
Under review as a conference paper at ICLR 2021

HETEROGENEOUS MODEL TRANSFER BETWEEN DIF-
FERENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an effective heterogeneous model transfer (HMT) method that can
transfer the knowledge from one pretrained neural network to another neural net-
work. Most of the existing deep learning methods depend much on a pretraining-
finetuning strategy, i.e., pretraining a deep model on a large task-related (source)
dataset and finetuning it on a small target dataset. Pretraining provides a uni-
versal feature representation for the target learning task and thus reduces the
overfitting on a small target dataset. However, it is often assumed that the pre-
trained model and the target model share an identical backbone, which signifi-
cantly limits the scalability of pretrained deep models. This paper relaxes this
limitation and generalizes to heterogeneous model transfer between two differ-
ent neural networks. Specifically, we select the longest chain from the source
model and transfer it to the longest chain of the target model. Motivated by one-
shot neural architecture search methods, the longest chain inherits merits from
the source model and also serves as a weight-sharing path of the target model,
thus provides a good initialization. With the longest chains, the layer-to-layer
weight transfer is then transformed by bilinear interpolation and cyclic stack.
HMT opens a new window for the pretraining-finetuning strategy and signifi-
cantly improves the reuse efficiency of pretrained models without re-pretraining
on the large source dataset. Experiments on several datasets show the effective-
ness of HMT. Anonymous code is at https://anonymous.4open.science/
r/6ab184dc-3c64-4fdd-ba6d-1e5097623dfd/.

Deep convolutional neural networks (LeCun et al., 1989; Krizhevsky et al., 2012; He et al., 2016)
have achieved state-of-the-art performance in most of the machine learning tasks, e.g., recognition,
detection, and segmentation. A deep model contains a large number of weights and thus requires
a large target dataset to train. When it is unavailable to collect such a big target dataset, one can
resort to the pretraining-finetuning strategy: pretraining on a large task-related (source) dataset (e.g.,
ImageNet (Deng et al., 2009)) as initialization and fine-tuning on a small target dataset.

In the past ten years, pretrained models on ImageNet are widely used for many downstream learning
tasks to address the problem of lacking labeled data. For example, with the pretraining, a person
re-identification model (Zhou et al., 2019) improves ∼3% rank-1 accuracy on the Market-1501
dataset (Zheng et al., 2015). The success of pretrained deep models is attributed to the hierarchical
semantics and universal features. Low layers of neural networks share similar low-level features
(e.g., color, texture), and high layers of neural networks contain high-level semantics (e.g., shape,
class, and location) weighted by low-level features. Thanks to the hierarchical semantics, pretraining
on a large source dataset provides a universal feature representation for the target learning task and
thus improves the performance with less target data.

A notorious problem arises: pretraining a deep model on a large dataset (e.g., ImageNet) is expensive
and time-consuming. To avoid the tedious pretraining procedure, researchers released ImageNet
pretrained models of several classical neural networks (e.g., AlexNet (Krizhevsky et al., 2012),
VGG (Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), ResNet (He et al., 2016),
DenseNet (Huang et al., 2017), and EfficientNet (Tan & Le, 2019)) as the backbones for downstream
learning tasks. When a new learning task comes, we just select one of these classical neural networks
as a backbone and slightly modify the last several layers to tailor for the new learning task.

However, this pretraining-finetuning pipeline is limited to homogeneous neural networks. The
weight transfer requires that both the source model and the target model share an identical neural
network backbone such that we can copy the weights from the source model to the target model (Fig-
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Figure 1: (a) Traditional homoge-
neous model transfer. It requires
that source and target models share
an identical backbone. For exam-
ple, the first five layers’ weights can
be copied from the source model to
the target model. (b) Heterogeneous
model transfer. It focuses on trans-
ferring inconsistent weights from a
source model to a target model (Best
viewed in color).

ure 1 (a)). This greatly limits the scalability of the model transfer. Recent neural architecture search
(NAS) methods (Guo et al., 2019; Li et al., 2020; Bender et al., 2018) show that different learning
tasks have different optimal neural architectures. Researchers hope to search/design a custom neural
architecture for a specific learning task instead of using common neural architectures. Because the
custom neural architecture does not share an identical backbone with released pretrained models,
we cannot simply copy weights from the released pretrained models (Figure 1 (b)).

In this paper, we propose a method of generalized model transfer that initializes a heterogeneous
neural network by exploiting information from the released pretrained models. We refer to it as the
heterogeneous model transfer. The heterogeneous model transfer is a challenging problem because
of 1) inconsistent architectures (e.g., layer numbers and layer connections) between the source and
target models; and 2) inconsistent filter sizes.

To solve these problems, we propose an effective heterogeneous model transfer (HMT) method.
Overall, this paper makes three main contributions: First, we study the properties of the weight
space of deep models, finding that 1) a chain is a basic coupled entity for model transfer; 2) filter
interpolation nearly preserves the performance of neural networks; and 3) adding or removing a por-
tion of input/output channels of filters nearly preserves the performance of a neural network because
deep features are distributed. Second, based on these properties, we propose to perform heteroge-
neous model transfer between the two longest chains selected from the source and target model.
We then perform filter interpolation to scale the kernel size of the source model’s filters to achieve
the consistent kernel size with the target model and propose a cyclic stack method to guarantee the
consistent input/output channels. Third, with these transformations, the proposed method reduces
the strong limitation of the existing pretraining-finetuning framework and significantly improves
the reuse efficiency of pretrained models without re-pretraining on a large source dataset. Experi-
ments on several datasets show that the heterogeneous model transfer gains significant improvement
compared with the models without HMT.

1 RELATED WORK

Traditional Homogeneous Model Transfer Pretraining-finetuning is a well-established paradigm
that pretrains a model on a large dataset and finetunes the model on a small target dataset. Pretrain-
ing enables the model to obtain a universal feature representation and thus reduces the overfitting
problem on a small dataset. Such a pipeline has been widely used in the deep learning community,
including object detection (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015), image segmen-
tation (Long et al., 2015; He et al., 2017a), and person re-identification (Wang et al., 2020a; 2019;
Liang et al., 2018). However, most of the existing methods only focus on homogeneous model
transfer, where the source and target models share an identical backbone. When designing a new
neural architecture, we need to re-pretrain it on a large-scale dataset, which is expensive and time-
consuming. Unlike the homogeneous model transfer, this paper proposes a heterogeneous model
transfer that can transfer the knowledge from the existing pretrained models to a new neural archi-
tecture.

Knowledge Distillation Knowledge distillation (Wang & Yoon, 2020; Hinton et al., 2015; Aguilar
et al., 2020) is also a knowledge transfer framework that aims to transfer the knowledge from a
trained teacher model to a student model. This is achieved by designing a loss to constrain the

2



Under review as a conference paper at ICLR 2021

consistency between the output of the teacher model and the student model. Knowledge distillation
requires re-training on a dataset to perform teacher-student learning. Different from this pipeline,
the heterogeneous model transfer aims at the direct transformation from a trained model to a target
model without re-pretraining on a source dataset.

Network to network and Network Morphism There are some works (Chen et al., 2015; Wei et al.,
2016; Wang et al., 2017) focusing on growing a network from a trained seed network As to a new
power network At. For example, Chen et al. (2015) proposed a net2net method to accelerate the
experimentation process by instantaneously transferring the knowledge from a previous network
to each new deeper or wider network. Wei et al. (2016) extended the net2net by expanding the
changes of depth, width, kernel size, and subnet. However, these works significantly differ from
our proposed method in several aspects. First, they limit the investigation for expanding networks,
i.e., deepening networks, widening networks, expanding the kernel size, and copying sub-networks.
However, in heterogeneous model transfer, the depth, width, kernel size of As could be larger than
that of At. These methods focus on scaling up the networks and cannot extend to solve how to
scale down the networks. Instead, our method has no limitation on this problem. Second, they are
designed for the transfer between plain networks without skipping layers and hardly handle current
complex state-of-the-art architectures with skipping layers, e.g., ResNet and NAS networks.

2 HETEROGENEOUS MODEL TRANSFER

In this section, we introduce an effective method to transfer the weights from a source model to a
heterogeneous target model without re-pretraining on the source dataset. In Section 2.1, we present
the problem description for heterogeneous model transfer. Without any prior knowledge about the
mathematical structure of the weights, we cannot solve this problem. Therefore, in Section 2.2, we
investigate the mathematical structure of the weight space and study the properties of the weight
space. Based on the properties, we propose a weight transformation to solve the heterogeneous
model transfer problem in Section 2.3.

2.1 PROBLEM DESCRIPTION

Let (As,Ws) and (At,Wt) denote a source model and a target model, respectively. As and At

are neural architectures, Ws and Wt are weights. Note that Ws has been pretrained on a large
source dataset while Wt are initialized from scratch. Given a target neural architecture At, the
heterogeneous model transfer aims to directly transform Ws to Ws∗ such that the target model
(At,Ws∗) inherits the merits of the source model and has a good initialization for the target model.
Ws∗ and Wt are of the same size. After transfer, the target model (At,Ws∗) can be regarded as
a pretrained model, which can be further finetuned on the target dataset. In this way, we do not
need to re-pretrain the target model on the source dataset. Note that, when As and At share an
identical backbone, the heterogeneous model transfer is degraded as the traditional homogeneous
model transfer. We can directly copy Ws as Ws∗. Therefore, the heterogeneous model transfer can
be regarded as a generalized version of the traditional homogeneous model transfer.

Intuitively, there are two challenges for heterogeneous model transfer due to inconsistent architec-
tures and inconsistent filter sizes. First, the source and target architectures greatly differ in layer
numbers and layer connections. They often have different branches, and it is hard to determine the
layer-to-layer transfer relationship between the source and target models. Second, even though we
know the layer-to-layer transfer relationship, they often have different filter sizes. It is unknown
how to find an effective transformation between inconsistent filter sizes. Considering these two
challenges, we ask:

• First, how do we find an available layer-to-layer transfer relationship between heteroge-
neous models?

• Second, how do we transfer a source layer to a target layer with different filter sizes given
a layer-to-layer transfer relationship?

Driven by these two questions, we first study architecture-based and layer-based properties of neural
networks’ weight space and uncover the underlying mathematical structure in the weight space.
Based on these properties, we give answers to these two questions in the next section.
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Figure 2: Illustration of the coupled relation-
ship in a chain. (a) Before weight permuta-
tion. W 1 = [0.5, 0.3, 0.1; 0.2, 0.7, 0.4], W 2 =
[0.6, 0.4; 0.1, 0.8; 0.9, 0.3]. (b) After permuta-
tion. W ∗1 = [0.3, 0.5, 0.1; 0.7, 0.2, 0.4], W ∗2 =
[0.1, 0.8; 0.6, 0.4; 0.9, 0.3]. We observe that if we
permute the columns of W 1 and want to preserve
the input-output mapping, we need to permute
the corresponding rows of W2. (Best viewed in
color).

2.2 PROPERTY OF WEIGHT SPACE OF NEURAL NETWORKS

2.2.1 ARCHITECTURE-BASED PROPERTY OF THE WEIGHT SPACE OF NEURAL NETWORKS

Property 1 A chain is a coupled entity in the weight space.

We study the architecture-based property by considering the weight permutation relationship be-
tween different layers. A neural network is a directed acyclic graph. A chain is a sequence of
connected layers, each of which has one input and one output (except the start layer and the end
layer). A previous work (Wang et al., 2020b) has demonstrated that the weights of neural networks
are constrained within a chain. Following this work, we consider a plain Multi-Layer Perceptron
(MLP) neural network, whose weights are denoted as (W l,W 2, ...W l, ...,WL), where W l is the
weight of the l-layer. Because activation functions are element-based operations and have no impact
on the permutation of neural networks, we ignore activation functions. Let x and y be the input and
output, respectively. Let Q be a row permutation matrix. Therefore, QTQ is an identity matrix. We
have:

y = (WL)T ...(W l+1)T (W l)T ...(W 1)Tx

= (WL)T ...(W l+1)TQTQ(W l)T ...(W 1)Tx

= (WL)T ...(QW l+1)T (W lQT )T ...(W 1)Tx.

(1)

In Eq. (1), the chains (W 1, ...,W l,W l+1, ...,WL) and (W 1, ...,W lQT ,QW l+1, ...,WL) are
equivalent because the input-output mapping is unchanged. It is observed that if we permute the
columns of Wl and want to preserve the input-output mapping, we need to permute the correspond-
ing rows of Wl+1; if we permute the rows of Wl and want to preserve the input-output mapping,
we need to permute the corresponding columns of Wl−1. Therefore, the weights of a neural net-
work are constrained in a chain form. A chain is a coupled entity that can describe the permutation
relationship between layers. Figure 2 shows the illustration of the coupled relationship in a chain.

2.2.2 LAYER-BASED PROPERTY OF THE WEIGHT SPACE OF NEURAL NETWORKS

Property 2 Filter interpolation nearly preserves the performance of neural networks.

We consider filter interpolation that scales the kernel size of a convolutional filter. Let K denote
a filter and I denote a feature map; and K

′
and I

′
denote their scaled version. Let

⊗
denote a

convolution operation. As is empirically investigated in the multi-scale training/inference or image
pyramids (Najibi et al., 2019; Singh et al., 2018; Witkin, 1984; Lin et al., 2017), we know that
feature map interpolation nearly preserves the performance of neural networks, which indicates that
K

′ ⊗
I ≈ K

′ ⊗
I
′
. Next, we discuss K

⊗
I ≈ K

′ ⊗
I
′
. For notation simplification, we use 1-D

convolution as illustration. Ideally and mathematically, a 1-D convolution is defined by:

K(x)
⊗

I(x) =

∫ ∞
−∞

K(τ)I(x− τ)dτ, (2)

where I(x) denote a 1-D continuous function and K(x) denote a 1-D continuous filter function. In
actual engineering implementation, a convolution (i.e., Eq. (2)) is always implemented using dis-
cretization, i.e., sampling is required. K

⊗
I and K

′ ⊗
I
′

can be regarded as two ways of sampling
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using different sampling rates. Both of them are approximations of
∫∞
−∞K(τ)I(x − τ)dτ . There-

fore, we have K
⊗

I ≈ K
′ ⊗

I
′
. Finally, by combining K

⊗
I ≈ K

′ ⊗
I
′

and K
′ ⊗

I ≈ K
′ ⊗

I
′
, we

have K
⊗

I ≈ K
′ ⊗

I. This indicates that the filter interpolation nearly preserves the performance
of neural networks. Figure 3 presents the details.

Property 3 Adding or removing a portion of the rows/columns of the weight of neural layers nearly
preserves the performance of a neural network.

Let Wl ∈ Rnl×cl×hl×wl

be a 4-D tensor. nl, cl, hl, and wl denote output channels, input channels,
kernel height, and kernel width at the l-th layer, respectively. We consider the output channels and
input channels, i.e., nl and cl. In a convolutional layer, one feature space is mapped into another
feature space by a filter. A deep model produces distributed channel features, each of which is
related to global features. Therefore, a deep model still works even though a portion of neurons are
deactivated. This implies that removing/repeating a portion of rows or columns of weights in neural
layers does not significantly harm the performance of a neural network. Because distributed features
have been fully investigated in previous works (Hinton, 1984; Bengio et al., 2013), we do not focus
on describing the distributed features of a neural network in this paper. Note that, removing a portion
of the rows/columns of the weight of a layer is also investigated in neural network pruning methods
(He et al., 2017b).

IK  '' IK IK '
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Figure 3: Illustration of filter interpolation.
Given a filter K and a feature map I, we scale
both of them using bilinear interpolation, and
obtains K

′
and I

′
. Because K

⊗
I ≈ K

′ ⊗
I
′

and K
′ ⊗

I ≈ K
′ ⊗

I
′
, we have K

⊗
I ≈

K
′ ⊗

I.

(b)(a)
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...

selectfilter
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C

Figure 4: (a) Longest chain. In this example, Lt
1 → Lt

2 →
Lt

3 → Lt
4 is the longest chain. (b) Cyclic stack. A 3-channel

source filter is recursively stacked, which is used to select the
first five channels for a 5-channel target filter (Best viewed in
color).

2.3 AN EFFICIENT HETEROGENEOUS MODEL TRANSFER METHOD

Let Ws = {Wl
s}

Ls

l=1 be a sequence of the weights of the neural layers, where Ls is the total number
of layers in Ws. Wl

s is the weight of the l-th layer of Ws. In a similar way, we have Wt = {Wl
t}

Lt

l=1.
Let Wl

s ∈ Rnl
s×c

l
s×h

l
s×w

l
s and Wl

t ∈ Rnl
t×c

l
t×h

l
t×w

l
t be two 4-D tensors, where nl, cl, hl, and wl

denote output channels, input channels, kernel height, and kernel width at the l-th layer of a model,
respectively. Their subscripts s and t denote the source or target models, respectively. The goal of
the heterogeneous model transfer is to transfer the weights Ws = {Wl

s}
Ls

l=1 to Wt = {Wl
t}

Lt

l=1.

2.3.1 A LAYER-TO-LAYER TRANSFER RELATIONSHIP BETWEEN HETEROGENEOUS MODELS

Longest chain principle. As demonstrated in the first property, we attempt to perform the heteroge-
neous model transfer based on chains to preserve the coupled permutation relationship. As discussed
in Section 2.1, a neural network often contains lots of branches, which makes it challenging to find
an available layer-to-layer transfer relationship for heterogeneous model transfer.

Recently, one-shot based neural architecture search (NAS) methods (Bender et al., 2018; Guo et al.,
2019; You et al., 2020; Li et al., 2020) achieve promising performance. They train a weight-sharing
super-network by sampling a sub-network each time. During the evaluation, they search the optimal
sub-network as the final network. Due to the weight-sharing training, sub-networks inherit the merits
of super-networks. Motivated by the one-shot NAS methods, we develop an effective heterogeneous
model transfer method. Given a pretrained source networks As, we select a chain Cs (sub-network)
from As. Because Cs is one path of As, one-shot NAS methods demonstrate that Cs inherits the
merits of As and thus provides a good initialization for At. We then transfer Cs to At.
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Specifically, we propose a longest chain principle where a chain of As that contains the most layers
should be selected as the candidate transfer chain. The more layers we transfer, the fewer layers
we need to train from scratch. For the other layers, we directly discard them due to the collision
permutation of chains.

As illustrated in Figure 4 (a), there are two chains in the target model, i.e., Lt
1 → Lt

2 → Lt
3 → Lt

4
and Lt

1 → Lt
5 → Lt

4. As suggested in the longest chain principle, Lt
1 → Lt

2 → Lt
3 → Lt

4 is selected
as a candidate transferred chain. We transfer Ls

1 → Ls
2 → Ls

3 → Ls
4 to Lt

1 → Lt
2 → Lt

3 → Lt
4

layer by layer. As for L5, we do not perform any transfer due to a collision permutation problem.
Suppose we copy the weight ofLs

2 to bothLt
2 andLt

5, the outputA andC have the same permutation.
However, the columns of Lt

3 can be randomly permuted. Therefore, combining the features maps B
andC will mix up the permutation of the feature maps, leading to the collision permutation problem.

Remark. Note that, in some cases, the longest chain is not unique, and we can just select one of
them. In other cases, there is no collision permutation between different chains, and it is appropriate
to simultaneously transfer a source layer to several target layers. However, we do not focus on these
special cases in this paper.

2.3.2 LAYER-TO-LAYER TRANSFER

After we find a layer-to-layer transfer relationship between heterogeneous models, the heteroge-
neous model transfer is degraded as a layer-to-layer transfer problem between two chains. Let
Cs = (W̃

1

s, W̃
2

s, ..., W̃
m

s ) and Ct = (W̃
1

t , W̃
2

t , ..., W̃
n

t ) be the longest chains of As and At, respec-
tively. m and n denote the length of Cs and Ct, respectively. We perform layer-to-layer transfer, i.e.,

from W̃
l

s ∈ Rnl
s×c

l
s×h

l
s×w

l
s to W̃

l

t ∈ Rnl
t×c

l
t×h

l
t×w

l
t (l ≤ min(m,n)). The key problem is to find a

transformation from W̃
l

s to W̃∗
l

s such that W̃∗
l

s and W̃
l

t are of the same tensor size and W̃∗
l

s inherits

universal features from W̃
l

s as much as possible.

As demonstrated in the second property, filter interpolation preserves the performance of neural
networks. Feature map interpolation is widely investigated in feature map pyramid-based neural
networks and often has little impact on neural networks’ performance. Therefore, to obtain the

consistent kernel height and kernel width, we can use the filter interpolation to transform W̃
l

s to
˜W

′ l

s, where ˜W
′ l

s ∈ Rnl
s×c

l
s×h

l
t×w

l
t .

As demonstrated in the third property, adding or removing a portion of the rows/columns of the
weight of neural layers nearly preserves the performance of a neural network. To obtain the consis-
tent input/output channels, we propose a cyclic stack method to obtain the consistent filter size, i.e.,

transform ˜W
′ l

s to W̃∗
l

s by the cyclic stack, where ˜W
′ l

s ∈ Rnl
s×c

l
s×h

l
t×w

l
t and W̃∗

l

s ∈ Rnl
t×c

l
t×h

l
t×w

l
t .

Specifically, for the input channel size, we recursively stack the source filters and copy the channels
of filters from a source filter to a target filter one after one. As illustrated in Figure 4 (b), a 3-channel
source filter is recursively stacked. The first five channels are selected for a 5-channel target filter.
The cyclic stack of the output channel is similar.

3 EXPERIMENTS

In this section, we analyze the effectiveness of our heterogeneous model transfer (HMT) method.
The HMT model mainly includes chain-based transfer, filter interpolation, and cyclic stack. There-
fore, we present ablation studies to reveal the effect of each key component of HMT. The detailed
training implementation is shown in Appendix A.

Datasets The Market-1501 dataset (Zheng et al., 2015) has six cameras. It contains 32,668 annotated
bounding boxes of 1,501 identities. Among them, 12,936 images from 751 identities are used for
training, and 19,732 images from 750 identities plus distractors are used for the gallery. As for
query, 3,368 hand-drawn bounding boxes from 750 identities are adopted.

The DukeMTMC-reID dataset (Zheng et al., 2017) has 8 cameras. There are 1,404 identities ap-
pearing in more than two cameras and 408 identities in only one camera. Specifically, 702 IDs are
selected as the training set, and the remaining 702 IDs are used as the testing set. In the testing
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set, one query image is picked for each ID in each camera, and the remaining images are put in the
gallery. In this way, there are 16,522 training images of 702 identities, 2,228 query images of the
other 702 identities, and 17,661 gallery images.
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Figure 5: Effectiveness of the filter interpolation.

The CIFAR-100 dataset (Krizhevsky & Hinton,
2009), 32 × 32 in size, has 100 classes. Each
class contains 600 images, including 500 train-
ing images and 100 testing images. In this pa-
per, we only use 1,000 samples for training to
form a small-scale target dataset.

Evaluation Metrics For person re-
identification, we adopt the standard Cu-
mulative Match Characteristic (CMC) and
mean Average Precision (mAP) as evaluation
metrics. For classification, we use top-1, top-5,
and top-10 accuracy as evaluation metrics.

3.1 EFFECTIVENESS
OF THE FILTER INTERPOLATION

To show the effectiveness of the filter interpo-
lation, we modify the kernel size of five convo-
lutional layers of ResNet-50, i.e., the 1-st, 2-nd, 11-th, 29-th, and 41-st layers. The 3 × 3 kernels
of ResNet-50 are replaced by 5 × 5, 7 × 7, and 9 × 9, respectively. We apply the modified net-
work to the person re-identification task. We use a state-of-the-art multi-pooling method 1 as my
framework. Because the modified networks are different from the vanilla ResNet-50, the existing
methods cannot handle this kind of model transfer. We directly train a model from scratch as a base-
line. As shown in Figure 5, with the filter interpolation, the proposed method (w/ HMT) significantly
improves the performance against the baseline (w/o HMT).

3.2 EFFECTIVENESS OF THE CYCLIC STACK
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Figure 6: Effectiveness of the cyclic stack.

To show the effectiveness of the cyclic
stack, we modify the input/output chan-
nel size of eight convolutional layers of
ResNet-50, i.e., the 2-nd, 3-rd, 11-th, 12-
th, 29-th, 30-th, 40-th, and 41-st layers.
For the channel size of these layers, we
use ×0.5, ×1.0, and ×1.5 channels, re-
spectively. Similar to Section 3.1, we di-
rectly train a model on the target dataset
from scratch as a baseline. As shown in
Figure 6, the proposed method with the
cyclic stack (w/ HMT) achieves significant
improvement compared with the baseline
(w/o HMT).

3.3 EFFECTIVENESS
OF BOTH THE FILTER
INTERPOLATION AND CYCLIC STACK

To show the effectiveness of both the filter interpolation and cyclic stack, we simultaneously modify
the channel size and the kernel size of the filters of the vanilla ResNet-50. For the kernel size of each
layer, we replace the 3×3 kernels of ResNet-50 by randomly sampling 3×3, 5×5, or 7×7 kernels.
For the channel size of each layer, we randomly select ×0.5, ×1.0, or ×1.5 channels. The results
are presented in Figure. 7. We find that even though we modify most of convolutional filters of

1https://github.com/douzi0248/Re-ID
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Table 1: Effectiveness of the chain-based transfer.
Baseline (w/o HMT) w/ shuffled HMT w/ interval HMT w/ chain HMT

top-1 17.08 15.70 17.69 19.67
top-5 38.80 36.64 39.33 43.24

top-10 51.81 49.41 52.40 56.20
Table 2: Transfer between different neural architectures.

VGG-11→PlainNet-5 VGG-11→ResNet-8 ResNet-18→PlainNet-5 ResNet-18→ResNet-8
w/o HMT w/ HMT w/o HMT w/ HMT w/o HMT w/ HMT w/o HMT w/ HMT

top-1 17.08 19.67 14.55 18.63 17.08 17.35 14.55 15.89
top-5 38.80 43.24 34.03 40.60 38.80 39.67 34.03 36.73

top-10 51.87 56.20 46.61 53.66 51.87 52.39 46.61 49.65

ResNet-50, the proposed method with the filter interpolation and cyclic stack still obtains promising
improvement compared with the baseline model without HMT.

3.4 EFFECTIVENESS OF THE CHAIN-BASED TRANSFER
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Figure 7: Effectiveness of both the filter interpo-
lation and cyclic stack.

To show the effectiveness of the chain-based
transfer, we implement three methods for com-
parison. First, we implement a baseline that
trains a model from scratch, i.e., Baseline w/o
HMT. Second, we implement a method that
shuffles the layers within a chain and then trans-
fer them to the target model (shuffled HMT,
e.g., Ls

4 → Ls
2 → Ls

1 → Ls
3 to Lt

1 →
Lt
2 → Lt

3 → Lt
4). Third, we implement another

method that performs the weight transfer every
two layers (interval HMT, e.g., Ls

1 → Ls
3 →

Ls
5 → Ls

7 to Lt
1 → Lt

2 → Lt
3 → Lt

4). As shown in Table 1, we can see that the chain-based transfer
(chain HMT) achieves better performance than the other three methods. This implies that non-chain
based transfer methods destroy the mathematical structure of the weight of neural networks and thus
cannot help the training procedure on the target dataset.

3.5 TRANSFER BETWEEN DIFFERENT NEURAL ARCHITECTURES

We further widen the architecture gap between the source and target neural networks, which differ in
layer connections, architecture depth, input/output channels, and kernel size. To this, we design two
networks (i.e., ResNet-8 and PlainNet-5) as described in Appendix B and Appendix C. We transfer
the existing pretrained networks to PlainNet-5 and ResNet-8. The pretrained networks include VGG-
11 and ResNet-18. We compare the proposed HMT method with baseline models without HMT, and
the results show the consistent improvement of our proposed method, as shown in Table 2.

4 CONCLUSION

In this paper, we propose an effective heterogeneous model transfer method that can transfer the
knowledge from a pretrained neural network to a new neural architecture. We first study the
architecture-based properties and layer-based properties of neural networks. Based on these prop-
erties, we propose to select the longest chains from the source and target models and perform filter
interpolation and cyclic stack to obtain the consistent filter size. Experiments on several datasets
show that the heterogeneous model transfer gains significant improvement compared with baselines.

Heterogeneous model transfer relaxes the limitation of the identical backbone assumption in the
traditional homogeneous model transfer, which opens a new window for the pretraining-finetuning
strategy. The heterogeneous model transfer does not need to re-pretrain a newly designed neural ar-
chitecture on a large source dataset and thus significantly improves the reuse efficiency of pretrained
models. We believe that this is an important direction in the deep learning community.
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A APPENDIX: IMPLEMENTATION

On the Market-1501 and DukeMTMC-reID datasets, we train the multi-pooling model for 220
epochs. We use the SGD optimizer. The learning rate is set to 0.03 and is divided by 10 after 60 and
130 epochs. We use both the triplet loss and the cross-entropy loss. The detailed implementation is
provided in the reference link.

On the CIFAR-100 dataset, we train the model for 350 epochs using the SGD optimizer as the
standard implementation. The learning rate is set to 0.03 and is divided by 10 after 150 and 250
epochs. We use the cross-entropy loss for classification.

B APPENDIX: THE ARCHITECTURE OF RESNET-8

ResNet-8 contains one convolution layer, three building blocks, one global pooling, and one linear
layer. Each building block contains two convolutional layers with a skipping layer. Here, each
convolution layer is followed by a ReLU layer and a BatchNorm layer.
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Figure 8: The architecture of ResNet-8.

C APPENDIX: THE ARCHITECTURE OF PLAINNET-5

PlainNet-5 contains four convolution layers and one linear layer. Here, each convolution layer is
followed by a ReLU layer and a BatchNorm layer. The first three convolution layer is also followed
by a max pooling layer.
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Figure 9: The architecture of PlainNet-5.
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