
Simplicity Bias of Transformers to Learn
Low Sensitivity Functions

Bhavya Vasudeva† Deqing Fu† Tianyi Zhou
Elliott Kau∗ Youqi Huang∗ Vatsal Sharan

University of Southern California

Abstract

Transformers achieve state-of-the-art accuracy and robustness across many tasks, but an understanding
of the inductive biases that they have and how those biases are different from other neural network
architectures remains elusive. Various neural network architectures such as fully connected networks have
been found to have a simplicity bias towards simple functions of the data; one version of this simplicity
bias is a spectral bias to learn simple functions in the Fourier space. In this work, we identify the notion of
sensitivity of the model to random changes in the input as a notion of simplicity bias which provides a
unified metric to explain the simplicity and spectral bias of transformers across different data modalities.
We show that transformers have lower sensitivity than alternative architectures, such as LSTMs, MLPs
and CNNs, across both vision and language tasks. We also show that low-sensitivity bias correlates with
improved robustness; furthermore, it can also be used as an efficient intervention to further improve the
robustness of transformers.

1 Introduction
Transformers (Vaswani et al., 2017) have become a universal backbone in machine learning, and have achieved
impressive results across diverse domains including natural language processing (Brown et al., 2020; Devlin
et al., 2019; OpenAI, 2023), computer vision (Dosovitskiy et al., 2021) and protein structure prediction (Jumper
et al., 2021; Moussad et al., 2023). Many recent works have also found that not only do transformers achieve
better accuracy, but they are also more robust to various corruptions and changes in the data distribution
(Bhojanapalli et al., 2021; Mahmood et al., 2021; Paul and Chen, 2022; Shao et al., 2021).

Owing to this practical success, there has been significant interest in developing an understanding of how
transformers work. Recently, there have been several interesting results in uncovering the mechanisms by
which transformers solve specific algorithmic or prediction tasks (e.g. Akyürek et al., 2023; Hanna et al.,
2023; Wang et al., 2022). However, real-world data and prediction tasks are complex and are often not easily
modeled by concrete algorithmic tasks. Therefore, it seems useful to also understand if there are broader
classes of functions that transformers prefer to learn from data, and identify high-level inductive biases that
they have that hold across multiple types of data.

There have been several recent results in this vein that attempt to understand the inductive biases of
neural networks, most of which focus on fully-connected networks. One emerging hypothesis is that neural
networks prefer to learn simple functions, and this is termed as ‘simplicity bias’ (Huh et al., 2021; Lyu et al.,
2021; Shah et al., 2020; Valle-Perez et al., 2019). The premise of our work is whether there are appropriate
notions of simplicity bias that explain the behavior of transformers in practice. A promising notion which has
yielded interesting theoretical and practical results for neural networks is spectral bias (Rahaman et al., 2019),
which is a bias towards simple functions in the Fourier space. Simple functions in the Fourier space generally
correspond to low-frequency terms when the input space is continuous, and low-degree polynomials when
the input space is discrete. Recent work has shown that deep networks prefer to use low-frequency Fourier
functions on images (Xu et al., 2019), and low-degree Fourier terms on Boolean functions (Yang and Salman,
2020). In particular, we are inspired by the work of Bhattamishra et al. (2023b), who find that transformers
are biased to learn functions with low sensitivity on Boolean inputs. The sensitivity of a function measures how
likely the output is to change for random changes to the input. It is closely related to the Fourier expansion
of the function and the weight on low-degree Fourier terms, and also to various other notions of complexity
such as the size of the smallest decision tree (O’Donnell, 2014). Sensitivity has also been found to correlate
with better generalization for fully-connected networks (Novak et al., 2018). It also has the advantage that it
†Co-first authors. Emails: bvasudev@usc.edu, deqingfu@usc.edu. ∗Co-third authors.

1

ar
X

iv
:2

40
3.

06
92

5v
1

 [
cs

.L
G

]
 1

1
M

ar
 2

02
4

mailto:bvasudev@usc.edu
mailto:deqingfu@usc.edu

can be efficiently estimated on data through sampling — in contrast, estimating all the Fourier coefficients
requires time exponential in the dimensionality of the data and hence can be computationally prohibitive (Xu
et al., 2019).

Our results. The goal of our work is to investigate whether sensitivity provides a unified perspective
to understand the simplicity bias of transformers across varied data modalities, and if it can help explain
properties of transformers such as their improved robustness. We now provide an overview of the main claims
and results of the paper. We begin our investigation with the following question:

Do transformers have a bias towards low-sensitivity functions which holds true beyond Boolean functions?

To answer this, we first show a simple proposition which proves that transformers indeed show a spectral bias
on Boolean functions, relying on the work of Yang and Salman 2020 (Section 3). We then construct a synthetic
dataset that demonstrates that transformers prefer to learn low-sensitivity functions on high-dimensional
spaces (Section 4). The synthetic setting allows us to tease apart sensitivity from related notions, such as a
preference towards functions that depend on a sparse set of tokens. Next, we examine if this low-sensitivity
bias is widely present across different tasks:

Does low-sensitivity provide a unified notion of simplicity across vision and language tasks, and does it
distinguish between transformers and other architectures?

Here, we first conduct experiments on vision datasets. We empirically compare transformers with MLPs
and CNNs and observe that transformers have lower sensitivity compared to other candidate architectures (see
Section 5). Similarly, we conduct experiments on language tasks and observe that transformers learn predictors
with lower sensitivity than LSTM models. Furthermore, transformers tend to have uniform sensitivity to all
tokens while LSTMs are more sensitive to more recent tokens (see Section 6). Given this low-sensitivity bias,
we next examine its implications:

What are the implications of a bias towards low-sensitivity functions, and is it helpful in certain settings?

Here, we first show that models with lower sensitivity are more robust to corruptions when tested on the
CIFAR-10-C datasets — in particular, transformers have lower sensitivity and are more robust than CNNs
(Section 7). We also demonstrate that sensitivity is not only predictive of robustness but also has prescriptive
power: We add a regularization term at training time to encourage the model to have lower sensitivity. Since
sensitivity is efficient to measure empirically, this is easy to accomplish via data augmentation. We find that
models explicitly trained to have lower sensitivity yield even better robustness on CIFAR-10-C. Together, our
results show that sensitivity provides a general metric to understand the bias of transformers across various
tasks, and helps explain properties such as their improved robustness.

Additionally, we explore the connection between sensitivity and a property of the loss landscape that has
been found to correlate to good generalization — the sharpness of the minimum. We compare the sharpness
of the minima with and without the sensitivity regularization, and our results show that lower sensitivity
correlates with flatter minima. This indicates that sensitivity could serve as a unified notion for both robustness
and generalization.

2 Related Work
We discuss related work on simplicity bias in deep learning and understanding transformers in this section, and
related work on implicit biases of gradient methods, the robustness of transformers and data augmentation in
Appendix C.

Simplicity Bias in Deep Learning. Several works (Arpit et al., 2017; Geirhos et al., 2020; Neyshabur
et al., 2014; Valle-Perez et al., 2019) show that NNs prefer learning ‘simple’ functions over the data. Nakkiran
et al. (2019) show that during the early stages of SGD training, the predictions of NNs can be approximated
well by linear models. Morwani et al. (2023) show that 1-hidden-layer NNs exhibit simplicity bias to rely on
low-dimensional projections of the data, while Huh et al. (2021) empirically show that deep NNs find solutions
with lower rank embeddings. Shah et al. (2020) create synthetic datasets where features that can be separated
by predictors with fewer piece-wise linear components are considered simpler, and show that in the presence of
simple and complex features with equal predictive power, NNs rely heavily on simple features. Geirhos et al.
(2019) show that trained CNNs rely more on image textures rather than image shapes to make predictions.
Rahaman et al. (2019) use Fourier analysis tools and show that deep networks are biased towards learning
low-frequency functions, and Cao et al. (2021); Xu et al. (2019) provide further theoretical and empirical
evidence for this.

2

Understanding Transformers. The emergence of transformers as the go-to architecture for many tasks
has inspired extensive work on understanding the internal mechanisms of transformers, including reverse-
engineering language models (Wang et al., 2022), the grokking phenomenon (Nanda et al., 2023; Power et al.,
2022), manipulating attention maps (Hassid et al., 2022), automated circuit finding (Conmy et al., 2023),
arithmetic computations (Hanna et al., 2023), optimal token selection (Tarzanagh et al., 2023a,b; Vasudeva
et al., 2024), and in-context learning (Akyürek et al., 2023; Bhattamishra et al., 2023a; Brown et al., 2020; Fu
et al., 2023; Garg et al., 2022; von Oswald et al., 2022). Several works investigate why vision transformers
(ViTs) outperform CNNs (Melas-Kyriazi, 2021; Raghu et al., 2021; Trockman and Kolter, 2022), as well as
other properties of ViTs, such as robustness to (adversarial) perturbations and distribution shifts (Bai et al.,
2023; Bhojanapalli et al., 2021; Ghosal et al., 2022; Mahmood et al., 2021; Naseer et al., 2021; Paul and Chen,
2022; Shao et al., 2021). Further, several works on mechanistic interpretability of transformers share a similar
recipe of measuring sensitivity — corruption with Gaussian noise (Conmy et al., 2023; Meng et al., 2022) but
on hidden states rather than the input space.

3 Weak Spectral Simplicity Bias
In this section, we theoretically show that transformers with linear attention exhibit (weak) spectral bias to
learn lower-order Fourier coefficients, which in turn implies a bias to learn low-sensitivity functions. We start
with an overview of Fourier analysis on the Boolean cube, sensitivity, and conjugate kernel (CK) and neural
tangent kernel (NTK).

Fourier analysis on the Boolean cube (O’Donnell, 2014). The space of real-valued functions on the
Boolean cube �

d forms a 2d-dimensional space. Any such function can be written as a unique multilinear
polynomial, i.e., a polynomial which does not contain any xp

i terms with p ≥ 2 for any variable xi. Specifically,
the multilinear monomial functions,

χU (x) := xU :=
∏
i∈U

xi, for each U ⊆ [d],

form a Fourier basis of the function space {f : �
d → R}, i.e., their inner products satisfy Ex∼�d [χU (x)χV (x)] =

1[U = V]. Consequently, any function f : �
d → R can be written as f(x) =

∑
U⊆[d]

f̂(U)χU (x), for a unique set

of coefficients f̂(U), U ⊆ [d], where [d] = {1, . . . , d}.

Sensitivity. Sensitivity is a common complexity measure for Boolean functions. Intuitively, it captures
the changes in the output of the function, averaged over the neighbours of a particular input. Formally, let
�

d := {±1}d denote the Boolean cube in dimension d. The sensitivity of a Boolean function f : �
d → {±1}

at input x ∈ �
d is given by

S(f,x) =

d∑
i=1

1[f(x) ̸= f(x⊕i)],

where 1[·] denotes the indicator function and x⊕i = (x1, . . . , xi−1,−xi, xi+1, . . . , xd) denotes the sequence
obtained after flipping the ith co-ordinate of x. Note that in the Boolean case, the neighbor of an input can be
obtained by flipping a bit, we will define a more general notion later which holds for more complex data.

The average sensitivity of a Boolean function is measured by averaging S(f,x) across all inputs x ∈ �
d,

S(f) = E
x∼�d

[S(f,x)] =
1

2d

∑
x∈�d

S(f,x). (1)

Following Bhattamishra et al. (2023b), when comparing inputs of different lengths, we consider the average

sensitivity normalized by the input length, S(f) =
1

d
S(f). The sensitivity of a function f is known to be

related to the minimum degree D(f) of a polynomial which approximates f (Hatami et al., 2011; Huang,
2019), and low-degree functions have lower sensitivity. Specifically, in a breakthrough result, Huang (2019)
show that D(f) ≤ S2

max(f) , where Smax(f) := max
x∈�d

S(f,x).

3

CK and NTK (Hron et al., 2020; Yang and Salman, 2020). We give a brief overview of the CK and
NTK here and refer the reader to Lee et al. (2018); Yang and Salman (2020) for more details.

Consider a model with L layers and widths {dl}Ll=1 and an input x. Let gl(x) denote the output of the lth

layer scaled by d
−1/2
l . Suppose we randomly initialize weights from the Gaussian distribution N (0, 1). It can

be shown that in the infinite width limit when min
l∈[L]

dl →∞, each element of gl(x) is a Gaussian process (GP)

with zero mean and kernel function Kl. The kernel KL corresponding to the last layer of the model is the CK.
In other words, it is the kernel induced by the embedding x 7→ gL−1(x) when the model is initialized randomly.
On the other hand, NTK corresponds to training the entire model instead of just the last layer. Intuitively,
when the model parameters θ stay close to initialization θ0, the residual gL(x;θ)− gL(x;θ0) behaves like a
linear model with features given by the gradient at random initialization, ∇θg

L(x,θ0), and the NTK is the
kernel of this linear model.

The spectra of these kernels provide insights about the implicit prior of a randomly initialized model as well
as the implicit bias of training using gradient descent (Yang and Salman, 2020). The closer these spectra are
to the spectrum of the target function, the better we can expect training using gradient descent to generalize.

Attention Layer. Here, we introduce notation for the attention layer, the core component of the former
architecture. The output of a single-head self-attention layer, parameterized by key, query and value matrices
WQ,WK ∈ Rd̃×dh and WV ∈ Rd̃×dv , is given by

ATTN(X;WQ,WK ,WV) := φ(XWQW
⊤
KX⊤)XWV , (2)

where X ∈ RT×d̃ is an input sequence of T tokens with dimension d̃, and φ(XWQW
⊤
KX⊤) ∈ RT×T is the

attention map with the softmax map φ(·) : RT → RT applied row-wise.

Main Result. Consider any model with at least one self-attention layer (Eq. (2)), where X is obtained by
reshaping x ∈ �

d, d = T d̃. Instead of applying the softmax activation, we consider linear attention and apply
an identity activation element-wise with a scaling factor of d−1/2. The following simple result shows that the
CK or NTK induced by transformers with linear attention exhibit a weak form of simplicity bias, where the
eigenvalues are non-decreasing with the degree of the multi-linear monomials, separately for even and odd
degrees; see Appendix B for the proof.

Proposition 3.1 (Weak Spectral Simplicity Bias of Transformers). Let K be the CK or NTK of a transformer
with linear attention on a Boolean cube �

d. For any x,y ∈ �
d, we can write K(x,y) = Ψ(⟨x,y⟩) for some

univariate function Ψ : R→ R. Further, for every U ⊆ [d], χU is an eigenfunction of K with eigenvalue

µ|U | := E
x∼�d

[
xUK(x,1)

]
= E

x∼�d

[
xUΨ

(
d−1∑

i

xi

)]
,

where 1 := (1, . . . , 1) ∈ �
d, and the eigenvalues µk, k ∈ [d], satisfy

µ0 ≥ µ2 ≥ · · · ≥ µ2k ≥ . . . ,

µ1 ≥ µ3 ≥ · · · ≥ µ2k+1 ≥

Note that for a given U , the eigenvalue only depends on |U | and is invariant under any permutation of [d].
This can be seen from the definition of the eigenvalues, which only depend on xU and

∑
i

xi. Larger eigenvalues

for lower-order monomials indicate that simpler features are learned faster.
Since low sensitivity implies learning low-degree polynomials, Proposition 3.1 also implies a weak form of

low sensitivity bias.

4 Experiments on Synthetic Data
In this section, we construct a synthetic dataset to train and examine the simplicity bias of a single-layer
self-attention model. Through this experiment, we seek to show that in the presence of two solutions with
the same predictive power — one being a low-sensitivity function and the other having a higher sensitivity —
this model learns the low-sensitivity function. This experiment also demonstrates that other related notions,
such as using a sparse set of token inputs, may or may not align with low-sensitivity, but the model learns
the low-sensitivity function in both cases. Additionally, this experiment also gives us some insights about the
role played by the attention mechanism and the prediction head towards encouraging the bias towards low
sensitivity. We begin by describing the experimental setup and then discuss our observations.

4

Ex. 2: ns = 1, nf = 7, nd = 3, y = 1Ex. 1: ns = 3, nf = 3, nd = 1, y = − 1

Vocabulary
():M = 17, m = 7

Examples of
generated
samples:

: : :{ { {} } }
{ {} }: :

Dull, repetitive yet incredibly beautiful.
Stunning, breathtaking cinematography.

Positively worth it!

Awful, awful movie! Awful
directing and stupidly lazy.

I am stunned.

Sentiment
analysis-based
Examples:

Figure 1: Visualization of the synthetic data generation
process (see Section 4 for details). For simplicity, we repre-
sent each d-dimensional token with a square. Middle row:
In each case, given a label y, we randomly sample T = 11
tokens, with ns tokens from Vy

sparse, ⌊(nf + nd)/2⌋ tokens
from Vy

frequent, nf−⌊(nf + nd)/2⌋ tokens from V−y
frequent and

the remaining tokens from Virrelevant. Note that in the first
example, since ns =3 and nd =1, a predictor that relies
(only) on the sparse tokens is less sensitive compared to
the one that relies on the frequent tokens. On the other
hand, in the second example, since ns=1 and nd=3, the
predictor that relies on the frequent tokens is less sensitive.
Bottom row: We include two sentiment analysis-based
examples to illustrate the synthetic data samples in the
second row, using the same colors as the first two rows.

(ns, nf , nd,m) Using sparse tokens Using frequent tokens
(3, 5, 1, 16); Fig. 2 left col. 0 0.2878
(1, 17, 7, 20); Fig. 2 right col. 0.0339 0

Table 1: Comparison of sensitivity values for models that
use only sparse or frequent tokens for the settings consid-
ered in Figure 2.

Figure 2: Train and test dynamics for a single-
layer self-attention model (Eq. (3)) using the syn-
thetic data visualized in Fig. 1; see Section 4 for
details. Left column: the predictor that uses
sparse tokens has lower sensitivity (Ex. 1 in Fig-
ure 1), Right column: the predictor that uses
frequent tokens has lower sensitivity (Ex. 2 in
Figure 1); see Appendix A.1 for more examples.

Setup. We compose a single-head self-attention layer (Eq. (2)) with a linear head U ∈ Rd̃×d̃ to obtain the
final prediction, and write the full model as

Φ(θ;X) :=
〈
U ,φ(XWQW

⊤
KX⊤)XWV

〉
, (3)

where θ := concat(WQ,WK ,WV ,U). We consider this model for the experiments in this section, with all the
parameters initialized randomly at a small scale.

Next, we describe the process to generate the dataset. We first define the vocabulary as follows:

Definition 4.1 (Synthetic Vocabulary). Consider a vocabulary of M distinct tokens V := {e1, . . . eM}, where
ei ∈ {0, 1}d denotes the ith basis vector for i ∈ [d]. We consider smaller subsets of sparse tokens and larger
subsets of frequent tokens for each label y = ±1, as well as a subset of irrelevant tokens, as follows:

V+
sparse := {e1},V+

frequent := {e3, e5, . . . , e2m+1},
V−

sparse := {e2},V−
frequent := {e4, e6, . . . , e2m+2},

Virrelevant := {e2m+3, . . . , eM}.
We now introduce some hyperparameters. Let T represent the sequence length of each data point. Let nf

and ns denote the number of frequent and sparse tokens, respectively, such that ns < nf < min(m,T − ns).
Let nd denote a parameter satisfying nd ≤ nf . Next, we describe the process of generating samples for the
(training) dataset D; see Fig. 1 for an example.

Definition 4.2 (Dataset Generation). Consider the vocabulary in Definition 4.1. To generate a data point
(X, y), we first sample the label y ∈ {±1} uniformly at random. We divide the indices [T] into three sets
Ifrequent, Isparse and Iirrelevant, and sample each set as follows:
• Ifrequent is composed of ⌊(nf + nd)/2⌋ tokens uniformly sampled from Vy

frequent and nf − ⌊(nf + nd)/2⌋
tokens uniformly sampled from V−y

frequent.

5

• Isparse contains ns tokens uniformly sampled from Vy
sparse.

• The remaining T − nf − ns tokens in Iirrelevant are uniformly sampled from Virrelevant.

To determine if the tokens in Vsparse or those in Vfrequent have a more significant impact on the predictions,
we adapt the test set generation process by altering the second step in Definition 4.2: we sample the sparse
tokens from V−y

sparse instead of Vy
sparse. If this modification leads to a noticeable change in prediction accuracy

on the test set, it suggests that the model relies on the sparse feature(s) for its predictions.
We consider two other metrics to see what tokens the model relies on and observe the role of the attention

head and the linear predictor. We define three vectors,

vsp := e1−e3, vfreq :=
∑

i∈V+
frequent

ei −
∑

i∈V−
frequent

ei, virrel :=
∑

i∈Virrelevant

ei.

We plot the average alignment (cosine similarity) between the rows of UW⊤
V and these vectors to see what

tokens the prediction head relies on. Similarly, we plot the sum of the softmax scores for the three types of
tokens to see which tokens are selected by the attention mechanism.

Finally, we define the sensitivity metric we use for high-dimensional data, which is an analog of Eq. (1).

Definition 4.3. Given a model Φ, dataset D and distribution P, sensitivity is computed as:

S(Φ) =
1

T
E

X∼D
x∼P

[
T∑

τ=1

1[sign(Φ(θ;X)) ̸= sign(Φ(θ;X⊕τ))]

]
,

where X⊕τ is obtained by replacing the τ th token in X with x.

We set P to be the uniform distribution over V (Definition 4.1) for computing sensitivity in our experiments.

Results. Figure 2 shows the train and test dynamics of the model in Eq. (3) using synthetic datasets
generated by following the process in Definition 4.2 (details in Table 1). We consider two cases: in the first
case (left column), using the sparse token leads to a function with lower sensitivity, whereas in the second
case (right column), using the frequent tokens leads to lower sensitivity (see Table 1 for a comparison of the
sensitivity values). We observe that in the first case, the OOD test accuracy drops to 0, the alignment with
vsp is close to 1 and the attention weights on the sparse tokens are the highest. These results show that
the model relies on the sparse token in this case. On the other hand, in the second case, the test accuracy
remains high, the alignment with vfreq is close to 1 and the attention weights on the frequent tokens are the
highest, which shows that the model relies on the frequent tokens. These results show that the model exhibits
a low-sensitivity bias. Note that in both cases, the model can learn a function that relies on a sparse set of
inputs (using the sparse tokens), however, it uses these tokens only when doing so leads to lower sensitivity.

5 Experiments on Vision Tasks
In this section, we extend the experiments in the previous section to vision settings. For transformers, we
consider Vision Transformers (ViT, Dosovitskiy et al., 2021) which obtain state-of-the-art results in computer
vision tasks, and regard images as a sequence of patches (see Definition 5.1) instead of a tensor of pixels.

Definition 5.1 (Tokenization for Vision Transformers). Let X ∈ Rnh×nw×nc be the image with height nh,
width nw, and number of channels nc. A tokenization of X is a sequence of T image patches {e1, · · · , eT }
where each token ei represents an image patch (see Figure 3 for an illustration of patching) of dimension
d = T−1nwnhnc.

Measuring Sensitivity on Images. In our previous theory and experiments, we replaced a token with a
uniformly random token to measure sensitivity. For input spaces such as natural images, there is more structure
in the patches, and a uniformly random patch can fall far outside the original patch’s neighborhood. Therefore,
to measure sensitivity we inject noise into the original patch instead of replacing it with a uniformly random
patch. This also allows us to control the level of corruption by choosing the noise level. The measurement
is illustrated in Figure 3, and we now describe it more formally. For each patch ej of each image x, we
construct a corrupted patch e′j := ej + ξj where ξj ∼ N (0, σ2I) is an isotropic Gaussian with variance σ2.
We measure sensitivity by replacing ej with e′j as stated in Definition 4.3, with P as N (0, σ2I). We estimate
the expectation over P by replacing every patch with a noisy patch 5 times.

6

 N
eural

N
etw

ork
Add Noise to
one Patch

Prediction:
Black-Footed
Albatross

Prediction:
Laysan
Albatross

Is Model Sensitive? Yes
 N

eural
N

etw
ork

Figure 3: Measuring Sensitivity in Vision
Tasks. A patch is first selected to add Gaussian
noise corruptions. Then the original image and
the corrupted image are fed into the same neural
network to make predictions. If the predictions
are inconsistent, then the neural network is sen-
sitive to this patch. The process is repeated for
every patch to measure the overall sensitivity.

Similar to Bhattamishra et al. (2023b), sensitivity is
measured on the training set. This is because our goal is
to understand the simplicity bias of the model at training
time, to see if it prefers to learn certain simple classes of
functions on the training data. Since different models could
have different generalization capabilities, the sensitivity
on test data might not reflect the model’s preference for
low-sensitivity functions at training time. Further, since
the choice of optimization algorithm could in principle
introduce its own bias and our goal is to understand the
bias of the architecture, we train both the models with the
same optimization algorithm, namely SGD.

We consider three datasets in this section.

Fashion-MNIST. Fashion-MNIST (Xiao et al., 2017) con-
sists of 28× 28 grayscale images of Zalando’s articles. This
is a 10-class classification task with 60k training and 10k
test images.

CIFAR-10. The CIFAR-10 dataset (Krizhevsky, 2009) is
a well-known object recognition dataset. It consists of
32× 32 color images in 10 classes, with 6k images per class.
There are 50k training and 10k test images.

SVHN. Street View House Numbers (SVHN) (Netzer et al., 2011) is a real-world image dataset used as a digit
classification benchmark. It contains 32 × 32 RGB images of printed digits (0 to 9) cropped from Google
Street View images of house number plates. There are 60k images in the train set and 10k images in the test set.

We compare the sensitivity of the ViT with MLPs and a CNN (LeCun et al., 1989) on the Fashion-MNIST
dataset using σ2=5, and with a CNN on the CIFAR-10 and the SVHN datasets using σ2=1. We use a variant
of the ViT architecture for small-scale datasets proposed in (Lee et al., 2021), referred to as ViT-small here
onwards; see Appendix D for more details and Appendix A.2 for additional results where we show that varying
model depths and number of heads does not affect sensitivity of ViT models.

Transformers learn lower sensitivity functions than MLPs. Figure 4 shows the training accuracy and
the sensitivity of a transformer (ViT-small), a 3-hidden-layer CNN, an MLP with LeakyReLU activation and
an MLP with sigmoid activation. Note that the train dynamics match closely for all the architectures, which
allows for a fair comparison of sensitivity. We observe that the ViT has a lower sensitivity compared to all the
other models. At the end of training, the sensitivity values are 0.0559 for the MLP with LeakyReLU, 0.0505
for the MLP with sigmoid, 0.0453 for the CNN and 0.0098 for the ViT.

Transformers learn lower sensitivity functions than CNNs. Figure 6 shows the train and test dynamics
as well as the sensitivity comparison between two ViTs: the ViT-small model used in previous experiments a
ViT-simple model (Beyer et al., 2022), and two CNNs: a ResNet-18 (He et al., 2016) and a DenseNet-121
(Huang et al., 2016). Note that the train and test dynamics match closely for all architectures. We observe that
the ViTs have a significantly lower sensitivity compared to the CNNs. At the end of training, the sensitivity

MLP (LeakyReLU)
MLP (Sigmoid)
CNN
ViT

Train accuracy Sensitivity

Figure 4: Sensitivity on Fashion-MNIST. Comparison of
sensitivity of a ViT with a CNN, an MLP with LeakyReLU
activation and an MLP with sigmoid activation, as a function
of training epochs. All the models have similar accuracies
but the ViT has significantly lower sensitivity.

CNN
ViT

Train accuracy Sensitivity

Figure 5: Sensitivity on SVHN. Comparison of
sensitivity of a ResNet-18 CNN and a ViT-small
trained on SVHN dataset, as a function of training
epochs. Both the models have similar accuracies
but the ViT has significantly lower sensitivity.

7

Train loss Train accuracy Test loss Test accuracy Sensitivity

ResNet-18 CNN
DenseNet-121 CNN
ViT-small
ViT-simple

Figure 6: Sensitivity on CIFAR-10. Comparison of the sensitivity of two CNNs and two ViTs trained on
the CIFAR-10 dataset, as a function of training epochs. For a fair comparison, the figure also shows the train
and test accuracies and loss values (cross-entropy loss). We observe that all models have similar accuracies but
the ViTs have significantly lower sensitivity than the CNNs.

values are 0.3673 for DenseNet-121, 0.0827 for ResNet-18, 0.0050 for ViT-small and 0.0014 for ViT-simple.
In Figure 5, we compare the sensitivity of the ViT-small model and the ResNet-18 on the SVHN dataset.

Similar to the observations for the CIFAR-10 dataset, we see that the ViT has a significantly lower sensitivity.
At the end of training, the sensitivity values are: 0.0516 for ResNet-18 and 0.0147 for ViT-small.

Based on the observations in Figures 4 to 6, transformers learn lower sensitivity functions compared to
other models like MLPs and CNNs.

6 Experiments on Language Tasks
In this section, we investigate the sensitivity of transformers on natural language tasks, where each datapoint
is a sequence of sparse tokens. Similar to the comparison of Vision Transformers with MLPs and CNNs
in Section 5, we compare a RoBERTa (Liu et al., 2019) transformer model with LSTMs (Hochreiter and
Schmidhuber, 1997), an alternative auto-regressive model, in this section. Recall that we consider a transformer
with linear attention for the results in Section 3. Aligning with this setup, we also consider a RoBERTa model
with ReLU activation in the attention layer (i.e., replacing φ(·) in Eq. (3) with ReLU(·)) for our experiments.

We use the usual RoBERTa-like tokenization procedure to process inputs for all the models so that they
are represented as <s> e1, · · · , eT </s> where each ej represents tokens that are usually subwords and <s>
represents the classification (CLS) token, T the sequence length, and </s> the separator token. We denote
e0 =<s> and e−1 = eT+1 = </s>. For each token ej , a token embedding hE(·) : [M]→ Rd is trained during
the process, where M denotes the vocabulary size. For transformers, we also train a separate positional
encoder hP (·) : [N]→ Rd, where N denotes the maximum sequence length. We denote eLSTM

j = hLSTM
E (ej) as

the embedded token of LSTM and eRoBERTa
j = hRoBERTa

E (ej) + hRoBERTa
P (j) as the embedding token of RoBERTa.

For convenience, we omit the superscript and denote these learned embeddings as ej .

Measuring Sensitivity on Language. We adopt the same approach to measure sensitivity as in Section 5
for the vision tasks. Specifically, we add Gaussian noise ξj ∼ N (0, σ2I) to token embedding ej to generate a
corrupted embedding e′j = ej + ξj and measure sensitivity by replacing ej with e′j , as stated in Definition 4.3.
We note that to control the relative magnitude of noise, the embeddings ej ← LayerNorm(ej) are first
layer-normalized (Ba et al., 2016) before the additive Gaussian corruption, for both the models.

In order to better control possible confounders, we limit both LSTM and RoBERTa to having the same
number of layers and heads. We choose 4 layers and 8 heads at each layer, to achieve reasonable performance.
Both models are trained from scratch, without any pretraining on larger corpora, to ensure fair comparisons.

We consider the following two binary classification datasets, which are relatively easy to learn without
pretraining (Kovaleva et al., 2019).

MRPC. Microsoft Research Paraphrase Corpus (MRPC, Dolan and Brockett, 2005) is a corpus that consists
of 5801 sentence pairs. Each pair is labeled if it is a paraphrase or not by human annotators. It has 4076
training examples and 1725 validation examples.

QQP. Quora Question Pairs (QQP, Iyer et al., 2017) dataset is a corpus that consists of over 400k question
pairs. Each question pair is annotated with a binary value indicating whether the two questions are paraphrases
of each other. It has 364k training examples and 40k validation examples.

Empirically, we choose the variance σ2 = 15 (consistent with Bhattamishra et al., 2023b); we include results
with σ2 = 4 in Appendix A.3, which yield similar observations. Similar to Section 5, we measure sensitivity on
the train set; we include results on the validation set in Appendix A.3 and they yield similar observations.

8

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Data Points Trained

0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
e

Se
ns

it
iv

it
y

LSTM
RoBERTa (Softmax)
RoBERTa (ReLU)

(a) MRPC

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06
Data Points Trained

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Av
er

ag
e

Se
ns

it
iv

it
y

LSTM
RoBERTa (Softmax)
RoBERTa (ReLU)

(b) QQP

Figure 7: Sensitivity over Data-
points Trained. On both datasets, the
Transformer-based model RoBERTa displays
much lower sensitivity compared to LSTMs
during the entire training process. RoBERTa
with ReLU activation also observes lower sen-
sitivity compared to its Softmax counterpart
at later stages of training.

0 20 40 60 80
Token Position

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Se
ns

it
iv

it
y

LSTM
RoBERTa (Softmax)
RoBERTa (ReLU)

(a) MRPC

0 20 40 60 80 100 120
Token Position

0.0

0.1

0.2

0.3

0.4

Se
ns

it
iv

it
y

LSTM
RoBERTa (Softmax)
RoBERTa (ReLU)

(b) QQP

Figure 8: Sensitivity over Token Position. On both
datasets, LSTMs are more sensitive to later tokens than
early ones. On the contrary, the Transformer-based model
RoBERTa’s sensitivity, regardless of their activation function,
is more uniform across token positions, except for a few early
bumps in early tokens which come from the CLS token <s>.
RoBERTa with ReLU activations also seems less sensitive to
the CLS token, in comparison to the one with Softmax.

Appendix A.3 also contains further results with a GPT-2 architecture, and different choices for the depth of
the model. We observe similar conclusions with these variations as the results presented in this section.

Transformers learn lower sensitivity functions than LSTMs. As shown in Figure 7, both RoBERTa
models have lower sensitivity than LSTMs on both datasets, regardless of the number of datapoints trained.
Even at initialization with random weights, LSTMs are more sensitive. At the end of training, the sensitivity
values on the MRPC dataset are 0.15, 0.002 and 0.001 for the LSTM, the RoBERTa model with softmax
activation and the RoBERTa with ReLU activation, respectively. On the QQP dataset, LSTM, RoBERTa-
softmax and RoBERTa-ReLU have sensitivity values of 0.09, 0.03 and 0.02, respectively. Interestingly,
RoBERTa with ReLU activation also has lower sensitivity than its softmax counterparts. This may be because
softmax attention encourages sparsity because of which the model can be more sensitive to a particular token;
see Ex. 2 in Figure 1 and bottom row of Figure 2 for an example where sparsity can lead to higher sensitivity.

LSTMs are more sensitive to later tokens. In Figure 8, we plot sensitivity over the token positions. We
observe that LSTMs exhibit larger sensitivity towards the end of the sequence, i.e. at later token positions. In
contrast, transformers are relatively uniform. Similar observations were made by Fu et al. (2023) for a linear
regression setting, where they found that LSTMs do more local updates and only remember the most recent
observations, whereas transformers preserve global information and have longer memory.

Transformers are sensitive to the CLS token. In Figure 8, we also observe that the RoBERTa model
with softmax activation has frequent bumps in the sensitivity values at early token positions. This is because
different sequences have different lengths and while computing sensitivity versus token positions, we align all
the sequences to the right. These bumps at early token positions indeed correspond to the starting token after
the tokenization procedure, the CLS token <s>. This aligns with the observations of Jawahar et al. (2019)
that the CLS token gathers all global information. Perturbing the CLS token corrupts the aggregation and
results in high sensitivity.

7 Implications of the Low Sensitivity Bias
We saw in Section 5 that transformers learn lower sensitivity functions than CNNs. In this section, we first
compare the test performance of these models on the CIFAR-10-C dataset and show that transformers are
more robust than CNNs. Next, we add a regularization term while training the transformer, to encourage lower
sensitivity. The results imply that lower sensitivity leads to improved robustness. Additionally, we explore the
connection between sensitivity and the flatness of the minima. Our results imply that lower sensitivity leads
to flatter minima.

7.1 Lower Sensitivity leads to Improved Robustness
The CIFAR-10-C dataset (Hendrycks and Dietterich, 2019) was developed to benchmark the performance
of various NNs on object recognition tasks under common corruptions which are not confusing to humans.

9

Gaussian Noise Shot Noise Impulse Noise Snow Frost Fog

Brightness Contrast Elastic Transform Pixelate

Sensitivity Clean Test Gaussian Blur Glass Blur Motion Blur Zoom Blur

ResNet-18 CNN
DenseNet-121 CNN
ViT-small
ViT-simple
ViT-small + augmentation
ViT-small + regularization

Figure 9: Lower sensitivity leads to better robustness. Comparison of the sensitivity, test accuracy on
CIFAR-10 and test accuracies on various corruptions from blur, noise, weather and digital categories from the
CIFAR-10-C dataset (see Section 7 for details) of two CNNs and two ViTs trained on the CIFAR-10 dataset, as a
function of the training epochs. We also compare with ViT-small trained with data augmentation/regularization,
which encourage low sensitivity (see Section 7 for discussion).

Images from the test set of CIFAR-10 are corrupted with 14 types of algorithmically generated corruptions
from blur (Gaussian, glass, motion, zoom), noise (Gaussian, shot, impulse), weather (snow, frost, fog), and
digital (brightness, contrast, elastic transform, pixelate) categories (see Fig. 1 in Hendrycks and Dietterich
(2019) for examples). There are 5 severity levels (see Fig. 7 in the Appendix of Hendrycks and Dietterich
(2019) for an example) and we use severity level 2 for our experiments. We also include results on severity
level 1 in Appendix A.2.

Figure 9 compares the performance of two CNNs: ResNet-18 and DenseNet-121 with two ViTs: ViT-small
and ViT-simple on various corruptions from the CIFAR-10-C dataset. We observe that the ViTs have lower
sensitivity and better test performance on almost all corruptions compared to the CNNs, which have a higher
sensitivity; see Appendix A.2 for a comparison at the end of training. Since the definition of sensitivity involves
the addition of noise and ViTs have lower sensitivity, one can expect the ViTs to perform better on images
with various noise corruptions. However, perhaps surprisingly, the ViTs also have better test performance on
several corruptions from weather and digital categories, which are significantly different from noise corruptions.

Next, we conduct an experiment to investigate the role of low sensitivity in the robustness of transformers.
We add a regularization term while training the model to explicitly encourage it to have lower sensitivity. If
this model is more robust, then we can disentangle the role of low sensitivity from the role of the architecture
and establish a causal connection between lower sensitivity and improved robustness. To add the regularization,
we use the fact that sensitivity can be estimated efficiently via sampling and consider two methods. In the
first method (augmentation), we augment the training set by injecting the images with Gaussian noise (mean
0, variance 0.1) while preserving the label, and train the ViT on the augmented training set. In the second
method (regularization), we add a mean squared error term for the model outputs for the original image
and the image with Gaussian noise (mean 0, variance 1) injected into a randomly selected patch. We use a
regularization strength of 0.25.

Figure 9 also shows the test performance of ViT-small trained with augmentation and regularization
methods on various corruptions from the CIFAR-10-C dataset. We observe that the ViTs trained with these
methods exhibit lower sensitivity compared to vanilla training. This is accompanied by an improved test
performance on various corruptions, particularly on corrupted images from the noise and blur categories.
Together, these results indicate that the simplicity bias of transformers to learn functions of lower sensitivity
leads to improved robustness (to common corruptions) compared to CNNs.

We note that Hendrycks and Dietterich (2019) show that methods that improve robustness to corruptions
also improve robustness to perturbations. Consequently, these results also suggest why transformers are more
robust to adversarial perturbations compared to CNNs (Mahmood et al., 2021; Shao et al., 2021).

10

Setting ShOp ShPred

ViT-small + vanilla training 39.166 0.5346
ViT-small + sensitivity regularization 9.025 0.3982

Table 2: Comparison of two sharpness metrics at the end of training the ViT-small model on the CIFAR-10
dataset with and without the sensitivity regularization. Lower values correspond to flatter minima; see text
for discussion.

7.2 Lower Sensitivity leads to Flatter Minima
In this section, we investigate the connection between low sensitivity and flat minima. Consider a linear model
Φ(θ;x) = θ⊤x. Measuring sensitivity involves perturbing the input vector x by some ∆x. Computing the
perturbed prediction Φ(θ;x+∆x) is equivalent to perturbing the weight vector θ with ∆θ = θ⊤∆x

∥x∥2
2
x, as

Φ(θ;x+∆x) = θ⊤(x+∆x) = Φ(θ;x) + θ⊤∆x = Φ(θ;x) +∆θ⊤x = Φ(θ +∆θ;x).

This draws a natural connection between sensitivity, which is measured with perturbation in the input space,
and flatness of minima, which is measured with perturbation in the weight space (Keskar et al., 2017). Below,
we investigate whether such a connection extends to more complex architectures such as transformers.

In Table 2, we compare the flatness of the minima for the ViT-small model trained with and without the
sensitivity regularization at the end of training. Specifically, given model Φ, we consider the following two
metrics, based on the model outputs and model predictions, respectively,

ShOp := Ex∼D,ξ∼N (0,σ2I)|Φ(θ;x)− Φ(θ + ξ;x)|,
ShPred := Ex∼D,ξ∼N (0,σ2I)1[f(θ;x) ̸= f(θ + ξ;x)],

where f(θ;x) = 1[Φ(θ;x) ≥ 0] and D denotes the train set. Intuitively, for a flatter minima, the model output
and hence its prediction would remain relatively invariant to small perturbations in the model parameters.

We find that both metrics indicate that lower sensitivity corresponds to a flatter minimum. It is widely
believed that flatter minima correlate with better generalization (Jiang* et al., 2020; Keskar et al., 2017;
Neyshabur et al., 2017). However, recent work (Andriushchenko et al., 2023) has suggested that these may not
always be correlated. Our results indicate that low-sensitivity correlates with improved generalization and
investigating this connection for other settings can be an interesting direction for future work.

8 Discussion
Our results demonstrate that sensitivity is a promising notion to understand the simplicity bias of transformers
and suggest several directions for future work. On the theoretical side, though our results show that transformers
have a spectral bias, they leave open the question of how their bias compares with other architectures. Given
our empirical findings, a natural theoretical direction is to show that transformers have a stronger spectral
bias than other architectures. On the empirical side, it would be interesting to further explore the connections
between sensitivity and robustness, particularly as it relates to out-of-distribution (OOD) robustness and
dependence on spurious features. It seems conceivable that transformers’ preference towards a rich set of
features (such as in the synthetic experiment in Section 4) helps the model avoid excessive reliance on spurious
features in the data and hence promotes robustness. Understanding and developing this connection could
explain the improved OOD robustness of transformers.

Acknowledgements
This work was supported by an NSF CAREER Award CCF-2239265, an Amazon Research Award, an Open
Philanthropy research grant, and a Google Research Scholar Award. YH was supported by a USC CURVE
fellowship. The authors acknowledge the use of USC CARC’s Discovery cluster and the USC NLP cluster.

References
Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and Zhou, D. (2023). What learning algorithm is in-

context learning? investigations with linear models. In The Eleventh International Conference on Learning
Representations. 1, 3

11

Andriushchenko, M., Croce, F., Mueller, M., Hein, M., and Flammarion, N. (2023). A modern look at the
relationship between sharpness and generalization. In International Conference on Machine Learning. 11

Arora, S., Cohen, N., Hu, W., and Luo, Y. (2019). Implicit regularization in deep matrix factorization. In
Advances in Neural Information Processing Systems, volume 32. 22

Arpit, D., Jastrzębski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj, T., Fischer, A.,
Courville, A., Bengio, Y., et al. (2017). A closer look at memorization in deep networks. In International
conference on machine learning, pages 233–242. PMLR. 2

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. 8

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. (2023). Transformers as statisticians: Provable in-context
learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637. 3

Beyer, L., Zhai, X., and Kolesnikov, A. (2022). Better plain vit baselines for imagenet-1k. 7

Bhattamishra, S., Patel, A., Blunsom, P., and Kanade, V. (2023a). Understanding in-context learning in
transformers and llms by learning to learn discrete functions. 3

Bhattamishra, S., Patel, A., Kanade, V., and Blunsom, P. (2023b). Simplicity bias in transformers and their
ability to learn sparse Boolean functions. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics. 1, 3, 7, 8, 23

Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner, T., and Veit, A. (2021). Understanding
robustness of transformers for image classification. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 10231–10241. 1, 3, 23

Bishop, C. M. (1995). Training with noise is equivalent to tikhonov regularization. Neural Computation,
7:108–116. 23

Blanc, G., Gupta, N., Valiant, G., and Valiant, P. (2020). Implicit regularization for deep neural networks
driven by an ornstein-uhlenbeck like process. In Conference on learning theory, pages 483–513. PMLR. 22

Bombari, S. and Mondelli, M. (2024). Towards understanding the word sensitivity of attention layers: A study
via random features. 23

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler,
D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot
learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural
Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc. 1, 3

Cao, Y., Fang, Z., Wu, Y., Zhou, D.-X., and Gu, Q. (2021). Towards understanding the spectral bias of deep
learning. In IJCAI. 2

Chiang, T.-R. (2021). On a benefit of mask language modeling: Robustness to simplicity bias. 23

Chizat, L. and Bach, F. (2020). Implicit bias of gradient descent for wide two-layer neural networks trained
with the logistic loss. In Conference on Learning Theory, pages 1305–1338. PMLR. 22

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim, S., and Garriga-Alonso, A. (2023). Towards
automated circuit discovery for mechanistic interpretability. In Neural Information Processing Systems. 3

Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V., and Le, Q. V. (2019). Autoaugment: Learning augmentation
strategies from data. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 113–123. 23

de G. Matthews, A. G., Rowland, M., Hron, J., Turner, R. E., and Ghahramani, Z. (2018). Gaussian process
behaviour in wide deep neural networks. 22

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics. 1

12

Dolan, W. B. and Brockett, C. (2005). Automatically constructing a corpus of sentential paraphrases. In
Proceedings of the Third International Workshop on Paraphrasing (IWP2005). 8

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations. 1, 6

Frei, S., Vardi, G., Bartlett, P. L., Srebro, N., and Hu, W. (2022). Implicit bias in leaky relu networks trained
on high-dimensional data. arXiv preprint arXiv:2210.07082. 22

Fu, D., Chen, T.-Q., Jia, R., and Sharan, V. (2023). Transformers learn higher-order optimization methods for
in-context learning: A study with linear models. arXiv, abs/2310.17086. 3, 9

Garg, S., Tsipras, D., Liang, P., and Valiant, G. (2022). What can transformers learn in-context? a case study
of simple function classes. ArXiv, abs/2208.01066. 3

Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L. (2019). Deep convolutional networks as shallow
gaussian processes. In International Conference on Learning Representations. 22

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and Wichmann, F. A. (2020).
Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):665–673. 2

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., and Brendel, W. (2019). Imagenet-
trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In
International Conference on Learning Representations. 2, 23

Ghosal, S. S., Ming, Y., and Li, Y. (2022). Are vision transformers robust to spurious correlations? 3

Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S., and Smith, N. A. (2018). Annotation
artifacts in natural language inference data. In Walker, M., Ji, H., and Stent, A., editors, Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), pages 107–112, New Orleans, Louisiana. Association for
Computational Linguistics. 23

Hanna, M., Liu, O., and Variengien, A. (2023). How does GPT-2 compute greater-than?: Interpreting
mathematical abilities in a pre-trained language model. In Thirty-seventh Conference on Neural Information
Processing Systems. 1, 3

HaoChen, J. Z., Wei, C., Lee, J., and Ma, T. (2021). Shape matters: Understanding the implicit bias of the
noise covariance. In Conference on Learning Theory, pages 2315–2357. PMLR. 22

Hassid, M., Peng, H., Rotem, D., Kasai, J., Montero, I., Smith, N. A., and Schwartz, R. (2022). How much
does attention actually attend? questioning the importance of attention in pretrained transformers. 3

Hatami, P., Kulkarni, R., and Pankratov, D. (2011). Variations on the sensitivity conjecture. Theory of
Computing, pages 1–27. 3

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. In Proceedings
of 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’16, pages 770–778. IEEE. 7

Hendrycks, D. and Dietterich, T. (2019). Benchmarking neural network robustness to common corruptions
and perturbations. In International Conference on Learning Representations. 9, 10

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8):1735–1780. 8

Hron, J., Bahri, Y., Sohl-Dickstein, J., and Novak, R. (2020). Infinite attention: Nngp and ntk for deep
attention networks. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org. 4, 21, 22

Huang, G., Liu, Z., and Weinberger, K. Q. (2016). Densely connected convolutional networks. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261–2269. 7

Huang, H. (2019). Induced subgraphs of hypercubes and a proof of the sensitivity conjecture. Annals of
Mathematics, 190(3):949–955. 3

Huh, M., Mobahi, H., Zhang, R., Cheung, B., Agrawal, P., and Isola, P. (2021). The low-rank simplicity bias
in deep networks. Trans. Mach. Learn. Res., 2023. 1, 2, 23

13

Iyer, S., Dandekar, N., and Csernai, K. (2017). First Quora Dataset Release: Question Pairs. Online. 8

Jawahar, G., Sagot, B., and Seddah, D. (2019). What does BERT learn about the structure of language?
In Korhonen, A., Traum, D., and Màrquez, L., editors, Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 3651–3657, Florence, Italy. Association for Computational
Linguistics. 9

Ji, Z., Srebro, N., and Telgarsky, M. (2021). Fast margin maximization via dual acceleration. In International
Conference on Machine Learning, pages 4860–4869. PMLR. 22

Ji, Z. and Telgarsky, M. (2018). Risk and parameter convergence of logistic regression. arXiv preprint
arXiv:1803.07300. 22

Ji, Z. and Telgarsky, M. (2020). Directional convergence and alignment in deep learning. Advances in Neural
Information Processing Systems, 33:17176–17186. 22

Ji, Z. and Telgarsky, M. (2021). Characterizing the implicit bias via a primal-dual analysis. In Algorithmic
Learning Theory, pages 772–804. PMLR. 22

Jiang*, Y., Neyshabur*, B., Mobahi, H., Krishnan, D., and Bengio, S. (2020). Fantastic generalization measures
and where to find them. In International Conference on Learning Representations. 11

Jumper, J. M., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
Bates, R., Zídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A., Cowie, A.,
Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D. A., Clancy, E.,
Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior,
A. W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021). Highly accurate protein structure prediction
with alphafold. Nature, 596:583 – 589. 1

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. (2017). On large-batch
training for deep learning: Generalization gap and sharp minima. In International Conference on Learning
Representations. 11

Kirichenko, P., Izmailov, P., and Wilson, A. G. (2022). Last layer re-training is sufficient for robustness to
spurious correlations. ArXiv, abs/2204.02937. 23

Kou, Y., Chen, Z., and Gu, Q. (2023). Implicit bias of gradient descent for two-layer relu and leaky relu
networks on nearly-orthogonal data. 22

Kovaleva, O., Romanov, A., Rogers, A., and Rumshisky, A. (2019). Revealing the dark secrets of BERT. In
Inui, K., Jiang, J., Ng, V., and Wan, X., editors, Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4365–4374, Hong Kong, China. Association for Computational Linguistics. 8

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. pages 32–33. 7

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jackel, L. (1989). Handwritten
digit recognition with a back-propagation network. In Touretzky, D., editor, Advances in Neural Information
Processing Systems, volume 2. Morgan-Kaufmann. 7

LeCun, Y. and Cortes, C. (2005). The mnist database of handwritten digits. 18

Lee, J., Sohl-dickstein, J., Pennington, J., Novak, R., Schoenholz, S., and Bahri, Y. (2018). Deep neural
networks as gaussian processes. In International Conference on Learning Representations. 4, 22

Lee, S. H., Lee, S., and Song, B. C. (2021). Vision transformer for small-size datasets. 7

Li, Z., Luo, Y., and Lyu, K. (2021). Towards resolving the implicit bias of gradient descent for matrix
factorization: Greedy low-rank learning. 22

Li, Z., Wang, T., Lee, J. D., and Arora, S. (2022). Implicit bias of gradient descent on reparametrized models:
On equivalence to mirror descent. Advances in Neural Information Processing Systems, 35:34626–34640. 22

Lim, S., Kim, I., Kim, T., Kim, C., and Kim, S. (2019). Fast autoaugment. In Neural Information Processing
Systems. 23

14

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pretraining approach. 8

Lyu, K. and Li, J. (2020). Gradient descent maximizes the margin of homogeneous neural networks. In
International Conference on Learning Representations. 22

Lyu, K., Li, Z., Wang, R., and Arora, S. (2021). Gradient descent on two-layer nets: Margin maximization
and simplicity bias. In Neural Information Processing Systems. 1, 23

Mahmood, K., Mahmood, R., and Van Dijk, M. (2021). On the robustness of vision transformers to adversarial
examples. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7838–7847.
1, 3, 10, 23

Melas-Kyriazi, L. (2021). Do you even need attention? a stack of feed-forward layers does surprisingly well on
imagenet. ArXiv, abs/2105.02723. 3

Meng, K., Bau, D., Andonian, A. J., and Belinkov, Y. (2022). Locating and editing factual associations in
GPT. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, Advances in Neural Information
Processing Systems. 3

Morwani, D., Batra, J., Jain, P., and Netrapalli, P. (2023). Simplicity bias in 1-hidden layer neural networks.
2, 23

Moussad, B., Roche, R., and Bhattacharya, D. (2023). The transformative power of transformers in protein
structure prediction. Proceedings of the National Academy of Sciences, 120(32):e2303499120. 1

Nacson, M. S., Lee, J., Gunasekar, S., Savarese, P. H. P., Srebro, N., and Soudry, D. (2019). Convergence of
gradient descent on separable data. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 3420–3428. PMLR. 22

Nagarajan, V., Andreassen, A., and Neyshabur, B. (2021). Understanding the failure modes of out-of-
distribution generalization. In International Conference on Learning Representations. 23

Nakkiran, P., Kaplun, G., Kalimeris, D., Yang, T., Edelman, B. L., Zhang, F., and Barak, B. (2019). SGD on
Neural Networks Learns Functions of Increasing Complexity. Curran Associates Inc., Red Hook, NY, USA. 2

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Steinhardt, J. (2023). Progress measures for grokking via
mechanistic interpretability. 3

Naseer, M., Ranasinghe, K., Khan, S. H., Hayat, M., Khan, F. S., and Yang, M.-H. (2021). Intriguing
properties of vision transformers. In Neural Information Processing Systems. 3

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading digits in natural
images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature
Learning 2011. 7

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. (2017). Exploring generalization in deep
learning. In Neural Information Processing Systems. 11

Neyshabur, B., Tomioka, R., and Srebro, N. (2014). In search of the real inductive bias: On the role of implicit
regularization in deep learning. CoRR, abs/1412.6614. 2

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J. (2018). Sensitivity and
generalization in neural networks: an empirical study. arXiv preprint arXiv:1802.08760. 1

Novak, R., Xiao, L., Bahri, Y., Lee, J., Yang, G., Abolafia, D. A., Pennington, J., and Sohl-dickstein, J.
(2019). Bayesian deep convolutional networks with many channels are gaussian processes. In International
Conference on Learning Representations. 22

O’Donnell, R. (2014). Analysis of Boolean Functions. Cambridge University Press. 1, 3

OpenAI (2023). GPT-4 technical report. 1

Paul, S. and Chen, P.-Y. (2022). Vision transformers are robust learners. In Proceedings of the AAAI conference
on Artificial Intelligence, volume 36, pages 2071–2081. 1, 3, 23

15

Pezeshki, M., Kaba, S., Bengio, Y., Courville, A. C., Precup, D., and Lajoie, G. (2020). Gradient starvation:
A learning proclivity in neural networks. In Neural Information Processing Systems. 23

Phuong, M. and Lampert, C. H. (2021). The inductive bias of re{lu} networks on orthogonally separable data.
In International Conference on Learning Representations. 22

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and Misra, V. (2022). Grokking: Generalization beyond
overfitting on small algorithmic datasets. 3

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and Dosovitskiy, A. (2021). Do vision transformers
see like convolutional neural networks? In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.,
editors, Advances in Neural Information Processing Systems. 3

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., and Courville, A. (2019).
On the spectral bias of neural networks. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 5301–5310. PMLR. 1, 2

Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O., and Mann, T. (2021). Data augmentation
can improve robustness. In Neural Information Processing Systems. 23

Robbins, H. E. (1951). A stochastic approximation method. Annals of Mathematical Statistics, 22:400–407. 23

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P. (2020). Distributionally robust neural networks. In
International Conference on Learning Representations. 23

Shah, H., Tamuly, K., Raghunathan, A., Jain, P., and Netrapalli, P. (2020). The pitfalls of simplicity bias in
neural networks. Advances in Neural Information Processing Systems, 33. 1, 2, 23

Shao, R., Shi, Z., Yi, J., Chen, P.-Y., and Hsieh, C.-J. (2021). On the adversarial robustness of visual
transformers. arXiv preprint arXiv:2103.15670, 1(2). 1, 3, 10, 23

Shen, L., Pu, Y., Ji, S., Li, C., Zhang, X., Ge, C., and Wang, T. (2023). Improving the robustness of
transformer-based large language models with dynamic attention. arXiv preprint arXiv:2311.17400. 23

Shi, Z., Wang, Y., Zhang, H., Yi, J., and Hsieh, C.-J. (2021). Fast certified robust training with short warmup.
Advances in Neural Information Processing Systems, 34:18335–18349. 23

Shi, Z., Zhang, H., Chang, K.-W., Huang, M., and Hsieh, C.-J. (2020). Robustness verification for transformers.
arXiv preprint arXiv:2002.06622. 23

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. (2018). The implicit bias of gradient
descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878. 22

Tarzanagh, D. A., Li, Y., Thrampoulidis, C., and Oymak, S. (2023a). Transformers as support vector machines.
ArXiv, abs/2308.16898. 3

Tarzanagh, D. A., Li, Y., Zhang, X., and Oymak, S. (2023b). Max-margin token selection in attention
mechanism. 3

Tiwari, R. and Shenoy, P. (2023). Overcoming simplicity bias in deep networks using a feature sieve. 23

Trockman, A. and Kolter, J. Z. (2022). Patches are all you need? Transactions on Machine Learning Research,
2023. 3

Valle-Perez, G., Camargo, C. Q., and Louis, A. A. (2019). Deep learning generalizes because the parameter-
function map is biased towards simple functions. International Conference on Learning Representations. 1,
2

Vardi, G. (2022). On the implicit bias in deep-learning algorithms. 22

Vasudeva, B., Deora, P., and Thrampoulidis, C. (2024). Implicit bias and fast convergence rates for self-attention.
3

Vasudeva, B., Shahabi, K., and Sharan, V. (2023). Mitigating simplicity bias in deep learning for improved
ood generalization and robustness. 23

16

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc. 1

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. (2022). Transformers learn in-context by gradient descent. In International Conference on Machine
Learning. 3

Wang, F., Lin, Z., Liu, Z., Zheng, M., Wang, L., and Zha, D. (2021). Macrobert: Maximizing certified region of
bert to adversarial word substitutions. In Database Systems for Advanced Applications: 26th International
Conference, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings, Part II 26, pages 253–261.
Springer. 23

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and Steinhardt, J. (2022). Interpretability in the wild: a
circuit for indirect object identification in gpt-2 small. 1, 3

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. 7

Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., and Ma, Z. (2019). Frequency principle: Fourier analysis sheds
light on deep neural networks. arXiv preprint arXiv:1901.06523. 1, 2

Yang, G. (2021). Tensor programs i: Wide feedforward or recurrent neural networks of any architecture are
gaussian processes. 22

Yang, G. and Salman, H. (2020). A fine-grained spectral perspective on neural networks. 1, 2, 4, 22

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2018). mixup: Beyond empirical risk minimization.
In International Conference on Learning Representations. 23

17

Appendix

A Additional Experiments 18
A.1 Synthetic Data and the MNIST Dataset . 18
A.2 Vision Tasks . 19
A.3 Language Tasks . 20

B Proof of Proposition 3.1 21

C Further Related Work 22

D Details of Experimental Settings 23

A Additional Experiments
In this section, we include some additional results to supplement the main experimental results for synthetic
data as well as the vision and language tasks.

A.1 Synthetic Data and the MNIST Dataset
In this section, we present some additional results for the low-sensitivity bias of a single-layer self-attention
model (Eq. (3)) on the synthetic dataset generated based on Definition 4.2, visualized in Fig. 1. Similar to the
results in Section 4, we consider three data settings where using the sparse token leads to a function with
lower sensitivity (Fig. 10, top row) and three settings where using the frequent token leads to lower sensitivity
(Fig. 10, bottom row). The exact data settings and a comparison of the sensitivity values for each setting are
shown in Table 3. These results yield similar conclusions as in Section 4: in both cases, the model uses tokens
which leads to a lower sensitivity function.

Top row in Fig. 2 (ns = 3, nd = 1) Bottom row in Fig. 2 (ns = 1, nd = 7)
Data Setting (nf ,m) (3, 6) (5, 16) (7, 28) (7, 10) (17, 20) (32, 36)
Using sparse tokens 0 0 0 0.0339 0.0339 0.0339
Using frequent tokens 0.1315 0.2878 0.4502 0 0 0

Table 3: Comparison of sensitivity values for models that use only sparse or frequent tokens for the settings
considered in Fig. 10.

Figure 10: Train and test dynamics for a single-layer self-attention model (Eq. (3)) using the synthetic data
visualized in Fig. 1; see Section 4 for details. The top row corresponds to the cases where the predictor that
uses sparse tokens has lower sensitivity, while the bottom row corresponds to the cases where using the frequent
tokens leads to lower sensitivity. The precise data settings for this figure, as well as a comparison of sensitivity
values, are shown in Table 3.

Continuing from the synthetic data, we now consider a slightly more complicated dataset, namely MNIST
(LeCun and Cortes, 2005). The MNIST dataset consists of 70k black-and-white images of handwritten digits
of resolution 28× 28. There are 60k images in the training set and 10k images in the test set. We compare
the sensitivity of a ViT-small model with an MLP on a binary digit classification task (< 5 or ≥ 5). In our
experiments, each image is divided into T = 16 patches of size 7× 7 for the ViT-small model. For the MLP,
the inputs are vectorized as usual. With this setting, we measure the sensitivity of the two models using patch
token replacement as per Definition 4.3. As shown in Figure 11, when achieving the same training accuracy,
the ViT shows lower sensitivity compared to the MLP.

18

MLP
ViT

Train accuracy Sensitivity

Figure 11: Sensitivity on MNIST. ViT and
MLP get similar accuracy, but the ViT has lower
sensitivity.

Train accuracy Sensitivity

Adam
SGD

Figure 12: Sensitivity using SGD and Adam. Compari-
son of train accuracies and sensitivity values of the ViT-small
model trained on the CIFAR-10 dataset using SGD and Adam
optimizers.

A.2 Vision Tasks
Effect of Depth, Number of Heads and the Optimization Algorithm. In Fig. 12, we compare the
sensitivity values of a ViT-small model trained on CIFAR-10 dataset with SGD and Adam optimization
algorithms. Although the model trained with Adam has a slightly higher sensitivity, the sensitivity values for
both the models are quite similar. This indicates that the low-sensitivity bias is quite robust to the choice of
the optimization algorithm.

In Fig. 13, we compare the sensitivity values of a ViT-small model with different depth and number of
attention heads, when trained on the CIFAR-10 dataset. Note that for our main results, we use a model with
depth 8 and 32 heads. We observe that the train accuracies and the sensitivity values remain the same across
the different model settings. This indicates that the low-sensitivity bias is quite robust to the model setting.

Depth 4
Depth 8
Depth 10

Train accuracy Sensitivity

(a) Sensitivity for varying depth

16 Heads
24 Heads
32 Heads

Train accuracy Sensitivity

(b) Sensitivity for varying number of heads

Figure 13: Sensitivity for Various Model Settings. Comparison of train accuracies and sensitivity values
on the CIFAR-10 dataset when varying the depth and number of heads of the ViT-small model. We observe
that for the same train accuracy, the sensitivity values remain very similar for different model settings.

CNN
ViT
ViT + data
augmentation

Gaussian Noise Shot Noise Impulse Noise Snow Frost Fog

Brightness Contrast Elastic Transform Pixelate JPEG Compression

Sensitivity Clean Test Gaussian Blur Glass Blur Motion Blur Zoom Blur

Figure 14: Comparison of the sensitivity, test accuracy on CIFAR-10 and test accuracies on various corruptions
from blur, noise, weather and digital categories from the CIFAR-10-C dataset (see Section 7 for details) of a
ResNet-18 CNN and a ViT-small model trained on the CIFAR-10 dataset, as a function of the training epochs.
We also compare with ViT-small trained with data augmentation, which acts as a regularizer to encourage
low sensitivity (see Section 7 for discussion). Here, we use severity level 1, while in Figure 9, we considered
severity level 2.

19

Figure 15: Comparison of the test accuracies on CIFAR-10 and on various corruptions from blur, noise, weather
and digital categories from the CIFAR-10-C dataset (see Section 7 for details) of two CNNs, two ViTs and
ViT-small with augmentation/regularization trained on the CIFAR-10 dataset, at the last training epoch.
The legend is arranged in order of decreasing sensitivity values (included in parenthesis); see Fig. 9 for a
comparison of the accuracies as a function of training epochs.

Additional Results on CIFAR-10-C. Fig. 14 shows the test performance on CIFAR-10-C dataset with
severity level 1. We observe that similar to Fig. 9, where we considered severity level 2, CNNs have lower test
accuracies on corrupted images compared to ViTs. Further, encouraging lower sensitivity in the ViT leads to
better robustness. However, the gains are smaller in this case due to the lower severity level.

In Fig. 15, we compare the test accuracies on CIFAR-10 as well as on various corruptions from the
CIFAR-10-C dataset, at the end of training. We observe that models with lower sensitivity have higher
accuracies across most corruptions.

A.3 Language Tasks
Sensitivity Measured with Variance σ2 = 4. Alternative to the main experiments with σ2 = 15, we
also evaluate sensitivity with a different corruption strength σ2 = 4 on the QQP dataset, as shown in Fig. 16.
We observe the same trends as in Figures 7 and 8: RoBERTa models have lower sensitivity than the LSTM
and the LSTM is more sensitive to more recent tokens. These results indicate that the low-sensitivity bias is
robust to the choice of the corruption strength.

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06
Data Points Trained

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Av
er

ag
e

Se
ns

it
iv

it
y

LSTM
RoBERTa (Softmax)
RoBERTa (ReLU)

0 20 40 60 80 100 120
Token Position

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

Se
ns

it
iv

it
y

LSTM
RoBERTa (Softmax)
RoBERTa (ReLU)

Figure 16: Sensitivity on the QQP Dataset with Variance σ2 = 4. Results with alternative variance
yield observations that are consistent with the setup in the main text. (Left) LSTM has higher sensitivity
than the RoBERTa models. (Right) Softmax activation for RoBERTa induces higher sensitivity towards the
CLS token.

Sensitivity Measured on the Validation Set. We also test sensitivity on the validation set for the two
language datasets. As seen in Figure 17, the results on the validation set are consistent with those on the
train set in Fig. 7.

Sensitivity Measured with the GPT-2 Model. Here, we ablate the effect of the transformer architecture
on the sensitivity values. We compare a GPT-based model with the two BERT-based models used in our main
experiments. The key difference lies in the construction of the attention masks: for GPT models, each token

20

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Data Points Trained

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Av
er

ag
e

Se
ns

it
iv

it
y

LSTM
RoBERTa (Softmax)
RoBERTa (ReLU)

(a) MRPC

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06
Data Points Trained

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Av
er

ag
e

Se
ns

it
iv

it
y

LSTM
RoBERTa (Softmax)
RoBERTa (ReLU)

(b) QQP

Figure 17: Sensitivity on the Validation Sets. Similar to the observation in Figure 7, the RoBERTa models
have lower sensitivity than the LSTM for both the datasets. However, the difference between RoBERTa-ReLU
and RoBERTa-softmax is less marginal on the validation set compared to the training set.

only observes the tokens that appear before it, whereas BERT models are bidirectional, therefore each token
observes all the tokens in the sequence. In Fig. 18, we observe that the GPT-2 model has higher sensitivity
compared to the RoBERTa models, but the sensitivity is significantly lower than the LSTM. The GPT-2
model is also relatively more sensitive to more recent tokens compared to the RoBERTa models, while also
being sensitive to some CLS tokens.

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06
Data Points Trained

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Av
er

ag
e

Se
ns

it
iv

it
y

LSTM
RoBERTa (Softmax)
RoBERTa (ReLU)
GPT-2

0 20 40 60 80 100 120
Token Position

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Se
ns

it
iv

it
y

LSTM
RoBERTa (Softmax)
RoBERTa (ReLU)
GPT-2

Figure 18: Sensitivity of GPT-2 on the QQP Dataset. (Left) We find that the RoBERTa models tend to
have lower sensitivity than GPT-2, and all Transformer models have lower sensitivity than LSTM. (Right) The
sensitivity per token of GPT-2 is more similar to LSTMs, which is possibly due to their shared auto-regressive
design.

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06
Data Points Trained

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

Se
ns

it
iv

it
y

LSTM (4 Layers)
LSTM (8 Layers)
LSTM (12 Layers)
RoBERTa (4 Layers)
RoBERTa (8 Layers)
RoBERTa (12 Layers)

Figure 19: Sensitivity for Different Model Depths. We vary the model depths of LSTM and RoBERTa
on the QQP datasets and observe that LSTM models tend to have the same sensitivity throughout the entire
training. RoBERTa model with 4 layers has slightly lower sensitivity with its 8-layer or 12-layer variants.
Nonetheless, RoBERTa models, regardless of depths, have lower sensitivity than LSTMs.

B Proof of Proposition 3.1

Hron et al. (2020) show that the self-attention layer (Eq. (2)) with linear attention and d−1/2 scaling converges
in distribution to GP(0,K) in the infinite width limit, i.e. when the number of heads dH become large. For
any layer l ∈ [L], let K̃l denote the kernel induced by the intermediate transformation when applying some
nonlinearity ϕ to the output of the previous layer l − 1. Let f l

·j := {f l
i,j(x) : x ∈ X , i ∈ [T]}, where X denotes

21

the input space of x. They show the following result for NNs with at least one linear attention layer, in the
infinite width limit.

Theorem B.1 (Theorem 3 in Hron et al. (2020)). Let l ∈ [L], and ϕ be such that |ϕ(x)| ≤ c + m|x| for
some c,m ∈ R+. Assume gl−1 converges in distribution to gl−1 ∼ GP (0,Kl−1), such that gl−1

·j and gl−1
·k are

independent for any j ̸= k. Then as min{dl,H , dl} → ∞, gl converges in distribution to gl ∼ GP (0,Kl) with
gl·k and gl·ℓ independent for any k ̸= ℓ, and

Kl(x,x′) = E[gl(x)gl(x′)] =

d̃∑
i,j=1

(K̃l
ij(x,x

′))2K̃l
ab(x,x

′).

Similar results are also known for several non-linearities and other layers such as convolutional, dense,
average pooling (de G. Matthews et al., 2018; Garriga-Alonso et al., 2019; Lee et al., 2018; Novak et al., 2019;
Yang, 2021), as well as residual, positional encoding and layer normalization (Hron et al., 2020; Yang, 2021).

Consequently, any model composed of these layers, such as a transformer with linear attention, also
converges to a Gaussian process. This follows using an induction-based argument. It can easily be shown that
the induced kernel takes the form

K(x,y) = Ψ

(
⟨x,y⟩
∥x∥ ∥y∥

,
∥x∥2

d
,
∥y∥2

d

)
,

for some function Ψ : R3 → R. In addition, since x,y ∈ �
d, they have the same norm, and Ψ can be treated

as a univariate function that only depends on c = d−1 ⟨x,y⟩, i.e. Ψ (c, 1, 1) = Ψ(c).
Using this property and the following result, it follows that the kernel induced by a transformer with linear

attention is diagonalized by the Fourier basis {χU}U⊆[d].

Theorem B.2 (Theorem 3.2 in Yang and Salman (2020)). On the d-dimensional boolean cube �
d, for every

U ⊆ [d], χU is an eigenfunction of K with eigenvalue

µ|U | := E
x∼�d

[
xUK(x,1)

]
= E

x∼�d

[
xUΨ

(
d−1∑

i

xi

)]
,

where 1 := (1, . . . , 1) ∈ �
d. This definition of µ|U | does not depend on the choice S, only on the cardinality of

S. These are all of the eigenfunctions of K by dimensionality considerations.

Further, using the following result, it follows that transformers (with linear attention) exhibit weak spectral
simplicity bias.

Theorem B.3 (Theorem 4.1 in Yang and Salman (2020)). Let K be the CK or NTK of an MLP on a boolean
cube �

d. Then the eigenvalues µk, k = 0, . . . , d, satisfy

µ0 ≥ µ2 ≥ · · · ≥ µ2k ≥ . . . ,

µ1 ≥ µ3 ≥ · · · ≥ µ2k+1 ≥

C Further Related Work
Implicit Biases of Gradient Methods. Several works study the implicit bias of gradient-based methods
for linear predictors and MLPs. Pioneering work by Ji and Telgarsky (2018); Soudry et al. (2018) revealed that
linear models trained with gradient descent to minimize an exponentially-tailed loss on linearly separable data
converge (in direction) to the max-margin classifier. Following this, Ji et al. (2021); Ji and Telgarsky (2021);
Nacson et al. (2019) derived fast convergence rates for gradient-based methods in this setting. Recent works
show that MLPs trained with gradient flow/descent converge to a KKT point of the corresponding max-margin
problem in the parameter space, in both finite (Ji and Telgarsky, 2020; Lyu and Li, 2020) and infinite width
(Chizat and Bach, 2020) regimes. Further, Frei et al. (2022); Kou et al. (2023); Phuong and Lampert (2021)
have also studied ReLU/Leaky-ReLU networks trained with gradient descent on nearly orthogonal data. Li
et al. (2022) show that the training path in over-parameterized models can be interpreted as mirror descent
applied to an alternative objective. In regression problems, when minimizing the mean squared error, the bias
manifests in the form of rank minimization (Arora et al., 2019; Li et al., 2021). Additionally, the implicit bias
of other optimization algorithms, such as stochastic gradient descent and adaptive methods, has also been
explored in various studies (Blanc et al., 2020; HaoChen et al., 2021); see the recent survey Vardi (2022) for a
detailed summary.

22

Robustness. Several research efforts have been made to investigate the robustness of Transformers. Shao
et al. (2021) showed that Transformers exhibit greater resistance to adversarial attacks compared to other
models. Additionally, Mahmood et al. (2021) highlighted the notably low transferability of adversarial examples
between CNNs and ViTs. Subsequent research (Bhojanapalli et al., 2021; Paul and Chen, 2022; Shen et al.,
2023) expanded this robustness examination to improve transformer-based language models. Shi et al. (2020)
introduced the concept of robustness verification in Transformers. Various robust training methods have been
suggested to enhance the robustness guarantees of models, often influenced by or stemming from their respective
verification techniques. Shi et al. (2021) expedited the certified robust training process through the use of
interval-bound propagation. Wang et al. (2021) employed randomized smoothing to train BERT, aiming to
maximize its certified robust space. Recent work (Bombari and Mondelli, 2024) shows that randomly-initialized
attention layers tend to have higher word-level sensitivity than fully connected layers. In contrast to our work,
they consider word sensitivity, which has been experimentally shown to be similar for transformers and LSTMs
(Bhattamishra et al., 2023b).

Spurious Correlations. A common pitfall to the generalization of neural networks is the presence of
spurious correlations (Sagawa et al., 2020). For example, Geirhos et al. (2019) observed that trained CNNs are
biased towards textures rather than shapes to make predictions for object recognition tasks. Such biases make
NNs vulnerable to adversarial attacks. Gururangan et al. (2018) attribute the reliance of NNs on spurious
features to confounding factors in data collection while Shah et al. (2020) attribute it to a simplicity bias.
Several works have studied the underlying causes of simplicity bias (Chiang, 2021; Huh et al., 2021; Lyu et al.,
2021; Morwani et al., 2023; Nagarajan et al., 2021) and multiple methods have been developed to mitigate
this bias and improve generalization (Kirichenko et al., 2022; Pezeshki et al., 2020; Tiwari and Shenoy, 2023;
Vasudeva et al., 2023).

Data Augmentation. The essence of data augmentation is to impose some notion of regularization. The
simplest design of data augmentation dates back to Robbins (1951) where image manipulation, e.g., flip, crop,
and rotate, was introduced. Bishop (1995) proved that training with Gaussian noise is equivalent to Tikhonov
regularization. We also note this observation is in parallel to our proposition in Section 7 that training with
Gaussian noise promotes low sensitivity. Recently, mixup-based augmentation methods have been proposed to
improve model robustness by merging two images as well as their labels (Zhang et al., 2018). Several works
also use a combination of existing augmentation techniques (Cubuk et al., 2019; Lim et al., 2019). A common
belief is that data augmentation can improve model robustness (Rebuffi et al., 2021), and this work bridges
the method (augmentation) and the outcome (robustness) with an explanation — simplicity bias towards low
sensitivity.

D Details of Experimental Settings
Experimental Settings for Synthetic Data Experiments. We use standard SGD training with batch size
100. We consider T = 50 and train with 1000 samples and test on 500 samples generated as per Definition 4.2.

Model Architectures and Experimental Settings for Vision Tasks. For all the datasets, we use the
ViT-small architecture implementation available at https://github.com/lucidrains/vit-pytorch. For the
ResNet-18 model used in the experiments on CIFAR-10 and SVHN datasets, we use the implementation available
at https://github.com/kuangliu/pytorch-cifar. Additionally, for the DenseNet-121 model and ViT-
simple model used in the experiments on CIFAR-10, we use the implementations available at https://github.
com/huyvnphan/PyTorch_CIFAR10 and https://github.com/lucidrains/vit-pytorch, respectively. All
the models are trained with SGD using batch size 50 for MNIST and 100 for the other datasets. We use patch
size 7 for MNIST and 4 for the other datasets.

For the MNIST experiments, we consider a 1-hidden-layer MLP with 100 hidden units and LeakyReLU
activation. We set depth as 2, number of heads as 1 and the hidden units in the MLP as 128 for the ViT. We
train both models with a learning rate of 0.01.

For Fashion-MNIST, we set depth as 2, number of heads as 8 and the hidden units in the MLP as 256 for
the ViT. We consider a 2-hidden layer MLP with 512 and 128 hidden units, respectively. The CNN consists of
two 2D convolutional layers with 32 output channels and kernel size 3 followed by a 2D MaxPool layer with
both kernel size and stride as 2 and two fully connected layers with 128 hidden units. We use LeakyReLU
activation for the CNN. We use learning rates of 0.1 for the MLP with LeakyReLU, 0.5 for the MLP with
sigmoid, 0.005 for the CNN and 0.1 for the ViT.

23

https://github.com/lucidrains/vit-pytorch
https://github.com/kuangliu/pytorch-cifar
https://github.com/huyvnphan/PyTorch_CIFAR10
https://github.com/huyvnphan/PyTorch_CIFAR10
https://github.com/lucidrains/vit-pytorch

For CIFAR-10, we set depth as 8, number of heads as 32 and the hidden units in the MLP as 256 for the
ViT-small model, while these values are set as 6, 16, and 512 for the ViT-simple model. The learning rate is
set as 0.1 for ViT-small, 0.2 for ViT-simple, 0.001 for ResNet-18 and 0.005 for DenseNet-121.

For SVHN, most of the settings are the same as the CIFAR-10 experiments, except we set the hidden units
in the MLP as 512 for the ViT-small model and the learning rate is set as 0.0015 for ResNet-18.

Model Architectures and Experimental Settings for Language Tasks. For both RoBERTa models
and LSTM models, we keep the same number of layers and number of heads: 4 layers and 8 heads each. We
use the AdamW optimizer with a learning rate of 0.0001 and weight decay of 0.0001 for all the tasks. We also
use a dropout rate of 0.1. We use a batch size of 32 for all the experiments.

Experimental Settings for Section 7. We set the learning rate as 0.16 and 0.2 when training the ViT-small
with regularization and augmentation, respectively. The remaining settings are the same as for the other
experiments. For computing the sharpness metrics, we approximate the expectation over the Gaussian noise
by averaging over 5 repeats and set σ as 0.005.

Experimental Settings for Appendix A.2. For the experiment with the Adam optimizer, we employ a
learning rate scheduler to ensure that the accuracy on the train set is similar to the model trained with SGD.
The initial learning rate is 0.002 and after every 8 epochs, it is scaled by a factor of 0.5.

For the remaining experiments in this section, we consider the same settings as for the respective main
experiment.

24

	Introduction
	Related Work
	Weak Spectral Simplicity Bias
	Experiments on Synthetic Data
	Experiments on Vision Tasks
	Experiments on Language Tasks
	Implications of the Low Sensitivity Bias
	Lower Sensitivity leads to Improved Robustness
	Lower Sensitivity leads to Flatter Minima

	Discussion
	Appendix
	Additional Experiments
	Synthetic Data and the MNIST Dataset
	Vision Tasks
	Language Tasks

	Proof of corr:wsb
	Further Related Work
	Details of Experimental Settings

