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Abstract

When applying deep-learning-based solvers to differential equations, a key
challenge is how to improve their generalization ability, so that the pre-
trained models could be easily adapted to new scenarios of interest. In this
paper, inspired by the well-known mathematical statements on the continu-
ous dependence of solutions to ordinary differential equations on initial val-
ues and parameters, we make a non-trivial extension of the physics-informed
neural networks by incorporating additional information on the continuous
dependence of solutions (abbreviated as cd-PINN). Our cd-PINN integrates
the advantages of neural operators and Meta-PINN, requiring only a few
labeled data while enabling solving ordinary differential equations with
respect to new initial values and parameters in a fast and accurate way
without fine-tuning. As demonstrated through novel examples like the Lo-
gistic model, the Lotka-Volterra model, damped harmonic oscillators and a
multiscale model for p53 activation, the accuracy of cd-PINN under those
untrained conditions is usually 1-3 orders of magnitude higher than PINN.
Meanwhile, the GPU time cost for training in the two approaches is compa-
rable. Therefore, we expect that our cd-PINN would be particularly useful
in improving the efficiency and accuracy of deep learning-based solvers for
differential equations.

1 Introduction

In recent years, applying various deep-learning algorithms for solving differential equations
has attracted increasing attention. Deep-learning-based differential equation solvers are
generally considered to have a significant potential to improve computational efficiency (Es-
maeilzadeh et al., 2020; Kochkov et al., 2021). One particular notable method is Physics-
Informed Neural Networks (PINN)(Raissi et al., 2019), which integrates the governing equa-
tions into the loss function to train the model and approximates the solutions to differential
equations without discrediting the solution domain. Similarly, the Deep Galerkin Method
(DGM)(Sirignano & Spiliopoulos, 2018) uses neural networks to approximate solutions to
differential equations, but its loss function is based primarily on the Galerkin residual. The
Deep Ritz method(E & Yu, 2018) reformulates the differential equation in a variational
form and solves it by minimizing the associated energy. Based on the weak solution form of
the differential equations, weak adversarial networks(Zang et al., 2020) parameterize both
the weak solution and the test function into the primary neural network and the adversar-
ial neural network, respectively. Additionally, several enhanced methods based on PINN
have emerged. Some of these methods focus on decomposing the solution domain, allowing
the model to be trained in parallel across multiple GPUs, such as conservative Physics-
Informed Neural Networks(cPINN), extended Physics-Informed Neural Networks(xPINN),
etc.(Jagtap et al., 2020; Jagtap & Karniadakis, 2020). In particular, gPINN(Yu et al., 2022)
incorporate the gradient of the differential equations into the loss function to minimize re-
liance on residual points and P2INN(Cho et al. (2024)) uses the parameters of the equation
as additional encode input so that the model can better solve the CDR equations. Specif-
ically for ODEs, Neural ODEs (Chen et al. (2018); Hu et al. (2022)) learn a continuous
dynamic model of the data generation process by embedding neural networks into the ODE
systems.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, these methods treat differential equations with varying parameters and initial
values as distinct tasks. When the parameters or initial values change, the model must be
re-trained. This will lead to unaffordable computational cost in the face of a large amount of
tasks for solving differential equations with diverse parameters and initial values. To address
the above issue and enhance the universality of solving different differential equations with
deep learning, researchers have begun exploring operator learning, which involves using
neural networks to learn the mapping between two infinite-dimensional function spaces.
PDE-Net(Long et al., 2018; 2019) is one of the earliest neural operators, inspired by the
finite difference method. It designs a specialized convolution kernel to solve both the forward
and inverse problems of differential equations. DeepONet(Lu et al., 2019; Wang et al.,
2021), grounded in the universal approximation theorem for operators, learns the mapping
of functions to functions, specifically mapping the initial values of PDEs to their solutions.
PINO (Li et al., 2024) is the first hybrid approach incorporating data and PDE constraints
at different resolutions to learn the solution operator of a given family of parametric PDEs.
The Fourier Neural Operator(FNO) (Li et al., 2020a) leverages the fast Fourier transform
to perform convolution operations in the Fourier space, enabling it to map input functions
to target functions with exceptional performance in high-dimensional and complex systems.
The Graph Neural Operator(GNO)(Li et al., 2020b) integrates graph neural networks with
operator learning, using graph structures to represent spatial points and their connections,
efficiently handling input function mappings on irregular networks.
A notable advantage of these models is that once trained, the prediction time for new ap-
plications is nearly negligible. However, training these models usually requires a substantial
amount of labeled data, whose quantity and quality determine the model’s performance
to a large extent. This shortcoming has prompted researchers to explore the integration
of meta-learning with PINN algorithms. Meta-learning-based PINN can be categorized
into two frameworks: feedforward meta-learning and agnostic meta-learning(MAML). In
feedforward-based meta-PINN, the meta-learning model primarily learns how to map the
configurations of differential equations to the weight parameters of the PINN model, as seen
in approaches like Hyper-PINN and Meta-MgNet(de Avila Belbute-Peres et al., 2021; Chen
et al., 2022). On the other hand, the MAML-based meta-PINN aims to learn an efficient
initialization for the PINN weight parameters that exhibit strong generalization capabilities.
This allows the model to be fine-tuned for a new configuration with only a few rounds of
gradient updates. For example, by using the reptile-based method, Liu et al.(Liu et al.,
2022) directly learns the initialization of the PINN model, while the MAD-PINN (Huang
et al., 2022) implicitly encodes the configurations as additional input to the PINN model,
then fine-tuning them to reach a best output. Despite significant advances, these meta-
learning methods still face many limitations. They often require longer training time, and
the fine-tuning procedure may be computationally expensive when many new configurations
are involved.
In this paper, we propose a new method that integrates the advantages of neural operators
and Meta-PINN, requiring only a small amount of labeled data while enabling accurate
predictions on new configurations without the need for fine-tuning. Unlike Meta-PINN, we
treat the solution of parametric differential equations as a single task, rather than separated
tasks with different configurations. By incorporating the parameters and initial values
as additional input and adding the constraints of continuous dependence of solutions on
parameters and initial values into the loss function, we make a non-trivial generalization
of PINN (cd-PINN). Our cd-PINN exhibits an outstanding performance on a number of
ODE solving tasks involving different combinations of parameters and initial values, whose
accuracy under those untrained conditions is usually improved by 1-3 orders of magnitude
compared to the vanilla PINN.
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2 Proposed Methods

2.1 Mathematical Foundation

Consider general ordinary differential equations in the following form
du

dt
= f(t, u, µ),

u(t = t0) = u0,
(1)

where f(t, u, µ) is a parameterized (by µ ∈ V ⊂ Rm) continuous function in I × W , with
t ∈ I, u ∈ W . Here I is an open interval of R1, and W is a domain of Rn. u0 denotes the
value of u(t) at time t0. For example, given the growth model du/dt = ruk, where r, k ∈ R,
we have µ = (r, k).
With the change of initial values or parameters, the solution of ODEs varies accordingly,
which therefore can be represented as u = u(t, u0, µ). Further suppose the right-hand-side
term f is locally Lipschitz continuous with respect to u in W , i.e. |f(t, u1, µ) − f(t, u2, µ)| ≤
L∥u1 − u2∥ for ∀u1, u2 ∈ W ; and for all t ∈ I, f not only is locally Lipschitz continuous
but also has a uniform Lipschitz constant L. Under these assumptions, we can guarantee
the local existence and uniqueness of solutions to the ODEs.
Theorem 1 (local existence and uniqueness). For any t0 ∈ I, u0 ∈ W , and fixed parameters
µ, there exists a positive constant α > 0, such that equation 1 admits a unique solution
u = u(t, u0, µ) defined on the interval t ∈ [t0 − α, t0 + α]. Furthermore, this solution is
continuous with respect to time t, and satisfies the initial condition u(t0) = u0 too.

During the proof of the local existence and uniqueness of the ODE solution, initial values
and parameters both have been fixed. However, if u0 and µ are allowed to be varied, we
arrive at the following well-known results on the continuous dependence of the ODE solution
on both initial values and parameters.
Firstly, by fixing parameters µ, we have:
Theorem 2 (continuous dependence on initial values). Suppose the solution u(t, x0, µ) to
equation 1 is defined on the interval [t0, t1]. Then there exists a neighborhood W1 ⊂ W
around x0, such that for any y0 ∈ W1, equation 1 has a unique solution u(t, y0, µ) that is
also defined on the interval [t0, t1]. Furthermore, for ∀t ∈ [t0, t1], the following inequality
holds

∥u(t, x0, µ) − u(t, y0, µ)∥ ≤ ∥x0 − y0∥eL(t−t0). (2)
where L is the uniform Lipschitz constant.

The above theorem states the continuous dependence on the initial value, while its differ-
entiality is given as follows.
Corollary 1. If the function f(t, u, µ) is continuously differentiable with respect to u, then
its solution u = u(t, u0, µ) is also continuously differentiable with respect to initial values
u0.
Remark 1. Regarding the statement of Corollary 1, we are straightforward to show

dz

dt
= ∂f

∂u
z,

z(t0, µ) = 1,
(3)

where z = ∂u/∂u0 denotes the continuous partial derivatives of solution u with respect to
initial values u0.
Next, suppose that parameters µ vary while initial values are fixed. Then we can obtain quite
similar conclusions on the continuous dependence of the ODE solutions on the parameters,
that is:
Theorem 3 (continuous dependence on parameters). For any t0 ∈ I, u0 ∈ W and µ0 ∈ V ,
there exist constants α > 0 and ρ > 0, such that when |µ − µ0| ≤ ρ, the solution of
equation 1 with initial conditions u(t0) = u0 is defined on the interval [t0 − α, t0 + α], and
is a continuous function of both t and µ.
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Corollary 2. If the function f(t, u, µ) has continuous partial derivatives with respect to
variables u and µ, then the solution of equation 1 with the initial condition u(t0) = u0 is
continuously differentiable with respect to µ.
Remark 2. The proof of Corollary 2 not only shows that ∂u/∂µ exists and is continuous,
but also satisfies the following differential equation:

dz

dt
= ∂f

∂u
z + ∂f

∂µ
,

z(t0, µ) = 0,

(4)

by introducing a new variable z = ∂u/∂µ. Above formula together with the one in Remark
1, provide the basic theoretical foundation for the problems we consider in the next section.

2.2 PINN with continuous dependence (cd-PINN)

When applying PINN as well as its most variants to ODEs, most of them lack sufficient
ability to maintain their outstanding performance on new parameters or initial values, which
are dramatically different from the original ones used for training. Towards this key issue,
our goal is to improve the generalization ability of PINN for solving various differential
equations in a significant way. Meanwhile, the flexibility, efficiency, and accuracy of PINN
should be kept as much as possible. In this way, we could easily solve differential equations
under a diverse set of initial conditions and parameters, by using PINN after a small amount
of training. This is particularly useful in applications requiring extensive predictions and
real-time feedback, as it significantly enhances the system’s robustness and efficiency while
reducing the complexity of model maintenance.
Here we propose a variant of PINN, called cd-PINN (PINN with continuous dependence).
We still adopt a deep neural network to approximate the ODE solution û(t, u0, µ). In the
vanilla PINN, the loss function consists of two components: a supervised loss from data
measurement of u, which helps to stabilize the training procedure, and an unsupervised
residual loss, which incorporates the physical information about the differential equations.
Due to the regularity assumption on the function f , we know that the ODE solution u is
continuously differentiable with respect to both parameters µ and initial values u0. As a
consequence, we will incorporate this valuable information on the continuous dependence
into the loss function based on formulas in Remarks 1 and 2.
To sum up, the loss function of our cd-PINN is given by

L(θ) = λdataLdata + λresLres + λcdLcd, (5)

where

Ldata = 1
Ndata

Ndata∑
i=1

∥û(ti, u0i
, µi) − u(ti, u0i

, µi)∥2
2

Lres = 1
Nt

Nt∑
i=1

∥∥∥∥dû

dt
(ti, u0i , µi) − f(ti, ûi, µi)

∥∥∥∥2

2
+ 1

N0

N0∑
j=1

∥û(t0, u0j , µj) − u0j ∥2
2

Lcd = 1
Nt

Nt∑
i=1

∥∥∥∥( ∂2û

∂µ∂t
− ∂f

∂u

∂û

∂µ
− ∂f

∂µ
)(ti, u0i

, µi)
∥∥∥∥2

2
+ 1

N0

N0∑
j=1

∥∥∥∥∂û

∂µ
(t0, u0j

, µj)
∥∥∥∥2

2

+ 1
Nt

Nt∑
i=1

∥∥∥∥( ∂2û

∂u0∂t
− ∂f

∂u

∂û

∂u0

)
(ti, u0i

, µi)
∥∥∥∥2

2
+ 1

N0

N0∑
j=1

∥∥∥∥ ∂û

∂u0
(t0, u0j

, µj) − 1
∥∥∥∥2

2
.

(6)

Here {(ti, u0i
, µi)} represent those points sampled from the entire domain, while points

{(t0, u0j
, µj)} are restricted to the initial time point t0. The total number of sampled

points is given by Nt and N0 separately. The weights λdata, λf , and λc are used to balance
the interplay between the three loss terms. The subscript θ is omitted for simplicity. Our
non-trivial modification by introducing the loss function Lcd (named as the continuity loss)
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helps to improve the generalization ability of PINN to a considerable extent, which will be
addressed through fruitful examples in detail later.
In the literature, there are works which incorporate derivative (or smoothness) loss into the
loss function. For example, Virmaux & Scaman (2018) proposed methods to constrain the
Lipschitz constants of neural networks, while Song et al. (2023) developed networks with
adaptive Lipschitz constants to achieve smoother outputs in reinforcement learning. These
works mainly focus on improving the smoothness and robustness of neural networks, which
make a clear distinction from our method.

3 Numerical Results

3.1 The Logistic Model

As the first example, we select the Logistic model, a classical ordinary differential equa-
tion first published by Pierre Verhulst to describe the population growth regulated by the
carrying capacity due to resource limits. It reads

du

dt
= ru

(
1 − u

umax

)
, (7)

where u = u(t) represents the population size, umax denotes the carrying capacity, and
r ∈ R+ is the rate of maximum population growth. By using the separation of variables, we
can find its general solution as u∗(t) = u(t)/umax = [1 + e−rt(umax/u0 − 1)]−1, where u0 is
the initial population size. It is straightforward to verify that this solution is continuously
differentiable with respect to the growth rate r and the initial value u0.
This simple equation could be easily solved by most state-of-the-art deep learning algo-
rithms. For instance, by using PINN the relative error of solutions could be readily mini-
mized below 10−3 − 10−4, although this good performance is limited to fixed growth rate r
and initial population size u0. If we directly transfer the PINN model to a new growth rate
or initial value without further fine-tuning, the predicted solution will significantly deviate
from the true value (see Figure 1(a)). This fact clearly reveals that the vanilla PINN lacks
sufficient ability in generalization.
In contrast, by taking the information on the continuous dependence of solutions to the
Logistic equation on both the growth rate r and initial population size u0 into consideration
(the carrying capacity umax is fixed), our cd-PINN can achieve a good agreement between
the predicted population size and its true value at any time points. Most astonishingly,
by only using single set of training data with respect to specified r = 1 and u0 = 0.3 as
marked by the red star in Figure 1(b), the absolute errors could be maintained below 10−1

(and in most regions below 10−3) over the entire region for u∗
0 = u0/umax ∈ [0.01, 1.0] and

r ∈ [0.1, 10.0]. Moreover, we compare the absolute error of cd-PINN with that of PINN
at each point in the parameter space. As illustrated in Figure 1(b), except for several tiny
domains around the training data point, the accuracy of cd-PINN is significantly higher
than PINN.
To uncover why cd-PINN has such a nice performance on generalization in the current
study, we make a comparison on the vector fields of ∂u/∂r and ∂u/∂u0 given by PINN and
cd-PINN in Figure 1(d). It can be observed that by imposing constraints not only on the
solution u(t) but also on its partial derivatives ∂u/∂r and ∂u/∂u0, cd-PINN has successfully
reproduced the correct vector fields. Contrarily, the vanilla PINN makes wrong predictions,
especially at the top-left corner of Figure 1(d).
In this task, the training data consists of 20 real data points corresponding to the solution of
u0 = 0.3, r = 1.0, along with 214 residual data points, i.e. Nt = N0 = 214. To approximate
the continuous solution, we utilize a fully connected neural network with 6 hidden layers,
each containing 64 neurons. And Tanh is employed as the activation function. During
the training procedure, the Adam optimizer is first applied for 50000 epochs, followed by
an additional optimization using the LBFGS optimizer. The learning rate for the Adam
optimizer is set to 0.001, while the learning rate for the LBFGS optimizer is set to 0.1.
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Figure 1: Comparison on the performance of cd-PINN v.s. PINN on the Logistic equation.
Panel (a) depicts the exact solution, the predicted solutions of cd-PINN and PINN under
specific initial value u0 and parameter r. (b) illustrates the logarithms of absolute errors of
cd-PINN over a wide range of the growth rate r and normalized initial population size u∗

0.
(c) displays the difference in the logarithm of absolute errors between cd-PINN and PINN
(d) shows the vector fields of ∂u/∂r (upper row) and ∂u/∂u0 (lower row).

3.2 The Lotka-Volterra Model

The Lotka-Volterra model (LV model) consists of two coupled ordinary differential equa-
tions, representing the population changes of the predator and prey, respectively.

dX

dt
= c11X + c12XY + c13X2,

dY

dt
= c21Y + c22XY + c23Y 2.

(8)

The initial values are X(t = 0) = X0, Y (t = 0) = Y0. We designed three scenarios for this
example. In the first scenario, the system has an unstable fixed point at (0, 0), two stable
fixed point at (−c11

c13
, 0) and (−c12c21 − c11c23

c12c21 − c13c23
, −c11c22 − c13c21

c12c22 − c13c23
). The primary goal of this

scenario is to test whether the model can learn the correct solution when the initial value
range spans the attraction domains of two different stable points.
We uniformly select 1600 groups of initial values of (X0, Y0) during the interval [0.1, 10] ×
[0.1, 10] to generate the test data. Meanwhile, the real data consists of 20 points corre-
sponding to the solution with initial values X0 = 8.0, Y0 = 1.0, and 20 points corresponding
to the solution with initial values X0 = 5.0, Y0 = 0.0. The training data set includes the
real data and Nt = N0 = 214 residual data points.
As clearly seen in Figure 2(d), cd-PINN exhibits a quite promising generalization ability
over a wide region of (X0, Y0) with absolute errors smaller than 10−2, except for few points
near domain boundaries. At the same time, the MSE of cd-PINN on the test data drops
much faster than that of vanilla PINN with respect to training iterations (see Figure 2(b)).
Furthermore, as highlighted through the zoomed-in plot in Figure 2(e), the phase plane
predicted by PINN is inconsistent with the explicit one around the fixed point (c11

c13
, 0),

which leads to an intrinsic qualitative difference from our cd-PINN. Details on the other
two scenarios could be found in Appendix B.2.
Furthermore, our numerical simulations reveal that even for fixed initial values or parame-
ters, the accuracy and convergence rate of cd-PINN are usually much better than PINN (see
Appendix B.5.). Meanwhile, for unseen initial values and parameters, like data points be-
yond the training set, the cd-PINN also shows a satisfactory performance (data not shown),
demonstrating a major strength of cd-PINN that it can indeed generalize to genuinely novel

6
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Figure 2: Results of LV equations under scenario one. (a) The phase plane of LV equations.
(b) The MSE of test data for both PINN and cd-PINN. (c) The predicted solutions of cd-
PINNs are compared with their exact solutions with respect to specific initial conditions (left
panel), alongside comparisons on the absolute errors of cd-PINN and PINN (right panel).
(d) The logarithms of absolute errors between the predicted solutions X (upper row) and Y
(lower row) of cd-PINN and their respective true values. (e) Comparison on the predicted
phase planes of cd-PINN and PINN. The predicted domain of PINN, which is inconsistent
with the explicit result, is highlighted through the zoomed-in plot.

scenarios. We contribute these improvements to the inclusion of additional mathematical
constraints on continuous dependence.

3.3 Damped Harmonic Oscillator

The damped harmonic oscillator is a system that moves back and forth around its equilib-
rium position in the presence of spring force and frictions. Mathematically, it is described
by a second-order differential equation

d2x

dt2 + 2ζω0
dx

dt
+ ω2

0x = 0 (9)

where x is the displacement, ζ is the damping ratio, and ω0 is the intrinsic frequency, which
is related to the spring constant in physics. The initial conditions are typically defined as
u(0) = u0, du

dt (0) = v0, where u0 is the initial displacement and v0 is the initial velocity.

7
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Figure 3: Comparison on the performance of cd-PINN v.s. PINN for the damped harmonic
oscillator. Time evolution of (a) predicted solutions compared to training and test data, as
well as (b) their absolute errors for under-, critically, and over-damped cases. (c) Residual
loss Lres and continuity loss Lcd for cd-PINN and PINN over iterations.

Based on the damping ratio, the system can be classified into three distinguished cases
when the damping ratio is relatively weak ( 0 < ζ < 1), the system keeps oscillating with
gradually decreasing amplitude for a very long time, which is known as the underdamped
case. Contrarily, when the damping ratio is strong ( ζ > 1), the system returns to its
equilibrium position as quickly as possible with no oscillation, which is called the overdamped
case. Between these two, we have the critically damped case (ζ = 1).
In all three cases, the training set is focused on a single parameter configuration with 100
evenly sampled time points from 0 to 20. The test sets, in contrast, explore a much broader
parameter space. For the underdamped case, we take ζ = 0.2 and ω0 = 1.0 for training, while
the test set is spanned over ζ ∈ [0.1, 0.9] and ω0 ∈ [0.5, 5.0]. The overdamped case adopts
ζ = 2.0 and ω0 = 1.0 for training, with test parameters ζ ∈ [1.1, 5.0] and ω0 ∈ [0.5, 5.0].
Both cases result in 1600 distinct parameter combinations for testing. The critically damped
case (ζ = 1.0) mainly examines the influence of intrinsic frequency variations on the test
set, with ω0 ∈ [0.5, 5.0] taking 40 discrete points.
Our numerical experiments clearly reveal the high accuracy of cd-PINN in fitting both
training and test data in all three damping cases, particularly in the underdamped and
critically damped cases, as illustrated in Figure 3(a-b). In contrast, the vanilla PINN without
considering continuous dependence of solutions exhibits much larger deviations from the
test data. To gain a deep insight into the outstanding performance of cd-PINN, we make
a direct comparison on the residual loss Lres and the continuity loss Lcd between cd-PINN
and PINN. In Figure 3(c-d), we can see that the convergence rates of cd-PINN and PINN are
comparable on the residual loss Lres, while the continuity loss of cd-PINN converges much
faster and is also much lower than that of PINN. This observation emphasizes the efficacy of
integrating constraints on continuous dependence, resulting in a model with largely improved
generalization capabilities.
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Figure 4: Phase diagram for the solutions of p53 activation model at time t = 2. The
expression levels for seven genes are calculated by (a) the ODE solver, (b) PINN without
C.D. constraints, and (c) cd-PINN separately in comparison.

3.4 A Multiscale Model for P53 Activation

In order to test whether our method is applicable to more complicated cases, here we
look into a multiscale model for p53 activation, which is a key gene closely related to
cancer development Tian et al. (2017). This model is composed of seven coupled ordinary
differential functions, with the initial values (ranging from 0.005 to 5) and model parameters
(ranging from 0.05 to 50) directly taken from the cited paper (see Appendix B.4. for the
model and parameters).
In this task, we expect that the cd-PINN can correctly learn the solutions to the above
model from time t = 0 to t = 5 with respect to arbitrary inputs of [S] ∈ [0.1, 10.0] and
[ARF ] ∈ [0.1, 1.5]. For this purpose, we uniformly select 41 × 41 groups of [S] and [ARF ]
during the interval [0.1, 10.0] × [0.1, 1.5] to generate the test data. Meanwhile, the real data
consists of 51 points corresponding to the solution with [S] = 2.575, [ARF ] = 0.45 and 51
points corresponding to the solution with [S] = 7.525, [ARF ] = 0.695. The training data
set includes the real data and Nt = N0 = 213 residual data points.
The final predictions of cd-PINN on this example are summarized in Figure 4, whose MSE
is 3.32 × 10−4, two order lower than the MSE of the model without C.D. constraints (5.38 ×
10−2). Therefore, it can be concluded that our cd-PINN is capable for handling more
challenging situations.

System type PINN cd-PINN
Time(s) NRMSE MSE Time(s) NRMSE MSE

Logistic 2, 158 1.17 × 10−2 7.49 × 10−3 2, 751 9.06 × 10−4 4.48 × 10−5

LV
Scenery 1 414 1.39 × 10−2 9.24 × 10−3 837 8.12 × 10−4 3.90 × 10−5

Scenery 2 5, 195 6.97 × 10−3 4.04 × 10−4 7, 088 5.63 × 10−4 3.12 × 10−6

Scenery 3 1, 090 4.78 × 10−3 2.51 × 10−3 1, 360 3.22 × 10−4 1.14 × 10−5

OS
Underdamped 2, 140 5.38 × 10−1 1.14 × 10−3 3, 999 3.35 × 10−1 4.43 × 10−4

Critical 1, 000 3.14 × 10−1 3.83 × 10−4 1, 694 7.46 × 10−2 2.16 × 10−5

Overdamped 2, 154 6.12 × 10−2 4.23 × 10−5 4, 040 4.25 × 10−2 2.04 × 10−5

p53 activation 4, 017 2.40 × 10−1 5.38 × 10−2 7, 193 1.88 × 10−2 3.32 × 10−4

Table 1: Summary on the training time and accuracy of cd-PINN v.s. PINN.
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4 Conclusion and Discussion

Previous deep-learning-based algorithms have achieved fantastic results in various fields,
though they still face with big challenges in generalization beyond the training data. More-
over, when applied to complex systems, like partial differential equations, where solutions
exhibit sensitivity to initial conditions or model parameters, these weaknesses become more
obvious.
To enhance the generalization capability of PINN, in this study we propose a novel approach
(cd-PINN) by incorporating additional information on the continuous dependence of solu-
tions on the parameters and initial values. Through the Logistic model, Lotka-Volterra
equations, damped harmonic oscillators and a multiscale model for p53 activation, the sig-
nificant advantages of our cd-PINN over the vanilla PINN have been clearly demonstrated,
which are summarized as follows.
Generalization and accuracy. Incorporating the continuous dependence information into
the loss function enables cd-PINN to effectively learn the fundamental mapping between
parameters/initial values and solutions. In all numerical experiments, our cd-PINN shows
a comparable accuracy to the vanilla PINN on the training data. More importantly, our
cd-PINN could maintain its promising performance on new configurations, which are far
away from the training data in the parameter space.
Universality and robustness. From the simple Logistic model to complex LV dynamics
and oscillatory systems, our cd-PINN demonstrates its universal applicability. Moreover, it
is observed that either the stability of fixed points or their respective attraction domains
have limited impacts on the solution’s accuracy, implying the robustness of cd-PINN against
the underlying dynamics and the location of training data.
Efficiency and no-fine-tuning. The inclusion of the continuity loss does not apparently
increase the computational cost of cd-PINN, whose training time is still comparable to the
vanilla PINN. Meanwhile, cd-PINN has no demand for retraining or fine-tuning when facing
with new parameters or initial conditions, in contrast to meta-PINN.
In the literature, Neural ODEs (Chen et al. (2018)) are another prominent approach for
learning solutions to ordinary differential equations. With respect to the same data set and
evaluation metrics, we find that the Neural ODE model could effectively capture the system
dynamics at the training data points, but shows a much poorer generalization ability than
cd-PINN under the testing scenarios (see Appendix B.6). In addition, the Neural ODE
model takes a much longer training time due to the explicit implementation of temporal
integration steps, whereas PINN and cd-PINN are more computationally efficient.
In the current paper, we restrict our study to ordinary differential equations for clarity.
Obviously, the same approach is applicable to partial differential equations too, e.g. the
viscosity in Burgers equation or the Reynolds number in Navier-Stokes equations. However,
it should be noted that the PDE cases are far more complicated in general. For example,
in many cases the parameter dependence of PDEs may be continuous but not necessarily
differentiable. This subtle distinction is crucial for certain contexts, such as the shock
structures in hyperbolic conservation laws(Evans (2022)). Under these situations, we need to
turn to more general conditions, like the Rankine-Hugoniot jump condition, to determine the
exact locations where the shock structure arises. The related work is ongoing. Furthermore,
we would like to explore the advantages and limitations of cd-PINN in high-dimensional and
multiscale systems, especially for real-world problems.
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