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Abstract

Multi-modality object Re-IDentification (RelD) targets to retrieve special objects
by integrating complementary information from diverse visual sources. However,
existing models that are trained on modality-complete datasets typically exhibit
significantly degraded discrimination during inference with modality-incomplete
inputs. This disparity highlights the necessity of developing a robust multi-modality
ReID model that remains effective in real-world applications. For that, this paper
delivers a flexible framework tailored for more realistic multi-modality retrieval
scenario, dubbed as Miss-RelD, which is the first work to friendly support both
the modality-missing training and inference conditions. The core of Miss-RelD
lies in compensating for missing visual cues via vision-text knowledge transfer
driven by Vision-Language foundation Models (VLMs), effectively mitigating per-
formance degradation. In brief, we capture diverse visual features from accessible
modalities first, and then build memory banks to store heterogeneous prototypes
for each identity, preserving multi-modality characteristics. Afterwards, we employ
structure-aware query interactions to dynamically distill modality-invariant object
structures from existing localized visual patches, which are further reversed into
pseudo-word tokens that encapsulate the identity-relevant structural semantics. In
tandem, the inverted tokens, integrated with learnable modality prompts, are em-
bedded into crafted textual template to form the personalized linguistic descriptions
tailored for diverse modalities. Ultimately, harnessing VLMs’ inherent vision-text
alignment capability, the resulting textual features effectively function as compen-
satory semantic representations for missing visual modalities, after being optimized
with some memory-based alignment constraints. Extensive experiments demon-
strate our model’s efficacy and superiority over state-of-the-art methods in various
modality-missing scenarios, and our endeavors further propel multi-modality ReID
into real-world applications.

1 Introduction

Object Re-Identification (RelD) aims to retrieve specific objects, such as pedestrians, vehicles and
other trackable entities, across non-overlapping cameras. Despite remarkable progress in traditional
RGB-based single-modality object RelD over recent decades [ 7], its robustness remains compro-
mised in complex environments, such as low light and varying weather. Fortunately, multi-modal
imaging technologies emerge as a promising solution, effectively mitigating the limitations of single-
modality RelD by integrating complementary information from diverse visual sources such as RGB,
Near Infrared (NIR) and Thermal Infrared (TIR) modalities. Consequently, multi-modality object
ReID methods have garnered significant attention in this filed [8—15].
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Figure 1: Illustrative comparisons between existing multi-modality object ReID methods and ours.
(a) Prior works, when trained on modality-complete datasets, typically exhibit robust performance
during inference under modality-complete conditions, while showing degraded performances when
encountered with modality-missing cases in practice. Here, N denotes the number of available
modalities. (b) Our work studies a more general scenario, where various modality-missing cases
would occur at both training and inference. (¢) Performance comparisons between TOP-RelD [9]
and Miss-RelD (Ours) on the RGBNT201 benchmark. Abbreviations: R: RGB; N: Near Infrared; T:
Thermal Infrared. RNT indicates that evaluating the modality-complete data during inference, RNT
excludes RGB images from the evaluation, and others omit specific modalities in analogous patterns.

Though exhibiting promising performance, existing multi-modality ReID methods [16, 11, 13, 12, 17]
typically rely on an assumption regarding the modality completeness of data, which may not hold
in practice owing to privacy protections, sensor failures or security requirements [ 18]. Specifically,
as illustrated in Fig. 1 (a), previous multi-modal ReID models, when trained on modality-complete
datasets, exhibit robust performance during inference under modality-complete conditions. However,
a critical limitation emerges in practical deployments where various modality-missing scenarios
frequently occur, leading to significantly degraded discriminative capabilities compared to idealized
benchmarks. To address this challenge, the pioneering works (DENet [19] and TOP-RelD [9]) have
conducted the initial investigation into pixel-level and token-level cross-modality reconstruction,
aiming at handling the incompleteness of inference data. However, this paradigm inherently depends
on fully observed multi-modality data for effective training. In real-world scenarios, due to data
collection limitations, partially observed data streams will drastically compromise the training efficacy
of such reconstruction-based approaches. This underscores the necessity of developing a robust
multi-modality ReID model that works without requiring data completeness during both training and
inference, ensuring its practical effectiveness in real-world applications.

Fortunately, with the advancements of Vision-Language foundation Models (VLMs) [20-25], their
inherent cross-modal understanding capability has showcased transformative potentials in various
multi-modality downstream tasks. Especially, by harnessing VLMs’ open-world vision-text alignment,
text-derived semantic features may effectively compensate for incomplete visual information, enabling
robust solutions for modality-missing training and inference. Based on above insight, we specially
deliver a flexible framework tailored for more realistic multi-modality retrieval scenario in this paper,
dubbed as Miss-RelD, which is friendly to modality-missing scenarios without data-completeness
assumption during both training and inference. As shown in Fig. 1 (b), the core of Miss-RelD lies
in compensating for missing visual cues through vision-text knowledge transfer driven by VLMs.
And the compensatory semantic-aligned textual features specifically excel at mitigating performance
decline caused by partial visual modality absence.

Concretely, Miss-RelD mainly consists of three collaborative modules: Memory-based Heterogeneous
Identity Prototype Representation (M-bHIPR) module, Modality-invariant Object Structure Modeling
(M-iOSM) module, and Language-driven Missing Modality Completion (L-dMMC) module, as
illustrated in Fig. 2. Firstly, M-bHIPR extracts diverse visual features from accessible modalities, and
then builds modality-specific memory banks to store heterogeneous prototypes for each individual
identity, ensuring the preservation of multi-modality characteristics. Afterwards, M-iOSM employs
structure-aware query interactions to dynamically distill modality-invariant object structures from
existing localized visual patches. By leveraging the textual inversion technique [26, 27], the extracted
visual structural features are further reversed into pseudo-word tokens that encapsulate the identity-
relevant structural semantics with L-dMMC module. Ultimately, the inverted tokens, integrated



with diverse learnable modality prompts, are embedded into crafted textual templates to form the
personalized linguistic descriptions for diverse modalities. Benefiting from VLMs’ inherent vision-
text alignment capability, L-dMMC produces the textual embeddings to substitute the absent visual
cues. These compensatory textual embeddings are further optimized through a memory-based
contrastive constraint, thereby ensuring vision-text feature consistency. With the collaborations of
M-bHIPR, M-iOSM and L-dMMC modules, our proposed Miss-RelD effectively compensates for the
information absence caused by incomplete modalities, significantly improving retrieval performance
under various modality-missing scenarios against state-of-the-art methods, as illustrated in Fig. 1 (c).
At a glance, our major contributions are summarized as follows:

(i) To our knowledge, Miss-RelD is the first work to handle multi-modality ReID under more general
modality-missing scenarios encountered during both training and inference. Our Miss-RelD allows
the arbitrary modality-missing inputs, while preserving the multi-modality representation capacity,
thereby propelling the advancement of multi-modality ReID toward real-world deployment.

(ii) Bolstered by the inherent vision-text reasoning capabilities of Vision-Language foundation Models
(VLMs), Miss-RelID dynamically compensates for missing visual cues through semantic-aligned
textual embeddings, and our intriguing findings highlight the potentials of developing VLMs within
the realm of Multi-modality RelD encountering incomplete data streams.

(iii) Comprehensive experiments underscore our model’s efficacy and superiority over state-of-the-art
methods in various modality-missing retrieval scenarios, and our model demonstrates the lowest
performance declines in mAP and Rank-1 accuracy compared to modality-complete evaluations on
several benchmark datasets.

2 Related Work

Multi-Modality Object ReID: Fueled by the complementary property from different modalities,
multi-modality object RelD has drawn escalating research attention in recent years. For example,
PFNet [28] is first proposed to progressively fuse features from diverse source modalities, enabling
the extraction of discriminative multi-modality representations. EDITOR [11] is proposed to select
object-centric tokens for filtering out irrelevant background information. DeMo [12] is designed to
balance the decoupled hierarchical features using the mixture of experts, thereby enhancing feature
robustness against variations in imaging quality across modalities. IDEA [10] is presented to construct
text-enhanced multi-modality object ReID benchmarks, providing a structured caption generation
pipeline. However, existing multi-modality studies typically assume the modality integrity during
both training and inference, which strictly undermines the retrieval performance in the absence of
partial modalities.

Multi-Modality Learning with Missing Modality: Recently, several multi-modality learning
methods [29-31, 18, 32-38] have prioritized improving the model’s resilience against missing
modalities. For instance, SMIL [30] utilizes the Bayesian Meta-Learning to simulate the latent
features of missing modalities. ShaSpec [31] is proposed to explore shared-specific feature modeling
framework to deal with missing modality in training and evaluation. Lee et al. [18] plug the learnable
modality-missing-aware prompts into multi-modality transformers to identify different modality-
missing inputs, thereby adapting the pre-trained transformer for various modality-missing tasks. Ke
et al. [32] propose a training-free pipeline to address missing modality completion by leveraging
the capabilities of Large Multimodal Models (LMMs). These advancements inspire us to work on
completing multi-modality object representations under modality-missing retrieval scenarios.

3 Method

3.1 Preliminary

For simplicity and generality, we consider multi-modal RelID datasets comprising three modalities:
RGB, Near Infrared (NIR) and Thermal Infrared (TIR) modalities. Formally, we define a modality-

complete dataset as Deorn, = {Zrgbs Znir, Ltir, Y}, where Z,, = {I}n}jvz"i denotes the set of N,
images in modality m € {rgb,nir,tir}, and Y = {yi}ll represents the identity labels for each

paired triplet sample (I’ gbo 1 i It ). Under the modality-missing training paradigm proposed in
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Figure 2: Pipeline of the proposed Miss-ReID under modality-missing training conditions.

this work, we construct a modality-incomplete dataset D,,, ;s g D.om, Where certain modalities may
be absent for specific samples by simulating random modality missing. Specifically, each modality m
is associated with a missing probability 7,,, forming a probability tuple n = (16, Tnir, Mtir)» €-8-,
n= (0.1,0.1,0. 1) indicates a 10% chance of losing any single modality. For each triplet sample

(Iﬁ b Ifm, Im,7 y*) in D,,;5, we simulate modality absence by randomly setting I i to a zero-pixel

tensor with probability 7,,, or retaining the original I, with probability 1 — 7,,. Accordingly, the
resulting modality-incomplete dataset D,,;s enables us to explore robust multi-modality object ReID
model under controlled modality absence.

3.2 Memory-based Heterogeneous Identity Prototype Representation (M-bHIPR)

As illustrated in the left of Fig. 2, M-bHIPR first extracts uni-modal visual features from accessible
modalities. On that basis, it constructs an independent memory bank for each modality, storing
heterogeneous identity prototypes (one per modality) to explicitly retain the characteristics of each
modality. Technical implementations are elaborated as follows.

Visual Feature Extraction: Given the i-th triplet sample (I’ b I',., Il.) in modality-missing
training dataset D,,,;s, we capture its corresponding RGB, NIR or TIR visual features first, respec-
tively, which is formulated as

o Eon = V(I 16v)- (D

Here, V(x|0y) expresses the siamese visual encoder derived from pre-trained VLMs (e.g., CLIP)
parameterized by 0y. fi € R and F! € R™*4 denote the produced global class embedding
and local patch embeddings in modality m € {rgb, nir, tir}, respectively. N; denotes the number of
divided local patches, and d is the embedding dimension.

Prototype Initialization and Update Protocol: To preserve and dynamically update the hetero-
geneous personal characteristics for each identity, we design a hierarchical memory architecture
consisting of three modality-specific memory banks. Each bank stores identity-aware prototypes that
encode the unique discriminative patterns within their respective modality (RGB, NIR, or TIR). The
prototype initialization and update protocol is defined as follows:

For each identity k£ in modality m, the initial prototype pfg)k is computed as the feature centroid of

all observed training samples belonging to identity k in modality m, formulated as

2O 7|H1’:n| e fns if H, # 0,
m.k 0, otherwise.

2

Here, HF, indicates the set of whole available class embeddings with identity k in modality m,
f3, denotes the j-th embedding contained in #¥,, and |’H | counts the size of set. Notably, some



identities may lack samples in specific modalities under higher missing rate, i.e., ¥, = (). Therefore,
the zero-initialization serves as a placeholder mechanism when no modality-specific samples exist,
maintaining the structural integrity of the memory bank.

After the t-th training epoch, each prototype stored in memory is updated using the corresponding
class embeddings to integrate newly discriminative information while retaining historical knowledge
in an Exponential Moving Average (EMA) way, written as

p =l (1 - ) fl, y = k. 3)

Here, o € (0, 1] is a momentum coefficient controlling the update smoothness, and is empirically set
as 0.2. f! is the newly learned class embedding of the i-th image in modality /n with identity & .

Critically, each modality-specific memory bank is updated using features derived exclusively from its
corresponding modality. This design explicitly avoids cross-modality feature contamination during
prototype refinement, thereby preserving the modality-specific object discriminative patterns within
the respective representation space.

Intra-modality Contrastive Optimization: On top of above established memory banks, the intra-
modality contrastive loss function based on ClusterNCE [39] is designed to learn identity-invariant
features within each modality. Specifically, for a given query f¢, from modality m, we compute its
similarity with all identity prototypes stored in the corresponding memory bank, formulated as

N K i
m o= Lpyi—k) €xp ffn Pm,k/T
Mee=— log 2=t Liyi=i X 7) @)

K .
i=1 Zk:1 exp(ffn 'pm,k/T)

where 3’ is the ground-truth identity label of the i-th sample tuple. L(yi—) is an indicator function
that equals 1 if y° = k (positive pair), and 0 otherwise (negative pair). K denotes the number of all
identities. 7 is a temperature hyperparameter controlling the concentration level of the distribution,
and is experimentally set to 0.05 here.

This optimization encourages our model to maximize feature-prototype alignment for positive pairs,
while simultaneously minimizing cross-identity similarity for negative pairs. Such dual objectives
cultivate the learning of identity-invariant features within each modality.

3.3 Modality-invariant Object Structure Modeling (M-iOSM)

The proposed M-iOSM hinges on an empirical observation that object structural configurations, e.g.,
spatial relationships among body parts, or scene element compositions, typically exhibit remarkable
consistency across visual modalities. This suggests that structural patterns encode identity-specific
information that is preserved regardless of the sensory modality. This key insight motivates our
approach: By distilling modality-invariant structural knowledge from available modalities, we aim to
construct a robust bridge to facilitate subsequent feature completion for missing modalities within the
L-dMMC module (Sec. 3.4). Its implementations are elaborated as follows.

Adaptive Structure-aware Querying: As illustrated in the middle of Fig. 2, M-iOSM is designed
to distill modality-invariant structural representations by adaptively querying object structural patterns
from available modalities through a learnable query-based Multi-Head Attention mechanism (MHA).

In details, we initialize a set of N, learnable query vectors Q = [g1, g2, - - - , qu] € RNax that serve
as modality-shared “Structural Probes”, which are expected to capture diverse structural patterns
shared across modalities. Given Q and each input modality m € {rgb, nir, tir} with localized visual
patches F, € RVi1*4 derived by Eq. (1), we first project them into query, key and value spaces for
each attention head h, respectively, written as

Q" =LN(QW!, Ki'=LN(F, )W}, Vi"=LN(F} )W, (5)

m m

where LN is the operation of Layer Normalization. W) € R?*4# W} € R4*di and Wi € R?*dn
are three parameter-independent projection matrices. dg = d/Np denotes the head size, and Ny is
the number of heads. After that, the adaptive structure-aware querying can be formulated as

Wik — Softmax ((QhK:‘;{’T) /\/dH) . Sth —wihyih g Cag(sil L. stV (6)



Here, Wf;lh € RNa*Ni normalized by a Softmax function, denotes the weight matrix for perceiving

the discriminative structural features from modality m in the h-th attention head. Sf;bh € RNaxdn
represents the aggregated structural features. Cat(x) means concatenating features from all heads

along channel dimension, resulting an/ € RNa*4 that represents the modality-invariant spatial
structural features from modality m.

Modality-invariant Structure Combination: To obtain the information-complete and modality-
invariant structural representations, we employ a straightforward yet effective approach to fuse
features from all available modalities, expressed as

; J I ; 1 ; .
Sy = —> 4S80, st = —>"s,,,m € {rgb,nir, tir}. (7)
N, =7 M;
q A
Here, si, denotes the intra-modality fused structural representation, and is assigned as zero tensor
if modality m is missing. M; denotes the number of available modalities in ¢-th triplet sample.
Ultimately, the inter-modality fused representation s* is defined as the distilled structural feature that
encapsulates the modality-invariant visual structural contexts of ¢-th triplet sample.

During training, the obtained structural representation s’ is jointly supervised by the label smoothing
cross-entropy loss to align structural features with identity labels, and triplet loss to enforce separation
among different identities in the structural feature space. Simultaneously, the learnable query set Q is
optimized to discover the most discriminative structural patterns through backpropagation, ensuring
queries specialize in capturing identity-salient structural cues from multi-modality data.

3.4 Language-driven Missing Modality Completion (L-dMMC)

As depicted in the right of Fig. 2, the L-dMMC module is proposed to address the challenge of
incomplete multi-modality data by leveraging linguistic priors to compensate for missing visual
features, and the details are as follows.

Inverted Identity Pseudo-word Generation: To effectively and efficiently encapsulate identity-
relevant structural semantics into textual tokens, we leverage a lightweight inversion network that
transforms structural features into pseudo-word embeddings. Specifically, given the modality-
invariant structural feature s’ derived from Eq. (7), an inversion network maps s’ into a continuous
latent space, i.e., ‘ }

Winy = L(s"|01), ®)
where Z(x|6z), implemented by a Multi-Layer Perceptron (MLP), denotes the inversion network
parameterized by f7. And i, € R'*?is defined as an inverted identity pseudo-word that effectively
tells identity-specific visual structural contexts.

Modality-specific Textual Prompting: To complete VLM-compatible textual input, the inverted
identity pseudo-word, combined with a set of learnable modality-specific prompts, are embed into a
crafted textual template. For instance, template like "An image of a [pseudo-word] person, who shows
the [modality m] attributes." is employed to form the personalized linguistic descriptions tailored
for specific modality. Wherein, pseudo-word w!,, € R**? encodes identity-relevant structural
semantics, while prompts P,, € RV»*? m ¢ {rgb, nir, tir}, act as modality anchors, guiding the
VLMs to interpret pseudo-word within the context of existing or missing modalities.

Afterwards, the tokenized textual template denoted as {t{,t5, - - , ¢} }, combined with w/,, and
Pm., 1s fed into the frozen text encoder to obtain textual embedding, formulated as
f’IT?’L:T({tﬁ_a é?7w;nv)773m77 3\@}'97') (9)

Here, 7 (x|07) denotes the text encoder derived from pre-trained VLMs (e.g., CLIP) parameterized

by 67. Therefore, fi, € R'*4 is categorized as compensatory textual embedding when modality m
is missing, or as reconstructed textual embedding when modality m is available.

Memory-based Text-Vision Contrastive Optimization: To ensure the compensatory or recon-
structed textual embeddings align with the visual feature space and bridge the semantic gap between
visual and textual modalities, we further propose the memory-based text-vision contrastive optimiza-
tion strategy formulated as follows:

N K i
Lpyiz " m
m _ 2 :IOg Zk:l [y —]f] exp(fm p ,]f/T) ) (10)
i=1

T2V — 174 =
> k1 X[ Pk /T)



Here, p,, i denotes a visual prototype vector, which is derived from all observed training samples
belonging to identity £ in modality m by M-bHIPR module. Notably, the prototype p,, j is dynami-

cally initialized and updated using f?, associated with identity k¥ when identity k lacks samples in
modality m, with the aim to mitigate data scarcity issues. Conversely, p,, ; remains unchanged if
samples are available. This strategy ensures effective representation learning under varying data
availability conditions. During training, each f? is encouraged to mimic the distribution of visual
features corresponding to the same identity within modality m.

Above optimization enhances consistency between compensatory or reconstructed textual embeddings
and their ground-truth visual features, thereby mitigating the absence of visual cues through the
semantic-aligned textual representations under modality-missing scenarios.

3.5 Overall Objective Function

Beyond the contrastive learning objectives, i.e., L}, and L7, defined in Egs. (4) and (10), the
visual, structural and textual features derived from M-bHIPR, M-iOSM and L-dMMC modules
are also optimized through label smoothing cross-entropy losses (denoted as ,Cgl}iv, ,Cg o £Zf}3T)
and triplet losses (denoted as 5%’2/’ L3 ., E?T’?), respectively, thereby facilitating their identity
discrimination. Accordingly, the overall objective function of our Miss-RelD can be given by the
following combination:

Lrotar = (L] + L3+ L70) + M(LEE + LEg+ LEG ) + ML + Lioy). (11

Here, m € {rgb, nir,tir}. A\; and Ay are hyper-parameters to balance the contributions of different
terms. Notably, the terms ﬁ?g, ﬁ’g};T and L7, are incorporated into the optimizations after 20

epochs to stabilize the training.

4 Experiment

4.1 Datasets and Evaluation Protocols

Datasets: To evaluate our method under modality-missing scenarios, we conducted comprehensive
experiments on multi-modality object ReID benchmarks (RGBNT201 [28] and RGBNT100 [40])
by introducing controlled data dropout during both training and inference phases. Specifically, for
each modality-complete dataset, we randomly discard the partial data of each modality according to
predefined tri-modality missing rates (e.g., 10% for RGB, 30% for NIR, 50% for TIR) to simulate
real-world sensor failures or data corruptions, generating modality-incomplete inputs for performance
evaluation. Evaluation Protocols: Consistent with conventions in ReID community, two primary
metrics— Cumulative Matching Characteristics at Rank-1 (R-1 accuracy) and mean Average Pre-
cision(mAP)—are employed to assess model performance under seven inference scenarios: one
modality-complete scenario (denoted as RNT, where all data modalities—RGB, Near Infrared and
Thermal Infrared—are fully available) and six modality-missing scenarios (denoted as RNT, RNT,
RNT, RNT, RNT and RNT). In these modality-missing scenarios, specific modalities in both query
and gallery are omitted (e.g., RNT excludes RGB images from the evaluation, and others omit specific
modalities in analogous patterns). Notably, we also report Mean mAP and Mean R-1 across the six
modality-missing scenarios as the primary indicators for evaluating the model’s holistic robustness
against missing modalities.

4.2 TImplementation Details

Our Miss-RelD is implemented using PyTorch libraries and runs on a single NVIDIA RTX A6000
GPU with 48GB VRAM. In line with prior works [9, 10], the pre-trained CLIP [20] is applied for
the vision and text encoders. The model is trained in total of 50 epochs, with the L-dMMC module
introduced after 20 epochs. We employ the Adam optimizer for training learnable modules, with a
learning rate of 5e-3 for modality prompts and 3.5e-4 for others. The text encoder remains frozen
throughout training. The number of structure-aware queries (N,) is empirically set as 16 and 8 on
RGBNT201 and RGBNT100, respectively. The length of modality prompts (V) is experimentally
set as 4 per modality. A; and Ay in Eq. (11) are both experimentally set to 0.1. Additionally, we
summarize the overall training procedure in Algorithm 1 and illustrate the inference procedure in Fig.
4 under modality-missing conditions, which are available in Appendices A.1 and A.2.



Table 1: The impacts of various components. We report the comparison results between different
combinations (Model B — F) and the baseline (Model A) under both modality-complete and -missing
training settings on RGBNT201. Here, ‘Modality Complete’ represents learning the modality-
complete data during training, and ‘n = (0.1,0.1,0.1)’ denotes randomly abandoning 10% RGB
images, 10% NIR images, and 10% TIR images during training. The evaluations are both conducted
across six modality-missing scenarios, and mean mAP and R-1 are reported below.

In dex‘ Modules | Complexity | Modality Complete 7 = (0.1,0.1,0.1)
‘M—bHIPR M-iOSM L—dMMC‘Params FLOPS‘ Mean mAP Mean R-1 Mean mAP Mean R-1

A ‘ X X X ‘ 86.4M 34.3G ‘ 48.9 50.4 46.4 47.0
B v X X 86.4M 343G | 51.1(+2.2) 51.4(+1.0) 47.4(+1.0) 48.0(+1.0)
C X v X 86.4M 343G | 50.2(+1.3) 52.1(+1.7) 46.9(+0.5) 48.7(+1.7)
D v v X 86.4M 343G | 53.3(+4.4) 54.1(+3.7) 49.4(+3.0) 49.8(+2.8)
E X v v 89.6M 43.6G | 52.1(+3.2) 53.4(+3.0) 47.4(+1.0) 49.7(+2.7)
F | v v /| 89.6M 43.6G | 54.6(+5.7) 55.7(+5.3) 50.1(+3.7) 51.3(+4.3)

4.3 Ablation Study

As reported in Table 1, we conducted extensive ablation studies on RGBNT201 to evaluate the efficacy
of individual components within Miss-RelD, under both modality-complete and modality-missing
training settings.

Baseline Settings: The baseline method (Model A) relies solely on class embeddings derived
from available modalities by visual encoder for retrieval, achieving 48.9% Mean mAP and 50.4%
Mean R-1 accuracy under modality-complete training. When trained with 10% modality missingness
(n =(0.1,0.1,0.1)), its performance drops to 46.4% Mean mAP and 47.0% Mean R-1, highlighting
the challenge of modality incompleteness.

Effectiveness of M-bHIPR: Integrating the M-bHIPR module (Model B) improves modality-
complete mAP by 2.2% (51.1%) and modality-missing mAP by 1.0% (47.4%). This indicates that
M-bHIPR effectively aligns features with identity-related prototypes within each modality, enhancing
discriminability while preserving modality-specific characteristics.

Effectiveness of M-iOSM: The proposed M-iOSM module (Model C) alone contributes 0.5%
Mean mAP (46.9%) and 1.7% Mean R-1 (48.7%) improvements under modality-missing setting.
When combined with M-bHIPR (Model D), performance surges to 49.4% Mean mAP (+3.0%)
and 49.8% Mean R-1 (+2.8%). This indicates that M-iOSM fosters cross-modality interaction by
dynamically mining similarities across modalities and modeling modality-invariant object structures,
complementing M-bHIPR’s intra-modality refinement. Notably, the M-bHIPR and M-iOSM modules
operate without additional computational overhead during inference, preserving inference efficiency
while enhancing multi-modality feature alignment.

Effectiveness of L-dMMC: The proposed L-dMMC module (Model E) alone yields 1.0% mAP
(47.4%) and 2.7% Rank-1 (49.7%) gains under modality-missing training. Combined with all modules
(Model F), it achieves the excellent performance: 54.6% Mean mAP (+5.7%) and 55.7% Mean
R-1 (+5.3%) in modality-complete setting, with 50.1% Mean mAP (+3.7%) and 51.3% Mean R-1
(+4.3%) under missingness. L-dMMC leverages language priors to compensate missing modalities
bolstered by the inherent vision-text reasoning capabilities of VLMs, enhancing robustness to various
modality-missing scenarios. While parameters increase from 86.4M (Model A) to 89.6M (Model F),
and FLOPs rise from 34.3G to 43.6G, the trade-off is justified by substantial accuracy improvements.

4.4 Comparisons with the State-of-the-art Methods

We benchmark our Miss-RelD against several state-of-the-art methods, including PCB [1], TOP-
ReID [9], DeMo [12] and IDEA [10], under modality-complete training and modality-missing
inference scenarios. Tables 2 summarizes the main results for multi-modality person RelD, evaluated
on the RGBNT201 datasets. It is evident that our proposed Miss-RelD demonstrates significant
robustness and superiority over SOTA methods in handling modality-missing challenges during
inference. Specifically, Miss-RelD consistently outperforms the other methods in terms of both mAP
and R-1 across the most modality-missing scenarios. Crucially, in the most challenging scenario



Table 2: Performance comparisons under modality-missing situations that only occur at the inference
phase of multi-modality person ReID on RGBNT201. { denotes the model that is trained using both

images and their corresponding text annotations. The best results are labeled with boldface. |x.x%

and |x.x% highlight the lowest mAP and R-1 drop rates, respectively. ‘~" indicates that the metric
is unpublished.

\ RNT \ RNT \ RNT \ RNT \ RNT \ RNT \ RNT \ Mean
Methods
\mAP R-1lmAP R-1 \mAP R-1 \mAP R-1 \mAP R-1 \mAP R-1 \mAP R-1 \mAP R-1
PCB 328281 23.6 242|244 25.1(19.9 14.7]20.6 23.6|11.0 6.8 |18.6 14.4|19.7 18.1
[ECCV 2018]| " 128.0%1.13.9%|1.25.6%1.10.7%{1.39.3% 1 47.7%|1.37.2%1.16.0%|1.66.5% 1 75.8%|143.3% 1 48.8 %|.39.9%.35.6%
TOP-RelD 72376654.4 575|643 67.6|51.9 545|353 354|262 26.0|34.1 31.7 |444 454
[AAAI2024]| * 1124.8%124.9%(111.1%111.7%|128.2%128.9%|151.2% 1 53.8%|1.63.8%1.66.1%|,.52.8% | 58.6%||.38.6%140.7%
DeMo 79.0 82.3 63.3 65.3]72.6 75.7|56.2 54.1|45.6 46.5|263 249 |40.3 38.5|50.7 50.8
[AAAI2025]| "7 1119.9%120.7%| 18.1% 18.0% [128.9% |34.3%|142.3% | 43.5%(1.66.7%169.7%|149.0% |53.2%|1.35.8%.38.3%
IDEAT 629 - |71.5 - |584 - |433 - |27.1 - |399 - |505 -
[CVPR 2025] 80.2 sz’lumw =% |110.8% 1-% [127.2% 1-% |146.0% |-% |1662% 1% [150.2% |-% [137.0% |-%
Miss-RelD| 76.9 78.9 66.6 68.2|72.4 755|63.2 63.8|47.2 49.5|34.5 33.3|43.9 44.3 |54.6 55.7
[Ours] ’ 1113.4%113.6%| 15.9% 14.3% [117.8%119.1%|138.6%137.3%|1.55.1%1.57.8%|142.9% 1 43.9%1.29.0%29.4%

where both RGB and TIR images are missing (RNT), Miss-RelD achieves 34.5% mAP and 33.3%
R-1, which are significantly higher than those of the other methods. Notably, the colored boxes
highlights Miss-RelD’s dominance in minimizing performance decay under diverse missing-modality
combinations. For instance, in RNT scenario, Miss-ReID experiences only 13.4% drop in mAP
and 13.6% drop in R-1, which are the lowest drop rates among all compared methods. Moreover,
Miss-RelD achieves new state-of-the-art average performance (54.6% mAP, 55.7% R-1), surpassing
the second-best DeMo by 3.9% mAP and 4.9% R-1. The superior performance of Miss-RelD can be
attributed to its textual feature completion tactic in handling modality-missing situations. Unlike other
methods that may heavily rely on the presence of all modalities during both training and inference,
Miss-RelD is designed to adaptively compensate missing modalities, maintaining high performance
even when some modalities are unavailable. This makes Miss-ReID a more practical and reliable
solution for real-world applications, where modality completeness cannot always be guaranteed.
Moreover, the exhaustively comparative analysis with SOTA methods for modality-missing vehicle
ReID on RGBNT100 dataset are provided in Appendix A.3.

4.5 Performance Analysis of Miss-ReID Under Varying Tri-modality Missing Rates

We conduct a comprehensive evaluation of our model’s robustness to tri-modality missing rates n =
(rgbs Nnir Neir) in multi-modality person ReID on RGBNT201. Table 3 reports performance under
varying degrees of missing modalities during training, while assessing the model’s behaviors in both
modality-complete (RNT) and modality-missing (e.g., RNT, RNT, etc.) scenarios during inference.
As expected, increasing the missing rates inevitably degrades the model’s performance across most
evaluation scenarios, suggesting sensitivity to missing modalities during training. Nevertheless, the
Mean row demonstrates that the model’s average performance degrades gracefully as the missing rate
increases, with mean mAP dropping from 54.6% in ideal case when = (0.0, 0.0, 0.0) to 47.3% in
extreme case when 77 = (0.5, 0.5, 0.5). This suggests that our model maintains reasonable robustness
even under high missing rates, unlike some existing models (e.g., PCB [1] with 19.7% mAP and
TOP-RelID [9] with 44.4% mAP) trained exclusively on modality-complete data, which often struggle
with missing modalities during inference.

4.6 Structure-aware Query Attention Region Visualization

As exhibited in Fig. 3, to intuitively showcase the efficacy of structure-aware queries in M-iOSM
module, we specially provide visualizations about the most attentive region of each well-learned query
vector across diverse scenarios. Each attentive region is highlighted by translucent mark (Q1-Q16) to
facilitate intuitive interpretation, revealing two key insights. Firstly, within each modality, the distinct



Table 3: Performance comparisons of setting different tri-modality missing rates on RGBNT201.
Each tuple (9,gb, Mnir, Neir) represents the proportion of randomly abandoned RGB, Near-Infrared,
and Thermal-Infrared images during training.

Tri-Modality | (0.0, 0.0, 0.0) | (0.1,0.1,0.1) | (0.3,0.3,0.3) | (0.5, 0.5,0.5) | (0.1,0.3,0.5) | (0.5, 0.3, 0.1)
Missing
Rater) |mAP R-1 |[mAP R-1 |[mAP R-1 [mAP R-1 |[mAP R-1 |[mAP R-1

RNT | 769 789 | 723 734 | 684 712 | 682 728 | 69.6 722 | 67.6 676
RNT 66.6 682 | 613 617 | 57.6 583 | 567 584 | 561 584 | 576 584
RNT 724 755 | 688 726 | 658 69.5 | 636 651 | 669 69.7 | 657 670
RNT 632 638 | 553 557 | 523 565 | 523 544 | 532 573 | 502 507
RNT 472 495 | 428 452 | 449 475 | 416 408 | 411 403 | 471 476
RNT 345 333 (309 297 [ 268 263|265 222|271 281|265 246
RNT 439 443 | 415 427 | 430 455 | 427 464 | 439 470 | 392 388
Mean | 54.6 557 | 501 513 | 484 50.6 | 47.3 479 | 48.1 50.1 | 477 478

RNT

Figure 3: Visualizations of the attentive regions towards 16 well-learned structure-aware queries. We
provide the results in 6 modality-missing cases (a-f: RNT, RNT, RNT, RNT, RNT and RNT), and
a modality-complete scenario (g: RNT) sampled from RGBNT201 dataset.

structure-aware queries exhibit specialized focus on semantically meaningful body regions, e.g.,
joint positions, accessory locations, etc. Critically, despite modality disparities, the object structure
cues that excavated from different modalities with identical identity maintain contextual consistency,
as displayed in Fig. 3 (d-g). These observations validate the robustness of our proposed M-iOSM
module for probing the modality-invariant structure cues under real-world retrieval scenarios.

4.7 Further Evaluations and Analysis

To comprehensively evaluate the efficacy of our method, we additionally conduct extensive experi-
ments, encompassing more comparative evaluations, feature distribution visualizations, performance
evaluations under 49 real-world inference scenarios, ranking lists, etc. Please refer to the Appendix A
for detailed results.

5 Conclusion

In this paper, a novel multi-modality object re-identification framework (Miss-RelD) has been
proposed to furnish the robust retrieval under modality-missing conditions without requiring the data
completeness during either training or inference. By harnessing the open-world vision-text alignment
capabilities of Vision-Language foundation Models (VLMs), text-derived semantic features are
nominated to effectively compensate for incomplete visual information, enabling robust solutions for
modality-missing training and inference. Extensive experiments validate our model’s efficacy and
superiority over state-of-the-art methods across diverse modality-missing scenarios, advancing the
practical deployment of multi-modality object re-identification.

Limitations: While the current Miss-RelD demonstrates the significant robustness across various
modality-missing scenarios compared to state-of-the-art methods, further works are required to
improve resilience in extreme cases (e.g., complete modality collapse) and expanded modality
integration (e.g., event/LiDAR data, sketches, audio).
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A Appendix

In this supplementary material, we provide additional experimental evaluations, in-depth analyses
and abundant visualizations to support our findings, and the structure is organized as follows:

* A.1 Training Procedure of Miss-RelD

* A.2 Textual Completion During Inference

* A.3 Comparative Analysis with SOTA Methods for Modality-missing Vehicle ReID

* A.4 Retrieval Performances under 49 Real-world Scenarios in Tri-modality ReID

* A.5 Feature Distribution Visualization

* A.6 Retrieval Results Under Both Modality-complete and -missing Situations

A.1 Training Procedure of Miss-RelD

We summarize the overall training procedure of our Miss-ReID under modality-missing conditions in
Algorithm 1, where we explicitly consider three representative modalities, i.e., RGB, Near Infrared
(NIR) and Thermal Infrared (TIR), as the example.

Algorithm 1: Training procedure of Miss-RelD.

Input: Complete Multi-modality Object RelD Dateset: Do, = {Lgb,ImT,Itir, Y}
Modality-missing Rate: 7 = (7rgp, Tnir, Ntir); Learnable Structure-aware Queries: Q;
Learnable Modality Prompts: P,,,, m € {rgb, nir, tir}; Total Training Epoch: E.

Output: Robust Object ReID Model Under Modality-missing Conditions.

Build modality-incomplete dataset D, ;s ; D.om by randomly dropping according to 7;
Initialize memory bank for each modality by Egs. (1) and (2);
for epoch=1:F do
# Memory-based Heterogeneous Identity Prototype Representation.
Extract multi-modality features of D,,,;s by image encoder V from pre-trained VLMs;
Update heterogeneous identity prototypes stored in memories in an EMA way by Eq. (3);
Calculate L7}, using Eq. (4); Calculate £} and £, m € {rgb, nir, tir}.
# Modality-invariant Object Structure Modeling.
Employ Q to adaptively query modality-invariant structure embedding s from available
modalities using Egs. (5-7); Calculate £, ; and L2 5.
if epoch > 20 then
# Language-driven Missing Modality Completion.
Invert s into identity pseduo-word w;,,, by inversion network Z using Eq. (8);
Form three modality-specific text descriptions that incorporating w;,,, and P,,;
Generate textual features by forzen text encoder 7 from pre-trained VLMs using Eq. (9);
Calculate £ and L), m € {rgb, nir, tir};
Calculate L7, using Eq. (10), m € {rgb, nir, tir}.
else
let £, = 0, LT = 0and L7 = 0, m € {rgb,nir, tir}.
end

end
Optimize network by minimizing Eq. (11).

A.2 Textual Completion During Inference

Under various modality-missing inference scenarios, we substitute missing visual cues with seman-
tically aligned text embeddings, thereby fostering robust multi-modality representations. Here, as
illustrated in Fig. 4, we consider the scenario where RGB images are missing as an example to
detail above process. Firstly, the visual features are captured from each available modality (i.e.,
NIR and TIR) via VLMs’ fine-tuned image encoder. Subsequently, the modality-invariant object
structure cues are probed from two groups of local visual patches, and are further reversed into a
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Figure 4: Illustration of our proposed textual feature completion tactic for missing modalities. Here,
we take the absence of RGB image as an example.

Table 4: Performance comparisons under modality-missing situations only occurred at the inference
phase of multi-modality vehicle ReID on RGBNT100. ‘-’ indicates that the metric is unpublished.

Methods | RNT | RNT | RNT | RNT [ RNT | RNT | RNT | Mean
mAP R-1 ImAP R-1 |mAP R-1 [mAP R-1 mAP R-1

DENet | o oo, = = [620855[560 809 — — | -~ |50.0 742| - -
[arXiv 2023] — — 119.0% [4.1%|17.8% 19.3% | — — — — [1264%116.8%| — -
TOP-ReID| o o [ 70.6 90.6|77.9 94.5[64.0 81.5]425 69.3]459 654554 778|594 799
[AAAI 2024] ’ “13.1%16.0%|14.1% 12.09%(121.2% 1 15.5%|.47.7% 1.28.1%|143.5% 1 32.2%|1.31.8% 1.19.3%| 1 26.8% | 17.1%
DeMo | g g | 810 94.5(84.1 96,5711 87.6(50.2 73.7|59.6 78.1|66.3 82.8|68.7 855
[AAAI 2025] ) 1 16.0% 13.2%|12.4% L1.1%|1.17.5% 1 10.2%| 1 41.8% | 24.5%|130.9% 120.0%|1.23.1% | 15.2%|1.20.3% 1. 12.4%
Miss-ReID| o, o | 77.3 94.9/81.9 96.3/ 703 9.7 [47.1 78.0|57.7 782|656 86.8|66.6 87.3
[Ours] ’ “116.3% 11.9%|10.7% 10.4%] | 14.8% 17.2% |142.9% 119.3%|1.30.1% 4.19.1%|1.20.5% 1.10.2%|1.19.3% 19.7%

pseudo-word that encapsulates the identity-related visual structural contexts. Ultimately, integrated
with well-learned RGB modality prompts, inverted token are inserted into text template to form
the input for VLMs’ frozen text encoder. Benefiting from VLMs’ inherent image-text alignment
capability, the resulting textual features serve as the compensatory features for missing RGB modality.
Therefore, by concatenating the existing NIR and TIR visual features with the compensatory RGB
textual features, we enable robust multi-modality object re-identification under modality-missing
inference condition.

A.3 Comparative Analysis with SOTA Methods for Modality-missing Vehicle ReID

We also benchmark our Miss-RelD against several state-of-the-art methods, including DENet [19],
TOP-RelID [9] and DeMo [12], for multi-modality vehicle RelD under modality-complete training and
modality-missing inference scenarios. Notably, the textual template in L-dMMC module is crafted
as "An image of a [pseudo-word] vehicle, which shows the [modality m] attributes" here. Tables 4
reports the main results evaluated on the RGBNT201 datasets. Obviously, th proposed Miss-RelD
demonstrates superior performance and robustness over SOTA methods across diverse modality-
missing combinations. To be specific, Miss-RelD exhibits minimal performance degradation in
critical scenarios: under NIR-missing case (RNT), its R-1 accuracy drops by only 0.4% (96.3% vs.
96.7%), outperforming DeMo’s 1.1% decline, TOP-RelID’s 2.0% drop and DENet’s 4.1% reduction;
under TIR-missing case (RN'T), it maintains an R-1 accuracy decrease of 7.2% (89.7% vs. 96.7%),
surpassing DeMo (10.2%) and TOP-RelD (15.5%) by 30% to 50%; even in the most challenging
case where both RGB and TIR images are missing (RN'T), it achieves 78.2% R-1 accuracy (19.1%
drop), exceeding DeMo (78.1% with 20.0% drop) and TOP-RelID (65.4% with 32.2% drop). Across
all scenarios, Miss-RelD achieves 66.6% mAP and 87.3% R-1 with degradation rates of 19.3%
(mAP) and 9.7% (R-1), outperforming DeMo (20.3%/12.4%) and TOP-RelD (26.8%/17.1%) in
generalization under modality uncertainty. Compared to DeMo, Miss-RelID shows smaller degradation
in 5/6 modality-missing scenarios in terms of R-1 accuracy, while outperforming TOP-RelD by
reducing average degradation by 7.2% (mAP) and 7.4% (R-1). These results validate the effectiveness
of our language-driven missing modality completion approach, which enables Miss-RelD to serve as
a robust multi-modality vehicle RelD solution for real-world deployments where partial modality
failures frequently occur.
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Figure 5: Matrix visualizations of the retrieval performances, i.e., (a-b) Mean mAP, and (c-d) Mean
Rank-1, on the RGBNT201 dataset. Here, the baseline model and our Miss-RelD are both trained
using modality-missing data with 7y = (0.1,0.1,0.1), and are evaluated under 1 modality-complete
inference scenario (“RNT-to-RNT”) and else 48 more general modality-missing inference scenarios.

A.4 Retrieval Performances under 49 Real-world Scenarios in Tri-modality ReID

To comprehensively evaluate the robustness of our Miss-ReID towards incomplete modalities, we
consider 49 more general “Query-to-Gallery” retrieval scenarios, encompassing 1 modality-complete
case (“RNT-to-RNT”) and else 48 modality-missing cases. As illustrated in Fig. 5, we visualize
the performance comparisons between the baseline model (a, c) and our Miss-ReID (b, d). It’s
evident that our Miss-ReID outperforms the baseline model in both modality-complete and -missing
scenarios, as evidenced by the higher Mean mAP and Mean Rank-1 accuracy. Specifically, in the
modality-complete case, our model demonstrates superior performance, indicating its effectiveness in
leveraging all available modalities for accurate retrieval. Furthermore, even in else modality-missing
cases, which represent more challenging and realistic scenarios, our model consistently achieves better
retrieval results compared to the baseline. While it is true that in certain extreme modality-missing
scenarios (e.g., “RNT-to-RNT” and “RNT-to-RNT”), our model’s performance is somewhat limited,
it still maintains an advantage over the baseline model. This highlights the robustness of our approach
but also points to an area for future improvement. Enhancing the model’s ability to handle extreme
modality missing will be a key focus in our future work, further boosting retrieval performances in
these challenging cross-modality conditions.

A.5 Feature Distribution Visualization
As shown in Fig. 6, to intuitively witness the efficacy of the compensatory textual features derived

from L-dMMC module, we visualize the distributions of three types of discriminative features under
challenging modality-missing case (RN'T), where both RGB and TIR images are unavailable. From
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Identity 203 Identity 282 Identity 273 Identity 277 Identity 270 Identity 299 Identity 201 Identity 288 Identity 279 Identity 290

(a) Only Visual Features (NIR) (b) Concatenating RGB Textual Features (c) Concatenating TIR Textual Features

Figure 6: The feature distributions of 10 identities randomly sampled from the RGBNT201 dataset
by using t-SNE [41]. Here, we take the challenging case (RNT) that both RGB and TIR images
are unavailable as an example. (a) The vision-only features derived from available NIR images. (b)
The fused features that concatenating the compensatory RGB textual features on (a). (c) The fused
features that further concatenating the compensatory TIR textual features on (b). Different colors
refer to different identities.

Fig. 6 (a) to Fig. 6 (c), the features of challenging samples (specifically, IDs 270, 277, and 291)
become increasingly compact, while the separation between different identities (IDs) widens. These
visualizations fully substantiate that progressively incorporating the compensatory RGB and TIR
textual features into limited visual features significantly enhances the feature discrimination and
robustness towards modality-missing cases.

A.6 Retrieval Results Under Both Modality-complete and -missing Situations

As shown in Fig. 7, we compare the ranking lists generated by (a) the baseline model and (b) our
proposed Miss-RelD, under both modality-complete and modality-missing inference scenarios. The
baseline model demonstrates limited performance, yielding a high number of incorrect matches,
particularly in the most challenging modality-missing cases (RNT, RNT, and RNT). In contrast,
our Miss-RelD achieves superior performance, with significantly fewer incorrect matches and more
accurate results. These findings intuitively validate the effectiveness of our approach in compensating
for missing modalities using textual features.
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Figure 7: Ranking list comparison between (a) Baseline and (b) Our Miss-ReID under one modality-
complete retrieval scenario and 7 modality-missing retrieval scenarios. The green box denotes the
correct match, whereas the red box signifies the incorrect match.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim our contributions in the abstract (Lines: 23-26) and introduction
(Lines: 81-92).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our proposed work in conclusion (Lines: 352-
355).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Our proposed method aims to design a novel framework (Lines: 115-257)
to improve the retrieval performance with modality-incomplete inputs. And we verify the
effectiveness of our method through abundant experiments (Lines: 258-342, 505-582).

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides the clear and comprehensive description of the proposed
Miss-RelD in Section 3 (Lines: 115-257), the simulation of modality-incomplete datasets in
Section 4.1 (Lines: 259-275), the implementation details in Section 4.2 (Lines: 277-286),
and the training procedure of Miss-RelD in Appendix A.1 (Lines: 487-490). Our code will
be released after the acceptance of our paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: Our code will be released after the acceptance of our paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the simulation of modality-incomplete datasets in Section 4.1
(Lines: 259-275), the implementation details of Miss-RelD in Section 4.2 (Lines: 277-286),
the training procedure of Miss-RelD in Appendix A.1 (Lines: 487-490), and the inference
procedure of Miss-RelD in Appendix A.2 (Lines: 491-504).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We conducted experiments multiple times on the same equipment and found
that the experimental results were fixed.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the needed computer resources in Section 4.2 (Lines: 277-286).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: This paper is the first work to handle multi-modality ReID under more general
modality-missing scenarios encountered during both training and inference. Our proposed
Miss-RelD allows the arbitrary modality-missing inputs, while preserving the multi-modality
representation capacity, thereby propelling the advancement of multi-modality ReID toward
real-world surveillance deployment. Notably, public surveillance systems using ReID should
be controlled by authorized entities, ensuring proper regulatory frameworks, transparency,
and adherence to ethical standards.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.
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14.

15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our work does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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