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Abstract

Length generalization mitigates the impact of001
mismatched conditions in training and testing002
where models are trained on short sequences003
but evaluated on longer ones. Among many004
factors that may impact length generalization005
in Transformer-based models, positional encod-006
ing has been identified as a critical one, but in-007
depth analysis on its impact on the length gener-008
alization issue is still limited. In this work, we009
advance our understanding via analyzing posi-010
tional biases introduced by different positional011
encoding approaches. Our analysis suggests012
a novel approach to improve length general-013
ization. The method warps positional indices014
during training, which can be considered as a015
data augmentation technique. Empirical stud-016
ies on various tasks (e.g., algorithmic reasoning017
tasks and language modeling) showcase the ef-018
fectiveness of our proposed method.019

1 Introduction020

Transformer (Vaswani et al., 2017) based Language021

Models (LMs) often struggle to generalize to longer022

input sequences (Csordás et al., 2021; Delétang023

et al., 2023; Newman et al., 2020; Furrer et al.,024

2020). Several studies have identified Positional025

Encoding (PE) as a factor that impacts length gen-026

eralization. For example, Press et al. (2022); Chen027

et al. (2023a); Sun et al. (2023); Ruoss et al. (2023);028

Tao et al. (2023); Chi et al. (2023) all manipulate029

PEs to improve length generalization.030

Press et al. (2022) propose a novel PE called AL-031

iBi where a positional bias is added to inner product032

between keys and queries. The bias term decays033

linearly as the positional difference (between keys034

and queries) increases. The authors empirically035

show that ALiBi generalizes better to longer inputs036

in language modeling tasks than a few other PE037

mechanisms. More recently, KERPLE (Chi et al.,038

2022) extends ALiBi by generalizing its linear po-039

sitional bias to quadratic and logarithmic forms,040

achieving further improvement in terms of length041

generalization. Nevertheless, it is not entirely an- 042

alyzed why ALiBi and KERPLE excel for length 043

generalization. If it is merely due to the fact that 044

they impose positional bias in a relative fashion, 045

then why do they outperform another relative PE 046

like Rotary Positional Encoding (RoPE) (Su et al., 047

2021)? 048

While ALiBi and KERPLE are successful for 049

length generalization, nowadays, many published 050

models (e.g., Falcon, LLaMA) are based on RoPE. 051

Although it does not generalize to longer input 052

sequences (Press et al., 2022; Chi et al., 2023; 053

Kazemnejad et al., 2023; Chi et al., 2022), RoPE 054

has its own merits (e.g., efficiency (Dao et al., 055

2022)) thus it wouldn’t become a solution to the 056

length generalization problem to simply replace 057

the RoPE layers with ALiBi/KERPLE layers and 058

retrain them. For this reason, it is more explored to 059

develop orthogonal techniques as a countermeasure 060

instead of innovating more new PEs. One promi- 061

nent work is Position Interpolation (PI) (Chen et al., 062

2023a), where input positional indices at test time 063

are linearly down-scaled to match the range of posi- 064

tional indices used in training. In contrast, random- 065

ized PE (Ruoss et al., 2023) works in an opposite 066

direction, by up-scaling position indices at train- 067

ing time to match testing length. More recently, 068

Peng et al. (2023) introduce a novel interpolation 069

method, YaRN, which adjusts the base frequency 070

of RoPE to preserve high-frequency information. 071

Our study analyzes the existing PEs and explores 072

the factors that influence the varying capabilities 073

of different PEs in terms of length generalization. 074

We first investigate factors contributing to ALiBi’s 075

superior performance over RoPE in length general- 076

ization. We conduct a comparative analysis of po- 077

sitional biases in ALiBi and RoPE, particularly un- 078

der the simplified conditions imposed by uniform 079

query and key inputs. This comparison reveals that 080

exposure to unseen positional biases at test time 081

contributes to RoPE’s limited length generaliza- 082

tion. Furthermore, we demonstrate the techniques 083
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to mitigate the impact of positional biases, such084

as PI and Randomized PE, may still be ineffective085

in some real-world scenarios. We identify that the086

mismatch in position index density between train-087

ing and testing, which both Randomized PE and PI088

confront, can impair the length generalization of089

models.090

Through an understanding of how PEs impact091

length generalization, we establish desiderata for092

PEs to ensure effective handling of longer input se-093

quences: maintaining a large attention span, min-094

imizing positional bias gap and reducing discrep-095

ancy in the position index density. Building on096

these insights, we propose two approaches to warp097

position indices during training. One approach in-098

volves randomly down-scaling position indices and099

the other employs a non-linear skewing of these in-100

dices towards the tail. Our method is distinct from101

recent works (Chen et al., 2023a; Xiong et al., 2023;102

Roziere et al., 2023), which require fine-tuning on103

long sequences. Notably, our approach does not104

necessitate further training.105

2 Backgrounds and Related Work106

In this section, we review previous works manip-107

ulating PEs to improve length generalization. We108

focus on Relative Positional Encoding (RPE) meth-109

ods, which has been shown to be more effective110

than absolute PE’s (Shaw et al., 2018; Yang et al.,111

2019; Raffel et al., 2020; Dai et al., 2019). In the112

following sections, PE means RPE unless it is in-113

dicated otherwise. For analysis, we categorize PE114

methods into two types, based on how positional115

bias is injected to the self-attention modules of116

Transformer models.117

Additive Positional Encoding. Additive PE adds118

positional bias to the inner product of keys and119

queries. The attention thus becomes:120

softmaxn[(Wqqm)⊤(Wkkn) +B(m− n)], (1)121

where m denotes the position of a query token122

and n indicates the position of a key token. The123

positional bias, B(m − n), can be defined in124

different ways (Press et al., 2022; Raffel et al.,125

2020; Chi et al., 2023, 2022). Among them, a126

seminal one is ALiBi (Press et al., 2022), where127

B(m−n) = −b · (m−n) and b is a head-specific128

slope ( 1
2i
(i = 1, · · · , 8) when nhead = 8).129

Multiplicative Positional Encoding. Multiplica-130

tive PE multiplies positional bias to the query-key131

inner product. An important work in this category132

is RoPE (Su et al., 2021), and its attention is defined133

as: 134

softmaxn[(Wqqm)⊤RΘ,m−n(Wkkn)], 135

RΘ,m−n 136

def
= diag

{[
cos(m− n)θs sin(m− n)θs
− sin(m− n)θs cos(m− n)θs

]}
(2)

137

where θs = 10000−
2(s−1)

d , s = 1, . . . , d/2, and d 138

denotes the dimension of embedding for each head. 139

Improving PEs for Length Generalization. 140

Some studies introduce augmentation techniques 141

on top of existing PE methods (Ruoss et al., 2023; 142

Tao et al., 2023; Li and McClelland, 2022; Kiy- 143

ono et al., 2021). Randomized PE (Ruoss et al., 144

2023) assigns random (ordered) positional encod- 145

ings in the full range of possible test positions to 146

each training instance. Similarly, Tao et al. (2023) 147

proposes to use randomly padded inputs. More- 148

over, Chen et al. (2023a) and Sun et al. (2023) 149

demonstrate some pathological behaviors of RoPE, 150

i.e.,exacerbated oscillations over long distances. 151

To avoid the oscillation, PI (Chen et al., 2023a) 152

linearly down-scales input position indices during 153

inference to match the range of position indices 154

used at training time. Sun et al. (2023) modifies 155

the RoPE’s formula to have less oscillation at long 156

distances and uses sliding attention window during 157

inference. Concurrently, Peng et al. (2023) intro- 158

duce YaRN, which adjusts the base frequency of 159

RoPE to preserve high-frequency information. And 160

Roziere et al. (2023); Xiong et al. (2023); Bai et al. 161

(2023) apply this interpolation technique in their 162

approaches to fine-tune LMs for managing long 163

input sequences. 164

We remark both PI and Randomized PE linearly 165

scale position indices. As Randomized PE samples 166

position indices from a uniform distribution, it has 167

the effect of applying linear scaling in expectation. 168

3 Weakness of Existing Methods 169

In this section, we examine existing methods, iden- 170

tify their limitations and discuss the causes of their 171

failures. In Section 3.1, we conduct an analysis 172

of RoPE and ALiBi. The enhanced techniques ap- 173

plied to RoPE, such as PI and Randomized PE, are 174

addressed in Section 3.2. 175

3.1 How RoPE and ALiBi Fail 176

We compare the positional biases introduced by 177

RoPE and ALiBi. Specifically, we assume uniform 178

and unit-length queries and keys throughout all 179
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positions, i.e.,Wqqm = Wkkn, and ∥Wqqm∥=180

∥Wkkn∥= 1 for all m and n’s. Simplifying this181

way allows us to focus on the only factor we care182

about, positional bias caused by PEs. We derive183

the raw attention scores (prior to calling softmax)184

for RoPE and ALiBi, respectively.185

RoPE : As RΘ,m−n is block-diagonal with rotat-186

ing each 2-element segment of Wqqm or Wkkn,187

we can further simplify by assuming each of their 2-188

element segments has constant length,
√
2/d. With189

this idealization, RoPE’s raw attention score is190

Attnraw(m− n; Θ)191

def
= (Wqqm)⊤RΘ,m−n(Wkkn)192

=
2

d

d/2∑
s=1

cos(m− n)θs193

d→∞−→ Eθ∼p(θ)[cos(m− n)θ], (3)194

where p(θ) is logUniform(10−4, 1) if adopting195

the conventional θs = 10000
−2(s−1)

d where s =196

1, ..., d/2. We remark that similar derivations are197

seen in (Su et al., 2021; Sun et al., 2023).198

ALiBi : Following Eq. (1) and taking B(m −199

n) = − 1
2i
(m − n) for i = 1, . . . , nhead, the raw200

attention score is simply201

Attnraw(m− n) = 1− 1

2i
(m− n). (4)202

Figure 1: Exponentiated raw attention scores in RoPE
(blue and orange lines) and ALiBi with various slopes
(other remaining lines). For RoPE, we vary d to show
its effect. We fix m = 1000 and vary n to track relative
distance m− n in the horizontal axis.

We remark Attnraw(m − n) reflects how po-203

sitional biases are injected, as content embed-204

dings are uniform throughout all positions. To205

see the impact from these biases, we plot the nu-206

merator of softmax operations, exp(Attnraw(m−207

n)), for RoPE and ALiBi in Figure 1. Clearly,208

exp(Attnraw(m−n)) of ALiBi converges to zero, 209

but RoPE converges to strictly positive values. 210

In fact, regardless of p(θ), exp(Eθ∼p(θ)[cos(m − 211

n)θ]) ≥ e−1. This indicates ALiBi’s attention span 212

is narrower, echoing the smaller empirical recep- 213

tive field claimed by Chi et al. (2023). In contrast, 214

RoPE’s attention span is wider, abling to attend to 215

tokens far apart. 216

Figure 2: Exponentiated raw attention scores of RoPE
(blue and orange lines) and ALiBi (green and red lines)
during training (l = 500) and testing (l = 1000). In the
case of RoPE, when the test input length is larger than
the training length, it confronts the positional biases
unseen during training. In contrast, ALiBi avoids the
issue due to its narrow attention span. The gray zone
represents the lengths seen at training time.

While the ability to attend to distant tokens may 217

be beneficial for length generalization, multiple 218

studies (Press et al., 2022; Chi et al., 2023; Kazem- 219

nejad et al., 2023) show that RoPE’s performance 220

significantly drops for longer input sequences. This 221

can be explained by examining how positional bi- 222

ases vary for different sequence lengths, shown 223

in Figure 2. When doing inference on longer se- 224

quences, RoPE will be exposed to positional biases 225

it did not see during training. In contrast, ALiBi 226

does not have this issue due to its narrower atten- 227

tion span. The gap between the two dotted lines 228

(the pink line and the purple line in Figure 2) clearly 229

illustrates the difference between positional biases 230

at training and testing time in RoPE. We conjecture 231

this gap is the culprit of RoPE’s failure at length 232

generalization. 233

However, ALiBi sacrifices its attention span. 234

This limitation becomes evident in tasks requir- 235

ing Transformer models to refer to distant tokens, 236

e.g., copying ancient input tokens to outputs (Ruoss 237

et al., 2023; Kazemnejad et al., 2023; Li and Mc- 238

Clelland, 2022; Ontanón et al., 2022). To illustrate 239

this, we set up a small experiment. We train a 2- 240
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Figure 3: In Copy task, ALiBi (orange line) underper-
forms RoPE (blue line) due to its narrow attention span.
The gray zone represents the lengths seen during train-
ing.

layer Transformer, with input sequences of varying241

lengths, ranging from 1 to 10 tokens. The model is242

then evaluated on test inputs whose lengths range243

from 1 to 20 tokens. As shown in Figure 3, ALiBi244

starts to fail beyond a certain point of evaluation245

lengths, which is earlier than RoPE. This observa-246

tion suggests ALiBi’s narrow attention span could247

be a disadvantage for length generalization.248

Therefore, we deduce that an ideal solution for249

achieving length generalization is to minimize posi-250

tional bias gap while maintaining a large attention251

span.252

3.2 Limitation of Linearly Scaled Position253

Indices254

Applying linear scaling to the position index in255

PI (Chen et al., 2023a) and Randomized PE (Ruoss256

et al., 2023) on RoPE prevents positional bias gaps257

by ensuring a match between the position index258

ranges used in training and testing phases. More-259

over, as both techniques are based on RoPE, they260

inherently sustain a large attention span. However,261

they still suffer from a performance drop at long262

test sequences, as shown in Table 1. Why does this263

performance drop happen?264

Taking PI1 as an example, the integer position265

index, i, is multiplied by the ratio between lengths266

of training and test data,267

pos(i) = i× training input length
test input length

, (5)268

where i = 0, 1, . . . , Ltest − 1 and Ltest denotes269

test input length. Down-scaling position indices270

during testing makes intervals of (relative) position271

indices at testing time denser than during training.272

The discrepancy in the density causes the following273

two issues:274

1Note that we adopt a no fine-tuning setup in our approach
to PI, assuming real-world scenarios where additional fine-
tuning data with longer sequences may be hard to get. This
setup is also adopted in Chen et al. (2023b); Li et al. (2023).

(i) Fractional indices. At testing time, PI intro- 275

duces many fractional indices (Eq. 5), which are 276

not seen during training. 277

(ii) Attention sensitivity is too low to identify 278

positions precisely. We define attention sensitivity 279

as: 280

Attn_sen(i) = 281

Attnraw(pos(i− 1))−Attnraw(pos(i)), (6) 282

where i = 0, 1, . . . , l − 1 and l indicates the se- 283

quence length. With this definition, towards the 284

end of Attnraw, attention sensitivity tend to di- 285

minish significantly, a phenomenon that becomes 286

more pronounced in longer sequences because of 287

the long-tail shape of the function (see Figure A 288

in Appendix A). During training, the model learns 289

to distinguish positions with attention sensitivity 290

greater than Attn_sen(Ltrain), where Ltrain de- 291

notes training input length. However, when dealing 292

with longer test sequences, we have to face lower 293

attention sensitivity at the tail of the raw attention 294

score function, which is not experienced during 295

training. It leads to a performance degradation. 296

Concurrently, Peng et al. (2023) also points out the 297

challenge in accurately detecting positions when 298

the relative distance is extremely close, especially 299

when relying on the use of PI. 300

4 Method: Warping Position Indices 301

Based on the analyses in the previous sections, we 302

establish three desiderata when improving PE in 303

terms of length generalization: (i) not sacrificing 304

attention span, (ii) minimizing positional bias gap, 305

and (iii) reducing discrepancy in the position index 306

density between training and testing phases. To 307

meet these criteria, we build on PI, which already 308

meets the first two, and propose a novel method to 309

satisfy the third criterion by tackling the inconsis- 310

tency issue in the position index density between 311

training and testing phases. 312

Section 3.2 outlines the challenges anticipated 313

from using a denser density of positional indices 314

at testing time. To address these issues, we devise 315

strategies to expose the model to denser positional 316

indices during its training phase. Given that train- 317

ing sequences are shorter than testing sequences, 318

it is impractical to expose a model to denser posi- 319

tional indices over the entire range. Thus, we intro- 320

duce two distinct approaches for warping training 321

position indices, each targeting different segments 322

of the curve (orange line) shown in Figure. 1. The 323

first approach, creating fractional position indices, 324
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Table 1: The perplexity of RoPE at different test lengths. The model is trained and evaluated on WikiText-103. Even
though Randomized PE (Chen et al., 2023a) and PI without fine-tuning (Ruoss et al., 2023) succeed in improving
RoPE, they still suffer from performance degradation in longer sequences. These performance drops can be caused
by a discrepancy in the density of position indices between training and testing phases.

Methods/Test length 512 1024 2048 4096
RoPE 19.22 37.08 133.50 307.38
Position Interpolation 19.22 24.77 48.39 99.56
Randomized PE (max_position = 8072) 63.78 65.72 67.89 69.62

addresses unseen fractional position indices on the325

upper left of the curve. The second approach, skew-326

ing positions non-linearly towards the tail, specifi-327

cally addresses attention sensitivity discrepancies328

as well as introduces fractional position indices in329

the bottom right of the curve.330

To avoid compromising model performance331

across seen sequences, we alter the position indices332

for only a portion of the training instances, cho-333

sen at random, while retaining the original position334

indices for the remaining instances. By adopting335

these augmented position indices during training,336

the model can be robust against various position in-337

dices at inference. Our strategy can be considered338

as PE augmentation, like those suggested in several339

studies (Ruoss et al., 2023; Tao et al., 2023; Li and340

McClelland, 2022; Kiyono et al., 2021).341

Creating fractional position indices342

(head_warping): We linearly down-scale343

position indices to match fractional positions we344

will see at testing time:345

poswarp(j) = α · j, (7)346

where 0 < α < 1 and j = 0, 1, · · ·, Ltrain − 1.347

The ways to set α varies, depending on whether348

input sequence lengths are fixed. In the case of349

PI, α is set to 1
r where r =

test input length
training input length350

and the position indices r times denser than train-351

ing position indices are used at inference assuming352

training input lengths and test input lengths are353

fixed (e.g., in language modeling). On the other354

hand, when there are variations in sequence lengths355

during both training and testing, the value of α is356

sampled randomly within the range of 0 < α < 1.357

Sampling α exposes the model to a range of frac-358

tional position indices. Further details on determin-359

ing α for each experimental setup can be found in360

Section 5.361

Skewing positions non-linearly towards the tail362

(tail_warping): With knowing the decreased atten-363

tion sensitivity (defined in Eq. 6) in the tail of the364

raw attention function at testing time, we introduce365

a non-linear skewing function that redistributes po- 366

sition indices towards the end of indices. Warping 367

position indices towards the tail leads to intervals 368

of position indices at the tail denser, allowing us 369

to train a model with reduced attention sensitivity. 370

The skew function is applied to position indices as: 371

poswarp,fskew(j) = l · fskew(
j

l
), (8) 372

where j = 0, 1, · · ·, Ltrain − 1. Let fskew : 373

[0, 1] → [0, 1] be a function satisfying the bound- 374

ary conditions fskew(0) = 0 and fskew(1) = 1. 375

fskew is a concave function in [ϵ, 1], where ϵ ≈ 0 376

and ϵ > 0. Figure 4 illustrates the cumulative dis- 377

tribution function (CDF) of Beta(2, 5), which is 378

an example of fskew. 379

Figure 4: The CDF of Beta(2,5)

fskew can be determined by evaluating whether 380

using poswarp,fskew(·) could lead to low attention 381

sensitivity experienced at inference. As a criterion 382

to determine fskew, we define the total difference 383

in attention sensitivity between training and test 384

phases as: 385

di,f = |Attn_sentr
f (Ltrain − i) 386

−Attn_sente(Ltest − i)|, 387

total_diff =
c∑

i=0

di,f , (9) 388

where Attn_sentr
f represents attention sensitivity 389

at training time where the warped position indices 390

(poswarp,fskew ) are used and Attn_sente indicates 391

attention sensitivity at inference with the use of PI. 392
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Table 2: The total difference at varying training/test
input lengths. The test input lengths vary from 2 to
4 times the training input length. When the training
input length is 20, we set c as 10. When the training
input length is 500, we set c as 200. sqrt represents
a square root function and beta denotes the CDF of
Beta(2, 5). Applying the skewing functions to position
indices results in reducing the total difference. The
best results are bold and the second-best results are
underlined.

Training
fskew

Test Input Length
Input Length 2 times 4 times

20
w\o 0.099 0.069

w/ sqrt 0.016 0.063
w/ beta 0.054 0.012

500
w\o 0.061 0.066

w/ sqrt 0.028 0.031
w/ beta 0.031 0.013

To focus on the tail of the distributions, we sum393

over the last c position indices.394

The optimal skewing function, f∗
skew, should395

minimize the total difference (i.e., reduce the396

train/test attention sensitivity mismatch). How-397

ever, conducting an exhaustive search for f∗
skew398

is infeasible. Instead, we conduct an experiment399

with the idealized Attnraw (Eq. 3) using differ-400

ent candidates for fskew including the CDF of401

Beta(2, 5) and a square root function (See Fig-402

ure B in Appendix A for illustration). We identify403

which function minimizes the total difference with404

Attnraw. In Table 2, we demonstrate the total dif-405

ference with and without applying fskew using the406

idealized Attnraw. We remark warping position407

indices using either of the two functions leads to408

reducing the total difference. Notably, the empir-409

ical study suggests the choice of fskew depends410

on the ratio of test input length to training input411

length. Indeed, in the case of larger ratios, the412

CDF of Beta(2, 5) exhibits greater effectiveness,413

likely due to its stronger skewing towards larger414

position indices. This skewness aligns better with415

longer test input lengths, making it a more suitable416

choice compared to the square root function, which417

is less skewed. We provide more details on how to418

determine fskew in Section 5.419

5 Experiments420

In this section we showcase our method enhances421

the ability to generalize on longer sequences. We422

evaluate our method on a variety of tasks including423

algorithmic reasoning tasks and language model-424

ing. With the primary goal of enhancing RoPE, 425

we mainly compare against the original RoPE (Su 426

et al., 2021), and its enhancements through two 427

techniques: PI (Chen et al., 2023a) and Random- 428

ized PE (Ruoss et al., 2023). Note that unlike 429

Chen et al. (2023a), we focus on zero-shot sce- 430

narioes where no additional fine-tuning is allowed. 431

Furthermore, we compare our method against AL- 432

iBi (Press et al., 2022), which is categorized as 433

additive PE. 434

5.1 Algorithmic Reasoning Tasks 435

We adopt the experimental setup from Kazemnejad 436

et al. (2023), using algorithmic reasoning tasks. 437

The model is trained on sequences up to a specific 438

length and tested on both seen and longer lengths 439

within each task. Notably, having a large attention 440

span beyond a training length is a critical factor to 441

excel at these tasks, as we observed in Section 3.1. 442

Dataset & Model Architecture. We showcase the 443

efficacy of our method on copy, reverse, sort and 444

summation tasks. Training instances adhere to a 445

length distribution of Uniform(2,M), while testing 446

sequences follow Uniform(2, 5M). And M is 20 447

for copy and reverse and 8 for sort and summation. 448

Further details are provided in Appendix B.1. We 449

employ a decoder-only Transformer architecture 450

based on T5 (Raffel et al., 2020). 451

Training & Inference Procedure. We apply cre- 452

ated fractional position indices (Eq. 7) to 15% of 453

training instances and skewing position indices to- 454

wards the tail (Eq. 8) for 15% of the instances. For 455

creating fractional position indices, we randomly 456

sample α (in Eq. 7) from {0.4, 0.5, 0.6, 0.7, 0.8} 457

with equal probabilities. For fskew, we use the 458

square root function. The remaining training in- 459

stances undergo no warping. We also provide the 460

detailed training procedure and additional experi- 461

mental results in Appendix B.1. During inference, 462

our method uses PI. As PI is initially proposed un- 463

der fixed training and test input lengths, we adapt 464

the interpolation ratio to M
Lte

for each test input 465

length Lte (> M ) where M denotes the maximum 466

training input length. Similarly, Peng et al. (2023) 467

also suggest a dynamic scaling method that adjusts 468

position indices by considering varying lengths dur- 469

ing inference. For Randomized PE, we limit the 470

maximum length to 10M , which is smaller than 471

2048 used as the maximum length in the original 472

paper (Ruoss et al., 2023). 473

Results. The proposed PE exhibits superior per- 474

formance compared to other baselines across a ma- 475

jority of tasks, as illustrated in Fig. 5. The various 476
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Figure 5: The sequence accuracy w.r.t. varying evaluation lengths on different algorithmic reasoning tasks. Ours
(RoPE_head_tail) is capable to extrapolate on long inputs without performance degradation in seen lengths, which
surpasses the baselines in most cases. The shaded areas denote the lengths seen during training.

Figure 6: Warping position indices using the two proposed approaches leads to performance improvement. The
head_tail indicates where we apply creating fractional position indices to 15% of training instances and skewing
position indices towards the tail for 15% of the instances. The head_only (or tail_only) represents when we apply
creating fractional position index (skewing position indices towards the tail) to 30% of training instances.

PEs show similar performance trends across differ-477

ent test input lengths in summation, which is also478

shown in Kazemnejad et al. (2023). This similarity479

could arise since the task relies less on position480

information compared to other tasks. The average481

number of sequence accuracies across all test input482

lengths are provided in Table. A in Appendix B.1.483

We further highlight the effectiveness of each484

warping approach as depicted in Figure 6. Apply-485

ing both of the proposed approaches (head_tail)486

yields the most significant improvement. This syn-487

ergy arises from the different focus of each warp-488

ing approach on separate parts, i.e., the beginning489

and tail of position indices. When using either490

approach alone, warping indices in the beginning491

(head_only) shows more effective than warping492

towards the tail (tail_only). However, warping to-493

wards the tail helps to succeed in generalization on494

longer sequences when used in conjunction with495

warping indices in the beginning.496

Interestingly, the inferior performance of ALiBi497

on these tasks echos the observation by Kazemne-498

jad et al. (2023); Ruoss et al. (2023), but contradicts499

Press et al. (2022)’s finding (superiority in language500

modeling). We attribute this to ALiBi’s narrow at- 501

tention span (elaborated in Section 3.1), which can 502

be fatal in algorithmic tasks, that requires to refer 503

to distant tokens. 504

The empirical results of Randomized PE in our 505

setup differ from Ruoss et al. (2023)’s observations 506

in two aspects. First, Randomized PE’s gains in 507

long sequences come at the cost of reduced effec- 508

tiveness with short ones. This trade-off is apparent 509

for tasks like reverse and sort (Figure 5), while 510

other PEs achieve nearly perfect accuracy on seen 511

lengths. Using random position information, even 512

in an ordered manner, can attribute to the decline. 513

Second, the performance of Randomized PE highly 514

depends on the maximum position (L) as illustrated 515

in Figure C in Appendix B.1. The smaller the max- 516

imum position, the better the performance. Note 517

that even with the smaller L(= 3M), Randomized 518

PE is still inferior to our method (Table A in Ap- 519

pendix B.1). There are several differences between 520

our setup and theirs (Ruoss et al., 2023), including 521

token counts, training samples, steps, and evalu- 522

ation metrics, which may cause inconsistent out- 523

comes. The inconsistent empirical results indicate 524
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Table 3: Perplexity evaluation on WikiText-103 (Merity et al., 2017). The training context size is 512. The best
results are bold and the second best results are underlined.

PE category Model Test Length
512 1024 2048 3072 4096

Multiplicative

RoPE 19.22 37.08 133.50 223.02 307.38
Position Interpolation 19.22 24.77 48.39 76.14 99.56
Randomized PE (L = 8072) 63.78 65.72 67.89 69.23 69.62
Randomized PE (L = 4096) 39.35 39.10 39.21 39.47 39.28
Randomized PE (L = 1024) 19.83 18.80 · · ·

Additive ALiBi 19.31 18.38 17.88 17.81 17.67
Multiplicative Ours 19.80 18.87 18.26 18.45 19.00

Randomized PE’s effectiveness might be confined525

to specific experimental setups.526

5.2 Language modeling527

We train a language model with shorter context win-528

dow size and evaluate on longer input sequences.529

We use WikiText-103 for training and testing.530

Model Architecture & Training Procedure. We531

adopt the GPT-2 architecture (Radford et al., 2019),532

a causal Transformer, with base configurations. We533

train with a 512 context window size, and evaluate534

on up to 8 times longer inputs. We apply both535

of the proposed approaches randomly to 15% of536

training instances, as in the algorithmic tasks. The537

α is fixed to 1
6 . For fskew, we use the CDF of538

Beta(2, 5). The detailed hyperparameters and the539

additional experimental results are elaborated in540

Appendix B.2.541

Figure 7: Perplexity in language modeling. Warping
position indices decreases perplexity compared to the
baseline (red line). Even if there is a marginal distinction
between head_only and head_tail in evaluation lengths
up to 4000, as the test input length increases, the effect
of warping towards the tail becomes more noticeable.
The legends of the graph are the same as Figure 6.

Results. Table 3 reports perplexity of each542

method. The proposed method outperform other543

multiplicative PEs by large margins, especially544

when the test length increases. In addition, our545

method enhances RoPE’s capacity to generalize on546

long inputs significantly with a trivial performance 547

drop on seen lengths. 548

Figure 7 illustrates the effect of each warping ap- 549

proach, reflecting our observations in Section 5.1. 550

That is, although head_only is more effective when 551

only one method is applied, it is the most ef- 552

fective when both methods are applied together 553

(head_tail). In addition, warping towards the tail 554

helps to achieve better performance on longer se- 555

quences. This suggests that for enhanced language 556

modeling performance, prioritizing the alignment 557

of position indices in the beginning is more crucial 558

than the alignment in the tail. 559

Notably, Randomized PE shows the similar trend 560

to the algorithmic tasks in Section 5.1. Random- 561

ized PE causes not only increases in perplexity 562

for longer inputs but also substantial performance 563

degradation in seen lengths. The decline in seen 564

lengths can be attributed to the practice of injecting 565

random noise, which can be particularly ineffec- 566

tive when dealing with fixed training and test input 567

lengths. We also notice a strong correlation be- 568

tween the performance of Randomized PE and L 569

(the maximum position) as well. 570

ALiBi exhibits superior performance compared 571

to multiplicative PEs in language modeling, which 572

is inconsistent with the results seen in the algorith- 573

mic tasks. This inconsistency could stem from the 574

diminished importance of using distant tokens in 575

language modeling, whereas algorithmic tasks rely 576

on their usage. 577

6 Conclusion 578

By investigating the impact of various positional 579

encodings on length generalization, we explored 580

their positional biases. Our novel method warps 581

position indices during training as a form of data 582

augmentation. We validated the effectiveness of 583

our approach through empirical studies on various 584

tasks. 585
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7 Limitations586

In this work, we only focus on a decoder-only587

Transformer. We leave applying our approach to588

other architectures for future work. We have not ex-589

haustively explored all potential hyperparameters,590

leaving room for future exploration.591
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Improving Length Generalization via Position Index Warping
Supplementary Material

A Visualization730

A.1 Long-tail Shapes in Raw Attention Score731

In Figure A, attention sensitivity in the tail of raw732

attention scores decreases as the input sequence733

length increases.

Figure A: The blue line indicates exponentiated atten-
tion scores during training (l = 100). The red (l = 200)
and green (l = 500) lines represent where position in-
terpolation (PI) is applied at inference. The dotted lines
(gray, pink and green) represent the 50th point from
the last for each training and testing case. The yellow
dotted line represents the last point. The gaps between
the yellow dotted line and the remaining lines decreases
as the length increases. This shows that the attention
sensitivity in the tail is lower for longer sequences.

734

A.2 Different Skewness Levels of fskew735

Figure B illustrates the square root function, which736

is an example of fskew.

Figure B: The square root function.

737

B Experimental details 738

B.1 Algorithmic Reasoning Tasks 739

Datasets. For detailed explanation on each of 740

copy, reverse, sort and summation tasks, refer to 741

Kazemnejad et al. (2023). For each task, we use 742

100K samples for training and 10K samples for 743

testing. The performance evaluation is based on 744

sequence accuracy, the exact-match accuracy of 745

answers compared to the ground truth. 746

Hyperparameters. We use the hyperparameters 747

suggested in Kazemnejad et al. (2023). We employ 748

a decoder-only Transformer architecture based on 749

T5 (Raffel et al., 2020), with the base configuration: 750

nlayer = 12, nhead = 12, and dmodel = 768. The 751

total number of trainable parameters is 107M. We 752

use the AdamW optimizer (Loshchilov and Hutter, 753

2019) with learning rate of 3e-5 and weight decay 754

of 0.05. We set a polynomial a learning rate sched- 755

uler and a warm-up for 6% of training steps. We 756

use a batch size of 64 and train models for 40,000 757

steps. 758

Main Results Supplement. The average of se- 759

quence accuracy across all testing lengths is shown 760

in Table A. Our method shows its superiority over 761

other baselines. 762

The Effect of L in Randomized PE. Figure C 763

shows the performance of Randomized PE varies 764

depending on the maximum position length. As L 765

increases, the performance degrades. 766

The Effect of fskew. We change fskew from the 767

square root function to the CDF of Beta(2, 5) and 768

evaluate how fskew impacts on its performance, as 769

demonstrated in Table A. Using the square root 770

function shows more effective than the CDF of 771

Beta(2, 5) in algorithmic reasoning tasks. 772

B.2 Language Modeling 773

Hyperparameters. We use the hyperparameters 774

suggested in HuggingFace2 for causal language 775

modeling with the base configuration. The total 776

number of trainable parameters is 117M. We use 777

the AdamW optimizer with a learning rate of 5e-5 778

without a weight decay. We set β1 as 0.9 and β2 as 779

0.999. We use a 64 batch size. 780

2https://huggingface.co
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Table A: The average of sequence accuracy (%) on all testing lengths from 2 to 5M. R.P. denotes Randomized PE.
10M, 5M and 3M denotes the maximum position length (L)

Task RoPE RoPE+PI ALiBi R.P. (10M ) R.P. (5M ) R.P. (3M ) Ours (sqrt) Ours (beta)
Copy 19.2 23.5 27.9 3.9 8.8 26.8 43.2 43.2

Reverse 20.4 19.3 22.4 17.5 19.3 39.3 39.8 39.4
Sort 18.8 21.5 33.6 21.4 29.8 43.0 53.7 48.6
Sum 27.9 27.5 33.0 32.2 · · 29.5 ·

Figure C: The sequence accuracy w.r.t. varying evaluation lengths of Randomized PE with different L. For each
task, L is set to 3x, 5x and 10x the maximum training length. The sequence accuracy appears inversely proportional
to the maximum position (L). The shaded areas indicate seen lengths.

Table B: Perplexity evaluation on WikiText-103. The
training context size is 512.

α 512 1024 2048 3072 4096
1/2 19.06 21.65 26.18 26.22 32.26
1/4 19.34 18.36 18.19 19.34 20.88
1/6 19.57 18.59 18.36 18.79 19.48
1/8 19.87 18.93 18.62 18.83 19.31

The Effect of α. We evaluated how α impacts781

on performance in language modeling as shown782

in Table B. The larger α, the larger the perplexity783

in longer test sequences. Conversely, the smaller784

α, the less effective it was for relatively short se-785

quences. Thus, we decided to use α of 1
6 to balance786

the performance in short and long sequences.787
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