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Abstract—If human experience is any guide, operating ef-
fectively in unstructured environments—like homes and of-
fices—requires robots to sense the forces during physical in-
teraction. Yet, the lack of a versatile, accessible, and easily
customizable tactile sensor has led to fragmented, sensor-specific
solutions in robotic manipulation—and in many cases, to force-
unaware, sensorless approaches. With eFlesh, we bridge this
gap by introducing a magnetic tactile sensor that is low-cost,
easy to fabricate, and highly customizable. Building an eFlesh
sensor requires only four components: a hobbyist 3D printer,
off-the-shelf magnets (< $5), a CAD model of the desired shape,
and a magnetometer circuit board. The sensor is constructed
from tiled, parameterized microstructures, which allow for tuning
the sensor’s geometry and its mechanical response. We provide
an open-source design tool that converts convex OBJ/STL files
into 3D-printable STLs for fabrication. This modular design
framework enables users to create application-specific sensors,
and to adjust sensitivity depending on the task. Our sensor char-
acterization experiments demonstrate the capabilities of eFlesh:
contact localization RMSE of 0.5 mm, and force prediction RMSE
of 0.27 N for normal force and 0.12 N for shear force. We also
present a learned slip detection model that generalizes to unseen
objects with 95% accuracy, and visuotactile control policies that
improve manipulation performance by 40% over vision-only
baselines – achieving 91% average success rate for four precise
tasks that require sub-mm accuracy for successful completion.
All design files, code and the CAD-to-eFlesh STL conversion tool
are open-sourced and available on https://e-flesh.com.

I. INTRODUCTION

Physical interaction with the world is nearly unimaginable
without our sense of touch. While roboticists have long
recognized the necessity of exteroceptive tactile feedback for
complex manipulation [10, 8], most recent work has either
entirely forgone the use of tactile sensing [3, 4]. With eFlesh,
we seek to tackle this problem by leveraging recent advances
in computer graphics and additive manufacturing to create a
low-cost, customizable sensor that anyone can fabricate with
just a hobbyist 3D printer, off-the-shelf magnets, and less than
5 minutes of active involvement.

Building on recent advances in additive manufacturing and
computer graphics, we introduce eFlesh, a novel magnetic
tactile sensing platform that fuses state-of-the-art approaches
to parameterized microstructural design with embedded mag-
netic sensing. Our approach leverages the 3D boundary cell
families proposed by Tozoni et al.[13], extending their util-
ity beyond passive mechanics to active, multipurpose tactile
sensing. Arbitrary surface geometries can be sensorized as
composite microstructured tiles, as illustrated in Fig. 1A, while
magnetometer circuit boards are embedded within or beneath
the structure to transduce deformation into rich magnetic
signals (Fig. 1C). This combination of material programma-
bility, scalability, and ease of fabrication positions eFlesh as a
powerful, versatile solution for integrating tactile feedback into
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custom robotic systems. In this paper, we present a concrete
methodology for the design and fabrication of eFlesh, and
demonstrate its versatility across a range of robotic tasks and
sensing applications. Our main findings can be summarized as
follows:

1) We present eFlesh, a magnetic tactile sensor that can be
fabricated into any 3D-printable convex shape with off-
the-shelf magnets and Hall sensors.

2) We characterize the response of eFlesh and demonstrate
a contact localization RMS error of 0.5 mm, and force
prediction RMS errors of 0.27 N for normal force and
0.12 N for shear force.

3) We integrate eFlesh with learning based approaches for
slip detection, where we achieve a success rate of 95%
on unseen objects, and visuotactile learning, where we
outperform vision-only baselines by 41%, while achiev-
ing > 90% success rates on set of contact-rich, precise
manipulation tasks requiring sub-mm precision for suc-
cess.

4) We propose a novel technique to circumvent the interfer-
ence problem that has plagued magnetic sensing, by plac-
ing magnets of alternating polarities next to each other,
and demonstrate that with this technique, inter-sensor
as well as external magnetic interference correspond to
signal from less than 1mm of sensor deformation.

All design files, code, and the CAD-to-eFlesh STL conver-
sion tool will be open-sourced.

II. RESULTS

eFlesh is a low-cost, modular, and accessible magnetic
tactile sensing platform designed for both customizability
and scalability. Our approach leverages parameterized, durable
microstructures to decouple sensor design from complex fab-
rication constraints. The fabrication is fully compatible with
consumer-grade 3D printers, lowering the barrier to entry for
non-expert users. In addition to the ease of fabrication, we
employ machine learning to demonstrate the richness and
robustness of eFlesh signal. Our experiments also show that
eFlesh maintains high signal consistency across instances – en-
abling scalable deployment scenarios like contact localization,
force estimation, and generalizable policy learning.

To accommodate diverse sensor geometries, we adopt a
variation of the infill strategy proposed in [13]. Given an
arbitrary convex sensor shape, we first generate a voxelized
lattice composed of microstructure units, trimmed to fit the
desired form. Next, based on the number and size of magnets
to embed, we generate symmetric, press-fit pouches in the
sensor’s mid-plane to hold them. This modular design frame-
work greatly simplifies the process of sensorizing a variety of
surfaces, as illustrated in Fig. (B and D).

In the remainder of this section, we present a number of
experiments demonstrating the capabilities of eFlesh across
a range of contact reasoning tasks. We start with controlled
contact localization and force estimation tasks where we train
machine learning models to demonstrate the richness and

utility of the eFlesh signal. Following this, we explore two
deployment-driven scenarios:

1) Learned slip detection: A Hello Robot Stretch uses
eFlesh to predict when a grasped object is being pulled
out of its grasp – demonstrating the sensor’s slip detec-
tion capability and deployability in real-time interaction
scenarios.

2) Contact-rich visuotactile policy learning: Based on
the VisuoSkin framework presented in [10], we integrate
eFlesh into a policy learning pipeline for four contact-rich
tasks: USB insertion, plug insertion, credit card swiping
and whiteboard erasing. These tasks highlight the sen-
sor’s utility in capturing fine-grained contact information
critical for precise, closed-loop manipulation. Fig 2
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Fig. 1: Robot experiment setup. (A) Our UFactory xArm 7 robot and
experimental environment. (B) End-effectors used in policy learning
and sensor experiments.

A. Contact localization

An essential factor in selecting a tactile sensor is its con-
tact resolution – its ability to distinguish between spatially
proximal contact points. To evaluate the contact resolution of
eFlesh, we train a neural network to predict the planar contact
location (x, y) relative to the sensor’s center, as well as the
contact depth, z, relative to its surface, from the raw magnetic
field measured by the magnetometers. We place the sensor on
a flat table and use a 6mm-diameter 3D-printed hemispherical
indenter mounted on a UFactory xArm 7 robot to probe the
sensor surface at 1 mm intervals along x and y within a 30mm
× 30mm grid as shown in Fig. 2A. For each indentation, we



uniformly sample the indentation depth, z, between 0.2 mm
and 4.2 mm from the sensor surface, and record the change in
magnetic field along with the corresponding contact location
label, (x, y, z), obtained from robot proprioception. We repeat
this process for five passes over the entire grid resulting in a
total of 4,500 labeled samples.
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Fig. 2: eFlesh Sensor Characterization Experiments. (A), (Left
to Right) The UFactory xArm robot arm equipped with a point
indenter end-effector probing an eFlesh sensor instance for contact
localization; Top view of the 30mm × 30mm indentation grid
overlaid on the sensor; Heatmap visualizations of contact localization
errors on the validation set of train instance and an unseen eFlesh
instance. (B), xArm with a plate indenter compressing an eFlesh
sensor on a weighing scale for normal force estimation, alongside
the resulting error plot of our trained estimation model. (C), xArm
equipped with an eFlesh gripper pressing a grasped foam stick against
a weighing scale, alongside the resulting shear force estimation error
plot.

Our neural network is a simple MLP with two hidden
layers with 128 nodes each and ReLU activations, mapping
the 15-dimensional change in magnetic field (B) to the 3-
dimensional contact location: (x, y, z). We deliberately avoid
random sampling when splitting the dataset for training and
validation. Instead, we use data from the first four passes over
the indentation grid for training, and reserve the fifth pass for
validation. This setup better reflects real-world deployment
conditions where sensor response tends to drift over time –
a well-documented challenge in soft sensing systems [7, 1].
Under this protocol, the model achieves an RMSEx,y of
0.5mm and an RMSEdepth of 0.16mm on the validation set,
demonstrating that eFlesh can localize contact with sub-mm
precision. We find that this is slightly worse than a random
train-validation split which results in a validation RMSEx,y of
0.4mm and a validation RMSEdepth of 0.12mm, justifying
our temporal train-validation split. To better contextualize
these results, Fig. 2A also visualizes contact localization error
at every point of the indentation grid for the validation set,
as well as the test set comprised of indentation data from an
unseen eFlesh instance. These plots illustrate the consistency
of low contact localization error over the entire surface of the
sensor as well as the generalization of this result to unseen
instances of eFlesh.

B. Normal Force estimation

To further characterize the force response of eFlesh, we
train a separate neural network to predict normal force from
raw magnetic field signals. We swap the hemispherical point
indenter for a flat plate indenter shown in Fig. 1B and
place a weighing scale underneath the sensor (Fig. 2B). To
collect data for the experiment, we apply compressive forces
ranging from no force to 30 N while recording synchronized
measurements from both the sensor and a weighing scale.
For training and validation, we adopt a temporal split of the
dataset mirroring the protocol used in the contact localization
experiment: the first 7,200 data points are used for training,
while the remaining 1,800 points form the validation set. We
find a normal force prediction RMSE of 0.27 N, corresponding
to a pressure of 125 Pa, validating eFlesh’s ability to capture
normal force/pressure with a high degree of precision. Fig. 2B
also shows the variation of force prediction error as the amount
of applied force is increased, illustrating that maximum error
remains under 1N across the entire range of applied forces.

C. Shear force estimation

A key aspect of human dexterity is the ability to detect
impending slip and adjust manipulation strategies accord-
ingly [2]. Tactile sensors can enable the same capability in
robots if they can capture shear forces acting on the surface of
the sensor before an object in contact slips out of grasp. In this
experiment, we evaluate eFlesh’s capability to estimate planar
(shear) forces applied to the sensor surface. To do so, we use
a foam cleaning stick (Fig. 2C), which enables the application
of a broader range of shear forces to the sensor surface without
causing slip. The stick is grasped using a parallel jaw gripper,
with both gripper tips equipped using eFlesh. We then generate
data by randomly sampling vertical displacements of the foam
stick, pressing it against a weighing scale. During this process,
we record synchronized raw magnetic field signals from the
sensors and ground-truth force measurements from the scale.
The applied shear forces span a range from 0 N to 17.5 N.
We train a neural network to predict the planar shear force
from the raw magnetic data, using the same temporal split
strategy as in previous experiments to account for sensor drift:
the first portion of the dataset is used for training, and the
remainder is held out for testing. The trained model achieves
a root mean squared error (RMSE) of 0.12 N, demonstrating
eFlesh’s effectiveness in accurately estimating shear forces.

D. Slip detection using deep learning

A closely related and equally important capability for robots
operating in unstructured environments is the ability to detect
when an object has slipped from their grasp. In this experi-
ment, we demonstrate that eFlesh can be used to reliably detect
object slip using a simple, generalizable linear classifier trained
on interactions with a small set of objects. Our setup consists
of a Hello Robot Stretch with integrated eFlesh as shown
in Fig. 3A. A human operator slowly tugs on the grasped
object for 1-2 seconds, after which a human annotator labels
the sequence as “force” or “no-force” based on corresponding



A    Robot setup B    Training and test objects

Fig. 3: Slip Detection. (A) Hello Robot Stretch setup used for slip
data collection and classifier evaluation. (B) Object sets: (Left) A
diverse ensemble used for training and (Right) a held-out validation
set of objects to evaluate our model on.

videos. We estimate three statistics from a sliding temporal
window of the raw magnetometer signals: (1) the norm of
the x and y components of the magnetic field corresponding
to each of the five magnetometers, (2) the maximum change
in sensor signals within the window, and (3) the standard
deviation of the signal in the window, and use these statistics to
train a linear binary classifier. The training dataset consists of
four trajectories each of 30 everyday objects varying in shape,
size, weight, and surface texture. To evaluate generalization,
we test the model on a separate set of 20 unseen objects
(Fig. 3B). Despite its simplicity, the classifier achieves a high
classification accuracy of 95% on this held-out set.

E. Visuotactile Policy Learning

Finally, a key application area for tactile sensors is in
learning force-aware policies for robots for precise, contact-
rich manipulation. We study the effectiveness of eFlesh in
visuotactile robot policy learning through four contact-rich
manipulation tasks shown in Fig. 4A. Drawing from the Visu-
oSkin [10] framework, we employ a transformer-based archi-
tecture for learned policies using behavior cloning (Fig. 4B).
Here, we describe the robot environment, set of tasks, and the
evaluation protocol.

1) Environment Setup: We use a Ufactory xArm 7 robot
with its standard two-fingered gripper and an eFlesh sensor
attached to either fingertip as shown in Fig. 4A. We use a Meta
Quest 3 along with the OpenTeach [9] teleoperation framework
to collect demonstrations for behavior cloning. To improve
dataset diversity and policy robustness, we adopt a strategy
similar to VisuoSkin [10], introducing uniformly sampled
angular perturbations to the commanded robot velocity at
each timestep during teleoperation. We record visual data
from four camera views: three third-person perspectives and
one egocentric wrist-mounted camera attached to the robot’s
gripper, all captured at 30 Hz. Simultaneously, we collect
tactile data from the eFlesh sensors in the form of raw
magnetometer signals sampled at 100 Hz. All data streams are
synchronized and resampled to 10 Hz for downstream training
and deployment.

2) Effect of eFlesh on performance: We observe that the
trained visuotactile policies are able to successfully complete
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Fig. 4: Robot Policy Learning Tasks and Model Architecture.
(A) We evaluate the performance of eFlesh on four precise tasks -
USB Insertion, Whiteboard Erasing, Credit card swiping and Plug
Insertion. (B) Visuo-Skin model architecture, used for our robot
policy learning experiments. Images from the four cameras are
encoded by a CNN encoder while the eFlesh signal is encoded
by an MLP encoder. The encoded features are passed through a
transformer decoder policy along with an action token, whose output
is used to predict an action chunk. This action chunk is supervised
using demonstration data, and policies employ exponential smoothing
during deployment to avoid jerky motions [15].

the aforementioned precise tasks, at a high average success rate
of 91%. Given the low margins of error needed for these tasks,
this underscores both the signal consistency and the ability of
eFlesh to reliably capture the subtle sensory cues to then learn
meaningful seeking behaviors in order to complete the tasks.

III. CONCLUSION

In this work, we introduced eFlesh, a 3D-printable, magnetic
sensor that offers a low-cost and accessible approach to tactile
sensing. By leveraging only a standard 3D printer, a small
number of embedded magnets, and a magnetometer circuit
board, eFlesh enables sensorizing a wide range of robots.
This design opens the door to democratizing the fabrication
of tactile sensors, significantly improving accessibility and
customizability for in-the-loop design iteration.

The broader significance of eFlesh lies in its potential to
equip robots with richer sensing, particularly as we deploy
them in unstructured, dynamic environments. Vision alone
is often insufficient in a number of tasks requiring fine-
grained spatial awareness, especially in occluded and clut-
tered settings. eFlesh provides a lightweight, conformal, and
minimally disruptive tactile solution with high sensitivity and
a large dynamic range, in addition to shape and response
customizability.

A key advantage of eFlesh over traditional magnet-based
sensors [12] and existing soft sensing techniques [2, 8, 14]
is its ease of fabrication and scalability. Unlike previous
systems that rely on manual assembly, specialized equipment,
or complex, multi-step fabrication, eFlesh is entirely 3D-
printable and modular. This lowers the barrier to entry as well
as prototyping time for users.
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APPENDIX

A. Limitations and Future Work

Magnetic sensing in uncontrolled environments remains a
challenge. One known limitation is susceptibility to magnetic
interference, especially in proximity to electromagnetic or fer-
romagnetic objects, including other instances of the magnetic
sensor itself. While eFlesh effectively mitigates interference
from most everyday sources and nearby eFlesh sensors, it may
still encounter stronger magnetic fields in industrial settings
such as power infrastructure or server environments. In future
work, we aim to investigate materials with high magnetic per-
meability and explore passive shielding techniques to further
reduce these effects.

Another open question concerns scaling and generaliza-
tion. Our current results show strong promise in small-scale
experiments, as well as signal consistency across instances
conspicuously absent across the spectrum of existing tactile
sensors. This data reusability along with robustness to mag-
netic interference makes eFlesh uniquely amenable to data
collection and deployment at scale across a diverse set of
robotic platforms and environments. To this end, future work
will involve large-scale data collection in realistic settings
along the lines of prior work in home robotics [11, 4],
to validate generalization and robustness. We also envision
learning tactile representations from these datasets to extract
richer features from magnetic signatures, further enhancing
applicability in novel scenarios.

Finally, the modular nature of eFlesh suggests exciting
possibilities for integration into multi-functional systems com-
bining sensing and actuation. By allowing sensing capabilities
embedded directly into the structure of robots, eFlesh repre-
sents a step forward in material-based robotics that closely
integrates form and function in the construction of robots.

B. Materials and Methods

1) Fabrication of eFlesh: The cuboidal instance of eFlesh
used in all of the experiments presented above is composed
of three layers of 5 × 5 microstructure grids stacked on top
of each other. The Young’s modulus of each layer is constant
across the grid plane and increases linearly from the bottom
layer to the top layer as 0.001Ef , 0.0015Ef and 0.002Ef

respectively, where Ef represents the Young’s modulus of the
filament (we use TPU 95A). Each microstructure cell is a
cube of size 8mm, resulting in overall sensor dimensions of
40mm × 40mm × 24mm. After generating the microstructure
grid, we add four lip-sealed pouches in the middle layer,
distributed as shown in Fig . These pouches are designed to
press-fit tolerance for N52 neodymium magnets that each have
a diameter of 9.525mm and a thickness of 3.175mm.

This workflow is adaptable to any arbitrary 3D geometry,
specified as a .obj/.stl file. Once the Young’s modulus is
specified, cell size is primarily constrained by the minimum
printable thickness of the beams that make up each cell. On
deciding a cell size, the number of layers can be computed
by dividing the object’s height by this cell size. We first

create a cuboidal block of dimensions of the input mesh,
thus encompassing it, composed of cut-cells of the specified
cell size and Young’s Modulus. Next, we trim the region
that extends beyond the convex hull of the input shape,
to preserve the surface shape. The user can then specify
their cylindrical magnet dimensions and position, following
which we parametrically add lip-sealed pouches within the
microstructure grid.

We fabricate the sensors using a Bambu X1 Carbon 3D
printer with a standard 0.4mm nozzle, printing with TPU
filament with a Shore hardness of 95A, requiring no print
supports. The model is processed in OrcaSlicer, an open-
source slicing tool, which is configured to pause the print one
layer before the magnetic pouch covers. At this point in the
print, the user inserts magnets into the pouch packets, with
the north poles facing upwards in this case, but in general,
polarities may be altered based on the considerations outlined
in the previous sections. Printing is then resumed to encase
the magnets in the pouch as well as complete the rest of the
sensor structure.

2) Neural Architectures and Training: In this section, we
provide an overview of the training details and model archi-
tectures used for the sensor characterization and robot policy
learning experiments.

3) Spatial and Force Resolution: We use a multi-layered
perceptron (MLP) with two hidden layers, each with 128
nodes and ReLU activations. The network is trained using
mean squared error (MSE) loss, with the Adam optimizer, a
learning rate of 1e-3 and a batch size of 64. Target outputs
- x, y, z coordinates are normalized for training using their
corresponding ranges of 30 mm for x and y and 4 mm for
z. RMSEs are reported after unnormalizing the predictions.
Training is performed on a single NVIDIA RTX 3080 GPU
over a maximum of 1000 epochs, requiring under 5 GPU
minutes.

4) Visuo-Tactile Robot Learning: Drawing from Visuo-
Skin [10], we use a multi-sensory transformer architecture [5],
where we fuse the visual and tactile observations as a mod-
ified ResNet-18 [6] encoding and a 2-layer MLP encoding,
respectively, projected to the same dimensionality.

Visual data is resized to 128x128 and the eFlesh data
corresponds to 15-dimensional vectors for each fingertip, and
the time-synchronized visuo-tactile dataset is subsampled by a
factor of 5. We tokenize each of the two fingertips’ eFlesh data
separately prior to feeding them into the transformer decoder.
Robot policies are then trained on the subsampled dataset up
to 36,000 checkpoints, requiring 3 hours on a single NVIDIA
RTX 8000 GPU.
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