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ABSTRACT

We propose ProsodyBERT, a self-supervised approach to learning prosody represen-
tations from raw audio. Different from most previous work, which uses information
bottlenecks to disentangle prosody features from lexical content and speaker infor-
mation, we perform an offline clustering of speaker-normalized prosody-related
features (energy, pitch, etc.) and use the cluster labels as targets for HuBERT-like
masked unit prediction. A span boundary loss is also used to capture long-range
prosodic information. We demonstrate the effectiveness of ProsodyBERT on a
multi-speaker style-controllable text-to-speech (TTS) system, showing that the
TTS system trained with ProsodyBERT features generate natural and expressive
speech samples, surpassing Fastspeech 2 (which directly models pitch and energy)
in subjective human evaluation. In addition, we achieve new state-of-the-art results
on the IEMOCAP emotion recognition task by combining our prosody features
with HuBERT features, showing that ProsodyBERT is complementary to popular
pretrained speech self-supervised models. 1

1 INTRODUCTION

Human speech contains information beyond the associated word sequence. For example, the in-
tonation, stress, rhythm, and tempo of speech carry important cues associated with the speaking
style, emotion, and intent. These factors are generally referred to as prosody. Prosodic modeling has
been widely investigated in expressive text-to-speech (TTS) synthesis (Valle et al., 2020; Ren et al.,
2021; Kenter et al., 2020; Ren et al., 2022) and voice conversion (VC) (Kreuk et al., 2021; Zhou
et al., 2022), and has been shown to be important for generating natural and expressive synthesized
speech. Prosody is also applied in spoken language understanding tasks by providing information
that disambiguates and complements information in the associated word sequence. Examples include
parsing (Tran et al., 2018), punctuation prediction (Klejch et al., 2017; Cho et al., 2022), emotion
recognition (Rao et al., 2013), and other paralinguistic recognition tasks.

Prosody is traditionally defined in terms of its function in communicating linguistic structure and
paralinguistic information and/or in terms of the associated acoustic correlates, which includes
fundamental frequency (F0), energy, duration, and other measures associated with vocal effort. In this
work, we focus on acoustic correlates, specifically F0 and energy, with duration implicitly encoded
via the temporal dynamics. These features have limitations. F0 tracking algorithms are known to be
unreliable in some contexts, with pitch halving and doubling errors. Energy is sensitive to recording
conditions. F0 and duration depend on speaker and segmental context. Further, F0, energy, and
duration are highly inter-dependent, but are often modeled independently, which can lead to unnatural
prosody in TTS and limit their usefulness in speech understanding. For these reasons, researchers
have been exploring automatic methods for learning alternative representations of prosody.

Automatically learned prosody representations have been proposed for speech synthesis using autoen-
coders that condition on text and speaker identity, which encourages residual information (assumed
to be prosody) to be captured in an information bottleneck (Skerry-Ryan et al., 2018; Wang et al.,
2018; Zhang et al., 2019; Qian et al., 2020). These approaches rely on having high-quality speech
transcripts, limiting the amount of data that can be used in training and the ability to learn a broadly
generalizable representation. Another paradigm of representation learning is self-supervised learning

1Audio samples are available at: https://neurtts.github.io/prosodybert_demo/.
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(SSL). SSL models are pretrained on a large amount of unlabeled examples and then finetuned on
task-specific data. This paradigm has been particularly successful for natural language processing
(Peters et al., 2018; Devlin et al., 2019). Recent speech SSL models like wav2vec 2.0 (Baevski et al.,
2020), HuBERT (Hsu et al., 2021), and WavLM (Chen et al., 2022) have been proposed to learn
acoustic representations from untranscribed speech. Focusing on the phone level, they achieve good
performance on speech recognition and understanding tasks, especially when only a small-amount of
task-specific data is available. SSL methods have also been explored for prosody learning in Weston
et al. (2021), but the approach requires word time marking, which relies on having human transcripts.

To address the challenge of learning a prosody representation without word transcripts, we propose
ProsodyBERT, a self-supervised learning method that disentangles prosody features from speech
content and speaker information. Similar to HuBERT (Hsu et al., 2021), we pretrain an SSL model
by masked unit prediction. The pseudo labels are given by K-means clustering on speaker-normalized
acoustic-prosodic attributes (pitch, energy, and related features), which encourages the model to
focus on prosody learning. In addition, inspired by SpanBERT (Joshi et al., 2020), we propose a
span boundary loss to encourage the model to better represent long-range prosody information. We
also substantially compress the model size and reduce the feature dimensions to make the model
easy to use. Similar to prior SSL models, ProsodyBERT is first trained on a large amount of raw
speech audio and then adapted to target tasks. Such a design enables ProsodyBERT to learn a rich
representation of prosody on massive amounts of untranscribed speech.

Our approach follows that of recent speech synthesis work, which aims to disentangle prosody
from lexical content and speaker identity. With this view, acoustic-prosodic features that can be
speaker-dependent, such as F0 range, are accounted for in the speaker representation. Disentangling
the speech representation into different factors can improve the model’s ability to generalize across
different conditions and enable zero-shot speaker models for synthesis. While this factoring could
be done in different ways (and include other factors), learning a prosody representation that has
minimal speaker information is also useful for privacy-sensitivite speech processing. Using speaker
verification experiments, we show that ProsodyBERT is effective at providing de-identified prosody
features.

We demonstrate the effectiveness of pretrained ProsodyBERT features on text-to-speech (TTS) and
emotion recognition. During training, we extract ProsodyBERT features from speech and use them
as conditional inputs for the TTS decoder. A separate prosody predictor is trained such that it
takes text and style as inputs and generates prosody features. During inference, the TTS decoder
takes the predicted prosody features as input. Experiments show that the TTS system trained with
ProsodyBERT features generates natural and expressive speech, surpassing FastSpeech 2 (Ren
et al., 2021) (trained with energy and F0) by a large margin in subjective human evaluation. The
expressiveness can be controlled by using speaking-style vectors (learned from multi-style data) in
prosody prediction. For the emotion recognition task, we simply concatenate ProsodyBERT features
to HuBERT features and use them as the inputs for downstream models. We achieve a new state of the
art on IEMOCAP emotion recognition task, showing that ProsodyBERT features are complementary
to HuBERT features.

In summary, the key contribution of this work is in the development of a new, low-dimensional
representation of prosody that can be learned from untranscribed speech. We demonstrate good
speaker de-identification and utility of the new features in both TTS and emotion recognition.

2 RELATED WORK

Modeling Prosody in TTS and VC Most prior work on prosody treats prosody feature learning as
an auxiliary module for downstream generation tasks. Recent approaches include directly using signal
prosody (F0, energy, etc.) (Wan et al., 2019; Valle et al., 2020; Ren et al., 2021; Kenter et al., 2020;
Liu et al., 2021; Kharitonov et al., 2022), learning a latent style embedding (Wang et al., 2018; Zhang
et al., 2019; Hsu et al., 2019; Sun et al., 2020), learning frame-level or phone-level representation
(Du & Yu, 2021; Kreuk et al., 2021), and utilizing reference audios for style (Choi et al., 2020; Yi
et al., 2022). Most of these prosody representations rely on task-specific models.

Learning Prosody Representations Prior work on prosody representation learning approaches are
mainly based on either information bottleneck or self-supervised learning. Information bottleneck
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Figure 1: Overview of ProsodyBERT pretraining. Frame-level acoustic-prosodic features (NCCF,
F0, energy, deltas) and the log Mel spectrum (bins < 500Hz) are first extracted from the audio
file. Offline K-means clustering is done on the speaker-normalized acoustic-prosodic features to
generate the hidden cluster assignments (z11, z12, ..., z20) as the prediction targets. The equation
shows the loss terms on the masked frame x15. The masked unit modeling (MUM) objective uses the
corresponding model outputs h15 to predict z15. The span boundary objective (SBO) uses the model
outputs on the boundary to predict the cluster assignments of every frame in the masked span. Here
z15 is predicted given h11, h20, and the relative position embedding p5.

approaches rely on carefully designed bottlenecks that condition on lexical and speaker information
to capture the residual prosody information (Qian et al., 2020; Ren et al., 2022). Other approaches
operate more directly on acoustic-prosodic correlates. Weston et al. (2021) learns word-level prosody
features from a down-sampled signal by combining a temporal convolutional network and product
quantizer with transformer-based contextualization trained using a contrastive task similar to Baevski
et al. (2020). However, it relies on word boundaries provided by transcripts to learn word-level
prosody representation. Zayats et al. (2019) learn a word-level prosody representation that uses
deviations from text-based predictions of F0, energy and duration to compute a prosody representation
that is disentangled from lexical cues. Polyak et al. (2021) augments SSL acoustic representation
learning with an unsupervised, discrete representation of F0 obtained using VQ-VAE (van den Oord
et al., 2017). Our approach differs from all of these methods in that it learns frame-level embeddings
from untranscribed speech, leveraging multiple acoustic correlates of prosody.

3 PROSODYBERT

An overview of the ProsodyBERT model is given in Figure 1. Our model is based on HuBERT (Hsu
et al., 2021) and SpanBERT (Joshi et al., 2020), but is modified to focus on prosody representation
learning that disentangles prosody from lexical content and speaker information.

Notation Given an audio segment A, the feature extractor outputs a sequence of acoustic features
X = (x1, x2, · · · , xn), where each xt corresponds to a fixed-length frame and n is the number
of frames. ProsodyBERT takes X as input and produces a contextualized vector representation
for each frame H = (h1, h2, · · · , hn) that is trained to predict unsupervised prosody units Z =
(z1, z2, · · · , zn). The vectors ht are the ProsodyBERT outputs.

Feature Extractor Given the raw audio segment A, the feature extractor first implements loud-
ness normalization on A to 0dB, and then computes frame-based prosodic and spectral features.
For prosodic features, we include log fundamental frequency (log(F0)), Normalized Cross Corre-
lation Function (NCCF), energy, and ∆ log(F0). F0 and NCCF are extracted via the Kaldi pitch
tracker (Povey et al., 2011); F0 values are interpolated in unvoiced regions. Pitch (log(F0)) and
energy (E) are globally normalized on the corpus-level by z-score, and the deltas are computed on
the normalized values. No normalization is done on NCCF features. For spectral features, we take
the low-frequency bands (first 20 bins, < 500Hz) of log Mel spectrum, focusing on the typical range
of F0 and filtering out much of the information associated with lexical content. Mean and variance
z-score normalization are performed on these low-frequency bins on the utterance level. log(F0), E ,
NCCF, ∆ log(F0), and log Mel features are concatenated at each frame as the output X .
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Hidden Units for ProsodyBERT Inspired by HuBERT (Hsu et al., 2021), we get the frame-level
target labels by acoustic unit discovery. Specifically, we train a K-means clustering model on speaker-
normalized prosody features (NCCF, log(F0),∆ log(F0), E) using all the frames in the pretraining
corpus. Z-score speaker normalization is done on E and log(F0) before clustering to disentangle
speaker information. For a speech utterance with acoustic features X = (x1, x2, · · · , xn), the
discovered acoustic units are Z = (z1, z2, · · · , zn), where zt is a K-class categorical variable.

Training objectives We adopt the same masking mechanism as SpanBERT (Joshi et al., 2020),
wav2vec 2.0 (Baevski et al., 2020), and HuBERT (Hsu et al., 2021). Let the input utterance be
X = (x1, x2, · · · , xn). Denote the set of all masked frames as M ⊂ X . Define X̃ as the corrupted
input sequence, in which the frames in M are replaced with a special mask embedding. ProsodyBERT
has two training objectives. The first is the masked unit modeling (MUM) objective. Let the output
hidden states at the t-th frame be ht. We compute the masked unit modeling loss of frame t as:

LMUM(zt) = − log pm(zt | ht). (1)
The masked prediction model pm takes ht as input and predicts a distribution over target label zt. It
is implemented as a single-layer network followed by a softmax.

Previous work mostly relies on alignments to learn the span-level representation of speech (Weston
et al., 2021; Hu et al., 2021). In contrast, our self-supervised method only relies on raw audio.
Inspired by SpanBERT (Joshi et al., 2020), we add a span boundary loss to encourage ProsodyBERT
to learn a long-range prosodic representation. Given a masked span (xs, · · · , xe), in which s and e
are the start and ending frames of the span, and let xt be a frame in this span. The span boundary loss
at time t is computed as:

LSBO(zt) = − log pspan(zt | hs, he, pt−s, qe−t+1) (2)
in which hs and he are the output hidden states of the span boundaries xs and xe, respectively, and
p and q are the relative positional embeddings with respect to the left and right boundaries xs and
xe, respectively. The span prediction model pspan is implemented as a 2-layer feedforward network
followed by a softmax. The span boundary loss forces the model to predict the entire masked span
without relying on individual tokens within it. The total loss is computed over all masked frames:

L(X̃,M,Z) =
∑
t∈M

(LMUM(zt) + LSBO(zt)) (3)

4 PROSODYBERT FOR STYLE-CONTROLLABLE TTS

4.1 BACKGROUND: UTTS

We demonstrate the effectiveness of ProsodyBERT on UTTS (Lian et al., 2022b). UTTS is a
framework for self-supervised multi-speaker TTS acoustic model pretraining that is combined with an
alignment mapping model. The acoustic modeling pretraining does not rely on transcribed data. The
alignment mapping model is trained on small amounts of paired text-audio data to map a phone-based
forced alignment to a sequence of unsupervised units learned in pretraining. UTTS is developed
from the perspective of disentangling speech representation learning. We choose UTTS because it is
a self-supervised TTS framework that benefits from pretraining on a large amount of data, which
aligns with ProsodyBERT’s design. Also, our initial experiments indicate that UTTS synthesizes
better quality speech than the trained models provided by Lee et al. (2022).

Baseline UTTS Pretraining An overview of UTTS pretraining is shown in Figure 2. Speaker
and alignment representation are disentangled via a conditional disentangled sequential variational
autoencoder (C-DSVAE) (Lian et al., 2022a) during self-supervised training. Let X be a training
speech instance of length n frames. Denoting model parameters as θ, let pθ and qθ be the prior
and posterior models, respectively. The training objective of C-DSVAE is a weighted sum of the
following losses:

LKLDs = Ep(X)[KLD(qθ(zspeaker | X) || N(0, I))] (4)
LKLDc = Ep(X)[KLD(qθ(zalign | X) || pθ(zalign)] (5)

Lreconstruct = Ep(X)Eqθ(zspeaker,zalign|X)[− log(pθ(X | zspeaker, zalign))] (6)
where zspeaker is the learned utterance-level speaker representation (a vector embedding) and zalign =
[za1, za2, · · · , zan] is the learned phone alignment (a sequence of discrete unsupervised phonetic
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Figure 2: An overview of UTTS pretraining, which only requires raw speech. The loss terms during
training are marked purple.

units zai). Lreconstruct is the reconstruction loss. KLD is the KL-divergence, and LKLDs
and LKLDc

encourage disentanglement between zspeaker and zalign.

4.2 UTTS PRETRAINING WITH PROSODYBERT FEATURES

A limitation of the UTTS framework is that only speaker and word content (phone alignment)
information are represented during training. There is no explicit model of prosody, making the
synthesized demos less expressive and potentially unnatural. ProsodyBERT provides a solution. As
shown in Figure 2 (b), during training, we condition the UTTS decoder on the prosody features
extracted from the speech segment X . Formally, we replace Equation 6 with:

hprosody = ProsodyBERT(X) (7)
Lreconstruct = Ep(X)Eqθ(zspeaker,zalign|X)[− log(pθ(X | zspeaker, zalign, hprosody))] (8)

ProsodyBERT is designed to focus on prosody, disentangled from word content and speaker identity.
By adding prosody embeddings (hprosody) as a third source of reconstruction, the prosodic variations
are accounted for. Given pretrained (frozen) ProsodyBERT embeddings, the C-DSVAE can focus on
learning disentangled representations of the speaker (zspeaker) and content (zalign).

4.3 UTTS INFERENCE AND TRAINING WITH PROSODYBERT

Inference An overview of the UTTS inference pipeline with ProsodyBERT is in Figure 3 (a).
Target speaker, text, and style ID are mapped into the learned representations of C-DSVAE to utilize
the pretrained decoder for TTS. Lian et al. (2022b) describes the process of mapping a target speaker
to zspeaker and mapping a phone alignment to learned unsupervised alignment zalign. Here we focus on
component models for predicting the prosody features and phone durations.

In TTS, prosodic structure is typically tied to words and/or syllables. Here, we use word-level prosody
vector embeddings, but also explore phone-level vectors. In inference, the prosody features are first
predicted given the text and the style, and then the duration of each phone is predicted given the style,
the speaker, and the predicted prosody features. (As shown in Section 6, the inter-dependence of
F0, energy and duration make the prosody vectors useful for duration prediction.) After duration
prediction, the prosody vector sequence is broadcast to the frame-level (hprosody) according to the
duration predictions. Similarly, the input phone sequence is broadcast to the frame level for input to
the network that predicts the unsupervised acoustic unit sequence (zalign). The two prosody predictor
configurations are shown in Figures 3 (b) (phone-level) and (c) (word-level). The architecture of the
prosody and duration predictors follows the variance adaptor of Ren et al. (2021).

Training The UTTS decoder and acoustic unit mapping are trained as in Lian et al. (2022b),
using the reference prosody vectors and learned unsupervised alignment. The prosody vector and
duration predictors are separately trained. The reference phone- and word-level prosody vectors
are the mean-pooled reference ProsodyBERT vectors using the respective (phone and word) forced
alignment times. Unlike the baseline UTTS, our version with prosody conditioning learns the style
vector during prosody prediction and not jointly with the decoder.
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Figure 3: (a) UTTS for speech synthesis. The pretrained UTTS is paired with a duration predictor
and a prosody predictor for speech synthesis. These predictors are trained on small amount of
text-audio pairs; (b) and (c) show phone-level and word-level prosody predictors, respectively.

The configurations of the prosody predictor depends on whether the features are at the phone-level
or word-level. The phone-level prosody predictor takes the phone embedding sequence and a style
embedding as input, and it is jointly trained with the phone encoder and style embedding. The word-
level predictor follows the design of Kenter et al. (2020). The input text is tokenized into WordPieces
and passes through a RoBERTa encoder; the embedding corresponding to the first WordPiece of each
word is used as the word representation. The word-level prosody predictor is trained jointly with the
style vector using the frozen RoBERTa embeddings. Given m phones or words (depending on the
predictor), let the model output be O = (o1, o2, · · · , om) and the reference ProsodyBERT features
be H = (h1, h2, · · · , hm). The training loss is:

Lprosody =

m∑
t=1

[
1

D
||ot − ht||1 − log σ(cos(ot, ht))] (9)

where D is the dimension of hidden states, σ is the sigmoid function, and cos is the cosine similarity.
This loss is proposed in Chang et al. (2022), and we empirically find it yields good performance.

The duration predictor takes the phoneme sequence, the predicted prosody features (word-level
features are expanded to phone-level via a lexicon), the style embedding, and the speaker embedding
as inputs, and predicts the duration (number of frames) of each phoneme. Montreal Forced Alignment
(MFA) (McAuliffe et al., 2017) is used to extract the target phoneme duration. The duration predictor
architecture is the same as in Lian et al. (2022b) but with the added phone-level prosody input vector.
The training loss is the mean squared error (MSE) between predicted duration and target duration
(both transformed to the logarithmic domain).

5 EXPERIMENTAL SETUP

5.1 PROSODYBERT PRETRAINING

We use the full LibriTTS (Zen et al., 2019) audio for ProsodyBERT pretraining. LibriTTS contains
586 hours of audiobook data from 2,456 speakers. To generate the target labels, we run K-means clus-
tering with 100 clusters using the MiniBatchKMeans algorithm in scikit-learn (Pedregosa
et al., 2011). The mask span length is set to l = 10 for 20ms frames, and l = 20 for 11ms frames.
Notice that the masks can overlap, so the real span length is variable. We choose this span length
because the average word duration in human speech is about 200-300ms. For the sampling of mask
starting point, we set the probability to be 65%, resulting in about 50% of frames being masked.
We reduce the model size and feature vector (to 32 dimensions) for computational efficiency. The
ProsodyBERT architecture follows the distilBERT (Sanh et al., 2019) and has 21M parameters. We
use Adam (Kingma & Ba, 2015) optimizer and linear learning rate schedule, with learning rate 1e−4.

5.2 EXPERIMENTS ON TEXT-TO-SPEECH (TTS)

For text-to-speech experiments, two datasets are used: VCTK (Veaux et al., 2017) and DailyTalk (Lee
et al., 2022). VCTK contains 44 hours of read speech from 109 speakers and does not contain much
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prosody variation. DailyTalk contains 21.6 hours of spontaneous dialogue from 2 speakers and has
rich prosody. We pool these two datasets so that the TTS system supports multiple speakers and two
styles. VCTK reflects a reading speech style, and DailyTalk reflects a spontaneous speech style. The
architecture of UTTS follows Lian et al. (2022b), in which the style and speaker embeddings are
learned during training. To support zero-shot scenarios for speakers, we use the speaker embedding
from pretrained ECAPA-TDNN (Desplanques et al., 2020; Zhang & Yu, 2022).

Baselines. We compare our TTS systems with two baselines. The first is the baseline UTTS, in
which there is no explicit prosody component. For a fair comparison, we do not use extra audio for
UTTS pretraining. The second is the official FastSpeech 2 checkpoint (Ren et al., 2021) trained on
DailyTalk2, the system that gets the highest MOS score in Lee et al. (2022), outperforming Tacotron
2 (Shen et al., 2018) and the authors’ baseline. FastSpeech 2 contains a pitch predictor and a energy
predictor that predicts quantized F0 and energy, respectively. In contrast, our system is predicting
ProsodyBERT features. FastSpeech 2 predicts phone durations from the phone sequence. Our UTTS
with ProsodyBERT systems adds the predicted prosody features as inputs for duration prediction,
which is shown to improve results.

5.3 EXPERIMENTS ON EMOTION RECOGNITION (ER)

We conduct the ER experiments on IEMOCAP (Busso et al., 2008) dataset, which contains 5 sessions.
We follow the “leave-one-session-out” setting. In each round, one session is used for test and the
others are used for training and validation. The evaluation metric is weighted accuracy, which is
the accuracy of all utterances in the test session. We explore the use of ProsodyBERT features
together with different pretrained acoustic encoders, including base and large versions of wav2vec
2.0 (Baevski et al., 2020), data2vec (Baevski et al., 2022), and HuBERT (Hsu et al., 2021). For all
models, the base models have 12 layers with 768 dimensions each, and the large model has 24 layers
with 1024 dimensions each. The acoustic encoder vectors are concatenated with 32-dimensional
ProsodyBERT feature vectors.

There are two experiment settings. The first is the SUPERB (Yang et al., 2021) probing setting,
in which the weights of the pretrained speech models are frozen. The SUPERB S3PRL probing
model (an LSTM) takes the weighted average of each model layer (with supervision to learn weights)
concatenated with the 32-dim ProsodyBERT features as the input. In the second setting, the concate-
nated frame-based sequence of acoustic and ProsodyBERT vectors is input to a conformer-based
encoder-decoder module, and the model is jointly trained with an autoregressive setting to predict
the emotion label and the corresponding transcription from the given utterance. To maximize the
model performance, we experiment with HuBERT-large, since this model gives the state-of-the-art
on IEMOCAP. We perform domain-adaptive ProsodyBERT pretraining on the training sessions of
IEMOCAP, then finetune the whole model, including the pretrained acoustic model and our Prosody-
BERT, via ESPnet3 (Watanabe et al., 2018; Arora et al., 2022). As a contrastive experiment, we also
use the raw pitch and energy prosody features instead of the ProsodyBERT vectors.

6 RESULTS AND ANALYSIS

In this section, we first conduct speaker verification experiments to assess the extent to which the
prosodyBERT learning strategy de-identifies the feature vectors, and then report results of TTS and
emotion recognition experiments.

6.1 SPEAKER DE-IDENTIFICATION

We assess the de-identification of pretrained ProsodyBERT features via a speaker verification task,
where higher Equal Error Rate (EER) implies less speaker-related information in the features. The
task is performed on the VCTK test set using the same code (including experiment configuration
and random trials) as Lian et al. (2022a;b;c). We use a mean pooling of the frame-level prosody
vectors as the representation of the speaker for an utterance. Two utterances are randomly drawn from

2https://github.com/keonlee9420/DailyTalk
3The hyper-parameters for training and decoding are the same as the default ESPnet recipe at https:

//github.com/espnet/espnet/tree/master/egs2/iemocap/asr1
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the VCTK test set, and a cosine distance is used to determine whether the speakers are the same or
different. The EER is computed from 36900 random trials. The ProsodyBERT features are compared
to the full feature vector input to ProsodyBERT and the speaker-normalized prosody features used
with K-means to derive the hidden prosody units. Table 1 shows that ProsodyBERT features have
less speaker-identifying information than the full input acoustic-prosodic features (energy, pitch, and
low-freq mel), as well as the speaker-normalized representations.

Representation EER

Energy + Pitch + Mel 8.2%
Energy + Pitch + Mel (SN) 20.4%
Energy + Pitch (SN) 23.4%
ProsodyBERT 35.3%

Table 1: Equal Error Rate (EER) of
speaker verification on VCTK test set, us-
ing different prosody representations. SN
means “speaker normalized.” Higher EER
implies a higher level of de-identification.

MOS(↑) WER (↓) Ldur (↓)

Reference 4.53 ± 0.06 5.6% –

FastSpeech 2 3.37 ± 0.09 25.3% –

Baseline UTTS 3.50 ± 0.09 23.2% 0.125
Phone prosody 3.63 ± 0.08 21.1% 0.119
Word prosody 3.81 ± 0.09 18.9% 0.117

Table 2: MOS scores (with 95% confidence intervals),
ASR word error rate (WER), and duration validation
loss (Ldur) for different TTS settings on DailyTalk.

6.2 STYLE-CONTROLLED TTS

Quantitative Assessment Results of TTS experiments on the DailyTalk validation set are reported
in Table 2 for the two configurations of ProsodyBERT in comparison to the two baselines (UTTS
and FastSpeech 2) and the reference audio sample. Mean Opinion Score (MOS) tests use 20 subjects
who are asked to evaluate the naturalness of each sample. Intelligibility is assessed in terms of ASR
word error rate (WER) using a LibriSpeech ASR model.4 For duration prediction, the validation loss
(average MSE of log duration) is shown for the UTTS systems. Trends are consistent for all criteria,
with higher MOS for the TTS systems using ProsodyBERT, as well as lower WER and duration loss.
For all criteria, word-level prosody features give the best results, with a substantial improvement over
FastSpeech 2. We hypothesize that this is due to the fact that word-level context is important for
prosody prediction. The reduction in duration loss compared to the UTTS baseline shows that the
prosody embeddings are implicitly representing duration effects.

Example comparison of synthesized speech We compare the prosodic contours of the synthesized
audio and the ground truth in detail on Figure 4. The F0 plots show that both ProsodyBERT models
capture the pitch accent on “go,” but only the word-level prosody representation gives the final rise in
F0. The figures suggest that there are some issues with prediction of voicing with the ProsodyBERT
outputs, but it is imperceptible and may simply be an F0 tracking error. Energy contours also give
a better match to the ground truth for the ProsodyBERT models. The spectrograms are given in
Appendix C, showing that adding prosodic controls (both in FastSpeech and with ProsodyBERT)
impacts the full spectral shape, not just F0 and energy.

Figure 4: Comparison of the pitch and energy contours of synthesized speech “where do you want to
go?” and the ground truth in DailyTalk (5_1_d1127). The orange line is F0 and the puple line is E.
The audio samples are available on the demo page.

Expressiveness Control With the given training data, our system has two speaking styles: read
(VCTK) and spontaneous (DailyTalk). However, more variation in expressiveness can be generated

4https://huggingface.co/espnet/simpleoier_librispeech_asr_train_asr_
conformer7_hubert_ll60k_large_raw_en_bpe5000_sp

8

https://huggingface.co/espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp
https://huggingface.co/espnet/simpleoier_librispeech_asr_train_asr_conformer7_hubert_ll60k_large_raw_en_bpe5000_sp


Under review as a conference paper at ICLR 2023

using these style vectors, as shown in Figure 5. Specifically, we change the expressiveness by using
prosody vectors that are a weighted sum of the word-level prosody features predicted for the two
styles. The number in the figure titles are the weight of VCTK-style prosody features. As the weight
becomes bigger, the synthesized speech has less variation in pitch and lower energy. Anecdotally,
human evaluation suggests that the naturalness of synthesized speech is kept for all the weights.

Figure 5: The pitch and energy contours conditioned on different level of expressiveness, controlled
by weights of ProsodyBERT features of VCTK and DailyTalk styles. The text is “How can I solve
the problem? I am angry.”

6.3 EMOTION RECOGNITION ON IEMOCAP

Model Acc.
Original +ProsodyBERT

wav2vec2-base 63.4 64.2
wav2vec2-large 65.6 68.9
data2vec-base 66.3 70.4
data2vec-large 66.3 70.3
HuBERT-base 64.9 66.1
HuBERT-large 67.6 69.1

Table 3: Results on IEMOCAP dataset in SU-
PERB (Yang et al., 2021) probing setting.

Method Acc.

WISE (Shen et al., 2020) 66.5
wave2vec2-PT (Pepino et al., 2021) 67.2
HuBERT-large (Gat et al., 2022) 71.9
HuBERT-large + TAP (Gat et al., 2022) 74.2

Ours
HuBERT-large + Signal Prosody 74.3
HuBERT-large + ProsodyBERT 75.8

Table 4: Results on IEMOCAP dataset in su-
pervised setting. The “signal prosody” refers
to ProsodyBERT inputs.

Table 3 shows our results on IEMOCAP in SUPERB probing setting, in which the pretrained models
are all frozen during training. ProsodyBERT features are concatenated to the existing self-supervised
acoustic model features as the input to the downstream models. In experiments with three different
acoustic models, we find consistent improvement after adding prosody features, for both the base and
large sizes. These results demonstrate that ProsodyBERT captures additional prosodic information
that are complementary to all of these pretrained models.

Table 4 compares our results on IEMOCAP with those of recently reported systems in the fully
supervised setting, in which all parameters are finetuned. Our method outperforms the current state-
of-the-art (Gat et al., 2022). For analysis, we compare the ER accuracy of “HuBERT + ProsodyBERT”
with “HuBERT + Signal Prosody” features, which includes F0, energy, NCCF, deltas, and < 500 Hz
log Mel. The relative performance gap shows the benefit of self-supervised learning.

7 CONCLUSION

We propose ProsodyBERT, a self-supervised method to learning prosody representations apart from
speech content and speaker information. Our method does not rely on any transcripts or external
models. This self-supervised framework allows ProsodyBERT to learn the full distribution of prosody
variations via pretraining on large amount of data. We demonstrate the effectiveness of ProsodyBERT
on a style-controllable TTS system, showing that the TTS model trained with ProsodyBERT features
can generate natural and expressive speech, outperforming a model trained with energy and pitch. We
also achieve a new state-of-the-art on IEMOCAP emotion recognition, showing that ProsodyBERT
features are complementary to pretrained models like HuBERT, wav2vec2, and Data2vec. Future
work may explore broader usage of ProsodyBERT. For example, ProsodyBERT may be combined
with a large language model for spoken language understanding or translation tasks by augmenting
text vectors with prosody embeddings.
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8 REPRODUCIBILITY STATEMENT

The model details are given in Section 5. The source code for the model architecture, together with
all the hyperparameters, are provided in the supplementary material. The trained model checkpoints
will be released after the anonymity period, and they can be directly used with the provided source
code. For the training procedure, we have accounted for the hardest issues in Appendix. The TTS
demos uses in the MOS test are also provided in the supplementary material for reference.
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Appendices
A OVERVIEW OF DATA USED

Dataset Domain Hours Total speakers Usage

LibriTTS (Zen et al., 2019) Audiobook 586 2,456 ProsodyBERT pretraining

VCTK (Veaux et al., 2017) Reading 44 109 Text-to-speech
DailyTalk (Lee et al., 2022) Conversation 21.6 2 Text-to-speech

IEMOCAP (Busso et al., 2008) Conversation 12.5 10 Emotion Recognition

Table 5: Summary of the datasets we used.

An overview of the data we use are shown on Table 5.

B MORE ABOUT DURATION PREDICTION

Inputs Val loss (predicted prosody) Val loss (oracle prosody)

Phones 0.125 -

Phones + Phone Prosody 0.119 0.010
Phones + Word Prosody 0.117 0.077

Table 6: The validation loss of duration prediction on DailyTalk. The loss is computed by MSE on
log duration (number of frames of each phone, with frame length about 11ms).

Table 6 shows the duration prediction performance for the baseline UTTS model compared to
prediction using prosody vectors, both for automatically predicted and oracle prosody. The results
show that the prosody vectors reduce prediction error, which demonstrates that duration effects of
prosody are implicitly modeled by mean-pooling the sequence of frame-level vectors.

C SPECTROGRAMS OF SAMPLES

We include the spectrograms of the audio samples presented in Section 6 in Figure 6 and Figure 7 for
reference. Figure 6 shows that besides the energy and pitch contours, prosodic controls also impact
the full spectrogram for both UTTS and FastSpeech 2.

Figure 6: The log Mel spectrograms of the audio samples in Figure 3.
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Figure 7: The log Mel spectrograms of the audio samples in Figure 5.

D IMPLEMENTATION DETAILS

ProsodyBERT has two configurations. For emotion recognition, following Hsu et al. (2021), the input
audio sampling rate is 16kHz, and the frameshift is 20ms. For TTS, following Ren et al. (2021), the
input sampling rate is 22.05kHz, and the hop length is 256 (frame shift ∼ 11ms). For both the ER
and TTS versions, we train the model for 10 iterations on 8 GPUs, with batch size 8. Training takes
about 6 hours for ER and 10 hours for TTS (due to the shorter frame shift).

D.1 ARCHITECTURE

The ProsodyBERT architecture follows the distilBERT architecture (Sanh et al., 2019), with the
exception that the positional embeddings are replaced with the convolutional positional embedding
as in (Baevski et al., 2020) to support long inputs. The encoder has 6 transformer layers, with hidden
dimension 512, 8 heads, feedforward dimension 2048. The final projection layer has dimension 32.
The model has 21M parameters.

D.2 K-MEANS ON ACOUSTIC CORRELATES

We train a K-means clustering model on frame-level prosody features (NCCF, log(F0), ∆ log(F0),
E). Z-score speaker normalization is performed on log(F0) and E, and ∆ log(F0) is computed on
the normalized log(F0). NCCF is already normalized, so no further normalization is needed. By
such, we disentangle speaker information. Each feature is a scalar, so clustering is done on 4-dim
vectors. We have not added any weightings on each dimension because the features have already
been normalized before clustering.

D.3 SPAN MASKING

We adopt the same masking mechanism as SpanBERT (Joshi et al., 2020), wav2vec 2.0 (Baevski
et al., 2020), and HuBERT (Hsu et al., 2021). Let the input utterance be X = (x1, x2, · · · , xn), we
first randomly select a subset of Y ⊆ X such that |Y | = m|X|. m is a given hyperparameter, and it
is set to 65% in our experiments. The frames in Y are the starting point of the masked spans, and
spans of l frames are masked. Notice that the spans can overlap, so the length of the spans is not
fixed.

D.4 ALIGNMENTS OF WORDPIECE, PHONEMES, AND WORDS

There is no direct mapping between WordPieces and Phones. However, the RoBERTa encoder in
word-level prosody predictor only takes WordPiece as inputs, and the UTTS system takes frame-level
inputs. To deal with this mapping issue, we first map words to WordPieces (represent each word by
its first WordPiece, and ignore the other WordPieces), and then broadcast this word-level feature to
its corresponding phones via a lexicon.
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