e Matrix Scaling (MS) and Vector Scaling (VS)
(Guo et al., 2017) are two multi-class extensions of
Platt scaling.

e Temperature Scaling (TS) (Guo et al., 2017)
is the simplest extension of Platt scaling, uses a
single scalar parameter 7' > 0 for all candidates.

e Meta-Cal (Ma and Blaschko, 2021) integrates
bipartite-ranking model with selective classifica-
tion to improve calibration map.

e Parametrized Temperature Scaling (PTS)
(Tomani et al., 2022) is the generalization of tem-
perature scaling by computing prediction-specific
temperatures, parameterized by a neural network.

In order to keep the accuracy of the KGE model
as unchanged as possible, we only use post-hoc
techniques for KGE models. Therefore, other
calibration techniques such as regulization (Ahn
et al., 2019), ensemble (Lakshminarayanan et al.,
2017), MC-dropout (Gal and Ghahramani, 2016)
and mixup (Thulasidasan et al., 2019) are not
within the scope of this paper. We fail to obtain the
experimental results of Beta Calibration (Kull et al.,
2017), since it needs too much time to execute. For
example, for the smallest data set, i.e., WN18RR,
it needs more than 60 hours.

5.1.4 Evaluation measures

Calibrating a model requires reliable metrics to de-
tect miscalibration, and effective techniques to fix
such distortion. To evaluate results from different
perspectives, we utilize Expected Calibration Error
(ECE) (Naeini et al., 2015), Adaptive Calibration
Error (ACE) (Nixon et al., 2019) and Negative Log
Likelihood Metric (NLL) as metrics for evaluating
the performance of calibration methods. Due to
the limited space, we omit the detailed comput-
ing methods of these metrics and you could refer to
(Naeini et al., 2015; Nixon et al., 2019) for more de-
tails. ECE, ACE, and NLL metrics evaluate results
from different perspectives. To give an overall eval-
uation of each method, we calculate the average
of each metric for different data set and different
KGE models as Average, which is a standard com-
prehensive metric for the task of KGE calibration.

5.1.5 Setting details

To ensure a fair comparison, all baselines and met-
rics we use are from third-party frameworks or their
original codes. Specifically, the code of PS, HB,
IR, BBQ, and TS are from net:cal'. The code of
MS and VS and all metrics are calculated by the
TorchUncertainty?. The code of Meta-Cal® and
"https://efs-opensource.github.io/calibration-
framework/build/html/index.html

“https://torch-uncertainty.github.io
3https://github.com/maxc01/metacal/tree/master
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PTS* is from their official code. For both KGEC
and KGEC+, the number of bins is set to 10, the
learning rate is set to 0.01, the number of itera-
tions is set to 100, the temperature for each bin
is initially set as 1 and the optimizer is AdamW
(Loshchilov and Hutter, 2019). Except for VS,
MS, and TS which uses the Multiclass setting, all
other baselines use the One-vs-all setting to avoid
unacceptable training time. We follow the closed
world assumption in our experiments. This is be-
cause the open world assumption requires a label
for each triplet, which is missing in existing data
sets. All experimental results are the average val-
ues obtained after running 10 times. We make the
source code used in this paper publicly available
for future research’.

5.2 Accuracy Affection Study for RQ1

Table 3 presents the results of the TransE model
across various datasets after applying different cal-
ibration methods. The Uncal row represents the
original, uncalibrated results, 1 indicates an im-
provement, while | indicates a decline compared
to the original uncalibrated results. Among the
reported evaluation metrics: A lower Mean Rank
(MR) indicates better performance. Higher val-
ues of Mean Reciprocal Rank (MRR), HITS@1,
HITS@3, and HITS@10 indicate better perfor-
mance.

From the experimental results in Table 3, we
can see that (1) HB, IR, BBQ, MS, and Meta-Cal
significantly degrade performance across all four
datasets, making them unsuitable as calibrators
for KGE models in the entity link prediction task;
(2) KGEC and KGEC+ maintain model accuracy
across all datasets, demonstrating their effective-
ness as the most suitable calibration methods for
this task; (3) PS, VS, and TS either preserve or
slightly improve accuracy on WN18 and WN18RR
and generally do not lead to performance deterio-
ration; (4) VS slightly degrades performance on
FB15K and PTS on WNI18, but given that the
decline is minor and it performs well on other
datasets, its overall impact remains acceptable.

5.3 Effectiveness Study for RQ2

Table 4 presents the impact of different calibra-
tion methods on the performance of various KGE

“https://github.com/tochris/pts-uncertainty
Shttps://anonymous.4open.science/t/KGE-Calibrator-
6CBB/README.md

Table 3: Effect of different calibration methods on
the performance of the TransE model across various
datasets.

Method MR MRR HITS@] HITS@3 HITS@10
WN18
Uncal 263 0.772 0.706 0.807 0.920
PS 260 1 0.772 0.706 0.807 0.920
HB 15299 | 0225 0212 0.236] 0240
IR 14590 | 0251, 0.232] 0267, 0279
BBQ 15178 | 0218 | 0.200 ] 0233 0244 |

Vs 258 1 0.772  0.706 0.807 0.920

MS 16483 0013] 0005, 0013] 0029
TS 260+ 0772 0706 0807  0.920
Meta-Cal 1784 0718 0.657] 0749 0.856 |
PTS 2116 0751) 0706  0.775] 0.849 |
KGEC 263 0772 0706 0807  0.920
KGEC+ 263 0772 0706 0807  0.920
WNISRR
Uncal 3437 0223 0014 0401 0.528
PS 3437 0223 0014 0401 0.528
HB  19455] 0071 00531 0087, 0.099 |
IR 18143 0.102, 0.0801 0.119) 0.139 ]
BBQ  18196) 0071, 00501 0.085] 0.105
VS 34214 02241 0014 0401 0.529 1
MS 18178, 0.009] 0.003, 0.008] 0.020

TS 3437 0.223 0.014 0.401 0.528
Meta-Cal 3437 0.223 0.014 0.401 0.528
PTS 3437 0.223 0.014 0.401 0.528

KGEC 3437 0.223 0.014 0.401 0.528
KGEC+ 3437 0.223 0.014 0.401 0.528
FBISK
Uncal 40 0.731 0.646 0.793 0.865
PS 40 0.731 0.646 0.793 0.865
HB 2275 0570 0510, 0614 0.670 |
IR 982 | 0.615] 0530, 0675 0.761 ]
BBQ 12751 0589 0509 0.646 | 0.726 |
"D 41 ] 0.730 | 0.646 0791 0.862 |
MS 3687 0.038) 0.024] 0.039, 0.061 ]
TS 40 0.731 0.646 0.793 0.865
Meta-Cal 1149 0.677 | 0.604] 0735 0.787 ]
PTS 40 0.731 0.646 0.793 0.865
KGEC 40 0.731 0.646 0.793 0.865
KGEC+ 40 0.731 0.646 0.793 0.865
FBI5K-237
Uncal 173 0.330  0.231 0.368 0.527
PS 173 0.330  0.231 0.368 0.527
HB 3497 0289 0224 0321, 0416
IR 21411 0309 02341 0343 0455
BBQ 2335 0280) 0209, 0310 0422
Vs 173 0.330  0.231 0.368 0.527
MS 3704, 0.033, 0014 0.032] 0.070 |
TS 173 0.330  0.231 0.368 0.527
Meta-Cal 1231 0308 | 0218 0.344 | 0490 |
PTS 173 0330  0.231 0.368 0.527
KGEC 173 0.330  0.231 0.368 0.527
KGEC+ 173 0.330  0.231 0.368 0.527

models across multiple datasets. Notably, base-
lines such as HB, IR, BBQ, MS, and Meta-Cal are
excluded, as they were shown to degrade the orig-
inal accuracy in Section 5.2. Since a calibration
method that reduces accuracy is impractical, these
baselines are omitted from further evaluation.
Overall, Table 4 demonstrates that our proposed
KGEC+ method consistently outperforms all com-
petitive baselines in terms of average ECE, ACE
and NLL across all four datasets. Here are the
key observations from Table 4: (1) Poor perfor-
mance of simple baselines: The three simple cali-
bration methods (PS, VS, and TS) perform poorly,
often yielding worse results than the original, un-
calibrated models across all data sets. This is
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Table 4: Effect of different calibration methods on the performance of various KGE models across multiple data
sets. For ECE, ACE, and NLL, lower values indicate better calibration performance.

ECE TransE ComplEx DistMult RotatE Average
WNIS8 WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBISK FBI5K-237
Uncal  0.502  0.265 0.580 0.212 0.852  0.424 0.696 0.228 0.528 0.389 0.694 0.221 0.429 0.385 0.684 0.224 0.457
PS 0.634  0.031 0.530 0.218 0.854  0.427 0.701 0.229 0.529 0.394 0.700 0.222 0.876  0.425 0.722 0.235 0.483
Vs 0.706  0.014 0.646 0.231 0.852  0.424 0.697 0.228 0.528 0.389 0.695 0.215 0.944 0413 0.739 0.239 0.498
TS 0.634  0.031 0.680 0.203 0.852  0.424 0.701 0.228 0.528 0.389 0.700 0.221 0.687 0.384 0.722 0.223 0.475
PTS 0.523 0.013 0.530 0.231 0.854 0430 0.060 0.214 0456 0393 0.526 0.778 0.337 0.425 0.221 0.365 0.397
KGEC 0.611 0.196 0.408 0.199 0.824 0377 0.689 0.161 0.501 0.388 0.683 0.165 0.813 0.327 0.642 0.215 0.450
KGEC+ 0.171 0.280 0.468 0.150 0.838 0.418 0.678 0.189 0446  0.383 0.683 0.178 0.467 0.307 0.465 0.094 0.388
ACE TransE ComplEx DistMult RotatE Average
WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBIS5SK-237
Uncal 0.506 0.274 0.565 0.180 0.852 0.424 0.696 0.228 0.528 0.389 0.694 0.220 0.429 0.385 0.684 0.224 0.455
PS 0.628 0.033 0.530 0.217 0.854 0427 0.701 0.229 0.529 0.394 0.700 0.222 0.876  0.425 0.722 0.235 0.483
'S 0.506  0.274 0.565 0.180 0.852  0.424 0.697 0.228 0.528 0.389 0.694 0.215 0.429 0.385 0.684 0.224 0.455
TS 0.628 0.033 3312 0.154 0.852 0423 0.701 0.228 0.528 0.389 0.700 0.220 0.687 0.384 0.722 0.222 0.636
PTS 0.516  0.013 0.530 0.231 0.854 0424 0.060 0.207 0446 0391 0.522 0.778 0.337 0.418 0.221 0.363 0.394
KGEC 0510  0.283 7.651 0.943 0.823 0.350 0.670 0.161 0.501 0.388 0.666 0.163 0400 0278 3.092 0.308 1.074
KGEC+ 0.131 0.277 0.298 0.082 0.837 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.465 0.063 0.348
NLL TransE ComplEx DistMult RotatE Average
WNI18 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBI5K FBI5K-237 | WNIS WNISRR FBI5SK FBI5K-237
Uncal  2.891 6.582 3911 5.396 6.892 7815 5.954 7.513 7.447 7.858 5.919 7.705 1376 6.145 4.090 5.750 5.828
PS 3839 7304 3829 5.836 8831 8974  7.093 3438 9117  9.065 7257 8.621 3350 7364  4.799 6271 6.874
'S / / / / 6.892 7814 5.952 7.510 7446 7857 5.916 7.692 1.376 / / / 6.495
TS 3.839 7.304 1.285 4.909 6.892 7.802 7.093 7.513 7.447 7.856 7.257 7.704 2.069 6.121 4.799 5.617 5.969
PTS / 9.181 3.829 9.448 9.314 9.171 1.906 5.714 / 9.496 4.847 / / / / / 6.990
KGEC 2831 6.330 0.687 4.093 4.856  7.636 6.732 3.811 5.407 7.772 6.444 3.950 1.308 6.327 5.014 6.156 4.960
KGEC+ 2.462 5.965 2.529 2.889 4.608 7.010 1.357 2911 2.843 7.096 1.319 3.106 1.036 4.698 2.031 2.743 3.413

likely due to their limited expressive power, as
these methods rely on simple parameterizations
that lack the flexibility needed for effective proba-
bility calibration. (2) Improved performance with
advanced baselines: The two advanced baselines
(PTS and KGEC) achieve significantly better re-
sults than the simple baselines. To be specific, PTS
enhances calibration by generalizing TS by com-
puting prediction-specific temperatures, parameter-
ized by a neural network. KGEC exceeds PTS in
terms of ECE and NLL by leveraging the Jump
Selection Strategy to identify representative data
and Multi-Binning Scaling to determine multi-scale
bins. However, its performance on ACE is limited
due to its reliance on KL divergence for optimiza-
tion. (3) Superior performance of KGEC+: Com-
pared to all baselines, KGEC+ achieves the best
results by integrating the Wasserstein distance for
optimization. This modification enhances the cali-
bration process, leading to more reliable probability
estimates. These results validate the effectiveness
of KGEC+ as an advanced calibration method for
KGE models in entity link prediction.

5.4 Efficiency Study for RQ3

To evaluate the efficiency of our proposed method,
we compare the training time of KGEC and
KGEC+. For a fair comparison, all methods are
trained using only a CPU.

Key Observations from Table 5 in Appendix: (1)
KGECH+ is the fastest model to train, outperforming
all other baseline methods in terms of efficiency.
(2) VS and TS have slightly longer training times

than KGEC+, primarily due to their simple model
structures. (3) PTS, despite achieving strong cali-
bration performance, requires significantly longer
training time, which may hinder its practicality in
real-world applications. (4) KGEC achieves a rea-
sonable training speed, largely benefiting from the
Jump Selection Strategy, which reduces the amount
of processed data. However, its reliance on KL di-
vergence still limits its efficiency. (5) KGEC+ sig-
nificantly accelerates training compared to KGEC
by replacing KL divergence with the more expres-
sive and computationally efficient Wasserstein dis-
tance. Overall, these results highlight that KGEC+
effectively addresses the inefficiencies of KL diver-
gence, significantly reducing training time while
maintaining superior calibration performance.

6 Conclusion

In this paper, we addressed the critical yet of-
ten overlooked issue of probability calibration in
knowledge graph embedding (KGE) models. We
introduced KGE Calibrator+, the first probabil-
ity calibration method specifically designed for
KGE models. Extensive experiments across mul-
tiple benchmark datasets demonstrated that KGE
Calibrator+ consistently outperforms existing cali-
bration methods, achieving superior performance
while maintaining computational efficiency. In fu-
ture work, we aim to extend KGE Calibrator+ to
support more complex multi-relational KGs and
explore its applicability to dynamic knowledge
graphs.



Limitations

While KGE Calibrator+ demonstrates strong per-
formance in probability calibration for KGE mod-
els, several limitations remain: (1) Dependence on
Training Data Quality: The effectiveness of Jump
Selection Strategy and Multi-Binning Scaling re-
lies on the quality and diversity of training data. If
the dataset is highly imbalanced or lacks sufficient
representative samples, the calibration performance
may degrade. (2) Fixed Calibration Across Differ-
ent Tasks: Our method is optimized for entity link
prediction in static knowledge graphs. However,
dynamic KGs and other KGE-based tasks, such as
knowledge reasoning and fact verification, may re-
quire task-specific modifications to the calibration
strategy. (3) Generalization to Other KGE Mod-
els: While KGEC+ has been validated on several
popular KGE models (e.g., TransE, RotatE), its per-
formance across more complex architectures (e.g.,
hyperbolic embeddings or transformer-based KGE
models) remains an open question. Future research
should investigate how KGEC+ can be adapted to
these settings.
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A Appendix
A.1 Proof of KL Divergence with 2
Given:
s () ) /p(x)l Y 4
—,q() | = | —= x
KL 2 q 12 g q(:c)
We Distribute % across the Log Terms and sepa-
rate the terms in the integral:
p(x) / p(x) p(x)
KL ( t2 ,q(a:)) t2 0og Q(Q?) €z

- / pg) log(t?) dx
(10)

Then, we simplify each integral. For the first in-
tegral, we can rewrite the first integral by factoring

out 75

/

For the second integral, since log(#?) is constant,

o),

+2 DKL(p($)7q(x>)

we have:
[ 10507 e = B [ 0y a0 = 150
since [ p(z)dz = 1.

Finally, we combine both integrals, and get:

Dy <p(:u)

2

0)) = s Drslola). (o)~

For Case1: 0 < t2 < 1
(1) Effect on t%DKL(p(:U), q(z)): Since t% > 1
when 0 < t2 < 1, this term increases the overall

value of D, ( EQ),q( ))
(2) Effect on — log(t ) Jog(t2) is negative when
0<t?<1,50— log( ®) is positive. Thus, this term

Y qx)).

Summary: When 0 < 2 < 1, the entire expres-
sion is amplified, leading to a larger divergence
than the standard D1, (p(z), q(z)).

For Case 2: 12 > 1

(1) Effect on t%DKL(p(x), q(z)): When 2 >
1, t% < 1, which reduces the contribution of
Dgr(p(x),q(x)) to the overall divergence.

(2) Effect on — log(tQ)
log( %)

further increases D KL (

: In this case, log(t?) is

positive, so — is negative, reducing the over-
all divergence further
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Summary: When ¢2 > 1, both terms reduce the
value, leading to a **smaller divergence** com-
pared to D1 (p(x), q(x)).

Conclusion

Scaling p(x) by t% where t2 < 1 emphasizes
the divergence, potentially making discrepancies
between p(x) and g(x) more significant. Scaling
p(z) by 7 where t* > 1 diminishes the divergence,
softening the effect of differences between p(x)
and q(z).

B Handling Zero Probabilities in
Kullback-Leibler Divergence

Let p and ¢ be two discrete probability distributions
defined over a finite set X'. The Kullback—Leibler
divergence from q to p is defined as

o 22)
= 2 p(@)log 5.

reX

Dxw(p | q)

In the computation of Dx1,(p || ¢), special care
must be taken for the terms where either p(z) = 0
or g(x) =0.

Case 1: p(z) =0

For any = € X such that p(x) = 0, the correspond-
ing term in the divergence is

0-log —.
& ()

log(#2) Although log 0 is undefined, we define this term by
12

considering the limit:

p(z)

q(x) b

lim z) lo
p(m)ﬁop( ) log

since it is well known that

lim ulogu = 0.
u—0

Thus, we adopt the convention

0
q(x)
Case 2: g(x) =0and p(z) > 0

If there exists an x € X for which p(z) > 0 but
q(x) = 0, then the term becomes

0-log = 0.

xr
p(x)log p(o)-
Since
log p(O:E) = 400,



Table 5: Training time in seconds taken to calibrate entity link prediction using different methods. Best and
second-ranked results are in bold and underlined, respectively. For fair comparison, these results are obtained using

CPU only.
Method TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBISK FBISK-237 WNI8 WNISRR FBISK FBISK-237 WNI8 WNISRR FBISK FBI5K-237 WNIS WNISRR FBISK FBI5K-237

PS 50551.471  32130.612  66566.552  22756.968 | 44484.280 27740.023 66631.859  20060.975 | 48902.412 31739.057 58074.230 21682.032 | 46162.422 30198.810 65506.688  20522.725 | 40856.945
Vs 2.857 1.893 25.357 3.493 2.661 1.620 16.228 3218 4.114 1.914 20.779 3.456 2.656 1.706 25.995 3.277 1.571
TS 5.235 3.207 20.037 6.475 5.063 3121 18.825 6.276 5.180 3.204 19.734 6.412 5.456 3.171 20.646 6.345 8.649
PTS 3452440  2123.849  16769.166  5856.000 3432436 2122.273  16510.019  5764.345 3450.331 2120.555 16898.528  5868.468 3425.148  2113.001  16802.984  5853.287 7035.177

KGEC 2.269 1.334 8.778 3.049 2.295 1.391 8.738 2.950 2.267 1.395 8914 3.013 2911 1.331 5716.508 2.996 360.634

KGEC+ 2.389 1.429 9.373 3.250 2.350 1.431 9.348 3.205 2.371 1.488 9.349 3.231 2.367 1.426 9.423 3.207 4.102

Table 6: Summary table for calibration method used by related works.

Calibration method

Parametric method

Used works

Isotonic Regression (Zadrozny and Elkan, 2002)
Histogram Binning (Zadrozny and Elkan, 2001)
Beta Calibration (Kull et al., 2017)

Platt Scaling (Platt et al., 1999)

Matrix Scaling (Guo et al., 2017)

Vector Scaling (Guo et al., 2017)

Temperature Scaling (Guo et al., 2017)

No
No

(Tabacof and Costabello, 2020), (Wang et al., 2021), (Zhu et al., 2022)
(Zhu et al., 2022)
(Zhu et al., 2022)
(Tabacof and Costabello, 2020), (Wang et al., 2021), (Zhu et al., 2022)
(Safavi et al., 2020)
(Safavi et al., 2020)

(Zhu et al., 2022)

the term diverges to +00. Consequently, the diver-

gence is defined as

Dxw(p || q) = +o0,

if there exists any z € X with p(z) > 0 and

q(x) =0.

Summary

Thus, the KL divergence is formally defined as

> p(x)log

Dxr(p || q) = § =ex

400,

p(z)

q(z)

otherwise.

This definition ensures that the divergence is finite
only when the support of p is a subset of the sup-
port of ¢, and it penalizes models that assign zero
probability to events observed under p.

B.1 More Data for Accuracy Affection Study

to RQ1

For more results of other KGE models across var-
ious datasets after applying different calibration
methods in Section 5.2, you can find it at here ©.

Shttps://anonymous.4open.science/t/KGE-Calibrator-

6CBB/README.md

, if g(x) > 0,
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