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Abstract

Length generalization mitigates the impact of
mismatched conditions in training and testing
where models are trained on short sequences
but evaluated on longer ones. Among many
factors that may impact length generalization
in Transformer-based models, positional encod-
ing has been identified as a critical one, but in-
depth analysis on its impact on the length gener-
alization issue is still limited. In this work, we
advance our understanding via analyzing posi-
tional biases introduced by different positional
encoding approaches. Our analysis suggests
a novel approach to improve length general-
ization. The method warps positional indices
during training, which can be considered as a
data augmentation technique. Empirical stud-
ies on various tasks (e.g., algorithmic reasoning
tasks and language modeling) showcase the ef-
fectiveness of our proposed method.

1 Introduction

Transformer (Vaswani et al., 2017) based Language
Models (LMs) often struggle to generalize to longer
input sequences (Csordas et al., 2021; Delétang
et al., 2023; Newman et al., 2020; Furrer et al.,
2020). Several studies have identified Positional
Encoding (PE) as a factor that impacts length gen-
eralization. For example, Press et al. (2022); Chen
et al. (2023a); Sun et al. (2023); Ruoss et al. (2023);
Tao et al. (2023); Chi et al. (2023) all manipulate
PEs to improve length generalization.

Press et al. (2022) propose a novel PE called AL-
iBi where a positional bias is added to inner product
between keys and queries. The bias term decays
linearly as the positional difference (between keys
and queries) increases. The authors empirically
show that ALiBi generalizes better to longer inputs
in language modeling tasks than a few other PE
mechanisms. More recently, KERPLE (Chi et al.,
2022) extends ALiBi by generalizing its linear po-
sitional bias to quadratic and logarithmic forms,
achieving further improvement in terms of length

generalization. Nevertheless, it is not entirely an-
alyzed why ALiBi and KERPLE excel for length
generalization. If it is merely due to the fact that
they impose positional bias in a relative fashion,
then why do they outperform another relative PE
like Rotary Positional Encoding (RoPE) (Su et al.,
2021)?

While ALiBi and KERPLE are successful for
length generalization, nowadays, many published
models (e.g., Falcon, LLaMA) are based on RoPE.
Although it does not generalize to longer input
sequences (Press et al., 2022; Chi et al., 2023;
Kazemnejad et al., 2023; Chi et al., 2022), RoPE
has its own merits (e.g., efficiency (Dao et al.,
2022)) thus it wouldn’t become a solution to the
length generalization problem to simply replace
the RoPE layers with ALiBi/KERPLE layers and
retrain them. For this reason, it is more explored to
develop orthogonal techniques as a countermeasure
instead of innovating more new PEs. One promi-
nent work is Position Interpolation (PI) (Chen et al.,
2023a), where input positional indices at test time
are linearly down-scaled to match the range of posi-
tional indices used in training. In contrast, random-
ized PE (Ruoss et al., 2023) works in an opposite
direction, by up-scaling position indices at train-
ing time to match testing length. More recently,
Peng et al. (2023) introduce a novel interpolation
method, YaRN, which adjusts the base frequency
of RoPE to preserve high-frequency information.

Our study analyzes the existing PEs and explores
the factors that influence the varying capabilities
of different PEs in terms of length generalization.
We first investigate factors contributing to ALiBi’s
superior performance over RoPE in length general-
ization. We conduct a comparative analysis of po-
sitional biases in ALiBi and RoPE, particularly un-
der the simplified conditions imposed by uniform
query and key inputs. This comparison reveals that
exposure to unseen positional biases at test time
contributes to RoPE’s limited length generaliza-
tion. Furthermore, we demonstrate the techniques
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to mitigate the impact of positional biases, such
as PI and Randomized PE, may still be ineffective
in some real-world scenarios. We identify that the
mismatch in position index density between train-
ing and testing, which both Randomized PE and PI
confront, can impair the length generalization of
models.

Through an understanding of how PEs impact
length generalization, we establish desiderata for
PEs to ensure effective handling of longer input se-
quences: maintaining a large attention span, min-
imizing positional bias gap and reducing discrep-
ancy in the position index density. Building on
these insights, we propose two approaches to warp
position indices during training. One approach in-
volves randomly down-scaling position indices and
the other employs a non-linear skewing of these in-
dices towards the tail. Our method is distinct from
recent works (Chen et al., 2023a; Xiong et al., 2023;
Roziere et al., 2023), which require fine-tuning on
long sequences. Notably, our approach does not
necessitate further training.

2 Backgrounds and Related Work

In this section, we review previous works manip-
ulating PEs to improve length generalization. We
focus on Relative Positional Encoding (RPE) meth-
ods, which has been shown to be more effective
than absolute PE’s (Shaw et al., 2018; Yang et al.,
2019; Raffel et al., 2020; Dai et al., 2019). In the
following sections, PE means RPE unless it is in-
dicated otherwise. For analysis, we categorize PE
methods into two types, based on how positional
bias is injected to the self-attention modules of
Transformer models.

Additive Positional Encoding. Additive PE adds
positional bias to the inner product of keys and
queries. The attention thus becomes:

softmax,,[((W,qm) " (Wik,) + B(m —n)], (1)

where m denotes the position of a query token
and n indicates the position of a key token. The
positional bias, B(m — n), can be defined in
different ways (Press et al., 2022; Raffel et al.,
2020; Chi et al., 2023, 2022). Among them, a
seminal one is ALiBi (Press et al., 2022), where
B(m—n) = —b-(m —n) and b is a head-specific
slope (%(z =1,--+,8) when npeqq = 8).

Multiplicative Positional Encoding. Multiplica-
tive PE multiplies positional bias to the query-key
inner product. An important work in this category
is RoPE (Su et al., 2021), and its attention is defined

as:

softmaxn[(qum)TR@,mfn (Wiky)l,
R@,mfn
def diag { [ cos(m — n)fs

—sin(m — n)fs

sin(m — n)fs ] }

cos(m — n)fs

2

where 8, = 10000~ 7, s = 1,...,d/2, and d

denotes the dimension of embedding for each head.
Improving PEs for Length Generalization.
Some studies introduce augmentation techniques
on top of existing PE methods (Ruoss et al., 2023;
Tao et al., 2023; Li and McClelland, 2022; Kiy-
ono et al., 2021). Randomized PE (Ruoss et al.,
2023) assigns random (ordered) positional encod-
ings in the full range of possible test positions to
each training instance. Similarly, Tao et al. (2023)
proposes to use randomly padded inputs. More-
over, Chen et al. (2023a) and Sun et al. (2023)
demonstrate some pathological behaviors of RoPE,
i.e.,exacerbated oscillations over long distances.
To avoid the oscillation, PI (Chen et al., 2023a)
linearly down-scales input position indices during
inference to match the range of position indices
used at training time. Sun et al. (2023) modifies
the RoPE’s formula to have less oscillation at long
distances and uses sliding attention window during
inference. Concurrently, Peng et al. (2023) intro-
duce YaRN, which adjusts the base frequency of
ROPE to preserve high-frequency information. And
Roziere et al. (2023); Xiong et al. (2023); Bai et al.
(2023) apply this interpolation technique in their
approaches to fine-tune LMs for managing long
input sequences.

We remark both PI and Randomized PE linearly
scale position indices. As Randomized PE samples
position indices from a uniform distribution, it has
the effect of applying linear scaling in expectation.

3 Weakness of Existing Methods

In this section, we examine existing methods, iden-
tify their limitations and discuss the causes of their
failures. In Section 3.1, we conduct an analysis
of RoPE and ALiBi. The enhanced techniques ap-
plied to RoPE, such as PI and Randomized PE, are
addressed in Section 3.2.

3.1 How RoPE and ALiBi Fail

We compare the positional biases introduced by
RoPE and ALiBi. Specifically, we assume uniform
and unit-length queries and keys throughout all



positions, i.e., W,q,, = Wik, and || W,q,,||=
Wik, ||= 1 for all m and n’s. Simplifying this
way allows us to focus on the only factor we care
about, positional bias caused by PEs. We derive
the raw attention scores (prior to calling softmax)
for RoPE and ALiBi, respectively.

RoPE : As Rg ;,—y, is block-diagonal with rotat-
ing each 2-element segment of Wq,,, or Wik,
we can further simplify by assuming each of their 2-
element segments has constant length, \/2/7d With
this idealization, RoPE’s raw attention score is

Attnggw(m — n; O)

def
g (qum)TRG,m—n (Wkkn)

o 42
=7 Z cos(m — n)fs
s=1

Az Egp(0) [cos(m — n)6], 3)

where p(f) is logUniform(10~%,1) if adopting
the conventional 8, = 10000 _2(3_1) where s =
1,...,d/2. We remark that similar derivations are
seen in (Su et al., 2021; Sun et al., 2023).

ALiBi : Following Eq. (1) and taking B(m —
n) = —%(m —n) fori =1,...,Npeqd> the raw
attention score is simply

Attnpgy(m —n) =1— E(m —n). @
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Figure 1: Exponentiated raw attention scores in RoPE
(blue and orange lines) and ALiBi with various slopes
(other remaining lines). For RoPE, we vary d to show
its effect. We fix m = 1000 and vary n to track relative
distance m — n in the horizontal axis.

We remark Attn,q.,(m — n) reflects how po-
sitional biases are injected, as content embed-
dings are uniform throughout all positions. To
see the impact from these biases, we plot the nu-
merator of softmax operations, exp(Attn,q., (m —
n)), for RoPE and ALiBi in Figure 1. Clearly,

exp(Attn,q,(m —n)) of ALiBi converges to zero,
but RoPE converges to strictly positive values.
In fact, regardless of p(0), exp(IEg.,g)[cos(m —
n)f]) > e~!. This indicates ALiBi’s attention span
is narrower, echoing the smaller empirical recep-
tive field claimed by Chi et al. (2023). In contrast,
RoPE’s attention span is wider, abling to attend to
tokens far apart.
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Figure 2: Exponentiated raw attention scores of RoPE
(blue and orange lines) and ALiBi (green and red lines)
during training (! = 500) and testing (! = 1000). In the
case of RoPE, when the test input length is larger than
the training length, it confronts the positional biases
unseen during training. In contrast, ALiBi avoids the
issue due to its narrow attention span. The gray zone
represents the lengths seen at training time.

While the ability to attend to distant tokens may
be beneficial for length generalization, multiple
studies (Press et al., 2022; Chi et al., 2023; Kazem-
nejad et al., 2023) show that RoPE’s performance
significantly drops for longer input sequences. This
can be explained by examining how positional bi-
ases vary for different sequence lengths, shown
in Figure 2. When doing inference on longer se-
quences, RoPE will be exposed to positional biases
it did not see during training. In contrast, ALiBi
does not have this issue due to its narrower atten-
tion span. The gap between the two dotted lines
(the pink line and the purple line in Figure 2) clearly
illustrates the difference between positional biases
at training and testing time in RoPE. We conjecture
this gap is the culprit of RoPE’s failure at length
generalization.

However, ALiBi sacrifices its attention span.
This limitation becomes evident in tasks requir-
ing Transformer models to refer to distant tokens,
e.g., copying ancient input tokens to outputs (Ruoss
et al., 2023; Kazemnejad et al., 2023; Li and Mc-
Clelland, 2022; Ontanén et al., 2022). To illustrate
this, we set up a small experiment. We train a 2-
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Figure 3: In Copy task, ALiBi (orange line) underper-
forms RoPE (blue line) due to its narrow attention span.
The gray zone represents the lengths seen during train-
ing.
layer Transformer, with input sequences of varying
lengths, ranging from 1 to 10 tokens. The model is
then evaluated on test inputs whose lengths range
from 1 to 20 tokens. As shown in Figure 3, ALiBi
starts to fail beyond a certain point of evaluation
lengths, which is earlier than RoPE. This observa-
tion suggests ALiBi’s narrow attention span could
be a disadvantage for length generalization.
Therefore, we deduce that an ideal solution for
achieving length generalization is to minimize posi-
tional bias gap while maintaining a large attention
span.

3.2 Limitation of Linearly Scaled Position
Indices

Applying linear scaling to the position index in
PI (Chen et al., 2023a) and Randomized PE (Ruoss
et al., 2023) on RoPE prevents positional bias gaps
by ensuring a match between the position index
ranges used in training and testing phases. More-
over, as both techniques are based on RoPE, they
inherently sustain a large attention span. However,
they still suffer from a performance drop at long
test sequences, as shown in Table 1. Why does this
performance drop happen?

Taking PI' as an example, the integer position
index, 7, is multiplied by the ratio between lengths
of training and test data,

training input length

0s(1) =1 X : 5
pos(i) test input length ’ )
where ¢ = 0,1,..., Ltest — 1 and Lyes¢ denotes
test input length. Down-scaling position indices
during testing makes intervals of (relative) position
indices at testing time denser than during training.
The discrepancy in the density causes the following
two issues:

Note that we adopt a no fine-tuning setup in our approach
to PI, assuming real-world scenarios where additional fine-

tuning data with longer sequences may be hard to get. This
setup is also adopted in Chen et al. (2023b); Li et al. (2023).

(i) Fractional indices. At testing time, PI intro-
duces many fractional indices (Eq. 5), which are
not seen during training.

(i) Attention sensitivity is too low to identify
positions precisely. We define attention sensitivity
as:

Attn_sen(i) =
Attnraw(pos(i — 1)) — Attnrew(pos(i)), (6)

where ¢ = 0,1,...,] — 1 and [ indicates the se-
quence length. With this definition, towards the
end of Attn,q,, attention sensitivity tend to di-
minish significantly, a phenomenon that becomes
more pronounced in longer sequences because of
the long-tail shape of the function (see Figure A
in Appendix A). During training, the model learns
to distinguish positions with attention sensitivity
greater than Attn_sen(Liyqin ), Where Lyyqq, de-
notes training input length. However, when dealing
with longer test sequences, we have to face lower
attention sensitivity at the tail of the raw attention
score function, which is not experienced during
training. It leads to a performance degradation.
Concurrently, Peng et al. (2023) also points out the
challenge in accurately detecting positions when
the relative distance is extremely close, especially
when relying on the use of PI.

4 Method: Warping Position Indices

Based on the analyses in the previous sections, we
establish three desiderata when improving PE in
terms of length generalization: (i) not sacrificing
attention span, (ii) minimizing positional bias gap,
and (iii) reducing discrepancy in the position index
density between training and testing phases. To
meet these criteria, we build on PI, which already
meets the first two, and propose a novel method to
satisfy the third criterion by tackling the inconsis-
tency issue in the position index density between
training and testing phases.

Section 3.2 outlines the challenges anticipated
from using a denser density of positional indices
at testing time. To address these issues, we devise
strategies to expose the model to denser positional
indices during its training phase. Given that train-
ing sequences are shorter than testing sequences,
it is impractical to expose a model to denser posi-
tional indices over the entire range. Thus, we intro-
duce two distinct approaches for warping training
position indices, each targeting different segments
of the curve (orange line) shown in Figure. 1. The
first approach, creating fractional position indices,



Table 1: The perplexity of RoPE at different test lengths. The model is trained and evaluated on WikiText-103. Even
though Randomized PE (Chen et al., 2023a) and PI without fine-tuning (Ruoss et al., 2023) succeed in improving
ROPE, they still suffer from performance degradation in longer sequences. These performance drops can be caused
by a discrepancy in the density of position indices between training and testing phases.

Methods/Test length 512 1024 2048 4096
RoPE 19.22 37.08 133.50 307.38
Position Interpolation 19.22 2477 4839  99.56
Randomized PE (max_position = 8072) 63.78 65.72 67.89  69.62

addresses unseen fractional position indices on the
upper left of the curve. The second approach, skew-
ing positions non-linearly towards the tail, specifi-
cally addresses attention sensitivity discrepancies
as well as introduces fractional position indices in
the bottom right of the curve.

To avoid compromising model performance
across seen sequences, we alter the position indices
for only a portion of the training instances, cho-
sen at random, while retaining the original position
indices for the remaining instances. By adopting
these augmented position indices during training,
the model can be robust against various position in-
dices at inference. Our strategy can be considered
as PE augmentation, like those suggested in several
studies (Ruoss et al., 2023; Tao et al., 2023; Li and
McClelland, 2022; Kiyono et al., 2021).

Creating fractional position indices
(head_warping): We linearly down-scale
position indices to match fractional positions we
will see at testing time:

pOSwarp(j) =a-J, 7

where 0 < o < land j =0,1, -+, Lyprgin — 1.
The ways to set « varies, depending on whether
input sequence lengths are fixed. In the case of
test input length
training input length
and the position indices r times denser than train-
ing position indices are used at inference assuming
training input lengths and test input lengths are
fixed (e.g., in language modeling). On the other
hand, when there are variations in sequence lengths
during both training and testing, the value of « is
sampled randomly within the range of 0 < o < 1.
Sampling o exposes the model to a range of frac-
tional position indices. Further details on determin-
ing « for each experimental setup can be found in
Section 5.
Skewing positions non-linearly towards the tail
(tail_warping): With knowing the decreased atten-
tion sensitivity (defined in Eq. 6) in the tail of the
raw attention function at testing time, we introduce

PI, « is set to % where r =

a non-linear skewing function that redistributes po-
sition indices towards the end of indices. Warping
position indices towards the tail leads to intervals
of position indices at the tail denser, allowing us
to train a model with reduced attention sensitivity.
The skew function is applied to position indices as:

POSwarp, fskew (]) =1 fskew(%)a (8)

where ;7 = 0,1, -, Lirqin — 1. Let fsk:ew
[0,1] — [0, 1] be a function satisfying the bound-
ary conditions fsew(0) = 0 and fgpew(1l) = 1.
fskew 18 @ concave function in [e, 1], where € ~ 0
and € > 0. Figure 4 illustrates the cumulative dis-
tribution function (CDF) of Beta(2,5), which is
an example of fsrew-

beta(2,5) CDF

00 02 04 06 08 10

Figure 4: The CDF of Beta(2,5)

fskew can be determined by evaluating whether
using posyarp, ..., (+) could lead to low attention
sensitivity experienced at inference. As a criterion
to determine fieq,, We define the fotal difference
in attention sensitivity between training and test
phases as:

di.y = |Attn_sen’ (Lirain — 1)
—Attn_sen'®(Liess — 1)|,

C
total_diff = "d; ¢, ©)
=0

where Attn_senzﬁ" represents attention sensitivity
at training time where the warped position indices
(POSwarp, f.pe.,) are used and Attn_sen'® indicates
attention sensitivity at inference with the use of P1.



Table 2: The total difference at varying training/test
input lengths. The test input lengths vary from 2 to
4 times the training input length. When the training
input length is 20, we set ¢ as 10. When the training
input length is 500, we set ¢ as 200. sqrt represents
a square root function and beta denotes the CDF of
Beta(2,5). Applying the skewing functions to position
indices results in reducing the total difference. The
best results are bold and the second-best results are
underlined.

Training Test Input Length
Input Length Fshew 2 times 4 times

w\o 0.099 0.069

20 w/ sqrt | 0.016 0.063

w/ beta | 0.054 0.012

w\o 0.061 0.066

500 w/ sqrt | 0.028 0.031

w/ beta | 0.031 0.013

To focus on the tail of the distributions, we sum
over the last ¢ position indices.

The optimal skewing function, f7, . . should
minimize the total difference (i.e., reduce the
train/test attention sensitivity mismatch). How-
ever, conducting an exhaustive search for f7.
is infeasible. Instead, we conduct an experiment
with the idealized Attn,q., (Eq. 3) using differ-
ent candidates for fge, including the CDF of
Beta(2,5) and a square root function (See Fig-
ure B in Appendix A for illustration). We identify
which function minimizes the total difference with
Attn,qq. In Table 2, we demonstrate the fotal dif-
ference with and without applying fie,, using the
idealized Attn,.,. We remark warping position
indices using either of the two functions leads to
reducing the total difference. Notably, the empir-
ical study suggests the choice of fgx,, depends
on the ratio of test input length to training input
length. Indeed, in the case of larger ratios, the
CDF of Beta(2,5) exhibits greater effectiveness,
likely due to its stronger skewing towards larger
position indices. This skewness aligns better with
longer test input lengths, making it a more suitable
choice compared to the square root function, which
is less skewed. We provide more details on how to
determine fgxeq in Section 5.

5 Experiments

In this section we showcase our method enhances
the ability to generalize on longer sequences. We
evaluate our method on a variety of tasks including
algorithmic reasoning tasks and language model-

ing. With the primary goal of enhancing RoPE,
we mainly compare against the original RoPE (Su
et al., 2021), and its enhancements through two
techniques: PI (Chen et al., 2023a) and Random-
ized PE (Ruoss et al., 2023). Note that unlike
Chen et al. (2023a), we focus on zero-shot sce-
narioes where no additional fine-tuning is allowed.
Furthermore, we compare our method against AL-
iBi (Press et al., 2022), which is categorized as
additive PE.

5.1 Algorithmic Reasoning Tasks

We adopt the experimental setup from Kazemnejad
et al. (2023), using algorithmic reasoning tasks.
The model is trained on sequences up to a specific
length and tested on both seen and longer lengths
within each task. Notably, having a large attention
span beyond a training length is a critical factor to
excel at these tasks, as we observed in Section 3.1.
Dataset & Model Architecture. We showcase the
efficacy of our method on copy, reverse, sort and
summation tasks. Training instances adhere to a
length distribution of Uniform(2, M), while testing
sequences follow Uniform(2,5M). And M is 20
for copy and reverse and 8 for sort and summation.
Further details are provided in Appendix B.1. We
employ a decoder-only Transformer architecture
based on T5 (Raffel et al., 2020).

Training & Inference Procedure. We apply cre-
ated fractional position indices (Eq. 7) to 15% of
training instances and skewing position indices to-
wards the tail (Eq. 8) for 15% of the instances. For
creating fractional position indices, we randomly
sample « (in Eq. 7) from {0.4,0.5,0.6,0.7,0.8}
with equal probabilities. For fqie., We use the
square root function. The remaining training in-
stances undergo no warping. We also provide the
detailed training procedure and additional experi-
mental results in Appendix B.1. During inference,
our method uses PI. As PI is initially proposed un-
der fixed training and test input lengths, we adapt
the interpolation ratio to LMte for each test input
length L (> M) where M denotes the maximum
training input length. Similarly, Peng et al. (2023)
also suggest a dynamic scaling method that adjusts
position indices by considering varying lengths dur-
ing inference. For Randomized PE, we limit the
maximum length to 10M, which is smaller than
2048 used as the maximum length in the original
paper (Ruoss et al., 2023).

Results. The proposed PE exhibits superior per-
formance compared to other baselines across a ma-
jority of tasks, as illustrated in Fig. 5. The various
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Figure 5: The sequence accuracy w.r.t. varying evaluation lengths on different algorithmic reasoning tasks. Ours
(RoPE_head_tail) is capable to extrapolate on long inputs without performance degradation in seen lengths, which
surpasses the baselines in most cases. The shaded areas denote the lengths seen during training.
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Figure 6: Warping position indices using the two proposed approaches leads to performance improvement. The
head_tail indicates where we apply creating fractional position indices to 15% of training instances and skewing
position indices towards the tail for 15% of the instances. The head_only (or tail_only) represents when we apply
creating fractional position index (skewing position indices towards the tail) to 30% of training instances.

PEs show similar performance trends across differ-
ent test input lengths in summation, which is also
shown in Kazemnejad et al. (2023). This similarity
could arise since the task relies less on position
information compared to other tasks. The average
number of sequence accuracies across all test input
lengths are provided in Table. A in Appendix B.1.

We further highlight the effectiveness of each
warping approach as depicted in Figure 6. Apply-
ing both of the proposed approaches (head_tail)
yields the most significant improvement. This syn-
ergy arises from the different focus of each warp-
ing approach on separate parts, i.e., the beginning
and tail of position indices. When using either
approach alone, warping indices in the beginning
(head_only) shows more effective than warping
towards the tail (tail_only). However, warping to-
wards the tail helps to succeed in generalization on
longer sequences when used in conjunction with
warping indices in the beginning.

Interestingly, the inferior performance of ALiBi
on these tasks echos the observation by Kazemne-

jad et al. (2023); Ruoss et al. (2023), but contradicts
Press et al. (2022)’s finding (superiority in language

modeling). We attribute this to ALiBi’s narrow at-
tention span (elaborated in Section 3.1), which can
be fatal in algorithmic tasks, that requires to refer
to distant tokens.

The empirical results of Randomized PE in our
setup differ from Ruoss et al. (2023)’s observations
in two aspects. First, Randomized PE’s gains in
long sequences come at the cost of reduced effec-
tiveness with short ones. This trade-off is apparent
for tasks like reverse and sort (Figure 5), while
other PEs achieve nearly perfect accuracy on seen
lengths. Using random position information, even
in an ordered manner, can attribute to the decline.
Second, the performance of Randomized PE highly
depends on the maximum position (L) as illustrated
in Figure C in Appendix B.1. The smaller the max-
imum position, the better the performance. Note
that even with the smaller L(= 3M/), Randomized
PE is still inferior to our method (Table A in Ap-
pendix B.1). There are several differences between
our setup and theirs (Ruoss et al., 2023), including
token counts, training samples, steps, and evalu-
ation metrics, which may cause inconsistent out-
comes. The inconsistent empirical results indicate



Table 3: Perplexity evaluation on WikiText-103 (Merity et al., 2017). The training context size is 512. The best

results are bold and the second best results are underlined.

Test Length
PE category Model 512 1024 2048 3072 4096
RoPE 19.22 37.08 133.50 223.02 307.38
Position Interpolation 19.22 24777 4839 76.14  99.56
Multiplicative | Randomized PE (L = 8072) | 63.78 65.72 67.89 69.23 69.62
Randomized PE (L = 4096) | 39.35 39.10 3921 3947 39.28
Randomized PE (L = 1024) | 19.83 18.80 - . .
Additive ALIiBi 19.31 18.38 17.88 17.81 17.67
Multiplicative | Ours 19.80 18.87 18.26 18.45 19.00

Randomized PE’s effectiveness might be confined
to specific experimental setups.

5.2 Language modeling

We train a language model with shorter context win-
dow size and evaluate on longer input sequences.
We use WikiText-103 for training and testing.
Model Architecture & Training Procedure. We
adopt the GPT-2 architecture (Radford et al., 2019),
a causal Transformer, with base configurations. We
train with a 512 context window size, and evaluate
on up to 8§ times longer inputs. We apply both
of the proposed approaches randomly to 15% of
training instances, as in the algorithmic tasks. The
« 18 fixed to é. For fspew, we use the CDF of
Beta(2,5). The detailed hyperparameters and the
additional experimental results are elaborated in
Appendix B.2.

0 2000 4000 6000 8000 10000 12000 14000 16000
Evaluation lengths

Figure 7: Perplexity in language modeling. Warping
position indices decreases perplexity compared to the
baseline (red line). Even if there is a marginal distinction
between head_only and head_tail in evaluation lengths
up to 4000, as the test input length increases, the effect

of warping towards the tail becomes more noticeable.
The legends of the graph are the same as Figure 6.

Results. Table 3 reports perplexity of each
method. The proposed method outperform other
multiplicative PEs by large margins, especially
when the test length increases. In addition, our
method enhances RoPE’s capacity to generalize on

long inputs significantly with a trivial performance
drop on seen lengths.

Figure 7 illustrates the effect of each warping ap-
proach, reflecting our observations in Section 5.1.
That is, although head_only is more effective when
only one method is applied, it is the most ef-
fective when both methods are applied together
(head_tail). In addition, warping towards the tail
helps to achieve better performance on longer se-
quences. This suggests that for enhanced language
modeling performance, prioritizing the alignment
of position indices in the beginning is more crucial
than the alignment in the tail.

Notably, Randomized PE shows the similar trend
to the algorithmic tasks in Section 5.1. Random-
ized PE causes not only increases in perplexity
for longer inputs but also substantial performance
degradation in seen lengths. The decline in seen
lengths can be attributed to the practice of injecting
random noise, which can be particularly ineffec-
tive when dealing with fixed training and test input
lengths. We also notice a strong correlation be-
tween the performance of Randomized PE and L
(the maximum position) as well.

ALIiBi exhibits superior performance compared
to multiplicative PEs in language modeling, which
is inconsistent with the results seen in the algorith-
mic tasks. This inconsistency could stem from the
diminished importance of using distant tokens in
language modeling, whereas algorithmic tasks rely
on their usage.

6 Conclusion

By investigating the impact of various positional
encodings on length generalization, we explored
their positional biases. Our novel method warps
position indices during training as a form of data
augmentation. We validated the effectiveness of
our approach through empirical studies on various
tasks.



7 Limitations

In this work, we only focus on a decoder-only
Transformer. We leave applying our approach to
other architectures for future work. We have not ex-
haustively explored all potential hyperparameters,
leaving room for future exploration.
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Supplementary Material

A Visualization

A.1 Long-tail Shapes in Raw Attention Score

In Figure A, attention sensitivity in the tail of raw
attention scores decreases as the input sequence
length increases.

t (train len=100)
e last (test len=200)
int from the last (test len=500)

Explattn_raw)

0 100 200 300 400 500
the order of position index

Figure A: The blue line indicates exponentiated atten-
tion scores during training (! = 100). The red (I = 200)
and green ([ = 500) lines represent where position in-
terpolation (PI) is applied at inference. The dotted lines
(gray, pink and green) represent the 50th point from
the last for each training and testing case. The yellow
dotted line represents the last point. The gaps between
the yellow dotted line and the remaining lines decreases
as the length increases. This shows that the attention
sensitivity in the tail is lower for longer sequences.

A.2 Different Skewness Levels of f,x..,

Figure B illustrates the square root function, which
is an example of fsgew.

sqrt_x

104 — sqrt

0.8 1

0.6 1

0.4+
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0.0 0.2 0.4 0.6 0.8 1.0

Figure B: The square root function.

B Experimental details

B.1 Algorithmic Reasoning Tasks

Datasets. For detailed explanation on each of
copy, reverse, sort and summation tasks, refer to
Kazemnejad et al. (2023). For each task, we use
100K samples for training and 10K samples for
testing. The performance evaluation is based on
sequence accuracy, the exact-match accuracy of
answers compared to the ground truth.

Hyperparameters. We use the hyperparameters
suggested in Kazemnejad et al. (2023). We employ
a decoder-only Transformer architecture based on
TS5 (Raffel et al., 2020), with the base configuration:
Niayer = 12, Nhead — 12, and dmodel = 768. The
total number of trainable parameters is 107M. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with learning rate of 3e-5 and weight decay
of 0.05. We set a polynomial a learning rate sched-
uler and a warm-up for 6% of training steps. We
use a batch size of 64 and train models for 40,000
steps.

Main Results Supplement. The average of se-
quence accuracy across all testing lengths is shown
in Table A. Our method shows its superiority over
other baselines.

The Effect of L. in Randomized PE. Figure C
shows the performance of Randomized PE varies
depending on the maximum position length. As L
increases, the performance degrades.

The Effect of fii.,,. We change fe,, from the
square root function to the CDF of Beta(2,5) and
evaluate how fpe,, impacts on its performance, as
demonstrated in Table A. Using the square root
function shows more effective than the CDF of
Beta(2,5) in algorithmic reasoning tasks.

B.2 Language Modeling

Hyperparameters. We use the hyperparameters
suggested in HuggingFace® for causal language
modeling with the base configuration. The total
number of trainable parameters is 117M. We use
the AdamW optimizer with a learning rate of Se-5
without a weight decay. We set 31 as 0.9 and (32 as
0.999. We use a 64 batch size.

Zhttps://huggingface.co



Table A: The average of sequence accuracy (%) on all testing lengths from 2 to SM. R.P. denotes Randomized PE.

10M,5M and 3M denotes the maximum position length (L)

Task RoPE RoPE+PI ALiBi R.P.(10M) R.P.(5M) R.P.(3M) Ours (sqrt) Ours (beta)
Copy 19.2 23.5 27.9 3.9 8.8 26.8 43.2 43.2
Reverse | 20.4 19.3 224 17.5 19.3 39.3 39.8 394
Sort 18.8 21.5 33.6 214 29.8 43.0 53.7 48.6
Sum 27.9 27.5 33.0 32.2 29.5
I W TS W T e
081 % Copy (L=3 times) N «+ Sort (L=3 times)
;" —e— Reverse (L=10 times) A
Y 0.6 ;x —4#- Reverse (L=5 times)
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Figure C: The sequence accuracy w.r.t. varying evaluation lengths of Randomized PE with different L. For each
task, L is set to 3x, 5x and 10x the maximum training length. The sequence accuracy appears inversely proportional
to the maximum position (L). The shaded areas indicate seen lengths.

Table B: Perplexity evaluation on WikiText-103. The
training context size is 512.

o 512 1024 2048 3072 4096
172 |1 19.06 21.65 26.18 26.22 32.26
174 | 19.34 18.36 18.19 19.34 20.88
1/6 | 19.57 18.59 1836 1879 19.48
1/8 | 19.87 1893 18.62 18.83 19.31

The Effect of o.

We evaluated how « impacts

on performance in language modeling as shown
in Table B. The larger o, the larger the perplexity
in longer test sequences. Conversely, the smaller
a, the less effective it was for relatively short se-
quences. Thus, we decided to use « of % to balance
the performance in short and long sequences.



