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Figure 1: Dynamic objects with global texture maps optimized by our framework.

Abstract
We propose a novel framework to generate a global texture atlas for a deforming geometry. Our approach distinguishes from
prior arts in two aspects. First, instead of generating a texture map for each timestamp to color a dynamic scene, our framework
reconstructs a global texture atlas that can be consistently mapped to a deforming object. Second, our approach is based
on a single RGB-D camera, without the need of a multiple-camera setup surrounding a scene. In our framework, the input
is a 3D template model with an RGB-D image sequence, and geometric warping fields are found using a state-of-the-art
non-rigid registration method [GXW∗15] to align the template mesh to noisy and incomplete input depth images. With these
warping fields, our multi-scale approach for texture coordinate optimization generates a sharp and clear texture atlas that is
consistent with multiple color observations over time. Our approach is accelerated by graphical hardware, providing a handy
configuration to capture a dynamic geometry along with a clean texture atlas. We demonstrate our approach with practical
scenarios, particularly human performance capture. We also show that our approach is resilient on misalignment issues caused
by imperfect estimation of warping fields and inaccurate camera parameters.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction

3D reconstruction using RGB-D cameras becomes a popular way
to capture geometry from the real-world. KinectFusion [NIH∗11]
is one of the representative works that demonstrate the real-time
reconstruction of a static scene using a sequence of depth im-

ages. This pioneering work has been extended by various groups
[NZIS13, WSMG∗16, CZK15, PZK17, DNZ∗17] to cover large-
scale scenes such as rooms and statues. Recently, methods on non-
static or dynamic object reconstruction have been introduced, as the
scene of interest may not be static in actual cases - the most rep-
resentative example is human who can perform various motions.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Kim et al. / Global Texture Mapping for Dynamic Objects

The geometric deformation of human over time is becoming more
important since it is directly related to content creation for emerg-
ing applications, such as virtual/augmented reality, 360◦ replay of
sports games, commercial videos, and movies.

Dynamic scene reconstruction is often handled by reconstructing
a shape for each timestamp with multiple cameras placed around
the scene. This approach utilizes multi-view information as much
as possible and shows outstanding results [DDF∗17, DKD∗16,
CCS∗15]. However, these multi-camera environments require ex-
trinsic calibration and a specialized frame trigger for multi-frame
synchronization. These often result in constrained and complicated
studio environments.

To resolve this issue, dynamic scene reconstruction using a min-
imal setup of a single RGB-D camera has been studied recently.
Starting from DynamicFusion [NFS15], VolumeDeform [IZN∗16],
BodyFusion [YGX∗17], and the recent SMPL (skinned multi-
person linear model) based DoubleFusion [YZG∗18] perform real-
time dynamic motion tracking and exhibit impressive reconstruc-
tion results. For acquiring better results from more challenging tar-
gets, template-based methods have also been proposed [LAGP09,
GXW∗15, GXW∗18]. In this case, a template mesh is built in a
preprocessing step, and the template mesh is non-rigidly aligned to
input depth frames.

While single-camera based approaches have successfully
demonstrated 3D geometry reconstruction of non-rigid objects,
color or texture map generation for the reconstructed models is
a separate and still demanding problem. Several methods have
been proposed to restore color or texture information of a 3D
rigid model reconstructed using an RGB or RGB-D image stream
[GWO∗10, ZK14, JJKL16, BKR17, FYY∗18, LGY19]. However,
those methods cannot be directly extended to handle non-rigid ob-
jects, where small misalignments of textures over time can produce
visual artifacts that are easily noticeable by users. Recently Prada
et al. [PKC∗17] introduce a complete system that can capture high-
quality geometry and texture map together for dynamic scenes.
However, it needs to generate multiple texture maps that progres-
sively modify a global texture map, and requires a controlled studio
setup for capturing multi-view images at each frame.

In this paper, we introduce a practical system to generate a tex-
ture atlas for color mapping of non-rigid objects using a single
RGB-D camera. Our single camera setup increases the convenience
of usual consumer and avoids using any special-purpose environ-
ments such as turntable or studio setup. The core of our framework
is an efficient method to produce a single, clean, and accurate tex-
ture atlas that can be globally applicable to a deformed template
mesh over time. Our method can be configured with any existing
template-based non-rigid tracking method [GXW∗15, GXW∗18]
that recovers the geometry of a deforming 3D object over time.

To generate a global texture domain, we begin with initial 2D
texture coordinates on several color images for each face of a tem-
plate mesh. Our problem of producing a clean and accurate texture
atlas can be formulated as local texture coordinate optimization us-
ing warping fields that are estimated by a state-of-the-art non-rigid
registration method [GXW∗15]. Texture coordinate optimization is
accelerated by graphical hardware based on the approach of Jeon et
al. [JJKL16]. To handle large misalignments due to various sources,

such as inaccurately estimated non-rigid motions and camera pa-
rameter errors, we perform multi-scale optimization using a mesh
pyramid that is generated by deformation-oriented mesh decima-
tion (DOD) [HCC06].

In summary, our contributions are:

• A practical system for dynamic scene and color map acquisition
using only a single RGB-D camera.
• An effective framework for global texture mapping of a deform-

ing 3D mesh.
• Efficient texture coordinate optimization scheme using a mesh

pyramid to handle large misalignments.
• Demonstration of the proposed approach using various dynamic

objects, such as human performing a range of motions.

2. Related Work

We review relevant literature to our approach including dynamic
mesh reconstruction and texture map handling.

Non-rigid geometry reconstruction KinectFusion [NIH∗11] is a
representative static scene reconstruction approach using a single
depth camera. As a follow-up, DynamicFusion [NFS15] demon-
strates real-time non-rigid reconstruction using a single depth cam-
era. DynamicFusion utilizes point-to-plane error for the geometric
alignment, so the alignment can be slipped away if the scene is
planar. VolumeDeform [IZN∗16] resolves this issue by adding a
correspondence term using image feature in addition to the geo-
metric error term in their energy equation. BodyFusion [YGX∗17]
is specialized for dynamic human body capture. It utilizes human
skeleton embedding obtained from a single RGB-D image when it
fuses depth images. Recently, DoubleFusion [YZG∗18] introduces
a two-layered representation to handle the case that a target subject
is wearing clothes. A layer for inner body shape is explicitly pa-
rameterized by SMPL model [LMR∗15], and the outer body shape
is progressively reconstructed by fusing depth images.

Another group of methods assume that a template shape has
been recovered, and deforms the template to be aligned with a
depth image. This approach allows full dynamic motion capture
using a single depth camera, where the core problem is non-rigid
registration between a template model with input data [LAGP09,
ZNI∗14, GXW∗15, GXW∗18]. Many works use a non-rigid reg-
istration technique based on embedded deformation (ED) graph
model [SSP07], which has shown successful registration perfor-
mance in diverse literature [LVG∗13, DTF∗15, DKD∗16, DDF∗17]
besides template model tracking. Guo et al. [GXW∗15, GXW∗18]
use ED graph model, and reconstruct complex articulated motions
using L0 based motion regularizer without the usage of a predefined
skeleton embedding.

Color mapping of reconstructed geometry In practice, when a
depth camera is used for geometry scanning and its accompany-
ing color camera is used for texture mapping, the misalignment
issue appears whose main sources are camera model errors and
inaccurate reconstructed geometry. Such misalignments often re-
sult in blurry texture maps that are not visually appealing for vir-
tual/augmented reality applications. To resolve this issue, Gal et
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Figure 2: Overview of the proposed framework to generate a global texture map for a deforming geometry. Given a template model and an
RGB-D stream, our framework generates a deforming mesh using non-rigid registration between the depth images and the template model.
Color images having different views of the target object are selected as key frames for texture mapping. Our multi-scale texture optimization
generates a complete, clean, and sharp texture map that can be globally applied to the deforming mesh.

al. [GWO∗10] optimize projective mapping from each mesh tri-
angle to one of color images by performing combinatorial opti-
mization on image labels and 2D coordinates of projected triangles.
Zhou and Koltun [ZK14] jointly optimize camera poses and non-
rigid correction functions to increase the photometric consistency
of the assigned color images. Their approach alters per-vertex col-
ors during optimization, and thus requires a high-density mesh for
generating a high-quality colorization of mesh. Jeon et al. [JJKL16]
use a texture map for color information, instead of per-vertex col-
ors, and optimize projected texture coordinates on input color im-
ages to maximize the photometric consistency. They demonstrated
that their method is efficient and adopted well for both small- and
large-scale models. Lin et al. [LCL∗16] propose a practical multi-
view camera system that fast reconstructs both geometry and tex-
ture of a 3D rigid object. When texturing an object, they estimate
the optimal image label of each mesh triangle, similarly to Gal et
al. [GWO∗10]. Global patch-based optimization introduced by Bi
et al. [BKR17] is robust to large misalignments between frames,
but is known to be time-consuming due to heavy optimization step.
Other works [FYY∗18, LGY19] also deal with color enhancement
of reconstructed rigid mesh models by means of assigning an opti-
mal image label to each face of a model with variants of photomet-
ric consistency terms.

Recently, there are increasing demands to capture and display
dynamic objects with high-quality color mapping for various ap-
plications. The method of Prada et al. [PKC∗17] is one of the rep-
resentative works in this area, but it requires evolving texture maps
that are captured by a highly crafted multi-view camera system.

In contrast, we propose a more compact capturing pipeline that
only requires a single RGB-D camera to capture geometry and its
dynamic performance over time. In particular, our core contribu-
tion is to generate a temporally consistent texture atlas over time,
which has not been introduced so far based on our best knowl-
edge. Our texture optimization approach is designed to align high-

resolution color images effectively. We adopt the approach of Jeon
et al. [JJKL16] to formulate the texture map alignment problem as
a texture coordinate optimization problem. On top of this, we pro-
pose multi-scale optimization of texture coordinates using a mesh
pyramid. With our approach, the color image sequence is associ-
ated with the faces of a template, and the proposed multi-scale op-
timization generates optimal 2D texture coordinates for the faces.
As a result, a texture atlas can be generated that enables the dy-
namic scene to have consistent and sharp appearance over time.

3. Overview

Fig. 2 illustrates the overall process of our framework to generate
a complete texture atlas of a deforming mesh. Given a template
mesh model and an RGBD stream, we first perform L0-L2 non-
rigid registration [GXW∗15] to estimate warping fields that align
the template mesh to input depth maps. Then we sample key frames
of color images based on the frame uniqueness scores that consider
the visibility of deformed template meshes.

As the next step, we generate mesh pyramids of the de-
formed template meshes using deformation-oriented mesh decima-
tion (DOD) [HCC06]. By projecting the mesh pyramids onto the
key frames, we can determine the valid key frames for each trian-
gle. With the projection, we can also obtain initial rough mappings
onto the valid key frames for each triangle in the template mesh.
We refine the sets of valid key frames using majority voting so that
neighboring triangles in the template mesh have coherent sets of
valid key frames. We then determine optimal projected texture co-
ordinates of triangles on their valid key frames through our multi-
scale texture optimization.

Finally, we build a texture atlas by applying mesh parameteriza-
tion to the template mesh. For each triangle in the mesh, we collect
sub-textures from the valid key frames using the optimized texture
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(a) (b)

Figure 3: Template mesh generation. (a) template model recon-
structed by [YZG∗18]. (b) Poisson surface reconstruction of (a).

coordinates and blend them onto the proper position in the texture
atlas determined by the mesh parameterization.

4. Dynamic Geometry Reconstruction

4.1. Template Model Acquisition

We configure our capturing system to fit for an ordinary scenario.
We capture human subjects with a single camera in an indoor
scene under natural illumination. Among a variety of reconstruc-
tion systems, we used Doublefusion [YZG∗18] for building a tem-
plate model of a human subject because of its robustness and real-
time performance. For template model capture, the subject spreads
his/her limbs and slowly turns around in front of a camera. If there
are missing parts that are not visible to the camera, the subject
changes his/her posture slightly. The remaining artifacts, like oc-
cluded parts or tearing holes, are processed with Poisson surface
reconstruction [KH13] to guarantee watertightness of the recovered
mesh. Fig. 3 shows an example.

4.2. Non-rigid Registration

Our framework uses non-rigid registration proposed by Guo et
al. [GXW∗15, GXW∗18]. It aligns a template mesh model to a
new input mesh, and the setting works well with our single camera-
based geometry capture pipeline. The method basically carries out
L2 norm-based non-rigid registration and runs L0 norm-based reg-
ularizer when articulated motions occur.

Given a template mesh, for each input RGB-D frame, the method
of Guo et al. computes a warping field that determines the mapping
of each triangle in the template mesh onto the input frame. We de-
note the warping field of a face f in the template mesh to the i-th
input frame as Gi

f , where Gi
f determines the projected position of

each vertex of f onto the i-th input frame. For more details, refer
to [GXW∗15, GXW∗18].

We utilize the original implementation of Guo et al. for non-
rigid alignment. It uses the Gauss-Newton method to optimize the
warping field, but we observed that the Jacobian matrix of the
energy function occasionally becomes rank-deficient for our hu-
man dataset. To relieve the problem, we adopted the idea of Li
et al. [LVG∗13] that adds a scaled identity matrix to the Gauss-
Newton matrix.

(a) (b) (c) (d)

Figure 4: Shading changes over time under uncontrolled indoor
illumination. Although (a) and (b) indicate the same part, they ex-
hibit different shading. In (c) and (d), the change is more drastic
due to self-shadow.

5. Global Texture Maps for Dynamic Objects

In this section, we describe detailed steps for our multi-scale tex-
ture optimization, which is the core of our framework to generate a
global texture atlas.

5.1. Shape-aware Key Frame Selection

For color mapping of non-rigid objects, using all of the captured
color images is redundant since most parts of the surface can be ob-
servable using a small number of different viewing directions. Ex-
isting works [ZK14, JJKL16] select color images having sharp tex-
tures within a pre-defined time window. However, the approach is
intended for rigid scenes, and we propose a shape-aware approach
to select key frames for texture mapping of dynamic objects.

Our key frame selection approach utilizes a frame uniqueness
score. It is a joint measurement of viewing direction and object
shape coverage for each frame. We first make a per-frame binary
array to represent whether each face of the template mesh is visi-
ble or not at a certain timestamp. It can be determined by applying
the warping fields to the template mesh and ray casting the result-
ing deformed meshes. Then, each visible face is evaluated with the
angle between its normal direction and the viewing direction. The
uniqueness score Q(i) for a frame i aggregates the quality of the
visible faces in frame i as follows:

Q(i) =
∑ f∈F i

W i
f

N f

|F i| , (1)

where F i is the set of visible faces f in frame i, W i
f is the dot

product of the face f ’s normal and the camera’s viewing direction,
and N f is the total number of frames that face f is visible.

The score Q(i) becomes high when many faces are completely
visible in a frame i. The score also reflects the uniqueness of the
frame as the visibility weight W f is divided by N f , penalizing faces
visible in many frames. We select key frames based on high unique-
ness scores but avoid selecting temporally adjacent frames to min-
imize the number of similar color images.

5.2. Valid Key Frame Refinement using Majority Voting

Once the key frames have been selected from the input sequence,
we determine the valid key frames for each face f in the template
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Figure 5: Majority voting example for face ‘A’. In the first key
frame, face ‘A’ is set as visible (denoted as black cell in the ta-
ble), but other adjacent faces are not visible (denoted as white).
Majority voting updates the visibility of ‘A’ in the first key frame as
invisible according to the consensus of adjacent faces.

mesh, consisting of the key frames in which face f is visible. The
valid key frames will be blended to obtain the sub-texture of the
face in the final global texture atlas. In our framework, we capture
an object without controlling the lighting condition in an indoor
scene to simulate the ordinal capturing scenario. As a result, the
shading of the same face can considerably change on different valid
key frames (Fig. 4). Then, with visibility changes, the valid key
frame sets of adjacent faces in the template mesh could consist of
different key frames with shading changes. These practical issues
may induce notable shading inconsistency between adjacent faces
in the final texture mapping results.

In this regard, we design a way to enforce spatial coherency for
the valid key frame sets. The valid key frame sets of faces can be
represented as visibility index arrays for key frames, where an array
represents the valid key frames of a face, summarizing the visibility
of the face in each key frame (Fig. 5). We refine the sets of valid
key frames using majority voting that updates the visibility of a
face for a key frame based on the consensus from adjacent faces.
That is, even though a face f was originally visible for a key frame
i, it becomes invisible if the majority of the adjacent faces are in-
visible for frame i (face ‘A’ for the first frame in Fig. 5). However,
this update does not change the visibility from invisible to visible
regardless of the consensus from adjacent faces, as a key frame
cannot become a valid key frame of a face if the face is invisible
in the key frame (face ‘A’ for the third frame in Fig. 5). We iterate
this update process over all faces of the template mesh. As a result,
we obtain similar sets of valid key frames for spatially neighboring
faces, which would help shading consistency for texture mapping.

We enforce a face to have at most k valid key frames for texture
mapping. We repeatedly perform the majority voting process a few
times while keeping the maximum number of valid key frames of
faces less than k. To prevent the case that any face has no valid key
frames, the number of valid key frames of each face is also kept to
be above a predefined minimum value.

5.3. Global Texture Map Optimization

Given the template mesh, valid key frames, and warping fields
{Gi

f }, which have been obtained in the previous stages, we com-

pute optimal 2D texture coordinates of each vertex of the template
mesh on valid key frames. By blending sub-textures extracted from
the valid key frames using the optimized texture coordinates, we
can generate a global texture map that can be consistently applied
to any deformed mesh.

Single-level texture map optimization We first elaborate single-
level texture map optimization, which will be extended to multi-
scale optimization. After the processes in Sections 5.1 and 5.2,
each face has the refined valid key frames, weights {W i

f } that will
be used for blending to generate an atlas, and the initial texture
coordinates in the valid key frames determined by warping fields
{Gi

f }. The texture coordinates determine the sub-textures on valid
key frames that correspond to the faces in the template mesh. With
these components, we can perform texture map optimization, based
on Jeon et al.’s work [JJKL16]. The optimization energy is to cal-
culate the photometric inconsistency between sub-textures on valid
key frames for the faces of the template mesh.

Let V be all vertices of the template mesh, and Fv be the one-ring
neighbor faces of a vertex v. Then the energy is defined as:

E(u,P) = ∑
v∈V

∑
f∈Fv

∑
i∈I f

M(i, f ), (2)

where u denotes 2D texture coordinates of sub-textures to be opti-
mized, P is a vector of proxy colors, and I f is the set of valid key
frames corresponding to f . M is the color inconsistency of sample
pixels in a sub-texture, which is defined as:

M(i, f ) = ∑
s∈S f

||C(ui(s))−P(s)||2, (3)

where S f is the set of sample positions within a face f defined by
fixed barycentric coordinates, C(ui(s)) is the color value on the i-th
valid key frame at the texture coordinates ui(s) corresponding to
sample s, and P(s) ∈ P denotes the proxy color of sample s.

At the beginning of the optimization, for each sample s, we av-
erage the corresponding pixel values from the sub-textures to ini-
tialize the proxy color vector P. In the following steps, we optimize
u while P is fixed, and vice versa. This alternating optimization is
repeated until convergence, resulting in a sharp texture. For more
details of the optimization process, refer to [JJKL16].

In a single camera setup like ours, partial input data makes non-
rigid registration less reliable. It results in inaccurate warping fields
in some difficult scenes, including large motions and occlusions.
As our optimization starts from initial texture coordinates calcu-
lated using the warping fields, large errors in the warping fields
may cause texture optimization failure. This results in ghost arti-
facts as the sub-textures are not correctly aligned. To handle large
misalignments, we introduce a multi-scale approach for more ef-
fective texture optimization.

Mesh pyramid construction Our multi-scale texture map opti-
mization uses a mesh pyramid, which can be constructed by re-
peatedly simplifying the template mesh. We adopt Huang et al.’s
work [HCC06] to simplify the sequence of deformed template
meshes while minimizing shape distortions. The method is based
on edge collapses, and naturally generates a vertex tree [Hop97],
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Figure 6: Propagation of optimized texture coordinates from a
coarse (red) to the finer (blue) mesh for multi-scale optimization.
Vertices of two meshes are densely connected in the vertex tree.

where the leaf nodes together represent the original mesh and any
cut through intermediate nodes form a simplified mesh.

Multi-scale texture map optimization Our multi-scale texture
optimization starts from the coarsest mesh and progresses to the
finer meshes. At the coarsest level, we set the initial texture coordi-
nates by utilizing estimated warping fields {Gi

f }, and then perform
single-level texture coordinate optimization by minimizing Eq. (2).
For finer levels, the optimized texture coordinates of a coarse mesh
are propagated to provide the initial solution of Eq. (2) for further
optimization. For propagation of texture coordinates from a coarse
mesh to the finer mesh, we use the vertex tree constructed during
mesh simplification.

Fig. 6 illustrates the texture coordinate propagation process. For
a vertex v f in the finer mesh (colored in blue), we first find the its
parent vertex vc (colored in red) in the coarse mesh using the vertex
tree (colored in green). Then, we find the 1-ring neighbor vertices
of vc in the coarse mesh (connected with yellow edges). Finally,
the initial texture coordinates of v f are determined using weighted-
average of the 2D texture coordinates of the coarse vertices:

u(v f ) = ∑
vc

j∈N(v f )

w ju(v
c
j), (4)

where N(v f ) is the neighborhood of the parent node of v f and u(·)
denotes the texture coordinates. The weight w j is inversely propor-
tional to the Euclidean distance between vc

j and v f .

GPU acceleration We use CUDA for GPU-accelerated optimiza-
tion as in [JJKL16]. To deal with a mesh pyramid, the approach is
extended for seamlessly handling multi-scale meshes. After com-
puting the optimized texture coordinates for a coarse mesh on GPU,
we temporarily copy the results to the host memory and perform
the coarse-to-fine texture coordinate propagation. We then copy the
propagated texture coordinates back to the GPU memory as the ini-
tial solution for the finer mesh, and continue the optimization.

5.4. Texture Atlas Generation

Our approach utilizes a template model with an assumption that the
mesh connectivity does not change during deformation. We apply
a mesh parameterization method [Mic11] to the template mesh and
obtain a texture atlas that can be shared by all deformed template

mesh. Then, for each triangle in the texture atlas, we collect all the
corresponding sub-textures from valid key frames with optimized
texture coordinates, and blend them with the pre-calculated weights
W i

f to determine the texture information. In this manner, we can
build a sharp and clean global texture atlas that can be applied for
any deformed mesh.

6. Results

Experiment details We validate our framework with a simple
single-camera setup under natural indoor illumination condition.
To this end, we scanned humans wearing diverse clothes, a blan-
ket, and a human wearing hand puppet. All datasets shown in
this paper were recorded by a Kinect for Windows v2 camera
or ASUS Xtion PRO LIVE, except additional datasets provided
by [GXW∗15]. From the generation of a template model to recon-
struction of a global texture atlas, all steps proceeded without any
special-purpose environments, such as turntable and studio envi-
ronment. Please check the supplementary video for a reference.

We generated all human template models using DoubleFu-
sion [YZG∗18]. For the blanket and the hand puppet scenes, we
used DynamicFusion [NFS15] because DoubleFusion [YZG∗18]
is specialized for human reconstruction. We used fixed parameters
for the two core parts of our framework, i.e., non-rigid registration
and texture map generation. We set k to 30, which is the maximum
number of assigned key frames for each triangle in the template
mesh, and the minimum number is set to four. The number of mesh
pyramid levels is set to five except that it is set to three for a blan-
ket and a hand puppet scenes. The maximum iteration number for
texture optimization is set to 200 at each mesh pyramid level.

Computation time All experiments were conducted on a worksta-
tion equipped with an Intel i7-8700K 3.7GHz CPU, 64GB RAM,
and NVIDIA Titan Xp GPU. Our RGB-D sequences used for ex-
periments contain 200 to 500 frames. After obtaining the warping
fields using the method of Guo et al. [GXW∗15,GXW∗18], it takes
about three minutes to perform the process described in Section
5.1 and 5.2 before texture optimization. Following [JJKL16], our
optimization is accelerated by parallel calculation of gradients for
2D texture coordinates. With our test scenes, a single iteration of
texture coordinate optimization takes about 90∼ 110 milliseconds,
and more iterations are needed for coarser meshes to achieve large
changes of texture coordinates. It takes about 2 ∼ 3 minutes in to-
tal to obtain the optimized texture coordinates for the global texture
atlas of a deforming mesh.

Texture mapping of dynamic human models We tested our tex-
ture map optimization with various dynamic human models. As
shown in Fig. 11, directly using initial texture coordinates for tex-
ture mapping produces serious blur artifacts, due to inaccurately
estimated warping fields and camera parameters. Our single-level
texture optimization shows prominent improvement over näive ini-
tial mapping, but it does not cover large misalignments caused by
dynamic mesh deformations. In contrast, our multi-scale approach
provides a good solution for dynamic objects.

Non-human objects Fig. 7 shows the results of our texturing
method applied to other dynamic scenes with non-human objects.
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(a) (b) (c)

Figure 7: Results on non-human objects. (a) Template models. (b)
Näive texture mapping using initial warping fields. (c) Our results.

Although the deforming geometry is diverse and the estimated
warping fields are not perfect, our method exhibits texture mapping
results with considerably good visual quality.

Valid key frame refinement Our framework does not handle
varying lighting conditions, so the final blended sub-textures stored
in the global texture atlas may have inconsistent shading. Fig. 8
shows an example that our valid key frame refinement algorithm
relieves the inconsistency problem.

Robustness The fourth row of Fig. 11 shows that our method can
generates a consistent texture map even with quite inaccurate warp-
ing fields. Fig. 9 demonstrates that our method can still generate
high quality texture mapping results although the estimated extrin-
sic parameters of the camera are inaccurate.

Limitations We assume that the estimated warping fields are reli-
able to some degree. If non-rigid alignment fails due to fast object
motions, it may lead to a failure of texture optimization. Fig. 10
shows an example, which was made by skipping every two frames
from the original RGB-D image sequence to simulate a fast motion.

Although our approach optimizes the texture coordinates to gen-
erate a clean texture atlas, it cannot handle texture variations on the
same part of the model over time as a single global texture atlas
is used for a dynamic object. Fig. 10 shows an example of the eye
movement during the capture process.

Our approach optimizes texture coordinates without refining the
geometry, so texture drift may occur if geometry of template mesh
is not accurate. In addition, our framework assume that the connec-
tivity of the template mesh does not change over time. Our future
work includes resolving these limitations.

7. Conclusion

We proposed a novel framework to generate a complete texture
atlas for a dynamic object in single RGB-D camera setup. Our
framework combines sub-texture coordinates with warping fields to
formulate an optimization energy for texture mapping of dynamic

(a) (b)

Figure 8: Effect of our refinement of valid key frames using major-
ity voting. (a) Result without refinement. (b) Result with refinement.
By enforcing neighboring faces to have similar valid key frames,
we obtain seamless textures around the neck.

(a) (b) (c)

Figure 9: Resilience to inaccurate camera parameters. (a) In-
put RGB-D frame. We apply our approach to a dataset provided
by [GXW∗15] which exhibits misalignments as highlighted in red
ellipses. (b) Näive texture mapping. (c) Multi-scale texture opti-
mization. Our texture optimization robustly reconstructs a clean
textured mesh even if the camera parameters are not accurate.

objects. To this end, our framework performs key frame sampling
using uniqueness score, majority voting to refine valid key frame
sets, and multi-scale texture coordinate optimization using a coarse
to fine mesh pyramid. Especially, our multi-scale texture coordi-
nate optimization enables us to handle large misalignments that oc-
curred by inaccurately estimated warping fields or camera param-
eters. We demonstrated that our framework is reliable and resilient
to inaccurate camera parameters and warping fields. Using only a
single fixed RGB-D camera to obtain optimized texture atlas for a
dynamic object, our framework is more flexible than studio setups.
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(a) (b) (c) (d) (e) (f)

Figure 11: Global texture mapping on dynamic human models. (a) Geometry of template models. (b) Global texture maps without (upper)
and with (lower) multi-scale texture optimization. (c) Texture mapping using initial warping fields. (d) Single-scale texture optimization. (e)
Multi-scale texture optimization. (f) Corresponding input color images. Texture mapping results in (e) are clearly better than those in (c) and
(d). Our multi-scale optimization produces reliable texture mapping results that are comparable to the input color images.
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