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ABSTRACT

Unified Multimodal Large Language Models (U-MLLMs) have garnered consid-
erable interest for their ability to seamlessly integrate generation and comprehen-
sion tasks. However, existing research lacks a unified evaluation standard, of-
ten relying on isolated benchmarks to assess these capabilities. Moreover, cur-
rent work highlights the potential of “mixed-modality generation capabilities”
through case studies—such as generating auxiliary lines in images to solve geo-
metric problems, or reasoning through a problem before generating a correspond-
ing image. Despite this, there is no standardized benchmark to assess models on
such unified tasks. To address this gap, we introduce MME-Unify, also termed
as MME-U, the first open and reproducible benchmark designed to evaluate mul-
timodal comprehension, generation, and mixed-modality generation capabilities.
For comprehension and generation tasks, we curate a diverse set of tasks from 12
datasets, aligning their formats and metrics to develop a standardized evaluation
framework. For unified tasks, we design five subtasks to rigorously assess how
models’ understanding and generation capabilities can mutually enhance each
other. Evaluation of 17 U-MLLMs, including Janus-Pro, Bagel, and Gemini2-
Flash, reveals significant room for improvement, particularly in areas such as in-
struction following and image generation quality.
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(a) MME-U tasks. (b) Leaderboard.

Figure 1: A comprehensive visualization of the diverse tasks in MME-U and the leaderboard.
The figure (a) illustrates the wide-ranging nature of the tasks covered in our benchmark, which
spans from traditional understanding tasks to complex mixed-modality generation challenges. The
leaderboard (b) highlights the performance rankings of various U-MLLMs in our benchmark.

1 INTRODUCTION

Unlike traditional MLLMs (e.g., GPT-4V) and purely generative models (e.g., DALL-E 3), U-
MLLMs [Xie et al| (2025b); [Wang et al.| (2024b); [Chen et al.| (2025); [Ma et al.| (2024) excel in

processing mixed-modal inputs and outputs, providing enhanced flexibility and the ability to ad-
dress a broader spectrum of complex tasks. Recently, closed-source U-MLLMs, such as Gemini 2.0
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Figure 2: Complex instruction-based image generation comparison of results from open-source
U-MLLMs (DeepSeek-Janus Flow, EMU3), closed-source U-MLLMs (GPT-40, Gemini-2), and
proprietary models (DALLE-3). The closed-source U-MLLMs have demonstrated abilities surpass-
ing proprietary generation models, with a significantly larger gap compared to open-source models.

Flash, have demonstrated exceptional generative capabilities, impressing in both instruction com-
prehension and image creation, as shown in Figure[2] These models exhibit an extraordinary grasp
of image details, even surpassing proprietary generative models. However, this versatility also intro-
duces considerable challenges in comprehensively evaluating their capabilities under unified evalu-
ation criteria, primarily due to two key issues:

» Lack of Standardized Benchmarks for Traditional Tasks. Existing works typically
evaluate traditional generation and understanding tasks separately, using various bench-
marks. However, the benchmarks chosen across studies are inconsistent, and often in-
compatible, leading to unfair comparisons. Moreover, the evaluation methods differ sig-
nificantly—multimodal understanding tasks may involve varied formats such as multiple-
choice questions, GPT-4 scoring, or binary classification, while multimodal generation
tasks may rely on metrics like CLIP score or FID. This diversity in evaluation makes it
difficult to derive an intuitive and unified performance score.

« Absence of Benchmarks for Mixed-Modality Generation} The most distinctive fea-
ture of U-MLLMs is their mixed-modality generation capabilities, which demonstrate the
synergistic interaction between multiple modalities. For instance, image editing requires
accurately understanding textual instructions and identifying objects to be modified, while
solving geometry problems involves comprehending the problem, drawing auxiliary lines,
and performing logical reasoning. Despite these advanced capabilities, most methods only
showcase simple cases, lacking a standardized benchmark to rigorously assess these com-
plex mixed-modality tasks.

To address these challenges, we propose a comprehensive evaluation framework for U-MLLMs,
which is shown in Figure[T] For traditional generation and understanding tasks, we sample data
from 12 existing datasets, resulting in 10 tasks with 30 subtasks. On the understanding side, these
tasks encompass single-image, multi-image, and video-based perception and reasoning tasks, cov-
ering a wide range of difficulties—from simple visual question-answering (VQA) to high-resolution
VQA in real-world scenarios and long-video understanding. On the generation side, we include
tasks such as image/video generation and editing, as well as more complex conditional image gener-
ation and image-to-video generation, aiming to cover the full spectrum of existing generative tasks.

'also termed as unify tasks
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Table 1: Comparison of MME-U and other Benchmark. SIPU: Single Image Perception & Un-
derstanding; MITIU: Multiple & Interleaved Image-Text Understanding; VPU: Video Perception &
Understanding; CIVG: Conditional Image-to-Video Generation; FIR: Fine-grained Image Recon-
struction; TIE: Text-Guided Image Editing; TIG: Text-to-Image Generation; TVG: Text-to-Video
Generation; VP: Video Prediction; UT: Unified Task.

i . . Understanding Generation Unify
Benchmark Question Year SIPU_MITIU VPU | FIR TIE TIG CIVG TVG VP | UT
MSR-VTT Xu et al.|(2016) 10,000 CVPR 2016 X X v X X X X X X X
MMBench|Liu et al.|(2024) 3,217 arXiv 2023 v X X X X X X X X X
GenEval|Ghosh et al. |(2023) 1,200 arXiv 2023 X X X X X v X X X X
MagicBrush|Zhang et al.|(2023) 10,338 NeurIPS 2023 X X X v v X X X X X
VBench|Huang et al.|(2024) 1,600 CVPR 2024 x x x x x x x v x x
SEED-Bench2|Li et al. (2023} 19,242 arXiv 2024 v v v v v v X X X X
Emu-Edit/Sheynin et al.|(2024) 5,611 CVPR 2024 X X X v v X X X X X
TIP-12V|Wang & Yang|(2024) 500,000 arXiv 2024 X X X X X X v X v X
MMBench-Video Fang et al. (2025} 2,000 NeurIPS 2024 X X v X X X X X X X
MME Fu et al.|(2023) 2,374 arXiv 2023 v X X X X X X X X X
Video-MME [Fu et al.|(2024a) 2,700 CVPR 2025 X X v X X X X X X X
MME-RealWorld|Zhang et al. |(2025b) 29,429 ICLR 2025 v X X X X X X X X X
Wise[Niu et al.|(2025) 1,000 arXiv 2025 X X X X X X X X X v
MME-Unify (ours) 4,100 2025 v v v v v v v v v v

To simplify evaluation and provide a unified score, we manually reformat all understanding tasks
into multiple-choice questions, reporting accuracy as the primary metric. For generation tasks, we
standardize the evaluation scores and normalize them to provide a consistent metric. This approach
reduces the difficulty of benchmark collection and mitigates the issue of inconsistent evaluation
metrics across studies.

For the Unified Tasks, we constructed five tasks: (1) Image Editing and Explaining, where the
model first understands complex editing instructions and edits an image; (2) Common Sense Ques-
tion Answering, where the model answers a question and generates the corresponding image; (3)
Auxiliary Lines, where the model draws auxiliary lines for geometry problems and then solves them;
(4) SpotDiff, where the model identifies and draws the differences between two images; and (5) Vi-
sual CoT, where the model generates step-by-step strategies for navigating a maze and visualizes
the next state. These tasks evaluate a model’s ability to perform sequential reasoning and generate
corresponding multimodal outputs at each step. All tasks are carefully formatted as multiple-choice
questions to facilitate consistent, fair, and objective evaluation.

We evaluate 17 existing U-MLLMs, including Janus-Pro, Bagel, VILA-U, and MiniGPT-5. To pro-
vide context for their performance, we also compare them with specialized understanding models
(e.g., Claude-3.5 Sonnet, Qwen2.5-VL) and generative models (e.g., DALL-E-2, DALL-E-3). This
comprehensive evaluation not only underscores the strengths and weaknesses of U-MLLMs but also
establishes a standardized benchmark for future research in this rapidly evolving field. For exam-
ple, we uncover several key experimental findings, as illustrated in Figure (1} Currently, U-MLLMs
exhibit significant variance in rankings across three dimensions, and no single model has emerged
as the best performer across multiple capabilities. Moreover, the performance gap between models
is substantial. Finally, the current open-sourced U-MLLMs still exhibit a significant gap in perfor-
mance compared to specialized models in both understanding and generation tasks. Additionally,
while many works claim to handle mixed-modality generation, our unify task tests demonstrate that
most of existing U-MLLMs struggle to consistently and effectively process these types of tasks.

2 MME-UNIFY

This section outlines the data collection, question annotation, and evaluation strategy for MME-
Unify. Figures [T]and 3] provide visual representations of subtasks and samples across three domains,
while Table [1| compares MME-U with existing benchmarks. MME-U categorizes U-MLLM capa-
bilities into three areas: (1) Multimodal Understanding, (2) Multimodal Generation, and (3) Unify
Capability, highlighting the diverse aspects of model performance.

2.1 MULTI-MODAL UNDERSTANDING

Data Collection. Multimodal understanding tasks are divided into three subcategories based on
visual input type:
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Figure 3: Diagram of our MME-Unify. Our benchmark consists of 3 main domains, encompassing
15 subtasks to comprehensively evaluate U-MLLMSs’ understanding, generation, and unified capa-
bilities. Specifically, each unify task includes at least one question, an input image, multiple text
choices, and image choices. The image choices consist of a correct answer image and a set of man-
ually crafted negative samples. During the evaluation process, we input the image, question, and
text options, and the U-MLLMs are required to select the correct text answer and generate an image.
The text answer is evaluated by matching it with the correct answer, while the generated image is
compared with the constructed image choices. If the CLIP score between the generated image and
the correct answer image is the highest, it is considered correct; otherwise, it is deemed incorrect.
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* Single-Image Perception and Understanding (SIPU). This task is designed to evaluate
image-text pair comprehension.

* Multi-Image & Interleaved Text-Image Understanding (MITIU). Assesses the model’s abil-
ity to handle and process multi-image and interleaved text-image inputs.

* Video Perception and Understanding (VPU). Measures video comprehension capability.

To ensure comprehensive coverage of various image and video understanding scenarios, we collect
1,900 samples from 5 benchmarks such as MME and MMBench, encompassing over 24 tasks. This
includes 1,600 perception tasks, such as OCR, diagram and table understanding, and spatial per-
ception, along with 300 reasoning tasks, including attribute reasoning and action reasoning, with at
least 50 QA pairs per sub-task. Additional details can be found in Appendix Figure[7]and Appendix
Table[I3] More visualization examples can be found in Appendix Figure 3

QA Pairs Reformulation. To standardize the evaluation of the understanding task, we convert all
the collcted data into multiple-choice QA pairs, with one correct option and the remaining options
carefully designed to be closely related to it. For models that can accept only single-image input, we
use the first image from the multi-image input or the first frame from the video input. For models
that cannot process video files (e.g., MP4 files), we uniformly sample six key frames from the video
to serve as the visual input.

Evaluation Strategy. To fairly evaluate MLLM outputs, we apply rule-based filtering to match
model responses with answer options, similar to MME-Realworld Zhang et al. (2025b)); |[Fu et al.
(20244). Furthermore, to eliminate positional bias inherent in multiple-choice questions, the correct
answer is randomly shuffled among the four available options. We then calculate the average ac-
curacy across all sub-tasks and derive the overall understanding score, providing a fair, robust, and
unbiased evaluation of the model’s performance.

2.2 MULTI-MODAL GENERATION

Multimodal generation involves various tasks for image and video modalities, which can be further
subdivided based on application, as shown in Figure 1. Fine-grained Image Reconstruction
(FIR). Given an original image, the model is required to restore detailed features and local textures.
2. Text-guided Image Editing (TIE). Edit or modify an image based on textual instructions. 3. Text-
guided Image Generation (TIG). Given a text description, the model needs to generate an image that
matches it. 4. Conditional Image-to-Video Generation (CIVG). Generate a dynamic video sequence
based a given image and text prompt. 5. Text-guided Video Generation (TVG). Generate a video
sequence based on a textual description. 6. Video Prediction (VP). Predict subsequent frames or the
complete video sequence based on the information from the first frame.

Data Collection. Data is collected from benchmark datasets, such as COCO [Lin et al. (2014a),
Emu-EditSheynin et al.|(2024), MSR-VTT [Xu et al|(2016)), ensuring at least 200 samples for each
task. For video prediction, videos are sourced from the Pexel Video websiteE] and the first frame
is used for prediction. Detailed data sources and sample sizes are in Appendix Table More
visualization examples can be found in Figure [6]

QA Pairs Reformulation. Due to the diversity of generation tasks and their varied data sources, the
collected samples contain redundant attributes and inconsistent number of images, videos, and other
multimodal data. We aim to provide a streamlined, unified evaluation framework. To achieve this,
we contribute the following:

* Attribute Unification Pipeline. First, we summarize all attributes appearing in the data,
which exceed 30 types, creating significant complexity. We then manually eliminate task-
irrelevant attributes and merge similar attributes across different tasks. For example, text
attributes are represented as Text Prompt, image attributes as Src Image and Ref Image
based on their input/output roles, and video attributes as Video. For any task where an
attribute is not required, its corresponding value remains empty.

* Task-Specific Prompt Engineering. To ensure that the model can effectively generate
outputs that meet the task requirements, we establish specific system prompts for each

https://www.pexels.com/videos/
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subtask. Each sample’s text prompt or src image serves as the input, while the reference
image or video acts as the ground truth answer. Through standardizing attribute values
and constructing tailored prompts, we convert diverse samples from different tasks into a
unified format for evaluating multimodal generation tasks.

Evaluation Strategy. Evaluating multimodal generation tasks with a unified metric is challenging
due to the diversity of subdomains and their distinct metrics (e.g., CLIP-I, CLIP-T, FVD, FID).
To address this, we: (1) Perform domain-specific preliminary evaluations using standard metrics;
(2) Standardize all metrics to a consistent (0, 100) scale, converting non-positive indicators into
positive ones; and (3) Compute the average of standardized scores to derive the final generation
score. This approach ensures cross-task comparability while maintaining domain-specific evaluation
rigor. Detailed metrics and standardization methods are provided in Appendix [H]

2.3 UNIFY CAPABILITY

MME-U contains five unified subtasks: (1) Common Sense Question Answering (CSQ), (2) Image
Editing and Explaining (IEE), (3) SpotDiff (SD), (4) Auxiliary Lines (AL), and (5) Visual CoT
(VCoT). Each subtask includes at least 50 manually constructed samples and is structured with task-
specific instructions and question templates that require mixed-modality input-to-output generation.

Common Sense Question Answering. This task evaluates U-MLLMSs’ ability to associate com-
monsense descriptions with visual features, such as linking “the tomb of an ancient Egyptian
pharaoh” to a pyramid or “China’s national treasure” to a panda. Our approach involves: 1. Question
Construction. Using GPT-40, we generate riddle-like questions based on commonsense concepts,
with similar but incorrect words as negative options. For example, when the answer is “panda,” we
select “brown bear” or “polar bear” as negative options to increase difficulty. 2. Image Collection.
We manually gather images from the internet corresponding to the correct and their negative op-
tions. 3. Task Execution. U-MLLMs are prompted to select the correct textual option and generate
the corresponding image. Detailed procedures and the prompt are in Figure [O[a) and 20}

Image Editing and Explanation. This task evaluates U-MLLMs’ ability to understand complex
editing instructions and generate accurate modifications. Our methodology includes: 1. Data Col-
lection. We source data (source images, editing instructions, and reference images) from the Emu-
Edit dataset. 2. Textual QA Construction. Using GPT-40, we generate accurate interpretations of
editing targets and three incorrect interpretations for textual multiple-choice questions. 3. Visual
QA Construction. The correct instruction corresponds to the target image in Emu-Edit. For incor-
rect instructions, we input them into InstructPix2Pix Brooks et al.| (2023)) to generate negatively
edited images, forming image-based multiple-choice questions. 4. Task Execution. Given the cor-
responding prompt, source image, and editing instructions, the model must first produce a correct
understanding of the editing target and instructions, and then generate an edited image based on that
understanding. Detailed procedures and the system prompt are in Figure [(b) and [21}

SpotDiff. When identifying differences between two similar images, humans typically need to recall
the exact locations of these differences to accurately count them. This task evaluates U-MLLMs’
ability to identify and recall differences between similar images, simulating human visual reasoning.
Our approach involves: 1.Data Collection: We sample image pairs with annotated differences from
the SpotDiff websiteﬂ 2. Textual QA Construction. Using the annotated difference count, we create
textual multiple-choice questions with three incorrect counts (+10 from the true value). 3. Visual
QA Construction. We place the annotated difference regions from the image pair onto a white
background as the correct answer, and randomly crop other areas to place them on the background
as incorrect answers. 4. Task Execution. U-MLLMs must identify the difference regions between
the two images and draw them onto the white background, while also selecting the correct difference
count. Detailed procedures in Figure[9fc), and the system prompt is provided in Figure

Auxiliary Lines. This task evaluates U-MLLMSs’ ability to integrate understanding and generation
by solving geometric problems requiring auxiliary lines. Our methodology includes: 1. Data Se-
lection. We filter the Geometry3K dataset for problems requiring auxiliary lines, extracting logical
forms (e.g., “Triangle(A, B, C)”), choices, and answers. 2. Textual QA Construction. Using GPT-
4o, we generate natural language QA pairs (Question, Choices, Answer) for textual multiple-choice

Shttps://www.allstarpuzzles.com/spotdiff
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questions. 3. Visual QA Construction. We manually solve each sampled geometric problem by
drawing the correct auxiliary lines on its diagram, and we construct three additional diagrams with
erroneous auxiliary lines. 4. Task Execution. U-MLLMs must first generate a geometric diagram
with auxiliary lines, and then, based on that diagram, solve the problem by selecting the correct
answer. Detailed procedures appear in Figure[9[d), and the prompt is provided in Figure 23]

Visual CoT. This task evaluates U-MLLMs’ step-by-step decision-making in maze navigation, sim-
ulating real-world problem-solving. Our approach involves: 1. Maze Generation. Using the Ope-
nAl API, we create maze configurations of varying sizes (3x3, 4x4, 5x5) and layouts. 2. Action
Specification. For each step, we manually define actions (Up, Right, Down, Left, Finish) and co-
ordinates, updating the maze layout via the APL. 3. QA Construction. - Action Questions. Options
are uniformly set as Up, Right, Down, and Left, with the correct answer manually determined. -
Coordinate/Image Questions. The correct answers for each step’s coordinates and state image are
manually defined, and negative samples are also manually specified. 4. Task Execution. U-MLLMs
receive the initial maze state and task definition, then are prompted to generate actions, coordinates,
and maze images iteratively. After the first step, we add the action, coordinate, and image from
the previous decision into the system prompt as history information. The model iterates, outputting
each step’s decision until the target is reachecﬂ Detailed procedures appear in Figure Eke), and the

prompts are in Figure 24]and

Evaluation Strategy. The unified tasks evaluation combines text-based and image-based multiple-
choice questions across all subtasks. Our evaluation framework includes:

1. Textual QA Evaluation. For image explanation and editing, we compute CLIP-T similarity
between the generated explanation and each option, selecting the one with the highest sim-
ilarity as the correct answer. For other tasks, U-MLLM:s directly select the correct option
from the provided multiple-choice set.

2. Image-Based QA Evaluation. We compute CLIP-I similarity between the generated im-
age and each candidate image option, selecting the image option with the highest CLIP-I
similarity as the model’s prediction.

3. Task-Specific Rules. For each task we calculate two accuracy metrics—acc and acc+—
where acc is defined as the average of the text option accuracy and the image accuracy, and
acc+ represents the accuracy for samples where both the textual and image-based answers
are correct. Specifically, for the Visual CoT task, each step is treated as a multiple-choice
question, and the accuracy of action, accordinate and image are calculated separately, and
the average of these three accuracies is calculated as ace, while the accuracy of successfully
completing the maze is used to calculate acc+. The detailed calculation process can be
found in the Appendix [H]

We then calculate the average acc of all subtasks as the unified score, and the overall MME-U score
is the average of the understanding, generation, and unified scores.

3 EXPERIMENT

We evaluate a total of 31 MLLMs and U-MLLMs, including DeepSeek-Janus-Pro [Chen et al.

2023), DeepSeek-Janus-Flow [Ma et al] 2024), SIiME [Zhang et al] (2024), VITA-1.5 [Fu et al.

2025. Gemini2.0-flash [DeepMind| (2024), Gemini2.5-pro [DeepMind| (2024), Gemini2.0-flash-
exp |DeepMind| (2024), Gemini2.5-flash-image |DeepMind| (2024), Claude-3.5sonnet |Anthropic
(2024), Emu3 [Wang et al| (2024b)), GPT-40 [OpenAl| (2024c), GPT-40-Image [OpenAl| (2024c),
OmniGen [Xiao et al| (2024), DALL-E-2 [OpenAl| (2024a), DALL-E-3 [OpenAl| (2024b), Qwen-
Image [Wu et al|(2025), Qwen-Image-Edit [Wu et al](2025), C()UVlde()XYang et al| (2025b), Her-
mesFlow Yang et al] ( 025&) Qwen2.5-VL-Instruct [Wang et al| (2024a)), Intern-VL-3 7hu ot al.
(2023])), Show- 0|Xle et al.|(2023b)), Show-02 [Xie et al](2025¢)), VILA- U|_u et al]](2024)), GILL [Koh|
E m Anole [Chern et al] (2024), MIO-Instruct [Wang et al] (2024c), SEED-LLaMA [Ge]

et al| (2024), MiniGPT-5 [Zheng et al| (2023)), Bagel [Deng et al|(2025), RecA [Xie et al.| (2025a).

“task requires an average of 3.5 steps per sample, with a minimum of two and a maximum of seven steps
(as shown in Figure|§)
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Among the baselines, SIME, VITA-1.5, Qwen2.5-VL, Intern-VL-3, Gemini2.0-flash, Gemini2.5-
Pro, Claude-3.5-sonnet, OmniGen, DALL-E-2, DALL-E-3, Qwen-Image, Qwen-Image-Edit are
specialized understanding models or generative models. Notably, GILL, Anole, MIO-Instruct,
SEED-LLaMA, MiniGPT-5, Gemini2.0-flash-exp, Bagel, RecA, GPT-40-Image, Gemini2.5-flash-
image can generate interleaved images and texts. Some MLLMs also can generate arbitrarily in-
terlaced modalities, but they are not available as open-source code or model weights yet, such as

PUMA (2028). VITRON (2024) and TextHarmony @u34).

Method LLM Understanding Generation Unify MME-U Score
Task Split SIPU MITIU VPU Avg [CIVG FIR TIE TIG TVG VP Avg |IEE CSQ AL SD VCoT Avg Avg
QA pairs 1200 400 364 1964| 600 200 200 200 200 194 1594|200 101 52 104 90 546 4104
Understanding Models
SIiIME-7B Vicuna-7B 58.50 43.53 36.02 46.02| - - - - - - - - - - - - - 15.34
VITA-1.5 Qwen-7B 70.67 56.00 56.04 60.89| - - - - - - - - - - - - - 20.30
Qwen2.5-VL-Instruct  |Qwen-7B 75.08 53.50 57.14 61.91 - - - - - - - - - - - - - 20.64
Intern-VL3 Qwen2.5-7B 75.58 5275 58.24 62.19| - - - - - - - - - - - - - 20.73
Claude-3.5-sonnet - 75.83 5325 58.52 62.53| - - - - - - - - - - - - - 20.84
GPT-40 - 74.01 5450 59.34 62.62| - - - - - - - - - - - - - 20.87
Gemini2.0-flash - 80.92 61.75 64.64 69.10 - - - - - - - - - - - - - 23.03
Gemini2.5-Pro - 87.00 69.00 66.21 74.07| - - - - - - - - - - - - - 24.69
Generative Models
DALL-E-2 - - - - - - - - 5062 - - 844 - - - - - - 2.81
DALL-E-3 - - - - - - - - 5140 - - 857 2.86
Qwen-Image - - - - - - - - 7243 - - 1207 - - - - - - 4.02
OmniGen - | - - - - | - as2a2s105 - - 2395 - - - - - - | 1%
Qwen-Image-Edit - - - - - - - - - 58.81 88.86 24.61 821
CogVideoX - | - - o - 6805 - - - 69.62876137.54 - - - - - - | s
Unified Models
Show-o Phi-1.5 3247 3475 25.66 30.96| - - - 4354 - - 726 - - - - - - 12.74
Emu3 LLama-8B 4575 30.50 23.32 33.19| - - - 49.08 - - 818 - - - - - - 13.79
HermesFlow Phi-1.5 41.49 33.00 28.3234.27| - - - 4648 - - 175 - - - - - - 14.01
GILL* OPT-6-7B 22.18 6.00 3.56 10.58] - 50.67 35.71 46.60 - - 22.16(24.25 21.29 8.66 6.67 190 12.55 15.10
Janus-Flow DeepSeek-LLM-1.5b-base [63.17 32.00 35.16 43.44| - - - 3288 - - 548 - - - - - - 16.31
MiniGPT-5* Vicuna-7B 19.25 1092 1593 1537 - 3896 35.04 3548 - - 18.25]22.80 34.13 14.37 5.00 2.08 15.67 16.43
Janus-Pro DeepSeek-LLM-7b-base {59.56 43.50 42.22 48.43| - - - 3529 - - 588 - - - - - - 18.10
VILA-U LLama-7B 51.04 3225 36.54 39.95| - - - 45104964 - 1579 - - - - - - 18.58
Anole* - 17.17 1450 9.00 13.56| - 36.64 43.42 41.52 - - 19.91]18.55 59.65 14.42 15.00 3.89 22.30 18.59
Show-02 Qwen2.5-7B 68.33 47.00 50.00 55.11| - - - 5018 - - 836 - 6634 - - - 13.27 23.94
SEED-LLaMA* LLaMA2-Chat-13B 49.17 33.00 36.26 39.48| - 57.00 42.26 41.96 - - 23.54{22.00 51.49 12.50 22.00 3.61 22.32 28.45
MIO-Instruct* MIO-7B 52.00 33.50 39.01 41.50| 51.24 59.29 43.66 48.23 51.88 66.37 53.45|24.16 38.50 8.66 11.50 0 16.56 37.17
Bagel® Qwen2.5-7B 76.67 53.00 51.10 60.26| - - - 44.51 45.46 59.91 24.98/33.34 7.23 31.73 25.50 11.20 35.80 40.35
GPT-40-Image* - 65.50 49.50 45.05 53.35| - - - 60.07 46.58 65.65 28.72(43.00 86.64 42.31 22.50 11.02 41.10 41.06
RecA* Qwen2.5-7B 76.00 57.00 56.04 63.01| - - - 46.30 46.87 72.88 27.36|35.67 79.21 33.66 26.50 12.22 37.45 42.60
Gemini2.0-flash-exp™ |- ‘72,58 68.25 54.90 65.24| - 77.61 43.54 57.56 - - 29.79(38.42 74.75 47.12 26.00 12.41 40.74‘ 45.57
Gemini2.5-flash-image” |- 8025 7075 58.79 69.93| - - - 6629 52.90 85.32 34.09|48.75 86.02 59.62 25.50 15.23 47.02  50.04

Table 2: Comparison of MLLMs on understanding, generation, unifying tasks, and overall
MME-U Score. SIPU: Single Image Perception & Understanding; MITIU: Multiple & Interleaved
Image-Text Understanding; VPU: Video Perception & Understanding; CIVG: Conditional Image-
to-Video Generation; FIR: Fine-grained Image Reconstruction; TIE: Text-Guided Image Editing;
TIG: Text-to-Image Generation; TVG: Text-to-Video Generation; VP: Video Prediction; IEE: Im-
age Editing and Explaining; CSQ: Common Sense Question Answering; AL: Auxiliary Lines; SD:
SpotDiff; VCoT: Visual CoT. * denotes U-MLLMs with the ability to generate interleaved images
and texts, while ‘-’ indicates that the model is unable to finish the corresponding task and underlined
content signifies the best performance within a single model across all methods on this task.

3.1 RESULTS

The evaluation results of various MLLMs in MME-U, as shown in Table[J] indicate that Gemini2.5-
flash-image achieves the highest MME-U score at 50.04. Although compared to MIO-Instruct it does
not encompass all subtasks, it demonstrates very balanced performance across understanding, gen-
eration, and unify tasks, unlike other models that may exhibit deficiencies in certain test dimensions.
It is evident that, compared to traditional MLLMs or generative models, U-MLLMs are capable of
handling a wider range of tasks, including more complex image-text interleaved reasoning. How-
ever, overall, the development of U-MLLMs is still in its early stages, and even the best-performing
models only achieve scores of around 50 on MME-U. Next, we will provide a separate analysis of
understanding, generation, and unify tasks.
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(a) Action Accuracy. (b) Coordinate Accuracy. (c) Image Accuracy.

Figure 4: Accuracy distribution across different dimensions on visual cot task. (a) action, (b)
location, and (c) image.

Understanding. It is evident that Gemini2.0-flash-exp |DeepMind| (2024) demonstrates the best un-
derstanding capability among U-MLLMs, while also being a closed-source model. For open-source
models, the two U-MLLMs with the best understanding capabilities are Janus-Flow Ma et al.|(2024)
and Janus-Pro|Chen et al.|(2025). These models utilize two separate vision encoders to handle gen-
eration and understanding tasks independently, thus overcoming the limitations of tokenizers like
VQGAN |Yu et al.| (2022)), which are not well-suited for extracting semantic features. In contrast,
models like Emu3 [Wang et al.| (2024b)) and Show-o [Xie et al.| (2025b)), which use a single tokenizer
for all image tasks, perform poorly on understanding tasks and still show a significant performance
gap compared to currently available open-source MLLMs of similar size. However, our experiments
also show that models like Janus-Pro perform poorly on generation tasks. They even fail to support
multimodal generation, scoring zero on unified tasks. Therefore, how to strike a balance between
understanding and generation capabilities, or whether the two capabilities can indeed complement
each other, remains an open question. We also see potential in bridging this gap in understand-
ing capabilities by leveraging existing U-MLLMs alongside strong MLLM baselines. For instance,
MIO-instructWang et al.|(2024c) achieves impressive understanding results through extensive train-
ing data, including video, audio, image-text pairs, and a complex three-stage training pipeline. This
suggests that U-MLLMSs may require a broader variety or larger volume of data for training.

Generation. We compare the performance gap between various U-MLLMs and current state-of-the-
art generative models such as DALLE-3. It is evident that, compared to understanding capabilities,
the gap in generation tasks is not as significant. For the simplest TIG task, Gemini-2.0-flash-exp even
outperforms the best generative model DALLE-3 by six points, while U-MLLMs such as EMU3,
HermesFlow, and GILL all achieve an average score above 48. However, it is clear that most U-
MLLMs still do not perform well on video generation tasks. Notably, although the original paper
for Emu3 mentions its capability for video generation, the corresponding checkpoints have not been
released. It’s clear that the open-source community still has a long way to go before U-MLLMs
that support video generation become widely available. Detailed results on the generation tasks
can be found in Table [9] In Figure [I0] we showcase the generation results from various models
using the following text prompt: “A man is standing in a park with a 'Run for Rights’ banner in
the background. He is wearing a white t-shirt with the number 28 on it, grey shorts, and grey socks
with black shoes. The park is filled with people, some sitting on benches, and there is a bicycle
leaning against a tree.” It is evident that most generated images, such as those from VILA-U, Show-
O, and Janus-Pro, fail to capture key details from the caption, such as the number on the jersey
or specific text. In contrast, the results from EMU3 more closely resemble the textual description,
while MIO-Instruct’s outputs are more aligned with realistic scenes (we hypothesize this is because
MIO-Instruct was trained on a large amount of real-world data, enhancing its ability to generate
lifelike images). However, when it comes to image detail, current open-source U-MLLM:s still lag
significantly behind dedicated generative models.

Unify Capability. Our systematic unify task testing shows that, while U-MLLMs have indeed
expanded the potential for such tasks compared to traditional understanding/generation models, their
performance remains insufficient. For each unify task in Table[2] we require the models to generate
the correct image and perform correct reasoning. Under these conditions, even for simple tasks such
as answering common questions and generating images, the best open-sourced model (Anole) only
achieves an accuracy of 59.65% and accuracy-plus of 38% (Table[3). In other tasks, no open-sourced
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model is able to surpass the 30% accuracy. It is worth noting that models perform even worse on
tasks like Visual CoT, which require multi-step image generation and reasoning. No model is able
to successfully complete tasks involving multiple steps. This finding underscores the importance of
our MME-U, as relying solely on case studies to demonstrate a model’s mix-modality generation
capabilities is clearly insufficient. We will further analyze these models’ performance, weaknesses,
and provide examples in the analysis section.

Due to space limitations, we have included additional in-depth analyses in Appendix [F and [G}
which contain expanded analyses of current U-MLLMs’ weakness, detailed visualizations of the
U-MLLMs’ generation results, as well as specific examples from the unify tasks.

Method IEE CSQ AL SD VCoT Unify Score
Metric Text Ace Image Ace Acc Ace+|Text Ace Image Ace Ace Acct|Text Acc Image Acc Ace Acct|Text Acc Image Acc Acc Ace+|Action Ace Coordinate Acc Image Ace Ace Acc+| Ace Ace+
GILL 2100 27.50 2425 800| 1475  27.82 2129 495| 7.69 962 866 192 0 1350 675 0 | 063 0 508 190 0 |12.55 298
Show-02 - - - - | 21 5347 6634 5644| - - - - - - - - - - - - - 1327 1129
MiniGPT-5 21.50 2400 2275 5.00 | 29.70 38.56 34.13 15.81| 5.66 23.08 14.37 3.84 4.00 6.00 5.00 2.00 222 1.27 292 213 0 |15.67 533
MIO-Instruct 2400 2400 2400 7.00 | 77.24 0 3862 0 | 1731 0 866 0 | 2300 0 1150 0 0 0 0 0 0 [1656 140
Anole 1700 2000 1850 3.00| 7030 4852 59.41 3800 1538  13.46 1442 384| 1700 1300 1500 2.00| 3.49 0.64 762 391 0 [2230 9.17
SEED-LLaMA 1900 2500 2200 450 | 5644 4653 5149 37.62| 1346 1154 1250 384| 2300 2100 2200 4.00| 4.13 285 381 361 0 [2232 999
Bagel 2278 4389 3334 11.67| 90.10 6436 7723 6337 4231 2115 3173 9.62| 27.00 2400 2550 7.00| 1083 12.08 1069 1120 0 (3580 18.33
RecA 2339 4795 3567 10.53| 90.10 6832 7921 59.41| 4423 2308 33.66 13.46| 2600  27.00 2650 9.00| 1153 14.03 1L11 1222 0 [37.45 1848
Gemini2.0-flash-exp | 33.00  43.50 3825 10.00| 83.17 6633 7475 6337| 59.61 3462 47.123077| 2800 2400 2600 500| 17.77 10.14 944 1241 0 |40.74 21.05
GPT-do-Image 2550 6050 43.00 17.00| 97.03 7624 86.64 7426| 4231 4231 4231 1538) 2000 2100 2500 9.00| 1153 847 1306 1102 0 [41.10 23.13
Gemini2.5-flash-image| 32.00 6550 4875 19.00| 9892  73.12 8602 73.12| 6731  5L.92 59.62 32.69| 27.00 2400 2550 9.00| 2097 11.25 1347 1523 0 |47.02 2676

Table 3: Comparison of U-MLLMSs on various unify tasks and overall unify Score.

4 CONCLUSION AND LIMITATION

The MME-U benchmark framework presented here serves as a foundational step towards evaluating
U-MLLMs on a diverse array of tasks encompassing multimodal understanding, generation, and
their integration. This benchmark reveals the current landscape of U-MLLMs, highlighting their ca-
pabilities and areas for improvement. While these models demonstrate proficiency in handling vari-
ous multimodal tasks, they struggle with balancing understanding and generation, handling complex
instructions, and performing well on unify tasks. Moreover, current U-MLLMs exhibit significant
inconsistencies in aligning textual instructions with their visual outputs, highlighting the need for
further research to improve multimodal reasoning and generation integration. However, this study
simplifies the evaluation of unify tasks by framing image generation as multiple-choice questions,
which may allow model “hacking”. For instance, SEED-generated images may not meet style stan-
dards but achieve high similarity scores, inflating accuracy metrics. Future work will incorporate
MLLM or CLIP scores for stricter evaluation.
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Appendix

Ethics statement. This work involves no human subjects or sensitive data, uses only publicly
available, properly licensed datasets without identifiable information, and presents no foreseeable
safety, privacy, bias/discrimination, misuse, conflict-of-interest, or legal concerns.

Reproducibility statement. To ensure the full reproducibility of our benchmark, we have provided
comprehensive implementation details throughout the paper. The construction and statistics of our
MME-Unify are detailed in Sec[2]and Figure[7] Figure[9]

The Use of Large Language Models (LLMs). The authors employ the LLM exclusively for gram-
mar and style refinement. The LLM was not used to generate or substantively revise scientific
content, design experiments, analyze data, write code, or select references.

A RELATED WORKS

Unified Multimodal Large Language Models. Building on the success of MLLMs Wang et al.
(20244a); [Fu et al.| (2025); [Yu et al.| (2025); Zhang et al.| (2024), recent studies U-MLLMs, which
can understand and generate multiple modalities in an end-to-end manner. Some approaches have
adopted a unified training objective, projecting both text and images into a discrete token space and
employing a next-token prediction loss function for training [Wang et al.| (2024c); [Wu et al.| (2024);
Team| (2024). This training method and framework are notably straightforward. However, using
discrete image tokens (e.g., extracted from VQVAE image features) may not be optimal for image
understanding tasks. Therefore, works like Janus-Flow (Chen et al| (2025)), Janus-Pro |Chen et al.
(2025)), among others, have employed different vision encoders such as VQVAE for image gener-
ation and SigLIP for image comprehension, significantly enhancing the understanding capabilities
of U-MLLMs. Additionally, other methods have found that diffusion training is more suitable for
image generation. Thus, adopting diffusion-based training for image generation and next-token pre-
diction for text generation aims to strengthen the image generation capabilities further |Xie et al.
(2025b)); [Zhou et al| (2025). Recent research has also explored fine-tuning U-MLLMSs to further
enhance their performance on unified tasks |[L1 et al.| (2025). However, despite the rapid advance-
ments of U-MLLMs, there remains a lack of comprehensive benchmarks for systematically and
fairly evaluating their capabilities in understanding, generation, and multimodal synthesis tasks.

Benchmarks for Understanding. With the rapid development of MLLMs, several concurrent
works [Fu et al.| (2024b) have proposed various benchmarks to evaluate the models’ capabilities
in multimodal comprehension tasks, such as single-image perception and understanding [Fu et al.
(2023)); Zhang et al.| (2025b) (e.g., MME series), interleaved image & text understanding, and video
understanding |[Fang et al.| (2025) (e.g., MMBench-Video, Video-MME). Additionally, some bench-
marks focus on multimodal safety |[Zhang et al.|(2025a) or mathematical reasoning|Yan et al.[(2024).
These benchmarks differ in coverage and metrics.

Benchmarks for Generation. Various benchmarks have been proposed to assess multi-modal gen-
eration capabilities [Wang & Yang| (2024); Sheynin et al.|(2024); Deng et al.[(2009);|Xu et al.[(2016));
Ku et al.|(2024)); Li et al.|(2023)), including tasks like image reconstruction|Deng et al.|(2009)), image
editing [Sheynin et al.| (2024); Ku et al.| (2024), and conditional image & video generation Wang
& Yang (2024); Lin et al.| (2014b). However, these benchmarks mainly focus on individual tasks
within single modalities, failing to capture the full scope of multi-modal comprehension and gen-
eration. While some benchmarks, such as SEED-Bench-2 [Li et al.| (2023) and MMIE [Xia et al.
(2025)), provide hierarchical evaluation for both understanding and generation, they do not assess
unified tasks, and the range of tasks is limited.

B STABILITY ANALYSIS OF MME-UNIFY

For the multimodal understanding task, MME-Unify collects 1,900 multiple-choice questions from
five public benchmarks spanning 24 subtasks (SIPU, MITIU, VPU), with at least 50 QA pairs per
subtask. For the multimodal generation task, we evaluate six subtasks—FIR, TIE, TIG, CIVG, TVG,
and VP—with at least 200 samples per subtask, yielding over 1,200 evaluated instances. These are
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scored using standard domain-specific metrics and subsequently normalized to a [0, 100] scale. For
the Unify tasks, four subtasks (IEE, CSQ, AL, SD) each contain at least 50 samples, and each sample
induces two multiple-choice questions (text and image), resulting in over 100 questions per subtask.
In particular, the VCoT subtask includes 90 mazes with an average of 3.5 steps; each step requires
three decisions (action, coordinate, image), yielding approximately 945 step-level questions (90 x
3.5 x 3). In total, MME-Unify comprises over 3,200 multiple-choice questions alongside more than
1,200 generation instances.

We further assess the stability of MME-U scores and rankings. Specifically, we halve the benchmark
samples and re-evaluate the four U-MLLMs. As shown in Table [d While a few subtask rankings
(e.g., for Anole and SEED-LLaMA) exhibit minor fluctuations due to the reduced sample size, the
overall MME-U score ranking remains consistent with the full-dataset evaluation. These results in-
dicate that the benchmark’s sample sizes and scoring strategy can assess stable scores and consistent
model rankings, supporting the reliability of MME-U for comparative assessment.

Split Method Understanding Generation Unify MME-U
MiniGPT5 14.08 18.60 14.65 15.78
Split A Anole 12.75 19.50 20.24 17.53
SEED-LLaMA 24.50 23.92 21.57 23.33
MIO-Instruct 40.88 52.68 16.34 36.63
MiniGPT5 16.67 19.40 15.01 17.03
Split B Anole 14.33 19.73 23.40 19.15
SEED-LLaMA 27.67 23.73 23.15 24.85
MIO-Instruct 42.15 53.98 16.78 37.64
MiniGPT5 15.37 18.25 15.67 16.43
Overall Anole 13.56 19.91 22.30 18.59
SEED-LLaMA 26.19 23.54 22.32 28.45
MIO-Instruct 41.50 53.45 16.56 37.17

Table 4: Split-half evaluation on four U-MLLMs.

We aslo supplement the split-half experimental results for each sub-task in the unified tasks. As
shown in Table [5] The ranking of the four representative models remains stable basically across
different half-sample divisions for the unify tasks.

Method | IEE [ CSQ | AL SD VCoT  [Avg
Split A

MiniGPT5 19 24 21.5/23.8 35.6 29.6/ 7.7 23.1 154|4 8 6 [3.2 13 3.8 2.8[14.7

Anole 15 17 16 |70.3 51.4 60.819.2 11.5 15.4/20 12 16 [44 0 6.4 3.6(202

SEED-LLAMA| 17 22 19.5|54.1 43.2 48.7(11.5 11.5 11.5(26 24 25 |3.2 2.5 3.8 3.2|21.6
MIO-Instruct 22 21 215|733 0 366|231 0 115/24 0 120 O O O |163

Split B
MiniGPT5 23 24 235[35.6 41.6 38.6/ 3.9 23.1 135/4 4 4 [13 1319 15|15
Anole 19 23 21.5| 81 47.6 64.3|11.5 154 13.5/14 14 14 |2.5 1.3 8.9 4.2(23.4

SEED-LLAMA| 21 28 24.5|58.7 50.8 54.8(15.4 11.5 13.5(20 18 19 |5.1 3.2 3.8 4 |23.2
MIO-Instruct 26 27 265|792 0 396|115 0O 58|22 0 110 O O O |16.8

Overall
MiniGPT5 21.5 24 22.8129.7 38.6 34.1| 5.7 23.1 144{4 6 5 |22 1329 2.1(15.7
Anole 17 20 18.5|70.3 49 59.7|15.4 13.5 14.4(17 13 15 |3.5 0.6 7.6 3.9(22.3

SEED-LLAMA| 19 25 22 |56.4 46.5 51.5(13.5 11.5 12.5|23 21 22 |4.1 2.9 3.8 3.6|22.3
MIO-Instruct 24 24 241|772 0 385|173 0 87|23 0 1150 O O O |16.6

Table 5: Performance comparison on unified tasks across different data splits. T: Text Accu-
racy; I: Image Accuracy; A: Average Accuracy; Act: Action Accuracy; Crd: Coordinate Accuracy.
IEE: Image Editing and Explaining; CSQ: Common Sense Question Answering; AL: Auxiliary
Lines; SD: SpotDiff; VCoT: Visual Chain-of-Thought.
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C DEFINITION OF TRADITIONAL MLLM AND UNIFY MLLM

We use the term “Traditional MLLMs’’to denote understanding-centric multimodal models that ac-
cept visual inputs (images/videos) but do not natively generate visual outputs at inference time, such
as Qwen2.5-VL, and their outputs are textual only. In contrast, “Generative MLLMs” specialize in
visual generation, without general multimodal understanding capability, and “U-MLLMS” support
both understanding and generation, including interleaved image—text generation.

D COMPARISON OF EVALUATION STRATEGIES FOR THE UNIFY TASKS

We compare two evaluation strategies for assessing Unify Tasks: (i) a generation-based strategy,
which we term CLIP-Choice, and (ii) an option-selection strategy, which we term Select-Choice. In
the CLIP-Choice strategy, the model first generates an image; we then compute its CLIP similarity
to four candidate references and take the argmax as the model’s implicit choice. In contrast, Select-
Choice feeds all image options to the model and asks it to select the correct one directly. We
condect experiments based on Gemini 2.0-flash-exp, which is shown in Table |6} Compared with
the CLIP-Choice strategy, the Select-Choice strategy achieves higher accuracy on text and image
multiple-choice questions evaluated on all unified tasks except the IEE task. This may be because
choosing the correct option is easier than generating the correct image. Moreover, after introducing
the reference image into the model input, the model is more likely to rely on the given reference
image answer rather than the image generated by the model itself. Therefore, compared with the
CLIP-Similarity evaluation strategy, Select-Choice deviates from our original intention of evaluating
the unify capability of U-MLLM on the unify task.

IEE CSQ AL SD VCoT Unify
Text Img Acc Acc+ | Text Img Acc Acc+ | Text Img Acc Acc+ | Text Img Acc Acc+ | Act Coord Img Acc Acc+ | Acc  Acc+
Select-Choice | 25.0 17.5 213 14.0 | 97.0 92.1 946 911 | 654 789 721 520 |33.0 450 390 140 | 311 191 271 258 0 |505 346
CLIP-Choice | 33.0 43.5 383 10.0 | 832 663 748 634 |59.6 346 47.1 308 | 280 240 260 50 |17.8 101 94 124 0 |407 211

Strategy

Table 6: Comparison of two evaluation strategies on the Unify task with detailed metrics per subtask.

E DISSCUSSION FOR THE EFFECTIVENESS OF OUR EVALUATION STRATEGY

In MME-U, our goal is not to independently evaluate the capability of understanding and generation,
but rather to quantify the synergistic capability of U-MLLMs to understand an input, reason and
then generate the correct visual output. To this end, we adopt a CLIP-I based multiple-choice image
evaluation strategy that is aligned with the text multiple-choice format used in other parts of our
benchmark. Below we explain and provide experimental evidence supporting its effectiveness.

E.1 WHY CLIP-1 MULTIPLE CHOICE FOR UNIFIED EVALUATION

Unified representation and metric design. Our benchmark aims to measure unified
understanding—generation synergy with a single, discrete metric. Existing continuous metrics like
LLM-Judge provide fine-grained and interpretable assessments of visual quality, but they are com-
putationally expensive and difficult to map directly to a discrete “success” signal that is comparable
to text multiple-choice accuracy. To achieve the balance, we treat image evaluation similar to text
multiple-choice, each unified task instance is associated with several candidate images, and the
model-generated image is scored via CLIP-I similarity against each candidate. The candidate with
the highest CLIP-I similarity is treated as the model’s implicit choice, and we compute accuracy
over all instances. This design has two advantages: (i) it maps multimodal synergistic behavior
to a discrete accuracy score that is directly comparable across tasks, and (ii) it enables a unified
leaderboard over both text and image questions.

Task design mitigates CLIP-I score hacking. A natural concern is that CLIP-based evaluation
might be exploited by score hacking. For example, by generating generic but CLIP-friendly images
that superficially match the prompt. To this end, our unified tasks are designed explicitly to minimize
this risk, since each sub-task requires prior understanding and reasoning before correct generation is
even possible. For instance, AL requires the model to correctly parse a geometric configuration and
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Table 7: Kendall’s 7, correlation between CLIP-I scores and human ratings on 200 randomly sam-
pled unified-task instances. We observe a consistently strong correlation (7, ~ 0.69-0.73) across
sub-tasks, with an overall correlation of 0.71, indicating stable alignment between CLIP-I and hu-
man perceptual judgments under our task design.

IEE CSQ AL SD  VCoT Overall
Kendall’s 7, 0.712 0.732 0.717 0.707 0.692  0.709

infer the appropriate auxiliary line before drawing; VCoT requires the model to infer the next action
and generate the corresponding future state. In such settings, the correct visual output depends on
a specific reasoning chain rather than generic visual patterns. Since the candidate options encode
these reasoning outcomes (e.g., correct vs. incorrect auxiliary lines, correct vs. incorrect navigation
states), an image generated solely from the surface form of the instruction, without solving the
underlying reasoning problem, is extremely unlikely to match the correct option under CLIP-I. In
other words, the design of unified tasks anchors CLIP-I scores to the correctness of understanding
and reasoning of given input, rather than to superficial prompt alignment.

E.2 CORRELATION WITH HUMAN JUDGMENTS

To empirically verify that CLIP-I under our task design aligns with human perception, we conduct
a correlation study on a subset of the benchmark. We randomly sample 200 instances from the
unified tasks and evaluate the generation results of four advanced U-MLLMs (Bagel [Deng et al.

mage ii%eeg-

, GPT-40-Image (2024c), RecA (20254), Gemini2.5-Flash-1
(2024)) using both CLIP-I and human ratings.

Three expert annotators score each model’s generated image on a 1-5 scale along three dimensions:
(1) Text-Following, (i) Image Quality, and (iii) Reference Similarity. We average scores across
annotators and dimensions to obtain a single human rating per sample. We then compute Kendall’s
T3, correlation coefficient between CLIP-I scores and human ratings for each sub-task and overall.

As shown in Table [7} the Kendall’s 7, values for all sub-tasks lie in the range of approximately
0.69-0.73, with an overall correlation of 0.71, which falls into the regime of strong correlation.

E.3 RANKING CONSISTENCY WITH LLM-JUDGE

We further validate the robustness of our evaluation strategy by comparing CLIP-I based rankings
with an LLM-Judge (GPT-40) based ranking that closely mirrors human evaluation.

On the complete unified dataset, we evaluate five U-MLLMs (Show-02, Bagel, RecA, GPT-4o-
Image, Gemini2.5-Flash-Image) under two scoring protocols: (i) CLIP-I multiple-choice accuracy,
and (ii) an LLM-Judge that follows the same scoring dimensions as the human evaluation (text-
following, image quality, and reference similarity), aggregated into a normalized score. For each
model, we compute per-task and overall scores under both evaluation strategies for direct compari-
son. As shown in Table[§] the relative ordering of models is highly consistent between CLIP-I and
LLM-Judge across most sub-tasks and in the overall average. In particular, Gemini2.5-Flash-Image
and GPT-4o0-Image consistently achieve the top two positions under both metrics, while RecA and
Bagel form a stable middle tier above Show-02. Although Bagel and RecA exhibit similar per-
formance on the VCoT task, leading to a local inversion in their per-task ranking for that specific
sub-task, the global ordering of the five models remains stable between the two scoring methods.

This consistency in model rankings indicates that CLIP-I based multiple-choice accuracy captures
essentially the same relative performance ranking as a much more expensive LLM-Judge strategy.
Together with the Kendall’s 7, analysis, this provides robust evidence that CLIP-I is a reliable and
efficient evaluation strategy for human and LLM-based judgments under our Benchmark.
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Model IEE CSQ AL SD  VCoT Avg
CLIP-1
Show-02 — 5347 — — —  10.69
Bagel 43.89 6436 21.15 24.00 10.69 32.82
RecA 4795 68.32 23.08 27.00 11.11 35.49
GPT-40-Image 60.50 76.24 4231 21.00 13.06 42.62
Gemini 2.5-Flash-Image 65.50 73.12 51.92 24.00 13.47 45.60
LLM-Judge
Show-02 — 5633 — — — 1127
Bagel 4947 6693 37.07 47.67 5233 50.69
RecA 49.60 68.07 43.73 48.67 52.00 52.41
GPT-40-Image 68.87 78.80 58.60 45.47 52.60 60.87

Gemini 2.5-Flash-Image 80.33 7233 65.40 53.07 58.67 65.96

Table 8: Comparison of CLIP-I and LLM-Judge based evaluation on unified image QA tasks.

Method I CIVG T TIE I TIG I VG I VP [ Generation Score
Metric ‘ FVD Score FID Score CLIPSIM Avg ‘ 1-LPIPS Avg ‘ CLIP-I CLIP-T Avg ‘ CLIP-I CLIP-T Avg ‘ FVD Score FID Score CLIPSIM Avg ‘ FVD Score FID Score Avg ‘ Avg
Generative Models

DALL-E2 . . . E . -] 6933 3191 50.62 - . . E 844
DALL-E3 7001 3268 5140 857
Quwen-Image o . 5 o 8924 3761 6343 - o a a 5 o a 1057
Quen-Image-Edit a . a - 5086 8086 7489 2272 4881 s . 2161
OmniGen - E - 4382 4882] 6563 2272 4382|7397 2812 5105 E - - 2395
CogVideoX 8391 87.02 3323 68.05 - - - 87.82 84.28 3677 69.62| 89.9 8530  87.61 37.54
Unified Models
DecpSeek-Flow . . . E . -] 5238 1338 3288 - . . E 548
DecpSeek-Janus-Pro 5546 1511 3529 588
Show-o a s a o : 5 o 5 - 6210 2497 4354 - o s 5 : o 5 726
HermesFlow . . . E . -] - - | es37 2758 aeas| - . . - . . - 775
Emu3 . . . E . - - - | esss 2962 4008 - . . - . . E 8.18
VILA-U . - - - | 6254 2766 4510 5735 6636 2522 4964 - E E 1580
MiniGPT-5 . . . - | 3896 3896 5586 1421 3504|5633 1462 3548 - E . - . E - 18.25
Anole . . . - | 3664 3664 6235 2124 4180|6023 2175 4100| - E . - . E - 19.91
GILL - - - - 50.67 50.67| 54.15 1727 3571 67.75 2544 46.60 - - - - - - - 22.16
SEED-LLaMA - - - - 57.00 57.00| 67.12 17.39 4226 60.57 2334 4196 - - - - - - - 23.54
Bagel - - - S 5991 5901 7133 1958 4546 6658 2244 4451 - B . 5 . B 5 2498
RecA - - - - 6097 6097 7288 2085 4687 6894 2366 4630 - - - - - - - 2736
GPT-o-Image - - - - 6565 6565 7197 2118 4658 8661 3352 6007 - - - - - - - 2872
Gemini-2.0-flash-exp - E - < | et Tiel| 6177 1930 43s4| saso 3053 stse| - E E - E S| wm
Gemini-25-flash-image| - - : - 8532 §532 7924 2656 5290 9247 4001 6629 - - - 3 - o 3 3400
MIO-Instruct 5993 7038 2341 s124] 5929 5929|6812 1920 4366] 7260 2377 4823 6003 922 2640 5188 6408 6866 6637) 5345

Table 9: Comparison of multimodal models on various generation tasks. CIVG: Conditional
Image-to-Video Generation; FIR: Fine-grained Image Reconstruction; TIE: Text-Guided Image
Editing; TIG: Text-to-Image Generation; TVG: Text-to-Video Generation; VP: Video Prediction.
* denotes MLLMs with the ability to generate interleaved images and texts, while ‘-’ indicates that
the model does not have the ability to achieve the corresponding task and underlined content signifies
the best performance within a single model across all methods on this task.

F ANALYSIS AND FINDINGS

Trade-off Between Basic and Unified Capabilities. The experimental results reveal that current
U-MLLMs face a significant challenge in balancing their fundamental abilities—such as under-
standing and generating performance—with the demands of unified tasks that require integrating
multiple modalities. For instance, models like GILL, Anole, and MiniGPT-5 are designed to handle
unified tasks but tend to exhibit relatively poor performance on basic tasks, which results in lower
overall scores when compared to some non-unified MLLMs. On the other hand, while MIO-Instruct
demonstrates high performance in basic understanding and generation, its capability to interleave
image and text generation effectively is notably deficient. This imbalance suggests that the cur-
rent training paradigms may not be adequately aligning the learning objectives for basic and unified
capabilities within a single framework.

Detailed Analysis of Model Performance on Unify Tasks. In Table [3] we provide a detailed
analysis of different models’ performance on unify tasks, focusing on text reasoning accuracy and
image generation accuracy. It is clear that MIO-Instruct exhibits stronger understanding capabilities
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than generation abilities (as confirmed by the results in Table [2). As a result, many of its tasks
show high text reasoning performance, particularly in commonsense QA, where its text reasoning
accuracy reaches 76.24%. However, it fails to generate a correct image, completely missing the
potential for mutual reinforcement between generation and understanding. In contrast, other models
show comparable performance in both text reasoning and image reasoning evaluation criteria, but
their overall results are not impressive. Notably, for visual CoT tasks, despite our efforts to simplify
the questions into multiple-choice format, none of the models have been able to correctly complete
multi-step reasoning and generation tasks.

Poor Instruction Following Ability for Image Generation. There are two main issues with the
current models in image generation: /. Uncontrolled Style Generation. In Figure we present
the intermediate state images generated by different models in the VCoT task. Only the Anole and
Gemini2.0-flash-exp models are able to generate images with a style similar to the initial image. In
contrast, other models produce images with a clear style bias, which do not align well with our state
diagrams. 2. Difficulty Understanding Complex Instructions. Many models, such as MIO-Instruct,
struggle with following complex instructions, such as generating auxiliary lines based on the original
question. These models fail to generate images with auxiliary lines, often requiring multiple attempts
to generate a relevant image, and the resulting images often bear little resemblance to the original
reference. However, for simpler instructions, like generating an image of a dog, these models are
able to execute the task correctly.

Inadequate Visual CoT Capability in Unified Models. In Figure [ we further illustrate the chal-
lenges of the Visual CoT task. The accuracy of U-MLLMs declines as the number of steps in the
VCoT task increases. Errors made in earlier steps compound over time, making it increasingly dif-
ficult for models to generate correct actions, coordinates, and images. This cascading error effect
highlights a fundamental limitation in maintaining consistent reasoning across multi-step tasks. At
the same time, this example further emphasizes the high requirements of our unify tasks for both
generation and understanding capabilities. For instance, although Anole demonstrates relatively
strong image accuracy in Figure [] its weaker understanding abilities result in less effective action
selection. This ultimately leads to worse final results compared to the other two baselines.

To further enhance the evaluation value of VCoT task, we additionally provide two complementary
analyses: (1) difficulty stratification by maze size, and (i1) step-wise metrics across the full reasoning
trajectory for further analysis of the unify capability of current U-MLLMs.

Difficulty stratification by maze size. We first stratify VCoT performance by maze size and
report average accuracy for each model under different maze configurations (Table[T0). This allows
us to examine how U-MLLMs behave as the underlying navigation problem becomes more complex.

Model \ 3x3 \ 4x4 \ 5x5

‘ action coord image ‘ action coord image ‘ action coord image
Bagel 21.14 2358 21.14 | 19.70 23.48 19.51 | 12.00 18.00 14.67
RecA 28.46 28.46 20.33 | 19.70 28.03 20.45 | 14.67 19.33 16.67
GPT-40-Image 21.95 18.70 2520|2045 17.42 20.45 | 19.33 10.00 16.00

Gemini 2.5-Flash-Image | 43.09 29.27 31.71 | 38.64 20.45 23.48 | 31.33 12.00 18.00

Table 10: VCoT accuracy stratified by maze size. We report average action, coordinate, and
image accuracy (%) on 3x3, 4x4, and 5x5 mazes. For example, Gemini 2.5-Flash-Image achieves
43.09% / 29.27% / 31.71% action/coord/image accuracy on 3x3 mazes, which drops to 31.33% /
12.00% / 18.00% on 5x5 mazes. Other models exhibit the same downward trend, providing an
overall perspective on difficulty stratification in VCoT.

From Table[T0] we observe that Gemini2.5-Flash-Image’s action/coord/image accuracy on the 3x3
maze is 43.09%, 29.27%, and 31.71%, respectively, while these values drop to 31.33%, 12.00%,
and 18.00% on the 5x5 maze. Other models exhibit a similar monotonic decline as maze size
increases. This confirms that VCoT difficulty scales systematically with problem size and that all
current U-MLLMs degrade under more challenging configurations.

Step-wise metrics and failure modes. Concurrently, we reconstruct VCoT into a set of step-
wise metrics and compute average accuracy for four representative U-MLLMs (Bagel, RecA, GPT-
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Step-wise accuracy (%)

Model
Step1 Step2 Step3 Step4 StepS Step6 Step7
Action
Bagel 26.67 20.00 17.78 11.11 6.67 222 222
RecA 2556 2556 21.11 11.11 444 333 1.11
GPT-40-Image 28.89 2333 2333 10.00 444 222 0.00
Gemini 2.5-Flash-Image 52.22 48.89 37.78 16.67 10.00 1.11 1.11
Coordinate
Bagel 67.78 20.00 17.78 11.11 1.11  0.00  0.00
RecA 7556 2556 1222 222 111 111  0.00
GPT-40-Image 38.89 10.00 556 444 444 222 222
Gemini 2.5-Flash-Image 23.33 20.00 17.78 17.78 10.00 1.11  0.00
Image
Bagel 4333 2556 778 778 111 1.11  0.00
RecA 46.67 2222 556 556 222 1.11 0.00
GPT-40-Image 51.11 2889 10.00 1222 0.00 0.00 0.00

Gemini 2.5-Flash-Image 53.33 28.89 1333 889 1.11 1.11  0.00

Table 11: Step-wise VCoT accuracy for different prediction dimensions. We report step-wise
accuracy (%) for four representative U-MLLMs across steps 1-7. The three gray-shaded blocks
correspond to action, coordinate, and image accuracy, respectively. All models start well above the
random baseline at Step 1, but by Steps 5—7 most entries drop to around 1-4%, especially in the
coordinate and image dimensions.

4o-Image, Gemini2.5-Flash-Image) across steps 1-7 in three dimensions: action, coordinate, and
image. The results are summarized in Table[TT]

From Table@ we observe that in Step 1 the accuracies of action, location, and image for all models
are significantly higher than the random baseline, and remain reasonably good in Step 2. However,
starting from Step 2, the coordinate and image dimensions exhibit a near “cliff-like” drop, reaching
approximately 1-4% by Steps 5—7, while action accuracy decays more gradually. This pattern indi-
cates that although the models can still correctly identify the current position and generate a roughly
correct next frame in the first 1-2 steps, the first capability lost during the multi-step reasoning pro-
cess is the consistent visual modeling of the maze state. Once this internal visual state becomes
unreliable, it quickly propagates to degrade both coordinate localization and action prediction.

Therefore, even though the sample-level success rate over complete 7-step trajectories is close to
0%, the stratified analyses by maze size and step index allow us to pinpoint two core bottlenecks
of current U-MLLMs on VCoT: (i) multi-step visual state maintenance, and (ii) long-range con-
sistency. These diagnostics provide essential guidance for targeted improvements to planning and
visual memory mechanisms in future unified multimodal models.

F.1 COMPARE WITH RANDOM AND HUMAN BASELINES

To make the MME-U Score more interpretable, we compare our unified evaluation with two comple-
mentary baselines, a random guessing baseline and a human baseline. Both baselines are evaluated
under exactly the same multiple-choice protocol as U-MLLMs across all Unify sub-tasks.

Random-Select baseline. For the random baseline (RANDOM SELECT), we uniformly sample
one option for every text or image multiple-choice question, and compute all task metrics (Text Acc,
Image Acc, Acc, and Acc™; for VCoT we additionally report Action/Coord/Image Acc). As shown
in Table [[2] the Random-Select metrics on the two high-precision / multi-step reasoning tasks,
SpotDiff (SD) and VCoT, already exceed the performance of most current U-MLLMs. For exam-
ple, on VCoT, the random baseline attains 14.24% Acc and 21.73% Image Acc, which are higher
than those of Bagel, RecA, and GPT-4o-Image, and only slightly below Gemini2.5-Flash-Image.
This indirectly suggests that existing U-MLLMs remain extremely weak in scenarios requiring fine-

20



Under review as a conference paper at ICLR 2026

Method \ IEE \ CsQ \ AL \ SD \ VCoT | Ave
T 1 A AT T 1 A At T 1T A AY|T I A AT| At Cd Img A AT |
Show-02 - = = - |79215347 66345644 - - - - | - - - — | - - - - - |13
Random Select 29.00 27.50 2825 11.50(24.75 31.68 28.22 5.94 |23.08 28.85 25.97 7.69 |30.00 31.00 30.50 9.00 [ 1926 173 21.73 1424 000 2543
Bagel 2278 43.89 3334 11.67|90.10 64.36 77.23 6337|4231 21.15 31.73 9.62 |27.00 24.00 25.50 7.00 [ 10.83 12.08 10.69 11.20 0.00 |35.80
RecA 23.39 47.95 35.67 10.53(90.10 68.32 79.21 59.41|44.23 23.08 33.66 13.46|26.00 27.00 26.50 9.00 | 11.53 14.03 1111 1222 000 |37.45
GPT-40-Image 2550 60.50 43.00 17.00(97.03 76.24 86.64 7426|4231 42.31 42.31 15.38|29.00 21.00 25.00 9.00 [ 11.53 847 13.06 11.02 0.0 |41.10
Gemini-2.5-Flash-Image |32.00 65.50 48.75 19.00(98.92 73.12 86.02 73.12|67.31 51.92 59.62 32.69|27.00 24.00 2550 9.00 | 20.97 1125 1347 1523 000 |47.02
Human 96.00 100.00 98.00 96.00(97.52 97.52 97.52 97.52|94.23 94.23 94.23 94.23|19.00 19.00 19.00 19.00|100.00 100.00 100.00 100.00 100.00 81.75

Table 12: Calibration of Unify tasks with random and human baselines. We report unified
metrics for each Unify sub-task (IEE, CSQ, AL, SD, VCoT) and overall Avg. Columns: T = Text
Acc, I = Image Acc, A = Acc, AT = joint accuracy (text & image both correct), Act. = action
accuracy, Crd. = coordinate accuracy, Img. = image accuracy. RANDOM SELECT randomly chooses
one option per question (non-reasoning lower bound), while HUMAN is the average of two experts
(upper bound). Current U-MLLMs lie between these two baselines, often much closer to random on
SD and VCoT, highlighting substantial headroom for unified multimodal reasoning.

grained difference localization or long-range state tracking, confirming that SD and VCoT are highly
challenging items with strong difficulty discrimination.

In contrast, for IEE, CSQ, and AL, although some U-MLLMs’ single-modality Text/Image accuracy
is only modestly above the random baseline, their Acc™ scores—which require both the text and
image answers to be correct simultaneously—are substantially higher than the theoretical random
upper bound of ~ 6.25% (i.e., randomly guessing one out of four text options and one out of four
image options). For instance, on CSQ, Random-Select achieves only 5.94% Acc™, while Bagel,
RecA, GPT-4o0-Image, and Gemini2.5-Flash-Image reach 63.37%, 59.41%, 74.26%, and 73.12%,
respectively. This indicates that U-MLLMs have learned a non-trivial degree of cross-modal consis-
tency and understanding—generation synergy, and that our Acc / Acct metrics effectively separate
random strategies from genuine unified capability.

Human Baseline. For the human baseline (HUMAN), we asked two human experts with multi-
modal experience to complete the Unify tasks, selecting the best-matching option for both text and
image questions. We report the average score over the two annotators in Table[T2] Human perfor-
mance on IEE, CSQ, AL, and VCoT is substantially higher than that of all current U-MLLMs, e.g.,
98.00% / 97.52% / 94.23% Acc on IEE / CSQ/ AL, and 100% Acc / Acct on VCoT, demonstrating
that the human upper bound is well above existing models.

Overall, current U-MLLMs often sit closer to the random baseline on the most challenging tasks
(SD, VCoT), yet substantially surpass it on Acc™ for IEE/CSQ/AL, jointly shows that (i) there is
still substantial room for improving unified multimodal capability, and (ii) our Unify task design
and Acc / Acct metrics offer a discriminative and effective measurement of understanding and
generation synergy capability.

G EXTENDED EXPERIMENTAL RESULTS

G.1 MosT U-MLLMS EXHIBIT INFERIOR GENERATION CAPABILITIES

While the methods in Table[9]show relatively small differences compared to the current state-of-the-
art (SOTA) generation techniques, we found that using CLIP scores for evaluation introduces certain
risks of manipulation.

In Figure [12] we present the results on the fine-grained image reconstruction task. For each model,
we used a unified prompt: “Reconstruct high-fidelity images from degraded inputs, preserving fine-
grained details, textures, and structural integrity with perceptual realism.” It is evident that GILL,
SEED-LLaMA, and MIO-Instruct effectively capture the structural details of the input images and
produce noticeably clearer outputs. In particular, SEED-LLaMA and MIO-Instruct demonstrate
strong performance in restoring color fidelity, while Gemini2.0-flash-exp tends to preserve the in-
tegrity of the input images. In contrast, MiniGPT-5 and Anole fail to effectively extract the necessary
visual information: while MiniGPT-5 does generate an image, its output deviates significantly from
the source, and Anole is unable to generate a coherent image at all.
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Figure [13] displays the results for the text-guided image editing task, where the editing instruction
was “Change this image into a watercolor art.” Similar to the reconstruction task, SEED-LLaMA
and MIO-Instruct generate images that more closely resemble the source image; however, they fall
short in accurately executing the specified editing instruction. Meanwhile, GILL, MiniGPT-5, and
Anole show limited capability in capturing and manipulating the requisite visual details for the
transformation. Notably, Gemini2.0-flash-exp not only preserves the content of the source image
effectively but also accurately implements modifications according to the editing instructions.

Figure[I4]illustrates the performance gap between pure video generation models and U-MLLMs on
the conditional image-to-video generation task. Using the text prompt “The man is so tired. -camera
zoom in,” we observe that although MIO-Instruct produces video outputs with richer visual details
compared to CogVideoX, it struggles to effectively generate a coherent video sequence that adheres
to the given instruction based on the initial image.

In Figure[I5] the generation results of CogVideoX and MIO-Instruct in the Text-to-Video Genera-
tion task are compared. The results clearly indicate that, in terms of both instruction adherence and
video consistency, MIO-Instruct significantly underperforms compared to dedicated video genera-
tion models.

Overall, while some U-MLLMs exhibit promising capabilities in capturing visual details and pro-
ducing high-fidelity reconstructions, challenges remain in faithfully executing complex editing in-
structions and generating consistent video sequences. These findings highlight critical areas for
further improvement in enhancing the generation capabilities of U-MLLM systems.

G.2 CHALLENGES IN SIMULTANEOUSLY GENERATING HIGH-QUALITY TEXT AND IMAGES
IN U-MLLMS

Figures and [T9] present the results of U-MLLMs on the Unify tasks. Notably, MIO-
Instruct fails to perform any text-image generation across all Unify tasks, GILL is unable to generate
multimodal outputs in the SpotDiff task, and SEED-LLaMA does not support text-image generation
in the Auxiliary Lines task. Overall, these results indicate that most U-MLLMs struggle to generate
images that faithfully adhere to provided instructions or reference images, and their comprehension
of the instructions is often flawed.

In the Image Editing and Explanation task, for instance, MiniGPT-5 produced images that bore no
relation to the source images. Additionally, the textual outputs from GILL, MiniGPT-5, and SEED-
LLaMA were insufficient for accurately describing the editing objects or the instructions. Similarly,
in both the Commonsense Question Answering and SpotDiff tasks, although MiniGPT-5 and SEED-
LLaMA correctly answered the textual multiple-choice questions, the images they generated were
clearly unrelated to the corresponding options. This further emphasizes the difficulty U-MLLMs
face in maintaining consistency between textual and visual outputs.

For the Auxiliary Lines task, while Anole managed to generate images that retained some of the
visual details of the source images, it failed to correctly draw the required auxiliary lines as per
the instructions. GILL and MiniGPT-5, on the other hand, generated content that was completely
disconnected from the original images.

These findings suggest several critical limitations in current U-MLLM systems. First, there is a no-
table gap in their ability to integrate and utilize multimodal cues effectively, as evidenced by the mis-
alignment between textual instructions and visual outputs. Second, while some models can capture
certain visual details, they often lack the robust reasoning required to follow complex instructions,
especially in tasks demanding precise visual modifications. Finally, the decoupling between text
and image generation in these systems underscores the need for further research aimed at improving
cross-modal coherence and instruction fidelity.

Overall, the experimental results highlight that, despite progress in individual modalities, existing
U-MLLMs have considerable challenges in simultaneously generating high-quality, coherent text
and images that align with complex, multimodal instructions.
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OCR with Complex Context

Q: What s the house plate number
on the left side of the building in .
the center of the picture?

D.2
E. This image doesn't feature the

Artwork

Q: Does this artwork belong to the
type of mythological?

A.Yes
B. No

Autonomous Driving

Q: This image shows the front view of the ego car.
What is the status of the cars that are to the front of
the ego car?

A.Two of the cars are moving, and many are parked.
B.Two of the cars are parked, and two are moving.
C.One of the cars s parked, and two are moving.

D. Many cars are parked, and three are moving.

E. The image does not feature the object.

A3

Q: What is the number of persons
in the image?

B.13
c12

D.2
E. The image does not feature the
persons.

Q: What color is the parking lot
below the soil yellow ground on
the left side of the picture?

A.blue
B.green
C. orange

E. The image does not feature the
color.

Attribute Recognition

Q: Whatis the color of the small block that is the
same material as the big brown thing?

A.cyan
B.gray
C.blue
D. yellow

Multiple-Images & Text Comprehension

Yes Sheigey?

Con awiore fell we
it e _wrong W

woud ever use an
actual Cat-bed.

No seif especting caf

cat bed.

Q: What is this comic strip about?

A.The cat teacher taugh other cats how to be cats, and the cat
students answered that cats with no self-esteem would sleep in the

B.The cat teacher teaches the cat students how to sleep correctly.
C. Several cats are discussing the problem of self-esteem.
D.The cat students contradict the cat teacher.

The shape of the window
on the stone building is
square.

The shape of the plate near the top
left corner of the image is unique
because it's empty and round.

image.

A. Sand has the highest density in the image.
B. It cannot be determined if there is a dead clump of grass in the

% C. The picture is most likely taken in the afternoon.
{ D.The shape of the leaves on the tree in the image are pointed.

Temporal Reasoning

Q:Which of the following options has the correct sequence of events sort of

appearing in the video?

A. Study in the library, eat lunch, work out at the gym, do interviews.
B. Eat lunch, study in the library, work out in the gym, do interviews.
C. Study in the library, eat lunch, work out in the gym, do interviews.
D. Do interviews, eat lunch, study at the library, work out at the gym.

Action Recognition Q:Which of the following items is the man in the video doing at the gym?

A.Bench press.
B. Seated row.
C. Leg press.
D.Running.

Figure 5: Data samples from understanding task, which includes single-image perception and rea-
soning, multi-image and image-text interlaced perception and reasoning, video perception and rea-
soning, etc.

H EVALUATION METRICS

H.1 UNDERSTANDING SCORE

Let the three subtasks in the Understanding Task be formally defined as follows:
T = {SIPU, MITIU, VPU}.

For each subtask ¢t € T, let ); represent the set of multiple-choice questions, where each question
q € @y has exactly one correct answer. To evaluate correctness, we define the indicator function for
each question as follows:

1, if the selected answer for ¢ is correct,
Li(q) =

0, otherwise.

The accuracy for subtask ¢ is given by:

accy = |Q_1t| Z I:(q).

qEQ:
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Text-to-Image Generation Fine-Grained Image Reconstruction Text-Image-Editing
= Text Prompt: A baseball game
i isin progress with a batter at
home plate, a catcher behind
him, and an umpire to the side.
The stands are filled with

- spectators, and the scene is set
. inalarge stadium.

Text Prompt: Reconstruct the Src Image Edited Image
image with fine-grained details,
preserving textures, edges, and
structural fidelity while
maintaining high visual
accuracy and natural realism.

Edit Instruction:
Add a mouse on the
floor in front of the
cat.

Text-to-Video Generation

Video Prediction

Text Prompt: 2 players
missed to put a goal in
football game.

First Frame Second Frame Last Frame Text Prompt: Generate

a seamless video clip
from the given initial
frame, preserving style,
motion, and continuity.

Conditional Image-to-Video Generation

Src Image First Frame Second Frame Last Frame

Text Prompt: Men walk
toward the fiery chasm.
The Demons eyes glow red
as it smiles. Ash and
sparks move in the
foreground.

Figure 6: Data samples from generation task. It includes subtasks such as Text-to-Image Generation,
Text-to-Image Editing, Fine-Grained Image Reconstruction, Text-to-Video Generation, conditional
Image-to-Video Generation, and Video Prediction.

Relations
Remote Sensing OCR & Text Understanding
Physical Relations
Temporal Understanding
Spatial Understanding
Posters Object Recognition
" . 2.38% 11.62%
Counting & N |
ounting umerical 2.62%
2.75%
Monitoring 3.5% 9.75% Object Reasoning
3.5%
Information Synopsis 3.75%
MME-Unify 7% Scene Understandinc
3.75%
Landmarks
4.25% 6.25%
Attribute Reasoning iz Action Recognition
tecognition & Reasoning : 6.12%
5.38% Action Reasoning
Artwork 5.38% 5 59, >%

Autonomous Driving
Image Properties

Celebrity Recognition

Specialized Reasoning Diagrams & Tables

Figure 7: An overview of real-life scenarios included in the Understanding Task. The scores in
the bars represent the proportion of the number of samples of the corresponding scenario to the total
number of samples of the task.

Since equal weights are assigned to each subtask, the Understanding Score (US) is computed as the
arithmetic mean of the accuracies across all subtasks:

1
Us =3 > score;, T = {SIPU, MITIU, VPU}.
teT

H.2 GENERATION SCORE

The generative task comprises six subtasks:
T = {CIVG, TVG, VP, FIR, TIE, TIG}.

All metric scores are normalized to the range [0, 100].
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3x3 Maze 4x4 Maze 5x5 Maze

Samples

Steps

Figure 8: Distribution of steps required for samples of different mazes in the Visual CoT task.

Task Dataset Total
MME- SEED- Video- Imagen Emu- TIP- Image MSR- Pexel Geometry Spot Open |
MME MMBench gouitotd Bench2 MME  Hup  Edit 12V COC0 'Net VIT Videos 3K | Diff Al |Samples
Understanding Task
SIPU 400 400 400 0 0 0 0 0 0 0 0 1,200
MITIU 0 0 0 400 0 0 0 0 0 0 0 0 0 0 0 400
VPU 0 0 0 0 364 0 0 0 0 0 0 0 0 0 0 364
Generative Task
CIVG 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 200
FIR 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 200
TIG 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 200
TIE 0 0 0 0 0 400 200 0 0 0 0 0 0 0 0 600
TVG 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 200
VP 0 0 0 0 0 0 0 0 0 0 0 194 0 0 0 194
Unify Task
IEE 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 200
CSQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 101
AL 0 0 0 0 0 0 0 0 0 0 0 0 52 0 0 52
SD 0 0 0 0 0 0 0 0 0 0 0 0 0 104 0 100
VCoT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90
Dataset Total | 400 400 400 400 364 400 400 200 200 200 200 194 52 104 190 4100
Dataset % 9.75%  9.75% 9.75% 9.75% 887% 9.75% 9.75% 4.87% 4.87% 4.87% 4.87% 4.73% 1.27% 2.54% 4.63% | 100%

Table 13: Task-Dataset Sampling Statistics. This table presents the distribution of samples across
different multimodal AI tasks and their source datasets. Tasks are categorized into three main
groups: Understanding Tasks (SIPU: Single Image Perception and Understanding, MITIU: Multi-
Image & Interleaved Text-Image Understanding, VPU: Video Perception and Understanding), Gen-
erative Tasks (CIVG: Conditional Image-to-Video Generation, FIR: Fine-grained Image Reconstruc-
tion, TIG: Text-to-Image Generation, TIE: Text-Guided Image Editing, TVG: Text-to-Video Gener-
ation, VP: Video Prediction), and Unify Tasks (IEE: Image Editing and Explanation, CSQ: Common
Sense Question Answring, AL: Auxiliary Lines., SD: SpotDiff, VCoT: Visual CoT). The rightmost
column shows the total number of samples used for each task across all datasets. A value of 0 indi-
cates that no samples were drawn from that dataset for the corresponding task.

Normalization of FVD and FID Scores. Let s denote the raw FVD or FID value for a sample,
where s € [1,1000] and lower values indicate better performance. The normalized score S is

computed as:
s—1 s—1
=1 l—— | =1 1-— .
s 00 ( 1000 — 1) 00 ( 999 )

This ensures:

e S =100 when s = 1 (best performance),

¢ § =0 when s = 1000 (worst performance).

If all raw scores across models are identical, each normalized score is set to 100 to maintain consis-
tency in evaluation and prevent division by zero in the normalization process.
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Score Calculation for CIVG and TVG. The subtask score for ¢ € {CIVG, TVG} is given by:

FVD®) 4+ FID{!), + CLIPSIM®)

score; =
3

Score Calculation for VP. The VP subtask score is determined using the following formula:
FVD{YF) + FID{\")
2
Score Calculation for FIR, TIE, and TIG. For FIR (Fine-Grained Image Reconstruction), the
metric is LPIPS. To ensure higher values indicate better performance, the score is defined as:
scoregir = 1 — LPIPS.

SCoreyp =

For both TIE (Text Image Editing) and TIG (Text-to-Image Generation), two metrics are used:
CLIP-I and CLIP-T. The score for each subtask is computed as the average of these two metrics:

CLIP-Itig + CLIP-Ttg

SCOIeTIg = B) s
CLIP—ITIG + CLIP—TTIG
SCoreTig = 5 .

Overall Generation Score. The overall Generation Score (GS) is the arithmetic mean of all six
subtask scores:

1
GS = ¢ > “score;, T = {CIVG,TVG, VP,FIR, TIE, TIG}.
teT

H.3 UNIFY SCORE

Let the Unify Task consist of the subtasks
T = {IEE, CSQ, AL, SD, VCoT}.
For each subtask ¢ € T, denote by .S; the set of samples.

H.3.1 SuBTtAsks IEE, CSQ, AL, SD
For a given subtask ¢ € {IEE, CSQ, AL, SD} and for each sample s € S;, there are two questions:

1. A text-based multiple-choice question.

2. An image-based multiple-choice question.

Define the indicator functions for the text and image responses as follow:
I () = 1, if the text answer for s is correct,
t 0, otherwise,

[ime (s) = 1, if the image answer for s is correct,
¢ 0, otherwise.
Then, the text accuracy and image accuracy for subtask ¢ are, respectively,
accy™ = Z I(s), acci™® = Z ™ (s
565’ 565’
The overall accuracy for subtask ¢ is then defined as the average of the two:
ac lext + acc mg

acc; =
2

Additionally, we define acc;" to represent the accuracy for samples where both the textual and image-
based answers are correct:
acc;” I(s) - I8 (s).
t ‘ St Z )

sESt
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H.3.2 SuUBTASK VCOT

For the VCoT subtask, each sample s € Sycor represents a maze navigation task composed of K
sequential steps. For each step k € {1,2,..., K}, there are multiple-choice questions evaluating
the model’s prediction of:

1. An action.
2. A coordinate.

3. Animage.

Calculation of accycer: Let Neps = ), € Svear K be the total number of steps across all samples
in the VCoT subtask. Define the indicator functions for the correctness of action, coordinate, and
image predictions for step k of sample s as follow:

1, if the action prediction for step k
Ian (s, k) = of sample s is correct,
0, otherwise.

1, if the coordinate prediction for step &
ISST (s, k) = of sample s is correct,
0, otherwise.

1, if the image prediction for step &k
Lcor(s, k) = of sample s is correct,
0, otherwise.

Calculate the average accuracy for each prediction type across all steps:

1
action __ dCthH
aClycor = N, E E Ieor(s
steps

s€Svcor k=1
coord __ 1 ]Icoord
acCycor = N Veor(
SPS e Syeor k=1
1
img img
aCCycor = N. E E :]IVCOT
steps sESvcor k=1
e overall accycot metric is the arithmetic mean of these three component accuracies:
Th 11 t th thmet f these th t
action coord img
acCycor 1 8CCycer 1 aCCycor
aCCyCoT = 3 .

Calculation of acc+vcor: Define an indicator function for the full correctness of a single step & in

sample s:
action coord img

]Istep,all,correcl(sa k) = HVCOT(Sa k) X HVCoT(87 k) X HVC()T(57 k)
This function is 1 if all three predictions for step k are correct, and 0 otherwise.
Now, define the indicator function for the perfect completion of sample s:
1, if Hslep;lll,correct(sa k) =1
[ample-perfect () — forall k € {1,2,..., K.},
0, otherwise.

The acc+vcor metric is the proportion of perfectly completed samples:

sample_perfect
D e OF

SESvcor

acc+vycor = ‘ S |
'VCoT
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H.4 UNIFY SCORES

The Unify Score (Unify-S) is defined as the arithmetic mean of the acc; metrics across all subtasks:

1
Unify-S = — Zacch
Tl

H.5 MME-U SCORE
The MME-U Score is computed as the arithmetic mean of the Understanding Score (US), Generation
Score (GS), and Unify Score (Unify-S):

1
MME-U = o (US + GS + Unify-S)

where:

* US is the Understanding Score,
¢ GS is the Generation Score,
¢ Unify-S is the Unify Score.

Each component score is calculated as described in their respective sections.
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Prompt for Generation Text Multi-choice | l

Question: A device used to capture photographs,
Please help me generate some Question: A device used to capture photographs, E essential in both art and journalism.

common sense questions, such as
identifying plants and animals...

Choice: +
‘ A: Smartphone  B: Camera

GPT40 @_l C: Telescope D: Microphone  Answer: B
t

essential in both art and journalism. Chgize: B

1 Explaining: The target object for editing is the womanin [
I S . - A: The target object ...The specific editing
| the black dress standing in a kitchen setting. Please give ) . .
1 Neg-explaining1: The target object for editing is the Sl el Eediliementistoplacelaiediosel el
! man in a blue suit sitting in a living room setting. L T A o N T ]
| <srcimage, edit instruction> Neg-explaining2: The target object for editing is the explanation. Clliciaredutiecillieseecided g
1 Please follow the instructions and woman in the black dress standing in a kitchen setting. 2L 2 e G o 12 Sl G
: provide three different I ion: Neg inil The target object for editing is the
hild wearing a striped shirt playing in a garden setting.
I|p . g g il playing g 9.
rompts for Text Generation
! P U Neg-instruction1
1 Prompts for
1 mage Neg-instruction2
| Generation |_Neg-instruction3_|

Image Multi-choice Al

Please generate images with
only different points according

to different point positions, and
generate three incorrect ...

Question:

.' — -t .
| Find out the =~ ™ R B . ﬁ. R |
T differences A B

- g\ ——
betweenthe w = J - .
— .. '

1

1

1

1

1

1

[}

two images. " | . l . 1

G D 1

Text Multi-choice :
N

1

1

[}

1

Based on the number of
different_count, generate a
Q&A template with options
for three incorrect answers

Question: How many differences are there in these two

pictures?

and one correct answer. 7
Choice:
\ ! ‘ ! : Prompts for Text Generation A:17 _ B:16__ C:19 _ D:15 _ Answer: D
(c) SpotDiff
_____________________________________________________________ -
,’ Prompts for Generation Text Multi-choice \
I Geometry3K Please revert this issue :
1 1 according to the options Question: In triangle ABC, point D is the foot of the .
: and text literals. perpendicular from C to side AB. Given that AC = 18 units, BC | |
1 =24 units, and LACB = 60°, determine the length of CD. I
1 > Choice: :
! A:12 B:15 C:17 D: 20 Answer: C |
I A0 Triangler,s,0) 14) GPT-40 - - X
I 25°  cauals(Lengthor(Line(A,)),3) Image Multi-choice 1
1 D.85 Eﬂu:?i(unimuf(untiB,DJ),]A)
| DB FaNd(Lengenof (Line(S,0)) IS N 1
| Auxiliary lines / Z. !
1 check are required / / 1
I > —_— ~ 4 1
i A(answer B 1
Veoolooopemse B0 L .
(d) Auxiliary Lines
T T T T e e e e e e e e e e e e e e T e e e e e e e e e e e e e e e e e — = - === N
1 Now the player is at (3,2). The i . The |
I O L] next step is [~ action Up O & Now the ylayer ' ‘at (2:Z)Th ’:’ ¢ ] O ¢ 8 1
e e P _[ ! = next step 15_{ action Up = e oo

! API —_ b2 coordinate (2,2 O ¢ OO coordinate (1,2, ] OO . <@ b !
| i ' @ @ e @ !
1 7} @ . ) @ B
|\0pen AIAPI Initial Image Stepl Step2 Step3 1

______________________________________________________________ -

(e) Visual CoT

Figure 9: The overall construction process for five unified tasks, which consists of (a) Common
Sense Question Answering, (b) Image Editing and Explaining, (c)SpotDiff, (d) Auxiliary Lines, and
(e) Visual CoT.
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(d) Gemini2.0-flash-exp.

%

(g) HermesFlow. (h) Janus-Pro.

(i) MiniGPT-5. (j) MIO-Instruct. (k) Show-O. (1) Vila-u

Figure 10: The generated results from various models in the text-to-image generation task,
based on the following text prompt: A man is standing in a park with a 'Run for Rights’ banner
in the background. He is wearing a white t-shirt with the number 28 on it, grey shorts, and grey
socks with black shoes. The park is filled with people, some sitting on benches, and there is a bicycle
leaning against a tree.

(e) Gemini2.0-flash-
(a) Anole. (b) GILL. (c) SEED. (d) MiniGPT-5.  exp.

Figure 11: Intermediate process images generated by different models in VCoT. The figure illus-
trates the intermediate outputs of various models in the VCoT (Visual Composition Task), showing
distinct approaches in processing and generating visual content. The models shown include (a)
Anole, (b) GILL, (c) SEED, (d) MiniGPT-5, and (e) Gemini-2.0-flash-exp, each producing unique
visual patterns and compositions.
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(c) GILL.

(a) Source Image.

(e) Anole. (f) SEED-LLaMA. (g) MIO-Instruct. (h) Gemini2.0-flash-exp.

Figure 12: The generated results from various models in the fine-grained image reconstruction
task, based on the following text prompt: Reconstruct high-fidelity images from degraded inputs,
preserving fine-grained details, textures, and structural integrity with perceptual realism.

(a) Source Image.

(e) Anole. (f) SEED-LLaMA. (g) MIO-Instruct. (h) Gemini2.0-flash-exp.

Figure 13: The generated results from various models in the text-guided image editing task,
based on the following text prompt: Change this image into a watercolor art.
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(a) Source Image.

(c) MIO-Instruct.

Figure 14: The generated results from various models in the conditional image-to-video gener-
ation task, based on the following text prompt: The man is so tired. -camera zoom in.
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SRR

(a) CogVideoX.

(b) MIO-Instruct.
Figure 15: The generated results from various models in the text-to-video generation task,

based on the following text prompt: Men wearing sunglasses and women with hats take photographs
of themselves.
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Image Editing and Explaining

Src Image Ground Truth

Edit Instruction: Add the phrase
\"FAST FOOD\ " in small letters.

Output Explanation: This image features a burger
and French fries from a fast-food restaurant. The
‘ Output Image phrase "FAST FOOD" is written in small letters,
applying an artistic touch to the image while also
accurately reflecting the content.

GILL Response

Output Explanation: DOG DARE YOU !

Output Image I[l;ng;;JO][IMGI J[IMG2][IMG3][IMG4][IMG5][IMG6][I

MiniGPT5 Response

Output Explanation: I'm sorry, but your question
is a bit vague and doesn 't provide enough context
for me to give an accurate response. Could you

| Output Image please rephrase or clarify the task? Are we talking
about adding text in general ,or specifically when
it comes small letters ? [IMGO]

Output Explanation: Successfully added the
i Output Image phrase \ "FAST FOOD\" in small letters to the
image.

Figure 16: The generated results from various models in the image editing and explaining task.
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Common Sense Question Answering

Question: Ancient monumental
tombs located in Egypt near the city
of Cairo.

Ground Truth

A. Colosseum B. Stonhenge
C. Machu Picchu D. Pyramids of Giza

Answer: D

Output Image

Y ) -

'A
o 2"‘0
oD f
g I

Figure 17: The generated results from various models in the common sense question answering task.

Output Choice: D «
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Auxiliary Lines
Question: In circle O, the radius is 10

SrcImage units, and chord AB is 16 units long.
= The distance from the center of the
\ circle O to the midpoint P of AB is 6
A units. Using this information, calculate
the area of triangle OAP

Choices: A. 11 B.36 C.28 D.24 Answer: D

Anole Response

) Output Image

Output Choice: B x

Output Image

| Output Choice: A x

- Output Image

. Output Choice: A b4

Figure 18: The generated results from various models in the auxiliary lines task.
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SpotDiff

SrcIlmage1l  Srclmage1 Ground Truth

T

Anole Response

Choca Hashed LG eoporstion

_ Output Image

Output Choice: B x

Output Image

T vl

|
g R
< I R
%&3@ Output Choice: C x

Figure 19: The generated results from various models in the spotdiff task.
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Common Sense Question Answering
System Prompt:

You are an Al system that answers common-sense knowledge questions by selecting the correct
answer from multiple choices and then generating an image that visually represents the answer.

Input Data
Question: A factual question requiring knowledge-based reasoning.
Choice: A set of multiple-choice answers labeled A, B, C, and D.

Output Requirements

Answer Selection:
Analyze the question and determine the correct answer based on general knowledge.
Output the selected answer in the format: Answer: X (where X is A, B, C, or D).

Image Generation:
Generate an image that visually represents the content of the chosen answer.

Processing Steps

Understand the Question: Extract key information from the question.

Evaluate the Choices: Compare each option and determine the most accurate answer.

Select the Correct Answer: Output the correct choice in the required format.

Generate the Image: Create an image that correctly depicts the content of the selected answer.
Verify Coherence: Ensure the generated image aligns with the chosen answer.

Example
Input:
question: "Which planet is known as the Red Planet?",
choice:
"A: Earth",
"B: Mars",
"C: Venus",
"D: Jupiter”

Model Output:
Answer: B
<image> (Generating image of the Mars)

Figure 20: System prompt for Common Sense Question Answering task.
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Image Editing and Explaining

System Prompt:
You are an Al-powered image editing assistant. Your task is to modify a provided initial image
based on a question instruction and generate a clear visual description of the edited object.

Input Data

Question: A natural language instruction specifying how the image should be modified.

Initial Image: The original image that needs editing.

Output Requirements

Explanation:

Identify the target object or region in the image that needs to be modified.

Provide a concise visual description of the object before and after modification.

Clearly describe how the edit integrates into the scene.

Edited Image:

Generate an image that precisely follows the question instruction while ensuring realism and
coherence.

Maintain the original image’s quality, lighting, and perspective in the edited version.
Processing Steps

Analyze the Question: Extract key editing instructions (e.g., add, remove, modify, change color,
reposition).

Identify the Target Object: Locate the relevant object or scene element that needs modification.
Generate a Visual Description: Clearly describe the object before and after editing, ensuring it
aligns with the given instruction.

Apply the Modification: Edit the image accordingly, ensuring seamless integration with existing
elements.

Verify Output: Ensure the modification meets the instruction while preserving natural aesthetics.

Example

Input:

Question: Add a fork to the plate.
<image>

Model Output:
Explanation: The target object for editing is the plate containing a steak, potatoes, and mixed
vegetables, with a slice of orange for garnish. The specific editing requirement is to add a fork to
the plate, ensuring it complements the arrangement of the existing food items.
<edited image>

Figure 21: Systemp prompt for Image Editing and Explaining task
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SpotDiff

System Prompt:
You are an Al system designed to analyze two similar images (img_a and img_b) and identify the
number of differences between them. Your task is to:

Compare img_a and img_b to find all differences.

Select the correct answer from the provided multiple-choice options.

Extract the different regions from img_a and place them on a white background of the same size.
Input Format

img_a: The first image.

img_b: The second image (similar but not identical to img_a).

choice: Multiple-choice answers indicating different counts of differences, labeled as A, B, C, D.

Example Input:
img_a: "<image_a>",
img_b: "<image_b>",
choice:

"A: 14",

"B: 11",

"C: 19",

"D: 10"

Output Format

Answer Selection:

Identify the correct number of differences and output the answer in the format:

Answer: X (where Xis A, B, C, or D)

Extracted Difference Image:

Identify regions in img_a that differ from img_b.

Extract these differing regions and place them on a white background of the same size as img_a.
The final image should highlight only the different areas while preserving their original details.

Example Output:
Answer: B
<image> (Extracted difference regions placed on a white background)

Processing Steps

Compare img_a and img_b to identify all differences (object position, shape, color, missing parts,
etc.).

Count the total number of differences and match it to the correct multiple-choice answer.
Extract differing regions from img_a and overlay them on a white background of the same size.
Output the selected answer and the processed image.

Key Requirements

Strictly select one answer from A, B, C, D.

Ensure extracted differences are accurately placed on a clean white background.
Maintain the original structure of differing regions (no modifications, just extraction).

Figure 22: System prompt for SpotDiff task.
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Auxiliary Lines

System Prompt:

You are an Al system designed to solve junior high school geometry problems. Your task is to:

Analyze the given geometry question, image, and multiple-choice answers.

Draw auxiliary lines on the geometric diagram to assist in problem-solving.

Determine the correct answer based on the problem's conditions.

Input Data

Question: A geometry-related word problem describing angles, lengths, or relationships.
Image: A geometric diagram corresponding to the problem statement.

Choice: A set of multiple-choice answers labeled A, B, C, and D.

Output Requirements

Answer Selection:

Use geometric reasoning to determine the correct answer.

Output the selected answer in the format: Answer: X (where X is A, B, C, or D).

Image with Auxiliary Lines:

Draw necessary auxiliary lines (such as perpendiculars, bisectors, or diagonals) on the
geometric diagram to facilitate solving.

Ensure the lines are clear and logically placed according to the problem’s constraints.
Maintain the original structure of the diagram while highlighting the new construction.
Processing Steps

Understand the Problem: Analyze given conditions (parallel lines, angles, lengths, etc.).
Identify Key Geometric Properties: Determine the relationships between elements in the
diagram.

Draw Auxiliary Lines: Add necessary constructions to simplify calculations.

Solve for the Answer: Apply geometric theorems and algebraic calculations.

Output Answer and Edited Image: Provide the correct answer and the diagram with auxiliary
lines.

Example
Input:
question: "Given the quadrilateral ABCD, where line segment AB is parallel to line segment DC,
the measure of ZABC is 60°, and the measure of ZADC is 45°. Additionally, the length of BC is 8
units, and the length of AB is 24 units. Determine the perimeter of quadrilateral ABCD.",
choice:

"A:26 + 2 \\sqrt{3}+2\\sqrt{6}",

"B:26 + 4 \\sqrt{3}+4\\sqrt{6}",

"C:52+2\\sqrt{3}+2\\sqrt{6}",

"D:52 + 4 \\sqrt{3}+4\\sqrt{6}"

<image>(geometry diagram)

Model Output:
Answer: B
<image> (image with auxiliary lines)

Figure 23: System prompt for Auxiliary Lines task.
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Visual CoT

System Prompt for first step:

You are given a grid-based puzzle game map where each grid square can either be a safe square
(land) or a hole. Your goal is to reach the target while avoiding the holes and using as few moves
as possible. You can move in four directions: Left, Right, Up, or Down. The grid is 3x3.The top-left
cell is (0,0), the top-right cell is (2,0), the bottom-left cell is (0,2), and so forth.Rows increase
downward, and columns increase to the right.

**Game Settings:**

- The grid map is fully observable.

- The player starts at a designated grid square.

- The goal is located elsewhere on the map.

- Each grid square is either safe (land) or contains a hole (non-safe).

- The player must avoid holes, and moving into a hole results in failure.

- The objective is to guide the player to the goal without falling into holes.

**Movement Rules:**

- The player can move left, right, up, or down to an adjacent square, provided it is a safe square.
- The player cannot move more than one square at a time.

- Moving outside the edge of the map has no effect. The player stays in the same position.

- Do not fall into holes.

- The player wins by reaching the goal.

**Your task:**

- Based on the current state of the game, decide the next move for the player.

- Provide the next action: "Left", "Right", "Up", or "Down".

- After selecting the action, specify the coordinates of the player's new location as [x, y].
- Also, output a representation of the grid map after the selected action.

**Qutput Format:**
Action: [Your move choice]
Location: [x, y]

Image: [Generated Image]

Here is the Initial grid map:
(Shown Initial Figure)

Please choose the next move and give output:

Figure 24: Systemp prompt for Visual CoT task in the first step.
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Visual CoT

System Prompt after first step:

You are given a grid-based puzzle game map where each grid square can be either a safe square
(land) or a hole. Your goal is to reach the goal while avoiding holes and using as few moves as
possible. You can move in four directions: left, right, up, or down. The grid is 3x3. The top-left
cell is (0,0), the top-right cell is (2,0), the bottom-left cell is (0,2), and so on. Rows increase
downwards and columns increase rightwards.

**Game Setup:**

- The grid map is fully observable.

- The player starts at a designated grid square.

- The goal is somewhere else on the map.

- Each grid square is either safe (land) or contains a hole (non-safe).

- The player must avoid holes, and entering a hole will result in failure.
- The goal is to guide the player to the goal without falling into a hole.

**Movement Rules:**

- The player can move left, right, up, or down to an adjacent square, provided it is a safe square.
- The player cannot move more than one block at a time.

- Moving beyond the edge of the map has no effect. The player remains in the same position.

- Do not fall into a hole.

- The player wins by reaching the goal.

**Your Task:**

- Determine the next move for the player based on the initial grid map, the history information,
and the current state of the game.

- Provide the next action: "Left", "Right", "Up", or "Down", and output "Finish" if you think the
goal position has been reached

- After selecting an action, specify the coordinates of the player's new position as [x, y].

- Also, output a representation of the grid map after the selected action.

Please provide the action, coordinates and the maze image of the player's new position for next
step

This is the initial grid map:
(Showing Initial Map)

Here is the state of the game after last step:
**History Information:**

- Last action (e.g., "Go Right", "Go Down", etc.).
- Current position.

- An image of the grid after the last move.

- Initial grid map:

**Output format:**

Action: [your move selection]
Location: [x, y]

Image: [generated image]

Please select the next step and give the output:

Figure 25: Systemp prompt for Visual CoT task after first step.
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