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Abstract

In the rapidly evolving landscape of artificial intelli-
gence, multi-modal large language models are emerging as
a significant area of interest. These models, which combine
various forms of data input, are becoming increasingly pop-
ular. However, understanding their internal mechanisms re-
mains a complex task. Numerous advancements have been
made in the field of explainability tools and mechanisms,
yet there is still much to explore. In this work, we present a
novel interactive application aimed towards understanding
the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of
the image patches, which are instrumental in generating an
answer;, and assess the efficacy of the language model in
grounding its output in the image. With our application, a
user can systematically investigate the model and uncover
system limitations, paving the way for enhancements in sys-
tem capabilities. Finally, we present a case study of how our
application can aid in understanding failure mechanisms in
a popular large multi-modal model: LLaVA.

1. Introduction

Recently, large language models (LLM), such as those
in the families of GPT [24] and LLaMA [39, 40], have
demonstrated astounding understanding and reasoning ca-
pabilities, as well as the ability to generate output that
adheres to human instructions. Building on this ability,
many work, such as GPT-4V [25], Qwen-VL [4], Gem-
ini [37], and LLaVA [14], have introduced visual under-
standing to LLMs. Through the addition of a vision en-
coder followed by finetuning on multimodal instruction-
following data, these prior work have demonstrated large
vision-language models (LVLM) that are able to follow hu-
man instructions to complete both textual and visual tasks
with great aptitude.

LLMs are rapidly surpassing humans in many tasks such
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as summarization, translation, general question answering,
and even creative writing. However, they are still very prone
to hallucination, i.e. the fabrication of untrue information
[12, 45]. This phenomenon of hallucination is also seen in
LVLM:s and may even include additional dimensions stem-
ming from the visual modality [42, 50]. With the intro-
duction of LVLMs and their massively increased number
of parameters, interpreting and explaining model outputs
to mitigate hallucination is becoming an ever rising chal-
lenge. In light of the need to understand the reasoning be-
hind model responses, we present an intrepretability tool
for large vision-language models: LVLM-Intrepret. The
proposed application adapts multiple interpretability meth-
ods to large vision-language models for interactive analy-
sis. These methods include raw attention, relevancy maps,
and causal interpretation. LVLM-Interpret is applicable to
any LVLM with a transformer-based LLM front-end. We
further demonstrate how we can gain insight on the inner
workings of LVLMs using our application.
The main contributions of this paper are:
* We propose an interactive tool for interpreting the inner
attention mechanisms of large vision-language models
* We present a case study that sheds light on a possible
cause behind certain failure cases in LVLMs
* Through a study on causal explanations, we postulate that
large vision-language models (such as LLaVA [14]) im-
plicitly learn to represent causal structure

2. Related Work

The advancements in deep learning models has been pre-
ceded by novel interpretability and explainability tools to
better understand the internal workings of these models.
Earlier works [43, 48, 49] demonstrated the use of explana-
tory graphs, decision trees, histograms, respectively to ana-
lyze machine learning models. As Transformer [41] based
architectures gained popularity in the field, various ap-
proaches such as [7] proposed computing relevancy scores
across the layers of the model, [31] generalized the atten-
tion from low-level input features to high-level concepts to
ensure interpretability within a specific domain, while [26]
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What color is the man's shirt?

The man's shirt is red.

Send

Figure 1. Main interface of LVLM-Interpret. Users can issue mul-
timodal queries using a chatbot interface. Basic image-editing fea-
ture allows for model probing.

presented a novel interpretability-aware redundancy reduc-
tion transformer framework.

2.1. Interpretability of Vision Models

Studying the intepretability of Vision Transformers (ViT)
has gained popularity with task-specific analysis like im-
age captioning [8, 10, 35], object detection [3, 9, 44], im-
age recognition [19, 46]. Recently, there has been an in-
creased demand for interpretability analysis for the medi-
cal domain in applications such as pathology [13, 22], reti-
nal image classification [11, 27] and COVID-19 analysis
[20, 34] among others. A novel vision transformer was
presented in [28] with a training procedure which has an
interpretability-aware training objective. [21] proposed a
method to use the activations of ViT’s hidden layers to pre-
dict the relevant parts of the input that contribute to its final
predictions, while [17] introduced quantification indicators
to measure the impact of patch interactions to effectively
exploit responsive fields of patches in ViT.

2.2. Interpretability of Multimodal Models

Multimodal models have proliferated various domains
across healthcare, multimedia, industrial applications
among others. There has been a rise in independent inter-
pretability studies of such multimodal systems [2, 6, 15, 16,
29, 36]. For the medical domain where the reasoning behind
decisions, high stakes involved are of utmost importance.
[18] demonstrated the use of an interpretability method
based on attention gradients to guide the transformer train-
ing in a more optimal direction, while [5] presented an in-
terpretable fusion of structural MRI and functional MRI
modalities to enhance the accuracy of schizophrenia.

Our hope with this proposed interpretability tool is not to
replace domain-specific solutions, but to complement them,
improving existing and future large vision language models
and further strengthen the confidence in the predictions and
behavior of these models.

3. Interface and Interpretability Functions

LVLM-Intrepret was developed using Gradio [1] and fol-
lows a standard layout for multimodal chat. Figure 1 shows
an example of the user interface. In the UlI, a user is able
to upload an image and issue multimodal queries to the
LVLM. An added editing feature allows for basic modifica-
tion of the input image to probe the model with adversarial
variations. As the LVLM model generates a response, the
attention weights of the model are stored internally and are
later presented to the user for visualization. The application
also constructs relevancy maps and causal graphs relating
to the output of the model. Once a response is returned, the
user is able to utilize these results as a way to interpret the
model output. The following sections describe each of these
interpretability functions.

3.1. Layer Attentions

Following work such as VL-Interpret [2], LVLM-Interpret
also allows for interactive visualization of raw attentions.
More specifically, our application allows users to inves-
tigate the interactions among tokens from each modality.
Heatmaps that show average attentions between image to-
kens and query tokens as well as answer tokens enables the
user to better understand the global behavior of raw atten-
tions. Figure 2 shows how a user can visualize raw atten-
tions for a specific head and layer. As shown in Figure 2a,
the user can select tokens from the generated response and
visualize the average attentions between image patches and
the selected tokens to obtain insight on how the model at-
tends to the image when generating each token. Conversely,
Figure 2b shows how a user can select image patches and
visualize the degree to which each output tokens attends to
that specific location.

3.2. Relevancy Map

Relevancy maps [6, 7] aim at interpreting the decision-
making process of transformers. These maps are designed
to enhance interpretability by illustrating how different
components of an input, whether text or image, are relevant
to the model’s generated output, overcoming some limita-
tions of traditional attention visualization techniques. The
method assigns a local relevancy scores to each element in
the input based on their contribution to the output decision.
We refer the reader to [6] for more details on the approach.

We adapted the calculation of relevancy maps to LVLMs
such as LLaVA. Relevancy scores are backward propagated
through the LLM as well as vision transformer commonly
used as the vision encoder. For image analysis, the rele-
vancy scores corresponding to image patches are reshaped
into a grid that matches the layout of the original image.
This grid forms the basis of the relevancy map. The rele-
vancy map is then upscaled to the original image size using
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(a) Image-to-Query raw attentions. The user is able to select a token or a
group of tokens to visualize the attention values of image to text output for
each head and layer.
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(b) Query-to-Image raw attentions. The user is able to select image patches to
visualize attention values going into answer tokens.

Figure 2. Visualization of crossmodal attentions

(a) Raw high-Attention

(b) Search distance = 1
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Figure 3. Causality-based explanation for the token ‘yellow’ in the generated answer ‘The man’s shirt is yellow’ athead 24.
(a) Top 50 image-tokens having the highest raw attention values. Each serves as a graph node. (b-¢) Image tokens from the explanation set
identified by the CLEANN method, at different search distances on the learned causal graph. Tokens are marked with yellow blobs.

bilinear interpolation, providing a visualization of the re-
gions of the image most relevant to each generated token.

Relevancy maps can aid in model debugging, ensuring
fairness, and providing explanations for inaccuracies by
identifying the the most relevant parts of the input to the
generated output, as demonstrated through a case study in
Section 4.

3.3. Causal Interpretation

Recently, a causal interpretation of the attention mecha-
nism in transformers was presented [33]. This interpreta-
tion leads to a method for deriving causal explanations from
attention in neural networks (CLEANN). In this sense, if
explanation tokens would have been masked in the input,
the model would have generated a different output. Such
explanations, which are a subset of the input tokens, are
generally tangible and meaningful to humans. The method
was previously demonstrated for a single modality, such as
recommendation systems [23], and text sentiment classi-
fication [33]. Here, we enable examining if multi-modal
LLMs, which are significantly larger, internally represent
causal structures. Hence, in addition to providing causal
explanation, we plot the causal graphs around the explained
tokens, and allow the user to decrease or increase the expla-

ellow
3 2 1 K J 1 2 3

Figure 4. A tree constructed from the causal graph from which
explanations for the token 'yellow’ are extracted. Arc radius
indicates distance on the causal graph. Edges are color coded,
bi-directed edges indicate a latent confounder, a circle edge-mark
indicates that both a ‘tail’ and ’arrow’ are valid.

nation set size based on this graph. We refer the reader to
[32, 33] for more details.

We employ CLEANN to explain large vision-language
models by learning causal structures over input-output se-
quences of tokens. The presence of each token in this se-
quence is an event which is represented by a node in the
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Is the door of the truck cab open?

Yes, the door of the truck cab is open.

Figure 5. Example where LLaVA seems to prioritize text in-
put over image content. Presented with an unchanging image
of a garbage truck, the model provides contradictory responses
(‘yes, the door is open’ vs. ‘yes, the door is
closed’) based on the query’s phrasing. Relevancy maps and
bar plots for open and closed tokens demonstrate higher text
relevance compared to image.

causal graph. Thus, the event of generating an output token
is explained by the presence of a subset of input tokens.

Consider the following example. A sequence of image
token is given as part of the prompt, and the text prompt
is ‘What color is the man’s shirt?’. In re-
sponse, the model generates ‘The man’s shirt is
yellow.’. One may be interested in understanding which
image tokens are responsible for the the token yellow.
That is, identify the parts of the image such that if masked,
will cause the model to output a different color. First,
the top-k tokens having the highest attention values for
yellow are assigned to nodes. Then, using the full at-
tention matrix of the last (deepest) layer is used to learn a
causal graph. This causal graph is a partial ancestral graph
[30, 47], where a circle edge-mark indicates a non identifi-
able edge mark (head and tail are equally valid). From this
graph, a tree rooted at node yel1ow is extracted (Figure 4)
such that it includes all paths that potentially influence the
root [33, Appendix B. Definition 2]. CLEANN searches
for the minimal explaining set by gradually increasing the
search distance in this tree (radius in Figure 4) from the
explained node. An example is given in Figure 3. In Fig-
ure 3a, the 50 tokens having the highest attention values
are marked. In Figure 3b—Figure 3e, tokens within different
search distances from the explained token are marked.

This explanation approach solely relies on attention val-
ues in the last layer. While raw attention values de-
scribe pair-wise, marginal dependence relations, the causal-
discovery algorithm in CLEANN identifies conditional in-
dependence relations. Thus, based only on the current
trained weights, it can identify those tokens that if perturbed
may change the generated token.

Image-Responsive Accuracy “what color is the man’s shirt?”

uuuuuuuuuuuuuuuuu

Text-Responsive Consistency
“Is the color of the man’s shirt blue?”

I . . I “Is the man wearing a white shirt?”

Figure 6. Example where LLaVA demonstrates visual consistency
with high relevancy scores for correct output tokens. With a con-
stant query, ‘What color is the man’s shirt?’, man-
ually altering the shirt’s color in the image (purple, green) changes
the model’s answer which align with image changes. Relevancy
scores highlight stronger connections to image than text tokens,
illustrated by the image relevancy maps (upper row) and a bar plot
comparison of relevancy scores. With a constant image, despite
different question phrasings, the model demonstrates consistency
in its answer, underscoring a strong relevancy of the yellow to-
ken to the visual input over the textual input variations.

4. Case Study

To demonstrate the functionalities of LVLM-Interpret, we
analyze the LLaVA model on samples from the Multi-
modal Visual Patterns (MMVP) benchmark dataset [38].
MMVP focuses on identifying “CLIP-blind” images that
are demonstrably hard for LVLMs to reason on. This
dataset is of particular interest for our study since it high-
lights the challenges faced in answering relatively straight-
forward questions, often leading to incorrect responses.

We adapted the relevancy scores to examine the impact
of both text and image tokens on the output generated by
LLaVA-v1.5-7b. Given that the text and vision transformers
responsible for generating the input embedding were kept
frozen during LLaVA finetuning, our initial step involved
calculating the relevancy scores for each generated output
relative to the input features to LLaMA, focusing on the
LLaMA self-attention layers. We observed instances where
LLaVA mainly attends to the text tokens and less to the im-
age tokens, indicated by lower relevancy scores to the im-
age tokens relatively to relevancy scores to the input text
tokens. In these cases, the model becomes more susceptible
to manipulation, in some cases altering its responses based
on the query with low regard to the image content. This
phenomenon is exemplified by the truck scenario depicted
in Figure 5. Conversely, when the generated outputs exhibit
a greater relevance to image tokens than to input text, the
accuracy of LLaVA appears to remain unaffected by how
the question is phrased, as illustrated in Figure 6.
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5. Conclusions and Future Directions

In this paper we presented LVLM-Interpret, an interactive
tool for interpreting responses from large vision-language
models. The tool offers a way to visualize how generated
outputs relate to the input image through raw attention, rel-
evancy maps, and causal interpretation. Through the many
interpretability functions, users can explore the inner mech-
anisms of LVLMs and obtain insights on failure cases. The
application can also reveal several potential paths for en-
hancing the performance of LVLMs. Future work can in-
clude consolidation of the multiple interpretability methods
for a more comprehensive metric to explain the reasoning
behind model responses.
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