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ABSTRACT

Unified Multimodal Large Language Models (U-MLLMs) have garnered consid-
erable interest for their ability to seamlessly integrate generation and comprehen-
sion tasks. However, existing research lacks a unified evaluation standard, of-
ten relying on isolated benchmarks to assess these capabilities. Moreover, cur-
rent work highlights the potential of “mixed-modality generation capabilities”
through case studies—such as generating auxiliary lines in images to solve geo-
metric problems, or reasoning through a problem before generating a correspond-
ing image. Despite this, there is no standardized benchmark to assess models on
such unified tasks. To address this gap, we introduce MME-Unify, also termed
as MME-U, the first open and reproducible benchmark designed to evaluate mul-
timodal comprehension, generation, and mixed-modality generation capabilities.
For comprehension and generation tasks, we curate a diverse set of tasks from 12
datasets, aligning their formats and metrics to develop a standardized evaluation
framework. For unified tasks, we design five subtasks to rigorously assess how
models’ understanding and generation capabilities can mutually enhance each
other. Evaluation of 17 U-MLLMs, including Janus-Pro, Bagel, and Gemini2-
Flash, reveals significant room for improvement, particularly in areas such as in-
struction following and image generation quality.
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(a) MME-U tasks.

    Question:   
         What's the profession of the
 people in this picture?
    Options:
          A.  Cashier             B. architect
          C. detective            D. accountant
      

Identity_reasoning Physical_relation Attribute_recognitio
n        Question:   

             Where is the zebra?
       Options:
             A. It is on the right 
             B. It is on the left
             C. It is on the top 
             D. It is on the bottom       

Question:   
     What is the color of the small 
block that is the same material 
as the big brown thing?
Options:
      A. cyan       B. gray
      C. blue          D. yellow      

Multiple-Images & Text 
ComprehensionQuestion:   

    What are the differences between the two images?
Options:
    A. The person with the black umbrella is gone, and the blue
 car on the left side is gone
    B.  The person with the black umbrella is gone, and the 
SUV on the right side is gone
    C.  The person with the red umbrella is gone, and the SUV on the left side is gone
    D.  The blue car on the left side is gone, and the SUV on the right side is gone

Object Reasoning

Question:   
    What is the most likely role of the blonde woman in the video, clad in a 
blue T-shirt and black shorts?
Options:      A. Driver       B Teacher C. Tourist          D. Tour guide 

Rank MME-U Score
Gemini2.5-flash 50.04
Gemini2.0-flash 45.57

RecA 42.60
4 GPT-4o-Image 41.06
5 Bagel 40.35
6 MIO-Instruct 37.17
7 SEED-LLaMA 28.45
8 Anole 18.59

Rank MME-U Score
Gemini2.0-flash 45.57
MIO-Instruct 37.17
SEED-LLaMA 28.45

4 Anole 18.59
5 VLIA-U 18.58
6 Janus-Pro 18.10

(b) Leaderboard.

Figure 1: A comprehensive visualization of the diverse tasks in MME-U and the leaderboard.
The figure (a) illustrates the wide-ranging nature of the tasks covered in our benchmark, which
spans from traditional understanding tasks to complex mixed-modality generation challenges. The
leaderboard (b) highlights the performance rankings of various U-MLLMs in our benchmark.

1 INTRODUCTION

Unlike traditional MLLMs (e.g., GPT-4V) and purely generative models (e.g., DALL-E 3), U-
MLLMs Xie et al. (2025b); Wang et al. (2024b); Chen et al. (2025); Ma et al. (2024) excel in
processing mixed-modal inputs and outputs, providing enhanced flexibility and the ability to ad-
dress a broader spectrum of complex tasks. Recently, closed-source U-MLLMs, such as Gemini 2.0

1
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A photorealistic modern kitchen with a minimalist "Galactic Berry Tart" poster 

featuring an appetizing tart, accompanied by a detailed recipe and soft morning 

light illuminating the scene.

A rain-soaked telephone pole on a suburban street with a slightly damp "LOST 

DOG" poster, featuring information about the missing dog, including the last 

seen location, contact number, and a $500 reward.

An astronaut stands on an alien planet, gazing at a breathtaking sky filled with twin 

moons and vibrant auroras. A mission flag planted beside them reads: 'WELCOME 

TO THE NEW ERA' in bold,

Generate a Ghibli-style dog

Figure 2: Complex instruction-based image generation comparison of results from open-source
U-MLLMs (DeepSeek-Janus Flow, EMU3), closed-source U-MLLMs (GPT-4o, Gemini-2), and
proprietary models (DALLE-3). The closed-source U-MLLMs have demonstrated abilities surpass-
ing proprietary generation models, with a significantly larger gap compared to open-source models.

Flash, have demonstrated exceptional generative capabilities, impressing in both instruction com-
prehension and image creation, as shown in Figure 2. These models exhibit an extraordinary grasp
of image details, even surpassing proprietary generative models. However, this versatility also intro-
duces considerable challenges in comprehensively evaluating their capabilities under unified evalu-
ation criteria, primarily due to two key issues:

• Lack of Standardized Benchmarks for Traditional Tasks. Existing works typically
evaluate traditional generation and understanding tasks separately, using various bench-
marks. However, the benchmarks chosen across studies are inconsistent, and often in-
compatible, leading to unfair comparisons. Moreover, the evaluation methods differ sig-
nificantly—multimodal understanding tasks may involve varied formats such as multiple-
choice questions, GPT-4 scoring, or binary classification, while multimodal generation
tasks may rely on metrics like CLIP score or FID. This diversity in evaluation makes it
difficult to derive an intuitive and unified performance score.

• Absence of Benchmarks for Mixed-Modality Generation1. The most distinctive fea-
ture of U-MLLMs is their mixed-modality generation capabilities, which demonstrate the
synergistic interaction between multiple modalities. For instance, image editing requires
accurately understanding textual instructions and identifying objects to be modified, while
solving geometry problems involves comprehending the problem, drawing auxiliary lines,
and performing logical reasoning. Despite these advanced capabilities, most methods only
showcase simple cases, lacking a standardized benchmark to rigorously assess these com-
plex mixed-modality tasks.

To address these challenges, we propose a comprehensive evaluation framework for U-MLLMs,
which is shown in Figure 1. For traditional generation and understanding tasks, we sample data
from 12 existing datasets, resulting in 10 tasks with 30 subtasks. On the understanding side, these
tasks encompass single-image, multi-image, and video-based perception and reasoning tasks, cov-
ering a wide range of difficulties—from simple visual question-answering (VQA) to high-resolution
VQA in real-world scenarios and long-video understanding. On the generation side, we include
tasks such as image/video generation and editing, as well as more complex conditional image gener-
ation and image-to-video generation, aiming to cover the full spectrum of existing generative tasks.

1also termed as unify tasks
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Table 1: Comparison of MME-U and other Benchmark. SIPU: Single Image Perception & Un-
derstanding; MITIU: Multiple & Interleaved Image-Text Understanding; VPU: Video Perception &
Understanding; CIVG: Conditional Image-to-Video Generation; FIR: Fine-grained Image Recon-
struction; TIE: Text-Guided Image Editing; TIG: Text-to-Image Generation; TVG: Text-to-Video
Generation; VP: Video Prediction; UT: Unified Task.

Benchmark Question Year Understanding Generation Unify
SIPU MITIU VPU FIR TIE TIG CIVG TVG VP UT

MSR-VTT Xu et al. (2016) 10,000 CVPR 2016 × × ✓ × × × × × × ×
MMBench Liu et al. (2024) 3,217 arXiv 2023 ✓ × × × × × × × × ×
GenEval Ghosh et al. (2023) 1,200 arXiv 2023 × × × × × ✓ × × × ×
MagicBrush Zhang et al. (2023) 10,338 NeurIPS 2023 × × × ✓ ✓ × × × × ×
VBench Huang et al. (2024) 1,600 CVPR 2024 × × × × × × × ✓ × ×
SEED-Bench2 Li et al. (2023) 19,242 arXiv 2024 ✓ ✓ ✓ ✓ ✓ ✓ × × × ×
Emu-Edit Sheynin et al. (2024) 5,611 CVPR 2024 × × × ✓ ✓ × × × × ×
TIP-I2V Wang & Yang (2024) 500,000 arXiv 2024 × × × × × × ✓ × ✓ ×
MMBench-Video Fang et al. (2025) 2,000 NeurIPS 2024 × × ✓ × × × × × × ×
MME Fu et al. (2023) 2,374 arXiv 2023 ✓ × × × × × × × × ×
Video-MME Fu et al. (2024a) 2,700 CVPR 2025 × × ✓ × × × × × × ×
MME-RealWorld Zhang et al. (2025b) 29,429 ICLR 2025 ✓ × × × × × × × × ×
Wise Niu et al. (2025) 1,000 arXiv 2025 × × × × × × × × × ✓

MME-Unify (ours) 4,100 2025 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

To simplify evaluation and provide a unified score, we manually reformat all understanding tasks
into multiple-choice questions, reporting accuracy as the primary metric. For generation tasks, we
standardize the evaluation scores and normalize them to provide a consistent metric. This approach
reduces the difficulty of benchmark collection and mitigates the issue of inconsistent evaluation
metrics across studies.

For the Unified Tasks, we constructed five tasks: (1) Image Editing and Explaining, where the
model first understands complex editing instructions and edits an image; (2) Common Sense Ques-
tion Answering, where the model answers a question and generates the corresponding image; (3)
Auxiliary Lines, where the model draws auxiliary lines for geometry problems and then solves them;
(4) SpotDiff, where the model identifies and draws the differences between two images; and (5) Vi-
sual CoT, where the model generates step-by-step strategies for navigating a maze and visualizes
the next state. These tasks evaluate a model’s ability to perform sequential reasoning and generate
corresponding multimodal outputs at each step. All tasks are carefully formatted as multiple-choice
questions to facilitate consistent, fair, and objective evaluation.

We evaluate 17 existing U-MLLMs, including Janus-Pro, Bagel, VILA-U, and MiniGPT-5. To pro-
vide context for their performance, we also compare them with specialized understanding models
(e.g., Claude-3.5 Sonnet, Qwen2.5-VL) and generative models (e.g., DALL-E-2, DALL-E-3). This
comprehensive evaluation not only underscores the strengths and weaknesses of U-MLLMs but also
establishes a standardized benchmark for future research in this rapidly evolving field. For exam-
ple, we uncover several key experimental findings, as illustrated in Figure 1. Currently, U-MLLMs
exhibit significant variance in rankings across three dimensions, and no single model has emerged
as the best performer across multiple capabilities. Moreover, the performance gap between models
is substantial. Finally, the current open-sourced U-MLLMs still exhibit a significant gap in perfor-
mance compared to specialized models in both understanding and generation tasks. Additionally,
while many works claim to handle mixed-modality generation, our unify task tests demonstrate that
most of existing U-MLLMs struggle to consistently and effectively process these types of tasks.

2 MME-UNIFY

This section outlines the data collection, question annotation, and evaluation strategy for MME-
Unify. Figures 1 and 3 provide visual representations of subtasks and samples across three domains,
while Table 1 compares MME-U with existing benchmarks. MME-U categorizes U-MLLM capa-
bilities into three areas: (1) Multimodal Understanding, (2) Multimodal Generation, and (3) Unify
Capability, highlighting the diverse aspects of model performance.

2.1 MULTI-MODAL UNDERSTANDING

Data Collection. Multimodal understanding tasks are divided into three subcategories based on
visual input type:

3
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Prompt: You are an expert in �ine-grained
image reconstruction. Given an input image,
analyze its intricate details, including texture,
color variations, structural patterns, and subtle
features. Reconstruct the image with high
�idelity, preserving these
�ine-grained attributes
while ensuring overall
visual coherence.

Generation

Prompt:
A woman in a white shirt

and blue skirt is standing in
a grassy area, reaching out
to pick up a blue frisbee
From a frisbee holder. She is
wearing black shoes and has
a watch on her left wrist. The frisbee holder has
multiple frisbees inside, including a yellow one.

Text-Image Editing

Prompt: Add a fork to the
plate.

Conditional
Image to

Video
Generation

Prompt: A
man walked

away smiling.

Text to Video
Generation

Prompt: A man is being
interviewed on the street.

Video
Prediction

Prompt: A
Children

walking the Dog.

Understanding

Question: Could you please tell me how much
my sister spent on this McDonald's?

This	is	the	McDonald's
my sister bought.

This	is	the	McDonald's
$1 $2 $3 Dollar Menu.

A: 2 dollars B: 1 dollars C: 3 dollars D:	6	dollars

Interleaved Image & Text
Comprehension

Multiple-Images Comprehension

Question: What are the jokes in the following four pictures?

A: The dog ate the stone B: The dog is swimming

C:	The	dog	was	stung	all	over	by	bees

D: The dog is climbing the tree

Question:Which option
describe the object relationship
in the image correctly?
A.	The	pillows	are	on	the	bed

B. The handbag is on the bed

C. The man is attached to the bed

D. The man is lying on the bed

Single Image
Comprehension

Video Perception and Understanding
Question: Based on the video, how is the
group dressed for their performance?

A. Costumes from different musical eras B. Casual streetwear
C.	Formal	attire	with	black and	white	colors D. Matching school uniforms

Fine Grained
Image Reconstruction

Spot Diff

Image a A: 15 B:	13 C: 19 D: 10

Question: Compare img_a
and img_b to �ind all
differences. Select the correct
answer from the provided
multiple-choice options.
Extract the different regions
from img_a and place them on
four equally sized white
backgrounds.

Image b

Image	Choices:

Evaluation Pipeline of Unify Tasks

Image Explaining and Editing

Image	Choices:

Question: Take the sticker off of the
hydrant. Provide concise explanations of
edit objects and edit instructions, and
generate corresponding edit images.

Text	Choices:

Commonsense Question Answering
Question: A famous wrought-iron lattice tower located in the heart of Paris, France.
Please generate the correct image and three related but incorrect images

Image Choices:

Text	Choices:
A. Big Ben B. Statue of Liberty C. Leaning Tower of Pisa D. Eiffel	Tower

Auxiliary Lines
Question: Given a parallelogram CDEF,
where the length of line segment ED is ...
Use red dashed lines to draw the correct
guide line, and three wrong guide lines

A.150

B. 259.9

C. 300

D. 519.6

B…, C…, D…

Text-Image Generation

Text Choices:

Image	Choices:Text	Choices:

Image Choices:

A …, B…, C…, D…
Text Choices:

Question

Input Image Output Text:A

Output Image

CLIP-Score Matching

A …, B…, C…, D…

Text Choices:Choices Matching

0.84, 0.92, 0.56, 0.45

Unify Tasks

Visual CoT
Question: Given the initial maze, your objective is to assist in guiding the character from the starting point to the gift. The
constraint is to move the character one square at a time, with the top-left corner of the grid having coordinates (0, 0).
Now, please choose the action for the first move, the target coordinates, and provide the updated maze image after this move.

Action	Choices:

A. LeftB. Up C. Right D. Down

Coordinates	Choices:

A. (3,3) B. (3,1)

C. (2,1) D. (3,2)

Image	Choices:

A.	The	target	object	is
a	red	�ire	hydrant	...

Figure 3: Diagram of our MME-Unify. Our benchmark consists of 3 main domains, encompassing
15 subtasks to comprehensively evaluate U-MLLMs’ understanding, generation, and unified capa-
bilities. Specifically, each unify task includes at least one question, an input image, multiple text
choices, and image choices. The image choices consist of a correct answer image and a set of man-
ually crafted negative samples. During the evaluation process, we input the image, question, and
text options, and the U-MLLMs are required to select the correct text answer and generate an image.
The text answer is evaluated by matching it with the correct answer, while the generated image is
compared with the constructed image choices. If the CLIP score between the generated image and
the correct answer image is the highest, it is considered correct; otherwise, it is deemed incorrect.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Single-Image Perception and Understanding (SIPU). This task is designed to evaluate
image-text pair comprehension.

• Multi-Image & Interleaved Text-Image Understanding (MITIU). Assesses the model’s abil-
ity to handle and process multi-image and interleaved text-image inputs.

• Video Perception and Understanding (VPU). Measures video comprehension capability.

To ensure comprehensive coverage of various image and video understanding scenarios, we collect
1,900 samples from 5 benchmarks such as MME and MMBench, encompassing over 24 tasks. This
includes 1,600 perception tasks, such as OCR, diagram and table understanding, and spatial per-
ception, along with 300 reasoning tasks, including attribute reasoning and action reasoning, with at
least 50 QA pairs per sub-task. Additional details can be found in Appendix Figure 7 and Appendix
Table 13. More visualization examples can be found in Appendix Figure 5.

QA Pairs Reformulation. To standardize the evaluation of the understanding task, we convert all
the collcted data into multiple-choice QA pairs, with one correct option and the remaining options
carefully designed to be closely related to it. For models that can accept only single-image input, we
use the first image from the multi-image input or the first frame from the video input. For models
that cannot process video files (e.g., MP4 files), we uniformly sample six key frames from the video
to serve as the visual input.

Evaluation Strategy. To fairly evaluate MLLM outputs, we apply rule-based filtering to match
model responses with answer options, similar to MME-Realworld Zhang et al. (2025b); Fu et al.
(2024a). Furthermore, to eliminate positional bias inherent in multiple-choice questions, the correct
answer is randomly shuffled among the four available options. We then calculate the average ac-
curacy across all sub-tasks and derive the overall understanding score, providing a fair, robust, and
unbiased evaluation of the model’s performance.

2.2 MULTI-MODAL GENERATION

Multimodal generation involves various tasks for image and video modalities, which can be further
subdivided based on application, as shown in Figure 3: 1. Fine-grained Image Reconstruction
(FIR). Given an original image, the model is required to restore detailed features and local textures.
2. Text-guided Image Editing (TIE). Edit or modify an image based on textual instructions. 3. Text-
guided Image Generation (TIG). Given a text description, the model needs to generate an image that
matches it. 4. Conditional Image-to-Video Generation (CIVG). Generate a dynamic video sequence
based a given image and text prompt. 5. Text-guided Video Generation (TVG). Generate a video
sequence based on a textual description. 6. Video Prediction (VP). Predict subsequent frames or the
complete video sequence based on the information from the first frame.

Data Collection. Data is collected from benchmark datasets, such as COCO Lin et al. (2014a),
Emu-Edit Sheynin et al. (2024), MSR-VTT Xu et al. (2016), ensuring at least 200 samples for each
task. For video prediction, videos are sourced from the Pexel Video website2 and the first frame
is used for prediction. Detailed data sources and sample sizes are in Appendix Table 13. More
visualization examples can be found in Figure 6.

QA Pairs Reformulation. Due to the diversity of generation tasks and their varied data sources, the
collected samples contain redundant attributes and inconsistent number of images, videos, and other
multimodal data. We aim to provide a streamlined, unified evaluation framework. To achieve this,
we contribute the following:

• Attribute Unification Pipeline. First, we summarize all attributes appearing in the data,
which exceed 30 types, creating significant complexity. We then manually eliminate task-
irrelevant attributes and merge similar attributes across different tasks. For example, text
attributes are represented as Text Prompt, image attributes as Src Image and Ref Image
based on their input/output roles, and video attributes as Video. For any task where an
attribute is not required, its corresponding value remains empty.

• Task-Specific Prompt Engineering. To ensure that the model can effectively generate
outputs that meet the task requirements, we establish specific system prompts for each

2https://www.pexels.com/videos/
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subtask. Each sample’s text prompt or src image serves as the input, while the reference
image or video acts as the ground truth answer. Through standardizing attribute values
and constructing tailored prompts, we convert diverse samples from different tasks into a
unified format for evaluating multimodal generation tasks.

Evaluation Strategy. Evaluating multimodal generation tasks with a unified metric is challenging
due to the diversity of subdomains and their distinct metrics (e.g., CLIP-I, CLIP-T, FVD, FID).
To address this, we: (1) Perform domain-specific preliminary evaluations using standard metrics;
(2) Standardize all metrics to a consistent (0, 100) scale, converting non-positive indicators into
positive ones; and (3) Compute the average of standardized scores to derive the final generation
score. This approach ensures cross-task comparability while maintaining domain-specific evaluation
rigor. Detailed metrics and standardization methods are provided in Appendix H.

2.3 UNIFY CAPABILITY

MME-U contains five unified subtasks: (1) Common Sense Question Answering (CSQ), (2) Image
Editing and Explaining (IEE), (3) SpotDiff (SD), (4) Auxiliary Lines (AL), and (5) Visual CoT
(VCoT). Each subtask includes at least 50 manually constructed samples and is structured with task-
specific instructions and question templates that require mixed-modality input-to-output generation.

Common Sense Question Answering. This task evaluates U-MLLMs’ ability to associate com-
monsense descriptions with visual features, such as linking “the tomb of an ancient Egyptian
pharaoh” to a pyramid or “China’s national treasure” to a panda. Our approach involves: 1. Question
Construction. Using GPT-4o, we generate riddle-like questions based on commonsense concepts,
with similar but incorrect words as negative options. For example, when the answer is “panda,” we
select “brown bear” or “polar bear” as negative options to increase difficulty. 2. Image Collection.
We manually gather images from the internet corresponding to the correct and their negative op-
tions. 3. Task Execution. U-MLLMs are prompted to select the correct textual option and generate
the corresponding image. Detailed procedures and the prompt are in Figure 9(a) and 20.

Image Editing and Explanation. This task evaluates U-MLLMs’ ability to understand complex
editing instructions and generate accurate modifications. Our methodology includes: 1. Data Col-
lection. We source data (source images, editing instructions, and reference images) from the Emu-
Edit dataset. 2. Textual QA Construction. Using GPT-4o, we generate accurate interpretations of
editing targets and three incorrect interpretations for textual multiple-choice questions. 3. Visual
QA Construction. The correct instruction corresponds to the target image in Emu-Edit. For incor-
rect instructions, we input them into InstructPix2Pix Brooks et al. (2023) to generate negatively
edited images, forming image-based multiple-choice questions. 4. Task Execution. Given the cor-
responding prompt, source image, and editing instructions, the model must first produce a correct
understanding of the editing target and instructions, and then generate an edited image based on that
understanding. Detailed procedures and the system prompt are in Figure 9(b) and 21.

SpotDiff. When identifying differences between two similar images, humans typically need to recall
the exact locations of these differences to accurately count them. This task evaluates U-MLLMs’
ability to identify and recall differences between similar images, simulating human visual reasoning.
Our approach involves: 1.Data Collection: We sample image pairs with annotated differences from
the SpotDiff website3. 2. Textual QA Construction. Using the annotated difference count, we create
textual multiple-choice questions with three incorrect counts (±10 from the true value). 3. Visual
QA Construction. We place the annotated difference regions from the image pair onto a white
background as the correct answer, and randomly crop other areas to place them on the background
as incorrect answers. 4. Task Execution. U-MLLMs must identify the difference regions between
the two images and draw them onto the white background, while also selecting the correct difference
count. Detailed procedures in Figure 9(c), and the system prompt is provided in Figure 22.

Auxiliary Lines. This task evaluates U-MLLMs’ ability to integrate understanding and generation
by solving geometric problems requiring auxiliary lines. Our methodology includes: 1. Data Se-
lection. We filter the Geometry3K dataset for problems requiring auxiliary lines, extracting logical
forms (e.g., “Triangle(A, B, C)”), choices, and answers. 2. Textual QA Construction. Using GPT-
4o, we generate natural language QA pairs (Question, Choices, Answer) for textual multiple-choice

3https://www.allstarpuzzles.com/spotdiff
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questions. 3. Visual QA Construction. We manually solve each sampled geometric problem by
drawing the correct auxiliary lines on its diagram, and we construct three additional diagrams with
erroneous auxiliary lines. 4. Task Execution. U-MLLMs must first generate a geometric diagram
with auxiliary lines, and then, based on that diagram, solve the problem by selecting the correct
answer. Detailed procedures appear in Figure 9(d), and the prompt is provided in Figure 23.

Visual CoT. This task evaluates U-MLLMs’ step-by-step decision-making in maze navigation, sim-
ulating real-world problem-solving. Our approach involves: 1. Maze Generation. Using the Ope-
nAI API, we create maze configurations of varying sizes (3×3, 4×4, 5×5) and layouts. 2. Action
Specification. For each step, we manually define actions (Up, Right, Down, Left, Finish) and co-
ordinates, updating the maze layout via the API. 3. QA Construction. - Action Questions. Options
are uniformly set as Up, Right, Down, and Left, with the correct answer manually determined. -
Coordinate/Image Questions. The correct answers for each step’s coordinates and state image are
manually defined, and negative samples are also manually specified. 4. Task Execution. U-MLLMs
receive the initial maze state and task definition, then are prompted to generate actions, coordinates,
and maze images iteratively. After the first step, we add the action, coordinate, and image from
the previous decision into the system prompt as history information. The model iterates, outputting
each step’s decision until the target is reached4. Detailed procedures appear in Figure 9(e), and the
prompts are in Figure 24 and 25.

Evaluation Strategy. The unified tasks evaluation combines text-based and image-based multiple-
choice questions across all subtasks. Our evaluation framework includes:

1. Textual QA Evaluation. For image explanation and editing, we compute CLIP-T similarity
between the generated explanation and each option, selecting the one with the highest sim-
ilarity as the correct answer. For other tasks, U-MLLMs directly select the correct option
from the provided multiple-choice set.

2. Image-Based QA Evaluation. We compute CLIP-I similarity between the generated im-
age and each candidate image option, selecting the image option with the highest CLIP-I
similarity as the model’s prediction.

3. Task-Specific Rules. For each task we calculate two accuracy metrics—acc and acc+—
where acc is defined as the average of the text option accuracy and the image accuracy, and
acc+ represents the accuracy for samples where both the textual and image-based answers
are correct. Specifically, for the Visual CoT task, each step is treated as a multiple-choice
question, and the accuracy of action, accordinate and image are calculated separately, and
the average of these three accuracies is calculated as acc, while the accuracy of successfully
completing the maze is used to calculate acc+. The detailed calculation process can be
found in the Appendix H

We then calculate the average acc of all subtasks as the unified score, and the overall MME-U score
is the average of the understanding, generation, and unified scores.

3 EXPERIMENT

We evaluate a total of 31 MLLMs and U-MLLMs, including DeepSeek-Janus-Pro Chen et al.
(2025), DeepSeek-Janus-Flow Ma et al. (2024), SliME Zhang et al. (2024), VITA-1.5 Fu et al.
(2025), Gemini2.0-flash DeepMind (2024), Gemini2.5-pro DeepMind (2024), Gemini2.0-flash-
exp DeepMind (2024), Gemini2.5-flash-image DeepMind (2024), Claude-3.5sonnet Anthropic
(2024), Emu3 Wang et al. (2024b), GPT-4o OpenAI (2024c), GPT-4o-Image OpenAI (2024c),
OmniGen Xiao et al. (2024), DALL-E-2 OpenAI (2024a), DALL-E-3 OpenAI (2024b), Qwen-
Image Wu et al. (2025), Qwen-Image-Edit Wu et al. (2025), CogVideoXYang et al. (2025b), Her-
mesFlow Yang et al. (2025a), Qwen2.5-VL-Instruct Wang et al. (2024a), Intern-VL-3 Zhu et al.
(2025), Show-o Xie et al. (2025b), Show-o2 Xie et al. (2025c), VILA-U Wu et al. (2024), GILL Koh
et al. (2023), Anole Chern et al. (2024), MIO-Instruct Wang et al. (2024c), SEED-LLaMA Ge
et al. (2024), MiniGPT-5 Zheng et al. (2023), Bagel Deng et al. (2025), RecA Xie et al. (2025a).

4task requires an average of 3.5 steps per sample, with a minimum of two and a maximum of seven steps
(as shown in Figure 8).
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Among the baselines, SliME, VITA-1.5, Qwen2.5-VL, Intern-VL-3, Gemini2.0-flash, Gemini2.5-
Pro, Claude-3.5-sonnet, OmniGen, DALL-E-2, DALL-E-3, Qwen-Image, Qwen-Image-Edit are
specialized understanding models or generative models. Notably, GILL, Anole, MIO-Instruct,
SEED-LLaMA, MiniGPT-5, Gemini2.0-flash-exp, Bagel, RecA, GPT-4o-Image, Gemini2.5-flash-
image can generate interleaved images and texts. Some MLLMs also can generate arbitrarily in-
terlaced modalities, but they are not available as open-source code or model weights yet, such as
PUMA Fang et al. (2024), VITRON Fei et al. (2024) and TextHarmony Zhao et al. (2024).

Method LLM Understanding Generation Unify MME-U Score
Task Split SIPU MITIU VPU Avg CIVG FIR TIE TIG TVG VP Avg IEE CSQ AL SD VCoT Avg Avg
QA pairs 1200 400 364 1964 600 200 200 200 200 194 1594 200 101 52 104 90 546 4104

Understanding Models
SliME-7B Vicuna-7B 58.50 43.53 36.02 46.02 - - - - - - - - - - - - - 15.34

VITA-1.5 Qwen-7B 70.67 56.00 56.04 60.89 - - - - - - - - - - - - - 20.30

Qwen2.5-VL-Instruct Qwen-7B 75.08 53.50 57.14 61.91 - - - - - - - - - - - - - 20.64

Intern-VL3 Qwen2.5-7B 75.58 52.75 58.24 62.19 - - - - - - - - - - - - - 20.73

Claude-3.5-sonnet - 75.83 53.25 58.52 62.53 - - - - - - - - - - - - - 20.84

GPT-4o - 74.01 54.50 59.34 62.62 - - - - - - - - - - - - - 20.87

Gemini2.0-flash - 80.92 61.75 64.64 69.10 - - - - - - - - - - - - - 23.03

Gemini2.5-Pro - 87.00 69.00 66.21 74.07 - - - - - - - - - - - - - 24.69

Generative Models
DALL-E-2 - - - - - - - - 50.62 - - 8.44 - - - - - - 2.81

DALL-E-3 - - - - - - - - 51.40 - - 8.57 2.86

Qwen-Image - - - - - - - - 72.43 - - 12.07 - - - - - - 4.02

OmniGen - - - - - - 48.82 43.82 51.05 - - 23.95 - - - - - - 7.98

Qwen-Image-Edit - - - - - - - - - 58.81 88.86 24.61 8.21

CogVideoX - - - - - 68.05 - - - 69.62 87.61 37.54 - - - - - - 12.51

Unified Models
Show-o Phi-1.5 32.47 34.75 25.66 30.96 - - - 43.54 - - 7.26 - - - - - - 12.74

Emu3 LLama-8B 45.75 30.50 23.32 33.19 - - - 49.08 - - 8.18 - - - - - - 13.79

HermesFlow Phi-1.5 41.49 33.00 28.32 34.27 - - - 46.48 - - 7.75 - - - - - - 14.01

GILL∗ OPT-6-7B 22.18 6.00 3.56 10.58 - 50.67 35.71 46.60 - - 22.16 24.25 21.29 8.66 6.67 1.90 12.55 15.10

Janus-Flow DeepSeek-LLM-1.5b-base 63.17 32.00 35.16 43.44 - - - 32.88 - - 5.48 - - - - - - 16.31

MiniGPT-5∗ Vicuna-7B 19.25 10.92 15.93 15.37 - 38.96 35.04 35.48 - - 18.25 22.80 34.13 14.37 5.00 2.08 15.67 16.43

Janus-Pro DeepSeek-LLM-7b-base 59.56 43.50 42.22 48.43 - - - 35.29 - - 5.88 - - - - - - 18.10

VILA-U LLama-7B 51.04 32.25 36.54 39.95 - - - 45.10 49.64 - 15.79 - - - - - - 18.58

Anole∗ - 17.17 14.50 9.00 13.56 - 36.64 43.42 41.52 - - 19.91 18.55 59.65 14.42 15.00 3.89 22.30 18.59

Show-o2 Qwen2.5-7B 68.33 47.00 50.00 55.11 - - - 50.18 - - 8.36 - 66.34 - - - 13.27 23.94

SEED-LLaMA∗ LLaMA2-Chat-13B 49.17 33.00 36.26 39.48 - 57.00 42.26 41.96 - - 23.54 22.00 51.49 12.50 22.00 3.61 22.32 28.45

MIO-Instruct∗ MIO-7B 52.00 33.50 39.01 41.50 51.24 59.29 43.66 48.23 51.88 66.37 53.45 24.16 38.50 8.66 11.50 0 16.56 37.17

Bagel∗ Qwen2.5-7B 76.67 53.00 51.10 60.26 - - - 44.51 45.46 59.91 24.98 33.34 7.23 31.73 25.50 11.20 35.80 40.35

GPT-4o-Image∗ - 65.50 49.50 45.05 53.35 - - - 60.07 46.58 65.65 28.72 43.00 86.64 42.31 22.50 11.02 41.10 41.06

RecA∗ Qwen2.5-7B 76.00 57.00 56.04 63.01 - - - 46.30 46.87 72.88 27.36 35.67 79.21 33.66 26.50 12.22 37.45 42.60

Gemini2.0-flash-exp∗ - 72.58 68.25 54.90 65.24 - 77.61 43.54 57.56 - - 29.79 38.42 74.75 47.12 26.00 12.41 40.74 45.57

Gemini2.5-flash-image∗ - 80.25 70.75 58.79 69.93 - - - 66.29 52.90 85.32 34.09 48.75 86.02 59.62 25.50 15.23 47.02 50.04

Table 2: Comparison of MLLMs on understanding, generation, unifying tasks, and overall
MME-U Score. SIPU: Single Image Perception & Understanding; MITIU: Multiple & Interleaved
Image-Text Understanding; VPU: Video Perception & Understanding; CIVG: Conditional Image-
to-Video Generation; FIR: Fine-grained Image Reconstruction; TIE: Text-Guided Image Editing;
TIG: Text-to-Image Generation; TVG: Text-to-Video Generation; VP: Video Prediction; IEE: Im-
age Editing and Explaining; CSQ: Common Sense Question Answering; AL: Auxiliary Lines; SD:
SpotDiff; VCoT: Visual CoT. ∗ denotes U-MLLMs with the ability to generate interleaved images
and texts, while ‘-’ indicates that the model is unable to finish the corresponding task and underlined
content signifies the best performance within a single model across all methods on this task.

3.1 RESULTS

The evaluation results of various MLLMs in MME-U, as shown in Table 2, indicate that Gemini2.5-
flash-image achieves the highest MME-U score at 50.04. Although compared to MIO-Instruct it does
not encompass all subtasks, it demonstrates very balanced performance across understanding, gen-
eration, and unify tasks, unlike other models that may exhibit deficiencies in certain test dimensions.
It is evident that, compared to traditional MLLMs or generative models, U-MLLMs are capable of
handling a wider range of tasks, including more complex image-text interleaved reasoning. How-
ever, overall, the development of U-MLLMs is still in its early stages, and even the best-performing
models only achieve scores of around 50 on MME-U. Next, we will provide a separate analysis of
understanding, generation, and unify tasks.
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(a) Action Accuracy.
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(b) Coordinate Accuracy.
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(c) Image Accuracy.

Figure 4: Accuracy distribution across different dimensions on visual cot task. (a) action, (b)
location, and (c) image.

Understanding. It is evident that Gemini2.0-flash-exp DeepMind (2024) demonstrates the best un-
derstanding capability among U-MLLMs, while also being a closed-source model. For open-source
models, the two U-MLLMs with the best understanding capabilities are Janus-Flow Ma et al. (2024)
and Janus-Pro Chen et al. (2025). These models utilize two separate vision encoders to handle gen-
eration and understanding tasks independently, thus overcoming the limitations of tokenizers like
VQGAN Yu et al. (2022), which are not well-suited for extracting semantic features. In contrast,
models like Emu3 Wang et al. (2024b) and Show-o Xie et al. (2025b), which use a single tokenizer
for all image tasks, perform poorly on understanding tasks and still show a significant performance
gap compared to currently available open-source MLLMs of similar size. However, our experiments
also show that models like Janus-Pro perform poorly on generation tasks. They even fail to support
multimodal generation, scoring zero on unified tasks. Therefore, how to strike a balance between
understanding and generation capabilities, or whether the two capabilities can indeed complement
each other, remains an open question. We also see potential in bridging this gap in understand-
ing capabilities by leveraging existing U-MLLMs alongside strong MLLM baselines. For instance,
MIO-instruct Wang et al. (2024c) achieves impressive understanding results through extensive train-
ing data, including video, audio, image-text pairs, and a complex three-stage training pipeline. This
suggests that U-MLLMs may require a broader variety or larger volume of data for training.

Generation. We compare the performance gap between various U-MLLMs and current state-of-the-
art generative models such as DALLE-3. It is evident that, compared to understanding capabilities,
the gap in generation tasks is not as significant. For the simplest TIG task, Gemini-2.0-flash-exp even
outperforms the best generative model DALLE-3 by six points, while U-MLLMs such as EMU3,
HermesFlow, and GILL all achieve an average score above 48. However, it is clear that most U-
MLLMs still do not perform well on video generation tasks. Notably, although the original paper
for Emu3 mentions its capability for video generation, the corresponding checkpoints have not been
released. It’s clear that the open-source community still has a long way to go before U-MLLMs
that support video generation become widely available. Detailed results on the generation tasks
can be found in Table 9. In Figure 10, we showcase the generation results from various models
using the following text prompt: “A man is standing in a park with a ’Run for Rights’ banner in
the background. He is wearing a white t-shirt with the number 28 on it, grey shorts, and grey socks
with black shoes. The park is filled with people, some sitting on benches, and there is a bicycle
leaning against a tree.” It is evident that most generated images, such as those from VILA-U, Show-
O, and Janus-Pro, fail to capture key details from the caption, such as the number on the jersey
or specific text. In contrast, the results from EMU3 more closely resemble the textual description,
while MIO-Instruct’s outputs are more aligned with realistic scenes (we hypothesize this is because
MIO-Instruct was trained on a large amount of real-world data, enhancing its ability to generate
lifelike images). However, when it comes to image detail, current open-source U-MLLMs still lag
significantly behind dedicated generative models.

Unify Capability. Our systematic unify task testing shows that, while U-MLLMs have indeed
expanded the potential for such tasks compared to traditional understanding/generation models, their
performance remains insufficient. For each unify task in Table 2, we require the models to generate
the correct image and perform correct reasoning. Under these conditions, even for simple tasks such
as answering common questions and generating images, the best open-sourced model (Anole) only
achieves an accuracy of 59.65% and accuracy-plus of 38% (Table 3). In other tasks, no open-sourced
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model is able to surpass the 30% accuracy. It is worth noting that models perform even worse on
tasks like Visual CoT, which require multi-step image generation and reasoning. No model is able
to successfully complete tasks involving multiple steps. This finding underscores the importance of
our MME-U, as relying solely on case studies to demonstrate a model’s mix-modality generation
capabilities is clearly insufficient. We will further analyze these models’ performance, weaknesses,
and provide examples in the analysis section.

Due to space limitations, we have included additional in-depth analyses in Appendix F and G,
which contain expanded analyses of current U-MLLMs’ weakness, detailed visualizations of the
U-MLLMs’ generation results, as well as specific examples from the unify tasks.

Method IEE CSQ AL SD VCoT Unify Score

Metric Text Acc Image Acc Acc Acc+ Text Acc Image Acc Acc Acc+ Text Acc Image Acc Acc Acc+ Text Acc Image Acc Acc Acc+ Action Acc Coordinate Acc Image Acc Acc Acc+ Acc Acc+

GILL 21.00 27.50 24.25 8.00 14.75 27.82 21.29 4.95 7.69 9.62 8.66 1.92 0 13.50 6.75 0 0.63 0 5.08 1.90 0 12.55 2.98

Show-o2 - - - - 79.21 53.47 66.34 56.44 - - - - - - - - - - - - - 13.27 11.29

MiniGPT-5 21.50 24.00 22.75 5.00 29.70 38.56 34.13 15.81 5.66 23.08 14.37 3.84 4.00 6.00 5.00 2.00 2.22 1.27 2.92 2.13 0 15.67 5.33

MIO-Instruct 24.00 24.00 24.00 7.00 77.24 0 38.62 0 17.31 0 8.66 0 23.00 0 11.50 0 0 0 0 0 0 16.56 1.40

Anole 17.00 20.00 18.50 3.00 70.30 48.52 59.41 38.00 15.38 13.46 14.42 3.84 17.00 13.00 15.00 2.00 3.49 0.64 7.62 3.91 0 22.30 9.17

SEED-LLaMA 19.00 25.00 22.00 4.50 56.44 46.53 51.49 37.62 13.46 11.54 12.50 3.84 23.00 21.00 22.00 4.00 4.13 2.85 3.81 3.61 0 22.32 9.99

Bagel 22.78 43.89 33.34 11.67 90.10 64.36 77.23 63.37 42.31 21.15 31.73 9.62 27.00 24.00 25.50 7.00 10.83 12.08 10.69 11.20 0 35.80 18.33

RecA 23.39 47.95 35.67 10.53 90.10 68.32 79.21 59.41 44.23 23.08 33.66 13.46 26.00 27.00 26.50 9.00 11.53 14.03 11.11 12.22 0 37.45 18.48

Gemini2.0-flash-exp 33.00 43.50 38.25 10.00 83.17 66.33 74.75 63.37 59.61 34.62 47.12 30.77 28.00 24.00 26.00 5.00 17.77 10.14 9.44 12.41 0 40.74 21.05

GPT-4o-Image 25.50 60.50 43.00 17.00 97.03 76.24 86.64 74.26 42.31 42.31 42.31 15.38 29.00 21.00 25.00 9.00 11.53 8.47 13.06 11.02 0 41.10 23.13

Gemini2.5-flash-image 32.00 65.50 48.75 19.00 98.92 73.12 86.02 73.12 67.31 51.92 59.62 32.69 27.00 24.00 25.50 9.00 20.97 11.25 13.47 15.23 0 47.02 26.76

Table 3: Comparison of U-MLLMs on various unify tasks and overall unify Score.

4 CONCLUSION AND LIMITATION

The MME-U benchmark framework presented here serves as a foundational step towards evaluating
U-MLLMs on a diverse array of tasks encompassing multimodal understanding, generation, and
their integration. This benchmark reveals the current landscape of U-MLLMs, highlighting their ca-
pabilities and areas for improvement. While these models demonstrate proficiency in handling vari-
ous multimodal tasks, they struggle with balancing understanding and generation, handling complex
instructions, and performing well on unify tasks. Moreover, current U-MLLMs exhibit significant
inconsistencies in aligning textual instructions with their visual outputs, highlighting the need for
further research to improve multimodal reasoning and generation integration. However, this study
simplifies the evaluation of unify tasks by framing image generation as multiple-choice questions,
which may allow model “hacking”. For instance, SEED-generated images may not meet style stan-
dards but achieve high similarity scores, inflating accuracy metrics. Future work will incorporate
MLLM or CLIP scores for stricter evaluation.
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Appendix

Ethics statement. This work involves no human subjects or sensitive data, uses only publicly
available, properly licensed datasets without identifiable information, and presents no foreseeable
safety, privacy, bias/discrimination, misuse, conflict-of-interest, or legal concerns.

Reproducibility statement. To ensure the full reproducibility of our benchmark, we have provided
comprehensive implementation details throughout the paper. The construction and statistics of our
MME-Unify are detailed in Sec 2 and Figure 7, Figure 9.

The Use of Large Language Models (LLMs). The authors employ the LLM exclusively for gram-
mar and style refinement. The LLM was not used to generate or substantively revise scientific
content, design experiments, analyze data, write code, or select references.

A RELATED WORKS

Unified Multimodal Large Language Models. Building on the success of MLLMs Wang et al.
(2024a); Fu et al. (2025); Yu et al. (2025); Zhang et al. (2024), recent studies U-MLLMs, which
can understand and generate multiple modalities in an end-to-end manner. Some approaches have
adopted a unified training objective, projecting both text and images into a discrete token space and
employing a next-token prediction loss function for training Wang et al. (2024c); Wu et al. (2024);
Team (2024). This training method and framework are notably straightforward. However, using
discrete image tokens (e.g., extracted from VQVAE image features) may not be optimal for image
understanding tasks. Therefore, works like Janus-Flow Chen et al. (2025), Janus-Pro Chen et al.
(2025), among others, have employed different vision encoders such as VQVAE for image gener-
ation and SigLIP for image comprehension, significantly enhancing the understanding capabilities
of U-MLLMs. Additionally, other methods have found that diffusion training is more suitable for
image generation. Thus, adopting diffusion-based training for image generation and next-token pre-
diction for text generation aims to strengthen the image generation capabilities further Xie et al.
(2025b); Zhou et al. (2025). Recent research has also explored fine-tuning U-MLLMs to further
enhance their performance on unified tasks Li et al. (2025). However, despite the rapid advance-
ments of U-MLLMs, there remains a lack of comprehensive benchmarks for systematically and
fairly evaluating their capabilities in understanding, generation, and multimodal synthesis tasks.

Benchmarks for Understanding. With the rapid development of MLLMs, several concurrent
works Fu et al. (2024b) have proposed various benchmarks to evaluate the models’ capabilities
in multimodal comprehension tasks, such as single-image perception and understanding Fu et al.
(2023); Zhang et al. (2025b) (e.g., MME series), interleaved image & text understanding, and video
understanding Fang et al. (2025) (e.g., MMBench-Video, Video-MME). Additionally, some bench-
marks focus on multimodal safety Zhang et al. (2025a) or mathematical reasoning Yan et al. (2024).
These benchmarks differ in coverage and metrics.

Benchmarks for Generation. Various benchmarks have been proposed to assess multi-modal gen-
eration capabilities Wang & Yang (2024); Sheynin et al. (2024); Deng et al. (2009); Xu et al. (2016);
Ku et al. (2024); Li et al. (2023), including tasks like image reconstruction Deng et al. (2009), image
editing Sheynin et al. (2024); Ku et al. (2024), and conditional image & video generation Wang
& Yang (2024); Lin et al. (2014b). However, these benchmarks mainly focus on individual tasks
within single modalities, failing to capture the full scope of multi-modal comprehension and gen-
eration. While some benchmarks, such as SEED-Bench-2 Li et al. (2023) and MMIE Xia et al.
(2025), provide hierarchical evaluation for both understanding and generation, they do not assess
unified tasks, and the range of tasks is limited.

B STABILITY ANALYSIS OF MME-UNIFY

For the multimodal understanding task, MME-Unify collects 1,900 multiple-choice questions from
five public benchmarks spanning 24 subtasks (SIPU, MITIU, VPU), with at least 50 QA pairs per
subtask. For the multimodal generation task, we evaluate six subtasks—FIR, TIE, TIG, CIVG, TVG,
and VP—with at least 200 samples per subtask, yielding over 1,200 evaluated instances. These are
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scored using standard domain-specific metrics and subsequently normalized to a [0, 100] scale. For
the Unify tasks, four subtasks (IEE, CSQ, AL, SD) each contain at least 50 samples, and each sample
induces two multiple-choice questions (text and image), resulting in over 100 questions per subtask.
In particular, the VCoT subtask includes 90 mazes with an average of 3.5 steps; each step requires
three decisions (action, coordinate, image), yielding approximately 945 step-level questions (90 ×
3.5 × 3). In total, MME-Unify comprises over 3,200 multiple-choice questions alongside more than
1,200 generation instances.

We further assess the stability of MME-U scores and rankings. Specifically, we halve the benchmark
samples and re-evaluate the four U-MLLMs. As shown in Table 4, While a few subtask rankings
(e.g., for Anole and SEED-LLaMA) exhibit minor fluctuations due to the reduced sample size, the
overall MME-U score ranking remains consistent with the full-dataset evaluation. These results in-
dicate that the benchmark’s sample sizes and scoring strategy can assess stable scores and consistent
model rankings, supporting the reliability of MME-U for comparative assessment.

Split Method Understanding Generation Unify MME-U

Split A

MiniGPT5 14.08 18.60 14.65 15.78
Anole 12.75 19.50 20.24 17.53
SEED-LLaMA 24.50 23.92 21.57 23.33
MIO-Instruct 40.88 52.68 16.34 36.63

Split B

MiniGPT5 16.67 19.40 15.01 17.03
Anole 14.33 19.73 23.40 19.15
SEED-LLaMA 27.67 23.73 23.15 24.85
MIO-Instruct 42.15 53.98 16.78 37.64

Overall

MiniGPT5 15.37 18.25 15.67 16.43
Anole 13.56 19.91 22.30 18.59
SEED-LLaMA 26.19 23.54 22.32 28.45
MIO-Instruct 41.50 53.45 16.56 37.17

Table 4: Split-half evaluation on four U-MLLMs.

We aslo supplement the split-half experimental results for each sub-task in the unified tasks. As
shown in Table 5, The ranking of the four representative models remains stable basically across
different half-sample divisions for the unify tasks.

Method IEE CSQ AL SD VCoT Avg
Split A

MiniGPT5 19 24 21.5 23.8 35.6 29.6 7.7 23.1 15.4 4 8 6 3.2 1.3 3.8 2.8 14.7
Anole 15 17 16 70.3 51.4 60.8 19.2 11.5 15.4 20 12 16 4.4 0 6.4 3.6 20.2
SEED-LLAMA 17 22 19.5 54.1 43.2 48.7 11.5 11.5 11.5 26 24 25 3.2 2.5 3.8 3.2 21.6
MIO-Instruct 22 21 21.5 73.3 0 36.6 23.1 0 11.5 24 0 12 0 0 0 0 16.3

Split B
MiniGPT5 23 24 23.5 35.6 41.6 38.6 3.9 23.1 13.5 4 4 4 1.3 1.3 1.9 1.5 15
Anole 19 23 21.5 81 47.6 64.3 11.5 15.4 13.5 14 14 14 2.5 1.3 8.9 4.2 23.4
SEED-LLAMA 21 28 24.5 58.7 50.8 54.8 15.4 11.5 13.5 20 18 19 5.1 3.2 3.8 4 23.2
MIO-Instruct 26 27 26.5 79.2 0 39.6 11.5 0 5.8 22 0 11 0 0 0 0 16.8

Overall
MiniGPT5 21.5 24 22.8 29.7 38.6 34.1 5.7 23.1 14.4 4 6 5 2.2 1.3 2.9 2.1 15.7
Anole 17 20 18.5 70.3 49 59.7 15.4 13.5 14.4 17 13 15 3.5 0.6 7.6 3.9 22.3
SEED-LLAMA 19 25 22 56.4 46.5 51.5 13.5 11.5 12.5 23 21 22 4.1 2.9 3.8 3.6 22.3
MIO-Instruct 24 24 24 77.2 0 38.5 17.3 0 8.7 23 0 11.5 0 0 0 0 16.6

Table 5: Performance comparison on unified tasks across different data splits. T: Text Accu-
racy; I: Image Accuracy; A: Average Accuracy; Act: Action Accuracy; Crd: Coordinate Accuracy.
IEE: Image Editing and Explaining; CSQ: Common Sense Question Answering; AL: Auxiliary
Lines; SD: SpotDiff; VCoT: Visual Chain-of-Thought.
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C DEFINITION OF TRADITIONAL MLLM AND UNIFY MLLM

We use the term “Traditional MLLMs”to denote understanding-centric multimodal models that ac-
cept visual inputs (images/videos) but do not natively generate visual outputs at inference time, such
as Qwen2.5-VL, and their outputs are textual only. In contrast, “Generative MLLMs” specialize in
visual generation, without general multimodal understanding capability, and “U-MLLMs” support
both understanding and generation, including interleaved image–text generation.

D COMPARISON OF EVALUATION STRATEGIES FOR THE UNIFY TASKS

We compare two evaluation strategies for assessing Unify Tasks: (i) a generation-based strategy,
which we term CLIP-Choice, and (ii) an option-selection strategy, which we term Select-Choice. In
the CLIP-Choice strategy, the model first generates an image; we then compute its CLIP similarity
to four candidate references and take the argmax as the model’s implicit choice. In contrast, Select-
Choice feeds all image options to the model and asks it to select the correct one directly. We
condect experiments based on Gemini 2.0-flash-exp, which is shown in Table 6, Compared with
the CLIP-Choice strategy, the Select-Choice strategy achieves higher accuracy on text and image
multiple-choice questions evaluated on all unified tasks except the IEE task. This may be because
choosing the correct option is easier than generating the correct image. Moreover, after introducing
the reference image into the model input, the model is more likely to rely on the given reference
image answer rather than the image generated by the model itself. Therefore, compared with the
CLIP-Similarity evaluation strategy, Select-Choice deviates from our original intention of evaluating
the unify capability of U-MLLM on the unify task.

Strategy IEE CSQ AL SD VCoT Unify
Text Img Acc Acc+ Text Img Acc Acc+ Text Img Acc Acc+ Text Img Acc Acc+ Act Coord Img Acc Acc+ Acc Acc+

Select-Choice 25.0 17.5 21.3 14.0 97.0 92.1 94.6 91.1 65.4 78.9 72.1 52.0 33.0 45.0 39.0 14.0 31.1 19.1 27.1 25.8 0 50.5 34.6
CLIP-Choice 33.0 43.5 38.3 10.0 83.2 66.3 74.8 63.4 59.6 34.6 47.1 30.8 28.0 24.0 26.0 5.0 17.8 10.1 9.4 12.4 0 40.7 21.1

Table 6: Comparison of two evaluation strategies on the Unify task with detailed metrics per subtask.

E DISSCUSSION FOR THE EFFECTIVENESS OF OUR EVALUATION STRATEGY

In MME-U, our goal is not to independently evaluate the capability of understanding and generation,
but rather to quantify the synergistic capability of U-MLLMs to understand an input, reason and
then generate the correct visual output. To this end, we adopt a CLIP-I based multiple-choice image
evaluation strategy that is aligned with the text multiple-choice format used in other parts of our
benchmark. Below we explain and provide experimental evidence supporting its effectiveness.

E.1 WHY CLIP-I MULTIPLE CHOICE FOR UNIFIED EVALUATION

Unified representation and metric design. Our benchmark aims to measure unified
understanding–generation synergy with a single, discrete metric. Existing continuous metrics like
LLM-Judge provide fine-grained and interpretable assessments of visual quality, but they are com-
putationally expensive and difficult to map directly to a discrete “success” signal that is comparable
to text multiple-choice accuracy. To achieve the balance, we treat image evaluation similar to text
multiple-choice, each unified task instance is associated with several candidate images, and the
model-generated image is scored via CLIP-I similarity against each candidate. The candidate with
the highest CLIP-I similarity is treated as the model’s implicit choice, and we compute accuracy
over all instances. This design has two advantages: (i) it maps multimodal synergistic behavior
to a discrete accuracy score that is directly comparable across tasks, and (ii) it enables a unified
leaderboard over both text and image questions.

Task design mitigates CLIP-I score hacking. A natural concern is that CLIP-based evaluation
might be exploited by score hacking. For example, by generating generic but CLIP-friendly images
that superficially match the prompt. To this end, our unified tasks are designed explicitly to minimize
this risk, since each sub-task requires prior understanding and reasoning before correct generation is
even possible. For instance, AL requires the model to correctly parse a geometric configuration and
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Table 7: Kendall’s τb correlation between CLIP-I scores and human ratings on 200 randomly sam-
pled unified-task instances. We observe a consistently strong correlation (τb ≈ 0.69–0.73) across
sub-tasks, with an overall correlation of 0.71, indicating stable alignment between CLIP-I and hu-
man perceptual judgments under our task design.

IEE CSQ AL SD VCoT Overall

Kendall’s τb 0.712 0.732 0.717 0.707 0.692 0.709

infer the appropriate auxiliary line before drawing; VCoT requires the model to infer the next action
and generate the corresponding future state. In such settings, the correct visual output depends on
a specific reasoning chain rather than generic visual patterns. Since the candidate options encode
these reasoning outcomes (e.g., correct vs. incorrect auxiliary lines, correct vs. incorrect navigation
states), an image generated solely from the surface form of the instruction, without solving the
underlying reasoning problem, is extremely unlikely to match the correct option under CLIP-I. In
other words, the design of unified tasks anchors CLIP-I scores to the correctness of understanding
and reasoning of given input, rather than to superficial prompt alignment.

E.2 CORRELATION WITH HUMAN JUDGMENTS

To empirically verify that CLIP-I under our task design aligns with human perception, we conduct
a correlation study on a subset of the benchmark. We randomly sample 200 instances from the
unified tasks and evaluate the generation results of four advanced U-MLLMs (Bagel Deng et al.
(2025), GPT-4o-Image OpenAI (2024c), RecA Xie et al. (2025a), Gemini2.5-Flash-Image Deep-
Mind (2024)) using both CLIP-I and human ratings.

Three expert annotators score each model’s generated image on a 1–5 scale along three dimensions:
(i) Text-Following, (ii) Image Quality, and (iii) Reference Similarity. We average scores across
annotators and dimensions to obtain a single human rating per sample. We then compute Kendall’s
τb correlation coefficient between CLIP-I scores and human ratings for each sub-task and overall.

As shown in Table 7, the Kendall’s τb values for all sub-tasks lie in the range of approximately
0.69-0.73, with an overall correlation of 0.71, which falls into the regime of strong correlation.

E.3 RANKING CONSISTENCY WITH LLM-JUDGE

We further validate the robustness of our evaluation strategy by comparing CLIP-I based rankings
with an LLM-Judge (GPT-4o) based ranking that closely mirrors human evaluation.

On the complete unified dataset, we evaluate five U-MLLMs (Show-o2, Bagel, RecA, GPT-4o-
Image, Gemini2.5-Flash-Image) under two scoring protocols: (i) CLIP-I multiple-choice accuracy,
and (ii) an LLM-Judge that follows the same scoring dimensions as the human evaluation (text-
following, image quality, and reference similarity), aggregated into a normalized score. For each
model, we compute per-task and overall scores under both evaluation strategies for direct compari-
son. As shown in Table 8, the relative ordering of models is highly consistent between CLIP-I and
LLM-Judge across most sub-tasks and in the overall average. In particular, Gemini2.5-Flash-Image
and GPT-4o-Image consistently achieve the top two positions under both metrics, while RecA and
Bagel form a stable middle tier above Show-o2. Although Bagel and RecA exhibit similar per-
formance on the VCoT task, leading to a local inversion in their per-task ranking for that specific
sub-task, the global ordering of the five models remains stable between the two scoring methods.

This consistency in model rankings indicates that CLIP-I based multiple-choice accuracy captures
essentially the same relative performance ranking as a much more expensive LLM-Judge strategy.
Together with the Kendall’s τb analysis, this provides robust evidence that CLIP-I is a reliable and
efficient evaluation strategy for human and LLM-based judgments under our Benchmark.
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Model IEE CSQ AL SD VCoT Avg

CLIP-I
Show-o2 — 53.47 — — — 10.69
Bagel 43.89 64.36 21.15 24.00 10.69 32.82
RecA 47.95 68.32 23.08 27.00 11.11 35.49
GPT-4o-Image 60.50 76.24 42.31 21.00 13.06 42.62
Gemini 2.5-Flash-Image 65.50 73.12 51.92 24.00 13.47 45.60

LLM-Judge
Show-o2 — 56.33 — — — 11.27
Bagel 49.47 66.93 37.07 47.67 52.33 50.69
RecA 49.60 68.07 43.73 48.67 52.00 52.41
GPT-4o-Image 68.87 78.80 58.60 45.47 52.60 60.87
Gemini 2.5-Flash-Image 80.33 72.33 65.40 53.07 58.67 65.96

Table 8: Comparison of CLIP-I and LLM-Judge based evaluation on unified image QA tasks.

Method CIVG FIR TIE TIG TVG VP Generation Score

Metric FVD Score FID Score CLIPSIM Avg 1-LPIPS Avg CLIP-I CLIP-T Avg CLIP-I CLIP-T Avg FVD Score FID Score CLIPSIM Avg FVD Score FID Score Avg Avg

Generative Models
DALL-E-2 - - - - - - - - - 69.33 31.91 50.62 - - - - - - - 8.44

DALL-E-3 - - - - - - - - - 70.11 32.68 51.40 - - - - - - - 8.57

Qwen-Image - - - - - - - - - 89.24 37.61 63.43 - - - - - - - 10.57

Qwen-Image-Edit - - - - 80.86 80.86 74.89 22.72 48.81 - - - - - - - - - - 21.61

OmniGen - - - - 48.82 48.82 65.63 22.72 43.82 73.97 28.12 51.05 - - - - - - - 23.95

CogVideoX 83.91 87.02 33.23 68.05 - - - - - - - - 87.82 84.28 36.77 69.62 89.92 85.30 87.61 37.54

Unified Models
DeepSeek-Flow - - - - - - - - - 52.38 13.38 32.88 - - - - - - - 5.48

DeepSeek-Janus-Pro - - - - - - - - - 55.46 15.11 35.29 - - - - - - - 5.88

Show-o - - - - - - - - - 62.10 24.97 43.54 - - - - - - - 7.26

HermesFlow - - - - - - - - - 65.37 27.58 46.48 - - - - - - - 7.75

Emu3 - - - - - - - - - 68.54 29.62 49.08 - - - - - - - 8.18

VILA-U - - - - - - - - - 62.54 27.66 45.10 57.35 66.36 25.22 49.64 - - - 15.80

MiniGPT-5 - - - - 38.96 38.96 55.86 14.21 35.04 56.33 14.62 35.48 - - - - - - - 18.25

Anole - - - - 36.64 36.64 62.35 21.24 41.80 60.23 21.75 41.00 - - - - - - - 19.91

GILL - - - - 50.67 50.67 54.15 17.27 35.71 67.75 25.44 46.60 - - - - - - - 22.16

SEED-LLaMA - - - - 57.00 57.00 67.12 17.39 42.26 60.57 23.34 41.96 - - - - - - - 23.54

Bagel - - - - 59.91 59.91 71.33 19.58 45.46 66.58 22.44 44.51 - - - - - - - 24.98

RecA - - - - 60.97 60.97 72.88 20.85 46.87 68.94 23.66 46.30 - - - - - - - 27.36

GPT-4o-Image - - - - 65.65 65.65 71.97 21.18 46.58 86.61 33.52 60.07 - - - - - - - 28.72

Gemini-2.0-flash-exp - - - - 77.61 77.61 67.77 19.30 43.54 84.59 30.53 57.56 - - - - - - - 29.79

Gemini-2.5-flash-image - - - - 85.32 85.32 79.24 26.56 52.90 92.47 40.11 66.29 - - - - - - - 34.00

MIO-Instruct 59.93 70.38 23.41 51.24 59.29 59.29 68.12 19.20 43.66 72.69 23.77 48.23 60.03 69.22 26.40 51.88 64.08 68.66 66.37 53.45

Table 9: Comparison of multimodal models on various generation tasks. CIVG: Conditional
Image-to-Video Generation; FIR: Fine-grained Image Reconstruction; TIE: Text-Guided Image
Editing; TIG: Text-to-Image Generation; TVG: Text-to-Video Generation; VP: Video Prediction.
∗ denotes MLLMs with the ability to generate interleaved images and texts, while ‘-’ indicates that
the model does not have the ability to achieve the corresponding task and underlined content signifies
the best performance within a single model across all methods on this task.

F ANALYSIS AND FINDINGS

Trade-off Between Basic and Unified Capabilities. The experimental results reveal that current
U-MLLMs face a significant challenge in balancing their fundamental abilities—such as under-
standing and generating performance—with the demands of unified tasks that require integrating
multiple modalities. For instance, models like GILL, Anole, and MiniGPT-5 are designed to handle
unified tasks but tend to exhibit relatively poor performance on basic tasks, which results in lower
overall scores when compared to some non-unified MLLMs. On the other hand, while MIO-Instruct
demonstrates high performance in basic understanding and generation, its capability to interleave
image and text generation effectively is notably deficient. This imbalance suggests that the cur-
rent training paradigms may not be adequately aligning the learning objectives for basic and unified
capabilities within a single framework.

Detailed Analysis of Model Performance on Unify Tasks. In Table 3, we provide a detailed
analysis of different models’ performance on unify tasks, focusing on text reasoning accuracy and
image generation accuracy. It is clear that MIO-Instruct exhibits stronger understanding capabilities
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than generation abilities (as confirmed by the results in Table 2). As a result, many of its tasks
show high text reasoning performance, particularly in commonsense QA, where its text reasoning
accuracy reaches 76.24%. However, it fails to generate a correct image, completely missing the
potential for mutual reinforcement between generation and understanding. In contrast, other models
show comparable performance in both text reasoning and image reasoning evaluation criteria, but
their overall results are not impressive. Notably, for visual CoT tasks, despite our efforts to simplify
the questions into multiple-choice format, none of the models have been able to correctly complete
multi-step reasoning and generation tasks.

Poor Instruction Following Ability for Image Generation. There are two main issues with the
current models in image generation: 1. Uncontrolled Style Generation. In Figure 11, we present
the intermediate state images generated by different models in the VCoT task. Only the Anole and
Gemini2.0-flash-exp models are able to generate images with a style similar to the initial image. In
contrast, other models produce images with a clear style bias, which do not align well with our state
diagrams. 2. Difficulty Understanding Complex Instructions. Many models, such as MIO-Instruct,
struggle with following complex instructions, such as generating auxiliary lines based on the original
question. These models fail to generate images with auxiliary lines, often requiring multiple attempts
to generate a relevant image, and the resulting images often bear little resemblance to the original
reference. However, for simpler instructions, like generating an image of a dog, these models are
able to execute the task correctly.

Inadequate Visual CoT Capability in Unified Models. In Figure 4, we further illustrate the chal-
lenges of the Visual CoT task. The accuracy of U-MLLMs declines as the number of steps in the
VCoT task increases. Errors made in earlier steps compound over time, making it increasingly dif-
ficult for models to generate correct actions, coordinates, and images. This cascading error effect
highlights a fundamental limitation in maintaining consistent reasoning across multi-step tasks. At
the same time, this example further emphasizes the high requirements of our unify tasks for both
generation and understanding capabilities. For instance, although Anole demonstrates relatively
strong image accuracy in Figure 4, its weaker understanding abilities result in less effective action
selection. This ultimately leads to worse final results compared to the other two baselines.

To further enhance the evaluation value of VCoT task, we additionally provide two complementary
analyses: (i) difficulty stratification by maze size, and (ii) step-wise metrics across the full reasoning
trajectory for further analysis of the unify capability of current U-MLLMs.

Difficulty stratification by maze size. We first stratify VCoT performance by maze size and
report average accuracy for each model under different maze configurations (Table 10). This allows
us to examine how U-MLLMs behave as the underlying navigation problem becomes more complex.

Model 3×3 4×4 5×5

action coord image action coord image action coord image

Bagel 21.14 23.58 21.14 19.70 23.48 19.51 12.00 18.00 14.67
RecA 28.46 28.46 20.33 19.70 28.03 20.45 14.67 19.33 16.67
GPT-4o-Image 21.95 18.70 25.20 20.45 17.42 20.45 19.33 10.00 16.00
Gemini 2.5-Flash-Image 43.09 29.27 31.71 38.64 20.45 23.48 31.33 12.00 18.00

Table 10: VCoT accuracy stratified by maze size. We report average action, coordinate, and
image accuracy (%) on 3×3, 4×4, and 5×5 mazes. For example, Gemini 2.5-Flash-Image achieves
43.09% / 29.27% / 31.71% action/coord/image accuracy on 3×3 mazes, which drops to 31.33% /
12.00% / 18.00% on 5×5 mazes. Other models exhibit the same downward trend, providing an
overall perspective on difficulty stratification in VCoT.

From Table 10, we observe that Gemini2.5-Flash-Image’s action/coord/image accuracy on the 3×3
maze is 43.09%, 29.27%, and 31.71%, respectively, while these values drop to 31.33%, 12.00%,
and 18.00% on the 5×5 maze. Other models exhibit a similar monotonic decline as maze size
increases. This confirms that VCoT difficulty scales systematically with problem size and that all
current U-MLLMs degrade under more challenging configurations.

Step-wise metrics and failure modes. Concurrently, we reconstruct VCoT into a set of step-
wise metrics and compute average accuracy for four representative U-MLLMs (Bagel, RecA, GPT-
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Model Step-wise accuracy (%)

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Action
Bagel 26.67 20.00 17.78 11.11 6.67 2.22 2.22
RecA 25.56 25.56 21.11 11.11 4.44 3.33 1.11
GPT-4o-Image 28.89 23.33 23.33 10.00 4.44 2.22 0.00
Gemini 2.5-Flash-Image 52.22 48.89 37.78 16.67 10.00 1.11 1.11

Coordinate
Bagel 67.78 20.00 17.78 11.11 1.11 0.00 0.00
RecA 75.56 25.56 12.22 2.22 1.11 1.11 0.00
GPT-4o-Image 38.89 10.00 5.56 4.44 4.44 2.22 2.22
Gemini 2.5-Flash-Image 23.33 20.00 17.78 17.78 10.00 1.11 0.00

Image
Bagel 43.33 25.56 7.78 7.78 1.11 1.11 0.00
RecA 46.67 22.22 5.56 5.56 2.22 1.11 0.00
GPT-4o-Image 51.11 28.89 10.00 12.22 0.00 0.00 0.00
Gemini 2.5-Flash-Image 53.33 28.89 13.33 8.89 1.11 1.11 0.00

Table 11: Step-wise VCoT accuracy for different prediction dimensions. We report step-wise
accuracy (%) for four representative U-MLLMs across steps 1–7. The three gray-shaded blocks
correspond to action, coordinate, and image accuracy, respectively. All models start well above the
random baseline at Step 1, but by Steps 5–7 most entries drop to around 1–4%, especially in the
coordinate and image dimensions.

4o-Image, Gemini2.5-Flash-Image) across steps 1–7 in three dimensions: action, coordinate, and
image. The results are summarized in Table 11.

From Table 11, we observe that in Step 1 the accuracies of action, location, and image for all models
are significantly higher than the random baseline, and remain reasonably good in Step 2. However,
starting from Step 2, the coordinate and image dimensions exhibit a near “cliff-like” drop, reaching
approximately 1–4% by Steps 5–7, while action accuracy decays more gradually. This pattern indi-
cates that although the models can still correctly identify the current position and generate a roughly
correct next frame in the first 1–2 steps, the first capability lost during the multi-step reasoning pro-
cess is the consistent visual modeling of the maze state. Once this internal visual state becomes
unreliable, it quickly propagates to degrade both coordinate localization and action prediction.

Therefore, even though the sample-level success rate over complete 7-step trajectories is close to
0%, the stratified analyses by maze size and step index allow us to pinpoint two core bottlenecks
of current U-MLLMs on VCoT: (i) multi-step visual state maintenance, and (ii) long-range con-
sistency. These diagnostics provide essential guidance for targeted improvements to planning and
visual memory mechanisms in future unified multimodal models.

F.1 COMPARE WITH RANDOM AND HUMAN BASELINES

To make the MME-U Score more interpretable, we compare our unified evaluation with two comple-
mentary baselines, a random guessing baseline and a human baseline. Both baselines are evaluated
under exactly the same multiple-choice protocol as U-MLLMs across all Unify sub-tasks.

Random-Select baseline. For the random baseline (RANDOM SELECT), we uniformly sample
one option for every text or image multiple-choice question, and compute all task metrics (Text Acc,
Image Acc, Acc, and Acc+; for VCoT we additionally report Action/Coord/Image Acc). As shown
in Table 12, the Random-Select metrics on the two high-precision / multi-step reasoning tasks,
SpotDiff (SD) and VCoT, already exceed the performance of most current U-MLLMs. For exam-
ple, on VCoT, the random baseline attains 14.24% Acc and 21.73% Image Acc, which are higher
than those of Bagel, RecA, and GPT-4o-Image, and only slightly below Gemini2.5-Flash-Image.
This indirectly suggests that existing U-MLLMs remain extremely weak in scenarios requiring fine-

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Method IEE CSQ AL SD VCoT Avg
T I A A+ T I A A+ T I A A+ T I A A+ Act. Crd. Img. A A+

Show-o2 – – – – 79.21 53.47 66.34 56.44 – – – – – – – – – – – – – 13.27
Random Select 29.00 27.50 28.25 11.50 24.75 31.68 28.22 5.94 23.08 28.85 25.97 7.69 30.00 31.00 30.50 9.00 19.26 1.73 21.73 14.24 0.00 25.43
Bagel 22.78 43.89 33.34 11.67 90.10 64.36 77.23 63.37 42.31 21.15 31.73 9.62 27.00 24.00 25.50 7.00 10.83 12.08 10.69 11.20 0.00 35.80
RecA 23.39 47.95 35.67 10.53 90.10 68.32 79.21 59.41 44.23 23.08 33.66 13.46 26.00 27.00 26.50 9.00 11.53 14.03 11.11 12.22 0.00 37.45
GPT-4o-Image 25.50 60.50 43.00 17.00 97.03 76.24 86.64 74.26 42.31 42.31 42.31 15.38 29.00 21.00 25.00 9.00 11.53 8.47 13.06 11.02 0.00 41.10
Gemini-2.5-Flash-Image 32.00 65.50 48.75 19.00 98.92 73.12 86.02 73.12 67.31 51.92 59.62 32.69 27.00 24.00 25.50 9.00 20.97 11.25 13.47 15.23 0.00 47.02
Human 96.00 100.00 98.00 96.00 97.52 97.52 97.52 97.52 94.23 94.23 94.23 94.23 19.00 19.00 19.00 19.00 100.00 100.00 100.00 100.00 100.00 81.75

Table 12: Calibration of Unify tasks with random and human baselines. We report unified
metrics for each Unify sub-task (IEE, CSQ, AL, SD, VCoT) and overall Avg. Columns: T = Text
Acc, I = Image Acc, A = Acc, A+ = joint accuracy (text & image both correct), Act. = action
accuracy, Crd. = coordinate accuracy, Img. = image accuracy. RANDOM SELECT randomly chooses
one option per question (non-reasoning lower bound), while HUMAN is the average of two experts
(upper bound). Current U-MLLMs lie between these two baselines, often much closer to random on
SD and VCoT, highlighting substantial headroom for unified multimodal reasoning.

grained difference localization or long-range state tracking, confirming that SD and VCoT are highly
challenging items with strong difficulty discrimination.

In contrast, for IEE, CSQ, and AL, although some U-MLLMs’ single-modality Text/Image accuracy
is only modestly above the random baseline, their Acc+ scores—which require both the text and
image answers to be correct simultaneously—are substantially higher than the theoretical random
upper bound of ≈ 6.25% (i.e., randomly guessing one out of four text options and one out of four
image options). For instance, on CSQ, Random-Select achieves only 5.94% Acc+, while Bagel,
RecA, GPT-4o-Image, and Gemini2.5-Flash-Image reach 63.37%, 59.41%, 74.26%, and 73.12%,
respectively. This indicates that U-MLLMs have learned a non-trivial degree of cross-modal consis-
tency and understanding–generation synergy, and that our Acc / Acc+ metrics effectively separate
random strategies from genuine unified capability.

Human Baseline. For the human baseline (HUMAN), we asked two human experts with multi-
modal experience to complete the Unify tasks, selecting the best-matching option for both text and
image questions. We report the average score over the two annotators in Table 12. Human perfor-
mance on IEE, CSQ, AL, and VCoT is substantially higher than that of all current U-MLLMs, e.g.,
98.00% / 97.52% / 94.23% Acc on IEE / CSQ / AL, and 100% Acc / Acc+ on VCoT, demonstrating
that the human upper bound is well above existing models.

Overall, current U-MLLMs often sit closer to the random baseline on the most challenging tasks
(SD, VCoT), yet substantially surpass it on Acc+ for IEE/CSQ/AL, jointly shows that (i) there is
still substantial room for improving unified multimodal capability, and (ii) our Unify task design
and Acc / Acc+ metrics offer a discriminative and effective measurement of understanding and
generation synergy capability.

G EXTENDED EXPERIMENTAL RESULTS

G.1 MOST U-MLLMS EXHIBIT INFERIOR GENERATION CAPABILITIES

While the methods in Table 9 show relatively small differences compared to the current state-of-the-
art (SOTA) generation techniques, we found that using CLIP scores for evaluation introduces certain
risks of manipulation.

In Figure 12, we present the results on the fine-grained image reconstruction task. For each model,
we used a unified prompt: “Reconstruct high-fidelity images from degraded inputs, preserving fine-
grained details, textures, and structural integrity with perceptual realism.” It is evident that GILL,
SEED-LLaMA, and MIO-Instruct effectively capture the structural details of the input images and
produce noticeably clearer outputs. In particular, SEED-LLaMA and MIO-Instruct demonstrate
strong performance in restoring color fidelity, while Gemini2.0-flash-exp tends to preserve the in-
tegrity of the input images. In contrast, MiniGPT-5 and Anole fail to effectively extract the necessary
visual information: while MiniGPT-5 does generate an image, its output deviates significantly from
the source, and Anole is unable to generate a coherent image at all.
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Figure 13 displays the results for the text-guided image editing task, where the editing instruction
was “Change this image into a watercolor art.” Similar to the reconstruction task, SEED-LLaMA
and MIO-Instruct generate images that more closely resemble the source image; however, they fall
short in accurately executing the specified editing instruction. Meanwhile, GILL, MiniGPT-5, and
Anole show limited capability in capturing and manipulating the requisite visual details for the
transformation. Notably, Gemini2.0-flash-exp not only preserves the content of the source image
effectively but also accurately implements modifications according to the editing instructions.

Figure 14 illustrates the performance gap between pure video generation models and U-MLLMs on
the conditional image-to-video generation task. Using the text prompt “The man is so tired. -camera
zoom in,” we observe that although MIO-Instruct produces video outputs with richer visual details
compared to CogVideoX, it struggles to effectively generate a coherent video sequence that adheres
to the given instruction based on the initial image.

In Figure 15, the generation results of CogVideoX and MIO-Instruct in the Text-to-Video Genera-
tion task are compared. The results clearly indicate that, in terms of both instruction adherence and
video consistency, MIO-Instruct significantly underperforms compared to dedicated video genera-
tion models.

Overall, while some U-MLLMs exhibit promising capabilities in capturing visual details and pro-
ducing high-fidelity reconstructions, challenges remain in faithfully executing complex editing in-
structions and generating consistent video sequences. These findings highlight critical areas for
further improvement in enhancing the generation capabilities of U-MLLM systems.

G.2 CHALLENGES IN SIMULTANEOUSLY GENERATING HIGH-QUALITY TEXT AND IMAGES
IN U-MLLMS

Figures 16, 17, 18, and 19 present the results of U-MLLMs on the Unify tasks. Notably, MIO-
Instruct fails to perform any text-image generation across all Unify tasks, GILL is unable to generate
multimodal outputs in the SpotDiff task, and SEED-LLaMA does not support text-image generation
in the Auxiliary Lines task. Overall, these results indicate that most U-MLLMs struggle to generate
images that faithfully adhere to provided instructions or reference images, and their comprehension
of the instructions is often flawed.

In the Image Editing and Explanation task, for instance, MiniGPT-5 produced images that bore no
relation to the source images. Additionally, the textual outputs from GILL, MiniGPT-5, and SEED-
LLaMA were insufficient for accurately describing the editing objects or the instructions. Similarly,
in both the Commonsense Question Answering and SpotDiff tasks, although MiniGPT-5 and SEED-
LLaMA correctly answered the textual multiple-choice questions, the images they generated were
clearly unrelated to the corresponding options. This further emphasizes the difficulty U-MLLMs
face in maintaining consistency between textual and visual outputs.

For the Auxiliary Lines task, while Anole managed to generate images that retained some of the
visual details of the source images, it failed to correctly draw the required auxiliary lines as per
the instructions. GILL and MiniGPT-5, on the other hand, generated content that was completely
disconnected from the original images.

These findings suggest several critical limitations in current U-MLLM systems. First, there is a no-
table gap in their ability to integrate and utilize multimodal cues effectively, as evidenced by the mis-
alignment between textual instructions and visual outputs. Second, while some models can capture
certain visual details, they often lack the robust reasoning required to follow complex instructions,
especially in tasks demanding precise visual modifications. Finally, the decoupling between text
and image generation in these systems underscores the need for further research aimed at improving
cross-modal coherence and instruction fidelity.

Overall, the experimental results highlight that, despite progress in individual modalities, existing
U-MLLMs have considerable challenges in simultaneously generating high-quality, coherent text
and images that align with complex, multimodal instructions.
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OCR with Complex Context

OCR with Complex Context
Q: What is the house plate number 
on the left side of the building in 
the center of the picture?
  
A. 3/2            
B. 2/3
C. 3
D. 2
E. This image doesn't feature the 
number.

OCR with Complex Context

Artwork
Q: Does this artwork belong to the 
type of mythological?
  
A. Yes           
B.  No OCR with Complex Context

Autonomous Driving
Q: This image shows the front view of the ego car. 
What is the status of the cars that are to the front of 
the ego car?
  
A. Two of the cars are moving, and many are parked.            
B. Two of the cars are parked, and two are moving.
C. One of the cars is parked, and two are moving.
D. Many cars are parked, and three are moving.
E. The image does not feature the object.

OCR with Complex Context

Monitoring Q: What is the number of persons 
in the image?
  
A. 3            
B. 13
C. 12
D. 2
E. The image does not feature the 
persons.

OCR with Complex Context

Remote Sensing Q: What color is the parking lot 
below the soil yellow ground on 
the left side of the picture?
  
A. blue            
B. green
C. orange
D. gray
E. The image does not feature the 
color.

OCR with Complex Context

Attribute Recognition Q: What is the color of the small block that is the 
same material as the big brown thing?
  
A. cyan           
B. gray
C. blue
D. yellow

OCR with Complex Context

Multiple-Images & Text Comprehension Q: What is this comic strip about?
  
A.The cat teacher taugh other cats how to be cats, and the cat 
students answered that cats with no self-esteem would sleep in the 
cat bed.      
B.The cat teacher teaches the cat students how to sleep correctly.
C. Several cats are discussing the problem of self-esteem.
D.The cat students contradict the cat teacher.

Q: What is this comic strip about?

Interleaved Image & Text Comprehension
  
A. Sand has the highest density in the image.   
B. It cannot be determined if there is a dead clump of grass in the 
image.
C. The picture is most likely taken in the afternoon.
D. The shape of the leaves on the tree in the image are pointed.

The shape of the window 
on the stone building is 
square.

The shape of the plate near the top 
left corner of the image is unique 
because it's empty and round.

OCR with Complex Context

Temporal Reasoning Q:Which of the following options has the correct sequence of events sort of 
appearing in the video?
  
A. Study in the library, eat lunch, work out at the gym, do interviews.
B. Eat lunch, study in the library, work out in the gym, do interviews.
C. Study in the library, eat lunch, work out in the gym, do interviews.
D. Do interviews, eat lunch, study at the library, work out at the gym.

OCR with Complex Context

Action Recognition Q:Which of the following items is the man in the video doing at the gym?
  
A.Bench press.
B. Seated row.
C. Leg press.
D.Running.

Figure 5: Data samples from understanding task, which includes single-image perception and rea-
soning, multi-image and image-text interlaced perception and reasoning, video perception and rea-
soning, etc.

H EVALUATION METRICS

H.1 UNDERSTANDING SCORE

Let the three subtasks in the Understanding Task be formally defined as follows:
T = {SIPU,MITIU,VPU}.

For each subtask t ∈ T , let Qt represent the set of multiple-choice questions, where each question
q ∈ Qt has exactly one correct answer. To evaluate correctness, we define the indicator function for
each question as follows:

It(q) =
{
1, if the selected answer for q is correct,
0, otherwise.

The accuracy for subtask t is given by:

acct =
1

|Qt|
∑
q∈Qt

It(q).
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OCR with Complex ContextOCR with Complex Context

Text-to-Image Generation
Text Prompt: A baseball game 
is in progress with a batter at 
home plate, a catcher behind 
him, and an umpire to the side. 
The stands are filled with 
spectators, and the scene is set 
in a large stadium.
  

OCR with Complex Context

Fine-Grained Image Reconstruction

Text Prompt: Reconstruct the 
image with fine-grained details, 
preserving textures, edges, and 
structural fidelity while 
maintaining high visual 
accuracy and natural realism.
  

Text-Image-Editing

Edit Instruction: 
Add a mouse on the 
floor in front of the 
cat.
  

Src Image Edited Image

OCR with Complex Context

Text-to-Video Generation

Text Prompt: 2 players 
missed to put a goal in 
football game.
  

OCR with Complex Context

Video Prediction

Text Prompt: Generate 
a seamless video clip 
from the given initial 
frame, preserving style, 
motion, and continuity.
  

First Frame Second Frame ... Last Frame

OCR with Complex Context

Conditional Image-to-Video Generation
Text Prompt: Men walk 
toward the fiery chasm. 
The Demons eyes glow red 
as it smiles. Ash and 
sparks move in the 
foreground.
  

Src Image ...First Frame Second Frame Last Frame

Figure 6: Data samples from generation task. It includes subtasks such as Text-to-Image Generation,
Text-to-Image Editing, Fine-Grained Image Reconstruction, Text-to-Video Generation, conditional
Image-to-Video Generation, and Video Prediction.

OCR & Text Understanding

Object Recognition

Object Reasoning

Scene Understanding

Action Recognition

Action Reasoning

Autonomous Driving

Celebrity Recognition
Diagrams & TablesSpecialized Reasoning

Image Properties

Artwork

Recognition & Reasoning

Attribute Reasoning

Landmarks

Information Synopsis

Monitoring

Counting & Numerical

Posters
Spatial Understanding
Temporal Understanding

Physical Relations
Remote Sensing

Relations

11.62%

9.75%

7%

6.25%

6.12%

5.5%
5.5%5.38%

5.38%

4.5%

4.25%

3.75%

3.75%

3.5%

3.5%
2.75%

2.62%
2.38%

MME-Unify

OCR & Text Understanding Object Recognition Object Reasoning Scene Understanding Action Recognition1/7

Figure 7: An overview of real-life scenarios included in the Understanding Task. The scores in
the bars represent the proportion of the number of samples of the corresponding scenario to the total
number of samples of the task.

Since equal weights are assigned to each subtask, the Understanding Score (US) is computed as the
arithmetic mean of the accuracies across all subtasks:

US =
1

3

∑
t∈T

scoret, T = {SIPU,MITIU,VPU}.

H.2 GENERATION SCORE

The generative task comprises six subtasks:

T = {CIVG,TVG,VP,FIR,TIE,TIG}.
All metric scores are normalized to the range [0, 100].
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Figure 8: Distribution of steps required for samples of different mazes in the Visual CoT task.

Task Dataset Total

MME MMBench MME-
Realworld

SEED-
Bench-2

Video-
MME

Imagen
Hub

Emu-
Edit

TIP-
I2V COCO Image

Net
MSR-
VTT

Pexel
Videos

Geometry
3K

Spot
Diff

Open
AI Samples

Understanding Task
SIPU 400 400 400 0 0 0 0 0 0 0 0 0 0 0 0 1,200
MITIU 0 0 0 400 0 0 0 0 0 0 0 0 0 0 0 400
VPU 0 0 0 0 364 0 0 0 0 0 0 0 0 0 0 364

Generative Task
CIVG 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 200
FIR 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 200
TIG 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 200
TIE 0 0 0 0 0 400 200 0 0 0 0 0 0 0 0 600
TVG 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 200
VP 0 0 0 0 0 0 0 0 0 0 0 194 0 0 0 194

Unify Task
IEE 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 200
CSQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 101
AL 0 0 0 0 0 0 0 0 0 0 0 0 52 0 0 52
SD 0 0 0 0 0 0 0 0 0 0 0 0 0 104 0 100
VCoT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90
Dataset Total 400 400 400 400 364 400 400 200 200 200 200 194 52 104 190 4100
Dataset % 9.75% 9.75% 9.75% 9.75% 8.87% 9.75% 9.75% 4.87% 4.87% 4.87% 4.87% 4.73% 1.27% 2.54% 4.63% 100%

Table 13: Task-Dataset Sampling Statistics. This table presents the distribution of samples across
different multimodal AI tasks and their source datasets. Tasks are categorized into three main
groups: Understanding Tasks (SIPU: Single Image Perception and Understanding, MITIU: Multi-
Image & Interleaved Text-Image Understanding, VPU: Video Perception and Understanding), Gen-
erative Tasks (CIVG: Conditional Image-to-Video Generation, FIR: Fine-grained Image Reconstruc-
tion, TIG: Text-to-Image Generation, TIE: Text-Guided Image Editing, TVG: Text-to-Video Gener-
ation, VP: Video Prediction), and Unify Tasks (IEE: Image Editing and Explanation, CSQ: Common
Sense Question Answring, AL: Auxiliary Lines., SD: SpotDiff, VCoT: Visual CoT). The rightmost
column shows the total number of samples used for each task across all datasets. A value of 0 indi-
cates that no samples were drawn from that dataset for the corresponding task.

Normalization of FVD and FID Scores. Let s denote the raw FVD or FID value for a sample,
where s ∈ [1, 1000] and lower values indicate better performance. The normalized score S is
computed as:

S = 100

(
1− s− 1

1000− 1

)
= 100

(
1− s− 1

999

)
.

This ensures:

• S = 100 when s = 1 (best performance),

• S = 0 when s = 1000 (worst performance).

If all raw scores across models are identical, each normalized score is set to 100 to maintain consis-
tency in evaluation and prevent division by zero in the normalization process.
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Score Calculation for CIVG and TVG. The subtask score for t ∈ {CIVG,TVG} is given by:

scoret =
FVD(t)

norm + FID(t)
norm + CLIPSIM(t)

3
.

Score Calculation for VP. The VP subtask score is determined using the following formula:

scoreVP =
FVD(VP)

norm + FID(VP)
norm

2
.

Score Calculation for FIR, TIE, and TIG. For FIR (Fine-Grained Image Reconstruction), the
metric is LPIPS. To ensure higher values indicate better performance, the score is defined as:

scoreFIR = 1− LPIPS.

For both TIE (Text Image Editing) and TIG (Text-to-Image Generation), two metrics are used:
CLIP-I and CLIP-T. The score for each subtask is computed as the average of these two metrics:

scoreTIE =
CLIP-ITIE + CLIP-TTIE

2
,

scoreTIG =
CLIP-ITIG + CLIP-TTIG

2
.

Overall Generation Score. The overall Generation Score (GS) is the arithmetic mean of all six
subtask scores:

GS =
1

6

∑
t∈T

scoret, T = {CIVG,TVG,VP, FIR,TIE,TIG}.

H.3 UNIFY SCORE

Let the Unify Task consist of the subtasks
T = {IEE,CSQ,AL,SD,VCoT}.

For each subtask t ∈ T , denote by St the set of samples.

H.3.1 SUBTASKS IEE, CSQ, AL, SD

For a given subtask t ∈ {IEE,CSQ,AL,SD} and for each sample s ∈ St, there are two questions:

1. A text-based multiple-choice question.
2. An image-based multiple-choice question.

Define the indicator functions for the text and image responses as follow:

Itext
t (s) =

{
1, if the text answer for s is correct,
0, otherwise,

Iimg
t (s) =

{
1, if the image answer for s is correct,
0, otherwise.

Then, the text accuracy and image accuracy for subtask t are, respectively,

acctext
t =

1

|St|
∑
s∈St

Itext
t (s), accimg

t =
1

|St|
∑
s∈St

Iimg
t (s).

The overall accuracy for subtask t is then defined as the average of the two:

acct =
acctext

t + accimg
t

2
.

Additionally, we define acc+t to represent the accuracy for samples where both the textual and image-
based answers are correct:

acc+t =
1

|St|
∑
s∈St

Itext
t (s) · Iimg

t (s).
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H.3.2 SUBTASK VCOT

For the VCoT subtask, each sample s ∈ SVCoT represents a maze navigation task composed of Ks

sequential steps. For each step k ∈ {1, 2, . . . ,Ks}, there are multiple-choice questions evaluating
the model’s prediction of:

1. An action.
2. A coordinate.
3. An image.

Calculation of accVCoT: Let Nsteps =
∑

s∈SVCoT
Ks be the total number of steps across all samples

in the VCoT subtask. Define the indicator functions for the correctness of action, coordinate, and
image predictions for step k of sample s as follow:

Iaction
VCoT(s, k) =


1, if the action prediction for step k

of sample s is correct,
0, otherwise.

Icoord
VCoT(s, k) =


1, if the coordinate prediction for step k

of sample s is correct,
0, otherwise.

Iimg
VCoT(s, k) =


1, if the image prediction for step k

of sample s is correct,
0, otherwise.

Calculate the average accuracy for each prediction type across all steps:

accaction
VCoT =

1

Nsteps

∑
s∈SVCoT

Ks∑
k=1

Iaction
VCoT(s, k),

acccoord
VCoT =

1

Nsteps

∑
s∈SVCoT

Ks∑
k=1

Icoord
VCoT(s, k),

accimg
VCoT =

1

Nsteps

∑
s∈SVCoT

Ks∑
k=1

Iimg
VCoT(s, k).

The overall accVCoT metric is the arithmetic mean of these three component accuracies:

accVCoT =
accaction

VCoT + acccoord
VCoT + accimg

VCoT

3
.

Calculation of acc+VCoT: Define an indicator function for the full correctness of a single step k in
sample s:

Istep all correct(s, k) = Iaction
VCoT(s, k)× Icoord

VCoT(s, k)× Iimg
VCoT(s, k).

This function is 1 if all three predictions for step k are correct, and 0 otherwise.

Now, define the indicator function for the perfect completion of sample s:

Isample perfect
VCoT (s) =


1, if Istep all correct(s, k) = 1

for all k ∈ {1, 2, . . . ,Ks},
0, otherwise.

The acc+VCoT metric is the proportion of perfectly completed samples:

acc+VCoT =
1

|SVCoT|
∑

s∈SVCoT

Isample perfect
VCoT (s).
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H.4 UNIFY SCORES

The Unify Score (Unify-S) is defined as the arithmetic mean of the acct metrics across all subtasks:

Unify-S =
1

|T |
∑
t∈T

acct,

H.5 MME-U SCORE

The MME-U Score is computed as the arithmetic mean of the Understanding Score (US), Generation
Score (GS), and Unify Score (Unify-S):

MME-U =
1

3
(US + GS + Unify-S) .

where:

• US is the Understanding Score,
• GS is the Generation Score,
• Unify-S is the Unify Score.

Each component score is calculated as described in their respective sections.
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(a) Common Sense Question Answering

Prompt for Generation

Please help me generate some 
common sense questions, such as 
identifying plants and animals...

GPT4o

Question:  A device used to capture photographs, 
essential in both art and journalism.
Choice:
A: Smartphone        B: Camera    
C: Telescope            D: Microphone        Answer:  B

Question:  A device used to capture photographs, 
essential in both art and journalism.
Choice:

Text Multi-choice

Image Multi-choice

C DA B

(b) Image Editing and Explaining

<src image, edit instruction>

Give the 
woman in
black dress a 
red rose in 
her hand.

Please follow the instructions and 
provide three different explanations.

Please generate three 
different edit instructions.

Prompts for Text Generation
Prompts for 
Image 
Generation

Explaining: The target object for editing is the woman in 

the black dress standing in a kitchen setting.

Neg-explaining1: The target object for editing is the 

man in a blue suit sitting in a living room setting.

Neg-explaining2:  The target object for editing is the 

woman in the black dress standing in a kitchen setting.

Neg-explaining3:  The target object for editing is the 

child wearing a striped shirt playing in a garden setting.

A: The target object …The specific editing 

requirement is to place a red rose in her…

B: The target object …The specific editing …

C: The target object ... The specific editing …

D: The target object ... The specific editing …

Neg-instruction1

Neg-instruction2

Neg-instruction3
Edit Model

Text Multi-choice

Please give 
specific editorial 
suggestions based 
on the 
explanation.

Image Multi-choice

C DA B

(c) SpotDiff

Image_a

Image_b

Different_locations

Please generate images with 
only different points according 
to different point positions, and 
generate three incorrect …

Image Multi-choicePrompts for Image Generation

Based on the number of 
different_count, generate a 
Q&A template with options 
for three incorrect answers 
and one correct answer.

Prompts for Text Generation
Choice:

A: 17        B: 16        C: 19        D: 15         Answer:  D

Question: How many differences are there in these two 

pictures?

Question: 

Find out the 

differences 

between the 

two images.

Text Multi-choice

A

C D

B

(d) Auxiliary Lines

Geometry3K

GPT-4o

Please revert this issue 
according to the options 
and text literals.

Text Multi-choice

Image Multi-choice

Question:  In triangle ABC, point D is the foot of the 
perpendicular from C to side AB. Given that AC = 18 units, BC 
= 24 units, and ∠ACB = 60°, determine the length of CD.
Choice:
   A: 12          B: 15          C: 17          D: 20            Answer: C

Prompts for Generation

src image

check
Auxiliary lines 
are required

C DA(answer) B

(e) Visual CoT
Open AI API Initial Image

 Now the player is at (3,2). The 
next step is action Up

coordinate (2,2)
action Up
coordinate (1,2)

 Now the player is at (2,2). The 
next step is 

Step1 Step2 Step3

… Finished!

Figure 9: The overall construction process for five unified tasks, which consists of (a) Common
Sense Question Answering, (b) Image Editing and Explaining, (c)SpotDiff, (d) Auxiliary Lines, and
(e) Visual CoT.
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(a) Ground Truth. (b) DALLE-2. (c) DALLE-3. (d) Gemini2.0-flash-exp.

(e) EMU3. (f) GILL. (g) HermesFlow. (h) Janus-Pro.

(i) MiniGPT-5. (j) MIO-Instruct. (k) Show-O. (l) Vila-u

Figure 10: The generated results from various models in the text-to-image generation task,
based on the following text prompt: A man is standing in a park with a ’Run for Rights’ banner
in the background. He is wearing a white t-shirt with the number 28 on it, grey shorts, and grey
socks with black shoes. The park is filled with people, some sitting on benches, and there is a bicycle
leaning against a tree.

(a) Anole. (b) GILL. (c) SEED. (d) MiniGPT-5.
(e) Gemini2.0-flash-
exp.

Figure 11: Intermediate process images generated by different models in VCoT. The figure illus-
trates the intermediate outputs of various models in the VCoT (Visual Composition Task), showing
distinct approaches in processing and generating visual content. The models shown include (a)
Anole, (b) GILL, (c) SEED, (d) MiniGPT-5, and (e) Gemini-2.0-flash-exp, each producing unique
visual patterns and compositions.
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(a) Source Image. (b) OmniGen. (c) GILL. (d) MiniGPT-5.

(e) Anole. (f) SEED-LLaMA. (g) MIO-Instruct. (h) Gemini2.0-flash-exp.

Figure 12: The generated results from various models in the fine-grained image reconstruction
task, based on the following text prompt: Reconstruct high-fidelity images from degraded inputs,
preserving fine-grained details, textures, and structural integrity with perceptual realism.

(a) Source Image. (b) Ground Truth. (c) GILL. (d) MiniGPT-5.

(e) Anole. (f) SEED-LLaMA. (g) MIO-Instruct. (h) Gemini2.0-flash-exp.

Figure 13: The generated results from various models in the text-guided image editing task,
based on the following text prompt: Change this image into a watercolor art.
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(a) Source Image.

(b) CogVideoX.

(c) MIO-Instruct.

Figure 14: The generated results from various models in the conditional image-to-video gener-
ation task, based on the following text prompt: The man is so tired. -camera zoom in.
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(a) CogVideoX.

(b) MIO-Instruct.

Figure 15: The generated results from various models in the text-to-video generation task,
based on the following text prompt: Men wearing sunglasses and women with hats take photographs
of themselves.
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Src Image 

Edit Instruction: Add the phrase 
\"FAST FOOD\" in small letters. 

Ground Truth 

Anole Response 

Output Image 

Output Explanation:  This image features a burger 
and French fries from a fast-food restaurant. The 
phrase "FAST FOOD" is written in small letters, 
applying an artistic touch to the image while also 
accurately reflecting the content.

GILL Response 

Output Image 
Output Explanation:  DOG DARE YOU ! 
[IMG0][IMG1][IMG2][IMG3][IMG4][IMG5][IMG6][I
MG7].

MiniGPT5 Response 

Output Image 

Output Explanation:  I'm sorry, but your question 
is a bit vague and doesn 't provide enough context 
for me to give an accurate response. Could you 
please rephrase or clarify the task? Are we talking 
about adding text in general ,or specifically when 
it comes small letters ?  [IMG0]

SEED-LLaMA Response 

Output Image 
Output Explanation:  Successfully added the 
phrase \"FAST FOOD\" in small letters to the 
image.

Image Editing and Explaining 

Figure 16: The generated results from various models in the image editing and explaining task.
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Question: Ancient monumental 
tombs located in Egypt near the city 
of Cairo.

A. Colosseum  B. Stonhenge 
C. Machu Picchu  D. Pyramids of Giza

Ground Truth 

GILL Response 

MiniGPT5 Response 

SEED-LLaMA Response 

Common Sense Question Answering 

Answer: D

Anole Response 

Output Image 

Output Choice: A

Output Image 

Output Choice: A

Output Image 

Output Choice: D

Output Image 

Output Choice: D

Figure 17: The generated results from various models in the common sense question answering task.
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Src Image Question: In circle O, the radius is 10 
units, and chord AB is 16 units long. 
The distance from the center of the 
circle O to the midpoint P of AB is 6 
units. Using this information, calculate 
the area of triangle OAP

Anole Response 

Output Image 

GILL Response 

MiniGPT5 Response 

Auxiliary Lines 

Answer: D

Output Choice: B

Output Image 

Output Choice: A

Choices: A. 11  B. 36  C. 28  D. 24 

Output Image 

Output Choice: A

Gemini2.0-Flash-Exp Response 

Output Image 

Output Choice: A

Figure 18: The generated results from various models in the auxiliary lines task.
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Src Image 1 Ground Truth 

Anole Response 

SpotDiff 

Src Image 1 

Output Image 

Output Choice: B

MiniGPT5 Response 

Output Image 

Output Choice: C

SEED-LLaMA Response 

Output Image 

Output Choice: A

Gemini2.0-Flash-Exp Response 

Output Image 

Output Choice: C

Figure 19: The generated results from various models in the spotdiff task.
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System Prompt:
You are an AI system that answers common-sense knowledge questions by selecting the correct 
answer from multiple choices and then generating an image that visually represents the answer.

Input Data
Question: A factual question requiring knowledge-based reasoning.
Choice: A set of multiple-choice answers labeled A, B, C, and D.

Output Requirements

Answer Selection:
Analyze the question and determine the correct answer based on general knowledge.
Output the selected answer in the format: Answer: X (where X is A, B, C, or D).

Image Generation:
Generate an image that visually represents the content of the chosen answer.

Processing Steps
Understand the Question: Extract key information from the question.
Evaluate the Choices: Compare each option and determine the most accurate answer.
Select the Correct Answer: Output the correct choice in the required format.
Generate the Image: Create an image that correctly depicts the content of the selected answer.
Verify Coherence: Ensure the generated image aligns with the chosen answer.

Example
Input:
question: "Which planet is known as the Red Planet?",
choice: 
    "A: Earth",
    "B: Mars",
    "C: Venus",
    "D: Jupiter"

Model Output:
Answer: B
<image> (Generating image of the Mars)

Common Sense Question Answering

Figure 20: System prompt for Common Sense Question Answering task.
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System Prompt:
You are an AI-powered image editing assistant. Your task is to modify a provided initial image 
based on a question instruction and generate a clear visual description of the edited object.

Input Data
Question: A natural language instruction specifying how the image should be modified.
Initial Image: The original image that needs editing.
Output Requirements
Explanation:
Identify the target object or region in the image that needs to be modified.
Provide a concise visual description of the object before and after modification.
Clearly describe how the edit integrates into the scene.
Edited Image:
Generate an image that precisely follows the question instruction while ensuring realism and 
coherence.
Maintain the original image’s quality, lighting, and perspective in the edited version.
Processing Steps
Analyze the Question: Extract key editing instructions (e.g., add, remove, modify, change color, 
reposition).
Identify the Target Object: Locate the relevant object or scene element that needs modification.
Generate a Visual Description: Clearly describe the object before and after editing, ensuring it 
aligns with the given instruction.
Apply the Modification: Edit the image accordingly, ensuring seamless integration with existing 
elements.
Verify Output: Ensure the modification meets the instruction while preserving natural aesthetics.

Example
Input:
Question: Add a fork to the plate.  
<image>

Model Output:
Explanation: The target object for editing is the plate containing a steak, potatoes, and mixed 
vegetables, with a slice of orange for garnish. The specific editing requirement is to add a fork to 
the plate, ensuring it complements the arrangement of the existing food items.  
<edited image>

Image Editing and Explaining

Figure 21: Systemp prompt for Image Editing and Explaining task
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System Prompt:
You are an AI system designed to analyze two similar images (img_a and img_b) and identify the 
number of differences between them. Your task is to:

Compare img_a and img_b to find all differences.
Select the correct answer from the provided multiple-choice options.
Extract the different regions from img_a and place them on a white background of the same size.
Input Format
img_a: The first image.
img_b: The second image (similar but not identical to img_a).
choice: Multiple-choice answers indicating different counts of differences, labeled as A, B, C, D.

Example Input:
img_a: "<image_a>",
img_b: "<image_b>",
choice: 
    "A: 14",
    "B: 11",
    "C: 19",
    "D: 10"

Output Format
Answer Selection:
Identify the correct number of differences and output the answer in the format:
Answer: X  (where X is A, B, C, or D)
Extracted Difference Image:
Identify regions in img_a that differ from img_b.
Extract these differing regions and place them on a white background of the same size as img_a.
The final image should highlight only the different areas while preserving their original details.

Example Output:
Answer: B
<image> (Extracted difference regions placed on a white background)

Processing Steps
Compare img_a and img_b to identify all differences (object position, shape, color, missing parts, 
etc.).
Count the total number of differences and match it to the correct multiple-choice answer.
Extract differing regions from img_a and overlay them on a white background of the same size.
Output the selected answer and the processed image.

Key Requirements
Strictly select one answer from A, B, C, D.
Ensure extracted differences are accurately placed on a clean white background.
Maintain the original structure of differing regions (no modifications, just extraction).

SpotDiff

Figure 22: System prompt for SpotDiff task.
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System Prompt:
You are an AI system designed to solve junior high school geometry problems. Your task is to:

Analyze the given geometry question, image, and multiple-choice answers.
Draw auxiliary lines on the geometric diagram to assist in problem-solving.
Determine the correct answer based on the problem's conditions.
Input Data
Question: A geometry-related word problem describing angles, lengths, or relationships.
Image: A geometric diagram corresponding to the problem statement.
Choice: A set of multiple-choice answers labeled A, B, C, and D.
Output Requirements
Answer Selection:
Use geometric reasoning to determine the correct answer.
Output the selected answer in the format: Answer: X (where X is A, B, C, or D).
Image with Auxiliary Lines:
Draw necessary auxiliary lines (such as perpendiculars, bisectors, or diagonals) on the 
geometric diagram to facilitate solving.
Ensure the lines are clear and logically placed according to the problem’s constraints.
Maintain the original structure of the diagram while highlighting the new construction.
Processing Steps
Understand the Problem: Analyze given conditions (parallel lines, angles, lengths, etc.).
Identify Key Geometric Properties: Determine the relationships between elements in the 
diagram.
Draw Auxiliary Lines: Add necessary constructions to simplify calculations.
Solve for the Answer: Apply geometric theorems and algebraic calculations.
Output Answer and Edited Image: Provide the correct answer and the diagram with auxiliary 
lines.

Example
Input:
question: "Given the quadrilateral ABCD, where line segment AB is parallel to line segment DC, 
the measure of ∠ABC is 60°, and the measure of ∠ADC is 45°. Additionally, the length of BC is 8 
units, and the length of AB is 24 units. Determine the perimeter of quadrilateral ABCD.",
choice: 
    "A: 26 + 2 \\sqrt { 3 } + 2 \\sqrt { 6 }",
    "B: 26 + 4 \\sqrt { 3 } + 4 \\sqrt { 6 }",
    "C: 52 + 2 \\sqrt { 3 } + 2 \\sqrt { 6 }",
    "D: 52 + 4 \\sqrt { 3 } + 4 \\sqrt { 6 }"

<image>(geometry diagram)

Model Output:
Answer: B
<image> (image with auxiliary lines)

Auxiliary Lines

Figure 23: System prompt for Auxiliary Lines task.
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System Prompt for first step:
You are given a grid-based puzzle game map where each grid square can either be a safe square 
(land) or a hole. Your goal is to reach the target while avoiding the holes and using as few moves 
as possible. You can move in four directions: Left, Right, Up, or Down. The grid is 3×3.The top-left 
cell is (0,0), the top-right cell is (2,0), the bottom-left cell is (0,2), and so forth.Rows increase 
downward, and columns increase to the right.

**Game Settings:**
- The grid map is fully observable.
- The player starts at a designated grid square.
- The goal is located elsewhere on the map.
- Each grid square is either safe (land) or contains a hole (non-safe).
- The player must avoid holes, and moving into a hole results in failure.
- The objective is to guide the player to the goal without falling into holes.

**Movement Rules:**
- The player can move left, right, up, or down to an adjacent square, provided it is a safe square.
- The player cannot move more than one square at a time.
- Moving outside the edge of the map has no effect. The player stays in the same position.
- Do not fall into holes. 
- The player wins by reaching the goal.

**Your task:**
- Based on the current state of the game, decide the next move for the player.
- Provide the next action: "Left", "Right", "Up", or "Down".
- After selecting the action, specify the coordinates of the player's new location as [x, y].
- Also, output a representation of the grid map after the selected action.

**Output Format:**
Action: [Your move choice]
Location: [x, y]
Image: [Generated Image]

Here is the Initial grid map:
(Shown Initial Figure)

Please choose the next move and give output:

Visual CoT

Figure 24: Systemp prompt for Visual CoT task in the first step.
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System Prompt after first step:
You are given a grid-based puzzle game map where each grid square can be either a safe square 
(land) or a hole. Your goal is to reach the goal while avoiding holes and using as few moves as 
possible. You can move in four directions: left, right, up, or down. The grid is 3×3. The top-left 
cell is (0,0), the top-right cell is (2,0), the bottom-left cell is (0,2), and so on. Rows increase 
downwards and columns increase rightwards.

**Game Setup:**
- The grid map is fully observable.
- The player starts at a designated grid square.
- The goal is somewhere else on the map.
- Each grid square is either safe (land) or contains a hole (non-safe).
- The player must avoid holes, and entering a hole will result in failure.
- The goal is to guide the player to the goal without falling into a hole.

**Movement Rules:**
- The player can move left, right, up, or down to an adjacent square, provided it is a safe square.
- The player cannot move more than one block at a time.
- Moving beyond the edge of the map has no effect. The player remains in the same position.
- Do not fall into a hole.
- The player wins by reaching the goal.

**Your Task:**
- Determine the next move for the player based on the initial grid map, the history information, 
and the current state of the game.
- Provide the next action: "Left", "Right", "Up", or "Down", and output "Finish" if you think the 
goal position has been reached
- After selecting an action, specify the coordinates of the player's new position as [x, y].
- Also, output a representation of the grid map after the selected action.

Please provide the action, coordinates and the maze image of the player's new position for next 
step

This is the initial grid map:
(Showing Initial Map)

Here is the state of the game after last step:
**History Information:**
- Last action (e.g., "Go Right", "Go Down", etc.).
- Current position.
- An image of the grid after the last move.
- Initial grid map:

**Output format:**
Action: [your move selection]
Location: [x, y]
Image: [generated image]

Please select the next step and give the output:

Visual CoT

Figure 25: Systemp prompt for Visual CoT task after first step.
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