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Abstract

Hawkes processes are point process models that have been used to capture self-excitatory
behavior in social interactions, neural activity, earthquakes and viral epidemics. They can
model the occurrence of the times and locations of events. Here we develop a new class of
spatiotemporal Hawkes processes that can capture both triggering and clustering behavior
and we provide an efficient method for performing inference. We use a log-Gaussian Cox
process (LGCP) as prior for the background rate of the Hawkes process which gives arbitrary
flexibility to capture a wide range of underlying background effects (for infectious diseases
these are called endemic effects). The Hawkes process and LGCP are computationally
expensive due to the former having a likelihood with quadratic complexity in the number
of observations and the latter involving inversion of the precision matrix which is cubic
in observations. Here we propose a novel approach to perform MCMC sampling for our
Hawkes process with LGCP background, using pre-trained Gaussian Process generators
which provide direct and cheap access to samples during inference. We show the efficacy
and flexibility of our approach in experiments on simulated data and use our methods to
uncover the trends in a dataset of reported crimes in the US.

Keywords: Gaussian process, self-excitation, clustering, Bayesian inference
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1 Introduction

Hawkes processes are a class of point processes that can model self or mutual excitation between events, in
which the occurrence of one event triggers additional events, for example: a violent event in one geographical
area on a given day encourages another violent event in an area nearby the next day. A unique feature of
Hawkes processes is their ability to model exogenous and endogenous "causes" of events. An exogenous cause
happens by the external addition of a event, while endogenous events are self-excited from previous events by
a triggering kernel. An example of the difference between these two mechanisms is in disease transmission - an
exogenous event could be a zoonosis event such as the transmission of Influenza from birds, while endogenous
events are subsequent human to human transmission. Due to their flexibility and mathematical tractability,
Hawkes processes have been extensively used in the literature in a series of applications. They have modelled
among others, neural activity (Linderman et al., 2014), earthquakes (Ogata, 1988), violence (Loeffler &
Flaxman, 2018; Holbrook et al., 2021) and social interactions (Miscouridou et al., 2018).

The majority of applied research on Hawkes processes focuses on the purely temporal settings where events
occur and are subsequently triggered only in time. However, many practical problems require the inclusion of
a spatial dimension. This inclusion is motivated by several factors, first, natural phenomena that self-excite
tend to do so both spatial and temporally e.g. infectious diseases, crime or diffusion over a network. Second,
natural processes tend to cluster closely in space and time (Tobler, 1970). Third, in parametric formulations
residual variation persists and this is often structured in both space and time (Diggle & Ribeiro, 2007).
A wide body of research exists in modelling spatial phenomena ranging from Kriging (Matheron, 1962) to
model based estimates (Diggle & Ribeiro, 2007) using Gaussian processes. In the more general Gaussian
process, which provides a prior function class, spatial phenomena are modelled through a mean function
and a covariance function that allows control over the degree of clustering as well as the smoothness of the
underlying functions. Specifically for applications for spatial point patterns, an elegant formulation using
log-Gaussian Cox processes (LGCP), Møller et al. (1998) is commonly used (Diggle et al., 2013). LGCPs can
capture complex spatial structure but at a fundamental level are unequipped with a mechanism to model
self-excitement. When examining the processes’ endogenous and exogenous drivers, the lack of a self-exciting
mechanism can potentially lead to spurious scientific conclusions even if prediction accuracy is high. For
example, appealing again to the Influenza example, only modelling the distribution of cases using an LGCP
will ignore the complex interplay of zoonosis events and secondary transmission events, both of which require
different policy actions.

The inclusion of space has a long history via the Hawkes process triggering mechanism - fistly modelled using
the Epidemic Type Aftershock Sequence (ETAS) kernel Ogata (1988) but many subsequent approaches now
exist. However, to our knowledge, very few approaches consider spatial and temporal events in both the
exogenous and endogenous Hawkes process mechanisms - that is where events can occur in space and time,
and then these events trigger new events also in space and time. Many mechanisms have been proposed
for space-time triggering kernels Reinhart (2018), but it is not clear nor straightforward how to also allow
for exogenous space-time events simultaneously. In the vast majority of previous applications, exogenous
events occur at a constant rate in both space and time or with highly specific forms that depend on the
setting e.g. periodic functions for seasonal malaria data (Unwin et al., 2021). Some studies do provide
nonparametric approaches for the background rate: Lewis & Mohler (2011) provide an estimation procedure
for the background and kernel of the Hawkes process when no parametric form is assumed for either of
the two. Donnet et al. (2020); Sulem & Rousseau (2022) use non-parametric estimation on the kernel
and Miscouridou et al. (2018) use a nonparametric prior on t he background based on completely random
measures to construct the discrete background rate for the Hawkes processes that build directed networks.
Other recent approaches use neural networks to estimate the rate (Omi et al., 2019). However, these
nonparametric approaches do not provide a compelling stochastic mechanism, such as LGCPs, that yield a
generative process.

Here we propose a novel time space approach that combines Hawkes processes (Hawkes, 1971) with log-
Gaussian Cox processes (Møller et al., 1998; Diggle et al., 2013). This synthesis allows us, for the first time,
to have a exogenous background intensity process with self-excitation that is stochastic and able to vary
in both space and time. We provide a suite of new methods for simulation and computationally tractable
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inference. Our methods leverage modern computational techniques that are scalable and can efficiently
learn complex spatiotemporal data. We apply our approach on both simulated and real data. Our novel
addition of an LGCP prior in both space and time is accompanied with new computational challenges: a
Hawkes process is quadratic in complexity due to a double summation in the likelihood, and LGCPs incur
cubic complexity from matrix inversions. To ensure our approach is scalable and still competitive with
standard Hawkes processes we utilize a recently developed Gaussian process approximation (Mishra et al.,
2022; Semenova et al., 2022) that obliviates the need for repeated matrix inversions. Our work represents
a step towards more general, scalable, point process framework that encodes more flexible and plausible
mechanisms to represent natural and physical phenomena.

Our contributions

A summary of the contributions of our work is: (i) We provide a novel model formulation for a highly
flexible self-exciting process that can capture endogenous and exogenous events in both space and time. Our
utilization of LCGPs for the exogenous background rate is extremely flexible and follows from the current
state-of-the-art in spatial statistics (Diggle et al., 2013), (ii) in contrast to previous work (e.g. Loeffler
& Flaxman (2018)) our framework admits a generative model that can produce stochastic realizations at
an arbitrary set of locations. We provide a novel algorithm to sample from this generative process, (iii)
we offer an efficient Bayesian inference approach that ensures our more flexible model is still as scalable as
standard Hawkes processes and straightforward to implement computationally, (iv) our framework is directly
applicable to numerous spatiotemporal problems where there are both endogenous and exogenous causes e.g.
for natural or social phenomena such as crime, diseases, environment, or human behavior.

2 Related methods

As mentioned before, modelling space through Hawkes processes was fist used with the Epidemic Type
Aftershock Sequence (ETAS) kernel (Ogata, 1988) and other approaches followed some of which exist
in Reinhart (2018). For modelling spatial point patterns without self-excitation, log-Gaussian Cox processes
(LGCP) Møller et al. (1998) provide an elegant approach as explained in Diggle et al. (2013).

Reinhart (2018) provide an overview on spatiotemporal Hawkes processes explaining various options for the
form of the intensity, the kernels and the corresponding simulating algorithm. However, the case of an LGCP
background is not discussed in the review or elsewhere.

Our approach is the first to use an LGCP to capture the background underlying effects (these are called
endemic effects in infectious disease modelling but here we will use this term broadly for other applications
too) and can model the exact spatial and time locations.

Loeffler & Flaxman (2018) aim to understand whether gun violence in Chicago is contagious or merely
clusters in space and time. To this end, they use a spatiotemporal Hawkes model and a space-time test
to distinguish between the two. The model uses a kernel density estimator for the background (endemic)
effects and a kernel for the epidemic events that is separable in space and time. Their model has a different
construction as it does not admit a generative procedure since the background rate is estimated using kernel
density estimators.

Similarly to Loeffler & Flaxman (2018), Holbrook et al. (2021) build a scalable inference algorithm for para-
metric spatiotemporal self-exciting processes. The proposed model is the one of Loeffler & Flaxman (2018)
which is based on a Gaussian kernel smoother for the background. The main contribution is to overcome
the bottleneck of the quadratic computational complexity of such a point process. The authors develop
a high-performance computing statistical framework to do Bayesian analysis with Metropolis-Hastings us-
ing contemporary hardware. They apply it on a gunfire dataset which covers a larger dataset and more
fine-grained than the one in Loeffler & Flaxman (2018).

The combination of a Hawkes process with an LGCP is found in Linderman & Adams (2015) where the
authors propose a purely temporal multivariate Hawkes process with LGCP in the background with the goal
to infer a latent network structure given observed sequences of events. This approach is based on Linderman
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& Adams (2014) but in discrete time and with an improved inference scheme based in mini batches. However
both of these two have different scope to our work and work only with univariate time data.

Finally, Mohler (2013) develops a purely temporal Hawkes process model with LGCP background for count
(aggregated) events. Mohler (2013) builds a Metropolis adjusted Langevin algorithm for estimation and uses
the algorithms to disentangle the sources of clustering in crime and security data. We are instead interested
in modelling and predicting exact event times and locations.

3 Model

3.1 Hawkes process definition

A Hawkes process is an inhomogenerous Poisson point process defined in terms of a counting measure and an
intensity function or rate. Hawkes processes were originally proposed by Hawkes (1971) as temporal point
processes. The intensity is conditional on the history of the process such that the current rate of events
depends on previous events. We focus on self-exciting Hawkes processes, in which historic events encourage
the appearance of future events. s Here we develop spatiotemporal self-exciting processes which can predict
the rate of events happening at specific locations and times. For a spatiotemporal Hawkes process on the
domain X × [0, T ), for X ⊂ Rd we denote the counting measure of the process by N and the conditional
intensity by λ. The definition of the inhomogeneous point process intensity is as below. For s ∈ X ⊂ Rd

(generally d here represents Euclidean or Cartesian coordinates) and t ∈ [0, T )

λ(t, s) = lim
∆t,∆s→0

E[N [(t, t + ∆t) × B(s, ∆s)] |Ht]
∆t × |B(s, ∆s)| (1)

where Ht denotes the history of all events of the process up to time t, N(A) is the counting measure of
events over the set A ⊂ X × [0, T ) and |B(s, s)| is the Lebesgue measure of the ball B(s, s) with radius s > 0.
Note that the spatial locations can be univariate, referring for example to regions or countries, or bivariate
such as geographical coordinates of longitude and latitude or even multivariate depending on the context.

3.2 Hawkes process intensity

The conditional intensity defined as in Eq equation 1 admits the form

λ(t, s|Ht) = µ(t, s) +
∑

i:ti<t

g (t − ti, s − si) , (2)

where (t1, t2, . . . , tn) denotes the ordered sequence of the times of the observed events and (s1, s2, . . . , sn)
their corresponding spatial locations. Events arise either from the background rate µ(t, s) (exogenous or
non excitation effects) or from the triggering function/kernel g (endogenous or self-excitation effects). µ is
non-negative to ensure that the initial intensity is non-negative and we take g non-negative as we consider
excitation effects and do not deal with inhibition.

g can take a parametric form or be estimated using full nonparametric assumptions, as done for example
in Donnet et al. (2020); Sulem & Rousseau (2022). For the scope of our work, we are interested in excitation,
however for other applications such as neural connectivity patterns where inhibition is needed, one can read
for example Cai et al. (2022).

g can take a parametric or non-parametric form with separable (additive or multiplicative) or non-separable
kernels in space and time. There exists a lot of work covering all these cases for purely temporal processes but
not on the case of spatiotemporal settings. In purely temporal cases we have guarantees on the estimation
and under certain conditions we have consistency results as well identifiability results. However once we add
the spatial component, the results do not necessarily extend. Therefore, we take here a separable form of a
product of an exponential kernel in time and a Gaussian kernel in space. Given this form, the parameters
of the spatial and temporal kernels are identifiable. For any t > 0 and s ∈ X ⊂ Rd the self-exciting part of
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the rate is given by

g(t, s) = αβ exp (−βt) 1√
2π|Σ|

exp
(
−sT Σ−1s

)
, (3)

where α > 0, β > 0 and Σ a semi positive definite matrix. Given a time-varying background we cannot
guarantee anymore a stationary process. However, we The condition for non-explosivity implies α < 1, with
an expected total cluster size of 1

1−α . The triggering function g, centered at the triggering event, is the
intensity function for the offspring process. Properly normalized, it induces a probability distribution for
the location and times of the offspring events. The cluster process representation of the Hawkes process will
prove crucial to the efficient simulation of self-exciting processes which we give in section 4.1.Both of these
choices are relevant for the applications we consider in the paper as we know from previous work Loeffler &
Flaxman (2018); Holbrook et al. (2021) that the decay and variation in crime data can can be well explained
by the decay prescribed by an exponential and Gaussian kernel respectively. For the temporal part we use
the widely used exponential kernel, originally proposed by Hawkes (1971), giving exponential decay which is
suitable for the applications we are interested in. Note that an exponential kernel is not always a reasonable
choice, for instance in infectious diseases one would prefer the Rayleigh kernel (e.g. see Unwin et al. (2021)).
For the spatial part, we use a Gaussian kernel which is suitable for modelling spatial locations especially
for social violence settings as first as proposed and used by other authors in literature. Specifically, such
as (Loeffler & Flaxman, 2018; Holbrook et al., 2021) who analyse the public policy and crime implications
of a larger set including the data used in this paper, use these choices of kernels. Non-separable kernel
approaches exist in literature, such as Jun & Cook (2022), in which temporal patterns differ according to
location. However one cannot naively use those without properly assessing identifiability concerns. The
current construction can be extended to cover those, however this would be beyond the scope of the novelty
of the current method and the scope of the applications we consider here.

An important property of the process is the branching ratio b =
∫

X
∫∞

0 g(dt, ds) which represents the ratio
of the number of total offspring to the size of the entire family. We require that b ∈ (0, 1) which ensures that
the process is non-explosive in time. For b = 0 we have a Cox process where as for b ≥ 1 the process explodes
(the standard definition of explosion is that N(t) − N(s) = ∞ for t − s < ∞). To see how explosion emerges,
we refer the reader to section 5.4, Lemma 2 of Grimmett & Stirzaker (2001) which give the calculations on
the expected number of descendants of one atom. More on the implications of the values of b can be found
in Asmussen (2003). Note though that non-explosion and stationarity are not equivalent once one deviates
from the constant background case. We can ensure the process being non-explosive but we cannot guarantee
stationarity as the background is not constant. In this context, the Hawkes process is non-explosive when
the kernel satisfies the condition

∫
X
∫∞

0 g(t, s)dtds < 1. Stationarity ensures that cluster sizes are almost
surely finite, and that since generation of offspring follows a geometric progression, the expected total cluster
size is 1

1−
∫

X

∫∞

0
g(t,s)dtds

including the initial background event.

Given the form of the intensity, past events influence future ones and depending on the form of the triggering
function g, the process may have short or long term effects. In either case, the kernel is responsible for the
self-exciting behavior of the process.

The other part in the intensity is µ(t, s), which is the background rate of the process. It is a nonnegative
function with initial nonzero value that captures the underlying patterns in space and time that encourage
the clustering of events in those time and space locations. It often takes the form of a constant for simplicity,
or a parametric form such as periodic as assumed in Unwin et al. (2021) or can even have a nonparametric
prior constructed on random measures as in (Miscouridou et al., 2018). As further explained in more detail
below, we assume a log-Gaussian process prior on µ(t, s) which to our knowledge has not been used before
in the literature of spatiotemporal Hawkes processes.

3.3 Latent log Gaussian process for background rate

We use a latent Gaussian process (GP) to determine the background rate of events in time t ∈ R and space
s ∈ Rd. This means that the background rate takes the form

µ(t, s) = exp (f (t, s)) (4)
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where f(t, s) is a function realization from a Gaussian process prior in space and time. Formally, a Gaussian
process is a collection of random variables, such that any finite collection of them is Gaussian distributed.
GPs are a class of Bayesian nonparametric models that define a prior over functions which in our case are
functions over time and space. Similarly to a probability distribution that describes random variables which
are scalars or vectors (for multivariate distributions), a Gaussian process is distribution over functions and
belongs in the family of stochastic processes.

GPs are a powerful tool in machine learning, for learning complex functions with applications in regression
and classification problems. We refer the reader to Rasmussen & Williams (2005) for details on Gaussian
processes and their properties.

A Gaussian process on RD, for any D > 0 is completely specified by its mean function α(·) and covariance
function k(·, ·). For u ∈ RD we will denote a draw from a Gaussian process as

f(u) ∼ GP (αu, k (u, u′)) .

The Gaussian process is centered around its mean function, with the correlation structure (how similar
two points are) of the residuals specified via the covariance kernel. Properties of the underlying function
space such as smoothness, differentiability and periodicity can be controlled by the choice of kernel. One
of the most popular choices of covariance kernel, and the one we choose to introduce the model with, is
the Gaussian kernel (also commonly called the squared exponential kernel), defined for u, u′ ∈ RD by the
covariance function

Cov (f (u) , f (u′)) = k (u, u′) = ω2 exp
(

− 1
2l2 |u − u′|2

)
(5)

where |u| denotes the Euclidean norm, i.e. it is equal to |u| =
√∑

i u2
i if u is a vector (D > 1 e.g. the

spatial locations) and to the absolute value of u if u is a scalar (D = 1 e.g. timestamps). ω2 > 0 defines the
kernel’s variance scale and l > 0 is a length scale parameter that specifies how nearsighted the correlation
between pairs of events is. The hyperparameters can be varied, thus also known as free parameters. The
kernel and mean of the GP together fully specify the prior distribution over functions.

We will consider an additive separable kernel with a bivariate spatial dimension s = (x, y) and univariate
temporal dimension t. Note that one could naively consider a joint fstwith no assumptions of additivity (or
other form of structure) at all. However this would not be advisable as it would be impossible in this case
to guarantee that we can recover the underlying latent functions. When there is not enough structure in the
form of the background it is much more difficult to study the identifiability of the latent functions ft and
fs and thus fall in the non-identifiable case. In non-identifiable cases, the prior dominates the estimation
and the estimated ft, fs will be heavily influenced by the prior and not by the data. We consider here the
additive structure as a minimum type of structure to assume on the background latent process which is still
very generic, able to capture arbitrary backgrounfd trends.

In order to ensure a nonnegative background we exponentiate the additive kernel. From this kernel specifi-
cation the background intensity µ(t, s) follows a log-Gaussian Cox process (Møller et al., 1998; Diggle et al.,
2013) over space and time

µ(t, s) = exp (fs (s) + ft (t)) (6)
ft ∼ GP (mt, kt)
fs ∼ GP (ms, ks) ,

where mt and ms are the GP mean functions and kt, ks are the kernels defined by the hyperparameters
ω2

t , ω2
s , lt, ls.

3.4 Full Model Likelihood

To model the spatial coordinates s = (x, y) and time stamps t, we use a Hawkes kernel gts(t, s) = gt(t)gs(s)
and a log-Gaussian Cox process µ(t, s) = exp (fs(s)) exp (ft(t)). Without loss of generality we will assume
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here that the Gaussian processes have zero mean. The joint model we consider is a Hawkes process with
composite rate λ(t, x, y) which is the sum of the intensities of an LGCP process and a Hawkes process

λ(t, x, y) = exp (fs (x, y) + ft (t))

+
∑

i:ti<t

gt(t − ti)gs(x − xi, y − yi)

= exp (fs (x, y) + ft(t))

+
∑

i:ti<t

αβ exp (−β(t − ti))
1

2πσxσy
exp

(
− (x − xi)2

2σ2
x

− (y − yi)2

2σ2
y

)
. (7)

One could see this as an intercept coming from constant contributions by both the temporal and spatial
background processes as these are only identifiable through their sum and not separately. Given a set of
observed ordered times (t1, t2, . . . , tn) ∈ [0, T ) and the corresponding locations (s1, s2, . . . , sn) ∈ X , let D
denote the full data D = {ti, si}n

i=1 and L(D) the likelihood. Following Daley & Vere-Jones (2008) the
likelihood is given by

L(D) =
[

n∏
i=1

λ(ti, si)
]

exp
(

−
∫

X

∫ T

0
λ(t, s)dtds

)

=
[

n∏
i=1

λ(ti, xi, yi)
]

exp
(

−
∫

X

∫ T

0
λ(t, x, y)dtdxdy

)
. (8)

We give below details on how to simulate from the process with the rate defined in Eq equation 7 and
perform inference using the likelihood in Eq equation 8.

4 Methods

4.1 Simulation

By construction our model admits a generative process facilitating simulation. This is an important and
nuanced advantage over previous spatiotemporal models (Loeffler & Flaxman, 2018; Holbrook et al., 2021)
which were not fully generative due to a deterministic paramaterization of the exogenous component. Note
that the model of Mohler (2013) does admit a generative model but only for a purely temporal model for
aggregated (count) data. In general Hawkes processes can be simulated in two ways: through an intensity
based approach or a cluster based approach. We give below Algorithm 1 to simulate from our model via
the latter approach, i.e. through simulating the background first and then the generations of subsequent
offsprings. Note that for the hyperparameters lt, ls, ω2

t , ω2
s one can either fix them to a known value or

(hyper)priors on them.

We use a clustering approach for simulation which makes use of the branching ratio b (see section 3.2) and
relies on the following idea: for each immigrant i, the times and locations of the first-generation offspring
arrivals given the knowledge of the total number of them are each i.i.d. distributed. We provide the simulation
in Algorithm 1. As a test check for making sure that our Hawkes process simulations are correct we employ
an approximate Kolmogorov-Smirnov type of test adapting Algorithm 7.4.V from Daley & Vere-Jones (2008).
In Algorithm 1 p+ refer to a probability distribution on the real line.

To simulate from our model proposed above, i.e. a Cox-Hawkes process we need to draw from a GP. Since
GPs are infinitely dimensional objects, in order to simulate them we have to resort to finite approximations.
The most common approach is to implement them through finitely-dimensional multivariate Gaussian dis-
tributions. This is the approach we take as well for simulating our GPs. In order to sample points from the
LGCP background of the process, we draw an (approximate) realization from the Gaussian process prior
and then use rejection sampling to sample the exact temporal and spatial locations.
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Algorithm 1 Cluster based generative algorithm for Hawkes process simulation
Require: Fix T > 0, X

Draw lt, ls ∼ p+(·)
Draw ω2

t , ω2
s ∼ p+(·)

Draw ft ∼ GP(0, kt), fs ∼ GP(0, ks)
Set µ(t, s) = exp(ft(t) + fs(s))
Draw N0 ∼ Pois

(∫ T

0
∫

X µ (t, s) dtds
)

Draw {t, s}N0
i=1 ∼ µ(t, s)

Set G0 = {t, s}N0
i=1, ℓ = 0

while Gℓ ̸= 0 do
for i = 1 to Nℓ do

Simulate Ci the number of offspring of event i events
Simulate Oi, . . . , OCi

the pairs for the inter arrival times and distances of offsprings
end for
ℓ+ = 1
Gℓ = {Gℓ−1 +

⋃Nℓ

i=1 O1, . . . , OCi
}<T

end while
return

⋃
ℓ Gℓ

4.2 Inference

Given a set of n observed data D = {ti, si}n
i=1 over a period of [0, T ] and a spatial area denoted by X , we

are interested in a Bayesian approach to infer the parameters and hyperparameters of the model. Denote
by θ and ϕ set of the parameters of the background rate µ(t, s) and the triggering rate g(t, s) respectively.
This gives θ = (ft(t), fs(s)) ϕ =

(
α, β, σ2

x, σ2
y

)
.

The posterior is then given by

π(ϕ, θ|D) ∝ π(θ) × π(ϕ) × L(D) (9)
= π(ft(t))π(fs(s)) × π(α)π(β)π(σ2

x)π(σ2
y) × L(D).

where L(D) is the likelihood defined in Eq equation 8 and with some abuse of notation, we use π to denote
both prior and posterior for all the parameters. The prior for π(α), π(β), π(σ2

x) and π(σ2
y) is Truncated

Normal (restricted on the positive real line) to ensure the positivity of these parameters. Note that the prior
on the functions ft and fs can be further defined by the priors on the hyperparameters lt ∼ InverseGamma,
ω2

t ∼ LogNormal for the temporal process and ls ∼ InverseGamma, ω2
s ∼ LogNormal for the spatial. The

objective is to approximate the total posterior distribution π(ϕ, θ|D) using sampling methods.

A classical Hawkes process has quadratic complexity for computating the likelihood. Only in special cases
such as that of a purely temporal exponential kernel the complexity is reduced from quadratic to linearas
it admits a recursive construction. See Dassios & Zhao (2013) for an explanation. Note however we cannot
apply this in our case as it does not hold when we add (on top of the temporal exponential kernel) the Gaus-
sian spatial kernel. Inference is in general cumbersome and people tend to either resort to approximations
or high performance computing techniques such as Holbrook et al. (2021).

A naive formulation of combining log-Gaussian cox processes as the background intensity function in the
spatiotemporal Hawkes process will increase the computational complexity for the inference. This happens
because in addition to the quadratic complexity arising from the triggering kernel the exogeneous formulation
naively introduces a cubic complexity for a lgcp (Diggle et al., 2013).

We propose to circumvent the computational issues through a reduced rank approximation of a Gaussian
process (Semenova et al., 2022) through variational autoencoders (VAE). This approach relies on pre-training
a VAE on samples from a Gaussian process to create a reduced rank generative model. Once this VAE is
trained, the decoder can be used to generate new samples for Bayesian inference. More specifically, in this
framework one should first train a VAE to approximate a class of GP priors (the class of GP priors learned
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Figure 1: Plot for the temporal Gaussian process ft(t) on simulated data. The red line is the simulated draw
of the Gaussian process, the green line is the mean posterior and the yellow shaded area is the 90% credible
interval. The red marks on the x-axis are the exact simulated times from the background process.

varies from context to context depending on our prior belief about the problem space) and then utilizes the
trained decoder to produce approximate samples from the GP. This step reduces the inference time and
complexity as drawing from a standard normal distribution z ∼ N (0, I) with uncorrelated zi is much more
efficient than drawing from a highly correlated multivariate normal N ∼ (0, Σ) with dense Σ. For more
details see section 2.5 in Semenova et al. (2022). Here we will denote this approximation to the Gaussian
Process prior by π̃. Hence, we obtain overall the Bayesian hierarchical model

π(ϕ, θ|D) ∝ π(θ) π(ϕ)L(D)
= π(ft(t))π(fs(s))π(α)π(β)π(σ2

x)π(σ2
y)

≈ π̃ (ft(t)) π̃(fs(s))π(α)π(β)π(σ2
x)π(σ2

y). (10)

The code for simulation and inference for this class of models of Cox-Hawkes processes implemented in python
and numpyro (Phan et al., 2019) can be found at https://anonymous.4open.science/r/Spatiotemporal_
Cox-Hawkes.

5 Experiments

We demonstrate the applicability of our methods on both simulated and real data. For simulations our goal
is twofold: (i) to show that we can accurately estimate the parameters of both the background and self-
exciting components thereby showing that we recover the true underlying mechanisms and (ii) to show that
our method performs well under model misspecification, thereby showing our model is sufficiently general to
be used in real data situations where the true underlying data generating mechanism is unknown. On real
settings we apply our methods to gunfire data used in Loeffler & Flaxman (2018) detected by an acoustic
gunshot locator system to uncover the underlying patterns of crime contagion in space and time. We show
how our model can be used as an actionable tool by practitioners to understand and measure contagion
effects in important settings. Note that throughout the following we refer to the model used for simulating
data as the true model.

5.1 Experiment 1: Simulated Data

We simulate data from a Hawkes process with rate as given in Eq equation 7 on the domain [0, T ] =
[0, 50], X = [0, 1] × [0, 1]. For the background rate which governs the exogenous events we simulate a
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Figure 2: Simulated draw and the posterior predictive distribution for the 2-dimensional spatial Gaussian
process. The simulated fs(x, y) is shown on the left on a regular grid and the mean predictive distribution
is shown on the right with the simulated locations in red.

realization of the latent (separable) spatiotemporal Gaussian process with covariance kernels defined as in
Eq equation 5 using lt = 10, ω2

t = 1, ls = 0.25, ω2
s = 1. The simulated ft(t) from the temporal Gaussian

process can be seen in Figure 1 in red and the temporal events drawn from this background are also shown
in red on the x-axis. The simulated two-dimensional spatial Gaussian process can be seen at the left plot of
Figure 2. Note that we also use an explicit constant intercept of a0 = 0.8 giving an overall background rate
of exp(a0 + ft + fs) and in inference we use a Normal prior on it.

For the diffusion effect we use a triggering spatiotemporal kernel of the form in Eq equation 3 with values
α = 0.5, β = 0.7 for the exponential kernel. For the Gaussian spatial kernel we will assume a common
parameter σ2 for both σ2

x and σ2
y which we will assume to be 0.5. This gives a set of around n = 210

spatiotemporal points {ti, xi, yi}n
i=1 of which the ratio of background to offspring events is roughly 1 : 1.

For inference we run 3 chains with 1, 500 samples each of which 500 were discarded as burn in, using a
thinning size of 1. In Figure 3 we report the trace plots for the parameters α, β, σ which define the triggering
kernel that governs excitation. We also report a0 which we used as the total mean of the latent Gaussian
process µ(t, x, y) = exp (ft(t) + a0 + fs(x, y)). We use a Normal prior on a0. In all cases the simulated values
shown in red are within the trace coverage. In our experiments we combine the samples (after removing
the warmup iterations) from all the chains. The plots overall show good convergence with good mixing
between the chains and no multimodal behavior. Regarding the Gaussian process fitting, we show the
posterior predictive plots in Figures 1 and 2. For the one-dimensional temporal Gaussian process we plot
the simulated draw ft(t) in Figure 1 in red. The blue line is the mean posterior of ft(t) and the yellow
shaded area is the 90% credible interval obtained from the posterior predictive distribution. The red dots
on the x-axis are the exact simulated time events drawn from the process. The 90% credible interval covers
well the simulated function, and the mean posterior predictive is very close to the simulated one, showing
good model fit.

For the two-dimensional spatial Gaussian process we plot the simulated draw function fs(x, y) at the left plot
of Figure 2. The the mean posterior predictive distribution is shown in the centre and the mean predictive
distribution with the true simulated locations embedded on it is shown on the right. The color scale on the
right shows the relative values ranging from dark blue (smallest) to yellow (highest). The simulated and
the mean posterior predictive are relatively similarly when compared visually which shows a good fit for the
model.
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Figure 3: MCMC trace for a0, α, β, σ on simulated data where the red line shows the simulated value for the
experiments. The samples shown are collected from 3 chains.

To quantify convergence we require good R̂ diagnostics. For all our results the R̂ diagnostics returned by
the sampler were in [1, 1.002] for all the estimated parameters. This, combined with visual inspection of the
MCMC trace show good evidence of convergence and good mixing behavior.

5.2 Experiment 2: Model misspecification

Our second experiment on simulated data compares and contrasts our method (LGCP-Hawkes) to a Hawkes
process with constant background and a pure log Gaussian Cox Process. The intensity for our LGCP-
Hawkes model is Eq equation 7, for Hawkes it is Eq equation 2 with constant µ(t, s) = µ and for LGCP it
is Eq equation 6.

We simulate data from these three inhomogeneous point process models and then fit each model on every
dataset on a train set and perform prediction on a test set. Note that we also fit under a homogeneous
Poisson model as it’s the baseline giving the simplest spatiotemporal model that exists. We show that our
model Hawkes-LGCP is a reasonable approach even when there is model mismatch (i.e. when the data are
drawn from a pure Hawkes or pure LGCP). It is therefore a good approach to use in real data scenarios
when the underling data generating mechanism is unknown.

It is challenging to evaluate the quality of model fit from different point process models, and especially
their generalization ability. Reporting a quantity such as the likelihood for test data is not possible as the
evaluation depends on the actual events. We therefore adopt a procedure to predict the temporal and spatial
locations of future events under the inference model and then compute the combined error between those
events and events generated under the true generating model that was used for simulation. This procedure
mirrors the properties that practitioners would desire from their model in real world settings.

The distance metric we use is the root mean square error (RMSE) difference between the exact simulated
and predicted events. We show below that in a model misspecification scenario, using our proposed model
is a good approach as an inference model to be used for prediction purposes. The experimental setup is as
follow. We simulate 100 datasets (each of which give on average 300 events) over a fixed time window and
a fixed spatial domain and then do a train-test split. We repeat this using as generating model each of the
models. For every dataset, we then perform inference under our MCMC scheme under every model. Given
the estimated parameters, we predict 200 times the next 10 future events which we compare to those of the
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Figure 4: The average RMSE and its standard error reported for the model misspecification experiment.
The left plot corresponds to a simulated dataset from an LGCP model, the middle to an LGCP+Hawkes and
the right from a Hawkes model. In all three cases we perform inference under all LGCP, LGCP+Hawkes,
Hawkes as well as Poisson (baseline).

test set. We compute the error between the true and estimated events across the 200 predictions and the
100 simulations. We report the mean and standard error of the RMSE graphically in Figure 4. This shows
how good each model is in predicting the near future.

As shown in Figure 4, and as expected, the error is always lowest when the true model is used for inference,
however in all cases the next best model is LGCP-Hawkes although the differences are not always statistically
significant. This provides evidence for our model’s ability to flexibly capture a wide range of underlying
patterns. In all cases the worst model is the Poisson baseline, as its constant intensity in space and time
cannot capture the inhomogeneities in the data. These results highlight that when the true data generating
process is unknown, which is the default scenario in real world settings, our model is likely to be a robust
choice.

5.3 Experiment 3: Gunshot Dataset
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Figure 5: Spatial (a) and temporal (b) distribution of the gunfire data in Washington DC over the year 2013.
The spatial locations are the exact geographical coordinates and the temporal locations are shown weekly.
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Figure 6: MCMC trace for the parameters (a) a0, α, β and (b) σ2
x, σ2

y when collecting the MCMC samples
from all chains and discarding warmup.

We use gunshot data in 2013 recorded by an acoustic gunshot locator system (AGLS) in Washington DC and
follow Loeffler & Flaxman (2018) for data preprocessing. There were 1,171 gunshots recorded in total. Spatial
locations were rounded to produce approximately 100m spatial resolution and 1 sec temporal resolution.
Visualizations of the temporal and spatial distributions of the data are shown in Figure 5(a) and (b).

We perform inference with the HMC routines of numpyro, using 2 chains each with 4, 000 samples from
which 2000 are discarded as warmup. We join together the samples from the two chains and report the
combined MCMC trace for each of the parameters. Note that we did some prior sensitivity analysis to
assess the robustness of our results. We used different parameters on the priors for the parameters and we
observed that the posterior distributions of the parameters were similar, giving posterior mean estimates
very close to each other. Note that we have rescaled accordingly the temporal and spatial locations of the
events, in order to simplify their use in inference and to be appropriate for the domain of our pre-trained
GP generators. Rescaling, is standard practice in point process modeling. In Figure 6(a) we report the
MCMC trace plots for the parameters α and β and a0 and in Figure 6(b) we report σ2

x, σ2
y which define

the lengthscales of the spatial Gaussian kernel (longitude and latitude) that governs excitation in space.
Regarding the Gaussian process fitting, we show the posterior predictive plots in Figures 7 and 8. For the
one-dimensional temporal Gaussian process we plot the estimated function ft(t) in Figure 7. The green line
is the mean posterior of ft(t) and the yellow shaded area is the 90% credible interval obtained from the
posterior predictive distribution. The red marks indicate the observed true events.

For the spatial Gaussian process we plot the estimated function fs(x, y) at the left plot of Figure 8. The
mean predictive distribution with the true locations embedded on it is shown on the right. The plots overall
show good convergence with good mixing between the chains and no multimodal behavior. This is also
quantified by the convergence diagnostics R̂ which were equal to 1 for all the parameters estimated.

We report an estimate and 90% credible intervals of â0 = 0.53 (−0.46, 1.47), α̂ = 0.73 (0.68, 0.78), β̂ =
0.18 (0.16, 0.21), 1/β̂ = 5.35(4.64, 6.11), σ2

x = 9.26e−5(7.90e−5, 1.07e−4), σ2
y = 5.65e−5 (4.78e−5, 6.67e−5)

which can be interpreted as follows. The average number of shootings triggered by one shooting is around 0.7.
Then, rounding to the nearest minute or meter correspondingly, the temporal lengthscale for the exponential
triggering kernel is estimate to be around 5 minutes, the spatial triggering lengthscale for latitude σx around
10m and for longitude 8m. This means that for every 100 shootings that occur, these create at most another
73. Using the right upper bound of the uncertainty intervals, the period in which diffusion takes place
is within less than 6 minutes and the area is within 10 meters in x distance and 8 meters in y distance.
Regarding the background effects the posterior mean of the spatiotemporal Gaussian process is estimated to
be 0.53. The results have some differences from the ones reported by Loeffler & Flaxman (2018) and Holbrook
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Figure 7: Posterior predictive for ft(t) with the posterior mean in green and the 90% credible interval in the
yellow shaded area, with true time stamps of the events on the x-axis.
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Figure 8: Mean of the posterior predictive for fs(x, y) (left) and similarly with the true locations (right).

et al. (2021) but the model assumed here has a different form and we have applied it on a different subset
of the gunshot dataset.

Table 1: Average RMSE with its standard error in bracket computed when predicting future unseen temporal
and spatial events under the four models.

Hawkes-LGCP Hawkes LGCP Poisson
Prediction Error 7.33 (0.11) 8.14 (0.13) 7.90 (0.09) 14.2 (0.29)

We also compare our model to the LGCP model, Hawkes model and baseline Poisson showing how the
LGCP-Hawkes gives the best predictive performance. We calculate the prediction error by simulating the
predictions as explained before and report in Table 1 the mean and standard error of the RMSE in bracket.
Evidently LGCP-Hawkes gives the lowest error showing how our model is generic and flexible enough to
capture the underlying generating mechanism in real world scenarios.
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6 Conclusion

We presented a novel model combining Hawkes processes with Gaussian processes, and used it to identify
patterns in gun violence in Washington DC. Methodologically, ours is the first model of its kind to have
such flexibility in capturing underlying patterns in the rate of occurrence of events, combining a powerful
nonparametric statistical model with an interpretable mechanistic self-exciting point process model. This
combination means that it can be used across a range of real world spatiotemporal problems in which the
underlying data mechanism is unknown. Applications could include social networks, biology, economics and
epidemiology. Its general and practical form make it an actionable tool for practitioners that can be used to
design interventions and for policy making.

There are many directions for future research. One could study the properties of this model in a theoretical
level to define the implications of different forms of the background rate and whether they are identifiable.
Additionally, this model can be further extended to include additional covariates. These take the role of
marks in a Hawkes process construction and can bring more information in infectious disease applications in
which one wants to characterise the disease transmission and the quantify the sources that govern infection
in space and times. Deviating from a univariate setting, one can consider interacting Hawkes processes
to model events in different states or regions where the intensity of events in one regions depends on the
intensity in another region. This model could be useful for crime data, and also in neuroscience, where
multiple neural trains interact across different parts of the brain. Computationally, this may prove to be a
difficult extension. In scenarios where the background trends are potentially coming from different sources,
incorporating transformations of Gaussian process could make the framework even more flexible and able to
capture multimodal distributions. Finally, one can extend this in a generic flexible framework for Hawkes
processes with non-linear intensities that can potentially capture inhibition.
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